2 * ARM Generic/Distributed Interrupt Controller
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
10 /* This file contains implementation code for the RealView EB interrupt
11 * controller, MPCore distributed interrupt controller and ARMv7-M
12 * Nested Vectored Interrupt Controller.
13 * It is compiled in two ways:
14 * (1) as a standalone file to produce a sysbus device which is a GIC
15 * that can be used on the realview board and as one of the builtin
16 * private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17 * (2) by being directly #included into armv7m_nvic.c to produce the
23 /* Maximum number of possible interrupts, determined by the GIC architecture */
24 #define GIC_MAXIRQ 1020
25 /* First 32 are private to each CPU (SGIs and PPIs). */
26 #define GIC_INTERNAL 32
27 /* Maximum number of possible CPU interfaces, determined by GIC architecture */
37 #define DPRINTF(fmt, ...) \
38 do { printf("arm_gic: " fmt , ## __VA_ARGS__); } while (0)
40 #define DPRINTF(fmt, ...) do {} while(0)
44 static const uint8_t gic_id
[] =
45 { 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1 };
46 /* The NVIC has 16 internal vectors. However these are not exposed
47 through the normal GIC interface. */
48 #define GIC_BASE_IRQ 32
50 static const uint8_t gic_id
[] =
51 { 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1 };
52 #define GIC_BASE_IRQ 0
55 #define FROM_SYSBUSGIC(type, dev) \
56 DO_UPCAST(type, gic, FROM_SYSBUS(gic_state, dev))
58 typedef struct gic_irq_state
60 /* The enable bits are only banked for per-cpu interrupts. */
61 unsigned enabled
:NCPU
;
62 unsigned pending
:NCPU
;
65 unsigned model
:1; /* 0 = N:N, 1 = 1:N */
66 unsigned trigger
:1; /* nonzero = edge triggered. */
69 #define ALL_CPU_MASK ((unsigned)(((1 << NCPU) - 1)))
71 #define NUM_CPU(s) ((s)->num_cpu)
76 #define GIC_SET_ENABLED(irq, cm) s->irq_state[irq].enabled |= (cm)
77 #define GIC_CLEAR_ENABLED(irq, cm) s->irq_state[irq].enabled &= ~(cm)
78 #define GIC_TEST_ENABLED(irq, cm) ((s->irq_state[irq].enabled & (cm)) != 0)
79 #define GIC_SET_PENDING(irq, cm) s->irq_state[irq].pending |= (cm)
80 #define GIC_CLEAR_PENDING(irq, cm) s->irq_state[irq].pending &= ~(cm)
81 #define GIC_TEST_PENDING(irq, cm) ((s->irq_state[irq].pending & (cm)) != 0)
82 #define GIC_SET_ACTIVE(irq, cm) s->irq_state[irq].active |= (cm)
83 #define GIC_CLEAR_ACTIVE(irq, cm) s->irq_state[irq].active &= ~(cm)
84 #define GIC_TEST_ACTIVE(irq, cm) ((s->irq_state[irq].active & (cm)) != 0)
85 #define GIC_SET_MODEL(irq) s->irq_state[irq].model = 1
86 #define GIC_CLEAR_MODEL(irq) s->irq_state[irq].model = 0
87 #define GIC_TEST_MODEL(irq) s->irq_state[irq].model
88 #define GIC_SET_LEVEL(irq, cm) s->irq_state[irq].level = (cm)
89 #define GIC_CLEAR_LEVEL(irq, cm) s->irq_state[irq].level &= ~(cm)
90 #define GIC_TEST_LEVEL(irq, cm) ((s->irq_state[irq].level & (cm)) != 0)
91 #define GIC_SET_TRIGGER(irq) s->irq_state[irq].trigger = 1
92 #define GIC_CLEAR_TRIGGER(irq) s->irq_state[irq].trigger = 0
93 #define GIC_TEST_TRIGGER(irq) s->irq_state[irq].trigger
94 #define GIC_GET_PRIORITY(irq, cpu) (((irq) < GIC_INTERNAL) ? \
95 s->priority1[irq][cpu] : \
96 s->priority2[(irq) - GIC_INTERNAL])
98 #define GIC_TARGET(irq) 1
100 #define GIC_TARGET(irq) s->irq_target[irq]
103 typedef struct gic_state
106 qemu_irq parent_irq
[NCPU
];
108 int cpu_enabled
[NCPU
];
110 gic_irq_state irq_state
[GIC_MAXIRQ
];
112 int irq_target
[GIC_MAXIRQ
];
114 int priority1
[GIC_INTERNAL
][NCPU
];
115 int priority2
[GIC_MAXIRQ
- GIC_INTERNAL
];
116 int last_active
[GIC_MAXIRQ
][NCPU
];
118 int priority_mask
[NCPU
];
119 int running_irq
[NCPU
];
120 int running_priority
[NCPU
];
121 int current_pending
[NCPU
];
127 MemoryRegion iomem
; /* Distributor */
129 /* This is just so we can have an opaque pointer which identifies
130 * both this GIC and which CPU interface we should be accessing.
132 struct gic_state
*backref
[NCPU
];
133 MemoryRegion cpuiomem
[NCPU
+1]; /* CPU interfaces */
138 static inline int gic_get_current_cpu(gic_state
*s
)
141 if (s
->num_cpu
> 1) {
142 return cpu_single_env
->cpu_index
;
148 /* TODO: Many places that call this routine could be optimized. */
149 /* Update interrupt status after enabled or pending bits have been changed. */
150 static void gic_update(gic_state
*s
)
159 for (cpu
= 0; cpu
< NUM_CPU(s
); cpu
++) {
161 s
->current_pending
[cpu
] = 1023;
162 if (!s
->enabled
|| !s
->cpu_enabled
[cpu
]) {
163 qemu_irq_lower(s
->parent_irq
[cpu
]);
168 for (irq
= 0; irq
< s
->num_irq
; irq
++) {
169 if (GIC_TEST_ENABLED(irq
, cm
) && GIC_TEST_PENDING(irq
, cm
)) {
170 if (GIC_GET_PRIORITY(irq
, cpu
) < best_prio
) {
171 best_prio
= GIC_GET_PRIORITY(irq
, cpu
);
177 if (best_prio
<= s
->priority_mask
[cpu
]) {
178 s
->current_pending
[cpu
] = best_irq
;
179 if (best_prio
< s
->running_priority
[cpu
]) {
180 DPRINTF("Raised pending IRQ %d\n", best_irq
);
184 qemu_set_irq(s
->parent_irq
[cpu
], level
);
189 static void gic_set_pending_private(gic_state
*s
, int cpu
, int irq
)
193 if (GIC_TEST_PENDING(irq
, cm
))
196 DPRINTF("Set %d pending cpu %d\n", irq
, cpu
);
197 GIC_SET_PENDING(irq
, cm
);
202 /* Process a change in an external IRQ input. */
203 static void gic_set_irq(void *opaque
, int irq
, int level
)
205 /* Meaning of the 'irq' parameter:
206 * [0..N-1] : external interrupts
207 * [N..N+31] : PPI (internal) interrupts for CPU 0
208 * [N+32..N+63] : PPI (internal interrupts for CPU 1
211 gic_state
*s
= (gic_state
*)opaque
;
213 if (irq
< (s
->num_irq
- GIC_INTERNAL
)) {
214 /* The first external input line is internal interrupt 32. */
217 target
= GIC_TARGET(irq
);
220 irq
-= (s
->num_irq
- GIC_INTERNAL
);
221 cpu
= irq
/ GIC_INTERNAL
;
227 if (level
== GIC_TEST_LEVEL(irq
, cm
)) {
232 GIC_SET_LEVEL(irq
, cm
);
233 if (GIC_TEST_TRIGGER(irq
) || GIC_TEST_ENABLED(irq
, cm
)) {
234 DPRINTF("Set %d pending mask %x\n", irq
, target
);
235 GIC_SET_PENDING(irq
, target
);
238 GIC_CLEAR_LEVEL(irq
, cm
);
243 static void gic_set_running_irq(gic_state
*s
, int cpu
, int irq
)
245 s
->running_irq
[cpu
] = irq
;
247 s
->running_priority
[cpu
] = 0x100;
249 s
->running_priority
[cpu
] = GIC_GET_PRIORITY(irq
, cpu
);
254 static uint32_t gic_acknowledge_irq(gic_state
*s
, int cpu
)
258 new_irq
= s
->current_pending
[cpu
];
260 || GIC_GET_PRIORITY(new_irq
, cpu
) >= s
->running_priority
[cpu
]) {
261 DPRINTF("ACK no pending IRQ\n");
264 s
->last_active
[new_irq
][cpu
] = s
->running_irq
[cpu
];
265 /* Clear pending flags for both level and edge triggered interrupts.
266 Level triggered IRQs will be reasserted once they become inactive. */
267 GIC_CLEAR_PENDING(new_irq
, GIC_TEST_MODEL(new_irq
) ? ALL_CPU_MASK
: cm
);
268 gic_set_running_irq(s
, cpu
, new_irq
);
269 DPRINTF("ACK %d\n", new_irq
);
273 static void gic_complete_irq(gic_state
* s
, int cpu
, int irq
)
277 DPRINTF("EOI %d\n", irq
);
278 if (irq
>= s
->num_irq
) {
279 /* This handles two cases:
280 * 1. If software writes the ID of a spurious interrupt [ie 1023]
281 * to the GICC_EOIR, the GIC ignores that write.
282 * 2. If software writes the number of a non-existent interrupt
283 * this must be a subcase of "value written does not match the last
284 * valid interrupt value read from the Interrupt Acknowledge
285 * register" and so this is UNPREDICTABLE. We choose to ignore it.
289 if (s
->running_irq
[cpu
] == 1023)
290 return; /* No active IRQ. */
291 /* Mark level triggered interrupts as pending if they are still
293 if (!GIC_TEST_TRIGGER(irq
) && GIC_TEST_ENABLED(irq
, cm
)
294 && GIC_TEST_LEVEL(irq
, cm
) && (GIC_TARGET(irq
) & cm
) != 0) {
295 DPRINTF("Set %d pending mask %x\n", irq
, cm
);
296 GIC_SET_PENDING(irq
, cm
);
299 if (irq
!= s
->running_irq
[cpu
]) {
300 /* Complete an IRQ that is not currently running. */
301 int tmp
= s
->running_irq
[cpu
];
302 while (s
->last_active
[tmp
][cpu
] != 1023) {
303 if (s
->last_active
[tmp
][cpu
] == irq
) {
304 s
->last_active
[tmp
][cpu
] = s
->last_active
[irq
][cpu
];
307 tmp
= s
->last_active
[tmp
][cpu
];
313 /* Complete the current running IRQ. */
314 gic_set_running_irq(s
, cpu
, s
->last_active
[s
->running_irq
[cpu
]][cpu
]);
318 static uint32_t gic_dist_readb(void *opaque
, target_phys_addr_t offset
)
320 gic_state
*s
= (gic_state
*)opaque
;
328 cpu
= gic_get_current_cpu(s
);
330 if (offset
< 0x100) {
335 return ((s
->num_irq
/ 32) - 1) | ((NUM_CPU(s
) - 1) << 5);
338 if (offset
>= 0x80) {
339 /* Interrupt Security , RAZ/WI */
344 } else if (offset
< 0x200) {
345 /* Interrupt Set/Clear Enable. */
347 irq
= (offset
- 0x100) * 8;
349 irq
= (offset
- 0x180) * 8;
351 if (irq
>= s
->num_irq
)
354 for (i
= 0; i
< 8; i
++) {
355 if (GIC_TEST_ENABLED(irq
+ i
, cm
)) {
359 } else if (offset
< 0x300) {
360 /* Interrupt Set/Clear Pending. */
362 irq
= (offset
- 0x200) * 8;
364 irq
= (offset
- 0x280) * 8;
366 if (irq
>= s
->num_irq
)
369 mask
= (irq
< GIC_INTERNAL
) ? cm
: ALL_CPU_MASK
;
370 for (i
= 0; i
< 8; i
++) {
371 if (GIC_TEST_PENDING(irq
+ i
, mask
)) {
375 } else if (offset
< 0x400) {
376 /* Interrupt Active. */
377 irq
= (offset
- 0x300) * 8 + GIC_BASE_IRQ
;
378 if (irq
>= s
->num_irq
)
381 mask
= (irq
< GIC_INTERNAL
) ? cm
: ALL_CPU_MASK
;
382 for (i
= 0; i
< 8; i
++) {
383 if (GIC_TEST_ACTIVE(irq
+ i
, mask
)) {
387 } else if (offset
< 0x800) {
388 /* Interrupt Priority. */
389 irq
= (offset
- 0x400) + GIC_BASE_IRQ
;
390 if (irq
>= s
->num_irq
)
392 res
= GIC_GET_PRIORITY(irq
, cpu
);
394 } else if (offset
< 0xc00) {
395 /* Interrupt CPU Target. */
396 irq
= (offset
- 0x800) + GIC_BASE_IRQ
;
397 if (irq
>= s
->num_irq
)
399 if (irq
>= 29 && irq
<= 31) {
402 res
= GIC_TARGET(irq
);
404 } else if (offset
< 0xf00) {
405 /* Interrupt Configuration. */
406 irq
= (offset
- 0xc00) * 2 + GIC_BASE_IRQ
;
407 if (irq
>= s
->num_irq
)
410 for (i
= 0; i
< 4; i
++) {
411 if (GIC_TEST_MODEL(irq
+ i
))
412 res
|= (1 << (i
* 2));
413 if (GIC_TEST_TRIGGER(irq
+ i
))
414 res
|= (2 << (i
* 2));
417 } else if (offset
< 0xfe0) {
419 } else /* offset >= 0xfe0 */ {
423 res
= gic_id
[(offset
- 0xfe0) >> 2];
428 hw_error("gic_dist_readb: Bad offset %x\n", (int)offset
);
432 static uint32_t gic_dist_readw(void *opaque
, target_phys_addr_t offset
)
435 val
= gic_dist_readb(opaque
, offset
);
436 val
|= gic_dist_readb(opaque
, offset
+ 1) << 8;
440 static uint32_t gic_dist_readl(void *opaque
, target_phys_addr_t offset
)
444 gic_state
*s
= (gic_state
*)opaque
;
447 if (addr
< 0x100 || addr
> 0xd00)
448 return nvic_readl(s
, addr
);
450 val
= gic_dist_readw(opaque
, offset
);
451 val
|= gic_dist_readw(opaque
, offset
+ 2) << 16;
455 static void gic_dist_writeb(void *opaque
, target_phys_addr_t offset
,
458 gic_state
*s
= (gic_state
*)opaque
;
463 cpu
= gic_get_current_cpu(s
);
464 if (offset
< 0x100) {
469 s
->enabled
= (value
& 1);
470 DPRINTF("Distribution %sabled\n", s
->enabled
? "En" : "Dis");
471 } else if (offset
< 4) {
473 } else if (offset
>= 0x80) {
474 /* Interrupt Security Registers, RAZ/WI */
479 } else if (offset
< 0x180) {
480 /* Interrupt Set Enable. */
481 irq
= (offset
- 0x100) * 8 + GIC_BASE_IRQ
;
482 if (irq
>= s
->num_irq
)
486 for (i
= 0; i
< 8; i
++) {
487 if (value
& (1 << i
)) {
488 int mask
= (irq
< GIC_INTERNAL
) ? (1 << cpu
) : GIC_TARGET(irq
);
489 int cm
= (irq
< GIC_INTERNAL
) ? (1 << cpu
) : ALL_CPU_MASK
;
491 if (!GIC_TEST_ENABLED(irq
+ i
, cm
)) {
492 DPRINTF("Enabled IRQ %d\n", irq
+ i
);
494 GIC_SET_ENABLED(irq
+ i
, cm
);
495 /* If a raised level triggered IRQ enabled then mark
497 if (GIC_TEST_LEVEL(irq
+ i
, mask
)
498 && !GIC_TEST_TRIGGER(irq
+ i
)) {
499 DPRINTF("Set %d pending mask %x\n", irq
+ i
, mask
);
500 GIC_SET_PENDING(irq
+ i
, mask
);
504 } else if (offset
< 0x200) {
505 /* Interrupt Clear Enable. */
506 irq
= (offset
- 0x180) * 8 + GIC_BASE_IRQ
;
507 if (irq
>= s
->num_irq
)
511 for (i
= 0; i
< 8; i
++) {
512 if (value
& (1 << i
)) {
513 int cm
= (irq
< GIC_INTERNAL
) ? (1 << cpu
) : ALL_CPU_MASK
;
515 if (GIC_TEST_ENABLED(irq
+ i
, cm
)) {
516 DPRINTF("Disabled IRQ %d\n", irq
+ i
);
518 GIC_CLEAR_ENABLED(irq
+ i
, cm
);
521 } else if (offset
< 0x280) {
522 /* Interrupt Set Pending. */
523 irq
= (offset
- 0x200) * 8 + GIC_BASE_IRQ
;
524 if (irq
>= s
->num_irq
)
529 for (i
= 0; i
< 8; i
++) {
530 if (value
& (1 << i
)) {
531 GIC_SET_PENDING(irq
+ i
, GIC_TARGET(irq
));
534 } else if (offset
< 0x300) {
535 /* Interrupt Clear Pending. */
536 irq
= (offset
- 0x280) * 8 + GIC_BASE_IRQ
;
537 if (irq
>= s
->num_irq
)
539 for (i
= 0; i
< 8; i
++) {
540 /* ??? This currently clears the pending bit for all CPUs, even
541 for per-CPU interrupts. It's unclear whether this is the
543 if (value
& (1 << i
)) {
544 GIC_CLEAR_PENDING(irq
+ i
, ALL_CPU_MASK
);
547 } else if (offset
< 0x400) {
548 /* Interrupt Active. */
550 } else if (offset
< 0x800) {
551 /* Interrupt Priority. */
552 irq
= (offset
- 0x400) + GIC_BASE_IRQ
;
553 if (irq
>= s
->num_irq
)
555 if (irq
< GIC_INTERNAL
) {
556 s
->priority1
[irq
][cpu
] = value
;
558 s
->priority2
[irq
- GIC_INTERNAL
] = value
;
561 } else if (offset
< 0xc00) {
562 /* Interrupt CPU Target. */
563 irq
= (offset
- 0x800) + GIC_BASE_IRQ
;
564 if (irq
>= s
->num_irq
)
568 else if (irq
< GIC_INTERNAL
)
569 value
= ALL_CPU_MASK
;
570 s
->irq_target
[irq
] = value
& ALL_CPU_MASK
;
571 } else if (offset
< 0xf00) {
572 /* Interrupt Configuration. */
573 irq
= (offset
- 0xc00) * 4 + GIC_BASE_IRQ
;
574 if (irq
>= s
->num_irq
)
576 if (irq
< GIC_INTERNAL
)
578 for (i
= 0; i
< 4; i
++) {
579 if (value
& (1 << (i
* 2))) {
580 GIC_SET_MODEL(irq
+ i
);
582 GIC_CLEAR_MODEL(irq
+ i
);
584 if (value
& (2 << (i
* 2))) {
585 GIC_SET_TRIGGER(irq
+ i
);
587 GIC_CLEAR_TRIGGER(irq
+ i
);
592 /* 0xf00 is only handled for 32-bit writes. */
598 hw_error("gic_dist_writeb: Bad offset %x\n", (int)offset
);
601 static void gic_dist_writew(void *opaque
, target_phys_addr_t offset
,
604 gic_dist_writeb(opaque
, offset
, value
& 0xff);
605 gic_dist_writeb(opaque
, offset
+ 1, value
>> 8);
608 static void gic_dist_writel(void *opaque
, target_phys_addr_t offset
,
611 gic_state
*s
= (gic_state
*)opaque
;
615 if (addr
< 0x100 || (addr
> 0xd00 && addr
!= 0xf00)) {
616 nvic_writel(s
, addr
, value
);
620 if (offset
== 0xf00) {
625 cpu
= gic_get_current_cpu(s
);
627 switch ((value
>> 24) & 3) {
629 mask
= (value
>> 16) & ALL_CPU_MASK
;
632 mask
= ALL_CPU_MASK
^ (1 << cpu
);
638 DPRINTF("Bad Soft Int target filter\n");
642 GIC_SET_PENDING(irq
, mask
);
646 gic_dist_writew(opaque
, offset
, value
& 0xffff);
647 gic_dist_writew(opaque
, offset
+ 2, value
>> 16);
650 static const MemoryRegionOps gic_dist_ops
= {
652 .read
= { gic_dist_readb
, gic_dist_readw
, gic_dist_readl
, },
653 .write
= { gic_dist_writeb
, gic_dist_writew
, gic_dist_writel
, },
655 .endianness
= DEVICE_NATIVE_ENDIAN
,
659 static uint32_t gic_cpu_read(gic_state
*s
, int cpu
, int offset
)
662 case 0x00: /* Control */
663 return s
->cpu_enabled
[cpu
];
664 case 0x04: /* Priority mask */
665 return s
->priority_mask
[cpu
];
666 case 0x08: /* Binary Point */
667 /* ??? Not implemented. */
669 case 0x0c: /* Acknowledge */
670 return gic_acknowledge_irq(s
, cpu
);
671 case 0x14: /* Running Priority */
672 return s
->running_priority
[cpu
];
673 case 0x18: /* Highest Pending Interrupt */
674 return s
->current_pending
[cpu
];
676 hw_error("gic_cpu_read: Bad offset %x\n", (int)offset
);
681 static void gic_cpu_write(gic_state
*s
, int cpu
, int offset
, uint32_t value
)
684 case 0x00: /* Control */
685 s
->cpu_enabled
[cpu
] = (value
& 1);
686 DPRINTF("CPU %d %sabled\n", cpu
, s
->cpu_enabled
? "En" : "Dis");
688 case 0x04: /* Priority mask */
689 s
->priority_mask
[cpu
] = (value
& 0xff);
691 case 0x08: /* Binary Point */
692 /* ??? Not implemented. */
694 case 0x10: /* End Of Interrupt */
695 return gic_complete_irq(s
, cpu
, value
& 0x3ff);
697 hw_error("gic_cpu_write: Bad offset %x\n", (int)offset
);
703 /* Wrappers to read/write the GIC CPU interface for the current CPU */
704 static uint64_t gic_thiscpu_read(void *opaque
, target_phys_addr_t addr
,
707 gic_state
*s
= (gic_state
*)opaque
;
708 return gic_cpu_read(s
, gic_get_current_cpu(s
), addr
);
711 static void gic_thiscpu_write(void *opaque
, target_phys_addr_t addr
,
712 uint64_t value
, unsigned size
)
714 gic_state
*s
= (gic_state
*)opaque
;
715 gic_cpu_write(s
, gic_get_current_cpu(s
), addr
, value
);
718 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
719 * These just decode the opaque pointer into gic_state* + cpu id.
721 static uint64_t gic_do_cpu_read(void *opaque
, target_phys_addr_t addr
,
724 gic_state
**backref
= (gic_state
**)opaque
;
725 gic_state
*s
= *backref
;
726 int id
= (backref
- s
->backref
);
727 return gic_cpu_read(s
, id
, addr
);
730 static void gic_do_cpu_write(void *opaque
, target_phys_addr_t addr
,
731 uint64_t value
, unsigned size
)
733 gic_state
**backref
= (gic_state
**)opaque
;
734 gic_state
*s
= *backref
;
735 int id
= (backref
- s
->backref
);
736 gic_cpu_write(s
, id
, addr
, value
);
739 static const MemoryRegionOps gic_thiscpu_ops
= {
740 .read
= gic_thiscpu_read
,
741 .write
= gic_thiscpu_write
,
742 .endianness
= DEVICE_NATIVE_ENDIAN
,
745 static const MemoryRegionOps gic_cpu_ops
= {
746 .read
= gic_do_cpu_read
,
747 .write
= gic_do_cpu_write
,
748 .endianness
= DEVICE_NATIVE_ENDIAN
,
752 static void gic_reset(DeviceState
*dev
)
754 gic_state
*s
= FROM_SYSBUS(gic_state
, sysbus_from_qdev(dev
));
756 memset(s
->irq_state
, 0, GIC_MAXIRQ
* sizeof(gic_irq_state
));
757 for (i
= 0 ; i
< NUM_CPU(s
); i
++) {
758 s
->priority_mask
[i
] = 0xf0;
759 s
->current_pending
[i
] = 1023;
760 s
->running_irq
[i
] = 1023;
761 s
->running_priority
[i
] = 0x100;
763 /* The NVIC doesn't have per-cpu interfaces, so enable by default. */
764 s
->cpu_enabled
[i
] = 1;
766 s
->cpu_enabled
[i
] = 0;
769 for (i
= 0; i
< 16; i
++) {
770 GIC_SET_ENABLED(i
, ALL_CPU_MASK
);
774 /* The NVIC is always enabled. */
781 static void gic_save(QEMUFile
*f
, void *opaque
)
783 gic_state
*s
= (gic_state
*)opaque
;
787 qemu_put_be32(f
, s
->enabled
);
788 for (i
= 0; i
< NUM_CPU(s
); i
++) {
789 qemu_put_be32(f
, s
->cpu_enabled
[i
]);
790 for (j
= 0; j
< GIC_INTERNAL
; j
++)
791 qemu_put_be32(f
, s
->priority1
[j
][i
]);
792 for (j
= 0; j
< s
->num_irq
; j
++)
793 qemu_put_be32(f
, s
->last_active
[j
][i
]);
794 qemu_put_be32(f
, s
->priority_mask
[i
]);
795 qemu_put_be32(f
, s
->running_irq
[i
]);
796 qemu_put_be32(f
, s
->running_priority
[i
]);
797 qemu_put_be32(f
, s
->current_pending
[i
]);
799 for (i
= 0; i
< s
->num_irq
- GIC_INTERNAL
; i
++) {
800 qemu_put_be32(f
, s
->priority2
[i
]);
802 for (i
= 0; i
< s
->num_irq
; i
++) {
804 qemu_put_be32(f
, s
->irq_target
[i
]);
806 qemu_put_byte(f
, s
->irq_state
[i
].enabled
);
807 qemu_put_byte(f
, s
->irq_state
[i
].pending
);
808 qemu_put_byte(f
, s
->irq_state
[i
].active
);
809 qemu_put_byte(f
, s
->irq_state
[i
].level
);
810 qemu_put_byte(f
, s
->irq_state
[i
].model
);
811 qemu_put_byte(f
, s
->irq_state
[i
].trigger
);
815 static int gic_load(QEMUFile
*f
, void *opaque
, int version_id
)
817 gic_state
*s
= (gic_state
*)opaque
;
824 s
->enabled
= qemu_get_be32(f
);
825 for (i
= 0; i
< NUM_CPU(s
); i
++) {
826 s
->cpu_enabled
[i
] = qemu_get_be32(f
);
827 for (j
= 0; j
< GIC_INTERNAL
; j
++)
828 s
->priority1
[j
][i
] = qemu_get_be32(f
);
829 for (j
= 0; j
< s
->num_irq
; j
++)
830 s
->last_active
[j
][i
] = qemu_get_be32(f
);
831 s
->priority_mask
[i
] = qemu_get_be32(f
);
832 s
->running_irq
[i
] = qemu_get_be32(f
);
833 s
->running_priority
[i
] = qemu_get_be32(f
);
834 s
->current_pending
[i
] = qemu_get_be32(f
);
836 for (i
= 0; i
< s
->num_irq
- GIC_INTERNAL
; i
++) {
837 s
->priority2
[i
] = qemu_get_be32(f
);
839 for (i
= 0; i
< s
->num_irq
; i
++) {
841 s
->irq_target
[i
] = qemu_get_be32(f
);
843 s
->irq_state
[i
].enabled
= qemu_get_byte(f
);
844 s
->irq_state
[i
].pending
= qemu_get_byte(f
);
845 s
->irq_state
[i
].active
= qemu_get_byte(f
);
846 s
->irq_state
[i
].level
= qemu_get_byte(f
);
847 s
->irq_state
[i
].model
= qemu_get_byte(f
);
848 s
->irq_state
[i
].trigger
= qemu_get_byte(f
);
855 static void gic_init(gic_state
*s
, int num_cpu
, int num_irq
)
857 static void gic_init(gic_state
*s
, int num_irq
)
863 s
->num_cpu
= num_cpu
;
864 if (s
->num_cpu
> NCPU
) {
865 hw_error("requested %u CPUs exceeds GIC maximum %d\n",
869 s
->num_irq
= num_irq
+ GIC_BASE_IRQ
;
870 if (s
->num_irq
> GIC_MAXIRQ
) {
871 hw_error("requested %u interrupt lines exceeds GIC maximum %d\n",
872 num_irq
, GIC_MAXIRQ
);
874 /* ITLinesNumber is represented as (N / 32) - 1 (see
875 * gic_dist_readb) so this is an implementation imposed
876 * restriction, not an architectural one:
878 if (s
->num_irq
< 32 || (s
->num_irq
% 32)) {
879 hw_error("%d interrupt lines unsupported: not divisible by 32\n",
883 i
= s
->num_irq
- GIC_INTERNAL
;
885 /* For the GIC, also expose incoming GPIO lines for PPIs for each CPU.
886 * GPIO array layout is thus:
888 * [N..N+31] PPIs for CPU 0
889 * [N+32..N+63] PPIs for CPU 1
892 i
+= (GIC_INTERNAL
* num_cpu
);
894 qdev_init_gpio_in(&s
->busdev
.qdev
, gic_set_irq
, i
);
895 for (i
= 0; i
< NUM_CPU(s
); i
++) {
896 sysbus_init_irq(&s
->busdev
, &s
->parent_irq
[i
]);
898 memory_region_init_io(&s
->iomem
, &gic_dist_ops
, s
, "gic_dist", 0x1000);
900 /* Memory regions for the CPU interfaces (NVIC doesn't have these):
901 * a region for "CPU interface for this core", then a region for
902 * "CPU interface for core 0", "for core 1", ...
903 * NB that the memory region size of 0x100 applies for the 11MPCore
904 * and also cores following the GIC v1 spec (ie A9).
905 * GIC v2 defines a larger memory region (0x1000) so this will need
906 * to be extended when we implement A15.
908 memory_region_init_io(&s
->cpuiomem
[0], &gic_thiscpu_ops
, s
,
910 for (i
= 0; i
< NUM_CPU(s
); i
++) {
912 memory_region_init_io(&s
->cpuiomem
[i
+1], &gic_cpu_ops
, &s
->backref
[i
],
917 register_savevm(NULL
, "arm_gic", -1, 2, gic_save
, gic_load
, s
);
922 static int arm_gic_init(SysBusDevice
*dev
)
924 /* Device instance init function for the GIC sysbus device */
926 gic_state
*s
= FROM_SYSBUS(gic_state
, dev
);
927 gic_init(s
, s
->num_cpu
, s
->num_irq
);
929 sysbus_init_mmio(dev
, &s
->iomem
);
930 /* cpu interfaces (one for "current cpu" plus one per cpu) */
931 for (i
= 0; i
<= NUM_CPU(s
); i
++) {
932 sysbus_init_mmio(dev
, &s
->cpuiomem
[i
]);
937 static Property arm_gic_properties
[] = {
938 DEFINE_PROP_UINT32("num-cpu", gic_state
, num_cpu
, 1),
939 DEFINE_PROP_UINT32("num-irq", gic_state
, num_irq
, 32),
940 DEFINE_PROP_END_OF_LIST(),
943 static void arm_gic_class_init(ObjectClass
*klass
, void *data
)
945 DeviceClass
*dc
= DEVICE_CLASS(klass
);
946 SysBusDeviceClass
*sbc
= SYS_BUS_DEVICE_CLASS(klass
);
947 sbc
->init
= arm_gic_init
;
948 dc
->props
= arm_gic_properties
;
949 dc
->reset
= gic_reset
;
953 static TypeInfo arm_gic_info
= {
955 .parent
= TYPE_SYS_BUS_DEVICE
,
956 .instance_size
= sizeof(gic_state
),
957 .class_init
= arm_gic_class_init
,
960 static void arm_gic_register_types(void)
962 type_register_static(&arm_gic_info
);
965 type_init(arm_gic_register_types
)