4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
8 * Juan Quintela <quintela@redhat.com>
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
28 #include "qemu/osdep.h"
29 #include "qemu-common.h"
32 #include "qapi-event.h"
33 #include "qemu/cutils.h"
34 #include "qemu/bitops.h"
35 #include "qemu/bitmap.h"
36 #include "qemu/timer.h"
37 #include "qemu/main-loop.h"
38 #include "migration/migration.h"
39 #include "migration/postcopy-ram.h"
40 #include "exec/address-spaces.h"
41 #include "migration/page_cache.h"
42 #include "qemu/error-report.h"
44 #include "exec/ram_addr.h"
45 #include "qemu/rcu_queue.h"
47 #ifdef DEBUG_MIGRATION_RAM
48 #define DPRINTF(fmt, ...) \
49 do { fprintf(stdout, "migration_ram: " fmt, ## __VA_ARGS__); } while (0)
51 #define DPRINTF(fmt, ...) \
55 static int dirty_rate_high_cnt
;
57 static uint64_t bitmap_sync_count
;
59 /***********************************************************/
60 /* ram save/restore */
62 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
63 #define RAM_SAVE_FLAG_COMPRESS 0x02
64 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
65 #define RAM_SAVE_FLAG_PAGE 0x08
66 #define RAM_SAVE_FLAG_EOS 0x10
67 #define RAM_SAVE_FLAG_CONTINUE 0x20
68 #define RAM_SAVE_FLAG_XBZRLE 0x40
69 /* 0x80 is reserved in migration.h start with 0x100 next */
70 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
72 static const uint8_t ZERO_TARGET_PAGE
[TARGET_PAGE_SIZE
];
74 static inline bool is_zero_range(uint8_t *p
, uint64_t size
)
76 return buffer_is_zero(p
, size
);
79 /* struct contains XBZRLE cache and a static page
80 used by the compression */
82 /* buffer used for XBZRLE encoding */
84 /* buffer for storing page content */
86 /* Cache for XBZRLE, Protected by lock. */
91 /* buffer used for XBZRLE decoding */
92 static uint8_t *xbzrle_decoded_buf
;
94 static void XBZRLE_cache_lock(void)
96 if (migrate_use_xbzrle())
97 qemu_mutex_lock(&XBZRLE
.lock
);
100 static void XBZRLE_cache_unlock(void)
102 if (migrate_use_xbzrle())
103 qemu_mutex_unlock(&XBZRLE
.lock
);
107 * called from qmp_migrate_set_cache_size in main thread, possibly while
108 * a migration is in progress.
109 * A running migration maybe using the cache and might finish during this
110 * call, hence changes to the cache are protected by XBZRLE.lock().
112 int64_t xbzrle_cache_resize(int64_t new_size
)
114 PageCache
*new_cache
;
117 if (new_size
< TARGET_PAGE_SIZE
) {
123 if (XBZRLE
.cache
!= NULL
) {
124 if (pow2floor(new_size
) == migrate_xbzrle_cache_size()) {
127 new_cache
= cache_init(new_size
/ TARGET_PAGE_SIZE
,
130 error_report("Error creating cache");
135 cache_fini(XBZRLE
.cache
);
136 XBZRLE
.cache
= new_cache
;
140 ret
= pow2floor(new_size
);
142 XBZRLE_cache_unlock();
146 /* accounting for migration statistics */
147 typedef struct AccountingInfo
{
149 uint64_t skipped_pages
;
152 uint64_t xbzrle_bytes
;
153 uint64_t xbzrle_pages
;
154 uint64_t xbzrle_cache_miss
;
155 double xbzrle_cache_miss_rate
;
156 uint64_t xbzrle_overflows
;
159 static AccountingInfo acct_info
;
161 static void acct_clear(void)
163 memset(&acct_info
, 0, sizeof(acct_info
));
166 uint64_t dup_mig_bytes_transferred(void)
168 return acct_info
.dup_pages
* TARGET_PAGE_SIZE
;
171 uint64_t dup_mig_pages_transferred(void)
173 return acct_info
.dup_pages
;
176 uint64_t skipped_mig_bytes_transferred(void)
178 return acct_info
.skipped_pages
* TARGET_PAGE_SIZE
;
181 uint64_t skipped_mig_pages_transferred(void)
183 return acct_info
.skipped_pages
;
186 uint64_t norm_mig_bytes_transferred(void)
188 return acct_info
.norm_pages
* TARGET_PAGE_SIZE
;
191 uint64_t norm_mig_pages_transferred(void)
193 return acct_info
.norm_pages
;
196 uint64_t xbzrle_mig_bytes_transferred(void)
198 return acct_info
.xbzrle_bytes
;
201 uint64_t xbzrle_mig_pages_transferred(void)
203 return acct_info
.xbzrle_pages
;
206 uint64_t xbzrle_mig_pages_cache_miss(void)
208 return acct_info
.xbzrle_cache_miss
;
211 double xbzrle_mig_cache_miss_rate(void)
213 return acct_info
.xbzrle_cache_miss_rate
;
216 uint64_t xbzrle_mig_pages_overflow(void)
218 return acct_info
.xbzrle_overflows
;
221 /* This is the last block that we have visited serching for dirty pages
223 static RAMBlock
*last_seen_block
;
224 /* This is the last block from where we have sent data */
225 static RAMBlock
*last_sent_block
;
226 static ram_addr_t last_offset
;
227 static QemuMutex migration_bitmap_mutex
;
228 static uint64_t migration_dirty_pages
;
229 static uint32_t last_version
;
230 static bool ram_bulk_stage
;
232 /* used by the search for pages to send */
233 struct PageSearchStatus
{
234 /* Current block being searched */
236 /* Current offset to search from */
238 /* Set once we wrap around */
241 typedef struct PageSearchStatus PageSearchStatus
;
243 static struct BitmapRcu
{
245 /* Main migration bitmap */
247 /* bitmap of pages that haven't been sent even once
248 * only maintained and used in postcopy at the moment
249 * where it's used to send the dirtymap at the start
250 * of the postcopy phase
252 unsigned long *unsentmap
;
253 } *migration_bitmap_rcu
;
255 struct CompressParam
{
264 typedef struct CompressParam CompressParam
;
266 struct DecompressParam
{
275 typedef struct DecompressParam DecompressParam
;
277 static CompressParam
*comp_param
;
278 static QemuThread
*compress_threads
;
279 /* comp_done_cond is used to wake up the migration thread when
280 * one of the compression threads has finished the compression.
281 * comp_done_lock is used to co-work with comp_done_cond.
283 static QemuMutex comp_done_lock
;
284 static QemuCond comp_done_cond
;
285 /* The empty QEMUFileOps will be used by file in CompressParam */
286 static const QEMUFileOps empty_ops
= { };
288 static bool compression_switch
;
289 static DecompressParam
*decomp_param
;
290 static QemuThread
*decompress_threads
;
291 static QemuMutex decomp_done_lock
;
292 static QemuCond decomp_done_cond
;
294 static int do_compress_ram_page(QEMUFile
*f
, RAMBlock
*block
,
297 static void *do_data_compress(void *opaque
)
299 CompressParam
*param
= opaque
;
303 qemu_mutex_lock(¶m
->mutex
);
304 while (!param
->quit
) {
306 block
= param
->block
;
307 offset
= param
->offset
;
309 qemu_mutex_unlock(¶m
->mutex
);
311 do_compress_ram_page(param
->file
, block
, offset
);
313 qemu_mutex_lock(&comp_done_lock
);
315 qemu_cond_signal(&comp_done_cond
);
316 qemu_mutex_unlock(&comp_done_lock
);
318 qemu_mutex_lock(¶m
->mutex
);
320 qemu_cond_wait(¶m
->cond
, ¶m
->mutex
);
323 qemu_mutex_unlock(¶m
->mutex
);
328 static inline void terminate_compression_threads(void)
330 int idx
, thread_count
;
332 thread_count
= migrate_compress_threads();
333 for (idx
= 0; idx
< thread_count
; idx
++) {
334 qemu_mutex_lock(&comp_param
[idx
].mutex
);
335 comp_param
[idx
].quit
= true;
336 qemu_cond_signal(&comp_param
[idx
].cond
);
337 qemu_mutex_unlock(&comp_param
[idx
].mutex
);
341 void migrate_compress_threads_join(void)
345 if (!migrate_use_compression()) {
348 terminate_compression_threads();
349 thread_count
= migrate_compress_threads();
350 for (i
= 0; i
< thread_count
; i
++) {
351 qemu_thread_join(compress_threads
+ i
);
352 qemu_fclose(comp_param
[i
].file
);
353 qemu_mutex_destroy(&comp_param
[i
].mutex
);
354 qemu_cond_destroy(&comp_param
[i
].cond
);
356 qemu_mutex_destroy(&comp_done_lock
);
357 qemu_cond_destroy(&comp_done_cond
);
358 g_free(compress_threads
);
360 compress_threads
= NULL
;
364 void migrate_compress_threads_create(void)
368 if (!migrate_use_compression()) {
371 compression_switch
= true;
372 thread_count
= migrate_compress_threads();
373 compress_threads
= g_new0(QemuThread
, thread_count
);
374 comp_param
= g_new0(CompressParam
, thread_count
);
375 qemu_cond_init(&comp_done_cond
);
376 qemu_mutex_init(&comp_done_lock
);
377 for (i
= 0; i
< thread_count
; i
++) {
378 /* comp_param[i].file is just used as a dummy buffer to save data,
379 * set its ops to empty.
381 comp_param
[i
].file
= qemu_fopen_ops(NULL
, &empty_ops
);
382 comp_param
[i
].done
= true;
383 comp_param
[i
].quit
= false;
384 qemu_mutex_init(&comp_param
[i
].mutex
);
385 qemu_cond_init(&comp_param
[i
].cond
);
386 qemu_thread_create(compress_threads
+ i
, "compress",
387 do_data_compress
, comp_param
+ i
,
388 QEMU_THREAD_JOINABLE
);
393 * save_page_header: Write page header to wire
395 * If this is the 1st block, it also writes the block identification
397 * Returns: Number of bytes written
399 * @f: QEMUFile where to send the data
400 * @block: block that contains the page we want to send
401 * @offset: offset inside the block for the page
402 * in the lower bits, it contains flags
404 static size_t save_page_header(QEMUFile
*f
, RAMBlock
*block
, ram_addr_t offset
)
408 qemu_put_be64(f
, offset
);
411 if (!(offset
& RAM_SAVE_FLAG_CONTINUE
)) {
412 len
= strlen(block
->idstr
);
413 qemu_put_byte(f
, len
);
414 qemu_put_buffer(f
, (uint8_t *)block
->idstr
, len
);
420 /* Reduce amount of guest cpu execution to hopefully slow down memory writes.
421 * If guest dirty memory rate is reduced below the rate at which we can
422 * transfer pages to the destination then we should be able to complete
423 * migration. Some workloads dirty memory way too fast and will not effectively
424 * converge, even with auto-converge.
426 static void mig_throttle_guest_down(void)
428 MigrationState
*s
= migrate_get_current();
429 uint64_t pct_initial
= s
->parameters
.cpu_throttle_initial
;
430 uint64_t pct_icrement
= s
->parameters
.cpu_throttle_increment
;
432 /* We have not started throttling yet. Let's start it. */
433 if (!cpu_throttle_active()) {
434 cpu_throttle_set(pct_initial
);
436 /* Throttling already on, just increase the rate */
437 cpu_throttle_set(cpu_throttle_get_percentage() + pct_icrement
);
441 /* Update the xbzrle cache to reflect a page that's been sent as all 0.
442 * The important thing is that a stale (not-yet-0'd) page be replaced
444 * As a bonus, if the page wasn't in the cache it gets added so that
445 * when a small write is made into the 0'd page it gets XBZRLE sent
447 static void xbzrle_cache_zero_page(ram_addr_t current_addr
)
449 if (ram_bulk_stage
|| !migrate_use_xbzrle()) {
453 /* We don't care if this fails to allocate a new cache page
454 * as long as it updated an old one */
455 cache_insert(XBZRLE
.cache
, current_addr
, ZERO_TARGET_PAGE
,
459 #define ENCODING_FLAG_XBZRLE 0x1
462 * save_xbzrle_page: compress and send current page
464 * Returns: 1 means that we wrote the page
465 * 0 means that page is identical to the one already sent
466 * -1 means that xbzrle would be longer than normal
468 * @f: QEMUFile where to send the data
471 * @block: block that contains the page we want to send
472 * @offset: offset inside the block for the page
473 * @last_stage: if we are at the completion stage
474 * @bytes_transferred: increase it with the number of transferred bytes
476 static int save_xbzrle_page(QEMUFile
*f
, uint8_t **current_data
,
477 ram_addr_t current_addr
, RAMBlock
*block
,
478 ram_addr_t offset
, bool last_stage
,
479 uint64_t *bytes_transferred
)
481 int encoded_len
= 0, bytes_xbzrle
;
482 uint8_t *prev_cached_page
;
484 if (!cache_is_cached(XBZRLE
.cache
, current_addr
, bitmap_sync_count
)) {
485 acct_info
.xbzrle_cache_miss
++;
487 if (cache_insert(XBZRLE
.cache
, current_addr
, *current_data
,
488 bitmap_sync_count
) == -1) {
491 /* update *current_data when the page has been
492 inserted into cache */
493 *current_data
= get_cached_data(XBZRLE
.cache
, current_addr
);
499 prev_cached_page
= get_cached_data(XBZRLE
.cache
, current_addr
);
501 /* save current buffer into memory */
502 memcpy(XBZRLE
.current_buf
, *current_data
, TARGET_PAGE_SIZE
);
504 /* XBZRLE encoding (if there is no overflow) */
505 encoded_len
= xbzrle_encode_buffer(prev_cached_page
, XBZRLE
.current_buf
,
506 TARGET_PAGE_SIZE
, XBZRLE
.encoded_buf
,
508 if (encoded_len
== 0) {
509 DPRINTF("Skipping unmodified page\n");
511 } else if (encoded_len
== -1) {
512 DPRINTF("Overflow\n");
513 acct_info
.xbzrle_overflows
++;
514 /* update data in the cache */
516 memcpy(prev_cached_page
, *current_data
, TARGET_PAGE_SIZE
);
517 *current_data
= prev_cached_page
;
522 /* we need to update the data in the cache, in order to get the same data */
524 memcpy(prev_cached_page
, XBZRLE
.current_buf
, TARGET_PAGE_SIZE
);
527 /* Send XBZRLE based compressed page */
528 bytes_xbzrle
= save_page_header(f
, block
, offset
| RAM_SAVE_FLAG_XBZRLE
);
529 qemu_put_byte(f
, ENCODING_FLAG_XBZRLE
);
530 qemu_put_be16(f
, encoded_len
);
531 qemu_put_buffer(f
, XBZRLE
.encoded_buf
, encoded_len
);
532 bytes_xbzrle
+= encoded_len
+ 1 + 2;
533 acct_info
.xbzrle_pages
++;
534 acct_info
.xbzrle_bytes
+= bytes_xbzrle
;
535 *bytes_transferred
+= bytes_xbzrle
;
540 /* Called with rcu_read_lock() to protect migration_bitmap
541 * rb: The RAMBlock to search for dirty pages in
542 * start: Start address (typically so we can continue from previous page)
543 * ram_addr_abs: Pointer into which to store the address of the dirty page
544 * within the global ram_addr space
546 * Returns: byte offset within memory region of the start of a dirty page
549 ram_addr_t
migration_bitmap_find_dirty(RAMBlock
*rb
,
551 ram_addr_t
*ram_addr_abs
)
553 unsigned long base
= rb
->offset
>> TARGET_PAGE_BITS
;
554 unsigned long nr
= base
+ (start
>> TARGET_PAGE_BITS
);
555 uint64_t rb_size
= rb
->used_length
;
556 unsigned long size
= base
+ (rb_size
>> TARGET_PAGE_BITS
);
557 unsigned long *bitmap
;
561 bitmap
= atomic_rcu_read(&migration_bitmap_rcu
)->bmap
;
562 if (ram_bulk_stage
&& nr
> base
) {
565 next
= find_next_bit(bitmap
, size
, nr
);
568 *ram_addr_abs
= next
<< TARGET_PAGE_BITS
;
569 return (next
- base
) << TARGET_PAGE_BITS
;
572 static inline bool migration_bitmap_clear_dirty(ram_addr_t addr
)
575 int nr
= addr
>> TARGET_PAGE_BITS
;
576 unsigned long *bitmap
= atomic_rcu_read(&migration_bitmap_rcu
)->bmap
;
578 ret
= test_and_clear_bit(nr
, bitmap
);
581 migration_dirty_pages
--;
586 static void migration_bitmap_sync_range(ram_addr_t start
, ram_addr_t length
)
588 unsigned long *bitmap
;
589 bitmap
= atomic_rcu_read(&migration_bitmap_rcu
)->bmap
;
590 migration_dirty_pages
+=
591 cpu_physical_memory_sync_dirty_bitmap(bitmap
, start
, length
);
594 /* Fix me: there are too many global variables used in migration process. */
595 static int64_t start_time
;
596 static int64_t bytes_xfer_prev
;
597 static int64_t num_dirty_pages_period
;
598 static uint64_t xbzrle_cache_miss_prev
;
599 static uint64_t iterations_prev
;
601 static void migration_bitmap_sync_init(void)
605 num_dirty_pages_period
= 0;
606 xbzrle_cache_miss_prev
= 0;
610 static void migration_bitmap_sync(void)
613 uint64_t num_dirty_pages_init
= migration_dirty_pages
;
614 MigrationState
*s
= migrate_get_current();
616 int64_t bytes_xfer_now
;
620 if (!bytes_xfer_prev
) {
621 bytes_xfer_prev
= ram_bytes_transferred();
625 start_time
= qemu_clock_get_ms(QEMU_CLOCK_REALTIME
);
628 trace_migration_bitmap_sync_start();
629 memory_global_dirty_log_sync();
631 qemu_mutex_lock(&migration_bitmap_mutex
);
633 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
634 migration_bitmap_sync_range(block
->offset
, block
->used_length
);
637 qemu_mutex_unlock(&migration_bitmap_mutex
);
639 trace_migration_bitmap_sync_end(migration_dirty_pages
640 - num_dirty_pages_init
);
641 num_dirty_pages_period
+= migration_dirty_pages
- num_dirty_pages_init
;
642 end_time
= qemu_clock_get_ms(QEMU_CLOCK_REALTIME
);
644 /* more than 1 second = 1000 millisecons */
645 if (end_time
> start_time
+ 1000) {
646 if (migrate_auto_converge()) {
647 /* The following detection logic can be refined later. For now:
648 Check to see if the dirtied bytes is 50% more than the approx.
649 amount of bytes that just got transferred since the last time we
650 were in this routine. If that happens twice, start or increase
652 bytes_xfer_now
= ram_bytes_transferred();
654 if (s
->dirty_pages_rate
&&
655 (num_dirty_pages_period
* TARGET_PAGE_SIZE
>
656 (bytes_xfer_now
- bytes_xfer_prev
)/2) &&
657 (dirty_rate_high_cnt
++ >= 2)) {
658 trace_migration_throttle();
659 dirty_rate_high_cnt
= 0;
660 mig_throttle_guest_down();
662 bytes_xfer_prev
= bytes_xfer_now
;
665 if (migrate_use_xbzrle()) {
666 if (iterations_prev
!= acct_info
.iterations
) {
667 acct_info
.xbzrle_cache_miss_rate
=
668 (double)(acct_info
.xbzrle_cache_miss
-
669 xbzrle_cache_miss_prev
) /
670 (acct_info
.iterations
- iterations_prev
);
672 iterations_prev
= acct_info
.iterations
;
673 xbzrle_cache_miss_prev
= acct_info
.xbzrle_cache_miss
;
675 s
->dirty_pages_rate
= num_dirty_pages_period
* 1000
676 / (end_time
- start_time
);
677 s
->dirty_bytes_rate
= s
->dirty_pages_rate
* TARGET_PAGE_SIZE
;
678 start_time
= end_time
;
679 num_dirty_pages_period
= 0;
681 s
->dirty_sync_count
= bitmap_sync_count
;
682 if (migrate_use_events()) {
683 qapi_event_send_migration_pass(bitmap_sync_count
, NULL
);
688 * save_zero_page: Send the zero page to the stream
690 * Returns: Number of pages written.
692 * @f: QEMUFile where to send the data
693 * @block: block that contains the page we want to send
694 * @offset: offset inside the block for the page
695 * @p: pointer to the page
696 * @bytes_transferred: increase it with the number of transferred bytes
698 static int save_zero_page(QEMUFile
*f
, RAMBlock
*block
, ram_addr_t offset
,
699 uint8_t *p
, uint64_t *bytes_transferred
)
703 if (is_zero_range(p
, TARGET_PAGE_SIZE
)) {
704 acct_info
.dup_pages
++;
705 *bytes_transferred
+= save_page_header(f
, block
,
706 offset
| RAM_SAVE_FLAG_COMPRESS
);
708 *bytes_transferred
+= 1;
716 * ram_save_page: Send the given page to the stream
718 * Returns: Number of pages written.
720 * >=0 - Number of pages written - this might legally be 0
721 * if xbzrle noticed the page was the same.
723 * @f: QEMUFile where to send the data
724 * @block: block that contains the page we want to send
725 * @offset: offset inside the block for the page
726 * @last_stage: if we are at the completion stage
727 * @bytes_transferred: increase it with the number of transferred bytes
729 static int ram_save_page(QEMUFile
*f
, PageSearchStatus
*pss
,
730 bool last_stage
, uint64_t *bytes_transferred
)
734 ram_addr_t current_addr
;
737 bool send_async
= true;
738 RAMBlock
*block
= pss
->block
;
739 ram_addr_t offset
= pss
->offset
;
741 p
= block
->host
+ offset
;
743 /* In doubt sent page as normal */
745 ret
= ram_control_save_page(f
, block
->offset
,
746 offset
, TARGET_PAGE_SIZE
, &bytes_xmit
);
748 *bytes_transferred
+= bytes_xmit
;
754 current_addr
= block
->offset
+ offset
;
756 if (block
== last_sent_block
) {
757 offset
|= RAM_SAVE_FLAG_CONTINUE
;
759 if (ret
!= RAM_SAVE_CONTROL_NOT_SUPP
) {
760 if (ret
!= RAM_SAVE_CONTROL_DELAYED
) {
761 if (bytes_xmit
> 0) {
762 acct_info
.norm_pages
++;
763 } else if (bytes_xmit
== 0) {
764 acct_info
.dup_pages
++;
768 pages
= save_zero_page(f
, block
, offset
, p
, bytes_transferred
);
770 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
771 * page would be stale
773 xbzrle_cache_zero_page(current_addr
);
774 } else if (!ram_bulk_stage
&&
775 !migration_in_postcopy(migrate_get_current()) &&
776 migrate_use_xbzrle()) {
777 pages
= save_xbzrle_page(f
, &p
, current_addr
, block
,
778 offset
, last_stage
, bytes_transferred
);
780 /* Can't send this cached data async, since the cache page
781 * might get updated before it gets to the wire
788 /* XBZRLE overflow or normal page */
790 *bytes_transferred
+= save_page_header(f
, block
,
791 offset
| RAM_SAVE_FLAG_PAGE
);
793 qemu_put_buffer_async(f
, p
, TARGET_PAGE_SIZE
);
795 qemu_put_buffer(f
, p
, TARGET_PAGE_SIZE
);
797 *bytes_transferred
+= TARGET_PAGE_SIZE
;
799 acct_info
.norm_pages
++;
802 XBZRLE_cache_unlock();
807 static int do_compress_ram_page(QEMUFile
*f
, RAMBlock
*block
,
810 int bytes_sent
, blen
;
811 uint8_t *p
= block
->host
+ (offset
& TARGET_PAGE_MASK
);
813 bytes_sent
= save_page_header(f
, block
, offset
|
814 RAM_SAVE_FLAG_COMPRESS_PAGE
);
815 blen
= qemu_put_compression_data(f
, p
, TARGET_PAGE_SIZE
,
816 migrate_compress_level());
819 qemu_file_set_error(migrate_get_current()->to_dst_file
, blen
);
820 error_report("compressed data failed!");
828 static uint64_t bytes_transferred
;
830 static void flush_compressed_data(QEMUFile
*f
)
832 int idx
, len
, thread_count
;
834 if (!migrate_use_compression()) {
837 thread_count
= migrate_compress_threads();
839 qemu_mutex_lock(&comp_done_lock
);
840 for (idx
= 0; idx
< thread_count
; idx
++) {
841 while (!comp_param
[idx
].done
) {
842 qemu_cond_wait(&comp_done_cond
, &comp_done_lock
);
845 qemu_mutex_unlock(&comp_done_lock
);
847 for (idx
= 0; idx
< thread_count
; idx
++) {
848 qemu_mutex_lock(&comp_param
[idx
].mutex
);
849 if (!comp_param
[idx
].quit
) {
850 len
= qemu_put_qemu_file(f
, comp_param
[idx
].file
);
851 bytes_transferred
+= len
;
853 qemu_mutex_unlock(&comp_param
[idx
].mutex
);
857 static inline void set_compress_params(CompressParam
*param
, RAMBlock
*block
,
860 param
->block
= block
;
861 param
->offset
= offset
;
864 static int compress_page_with_multi_thread(QEMUFile
*f
, RAMBlock
*block
,
866 uint64_t *bytes_transferred
)
868 int idx
, thread_count
, bytes_xmit
= -1, pages
= -1;
870 thread_count
= migrate_compress_threads();
871 qemu_mutex_lock(&comp_done_lock
);
873 for (idx
= 0; idx
< thread_count
; idx
++) {
874 if (comp_param
[idx
].done
) {
875 comp_param
[idx
].done
= false;
876 bytes_xmit
= qemu_put_qemu_file(f
, comp_param
[idx
].file
);
877 qemu_mutex_lock(&comp_param
[idx
].mutex
);
878 set_compress_params(&comp_param
[idx
], block
, offset
);
879 qemu_cond_signal(&comp_param
[idx
].cond
);
880 qemu_mutex_unlock(&comp_param
[idx
].mutex
);
882 acct_info
.norm_pages
++;
883 *bytes_transferred
+= bytes_xmit
;
890 qemu_cond_wait(&comp_done_cond
, &comp_done_lock
);
893 qemu_mutex_unlock(&comp_done_lock
);
899 * ram_save_compressed_page: compress the given page and send it to the stream
901 * Returns: Number of pages written.
903 * @f: QEMUFile where to send the data
904 * @block: block that contains the page we want to send
905 * @offset: offset inside the block for the page
906 * @last_stage: if we are at the completion stage
907 * @bytes_transferred: increase it with the number of transferred bytes
909 static int ram_save_compressed_page(QEMUFile
*f
, PageSearchStatus
*pss
,
911 uint64_t *bytes_transferred
)
914 uint64_t bytes_xmit
= 0;
917 RAMBlock
*block
= pss
->block
;
918 ram_addr_t offset
= pss
->offset
;
920 p
= block
->host
+ offset
;
922 ret
= ram_control_save_page(f
, block
->offset
,
923 offset
, TARGET_PAGE_SIZE
, &bytes_xmit
);
925 *bytes_transferred
+= bytes_xmit
;
928 if (ret
!= RAM_SAVE_CONTROL_NOT_SUPP
) {
929 if (ret
!= RAM_SAVE_CONTROL_DELAYED
) {
930 if (bytes_xmit
> 0) {
931 acct_info
.norm_pages
++;
932 } else if (bytes_xmit
== 0) {
933 acct_info
.dup_pages
++;
937 /* When starting the process of a new block, the first page of
938 * the block should be sent out before other pages in the same
939 * block, and all the pages in last block should have been sent
940 * out, keeping this order is important, because the 'cont' flag
941 * is used to avoid resending the block name.
943 if (block
!= last_sent_block
) {
944 flush_compressed_data(f
);
945 pages
= save_zero_page(f
, block
, offset
, p
, bytes_transferred
);
947 /* Make sure the first page is sent out before other pages */
948 bytes_xmit
= save_page_header(f
, block
, offset
|
949 RAM_SAVE_FLAG_COMPRESS_PAGE
);
950 blen
= qemu_put_compression_data(f
, p
, TARGET_PAGE_SIZE
,
951 migrate_compress_level());
953 *bytes_transferred
+= bytes_xmit
+ blen
;
954 acct_info
.norm_pages
++;
957 qemu_file_set_error(f
, blen
);
958 error_report("compressed data failed!");
962 offset
|= RAM_SAVE_FLAG_CONTINUE
;
963 pages
= save_zero_page(f
, block
, offset
, p
, bytes_transferred
);
965 pages
= compress_page_with_multi_thread(f
, block
, offset
,
975 * Find the next dirty page and update any state associated with
976 * the search process.
978 * Returns: True if a page is found
980 * @f: Current migration stream.
981 * @pss: Data about the state of the current dirty page scan.
982 * @*again: Set to false if the search has scanned the whole of RAM
983 * *ram_addr_abs: Pointer into which to store the address of the dirty page
984 * within the global ram_addr space
986 static bool find_dirty_block(QEMUFile
*f
, PageSearchStatus
*pss
,
987 bool *again
, ram_addr_t
*ram_addr_abs
)
989 pss
->offset
= migration_bitmap_find_dirty(pss
->block
, pss
->offset
,
991 if (pss
->complete_round
&& pss
->block
== last_seen_block
&&
992 pss
->offset
>= last_offset
) {
994 * We've been once around the RAM and haven't found anything.
1000 if (pss
->offset
>= pss
->block
->used_length
) {
1001 /* Didn't find anything in this RAM Block */
1003 pss
->block
= QLIST_NEXT_RCU(pss
->block
, next
);
1005 /* Hit the end of the list */
1006 pss
->block
= QLIST_FIRST_RCU(&ram_list
.blocks
);
1007 /* Flag that we've looped */
1008 pss
->complete_round
= true;
1009 ram_bulk_stage
= false;
1010 if (migrate_use_xbzrle()) {
1011 /* If xbzrle is on, stop using the data compression at this
1012 * point. In theory, xbzrle can do better than compression.
1014 flush_compressed_data(f
);
1015 compression_switch
= false;
1018 /* Didn't find anything this time, but try again on the new block */
1022 /* Can go around again, but... */
1024 /* We've found something so probably don't need to */
1030 * Helper for 'get_queued_page' - gets a page off the queue
1031 * ms: MigrationState in
1032 * *offset: Used to return the offset within the RAMBlock
1033 * ram_addr_abs: global offset in the dirty/sent bitmaps
1035 * Returns: block (or NULL if none available)
1037 static RAMBlock
*unqueue_page(MigrationState
*ms
, ram_addr_t
*offset
,
1038 ram_addr_t
*ram_addr_abs
)
1040 RAMBlock
*block
= NULL
;
1042 qemu_mutex_lock(&ms
->src_page_req_mutex
);
1043 if (!QSIMPLEQ_EMPTY(&ms
->src_page_requests
)) {
1044 struct MigrationSrcPageRequest
*entry
=
1045 QSIMPLEQ_FIRST(&ms
->src_page_requests
);
1047 *offset
= entry
->offset
;
1048 *ram_addr_abs
= (entry
->offset
+ entry
->rb
->offset
) &
1051 if (entry
->len
> TARGET_PAGE_SIZE
) {
1052 entry
->len
-= TARGET_PAGE_SIZE
;
1053 entry
->offset
+= TARGET_PAGE_SIZE
;
1055 memory_region_unref(block
->mr
);
1056 QSIMPLEQ_REMOVE_HEAD(&ms
->src_page_requests
, next_req
);
1060 qemu_mutex_unlock(&ms
->src_page_req_mutex
);
1066 * Unqueue a page from the queue fed by postcopy page requests; skips pages
1067 * that are already sent (!dirty)
1069 * ms: MigrationState in
1070 * pss: PageSearchStatus structure updated with found block/offset
1071 * ram_addr_abs: global offset in the dirty/sent bitmaps
1073 * Returns: true if a queued page is found
1075 static bool get_queued_page(MigrationState
*ms
, PageSearchStatus
*pss
,
1076 ram_addr_t
*ram_addr_abs
)
1083 block
= unqueue_page(ms
, &offset
, ram_addr_abs
);
1085 * We're sending this page, and since it's postcopy nothing else
1086 * will dirty it, and we must make sure it doesn't get sent again
1087 * even if this queue request was received after the background
1088 * search already sent it.
1091 unsigned long *bitmap
;
1092 bitmap
= atomic_rcu_read(&migration_bitmap_rcu
)->bmap
;
1093 dirty
= test_bit(*ram_addr_abs
>> TARGET_PAGE_BITS
, bitmap
);
1095 trace_get_queued_page_not_dirty(
1096 block
->idstr
, (uint64_t)offset
,
1097 (uint64_t)*ram_addr_abs
,
1098 test_bit(*ram_addr_abs
>> TARGET_PAGE_BITS
,
1099 atomic_rcu_read(&migration_bitmap_rcu
)->unsentmap
));
1101 trace_get_queued_page(block
->idstr
,
1103 (uint64_t)*ram_addr_abs
);
1107 } while (block
&& !dirty
);
1111 * As soon as we start servicing pages out of order, then we have
1112 * to kill the bulk stage, since the bulk stage assumes
1113 * in (migration_bitmap_find_and_reset_dirty) that every page is
1114 * dirty, that's no longer true.
1116 ram_bulk_stage
= false;
1119 * We want the background search to continue from the queued page
1120 * since the guest is likely to want other pages near to the page
1121 * it just requested.
1124 pss
->offset
= offset
;
1131 * flush_page_queue: Flush any remaining pages in the ram request queue
1132 * it should be empty at the end anyway, but in error cases there may be
1135 * ms: MigrationState
1137 void flush_page_queue(MigrationState
*ms
)
1139 struct MigrationSrcPageRequest
*mspr
, *next_mspr
;
1140 /* This queue generally should be empty - but in the case of a failed
1141 * migration might have some droppings in.
1144 QSIMPLEQ_FOREACH_SAFE(mspr
, &ms
->src_page_requests
, next_req
, next_mspr
) {
1145 memory_region_unref(mspr
->rb
->mr
);
1146 QSIMPLEQ_REMOVE_HEAD(&ms
->src_page_requests
, next_req
);
1153 * Queue the pages for transmission, e.g. a request from postcopy destination
1154 * ms: MigrationStatus in which the queue is held
1155 * rbname: The RAMBlock the request is for - may be NULL (to mean reuse last)
1156 * start: Offset from the start of the RAMBlock
1157 * len: Length (in bytes) to send
1158 * Return: 0 on success
1160 int ram_save_queue_pages(MigrationState
*ms
, const char *rbname
,
1161 ram_addr_t start
, ram_addr_t len
)
1165 ms
->postcopy_requests
++;
1168 /* Reuse last RAMBlock */
1169 ramblock
= ms
->last_req_rb
;
1173 * Shouldn't happen, we can't reuse the last RAMBlock if
1174 * it's the 1st request.
1176 error_report("ram_save_queue_pages no previous block");
1180 ramblock
= qemu_ram_block_by_name(rbname
);
1183 /* We shouldn't be asked for a non-existent RAMBlock */
1184 error_report("ram_save_queue_pages no block '%s'", rbname
);
1187 ms
->last_req_rb
= ramblock
;
1189 trace_ram_save_queue_pages(ramblock
->idstr
, start
, len
);
1190 if (start
+len
> ramblock
->used_length
) {
1191 error_report("%s request overrun start=" RAM_ADDR_FMT
" len="
1192 RAM_ADDR_FMT
" blocklen=" RAM_ADDR_FMT
,
1193 __func__
, start
, len
, ramblock
->used_length
);
1197 struct MigrationSrcPageRequest
*new_entry
=
1198 g_malloc0(sizeof(struct MigrationSrcPageRequest
));
1199 new_entry
->rb
= ramblock
;
1200 new_entry
->offset
= start
;
1201 new_entry
->len
= len
;
1203 memory_region_ref(ramblock
->mr
);
1204 qemu_mutex_lock(&ms
->src_page_req_mutex
);
1205 QSIMPLEQ_INSERT_TAIL(&ms
->src_page_requests
, new_entry
, next_req
);
1206 qemu_mutex_unlock(&ms
->src_page_req_mutex
);
1217 * ram_save_target_page: Save one target page
1220 * @f: QEMUFile where to send the data
1221 * @block: pointer to block that contains the page we want to send
1222 * @offset: offset inside the block for the page;
1223 * @last_stage: if we are at the completion stage
1224 * @bytes_transferred: increase it with the number of transferred bytes
1225 * @dirty_ram_abs: Address of the start of the dirty page in ram_addr_t space
1227 * Returns: Number of pages written.
1229 static int ram_save_target_page(MigrationState
*ms
, QEMUFile
*f
,
1230 PageSearchStatus
*pss
,
1232 uint64_t *bytes_transferred
,
1233 ram_addr_t dirty_ram_abs
)
1237 /* Check the pages is dirty and if it is send it */
1238 if (migration_bitmap_clear_dirty(dirty_ram_abs
)) {
1239 unsigned long *unsentmap
;
1240 if (compression_switch
&& migrate_use_compression()) {
1241 res
= ram_save_compressed_page(f
, pss
,
1245 res
= ram_save_page(f
, pss
, last_stage
,
1252 unsentmap
= atomic_rcu_read(&migration_bitmap_rcu
)->unsentmap
;
1254 clear_bit(dirty_ram_abs
>> TARGET_PAGE_BITS
, unsentmap
);
1256 /* Only update last_sent_block if a block was actually sent; xbzrle
1257 * might have decided the page was identical so didn't bother writing
1261 last_sent_block
= pss
->block
;
1269 * ram_save_host_page: Starting at *offset send pages up to the end
1270 * of the current host page. It's valid for the initial
1271 * offset to point into the middle of a host page
1272 * in which case the remainder of the hostpage is sent.
1273 * Only dirty target pages are sent.
1275 * Returns: Number of pages written.
1277 * @f: QEMUFile where to send the data
1278 * @block: pointer to block that contains the page we want to send
1279 * @offset: offset inside the block for the page; updated to last target page
1281 * @last_stage: if we are at the completion stage
1282 * @bytes_transferred: increase it with the number of transferred bytes
1283 * @dirty_ram_abs: Address of the start of the dirty page in ram_addr_t space
1285 static int ram_save_host_page(MigrationState
*ms
, QEMUFile
*f
,
1286 PageSearchStatus
*pss
,
1288 uint64_t *bytes_transferred
,
1289 ram_addr_t dirty_ram_abs
)
1291 int tmppages
, pages
= 0;
1293 tmppages
= ram_save_target_page(ms
, f
, pss
, last_stage
,
1294 bytes_transferred
, dirty_ram_abs
);
1300 pss
->offset
+= TARGET_PAGE_SIZE
;
1301 dirty_ram_abs
+= TARGET_PAGE_SIZE
;
1302 } while (pss
->offset
& (qemu_host_page_size
- 1));
1304 /* The offset we leave with is the last one we looked at */
1305 pss
->offset
-= TARGET_PAGE_SIZE
;
1310 * ram_find_and_save_block: Finds a dirty page and sends it to f
1312 * Called within an RCU critical section.
1314 * Returns: The number of pages written
1315 * 0 means no dirty pages
1317 * @f: QEMUFile where to send the data
1318 * @last_stage: if we are at the completion stage
1319 * @bytes_transferred: increase it with the number of transferred bytes
1321 * On systems where host-page-size > target-page-size it will send all the
1322 * pages in a host page that are dirty.
1325 static int ram_find_and_save_block(QEMUFile
*f
, bool last_stage
,
1326 uint64_t *bytes_transferred
)
1328 PageSearchStatus pss
;
1329 MigrationState
*ms
= migrate_get_current();
1332 ram_addr_t dirty_ram_abs
; /* Address of the start of the dirty page in
1335 pss
.block
= last_seen_block
;
1336 pss
.offset
= last_offset
;
1337 pss
.complete_round
= false;
1340 pss
.block
= QLIST_FIRST_RCU(&ram_list
.blocks
);
1345 found
= get_queued_page(ms
, &pss
, &dirty_ram_abs
);
1348 /* priority queue empty, so just search for something dirty */
1349 found
= find_dirty_block(f
, &pss
, &again
, &dirty_ram_abs
);
1353 pages
= ram_save_host_page(ms
, f
, &pss
,
1354 last_stage
, bytes_transferred
,
1357 } while (!pages
&& again
);
1359 last_seen_block
= pss
.block
;
1360 last_offset
= pss
.offset
;
1365 void acct_update_position(QEMUFile
*f
, size_t size
, bool zero
)
1367 uint64_t pages
= size
/ TARGET_PAGE_SIZE
;
1369 acct_info
.dup_pages
+= pages
;
1371 acct_info
.norm_pages
+= pages
;
1372 bytes_transferred
+= size
;
1373 qemu_update_position(f
, size
);
1377 static ram_addr_t
ram_save_remaining(void)
1379 return migration_dirty_pages
;
1382 uint64_t ram_bytes_remaining(void)
1384 return ram_save_remaining() * TARGET_PAGE_SIZE
;
1387 uint64_t ram_bytes_transferred(void)
1389 return bytes_transferred
;
1392 uint64_t ram_bytes_total(void)
1398 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
)
1399 total
+= block
->used_length
;
1404 void free_xbzrle_decoded_buf(void)
1406 g_free(xbzrle_decoded_buf
);
1407 xbzrle_decoded_buf
= NULL
;
1410 static void migration_bitmap_free(struct BitmapRcu
*bmap
)
1413 g_free(bmap
->unsentmap
);
1417 static void ram_migration_cleanup(void *opaque
)
1419 /* caller have hold iothread lock or is in a bh, so there is
1420 * no writing race against this migration_bitmap
1422 struct BitmapRcu
*bitmap
= migration_bitmap_rcu
;
1423 atomic_rcu_set(&migration_bitmap_rcu
, NULL
);
1425 memory_global_dirty_log_stop();
1426 call_rcu(bitmap
, migration_bitmap_free
, rcu
);
1429 XBZRLE_cache_lock();
1431 cache_fini(XBZRLE
.cache
);
1432 g_free(XBZRLE
.encoded_buf
);
1433 g_free(XBZRLE
.current_buf
);
1434 XBZRLE
.cache
= NULL
;
1435 XBZRLE
.encoded_buf
= NULL
;
1436 XBZRLE
.current_buf
= NULL
;
1438 XBZRLE_cache_unlock();
1441 static void reset_ram_globals(void)
1443 last_seen_block
= NULL
;
1444 last_sent_block
= NULL
;
1446 last_version
= ram_list
.version
;
1447 ram_bulk_stage
= true;
1450 #define MAX_WAIT 50 /* ms, half buffered_file limit */
1452 void migration_bitmap_extend(ram_addr_t old
, ram_addr_t
new)
1454 /* called in qemu main thread, so there is
1455 * no writing race against this migration_bitmap
1457 if (migration_bitmap_rcu
) {
1458 struct BitmapRcu
*old_bitmap
= migration_bitmap_rcu
, *bitmap
;
1459 bitmap
= g_new(struct BitmapRcu
, 1);
1460 bitmap
->bmap
= bitmap_new(new);
1462 /* prevent migration_bitmap content from being set bit
1463 * by migration_bitmap_sync_range() at the same time.
1464 * it is safe to migration if migration_bitmap is cleared bit
1467 qemu_mutex_lock(&migration_bitmap_mutex
);
1468 bitmap_copy(bitmap
->bmap
, old_bitmap
->bmap
, old
);
1469 bitmap_set(bitmap
->bmap
, old
, new - old
);
1471 /* We don't have a way to safely extend the sentmap
1472 * with RCU; so mark it as missing, entry to postcopy
1475 bitmap
->unsentmap
= NULL
;
1477 atomic_rcu_set(&migration_bitmap_rcu
, bitmap
);
1478 qemu_mutex_unlock(&migration_bitmap_mutex
);
1479 migration_dirty_pages
+= new - old
;
1480 call_rcu(old_bitmap
, migration_bitmap_free
, rcu
);
1485 * 'expected' is the value you expect the bitmap mostly to be full
1486 * of; it won't bother printing lines that are all this value.
1487 * If 'todump' is null the migration bitmap is dumped.
1489 void ram_debug_dump_bitmap(unsigned long *todump
, bool expected
)
1491 int64_t ram_pages
= last_ram_offset() >> TARGET_PAGE_BITS
;
1494 int64_t linelen
= 128;
1498 todump
= atomic_rcu_read(&migration_bitmap_rcu
)->bmap
;
1501 for (cur
= 0; cur
< ram_pages
; cur
+= linelen
) {
1505 * Last line; catch the case where the line length
1506 * is longer than remaining ram
1508 if (cur
+ linelen
> ram_pages
) {
1509 linelen
= ram_pages
- cur
;
1511 for (curb
= 0; curb
< linelen
; curb
++) {
1512 bool thisbit
= test_bit(cur
+ curb
, todump
);
1513 linebuf
[curb
] = thisbit
? '1' : '.';
1514 found
= found
|| (thisbit
!= expected
);
1517 linebuf
[curb
] = '\0';
1518 fprintf(stderr
, "0x%08" PRIx64
" : %s\n", cur
, linebuf
);
1523 /* **** functions for postcopy ***** */
1526 * Callback from postcopy_each_ram_send_discard for each RAMBlock
1527 * Note: At this point the 'unsentmap' is the processed bitmap combined
1528 * with the dirtymap; so a '1' means it's either dirty or unsent.
1529 * start,length: Indexes into the bitmap for the first bit
1530 * representing the named block and length in target-pages
1532 static int postcopy_send_discard_bm_ram(MigrationState
*ms
,
1533 PostcopyDiscardState
*pds
,
1534 unsigned long start
,
1535 unsigned long length
)
1537 unsigned long end
= start
+ length
; /* one after the end */
1538 unsigned long current
;
1539 unsigned long *unsentmap
;
1541 unsentmap
= atomic_rcu_read(&migration_bitmap_rcu
)->unsentmap
;
1542 for (current
= start
; current
< end
; ) {
1543 unsigned long one
= find_next_bit(unsentmap
, end
, current
);
1546 unsigned long zero
= find_next_zero_bit(unsentmap
, end
, one
+ 1);
1547 unsigned long discard_length
;
1550 discard_length
= end
- one
;
1552 discard_length
= zero
- one
;
1554 if (discard_length
) {
1555 postcopy_discard_send_range(ms
, pds
, one
, discard_length
);
1557 current
= one
+ discard_length
;
1567 * Utility for the outgoing postcopy code.
1568 * Calls postcopy_send_discard_bm_ram for each RAMBlock
1569 * passing it bitmap indexes and name.
1570 * Returns: 0 on success
1571 * (qemu_ram_foreach_block ends up passing unscaled lengths
1572 * which would mean postcopy code would have to deal with target page)
1574 static int postcopy_each_ram_send_discard(MigrationState
*ms
)
1576 struct RAMBlock
*block
;
1579 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1580 unsigned long first
= block
->offset
>> TARGET_PAGE_BITS
;
1581 PostcopyDiscardState
*pds
= postcopy_discard_send_init(ms
,
1586 * Postcopy sends chunks of bitmap over the wire, but it
1587 * just needs indexes at this point, avoids it having
1588 * target page specific code.
1590 ret
= postcopy_send_discard_bm_ram(ms
, pds
, first
,
1591 block
->used_length
>> TARGET_PAGE_BITS
);
1592 postcopy_discard_send_finish(ms
, pds
);
1602 * Helper for postcopy_chunk_hostpages; it's called twice to cleanup
1603 * the two bitmaps, that are similar, but one is inverted.
1605 * We search for runs of target-pages that don't start or end on a
1606 * host page boundary;
1607 * unsent_pass=true: Cleans up partially unsent host pages by searching
1609 * unsent_pass=false: Cleans up partially dirty host pages by searching
1610 * the main migration bitmap
1613 static void postcopy_chunk_hostpages_pass(MigrationState
*ms
, bool unsent_pass
,
1615 PostcopyDiscardState
*pds
)
1617 unsigned long *bitmap
;
1618 unsigned long *unsentmap
;
1619 unsigned int host_ratio
= qemu_host_page_size
/ TARGET_PAGE_SIZE
;
1620 unsigned long first
= block
->offset
>> TARGET_PAGE_BITS
;
1621 unsigned long len
= block
->used_length
>> TARGET_PAGE_BITS
;
1622 unsigned long last
= first
+ (len
- 1);
1623 unsigned long run_start
;
1625 bitmap
= atomic_rcu_read(&migration_bitmap_rcu
)->bmap
;
1626 unsentmap
= atomic_rcu_read(&migration_bitmap_rcu
)->unsentmap
;
1629 /* Find a sent page */
1630 run_start
= find_next_zero_bit(unsentmap
, last
+ 1, first
);
1632 /* Find a dirty page */
1633 run_start
= find_next_bit(bitmap
, last
+ 1, first
);
1636 while (run_start
<= last
) {
1637 bool do_fixup
= false;
1638 unsigned long fixup_start_addr
;
1639 unsigned long host_offset
;
1642 * If the start of this run of pages is in the middle of a host
1643 * page, then we need to fixup this host page.
1645 host_offset
= run_start
% host_ratio
;
1648 run_start
-= host_offset
;
1649 fixup_start_addr
= run_start
;
1650 /* For the next pass */
1651 run_start
= run_start
+ host_ratio
;
1653 /* Find the end of this run */
1654 unsigned long run_end
;
1656 run_end
= find_next_bit(unsentmap
, last
+ 1, run_start
+ 1);
1658 run_end
= find_next_zero_bit(bitmap
, last
+ 1, run_start
+ 1);
1661 * If the end isn't at the start of a host page, then the
1662 * run doesn't finish at the end of a host page
1663 * and we need to discard.
1665 host_offset
= run_end
% host_ratio
;
1668 fixup_start_addr
= run_end
- host_offset
;
1670 * This host page has gone, the next loop iteration starts
1671 * from after the fixup
1673 run_start
= fixup_start_addr
+ host_ratio
;
1676 * No discards on this iteration, next loop starts from
1677 * next sent/dirty page
1679 run_start
= run_end
+ 1;
1686 /* Tell the destination to discard this page */
1687 if (unsent_pass
|| !test_bit(fixup_start_addr
, unsentmap
)) {
1688 /* For the unsent_pass we:
1689 * discard partially sent pages
1690 * For the !unsent_pass (dirty) we:
1691 * discard partially dirty pages that were sent
1692 * (any partially sent pages were already discarded
1693 * by the previous unsent_pass)
1695 postcopy_discard_send_range(ms
, pds
, fixup_start_addr
,
1699 /* Clean up the bitmap */
1700 for (page
= fixup_start_addr
;
1701 page
< fixup_start_addr
+ host_ratio
; page
++) {
1702 /* All pages in this host page are now not sent */
1703 set_bit(page
, unsentmap
);
1706 * Remark them as dirty, updating the count for any pages
1707 * that weren't previously dirty.
1709 migration_dirty_pages
+= !test_and_set_bit(page
, bitmap
);
1714 /* Find the next sent page for the next iteration */
1715 run_start
= find_next_zero_bit(unsentmap
, last
+ 1,
1718 /* Find the next dirty page for the next iteration */
1719 run_start
= find_next_bit(bitmap
, last
+ 1, run_start
);
1725 * Utility for the outgoing postcopy code.
1727 * Discard any partially sent host-page size chunks, mark any partially
1728 * dirty host-page size chunks as all dirty.
1730 * Returns: 0 on success
1732 static int postcopy_chunk_hostpages(MigrationState
*ms
)
1734 struct RAMBlock
*block
;
1736 if (qemu_host_page_size
== TARGET_PAGE_SIZE
) {
1737 /* Easy case - TPS==HPS - nothing to be done */
1741 /* Easiest way to make sure we don't resume in the middle of a host-page */
1742 last_seen_block
= NULL
;
1743 last_sent_block
= NULL
;
1746 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1747 unsigned long first
= block
->offset
>> TARGET_PAGE_BITS
;
1749 PostcopyDiscardState
*pds
=
1750 postcopy_discard_send_init(ms
, first
, block
->idstr
);
1752 /* First pass: Discard all partially sent host pages */
1753 postcopy_chunk_hostpages_pass(ms
, true, block
, pds
);
1755 * Second pass: Ensure that all partially dirty host pages are made
1758 postcopy_chunk_hostpages_pass(ms
, false, block
, pds
);
1760 postcopy_discard_send_finish(ms
, pds
);
1761 } /* ram_list loop */
1767 * Transmit the set of pages to be discarded after precopy to the target
1768 * these are pages that:
1769 * a) Have been previously transmitted but are now dirty again
1770 * b) Pages that have never been transmitted, this ensures that
1771 * any pages on the destination that have been mapped by background
1772 * tasks get discarded (transparent huge pages is the specific concern)
1773 * Hopefully this is pretty sparse
1775 int ram_postcopy_send_discard_bitmap(MigrationState
*ms
)
1778 unsigned long *bitmap
, *unsentmap
;
1782 /* This should be our last sync, the src is now paused */
1783 migration_bitmap_sync();
1785 unsentmap
= atomic_rcu_read(&migration_bitmap_rcu
)->unsentmap
;
1787 /* We don't have a safe way to resize the sentmap, so
1788 * if the bitmap was resized it will be NULL at this
1791 error_report("migration ram resized during precopy phase");
1796 /* Deal with TPS != HPS */
1797 ret
= postcopy_chunk_hostpages(ms
);
1804 * Update the unsentmap to be unsentmap = unsentmap | dirty
1806 bitmap
= atomic_rcu_read(&migration_bitmap_rcu
)->bmap
;
1807 bitmap_or(unsentmap
, unsentmap
, bitmap
,
1808 last_ram_offset() >> TARGET_PAGE_BITS
);
1811 trace_ram_postcopy_send_discard_bitmap();
1812 #ifdef DEBUG_POSTCOPY
1813 ram_debug_dump_bitmap(unsentmap
, true);
1816 ret
= postcopy_each_ram_send_discard(ms
);
1823 * At the start of the postcopy phase of migration, any now-dirty
1824 * precopied pages are discarded.
1826 * start, length describe a byte address range within the RAMBlock
1828 * Returns 0 on success.
1830 int ram_discard_range(MigrationIncomingState
*mis
,
1831 const char *block_name
,
1832 uint64_t start
, size_t length
)
1837 RAMBlock
*rb
= qemu_ram_block_by_name(block_name
);
1840 error_report("ram_discard_range: Failed to find block '%s'",
1845 uint8_t *host_startaddr
= rb
->host
+ start
;
1847 if ((uintptr_t)host_startaddr
& (qemu_host_page_size
- 1)) {
1848 error_report("ram_discard_range: Unaligned start address: %p",
1853 if ((start
+ length
) <= rb
->used_length
) {
1854 uint8_t *host_endaddr
= host_startaddr
+ length
;
1855 if ((uintptr_t)host_endaddr
& (qemu_host_page_size
- 1)) {
1856 error_report("ram_discard_range: Unaligned end address: %p",
1860 ret
= postcopy_ram_discard_range(mis
, host_startaddr
, length
);
1862 error_report("ram_discard_range: Overrun block '%s' (%" PRIu64
1863 "/%zx/" RAM_ADDR_FMT
")",
1864 block_name
, start
, length
, rb
->used_length
);
1874 /* Each of ram_save_setup, ram_save_iterate and ram_save_complete has
1875 * long-running RCU critical section. When rcu-reclaims in the code
1876 * start to become numerous it will be necessary to reduce the
1877 * granularity of these critical sections.
1880 static int ram_save_setup(QEMUFile
*f
, void *opaque
)
1883 int64_t ram_bitmap_pages
; /* Size of bitmap in pages, including gaps */
1885 dirty_rate_high_cnt
= 0;
1886 bitmap_sync_count
= 0;
1887 migration_bitmap_sync_init();
1888 qemu_mutex_init(&migration_bitmap_mutex
);
1890 if (migrate_use_xbzrle()) {
1891 XBZRLE_cache_lock();
1892 XBZRLE
.cache
= cache_init(migrate_xbzrle_cache_size() /
1895 if (!XBZRLE
.cache
) {
1896 XBZRLE_cache_unlock();
1897 error_report("Error creating cache");
1900 XBZRLE_cache_unlock();
1902 /* We prefer not to abort if there is no memory */
1903 XBZRLE
.encoded_buf
= g_try_malloc0(TARGET_PAGE_SIZE
);
1904 if (!XBZRLE
.encoded_buf
) {
1905 error_report("Error allocating encoded_buf");
1909 XBZRLE
.current_buf
= g_try_malloc(TARGET_PAGE_SIZE
);
1910 if (!XBZRLE
.current_buf
) {
1911 error_report("Error allocating current_buf");
1912 g_free(XBZRLE
.encoded_buf
);
1913 XBZRLE
.encoded_buf
= NULL
;
1920 /* For memory_global_dirty_log_start below. */
1921 qemu_mutex_lock_iothread();
1923 qemu_mutex_lock_ramlist();
1925 bytes_transferred
= 0;
1926 reset_ram_globals();
1928 ram_bitmap_pages
= last_ram_offset() >> TARGET_PAGE_BITS
;
1929 migration_bitmap_rcu
= g_new0(struct BitmapRcu
, 1);
1930 migration_bitmap_rcu
->bmap
= bitmap_new(ram_bitmap_pages
);
1931 bitmap_set(migration_bitmap_rcu
->bmap
, 0, ram_bitmap_pages
);
1933 if (migrate_postcopy_ram()) {
1934 migration_bitmap_rcu
->unsentmap
= bitmap_new(ram_bitmap_pages
);
1935 bitmap_set(migration_bitmap_rcu
->unsentmap
, 0, ram_bitmap_pages
);
1939 * Count the total number of pages used by ram blocks not including any
1940 * gaps due to alignment or unplugs.
1942 migration_dirty_pages
= ram_bytes_total() >> TARGET_PAGE_BITS
;
1944 memory_global_dirty_log_start();
1945 migration_bitmap_sync();
1946 qemu_mutex_unlock_ramlist();
1947 qemu_mutex_unlock_iothread();
1949 qemu_put_be64(f
, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE
);
1951 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1952 qemu_put_byte(f
, strlen(block
->idstr
));
1953 qemu_put_buffer(f
, (uint8_t *)block
->idstr
, strlen(block
->idstr
));
1954 qemu_put_be64(f
, block
->used_length
);
1959 ram_control_before_iterate(f
, RAM_CONTROL_SETUP
);
1960 ram_control_after_iterate(f
, RAM_CONTROL_SETUP
);
1962 qemu_put_be64(f
, RAM_SAVE_FLAG_EOS
);
1967 static int ram_save_iterate(QEMUFile
*f
, void *opaque
)
1975 if (ram_list
.version
!= last_version
) {
1976 reset_ram_globals();
1979 /* Read version before ram_list.blocks */
1982 ram_control_before_iterate(f
, RAM_CONTROL_ROUND
);
1984 t0
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
1986 while ((ret
= qemu_file_rate_limit(f
)) == 0) {
1989 pages
= ram_find_and_save_block(f
, false, &bytes_transferred
);
1990 /* no more pages to sent */
1994 pages_sent
+= pages
;
1995 acct_info
.iterations
++;
1997 /* we want to check in the 1st loop, just in case it was the 1st time
1998 and we had to sync the dirty bitmap.
1999 qemu_get_clock_ns() is a bit expensive, so we only check each some
2002 if ((i
& 63) == 0) {
2003 uint64_t t1
= (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - t0
) / 1000000;
2004 if (t1
> MAX_WAIT
) {
2005 DPRINTF("big wait: %" PRIu64
" milliseconds, %d iterations\n",
2012 flush_compressed_data(f
);
2016 * Must occur before EOS (or any QEMUFile operation)
2017 * because of RDMA protocol.
2019 ram_control_after_iterate(f
, RAM_CONTROL_ROUND
);
2021 qemu_put_be64(f
, RAM_SAVE_FLAG_EOS
);
2022 bytes_transferred
+= 8;
2024 ret
= qemu_file_get_error(f
);
2032 /* Called with iothread lock */
2033 static int ram_save_complete(QEMUFile
*f
, void *opaque
)
2037 if (!migration_in_postcopy(migrate_get_current())) {
2038 migration_bitmap_sync();
2041 ram_control_before_iterate(f
, RAM_CONTROL_FINISH
);
2043 /* try transferring iterative blocks of memory */
2045 /* flush all remaining blocks regardless of rate limiting */
2049 pages
= ram_find_and_save_block(f
, true, &bytes_transferred
);
2050 /* no more blocks to sent */
2056 flush_compressed_data(f
);
2057 ram_control_after_iterate(f
, RAM_CONTROL_FINISH
);
2061 qemu_put_be64(f
, RAM_SAVE_FLAG_EOS
);
2066 static void ram_save_pending(QEMUFile
*f
, void *opaque
, uint64_t max_size
,
2067 uint64_t *non_postcopiable_pending
,
2068 uint64_t *postcopiable_pending
)
2070 uint64_t remaining_size
;
2072 remaining_size
= ram_save_remaining() * TARGET_PAGE_SIZE
;
2074 if (!migration_in_postcopy(migrate_get_current()) &&
2075 remaining_size
< max_size
) {
2076 qemu_mutex_lock_iothread();
2078 migration_bitmap_sync();
2080 qemu_mutex_unlock_iothread();
2081 remaining_size
= ram_save_remaining() * TARGET_PAGE_SIZE
;
2084 /* We can do postcopy, and all the data is postcopiable */
2085 *postcopiable_pending
+= remaining_size
;
2088 static int load_xbzrle(QEMUFile
*f
, ram_addr_t addr
, void *host
)
2090 unsigned int xh_len
;
2092 uint8_t *loaded_data
;
2094 if (!xbzrle_decoded_buf
) {
2095 xbzrle_decoded_buf
= g_malloc(TARGET_PAGE_SIZE
);
2097 loaded_data
= xbzrle_decoded_buf
;
2099 /* extract RLE header */
2100 xh_flags
= qemu_get_byte(f
);
2101 xh_len
= qemu_get_be16(f
);
2103 if (xh_flags
!= ENCODING_FLAG_XBZRLE
) {
2104 error_report("Failed to load XBZRLE page - wrong compression!");
2108 if (xh_len
> TARGET_PAGE_SIZE
) {
2109 error_report("Failed to load XBZRLE page - len overflow!");
2112 /* load data and decode */
2113 qemu_get_buffer_in_place(f
, &loaded_data
, xh_len
);
2116 if (xbzrle_decode_buffer(loaded_data
, xh_len
, host
,
2117 TARGET_PAGE_SIZE
) == -1) {
2118 error_report("Failed to load XBZRLE page - decode error!");
2125 /* Must be called from within a rcu critical section.
2126 * Returns a pointer from within the RCU-protected ram_list.
2129 * Read a RAMBlock ID from the stream f.
2131 * f: Stream to read from
2132 * flags: Page flags (mostly to see if it's a continuation of previous block)
2134 static inline RAMBlock
*ram_block_from_stream(QEMUFile
*f
,
2137 static RAMBlock
*block
= NULL
;
2141 if (flags
& RAM_SAVE_FLAG_CONTINUE
) {
2143 error_report("Ack, bad migration stream!");
2149 len
= qemu_get_byte(f
);
2150 qemu_get_buffer(f
, (uint8_t *)id
, len
);
2153 block
= qemu_ram_block_by_name(id
);
2155 error_report("Can't find block %s", id
);
2162 static inline void *host_from_ram_block_offset(RAMBlock
*block
,
2165 if (!offset_in_ramblock(block
, offset
)) {
2169 return block
->host
+ offset
;
2173 * If a page (or a whole RDMA chunk) has been
2174 * determined to be zero, then zap it.
2176 void ram_handle_compressed(void *host
, uint8_t ch
, uint64_t size
)
2178 if (ch
!= 0 || !is_zero_range(host
, size
)) {
2179 memset(host
, ch
, size
);
2183 static void *do_data_decompress(void *opaque
)
2185 DecompressParam
*param
= opaque
;
2186 unsigned long pagesize
;
2190 qemu_mutex_lock(¶m
->mutex
);
2191 while (!param
->quit
) {
2196 qemu_mutex_unlock(¶m
->mutex
);
2198 pagesize
= TARGET_PAGE_SIZE
;
2199 /* uncompress() will return failed in some case, especially
2200 * when the page is dirted when doing the compression, it's
2201 * not a problem because the dirty page will be retransferred
2202 * and uncompress() won't break the data in other pages.
2204 uncompress((Bytef
*)des
, &pagesize
,
2205 (const Bytef
*)param
->compbuf
, len
);
2207 qemu_mutex_lock(&decomp_done_lock
);
2209 qemu_cond_signal(&decomp_done_cond
);
2210 qemu_mutex_unlock(&decomp_done_lock
);
2212 qemu_mutex_lock(¶m
->mutex
);
2214 qemu_cond_wait(¶m
->cond
, ¶m
->mutex
);
2217 qemu_mutex_unlock(¶m
->mutex
);
2222 static void wait_for_decompress_done(void)
2224 int idx
, thread_count
;
2226 if (!migrate_use_compression()) {
2230 thread_count
= migrate_decompress_threads();
2231 qemu_mutex_lock(&decomp_done_lock
);
2232 for (idx
= 0; idx
< thread_count
; idx
++) {
2233 while (!decomp_param
[idx
].done
) {
2234 qemu_cond_wait(&decomp_done_cond
, &decomp_done_lock
);
2237 qemu_mutex_unlock(&decomp_done_lock
);
2240 void migrate_decompress_threads_create(void)
2242 int i
, thread_count
;
2244 thread_count
= migrate_decompress_threads();
2245 decompress_threads
= g_new0(QemuThread
, thread_count
);
2246 decomp_param
= g_new0(DecompressParam
, thread_count
);
2247 qemu_mutex_init(&decomp_done_lock
);
2248 qemu_cond_init(&decomp_done_cond
);
2249 for (i
= 0; i
< thread_count
; i
++) {
2250 qemu_mutex_init(&decomp_param
[i
].mutex
);
2251 qemu_cond_init(&decomp_param
[i
].cond
);
2252 decomp_param
[i
].compbuf
= g_malloc0(compressBound(TARGET_PAGE_SIZE
));
2253 decomp_param
[i
].done
= true;
2254 decomp_param
[i
].quit
= false;
2255 qemu_thread_create(decompress_threads
+ i
, "decompress",
2256 do_data_decompress
, decomp_param
+ i
,
2257 QEMU_THREAD_JOINABLE
);
2261 void migrate_decompress_threads_join(void)
2263 int i
, thread_count
;
2265 thread_count
= migrate_decompress_threads();
2266 for (i
= 0; i
< thread_count
; i
++) {
2267 qemu_mutex_lock(&decomp_param
[i
].mutex
);
2268 decomp_param
[i
].quit
= true;
2269 qemu_cond_signal(&decomp_param
[i
].cond
);
2270 qemu_mutex_unlock(&decomp_param
[i
].mutex
);
2272 for (i
= 0; i
< thread_count
; i
++) {
2273 qemu_thread_join(decompress_threads
+ i
);
2274 qemu_mutex_destroy(&decomp_param
[i
].mutex
);
2275 qemu_cond_destroy(&decomp_param
[i
].cond
);
2276 g_free(decomp_param
[i
].compbuf
);
2278 g_free(decompress_threads
);
2279 g_free(decomp_param
);
2280 decompress_threads
= NULL
;
2281 decomp_param
= NULL
;
2284 static void decompress_data_with_multi_threads(QEMUFile
*f
,
2285 void *host
, int len
)
2287 int idx
, thread_count
;
2289 thread_count
= migrate_decompress_threads();
2290 qemu_mutex_lock(&decomp_done_lock
);
2292 for (idx
= 0; idx
< thread_count
; idx
++) {
2293 if (decomp_param
[idx
].done
) {
2294 decomp_param
[idx
].done
= false;
2295 qemu_mutex_lock(&decomp_param
[idx
].mutex
);
2296 qemu_get_buffer(f
, decomp_param
[idx
].compbuf
, len
);
2297 decomp_param
[idx
].des
= host
;
2298 decomp_param
[idx
].len
= len
;
2299 qemu_cond_signal(&decomp_param
[idx
].cond
);
2300 qemu_mutex_unlock(&decomp_param
[idx
].mutex
);
2304 if (idx
< thread_count
) {
2307 qemu_cond_wait(&decomp_done_cond
, &decomp_done_lock
);
2310 qemu_mutex_unlock(&decomp_done_lock
);
2314 * Allocate data structures etc needed by incoming migration with postcopy-ram
2315 * postcopy-ram's similarly names postcopy_ram_incoming_init does the work
2317 int ram_postcopy_incoming_init(MigrationIncomingState
*mis
)
2319 size_t ram_pages
= last_ram_offset() >> TARGET_PAGE_BITS
;
2321 return postcopy_ram_incoming_init(mis
, ram_pages
);
2325 * Called in postcopy mode by ram_load().
2326 * rcu_read_lock is taken prior to this being called.
2328 static int ram_load_postcopy(QEMUFile
*f
)
2330 int flags
= 0, ret
= 0;
2331 bool place_needed
= false;
2332 bool matching_page_sizes
= qemu_host_page_size
== TARGET_PAGE_SIZE
;
2333 MigrationIncomingState
*mis
= migration_incoming_get_current();
2334 /* Temporary page that is later 'placed' */
2335 void *postcopy_host_page
= postcopy_get_tmp_page(mis
);
2336 void *last_host
= NULL
;
2337 bool all_zero
= false;
2339 while (!ret
&& !(flags
& RAM_SAVE_FLAG_EOS
)) {
2342 void *page_buffer
= NULL
;
2343 void *place_source
= NULL
;
2346 addr
= qemu_get_be64(f
);
2347 flags
= addr
& ~TARGET_PAGE_MASK
;
2348 addr
&= TARGET_PAGE_MASK
;
2350 trace_ram_load_postcopy_loop((uint64_t)addr
, flags
);
2351 place_needed
= false;
2352 if (flags
& (RAM_SAVE_FLAG_COMPRESS
| RAM_SAVE_FLAG_PAGE
)) {
2353 RAMBlock
*block
= ram_block_from_stream(f
, flags
);
2355 host
= host_from_ram_block_offset(block
, addr
);
2357 error_report("Illegal RAM offset " RAM_ADDR_FMT
, addr
);
2362 * Postcopy requires that we place whole host pages atomically.
2363 * To make it atomic, the data is read into a temporary page
2364 * that's moved into place later.
2365 * The migration protocol uses, possibly smaller, target-pages
2366 * however the source ensures it always sends all the components
2367 * of a host page in order.
2369 page_buffer
= postcopy_host_page
+
2370 ((uintptr_t)host
& ~qemu_host_page_mask
);
2371 /* If all TP are zero then we can optimise the place */
2372 if (!((uintptr_t)host
& ~qemu_host_page_mask
)) {
2375 /* not the 1st TP within the HP */
2376 if (host
!= (last_host
+ TARGET_PAGE_SIZE
)) {
2377 error_report("Non-sequential target page %p/%p",
2386 * If it's the last part of a host page then we place the host
2389 place_needed
= (((uintptr_t)host
+ TARGET_PAGE_SIZE
) &
2390 ~qemu_host_page_mask
) == 0;
2391 place_source
= postcopy_host_page
;
2395 switch (flags
& ~RAM_SAVE_FLAG_CONTINUE
) {
2396 case RAM_SAVE_FLAG_COMPRESS
:
2397 ch
= qemu_get_byte(f
);
2398 memset(page_buffer
, ch
, TARGET_PAGE_SIZE
);
2404 case RAM_SAVE_FLAG_PAGE
:
2406 if (!place_needed
|| !matching_page_sizes
) {
2407 qemu_get_buffer(f
, page_buffer
, TARGET_PAGE_SIZE
);
2409 /* Avoids the qemu_file copy during postcopy, which is
2410 * going to do a copy later; can only do it when we
2411 * do this read in one go (matching page sizes)
2413 qemu_get_buffer_in_place(f
, (uint8_t **)&place_source
,
2417 case RAM_SAVE_FLAG_EOS
:
2421 error_report("Unknown combination of migration flags: %#x"
2422 " (postcopy mode)", flags
);
2427 /* This gets called at the last target page in the host page */
2429 ret
= postcopy_place_page_zero(mis
,
2430 host
+ TARGET_PAGE_SIZE
-
2431 qemu_host_page_size
);
2433 ret
= postcopy_place_page(mis
, host
+ TARGET_PAGE_SIZE
-
2434 qemu_host_page_size
,
2439 ret
= qemu_file_get_error(f
);
2446 static int ram_load(QEMUFile
*f
, void *opaque
, int version_id
)
2448 int flags
= 0, ret
= 0;
2449 static uint64_t seq_iter
;
2452 * If system is running in postcopy mode, page inserts to host memory must
2455 bool postcopy_running
= postcopy_state_get() >= POSTCOPY_INCOMING_LISTENING
;
2459 if (version_id
!= 4) {
2463 /* This RCU critical section can be very long running.
2464 * When RCU reclaims in the code start to become numerous,
2465 * it will be necessary to reduce the granularity of this
2470 if (postcopy_running
) {
2471 ret
= ram_load_postcopy(f
);
2474 while (!postcopy_running
&& !ret
&& !(flags
& RAM_SAVE_FLAG_EOS
)) {
2475 ram_addr_t addr
, total_ram_bytes
;
2479 addr
= qemu_get_be64(f
);
2480 flags
= addr
& ~TARGET_PAGE_MASK
;
2481 addr
&= TARGET_PAGE_MASK
;
2483 if (flags
& (RAM_SAVE_FLAG_COMPRESS
| RAM_SAVE_FLAG_PAGE
|
2484 RAM_SAVE_FLAG_COMPRESS_PAGE
| RAM_SAVE_FLAG_XBZRLE
)) {
2485 RAMBlock
*block
= ram_block_from_stream(f
, flags
);
2487 host
= host_from_ram_block_offset(block
, addr
);
2489 error_report("Illegal RAM offset " RAM_ADDR_FMT
, addr
);
2495 switch (flags
& ~RAM_SAVE_FLAG_CONTINUE
) {
2496 case RAM_SAVE_FLAG_MEM_SIZE
:
2497 /* Synchronize RAM block list */
2498 total_ram_bytes
= addr
;
2499 while (!ret
&& total_ram_bytes
) {
2504 len
= qemu_get_byte(f
);
2505 qemu_get_buffer(f
, (uint8_t *)id
, len
);
2507 length
= qemu_get_be64(f
);
2509 block
= qemu_ram_block_by_name(id
);
2511 if (length
!= block
->used_length
) {
2512 Error
*local_err
= NULL
;
2514 ret
= qemu_ram_resize(block
, length
,
2517 error_report_err(local_err
);
2520 ram_control_load_hook(f
, RAM_CONTROL_BLOCK_REG
,
2523 error_report("Unknown ramblock \"%s\", cannot "
2524 "accept migration", id
);
2528 total_ram_bytes
-= length
;
2532 case RAM_SAVE_FLAG_COMPRESS
:
2533 ch
= qemu_get_byte(f
);
2534 ram_handle_compressed(host
, ch
, TARGET_PAGE_SIZE
);
2537 case RAM_SAVE_FLAG_PAGE
:
2538 qemu_get_buffer(f
, host
, TARGET_PAGE_SIZE
);
2541 case RAM_SAVE_FLAG_COMPRESS_PAGE
:
2542 len
= qemu_get_be32(f
);
2543 if (len
< 0 || len
> compressBound(TARGET_PAGE_SIZE
)) {
2544 error_report("Invalid compressed data length: %d", len
);
2548 decompress_data_with_multi_threads(f
, host
, len
);
2551 case RAM_SAVE_FLAG_XBZRLE
:
2552 if (load_xbzrle(f
, addr
, host
) < 0) {
2553 error_report("Failed to decompress XBZRLE page at "
2554 RAM_ADDR_FMT
, addr
);
2559 case RAM_SAVE_FLAG_EOS
:
2563 if (flags
& RAM_SAVE_FLAG_HOOK
) {
2564 ram_control_load_hook(f
, RAM_CONTROL_HOOK
, NULL
);
2566 error_report("Unknown combination of migration flags: %#x",
2572 ret
= qemu_file_get_error(f
);
2576 wait_for_decompress_done();
2578 DPRINTF("Completed load of VM with exit code %d seq iteration "
2579 "%" PRIu64
"\n", ret
, seq_iter
);
2583 static SaveVMHandlers savevm_ram_handlers
= {
2584 .save_live_setup
= ram_save_setup
,
2585 .save_live_iterate
= ram_save_iterate
,
2586 .save_live_complete_postcopy
= ram_save_complete
,
2587 .save_live_complete_precopy
= ram_save_complete
,
2588 .save_live_pending
= ram_save_pending
,
2589 .load_state
= ram_load
,
2590 .cleanup
= ram_migration_cleanup
,
2593 void ram_mig_init(void)
2595 qemu_mutex_init(&XBZRLE
.lock
);
2596 register_savevm_live(NULL
, "ram", 0, 4, &savevm_ram_handlers
, NULL
);