6 #include "exec/exec-all.h"
7 #include "exec/cpu_ldst.h"
11 #endif /* DEBUG_REMAP */
13 #include "exec/user/abitypes.h"
15 #include "exec/user/thunk.h"
16 #include "syscall_defs.h"
17 #include "target_syscall.h"
18 #include "exec/gdbstub.h"
20 /* This is the size of the host kernel's sigset_t, needed where we make
21 * direct system calls that take a sigset_t pointer and a size.
23 #define SIGSET_T_SIZE (_NSIG / 8)
25 /* This struct is used to hold certain information about the image.
26 * Basically, it replicates in user space what would be certain
27 * task_struct fields in the kernel
38 abi_ulong reserve_brk
;
40 abi_ulong start_stack
;
41 abi_ulong stack_limit
;
43 abi_ulong code_offset
;
44 abi_ulong data_offset
;
49 abi_ulong arg_strings
;
50 abi_ulong env_strings
;
51 abi_ulong file_string
;
56 /* The fields below are used in FDPIC mode. */
57 abi_ulong loadmap_addr
;
60 abi_ulong pt_dynamic_addr
;
61 abi_ulong interpreter_loadmap_addr
;
62 abi_ulong interpreter_pt_dynamic_addr
;
63 struct image_info
*other_info
;
65 /* For target-specific processing of NT_GNU_PROPERTY_TYPE_0. */
75 /* Information about the current linux thread */
76 struct vm86_saved_state
{
77 uint32_t eax
; /* return code */
87 uint16_t cs
, ss
, ds
, es
, fs
, gs
;
91 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
93 #include "nwfpe/fpa11.h"
96 #define MAX_SIGQUEUE_SIZE 1024
98 struct emulated_sigtable
{
99 int pending
; /* true if signal is pending */
100 target_siginfo_t info
;
103 /* NOTE: we force a big alignment so that the stack stored after is
105 typedef struct TaskState
{
106 pid_t ts_tid
; /* tid (or pid) of this task */
114 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
115 abi_ulong target_v86
;
116 struct vm86_saved_state vm86_saved_regs
;
117 struct target_vm86plus_struct vm86plus
;
121 abi_ulong child_tidptr
;
125 #if defined(TARGET_ARM) || defined(TARGET_M68K)
126 /* Extra fields for semihosted binaries. */
128 abi_ulong heap_limit
;
130 abi_ulong stack_base
;
131 int used
; /* non zero if used */
132 struct image_info
*info
;
133 struct linux_binprm
*bprm
;
135 struct emulated_sigtable sync_signal
;
136 struct emulated_sigtable sigtab
[TARGET_NSIG
];
137 /* This thread's signal mask, as requested by the guest program.
138 * The actual signal mask of this thread may differ:
139 * + we don't let SIGSEGV and SIGBUS be blocked while running guest code
140 * + sometimes we block all signals to avoid races
142 sigset_t signal_mask
;
143 /* The signal mask imposed by a guest sigsuspend syscall, if we are
144 * currently in the middle of such a syscall
146 sigset_t sigsuspend_mask
;
147 /* Nonzero if we're leaving a sigsuspend and sigsuspend_mask is valid. */
150 /* Nonzero if process_pending_signals() needs to do something (either
151 * handle a pending signal or unblock signals).
152 * This flag is written from a signal handler so should be accessed via
153 * the qatomic_read() and qatomic_set() functions. (It is not accessed
154 * from multiple threads.)
158 /* This thread's sigaltstack, if it has one */
159 struct target_sigaltstack sigaltstack_used
;
160 } __attribute__((aligned(16))) TaskState
;
162 extern char *exec_path
;
163 void init_task_state(TaskState
*ts
);
164 void task_settid(TaskState
*);
165 void stop_all_tasks(void);
166 extern const char *qemu_uname_release
;
167 extern unsigned long mmap_min_addr
;
169 /* ??? See if we can avoid exposing so much of the loader internals. */
171 /* Read a good amount of data initially, to hopefully get all the
172 program headers loaded. */
173 #define BPRM_BUF_SIZE 1024
176 * This structure is used to hold the arguments that are
177 * used when loading binaries.
179 struct linux_binprm
{
180 char buf
[BPRM_BUF_SIZE
] __attribute__((aligned
));
187 char * filename
; /* Name of binary */
188 int (*core_dump
)(int, const CPUArchState
*); /* coredump routine */
191 typedef struct IOCTLEntry IOCTLEntry
;
193 typedef abi_long
do_ioctl_fn(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
194 int fd
, int cmd
, abi_long arg
);
198 unsigned int host_cmd
;
201 do_ioctl_fn
*do_ioctl
;
202 const argtype arg_type
[5];
205 extern IOCTLEntry ioctl_entries
[];
209 #define IOC_RW (IOC_R | IOC_W)
211 void do_init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
);
212 abi_ulong
loader_build_argptr(int envc
, int argc
, abi_ulong sp
,
213 abi_ulong stringp
, int push_ptr
);
214 int loader_exec(int fdexec
, const char *filename
, char **argv
, char **envp
,
215 struct target_pt_regs
* regs
, struct image_info
*infop
,
216 struct linux_binprm
*);
218 /* Returns true if the image uses the FDPIC ABI. If this is the case,
219 * we have to provide some information (loadmap, pt_dynamic_info) such
220 * that the program can be relocated adequately. This is also useful
221 * when handling signals.
223 int info_is_fdpic(struct image_info
*info
);
225 uint32_t get_elf_eflags(int fd
);
226 int load_elf_binary(struct linux_binprm
*bprm
, struct image_info
*info
);
227 int load_flt_binary(struct linux_binprm
*bprm
, struct image_info
*info
);
229 abi_long
memcpy_to_target(abi_ulong dest
, const void *src
,
231 void target_set_brk(abi_ulong new_brk
);
232 abi_long
do_brk(abi_ulong new_brk
);
233 void syscall_init(void);
234 abi_long
do_syscall(void *cpu_env
, int num
, abi_long arg1
,
235 abi_long arg2
, abi_long arg3
, abi_long arg4
,
236 abi_long arg5
, abi_long arg6
, abi_long arg7
,
238 extern __thread CPUState
*thread_cpu
;
239 void cpu_loop(CPUArchState
*env
);
240 const char *target_strerror(int err
);
241 int get_osversion(void);
242 void init_qemu_uname_release(void);
243 void fork_start(void);
244 void fork_end(int child
);
248 * @image_name: the executable being loaded
249 * @loaddr: the lowest fixed address in the executable
250 * @hiaddr: the highest fixed address in the executable
252 * Creates the initial guest address space in the host memory space.
254 * If @loaddr == 0, then no address in the executable is fixed,
255 * i.e. it is fully relocatable. In that case @hiaddr is the size
258 * This function will not return if a valid value for guest_base
259 * cannot be chosen. On return, the executable loader can expect
261 * target_mmap(loaddr, hiaddr - loaddr, ...)
265 void probe_guest_base(const char *image_name
,
266 abi_ulong loaddr
, abi_ulong hiaddr
);
268 #include "qemu/log.h"
274 * @int number: number of system call to make
275 * ...: arguments to the system call
277 * Call a system call if guest signal not pending.
278 * This has the same API as the libc syscall() function, except that it
279 * may return -1 with errno == TARGET_ERESTARTSYS if a signal was pending.
281 * Returns: the system call result, or -1 with an error code in errno
282 * (Errnos are host errnos; we rely on TARGET_ERESTARTSYS not clashing
283 * with any of the host errno values.)
286 /* A guide to using safe_syscall() to handle interactions between guest
287 * syscalls and guest signals:
289 * Guest syscalls come in two flavours:
291 * (1) Non-interruptible syscalls
293 * These are guest syscalls that never get interrupted by signals and
294 * so never return EINTR. They can be implemented straightforwardly in
295 * QEMU: just make sure that if the implementation code has to make any
296 * blocking calls that those calls are retried if they return EINTR.
297 * It's also OK to implement these with safe_syscall, though it will be
298 * a little less efficient if a signal is delivered at the 'wrong' moment.
300 * Some non-interruptible syscalls need to be handled using block_signals()
301 * to block signals for the duration of the syscall. This mainly applies
302 * to code which needs to modify the data structures used by the
303 * host_signal_handler() function and the functions it calls, including
304 * all syscalls which change the thread's signal mask.
306 * (2) Interruptible syscalls
308 * These are guest syscalls that can be interrupted by signals and
309 * for which we need to either return EINTR or arrange for the guest
310 * syscall to be restarted. This category includes both syscalls which
311 * always restart (and in the kernel return -ERESTARTNOINTR), ones
312 * which only restart if there is no handler (kernel returns -ERESTARTNOHAND
313 * or -ERESTART_RESTARTBLOCK), and the most common kind which restart
314 * if the handler was registered with SA_RESTART (kernel returns
315 * -ERESTARTSYS). System calls which are only interruptible in some
316 * situations (like 'open') also need to be handled this way.
318 * Here it is important that the host syscall is made
319 * via this safe_syscall() function, and *not* via the host libc.
320 * If the host libc is used then the implementation will appear to work
321 * most of the time, but there will be a race condition where a
322 * signal could arrive just before we make the host syscall inside libc,
323 * and then then guest syscall will not correctly be interrupted.
324 * Instead the implementation of the guest syscall can use the safe_syscall
325 * function but otherwise just return the result or errno in the usual
326 * way; the main loop code will take care of restarting the syscall
329 * (If the implementation needs to make multiple host syscalls this is
330 * OK; any which might really block must be via safe_syscall(); for those
331 * which are only technically blocking (ie which we know in practice won't
332 * stay in the host kernel indefinitely) it's OK to use libc if necessary.
333 * You must be able to cope with backing out correctly if some safe_syscall
334 * you make in the implementation returns either -TARGET_ERESTARTSYS or
337 * block_signals() cannot be used for interruptible syscalls.
340 * How and why the safe_syscall implementation works:
342 * The basic setup is that we make the host syscall via a known
343 * section of host native assembly. If a signal occurs, our signal
344 * handler checks the interrupted host PC against the addresse of that
345 * known section. If the PC is before or at the address of the syscall
346 * instruction then we change the PC to point at a "return
347 * -TARGET_ERESTARTSYS" code path instead, and then exit the signal handler
348 * (causing the safe_syscall() call to immediately return that value).
349 * Then in the main.c loop if we see this magic return value we adjust
350 * the guest PC to wind it back to before the system call, and invoke
351 * the guest signal handler as usual.
353 * This winding-back will happen in two cases:
354 * (1) signal came in just before we took the host syscall (a race);
355 * in this case we'll take the guest signal and have another go
356 * at the syscall afterwards, and this is indistinguishable for the
357 * guest from the timing having been different such that the guest
358 * signal really did win the race
359 * (2) signal came in while the host syscall was blocking, and the
360 * host kernel decided the syscall should be restarted;
361 * in this case we want to restart the guest syscall also, and so
362 * rewinding is the right thing. (Note that "restart" semantics mean
363 * "first call the signal handler, then reattempt the syscall".)
364 * The other situation to consider is when a signal came in while the
365 * host syscall was blocking, and the host kernel decided that the syscall
366 * should not be restarted; in this case QEMU's host signal handler will
367 * be invoked with the PC pointing just after the syscall instruction,
368 * with registers indicating an EINTR return; the special code in the
369 * handler will not kick in, and we will return EINTR to the guest as
372 * Notice that we can leave the host kernel to make the decision for
373 * us about whether to do a restart of the syscall or not; we do not
374 * need to check SA_RESTART flags in QEMU or distinguish the various
375 * kinds of restartability.
377 #ifdef HAVE_SAFE_SYSCALL
378 /* The core part of this function is implemented in assembly */
379 extern long safe_syscall_base(int *pending
, long number
, ...);
381 #define safe_syscall(...) \
384 int *psp_ = &((TaskState *)thread_cpu->opaque)->signal_pending; \
385 ret_ = safe_syscall_base(psp_, __VA_ARGS__); \
386 if (is_error(ret_)) { \
395 /* Fallback for architectures which don't yet provide a safe-syscall assembly
396 * fragment; note that this is racy!
397 * This should go away when all host architectures have been updated.
399 #define safe_syscall syscall
404 int host_to_target_waitstatus(int status
);
407 void print_syscall(void *cpu_env
, int num
,
408 abi_long arg1
, abi_long arg2
, abi_long arg3
,
409 abi_long arg4
, abi_long arg5
, abi_long arg6
);
410 void print_syscall_ret(void *cpu_env
, int num
, abi_long ret
,
411 abi_long arg1
, abi_long arg2
, abi_long arg3
,
412 abi_long arg4
, abi_long arg5
, abi_long arg6
);
414 * print_taken_signal:
415 * @target_signum: target signal being taken
416 * @tinfo: target_siginfo_t which will be passed to the guest for the signal
418 * Print strace output indicating that this signal is being taken by the guest,
419 * in a format similar to:
420 * --- SIGSEGV {si_signo=SIGSEGV, si_code=SI_KERNEL, si_addr=0} ---
422 void print_taken_signal(int target_signum
, const target_siginfo_t
*tinfo
);
425 void process_pending_signals(CPUArchState
*cpu_env
);
426 void signal_init(void);
427 int queue_signal(CPUArchState
*env
, int sig
, int si_type
,
428 target_siginfo_t
*info
);
429 void host_to_target_siginfo(target_siginfo_t
*tinfo
, const siginfo_t
*info
);
430 void target_to_host_siginfo(siginfo_t
*info
, const target_siginfo_t
*tinfo
);
431 int target_to_host_signal(int sig
);
432 int host_to_target_signal(int sig
);
433 long do_sigreturn(CPUArchState
*env
);
434 long do_rt_sigreturn(CPUArchState
*env
);
435 abi_long
do_sigaltstack(abi_ulong uss_addr
, abi_ulong uoss_addr
, abi_ulong sp
);
436 int do_sigprocmask(int how
, const sigset_t
*set
, sigset_t
*oldset
);
437 abi_long
do_swapcontext(CPUArchState
*env
, abi_ulong uold_ctx
,
438 abi_ulong unew_ctx
, abi_long ctx_size
);
440 * block_signals: block all signals while handling this guest syscall
442 * Block all signals, and arrange that the signal mask is returned to
443 * its correct value for the guest before we resume execution of guest code.
444 * If this function returns non-zero, then the caller should immediately
445 * return -TARGET_ERESTARTSYS to the main loop, which will take the pending
446 * signal and restart execution of the syscall.
447 * If block_signals() returns zero, then the caller can continue with
448 * emulation of the system call knowing that no signals can be taken
449 * (and therefore that no race conditions will result).
450 * This should only be called once, because if it is called a second time
451 * it will always return non-zero. (Think of it like a mutex that can't
452 * be recursively locked.)
453 * Signals will be unblocked again by process_pending_signals().
455 * Return value: non-zero if there was a pending signal, zero if not.
457 int block_signals(void); /* Returns non zero if signal pending */
461 void save_v86_state(CPUX86State
*env
);
462 void handle_vm86_trap(CPUX86State
*env
, int trapno
);
463 void handle_vm86_fault(CPUX86State
*env
);
464 int do_vm86(CPUX86State
*env
, long subfunction
, abi_ulong v86_addr
);
465 #elif defined(TARGET_SPARC64)
466 void sparc64_set_context(CPUSPARCState
*env
);
467 void sparc64_get_context(CPUSPARCState
*env
);
471 int target_mprotect(abi_ulong start
, abi_ulong len
, int prot
);
472 abi_long
target_mmap(abi_ulong start
, abi_ulong len
, int prot
,
473 int flags
, int fd
, abi_ulong offset
);
474 int target_munmap(abi_ulong start
, abi_ulong len
);
475 abi_long
target_mremap(abi_ulong old_addr
, abi_ulong old_size
,
476 abi_ulong new_size
, unsigned long flags
,
478 extern unsigned long last_brk
;
479 extern abi_ulong mmap_next_start
;
480 abi_ulong
mmap_find_vma(abi_ulong
, abi_ulong
, abi_ulong
);
481 void mmap_fork_start(void);
482 void mmap_fork_end(int child
);
485 extern unsigned long guest_stack_size
;
489 #define VERIFY_READ 0
490 #define VERIFY_WRITE 1 /* implies read access */
492 static inline int access_ok(int type
, abi_ulong addr
, abi_ulong size
)
494 return guest_addr_valid(addr
) &&
495 (size
== 0 || guest_addr_valid(addr
+ size
- 1)) &&
496 page_check_range((target_ulong
)addr
, size
,
497 (type
== VERIFY_READ
) ? PAGE_READ
: (PAGE_READ
| PAGE_WRITE
)) == 0;
500 /* NOTE __get_user and __put_user use host pointers and don't check access.
501 These are usually used to access struct data members once the struct has
502 been locked - usually with lock_user_struct. */
506 * - Use __builtin_choose_expr to avoid type promotion from ?:,
507 * - Invalid sizes result in a compile time error stemming from
508 * the fact that abort has no parameters.
509 * - It's easier to use the endian-specific unaligned load/store
510 * functions than host-endian unaligned load/store plus tswapN.
511 * - The pragmas are necessary only to silence a clang false-positive
512 * warning: see https://bugs.llvm.org/show_bug.cgi?id=39113 .
513 * - gcc has bugs in its _Pragma() support in some versions, eg
514 * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83256 -- so we only
515 * include the warning-suppression pragmas for clang
517 #if defined(__clang__) && __has_warning("-Waddress-of-packed-member")
518 #define PRAGMA_DISABLE_PACKED_WARNING \
519 _Pragma("GCC diagnostic push"); \
520 _Pragma("GCC diagnostic ignored \"-Waddress-of-packed-member\"")
522 #define PRAGMA_REENABLE_PACKED_WARNING \
523 _Pragma("GCC diagnostic pop")
526 #define PRAGMA_DISABLE_PACKED_WARNING
527 #define PRAGMA_REENABLE_PACKED_WARNING
530 #define __put_user_e(x, hptr, e) \
532 PRAGMA_DISABLE_PACKED_WARNING; \
533 (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \
534 __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \
535 __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \
536 __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \
537 ((hptr), (x)), (void)0); \
538 PRAGMA_REENABLE_PACKED_WARNING; \
541 #define __get_user_e(x, hptr, e) \
543 PRAGMA_DISABLE_PACKED_WARNING; \
544 ((x) = (typeof(*hptr))( \
545 __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \
546 __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \
547 __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \
548 __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \
550 PRAGMA_REENABLE_PACKED_WARNING; \
554 #ifdef TARGET_WORDS_BIGENDIAN
555 # define __put_user(x, hptr) __put_user_e(x, hptr, be)
556 # define __get_user(x, hptr) __get_user_e(x, hptr, be)
558 # define __put_user(x, hptr) __put_user_e(x, hptr, le)
559 # define __get_user(x, hptr) __get_user_e(x, hptr, le)
562 /* put_user()/get_user() take a guest address and check access */
563 /* These are usually used to access an atomic data type, such as an int,
564 * that has been passed by address. These internally perform locking
565 * and unlocking on the data type.
567 #define put_user(x, gaddr, target_type) \
569 abi_ulong __gaddr = (gaddr); \
570 target_type *__hptr; \
571 abi_long __ret = 0; \
572 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
573 __put_user((x), __hptr); \
574 unlock_user(__hptr, __gaddr, sizeof(target_type)); \
576 __ret = -TARGET_EFAULT; \
580 #define get_user(x, gaddr, target_type) \
582 abi_ulong __gaddr = (gaddr); \
583 target_type *__hptr; \
584 abi_long __ret = 0; \
585 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
586 __get_user((x), __hptr); \
587 unlock_user(__hptr, __gaddr, 0); \
589 /* avoid warning */ \
591 __ret = -TARGET_EFAULT; \
596 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
597 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
598 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
599 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
600 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
601 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
602 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
603 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
604 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t)
605 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t)
607 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
608 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
609 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
610 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
611 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
612 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
613 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
614 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
615 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t)
616 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t)
618 /* copy_from_user() and copy_to_user() are usually used to copy data
619 * buffers between the target and host. These internally perform
620 * locking/unlocking of the memory.
622 abi_long
copy_from_user(void *hptr
, abi_ulong gaddr
, size_t len
);
623 abi_long
copy_to_user(abi_ulong gaddr
, void *hptr
, size_t len
);
625 /* Functions for accessing guest memory. The tget and tput functions
626 read/write single values, byteswapping as necessary. The lock_user function
627 gets a pointer to a contiguous area of guest memory, but does not perform
628 any byteswapping. lock_user may return either a pointer to the guest
629 memory, or a temporary buffer. */
631 /* Lock an area of guest memory into the host. If copy is true then the
632 host area will have the same contents as the guest. */
633 static inline void *lock_user(int type
, abi_ulong guest_addr
, long len
, int copy
)
635 if (!access_ok(type
, guest_addr
, len
))
640 addr
= g_malloc(len
);
642 memcpy(addr
, g2h(guest_addr
), len
);
644 memset(addr
, 0, len
);
648 return g2h(guest_addr
);
652 /* Unlock an area of guest memory. The first LEN bytes must be
653 flushed back to guest memory. host_ptr = NULL is explicitly
654 allowed and does nothing. */
655 static inline void unlock_user(void *host_ptr
, abi_ulong guest_addr
,
662 if (host_ptr
== g2h(guest_addr
))
665 memcpy(g2h(guest_addr
), host_ptr
, len
);
670 /* Return the length of a string in target memory or -TARGET_EFAULT if
672 abi_long
target_strlen(abi_ulong gaddr
);
674 /* Like lock_user but for null terminated strings. */
675 static inline void *lock_user_string(abi_ulong guest_addr
)
678 len
= target_strlen(guest_addr
);
681 return lock_user(VERIFY_READ
, guest_addr
, (long)(len
+ 1), 1);
684 /* Helper macros for locking/unlocking a target struct. */
685 #define lock_user_struct(type, host_ptr, guest_addr, copy) \
686 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
687 #define unlock_user_struct(host_ptr, guest_addr, copy) \
688 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
692 static inline int is_error(abi_long ret
)
694 return (abi_ulong
)ret
>= (abi_ulong
)(-4096);
697 #if TARGET_ABI_BITS == 32
698 static inline uint64_t target_offset64(uint32_t word0
, uint32_t word1
)
700 #ifdef TARGET_WORDS_BIGENDIAN
701 return ((uint64_t)word0
<< 32) | word1
;
703 return ((uint64_t)word1
<< 32) | word0
;
706 #else /* TARGET_ABI_BITS == 32 */
707 static inline uint64_t target_offset64(uint64_t word0
, uint64_t word1
)
711 #endif /* TARGET_ABI_BITS != 32 */
713 void print_termios(void *arg
);
715 /* ARM EABI and MIPS expect 64bit types aligned even on pairs or registers */
717 static inline int regpairs_aligned(void *cpu_env
, int num
)
719 return ((((CPUARMState
*)cpu_env
)->eabi
) == 1) ;
721 #elif defined(TARGET_MIPS) && (TARGET_ABI_BITS == 32)
722 static inline int regpairs_aligned(void *cpu_env
, int num
) { return 1; }
723 #elif defined(TARGET_PPC) && !defined(TARGET_PPC64)
725 * SysV AVI for PPC32 expects 64bit parameters to be passed on odd/even pairs
726 * of registers which translates to the same as ARM/MIPS, because we start with
729 static inline int regpairs_aligned(void *cpu_env
, int num
) { return 1; }
730 #elif defined(TARGET_SH4)
731 /* SH4 doesn't align register pairs, except for p{read,write}64 */
732 static inline int regpairs_aligned(void *cpu_env
, int num
)
735 case TARGET_NR_pread64
:
736 case TARGET_NR_pwrite64
:
743 #elif defined(TARGET_XTENSA)
744 static inline int regpairs_aligned(void *cpu_env
, int num
) { return 1; }
746 static inline int regpairs_aligned(void *cpu_env
, int num
) { return 0; }
750 * preexit_cleanup: housekeeping before the guest exits
753 * code: the exit code
755 void preexit_cleanup(CPUArchState
*env
, int code
);
757 /* Include target-specific struct and function definitions;
758 * they may need access to the target-independent structures
759 * above, so include them last.
761 #include "target_cpu.h"
762 #include "target_structs.h"