Postcopy vs xbzrle: Don't send xbzrle pages once in postcopy [for 2.8]
[qemu/kevin.git] / target-m68k / helper.c
blob89bbe6dfa6fc9d52ad3cc402585af4caff5099b2
1 /*
2 * m68k op helpers
4 * Copyright (c) 2006-2007 CodeSourcery
5 * Written by Paul Brook
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
21 #include "qemu/osdep.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "exec/gdbstub.h"
26 #include "exec/helper-proto.h"
28 #define SIGNBIT (1u << 31)
30 /* Sort alphabetically, except for "any". */
31 static gint m68k_cpu_list_compare(gconstpointer a, gconstpointer b)
33 ObjectClass *class_a = (ObjectClass *)a;
34 ObjectClass *class_b = (ObjectClass *)b;
35 const char *name_a, *name_b;
37 name_a = object_class_get_name(class_a);
38 name_b = object_class_get_name(class_b);
39 if (strcmp(name_a, "any-" TYPE_M68K_CPU) == 0) {
40 return 1;
41 } else if (strcmp(name_b, "any-" TYPE_M68K_CPU) == 0) {
42 return -1;
43 } else {
44 return strcasecmp(name_a, name_b);
48 static void m68k_cpu_list_entry(gpointer data, gpointer user_data)
50 ObjectClass *c = data;
51 CPUListState *s = user_data;
52 const char *typename;
53 char *name;
55 typename = object_class_get_name(c);
56 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_M68K_CPU));
57 (*s->cpu_fprintf)(s->file, "%s\n",
58 name);
59 g_free(name);
62 void m68k_cpu_list(FILE *f, fprintf_function cpu_fprintf)
64 CPUListState s = {
65 .file = f,
66 .cpu_fprintf = cpu_fprintf,
68 GSList *list;
70 list = object_class_get_list(TYPE_M68K_CPU, false);
71 list = g_slist_sort(list, m68k_cpu_list_compare);
72 g_slist_foreach(list, m68k_cpu_list_entry, &s);
73 g_slist_free(list);
76 static int fpu_gdb_get_reg(CPUM68KState *env, uint8_t *mem_buf, int n)
78 if (n < 8) {
79 stfq_p(mem_buf, env->fregs[n]);
80 return 8;
82 if (n < 11) {
83 /* FP control registers (not implemented) */
84 memset(mem_buf, 0, 4);
85 return 4;
87 return 0;
90 static int fpu_gdb_set_reg(CPUM68KState *env, uint8_t *mem_buf, int n)
92 if (n < 8) {
93 env->fregs[n] = ldfq_p(mem_buf);
94 return 8;
96 if (n < 11) {
97 /* FP control registers (not implemented) */
98 return 4;
100 return 0;
103 M68kCPU *cpu_m68k_init(const char *cpu_model)
105 M68kCPU *cpu;
106 CPUM68KState *env;
107 ObjectClass *oc;
109 oc = cpu_class_by_name(TYPE_M68K_CPU, cpu_model);
110 if (oc == NULL) {
111 return NULL;
113 cpu = M68K_CPU(object_new(object_class_get_name(oc)));
114 env = &cpu->env;
116 register_m68k_insns(env);
118 object_property_set_bool(OBJECT(cpu), true, "realized", NULL);
120 return cpu;
123 void m68k_cpu_init_gdb(M68kCPU *cpu)
125 CPUState *cs = CPU(cpu);
126 CPUM68KState *env = &cpu->env;
128 if (m68k_feature(env, M68K_FEATURE_CF_FPU)) {
129 gdb_register_coprocessor(cs, fpu_gdb_get_reg, fpu_gdb_set_reg,
130 11, "cf-fp.xml", 18);
132 /* TODO: Add [E]MAC registers. */
135 void cpu_m68k_flush_flags(CPUM68KState *env, int cc_op)
137 M68kCPU *cpu = m68k_env_get_cpu(env);
138 int flags;
139 uint32_t src;
140 uint32_t dest;
141 uint32_t tmp;
143 #define HIGHBIT 0x80000000u
145 #define SET_NZ(x) do { \
146 if ((x) == 0) \
147 flags |= CCF_Z; \
148 else if ((int32_t)(x) < 0) \
149 flags |= CCF_N; \
150 } while (0)
152 #define SET_FLAGS_SUB(type, utype) do { \
153 SET_NZ((type)dest); \
154 tmp = dest + src; \
155 if ((utype) tmp < (utype) src) \
156 flags |= CCF_C; \
157 if ((1u << (sizeof(type) * 8 - 1)) & (tmp ^ dest) & (tmp ^ src)) \
158 flags |= CCF_V; \
159 } while (0)
161 flags = 0;
162 src = env->cc_src;
163 dest = env->cc_dest;
164 switch (cc_op) {
165 case CC_OP_FLAGS:
166 flags = dest;
167 break;
168 case CC_OP_LOGIC:
169 SET_NZ(dest);
170 break;
171 case CC_OP_ADD:
172 SET_NZ(dest);
173 if (dest < src)
174 flags |= CCF_C;
175 tmp = dest - src;
176 if (HIGHBIT & (src ^ dest) & ~(tmp ^ src))
177 flags |= CCF_V;
178 break;
179 case CC_OP_SUB:
180 SET_FLAGS_SUB(int32_t, uint32_t);
181 break;
182 case CC_OP_CMPB:
183 SET_FLAGS_SUB(int8_t, uint8_t);
184 break;
185 case CC_OP_CMPW:
186 SET_FLAGS_SUB(int16_t, uint16_t);
187 break;
188 case CC_OP_ADDX:
189 SET_NZ(dest);
190 if (dest <= src)
191 flags |= CCF_C;
192 tmp = dest - src - 1;
193 if (HIGHBIT & (src ^ dest) & ~(tmp ^ src))
194 flags |= CCF_V;
195 break;
196 case CC_OP_SUBX:
197 SET_NZ(dest);
198 tmp = dest + src + 1;
199 if (tmp <= src)
200 flags |= CCF_C;
201 if (HIGHBIT & (tmp ^ dest) & (tmp ^ src))
202 flags |= CCF_V;
203 break;
204 case CC_OP_SHIFT:
205 SET_NZ(dest);
206 if (src)
207 flags |= CCF_C;
208 break;
209 default:
210 cpu_abort(CPU(cpu), "Bad CC_OP %d", cc_op);
212 env->cc_op = CC_OP_FLAGS;
213 env->cc_dest = flags;
216 void HELPER(movec)(CPUM68KState *env, uint32_t reg, uint32_t val)
218 M68kCPU *cpu = m68k_env_get_cpu(env);
220 switch (reg) {
221 case 0x02: /* CACR */
222 env->cacr = val;
223 m68k_switch_sp(env);
224 break;
225 case 0x04: case 0x05: case 0x06: case 0x07: /* ACR[0-3] */
226 /* TODO: Implement Access Control Registers. */
227 break;
228 case 0x801: /* VBR */
229 env->vbr = val;
230 break;
231 /* TODO: Implement control registers. */
232 default:
233 cpu_abort(CPU(cpu), "Unimplemented control register write 0x%x = 0x%x\n",
234 reg, val);
238 void HELPER(set_macsr)(CPUM68KState *env, uint32_t val)
240 uint32_t acc;
241 int8_t exthigh;
242 uint8_t extlow;
243 uint64_t regval;
244 int i;
245 if ((env->macsr ^ val) & (MACSR_FI | MACSR_SU)) {
246 for (i = 0; i < 4; i++) {
247 regval = env->macc[i];
248 exthigh = regval >> 40;
249 if (env->macsr & MACSR_FI) {
250 acc = regval >> 8;
251 extlow = regval;
252 } else {
253 acc = regval;
254 extlow = regval >> 32;
256 if (env->macsr & MACSR_FI) {
257 regval = (((uint64_t)acc) << 8) | extlow;
258 regval |= ((int64_t)exthigh) << 40;
259 } else if (env->macsr & MACSR_SU) {
260 regval = acc | (((int64_t)extlow) << 32);
261 regval |= ((int64_t)exthigh) << 40;
262 } else {
263 regval = acc | (((uint64_t)extlow) << 32);
264 regval |= ((uint64_t)(uint8_t)exthigh) << 40;
266 env->macc[i] = regval;
269 env->macsr = val;
272 void m68k_switch_sp(CPUM68KState *env)
274 int new_sp;
276 env->sp[env->current_sp] = env->aregs[7];
277 new_sp = (env->sr & SR_S && env->cacr & M68K_CACR_EUSP)
278 ? M68K_SSP : M68K_USP;
279 env->aregs[7] = env->sp[new_sp];
280 env->current_sp = new_sp;
283 #if defined(CONFIG_USER_ONLY)
285 int m68k_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw,
286 int mmu_idx)
288 M68kCPU *cpu = M68K_CPU(cs);
290 cs->exception_index = EXCP_ACCESS;
291 cpu->env.mmu.ar = address;
292 return 1;
295 #else
297 /* MMU */
299 /* TODO: This will need fixing once the MMU is implemented. */
300 hwaddr m68k_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
302 return addr;
305 int m68k_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw,
306 int mmu_idx)
308 int prot;
310 address &= TARGET_PAGE_MASK;
311 prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
312 tlb_set_page(cs, address, address, prot, mmu_idx, TARGET_PAGE_SIZE);
313 return 0;
316 /* Notify CPU of a pending interrupt. Prioritization and vectoring should
317 be handled by the interrupt controller. Real hardware only requests
318 the vector when the interrupt is acknowledged by the CPU. For
319 simplicitly we calculate it when the interrupt is signalled. */
320 void m68k_set_irq_level(M68kCPU *cpu, int level, uint8_t vector)
322 CPUState *cs = CPU(cpu);
323 CPUM68KState *env = &cpu->env;
325 env->pending_level = level;
326 env->pending_vector = vector;
327 if (level) {
328 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
329 } else {
330 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
334 #endif
336 uint32_t HELPER(bitrev)(uint32_t x)
338 x = ((x >> 1) & 0x55555555u) | ((x << 1) & 0xaaaaaaaau);
339 x = ((x >> 2) & 0x33333333u) | ((x << 2) & 0xccccccccu);
340 x = ((x >> 4) & 0x0f0f0f0fu) | ((x << 4) & 0xf0f0f0f0u);
341 return bswap32(x);
344 uint32_t HELPER(ff1)(uint32_t x)
346 int n;
347 for (n = 32; x; n--)
348 x >>= 1;
349 return n;
352 uint32_t HELPER(sats)(uint32_t val, uint32_t ccr)
354 /* The result has the opposite sign to the original value. */
355 if (ccr & CCF_V)
356 val = (((int32_t)val) >> 31) ^ SIGNBIT;
357 return val;
360 uint32_t HELPER(subx_cc)(CPUM68KState *env, uint32_t op1, uint32_t op2)
362 uint32_t res;
363 uint32_t old_flags;
365 old_flags = env->cc_dest;
366 if (env->cc_x) {
367 env->cc_x = (op1 <= op2);
368 env->cc_op = CC_OP_SUBX;
369 res = op1 - (op2 + 1);
370 } else {
371 env->cc_x = (op1 < op2);
372 env->cc_op = CC_OP_SUB;
373 res = op1 - op2;
375 env->cc_dest = res;
376 env->cc_src = op2;
377 cpu_m68k_flush_flags(env, env->cc_op);
378 /* !Z is sticky. */
379 env->cc_dest &= (old_flags | ~CCF_Z);
380 return res;
383 uint32_t HELPER(addx_cc)(CPUM68KState *env, uint32_t op1, uint32_t op2)
385 uint32_t res;
386 uint32_t old_flags;
388 old_flags = env->cc_dest;
389 if (env->cc_x) {
390 res = op1 + op2 + 1;
391 env->cc_x = (res <= op2);
392 env->cc_op = CC_OP_ADDX;
393 } else {
394 res = op1 + op2;
395 env->cc_x = (res < op2);
396 env->cc_op = CC_OP_ADD;
398 env->cc_dest = res;
399 env->cc_src = op2;
400 cpu_m68k_flush_flags(env, env->cc_op);
401 /* !Z is sticky. */
402 env->cc_dest &= (old_flags | ~CCF_Z);
403 return res;
406 uint32_t HELPER(xflag_lt)(uint32_t a, uint32_t b)
408 return a < b;
411 void HELPER(set_sr)(CPUM68KState *env, uint32_t val)
413 env->sr = val & 0xffff;
414 m68k_switch_sp(env);
417 uint32_t HELPER(shl_cc)(CPUM68KState *env, uint32_t val, uint32_t shift)
419 uint32_t result;
420 uint32_t cf;
422 shift &= 63;
423 if (shift == 0) {
424 result = val;
425 cf = env->cc_src & CCF_C;
426 } else if (shift < 32) {
427 result = val << shift;
428 cf = (val >> (32 - shift)) & 1;
429 } else if (shift == 32) {
430 result = 0;
431 cf = val & 1;
432 } else /* shift > 32 */ {
433 result = 0;
434 cf = 0;
436 env->cc_src = cf;
437 env->cc_x = (cf != 0);
438 env->cc_dest = result;
439 return result;
442 uint32_t HELPER(shr_cc)(CPUM68KState *env, uint32_t val, uint32_t shift)
444 uint32_t result;
445 uint32_t cf;
447 shift &= 63;
448 if (shift == 0) {
449 result = val;
450 cf = env->cc_src & CCF_C;
451 } else if (shift < 32) {
452 result = val >> shift;
453 cf = (val >> (shift - 1)) & 1;
454 } else if (shift == 32) {
455 result = 0;
456 cf = val >> 31;
457 } else /* shift > 32 */ {
458 result = 0;
459 cf = 0;
461 env->cc_src = cf;
462 env->cc_x = (cf != 0);
463 env->cc_dest = result;
464 return result;
467 uint32_t HELPER(sar_cc)(CPUM68KState *env, uint32_t val, uint32_t shift)
469 uint32_t result;
470 uint32_t cf;
472 shift &= 63;
473 if (shift == 0) {
474 result = val;
475 cf = (env->cc_src & CCF_C) != 0;
476 } else if (shift < 32) {
477 result = (int32_t)val >> shift;
478 cf = (val >> (shift - 1)) & 1;
479 } else /* shift >= 32 */ {
480 result = (int32_t)val >> 31;
481 cf = val >> 31;
483 env->cc_src = cf;
484 env->cc_x = cf;
485 env->cc_dest = result;
486 return result;
489 /* FPU helpers. */
490 uint32_t HELPER(f64_to_i32)(CPUM68KState *env, float64 val)
492 return float64_to_int32(val, &env->fp_status);
495 float32 HELPER(f64_to_f32)(CPUM68KState *env, float64 val)
497 return float64_to_float32(val, &env->fp_status);
500 float64 HELPER(i32_to_f64)(CPUM68KState *env, uint32_t val)
502 return int32_to_float64(val, &env->fp_status);
505 float64 HELPER(f32_to_f64)(CPUM68KState *env, float32 val)
507 return float32_to_float64(val, &env->fp_status);
510 float64 HELPER(iround_f64)(CPUM68KState *env, float64 val)
512 return float64_round_to_int(val, &env->fp_status);
515 float64 HELPER(itrunc_f64)(CPUM68KState *env, float64 val)
517 return float64_trunc_to_int(val, &env->fp_status);
520 float64 HELPER(sqrt_f64)(CPUM68KState *env, float64 val)
522 return float64_sqrt(val, &env->fp_status);
525 float64 HELPER(abs_f64)(float64 val)
527 return float64_abs(val);
530 float64 HELPER(chs_f64)(float64 val)
532 return float64_chs(val);
535 float64 HELPER(add_f64)(CPUM68KState *env, float64 a, float64 b)
537 return float64_add(a, b, &env->fp_status);
540 float64 HELPER(sub_f64)(CPUM68KState *env, float64 a, float64 b)
542 return float64_sub(a, b, &env->fp_status);
545 float64 HELPER(mul_f64)(CPUM68KState *env, float64 a, float64 b)
547 return float64_mul(a, b, &env->fp_status);
550 float64 HELPER(div_f64)(CPUM68KState *env, float64 a, float64 b)
552 return float64_div(a, b, &env->fp_status);
555 float64 HELPER(sub_cmp_f64)(CPUM68KState *env, float64 a, float64 b)
557 /* ??? This may incorrectly raise exceptions. */
558 /* ??? Should flush denormals to zero. */
559 float64 res;
560 res = float64_sub(a, b, &env->fp_status);
561 if (float64_is_quiet_nan(res, &env->fp_status)) {
562 /* +/-inf compares equal against itself, but sub returns nan. */
563 if (!float64_is_quiet_nan(a, &env->fp_status)
564 && !float64_is_quiet_nan(b, &env->fp_status)) {
565 res = float64_zero;
566 if (float64_lt_quiet(a, res, &env->fp_status))
567 res = float64_chs(res);
570 return res;
573 uint32_t HELPER(compare_f64)(CPUM68KState *env, float64 val)
575 return float64_compare_quiet(val, float64_zero, &env->fp_status);
578 /* MAC unit. */
579 /* FIXME: The MAC unit implementation is a bit of a mess. Some helpers
580 take values, others take register numbers and manipulate the contents
581 in-place. */
582 void HELPER(mac_move)(CPUM68KState *env, uint32_t dest, uint32_t src)
584 uint32_t mask;
585 env->macc[dest] = env->macc[src];
586 mask = MACSR_PAV0 << dest;
587 if (env->macsr & (MACSR_PAV0 << src))
588 env->macsr |= mask;
589 else
590 env->macsr &= ~mask;
593 uint64_t HELPER(macmuls)(CPUM68KState *env, uint32_t op1, uint32_t op2)
595 int64_t product;
596 int64_t res;
598 product = (uint64_t)op1 * op2;
599 res = (product << 24) >> 24;
600 if (res != product) {
601 env->macsr |= MACSR_V;
602 if (env->macsr & MACSR_OMC) {
603 /* Make sure the accumulate operation overflows. */
604 if (product < 0)
605 res = ~(1ll << 50);
606 else
607 res = 1ll << 50;
610 return res;
613 uint64_t HELPER(macmulu)(CPUM68KState *env, uint32_t op1, uint32_t op2)
615 uint64_t product;
617 product = (uint64_t)op1 * op2;
618 if (product & (0xffffffull << 40)) {
619 env->macsr |= MACSR_V;
620 if (env->macsr & MACSR_OMC) {
621 /* Make sure the accumulate operation overflows. */
622 product = 1ll << 50;
623 } else {
624 product &= ((1ull << 40) - 1);
627 return product;
630 uint64_t HELPER(macmulf)(CPUM68KState *env, uint32_t op1, uint32_t op2)
632 uint64_t product;
633 uint32_t remainder;
635 product = (uint64_t)op1 * op2;
636 if (env->macsr & MACSR_RT) {
637 remainder = product & 0xffffff;
638 product >>= 24;
639 if (remainder > 0x800000)
640 product++;
641 else if (remainder == 0x800000)
642 product += (product & 1);
643 } else {
644 product >>= 24;
646 return product;
649 void HELPER(macsats)(CPUM68KState *env, uint32_t acc)
651 int64_t tmp;
652 int64_t result;
653 tmp = env->macc[acc];
654 result = ((tmp << 16) >> 16);
655 if (result != tmp) {
656 env->macsr |= MACSR_V;
658 if (env->macsr & MACSR_V) {
659 env->macsr |= MACSR_PAV0 << acc;
660 if (env->macsr & MACSR_OMC) {
661 /* The result is saturated to 32 bits, despite overflow occurring
662 at 48 bits. Seems weird, but that's what the hardware docs
663 say. */
664 result = (result >> 63) ^ 0x7fffffff;
667 env->macc[acc] = result;
670 void HELPER(macsatu)(CPUM68KState *env, uint32_t acc)
672 uint64_t val;
674 val = env->macc[acc];
675 if (val & (0xffffull << 48)) {
676 env->macsr |= MACSR_V;
678 if (env->macsr & MACSR_V) {
679 env->macsr |= MACSR_PAV0 << acc;
680 if (env->macsr & MACSR_OMC) {
681 if (val > (1ull << 53))
682 val = 0;
683 else
684 val = (1ull << 48) - 1;
685 } else {
686 val &= ((1ull << 48) - 1);
689 env->macc[acc] = val;
692 void HELPER(macsatf)(CPUM68KState *env, uint32_t acc)
694 int64_t sum;
695 int64_t result;
697 sum = env->macc[acc];
698 result = (sum << 16) >> 16;
699 if (result != sum) {
700 env->macsr |= MACSR_V;
702 if (env->macsr & MACSR_V) {
703 env->macsr |= MACSR_PAV0 << acc;
704 if (env->macsr & MACSR_OMC) {
705 result = (result >> 63) ^ 0x7fffffffffffll;
708 env->macc[acc] = result;
711 void HELPER(mac_set_flags)(CPUM68KState *env, uint32_t acc)
713 uint64_t val;
714 val = env->macc[acc];
715 if (val == 0) {
716 env->macsr |= MACSR_Z;
717 } else if (val & (1ull << 47)) {
718 env->macsr |= MACSR_N;
720 if (env->macsr & (MACSR_PAV0 << acc)) {
721 env->macsr |= MACSR_V;
723 if (env->macsr & MACSR_FI) {
724 val = ((int64_t)val) >> 40;
725 if (val != 0 && val != -1)
726 env->macsr |= MACSR_EV;
727 } else if (env->macsr & MACSR_SU) {
728 val = ((int64_t)val) >> 32;
729 if (val != 0 && val != -1)
730 env->macsr |= MACSR_EV;
731 } else {
732 if ((val >> 32) != 0)
733 env->macsr |= MACSR_EV;
737 void HELPER(flush_flags)(CPUM68KState *env, uint32_t cc_op)
739 cpu_m68k_flush_flags(env, cc_op);
742 uint32_t HELPER(get_macf)(CPUM68KState *env, uint64_t val)
744 int rem;
745 uint32_t result;
747 if (env->macsr & MACSR_SU) {
748 /* 16-bit rounding. */
749 rem = val & 0xffffff;
750 val = (val >> 24) & 0xffffu;
751 if (rem > 0x800000)
752 val++;
753 else if (rem == 0x800000)
754 val += (val & 1);
755 } else if (env->macsr & MACSR_RT) {
756 /* 32-bit rounding. */
757 rem = val & 0xff;
758 val >>= 8;
759 if (rem > 0x80)
760 val++;
761 else if (rem == 0x80)
762 val += (val & 1);
763 } else {
764 /* No rounding. */
765 val >>= 8;
767 if (env->macsr & MACSR_OMC) {
768 /* Saturate. */
769 if (env->macsr & MACSR_SU) {
770 if (val != (uint16_t) val) {
771 result = ((val >> 63) ^ 0x7fff) & 0xffff;
772 } else {
773 result = val & 0xffff;
775 } else {
776 if (val != (uint32_t)val) {
777 result = ((uint32_t)(val >> 63) & 0x7fffffff);
778 } else {
779 result = (uint32_t)val;
782 } else {
783 /* No saturation. */
784 if (env->macsr & MACSR_SU) {
785 result = val & 0xffff;
786 } else {
787 result = (uint32_t)val;
790 return result;
793 uint32_t HELPER(get_macs)(uint64_t val)
795 if (val == (int32_t)val) {
796 return (int32_t)val;
797 } else {
798 return (val >> 61) ^ ~SIGNBIT;
802 uint32_t HELPER(get_macu)(uint64_t val)
804 if ((val >> 32) == 0) {
805 return (uint32_t)val;
806 } else {
807 return 0xffffffffu;
811 uint32_t HELPER(get_mac_extf)(CPUM68KState *env, uint32_t acc)
813 uint32_t val;
814 val = env->macc[acc] & 0x00ff;
815 val |= (env->macc[acc] >> 32) & 0xff00;
816 val |= (env->macc[acc + 1] << 16) & 0x00ff0000;
817 val |= (env->macc[acc + 1] >> 16) & 0xff000000;
818 return val;
821 uint32_t HELPER(get_mac_exti)(CPUM68KState *env, uint32_t acc)
823 uint32_t val;
824 val = (env->macc[acc] >> 32) & 0xffff;
825 val |= (env->macc[acc + 1] >> 16) & 0xffff0000;
826 return val;
829 void HELPER(set_mac_extf)(CPUM68KState *env, uint32_t val, uint32_t acc)
831 int64_t res;
832 int32_t tmp;
833 res = env->macc[acc] & 0xffffffff00ull;
834 tmp = (int16_t)(val & 0xff00);
835 res |= ((int64_t)tmp) << 32;
836 res |= val & 0xff;
837 env->macc[acc] = res;
838 res = env->macc[acc + 1] & 0xffffffff00ull;
839 tmp = (val & 0xff000000);
840 res |= ((int64_t)tmp) << 16;
841 res |= (val >> 16) & 0xff;
842 env->macc[acc + 1] = res;
845 void HELPER(set_mac_exts)(CPUM68KState *env, uint32_t val, uint32_t acc)
847 int64_t res;
848 int32_t tmp;
849 res = (uint32_t)env->macc[acc];
850 tmp = (int16_t)val;
851 res |= ((int64_t)tmp) << 32;
852 env->macc[acc] = res;
853 res = (uint32_t)env->macc[acc + 1];
854 tmp = val & 0xffff0000;
855 res |= (int64_t)tmp << 16;
856 env->macc[acc + 1] = res;
859 void HELPER(set_mac_extu)(CPUM68KState *env, uint32_t val, uint32_t acc)
861 uint64_t res;
862 res = (uint32_t)env->macc[acc];
863 res |= ((uint64_t)(val & 0xffff)) << 32;
864 env->macc[acc] = res;
865 res = (uint32_t)env->macc[acc + 1];
866 res |= (uint64_t)(val & 0xffff0000) << 16;
867 env->macc[acc + 1] = res;
870 void m68k_cpu_exec_enter(CPUState *cs)
872 M68kCPU *cpu = M68K_CPU(cs);
873 CPUM68KState *env = &cpu->env;
875 env->cc_op = CC_OP_FLAGS;
876 env->cc_dest = env->sr & 0xf;
877 env->cc_x = (env->sr >> 4) & 1;
880 void m68k_cpu_exec_exit(CPUState *cs)
882 M68kCPU *cpu = M68K_CPU(cs);
883 CPUM68KState *env = &cpu->env;
885 cpu_m68k_flush_flags(env, env->cc_op);
886 env->cc_op = CC_OP_FLAGS;
887 env->sr = (env->sr & 0xffe0) | env->cc_dest | (env->cc_x << 4);