Compile serial only once
[qemu/kevin.git] / hw / mips_malta.c
blob96e3bc032495e8b8c063c00690df76b172bbaa4c
1 /*
2 * QEMU Malta board support
4 * Copyright (c) 2006 Aurelien Jarno
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "hw.h"
26 #include "pc.h"
27 #include "fdc.h"
28 #include "net.h"
29 #include "boards.h"
30 #include "smbus.h"
31 #include "block.h"
32 #include "flash.h"
33 #include "mips.h"
34 #include "pci.h"
35 #include "usb-uhci.h"
36 #include "vmware_vga.h"
37 #include "qemu-char.h"
38 #include "sysemu.h"
39 #include "audio/audio.h"
40 #include "boards.h"
41 #include "qemu-log.h"
42 #include "mips-bios.h"
43 #include "ide.h"
44 #include "loader.h"
45 #include "elf.h"
47 //#define DEBUG_BOARD_INIT
49 #define ENVP_ADDR 0x80002000l
50 #define ENVP_NB_ENTRIES 16
51 #define ENVP_ENTRY_SIZE 256
53 #define MAX_IDE_BUS 2
55 typedef struct {
56 uint32_t leds;
57 uint32_t brk;
58 uint32_t gpout;
59 uint32_t i2cin;
60 uint32_t i2coe;
61 uint32_t i2cout;
62 uint32_t i2csel;
63 CharDriverState *display;
64 char display_text[9];
65 SerialState *uart;
66 } MaltaFPGAState;
68 static PITState *pit;
70 static struct _loaderparams {
71 int ram_size;
72 const char *kernel_filename;
73 const char *kernel_cmdline;
74 const char *initrd_filename;
75 } loaderparams;
77 /* Malta FPGA */
78 static void malta_fpga_update_display(void *opaque)
80 char leds_text[9];
81 int i;
82 MaltaFPGAState *s = opaque;
84 for (i = 7 ; i >= 0 ; i--) {
85 if (s->leds & (1 << i))
86 leds_text[i] = '#';
87 else
88 leds_text[i] = ' ';
90 leds_text[8] = '\0';
92 qemu_chr_printf(s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n", leds_text);
93 qemu_chr_printf(s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|", s->display_text);
97 * EEPROM 24C01 / 24C02 emulation.
99 * Emulation for serial EEPROMs:
100 * 24C01 - 1024 bit (128 x 8)
101 * 24C02 - 2048 bit (256 x 8)
103 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
106 //~ #define DEBUG
108 #if defined(DEBUG)
109 # define logout(fmt, ...) fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
110 #else
111 # define logout(fmt, ...) ((void)0)
112 #endif
114 struct _eeprom24c0x_t {
115 uint8_t tick;
116 uint8_t address;
117 uint8_t command;
118 uint8_t ack;
119 uint8_t scl;
120 uint8_t sda;
121 uint8_t data;
122 //~ uint16_t size;
123 uint8_t contents[256];
126 typedef struct _eeprom24c0x_t eeprom24c0x_t;
128 static eeprom24c0x_t eeprom = {
129 .contents = {
130 /* 00000000: */ 0x80,0x08,0x04,0x0D,0x0A,0x01,0x40,0x00,
131 /* 00000008: */ 0x01,0x75,0x54,0x00,0x82,0x08,0x00,0x01,
132 /* 00000010: */ 0x8F,0x04,0x02,0x01,0x01,0x00,0x0E,0x00,
133 /* 00000018: */ 0x00,0x00,0x00,0x14,0x0F,0x14,0x2D,0x40,
134 /* 00000020: */ 0x15,0x08,0x15,0x08,0x00,0x00,0x00,0x00,
135 /* 00000028: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
136 /* 00000030: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
137 /* 00000038: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x12,0xD0,
138 /* 00000040: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
139 /* 00000048: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
140 /* 00000050: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
141 /* 00000058: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
142 /* 00000060: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
143 /* 00000068: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
144 /* 00000070: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
145 /* 00000078: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x64,0xF4,
149 static uint8_t eeprom24c0x_read(void)
151 logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
152 eeprom.tick, eeprom.scl, eeprom.sda, eeprom.data);
153 return eeprom.sda;
156 static void eeprom24c0x_write(int scl, int sda)
158 if (eeprom.scl && scl && (eeprom.sda != sda)) {
159 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
160 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda, sda ? "stop" : "start");
161 if (!sda) {
162 eeprom.tick = 1;
163 eeprom.command = 0;
165 } else if (eeprom.tick == 0 && !eeprom.ack) {
166 /* Waiting for start. */
167 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
168 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
169 } else if (!eeprom.scl && scl) {
170 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
171 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
172 if (eeprom.ack) {
173 logout("\ti2c ack bit = 0\n");
174 sda = 0;
175 eeprom.ack = 0;
176 } else if (eeprom.sda == sda) {
177 uint8_t bit = (sda != 0);
178 logout("\ti2c bit = %d\n", bit);
179 if (eeprom.tick < 9) {
180 eeprom.command <<= 1;
181 eeprom.command += bit;
182 eeprom.tick++;
183 if (eeprom.tick == 9) {
184 logout("\tcommand 0x%04x, %s\n", eeprom.command, bit ? "read" : "write");
185 eeprom.ack = 1;
187 } else if (eeprom.tick < 17) {
188 if (eeprom.command & 1) {
189 sda = ((eeprom.data & 0x80) != 0);
191 eeprom.address <<= 1;
192 eeprom.address += bit;
193 eeprom.tick++;
194 eeprom.data <<= 1;
195 if (eeprom.tick == 17) {
196 eeprom.data = eeprom.contents[eeprom.address];
197 logout("\taddress 0x%04x, data 0x%02x\n", eeprom.address, eeprom.data);
198 eeprom.ack = 1;
199 eeprom.tick = 0;
201 } else if (eeprom.tick >= 17) {
202 sda = 0;
204 } else {
205 logout("\tsda changed with raising scl\n");
207 } else {
208 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
210 eeprom.scl = scl;
211 eeprom.sda = sda;
214 static uint32_t malta_fpga_readl(void *opaque, target_phys_addr_t addr)
216 MaltaFPGAState *s = opaque;
217 uint32_t val = 0;
218 uint32_t saddr;
220 saddr = (addr & 0xfffff);
222 switch (saddr) {
224 /* SWITCH Register */
225 case 0x00200:
226 val = 0x00000000; /* All switches closed */
227 break;
229 /* STATUS Register */
230 case 0x00208:
231 #ifdef TARGET_WORDS_BIGENDIAN
232 val = 0x00000012;
233 #else
234 val = 0x00000010;
235 #endif
236 break;
238 /* JMPRS Register */
239 case 0x00210:
240 val = 0x00;
241 break;
243 /* LEDBAR Register */
244 case 0x00408:
245 val = s->leds;
246 break;
248 /* BRKRES Register */
249 case 0x00508:
250 val = s->brk;
251 break;
253 /* UART Registers are handled directly by the serial device */
255 /* GPOUT Register */
256 case 0x00a00:
257 val = s->gpout;
258 break;
260 /* XXX: implement a real I2C controller */
262 /* GPINP Register */
263 case 0x00a08:
264 /* IN = OUT until a real I2C control is implemented */
265 if (s->i2csel)
266 val = s->i2cout;
267 else
268 val = 0x00;
269 break;
271 /* I2CINP Register */
272 case 0x00b00:
273 val = ((s->i2cin & ~1) | eeprom24c0x_read());
274 break;
276 /* I2COE Register */
277 case 0x00b08:
278 val = s->i2coe;
279 break;
281 /* I2COUT Register */
282 case 0x00b10:
283 val = s->i2cout;
284 break;
286 /* I2CSEL Register */
287 case 0x00b18:
288 val = s->i2csel;
289 break;
291 default:
292 #if 0
293 printf ("malta_fpga_read: Bad register offset 0x" TARGET_FMT_lx "\n",
294 addr);
295 #endif
296 break;
298 return val;
301 static void malta_fpga_writel(void *opaque, target_phys_addr_t addr,
302 uint32_t val)
304 MaltaFPGAState *s = opaque;
305 uint32_t saddr;
307 saddr = (addr & 0xfffff);
309 switch (saddr) {
311 /* SWITCH Register */
312 case 0x00200:
313 break;
315 /* JMPRS Register */
316 case 0x00210:
317 break;
319 /* LEDBAR Register */
320 /* XXX: implement a 8-LED array */
321 case 0x00408:
322 s->leds = val & 0xff;
323 break;
325 /* ASCIIWORD Register */
326 case 0x00410:
327 snprintf(s->display_text, 9, "%08X", val);
328 malta_fpga_update_display(s);
329 break;
331 /* ASCIIPOS0 to ASCIIPOS7 Registers */
332 case 0x00418:
333 case 0x00420:
334 case 0x00428:
335 case 0x00430:
336 case 0x00438:
337 case 0x00440:
338 case 0x00448:
339 case 0x00450:
340 s->display_text[(saddr - 0x00418) >> 3] = (char) val;
341 malta_fpga_update_display(s);
342 break;
344 /* SOFTRES Register */
345 case 0x00500:
346 if (val == 0x42)
347 qemu_system_reset_request ();
348 break;
350 /* BRKRES Register */
351 case 0x00508:
352 s->brk = val & 0xff;
353 break;
355 /* UART Registers are handled directly by the serial device */
357 /* GPOUT Register */
358 case 0x00a00:
359 s->gpout = val & 0xff;
360 break;
362 /* I2COE Register */
363 case 0x00b08:
364 s->i2coe = val & 0x03;
365 break;
367 /* I2COUT Register */
368 case 0x00b10:
369 eeprom24c0x_write(val & 0x02, val & 0x01);
370 s->i2cout = val;
371 break;
373 /* I2CSEL Register */
374 case 0x00b18:
375 s->i2csel = val & 0x01;
376 break;
378 default:
379 #if 0
380 printf ("malta_fpga_write: Bad register offset 0x" TARGET_FMT_lx "\n",
381 addr);
382 #endif
383 break;
387 static CPUReadMemoryFunc * const malta_fpga_read[] = {
388 malta_fpga_readl,
389 malta_fpga_readl,
390 malta_fpga_readl
393 static CPUWriteMemoryFunc * const malta_fpga_write[] = {
394 malta_fpga_writel,
395 malta_fpga_writel,
396 malta_fpga_writel
399 static void malta_fpga_reset(void *opaque)
401 MaltaFPGAState *s = opaque;
403 s->leds = 0x00;
404 s->brk = 0x0a;
405 s->gpout = 0x00;
406 s->i2cin = 0x3;
407 s->i2coe = 0x0;
408 s->i2cout = 0x3;
409 s->i2csel = 0x1;
411 s->display_text[8] = '\0';
412 snprintf(s->display_text, 9, " ");
415 static void malta_fpga_led_init(CharDriverState *chr)
417 qemu_chr_printf(chr, "\e[HMalta LEDBAR\r\n");
418 qemu_chr_printf(chr, "+--------+\r\n");
419 qemu_chr_printf(chr, "+ +\r\n");
420 qemu_chr_printf(chr, "+--------+\r\n");
421 qemu_chr_printf(chr, "\n");
422 qemu_chr_printf(chr, "Malta ASCII\r\n");
423 qemu_chr_printf(chr, "+--------+\r\n");
424 qemu_chr_printf(chr, "+ +\r\n");
425 qemu_chr_printf(chr, "+--------+\r\n");
428 static MaltaFPGAState *malta_fpga_init(target_phys_addr_t base, qemu_irq uart_irq, CharDriverState *uart_chr)
430 MaltaFPGAState *s;
431 int malta;
433 s = (MaltaFPGAState *)qemu_mallocz(sizeof(MaltaFPGAState));
435 malta = cpu_register_io_memory(malta_fpga_read,
436 malta_fpga_write, s);
438 cpu_register_physical_memory(base, 0x900, malta);
439 /* 0xa00 is less than a page, so will still get the right offsets. */
440 cpu_register_physical_memory(base + 0xa00, 0x100000 - 0xa00, malta);
442 s->display = qemu_chr_open("fpga", "vc:320x200", malta_fpga_led_init);
444 #ifdef TARGET_WORDS_BIGENDIAN
445 s->uart = serial_mm_init(base + 0x900, 3, uart_irq, 230400, uart_chr, 1, 1);
446 #else
447 s->uart = serial_mm_init(base + 0x900, 3, uart_irq, 230400, uart_chr, 1, 0);
448 #endif
450 malta_fpga_reset(s);
451 qemu_register_reset(malta_fpga_reset, s);
453 return s;
456 /* Audio support */
457 #ifdef HAS_AUDIO
458 static void audio_init (PCIBus *pci_bus)
460 struct soundhw *c;
461 int audio_enabled = 0;
463 for (c = soundhw; !audio_enabled && c->name; ++c) {
464 audio_enabled = c->enabled;
467 if (audio_enabled) {
468 for (c = soundhw; c->name; ++c) {
469 if (c->enabled) {
470 c->init.init_pci(pci_bus);
475 #endif
477 /* Network support */
478 static void network_init(void)
480 int i;
482 for(i = 0; i < nb_nics; i++) {
483 NICInfo *nd = &nd_table[i];
484 const char *default_devaddr = NULL;
486 if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
487 /* The malta board has a PCNet card using PCI SLOT 11 */
488 default_devaddr = "0b";
490 pci_nic_init_nofail(nd, "pcnet", default_devaddr);
494 /* ROM and pseudo bootloader
496 The following code implements a very very simple bootloader. It first
497 loads the registers a0 to a3 to the values expected by the OS, and
498 then jump at the kernel address.
500 The bootloader should pass the locations of the kernel arguments and
501 environment variables tables. Those tables contain the 32-bit address
502 of NULL terminated strings. The environment variables table should be
503 terminated by a NULL address.
505 For a simpler implementation, the number of kernel arguments is fixed
506 to two (the name of the kernel and the command line), and the two
507 tables are actually the same one.
509 The registers a0 to a3 should contain the following values:
510 a0 - number of kernel arguments
511 a1 - 32-bit address of the kernel arguments table
512 a2 - 32-bit address of the environment variables table
513 a3 - RAM size in bytes
516 static void write_bootloader (CPUState *env, uint8_t *base,
517 int64_t kernel_entry)
519 uint32_t *p;
521 /* Small bootloader */
522 p = (uint32_t *)base;
523 stl_raw(p++, 0x0bf00160); /* j 0x1fc00580 */
524 stl_raw(p++, 0x00000000); /* nop */
526 /* YAMON service vector */
527 stl_raw(base + 0x500, 0xbfc00580); /* start: */
528 stl_raw(base + 0x504, 0xbfc0083c); /* print_count: */
529 stl_raw(base + 0x520, 0xbfc00580); /* start: */
530 stl_raw(base + 0x52c, 0xbfc00800); /* flush_cache: */
531 stl_raw(base + 0x534, 0xbfc00808); /* print: */
532 stl_raw(base + 0x538, 0xbfc00800); /* reg_cpu_isr: */
533 stl_raw(base + 0x53c, 0xbfc00800); /* unred_cpu_isr: */
534 stl_raw(base + 0x540, 0xbfc00800); /* reg_ic_isr: */
535 stl_raw(base + 0x544, 0xbfc00800); /* unred_ic_isr: */
536 stl_raw(base + 0x548, 0xbfc00800); /* reg_esr: */
537 stl_raw(base + 0x54c, 0xbfc00800); /* unreg_esr: */
538 stl_raw(base + 0x550, 0xbfc00800); /* getchar: */
539 stl_raw(base + 0x554, 0xbfc00800); /* syscon_read: */
542 /* Second part of the bootloader */
543 p = (uint32_t *) (base + 0x580);
544 stl_raw(p++, 0x24040002); /* addiu a0, zero, 2 */
545 stl_raw(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff)); /* lui sp, high(ENVP_ADDR) */
546 stl_raw(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff)); /* ori sp, sp, low(ENVP_ADDR) */
547 stl_raw(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff)); /* lui a1, high(ENVP_ADDR) */
548 stl_raw(p++, 0x34a50000 | (ENVP_ADDR & 0xffff)); /* ori a1, a1, low(ENVP_ADDR) */
549 stl_raw(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff)); /* lui a2, high(ENVP_ADDR + 8) */
550 stl_raw(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff)); /* ori a2, a2, low(ENVP_ADDR + 8) */
551 stl_raw(p++, 0x3c070000 | (loaderparams.ram_size >> 16)); /* lui a3, high(ram_size) */
552 stl_raw(p++, 0x34e70000 | (loaderparams.ram_size & 0xffff)); /* ori a3, a3, low(ram_size) */
554 /* Load BAR registers as done by YAMON */
555 stl_raw(p++, 0x3c09b400); /* lui t1, 0xb400 */
557 #ifdef TARGET_WORDS_BIGENDIAN
558 stl_raw(p++, 0x3c08df00); /* lui t0, 0xdf00 */
559 #else
560 stl_raw(p++, 0x340800df); /* ori t0, r0, 0x00df */
561 #endif
562 stl_raw(p++, 0xad280068); /* sw t0, 0x0068(t1) */
564 stl_raw(p++, 0x3c09bbe0); /* lui t1, 0xbbe0 */
566 #ifdef TARGET_WORDS_BIGENDIAN
567 stl_raw(p++, 0x3c08c000); /* lui t0, 0xc000 */
568 #else
569 stl_raw(p++, 0x340800c0); /* ori t0, r0, 0x00c0 */
570 #endif
571 stl_raw(p++, 0xad280048); /* sw t0, 0x0048(t1) */
572 #ifdef TARGET_WORDS_BIGENDIAN
573 stl_raw(p++, 0x3c084000); /* lui t0, 0x4000 */
574 #else
575 stl_raw(p++, 0x34080040); /* ori t0, r0, 0x0040 */
576 #endif
577 stl_raw(p++, 0xad280050); /* sw t0, 0x0050(t1) */
579 #ifdef TARGET_WORDS_BIGENDIAN
580 stl_raw(p++, 0x3c088000); /* lui t0, 0x8000 */
581 #else
582 stl_raw(p++, 0x34080080); /* ori t0, r0, 0x0080 */
583 #endif
584 stl_raw(p++, 0xad280058); /* sw t0, 0x0058(t1) */
585 #ifdef TARGET_WORDS_BIGENDIAN
586 stl_raw(p++, 0x3c083f00); /* lui t0, 0x3f00 */
587 #else
588 stl_raw(p++, 0x3408003f); /* ori t0, r0, 0x003f */
589 #endif
590 stl_raw(p++, 0xad280060); /* sw t0, 0x0060(t1) */
592 #ifdef TARGET_WORDS_BIGENDIAN
593 stl_raw(p++, 0x3c08c100); /* lui t0, 0xc100 */
594 #else
595 stl_raw(p++, 0x340800c1); /* ori t0, r0, 0x00c1 */
596 #endif
597 stl_raw(p++, 0xad280080); /* sw t0, 0x0080(t1) */
598 #ifdef TARGET_WORDS_BIGENDIAN
599 stl_raw(p++, 0x3c085e00); /* lui t0, 0x5e00 */
600 #else
601 stl_raw(p++, 0x3408005e); /* ori t0, r0, 0x005e */
602 #endif
603 stl_raw(p++, 0xad280088); /* sw t0, 0x0088(t1) */
605 /* Jump to kernel code */
606 stl_raw(p++, 0x3c1f0000 | ((kernel_entry >> 16) & 0xffff)); /* lui ra, high(kernel_entry) */
607 stl_raw(p++, 0x37ff0000 | (kernel_entry & 0xffff)); /* ori ra, ra, low(kernel_entry) */
608 stl_raw(p++, 0x03e00008); /* jr ra */
609 stl_raw(p++, 0x00000000); /* nop */
611 /* YAMON subroutines */
612 p = (uint32_t *) (base + 0x800);
613 stl_raw(p++, 0x03e00008); /* jr ra */
614 stl_raw(p++, 0x24020000); /* li v0,0 */
615 /* 808 YAMON print */
616 stl_raw(p++, 0x03e06821); /* move t5,ra */
617 stl_raw(p++, 0x00805821); /* move t3,a0 */
618 stl_raw(p++, 0x00a05021); /* move t2,a1 */
619 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
620 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
621 stl_raw(p++, 0x10800005); /* beqz a0,834 */
622 stl_raw(p++, 0x00000000); /* nop */
623 stl_raw(p++, 0x0ff0021c); /* jal 870 */
624 stl_raw(p++, 0x00000000); /* nop */
625 stl_raw(p++, 0x08000205); /* j 814 */
626 stl_raw(p++, 0x00000000); /* nop */
627 stl_raw(p++, 0x01a00008); /* jr t5 */
628 stl_raw(p++, 0x01602021); /* move a0,t3 */
629 /* 0x83c YAMON print_count */
630 stl_raw(p++, 0x03e06821); /* move t5,ra */
631 stl_raw(p++, 0x00805821); /* move t3,a0 */
632 stl_raw(p++, 0x00a05021); /* move t2,a1 */
633 stl_raw(p++, 0x00c06021); /* move t4,a2 */
634 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
635 stl_raw(p++, 0x0ff0021c); /* jal 870 */
636 stl_raw(p++, 0x00000000); /* nop */
637 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
638 stl_raw(p++, 0x258cffff); /* addiu t4,t4,-1 */
639 stl_raw(p++, 0x1580fffa); /* bnez t4,84c */
640 stl_raw(p++, 0x00000000); /* nop */
641 stl_raw(p++, 0x01a00008); /* jr t5 */
642 stl_raw(p++, 0x01602021); /* move a0,t3 */
643 /* 0x870 */
644 stl_raw(p++, 0x3c08b800); /* lui t0,0xb400 */
645 stl_raw(p++, 0x350803f8); /* ori t0,t0,0x3f8 */
646 stl_raw(p++, 0x91090005); /* lbu t1,5(t0) */
647 stl_raw(p++, 0x00000000); /* nop */
648 stl_raw(p++, 0x31290040); /* andi t1,t1,0x40 */
649 stl_raw(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
650 stl_raw(p++, 0x00000000); /* nop */
651 stl_raw(p++, 0x03e00008); /* jr ra */
652 stl_raw(p++, 0xa1040000); /* sb a0,0(t0) */
656 static void prom_set(uint32_t* prom_buf, int index, const char *string, ...)
658 va_list ap;
659 int32_t table_addr;
661 if (index >= ENVP_NB_ENTRIES)
662 return;
664 if (string == NULL) {
665 prom_buf[index] = 0;
666 return;
669 table_addr = sizeof(int32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
670 prom_buf[index] = tswap32(ENVP_ADDR + table_addr);
672 va_start(ap, string);
673 vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
674 va_end(ap);
677 /* Kernel */
678 static int64_t load_kernel (void)
680 int64_t kernel_entry, kernel_high;
681 long initrd_size;
682 ram_addr_t initrd_offset;
683 int big_endian;
684 uint32_t *prom_buf;
685 long prom_size;
686 int prom_index = 0;
688 #ifdef TARGET_WORDS_BIGENDIAN
689 big_endian = 1;
690 #else
691 big_endian = 0;
692 #endif
694 if (load_elf(loaderparams.kernel_filename, cpu_mips_kseg0_to_phys, NULL,
695 (uint64_t *)&kernel_entry, NULL, (uint64_t *)&kernel_high,
696 big_endian, ELF_MACHINE, 1) < 0) {
697 fprintf(stderr, "qemu: could not load kernel '%s'\n",
698 loaderparams.kernel_filename);
699 exit(1);
702 /* load initrd */
703 initrd_size = 0;
704 initrd_offset = 0;
705 if (loaderparams.initrd_filename) {
706 initrd_size = get_image_size (loaderparams.initrd_filename);
707 if (initrd_size > 0) {
708 initrd_offset = (kernel_high + ~TARGET_PAGE_MASK) & TARGET_PAGE_MASK;
709 if (initrd_offset + initrd_size > ram_size) {
710 fprintf(stderr,
711 "qemu: memory too small for initial ram disk '%s'\n",
712 loaderparams.initrd_filename);
713 exit(1);
715 initrd_size = load_image_targphys(loaderparams.initrd_filename,
716 initrd_offset,
717 ram_size - initrd_offset);
719 if (initrd_size == (target_ulong) -1) {
720 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
721 loaderparams.initrd_filename);
722 exit(1);
726 /* Setup prom parameters. */
727 prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
728 prom_buf = qemu_malloc(prom_size);
730 prom_set(prom_buf, prom_index++, loaderparams.kernel_filename);
731 if (initrd_size > 0) {
732 prom_set(prom_buf, prom_index++, "rd_start=0x%" PRIx64 " rd_size=%li %s",
733 cpu_mips_phys_to_kseg0(NULL, initrd_offset), initrd_size,
734 loaderparams.kernel_cmdline);
735 } else {
736 prom_set(prom_buf, prom_index++, loaderparams.kernel_cmdline);
739 prom_set(prom_buf, prom_index++, "memsize");
740 prom_set(prom_buf, prom_index++, "%i", loaderparams.ram_size);
741 prom_set(prom_buf, prom_index++, "modetty0");
742 prom_set(prom_buf, prom_index++, "38400n8r");
743 prom_set(prom_buf, prom_index++, NULL);
745 rom_add_blob_fixed("prom", prom_buf, prom_size,
746 cpu_mips_kseg0_to_phys(NULL, ENVP_ADDR));
748 return kernel_entry;
751 static void main_cpu_reset(void *opaque)
753 CPUState *env = opaque;
754 cpu_reset(env);
756 /* The bootloader does not need to be rewritten as it is located in a
757 read only location. The kernel location and the arguments table
758 location does not change. */
759 if (loaderparams.kernel_filename) {
760 env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
764 static
765 void mips_malta_init (ram_addr_t ram_size,
766 const char *boot_device,
767 const char *kernel_filename, const char *kernel_cmdline,
768 const char *initrd_filename, const char *cpu_model)
770 char *filename;
771 ram_addr_t ram_offset;
772 ram_addr_t bios_offset;
773 target_long bios_size;
774 int64_t kernel_entry;
775 PCIBus *pci_bus;
776 ISADevice *isa_dev;
777 CPUState *env;
778 RTCState *rtc_state;
779 FDCtrl *floppy_controller;
780 MaltaFPGAState *malta_fpga;
781 qemu_irq *i8259;
782 int piix4_devfn;
783 uint8_t *eeprom_buf;
784 i2c_bus *smbus;
785 int i;
786 DriveInfo *dinfo;
787 DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
788 DriveInfo *fd[MAX_FD];
789 int fl_idx = 0;
790 int fl_sectors = 0;
792 /* Make sure the first 3 serial ports are associated with a device. */
793 for(i = 0; i < 3; i++) {
794 if (!serial_hds[i]) {
795 char label[32];
796 snprintf(label, sizeof(label), "serial%d", i);
797 serial_hds[i] = qemu_chr_open(label, "null", NULL);
801 /* init CPUs */
802 if (cpu_model == NULL) {
803 #ifdef TARGET_MIPS64
804 cpu_model = "20Kc";
805 #else
806 cpu_model = "24Kf";
807 #endif
809 env = cpu_init(cpu_model);
810 if (!env) {
811 fprintf(stderr, "Unable to find CPU definition\n");
812 exit(1);
814 qemu_register_reset(main_cpu_reset, env);
816 /* allocate RAM */
817 if (ram_size > (256 << 20)) {
818 fprintf(stderr,
819 "qemu: Too much memory for this machine: %d MB, maximum 256 MB\n",
820 ((unsigned int)ram_size / (1 << 20)));
821 exit(1);
823 ram_offset = qemu_ram_alloc(ram_size);
824 bios_offset = qemu_ram_alloc(BIOS_SIZE);
827 cpu_register_physical_memory(0, ram_size, ram_offset | IO_MEM_RAM);
829 /* Map the bios at two physical locations, as on the real board. */
830 cpu_register_physical_memory(0x1e000000LL,
831 BIOS_SIZE, bios_offset | IO_MEM_ROM);
832 cpu_register_physical_memory(0x1fc00000LL,
833 BIOS_SIZE, bios_offset | IO_MEM_ROM);
835 /* FPGA */
836 malta_fpga = malta_fpga_init(0x1f000000LL, env->irq[2], serial_hds[2]);
838 /* Load firmware in flash / BIOS unless we boot directly into a kernel. */
839 if (kernel_filename) {
840 /* Write a small bootloader to the flash location. */
841 loaderparams.ram_size = ram_size;
842 loaderparams.kernel_filename = kernel_filename;
843 loaderparams.kernel_cmdline = kernel_cmdline;
844 loaderparams.initrd_filename = initrd_filename;
845 kernel_entry = load_kernel();
846 write_bootloader(env, qemu_get_ram_ptr(bios_offset), kernel_entry);
847 } else {
848 dinfo = drive_get(IF_PFLASH, 0, fl_idx);
849 if (dinfo) {
850 /* Load firmware from flash. */
851 bios_size = 0x400000;
852 fl_sectors = bios_size >> 16;
853 #ifdef DEBUG_BOARD_INIT
854 printf("Register parallel flash %d size " TARGET_FMT_lx " at "
855 "offset %08lx addr %08llx '%s' %x\n",
856 fl_idx, bios_size, bios_offset, 0x1e000000LL,
857 bdrv_get_device_name(dinfo->bdrv), fl_sectors);
858 #endif
859 pflash_cfi01_register(0x1e000000LL, bios_offset,
860 dinfo->bdrv, 65536, fl_sectors,
861 4, 0x0000, 0x0000, 0x0000, 0x0000);
862 fl_idx++;
863 } else {
864 /* Load a BIOS image. */
865 if (bios_name == NULL)
866 bios_name = BIOS_FILENAME;
867 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
868 if (filename) {
869 bios_size = load_image_targphys(filename, 0x1fc00000LL,
870 BIOS_SIZE);
871 qemu_free(filename);
872 } else {
873 bios_size = -1;
875 if ((bios_size < 0 || bios_size > BIOS_SIZE) && !kernel_filename) {
876 fprintf(stderr,
877 "qemu: Could not load MIPS bios '%s', and no -kernel argument was specified\n",
878 bios_name);
879 exit(1);
882 /* In little endian mode the 32bit words in the bios are swapped,
883 a neat trick which allows bi-endian firmware. */
884 #ifndef TARGET_WORDS_BIGENDIAN
886 uint32_t *addr = qemu_get_ram_ptr(bios_offset);;
887 uint32_t *end = addr + bios_size;
888 while (addr < end) {
889 bswap32s(addr);
892 #endif
895 /* Board ID = 0x420 (Malta Board with CoreLV)
896 XXX: theoretically 0x1e000010 should map to flash and 0x1fc00010 should
897 map to the board ID. */
898 stl_phys(0x1fc00010LL, 0x00000420);
900 /* Init internal devices */
901 cpu_mips_irq_init_cpu(env);
902 cpu_mips_clock_init(env);
904 /* Interrupt controller */
905 /* The 8259 is attached to the MIPS CPU INT0 pin, ie interrupt 2 */
906 i8259 = i8259_init(env->irq[2]);
908 /* Northbridge */
909 pci_bus = pci_gt64120_init(i8259);
911 /* Southbridge */
913 if (drive_get_max_bus(IF_IDE) >= MAX_IDE_BUS) {
914 fprintf(stderr, "qemu: too many IDE bus\n");
915 exit(1);
918 for(i = 0; i < MAX_IDE_BUS * MAX_IDE_DEVS; i++) {
919 hd[i] = drive_get(IF_IDE, i / MAX_IDE_DEVS, i % MAX_IDE_DEVS);
922 piix4_devfn = piix4_init(pci_bus, 80);
923 isa_bus_irqs(i8259);
924 pci_piix4_ide_init(pci_bus, hd, piix4_devfn + 1);
925 usb_uhci_piix4_init(pci_bus, piix4_devfn + 2);
926 smbus = piix4_pm_init(pci_bus, piix4_devfn + 3, 0x1100, isa_reserve_irq(9));
927 eeprom_buf = qemu_mallocz(8 * 256); /* XXX: make this persistent */
928 for (i = 0; i < 8; i++) {
929 /* TODO: Populate SPD eeprom data. */
930 DeviceState *eeprom;
931 eeprom = qdev_create((BusState *)smbus, "smbus-eeprom");
932 qdev_prop_set_uint8(eeprom, "address", 0x50 + i);
933 qdev_prop_set_ptr(eeprom, "data", eeprom_buf + (i * 256));
934 qdev_init_nofail(eeprom);
936 pit = pit_init(0x40, isa_reserve_irq(0));
937 DMA_init(0);
939 /* Super I/O */
940 isa_dev = isa_create_simple("i8042");
942 rtc_state = rtc_init(2000);
943 serial_isa_init(0, serial_hds[0]);
944 serial_isa_init(1, serial_hds[1]);
945 if (parallel_hds[0])
946 parallel_init(0, parallel_hds[0]);
947 for(i = 0; i < MAX_FD; i++) {
948 fd[i] = drive_get(IF_FLOPPY, 0, i);
950 floppy_controller = fdctrl_init_isa(fd);
952 /* Sound card */
953 #ifdef HAS_AUDIO
954 audio_init(pci_bus);
955 #endif
957 /* Network card */
958 network_init();
960 /* Optional PCI video card */
961 if (cirrus_vga_enabled) {
962 pci_cirrus_vga_init(pci_bus);
963 } else if (vmsvga_enabled) {
964 pci_vmsvga_init(pci_bus);
965 } else if (std_vga_enabled) {
966 pci_vga_init(pci_bus, 0, 0);
970 static QEMUMachine mips_malta_machine = {
971 .name = "malta",
972 .desc = "MIPS Malta Core LV",
973 .init = mips_malta_init,
974 .is_default = 1,
977 static void mips_malta_machine_init(void)
979 qemu_register_machine(&mips_malta_machine);
982 machine_init(mips_malta_machine_init);