2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "qemu/osdep.h"
32 #include "qemu/units.h"
33 #include "qapi/error.h"
34 #include "hw/sysbus.h"
35 #include "hw/arm/arm.h"
36 #include "hw/arm/primecell.h"
37 #include "hw/arm/virt.h"
38 #include "hw/vfio/vfio-calxeda-xgmac.h"
39 #include "hw/vfio/vfio-amd-xgbe.h"
40 #include "hw/display/ramfb.h"
41 #include "hw/devices.h"
43 #include "sysemu/device_tree.h"
44 #include "sysemu/numa.h"
45 #include "sysemu/sysemu.h"
46 #include "sysemu/kvm.h"
47 #include "hw/loader.h"
48 #include "exec/address-spaces.h"
49 #include "qemu/bitops.h"
50 #include "qemu/error-report.h"
51 #include "hw/pci-host/gpex.h"
52 #include "hw/arm/sysbus-fdt.h"
53 #include "hw/platform-bus.h"
54 #include "hw/arm/fdt.h"
55 #include "hw/intc/arm_gic.h"
56 #include "hw/intc/arm_gicv3_common.h"
58 #include "hw/firmware/smbios.h"
59 #include "qapi/visitor.h"
60 #include "standard-headers/linux/input.h"
61 #include "hw/arm/smmuv3.h"
62 #include "hw/acpi/acpi.h"
63 #include "target/arm/internals.h"
65 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
66 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
69 MachineClass *mc = MACHINE_CLASS(oc); \
70 virt_machine_##major##_##minor##_options(mc); \
71 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
76 static const TypeInfo machvirt_##major##_##minor##_info = { \
77 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
78 .parent = TYPE_VIRT_MACHINE, \
79 .class_init = virt_##major##_##minor##_class_init, \
81 static void machvirt_machine_##major##_##minor##_init(void) \
83 type_register_static(&machvirt_##major##_##minor##_info); \
85 type_init(machvirt_machine_##major##_##minor##_init);
87 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
88 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
89 #define DEFINE_VIRT_MACHINE(major, minor) \
90 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
93 /* Number of external interrupt lines to configure the GIC with */
96 #define PLATFORM_BUS_NUM_IRQS 64
98 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
99 * RAM can go up to the 256GB mark, leaving 256GB of the physical
100 * address space unallocated and free for future use between 256G and 512G.
101 * If we need to provide more RAM to VMs in the future then we need to:
102 * * allocate a second bank of RAM starting at 2TB and working up
103 * * fix the DT and ACPI table generation code in QEMU to correctly
104 * report two split lumps of RAM to the guest
105 * * fix KVM in the host kernel to allow guests with >40 bit address spaces
106 * (We don't want to fill all the way up to 512GB with RAM because
107 * we might want it for non-RAM purposes later. Conversely it seems
108 * reasonable to assume that anybody configuring a VM with a quarter
109 * of a terabyte of RAM will be doing it on a host with more than a
110 * terabyte of physical address space.)
112 #define LEGACY_RAMLIMIT_GB 255
113 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
115 /* Addresses and sizes of our components.
116 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
117 * 128MB..256MB is used for miscellaneous device I/O.
118 * 256MB..1GB is reserved for possible future PCI support (ie where the
119 * PCI memory window will go if we add a PCI host controller).
120 * 1GB and up is RAM (which may happily spill over into the
121 * high memory region beyond 4GB).
122 * This represents a compromise between how much RAM can be given to
123 * a 32 bit VM and leaving space for expansion and in particular for PCI.
124 * Note that devices should generally be placed at multiples of 0x10000,
125 * to accommodate guests using 64K pages.
127 static const MemMapEntry base_memmap
[] = {
128 /* Space up to 0x8000000 is reserved for a boot ROM */
129 [VIRT_FLASH
] = { 0, 0x08000000 },
130 [VIRT_CPUPERIPHS
] = { 0x08000000, 0x00020000 },
131 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
132 [VIRT_GIC_DIST
] = { 0x08000000, 0x00010000 },
133 [VIRT_GIC_CPU
] = { 0x08010000, 0x00010000 },
134 [VIRT_GIC_V2M
] = { 0x08020000, 0x00001000 },
135 [VIRT_GIC_HYP
] = { 0x08030000, 0x00010000 },
136 [VIRT_GIC_VCPU
] = { 0x08040000, 0x00010000 },
137 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
138 [VIRT_GIC_ITS
] = { 0x08080000, 0x00020000 },
139 /* This redistributor space allows up to 2*64kB*123 CPUs */
140 [VIRT_GIC_REDIST
] = { 0x080A0000, 0x00F60000 },
141 [VIRT_UART
] = { 0x09000000, 0x00001000 },
142 [VIRT_RTC
] = { 0x09010000, 0x00001000 },
143 [VIRT_FW_CFG
] = { 0x09020000, 0x00000018 },
144 [VIRT_GPIO
] = { 0x09030000, 0x00001000 },
145 [VIRT_SECURE_UART
] = { 0x09040000, 0x00001000 },
146 [VIRT_SMMU
] = { 0x09050000, 0x00020000 },
147 [VIRT_MMIO
] = { 0x0a000000, 0x00000200 },
148 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
149 [VIRT_PLATFORM_BUS
] = { 0x0c000000, 0x02000000 },
150 [VIRT_SECURE_MEM
] = { 0x0e000000, 0x01000000 },
151 [VIRT_PCIE_MMIO
] = { 0x10000000, 0x2eff0000 },
152 [VIRT_PCIE_PIO
] = { 0x3eff0000, 0x00010000 },
153 [VIRT_PCIE_ECAM
] = { 0x3f000000, 0x01000000 },
154 /* Actual RAM size depends on initial RAM and device memory settings */
155 [VIRT_MEM
] = { GiB
, LEGACY_RAMLIMIT_BYTES
},
159 * Highmem IO Regions: This memory map is floating, located after the RAM.
160 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
161 * top of the RAM, so that its base get the same alignment as the size,
162 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
163 * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
164 * Note the extended_memmap is sized so that it eventually also includes the
165 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
166 * index of base_memmap).
168 static MemMapEntry extended_memmap
[] = {
169 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
170 [VIRT_HIGH_GIC_REDIST2
] = { 0x0, 64 * MiB
},
171 [VIRT_HIGH_PCIE_ECAM
] = { 0x0, 256 * MiB
},
172 /* Second PCIe window */
173 [VIRT_HIGH_PCIE_MMIO
] = { 0x0, 512 * GiB
},
176 static const int a15irqmap
[] = {
179 [VIRT_PCIE
] = 3, /* ... to 6 */
181 [VIRT_SECURE_UART
] = 8,
182 [VIRT_MMIO
] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
183 [VIRT_GIC_V2M
] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
184 [VIRT_SMMU
] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
185 [VIRT_PLATFORM_BUS
] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
188 static const char *valid_cpus
[] = {
189 ARM_CPU_TYPE_NAME("cortex-a15"),
190 ARM_CPU_TYPE_NAME("cortex-a53"),
191 ARM_CPU_TYPE_NAME("cortex-a57"),
192 ARM_CPU_TYPE_NAME("cortex-a72"),
193 ARM_CPU_TYPE_NAME("host"),
194 ARM_CPU_TYPE_NAME("max"),
197 static bool cpu_type_valid(const char *cpu
)
201 for (i
= 0; i
< ARRAY_SIZE(valid_cpus
); i
++) {
202 if (strcmp(cpu
, valid_cpus
[i
]) == 0) {
209 static void create_fdt(VirtMachineState
*vms
)
211 void *fdt
= create_device_tree(&vms
->fdt_size
);
214 error_report("create_device_tree() failed");
221 qemu_fdt_setprop_string(fdt
, "/", "compatible", "linux,dummy-virt");
222 qemu_fdt_setprop_cell(fdt
, "/", "#address-cells", 0x2);
223 qemu_fdt_setprop_cell(fdt
, "/", "#size-cells", 0x2);
225 /* /chosen must exist for load_dtb to fill in necessary properties later */
226 qemu_fdt_add_subnode(fdt
, "/chosen");
228 /* Clock node, for the benefit of the UART. The kernel device tree
229 * binding documentation claims the PL011 node clock properties are
230 * optional but in practice if you omit them the kernel refuses to
231 * probe for the device.
233 vms
->clock_phandle
= qemu_fdt_alloc_phandle(fdt
);
234 qemu_fdt_add_subnode(fdt
, "/apb-pclk");
235 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "compatible", "fixed-clock");
236 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "#clock-cells", 0x0);
237 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "clock-frequency", 24000000);
238 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "clock-output-names",
240 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "phandle", vms
->clock_phandle
);
242 if (have_numa_distance
) {
243 int size
= nb_numa_nodes
* nb_numa_nodes
* 3 * sizeof(uint32_t);
244 uint32_t *matrix
= g_malloc0(size
);
247 for (i
= 0; i
< nb_numa_nodes
; i
++) {
248 for (j
= 0; j
< nb_numa_nodes
; j
++) {
249 idx
= (i
* nb_numa_nodes
+ j
) * 3;
250 matrix
[idx
+ 0] = cpu_to_be32(i
);
251 matrix
[idx
+ 1] = cpu_to_be32(j
);
252 matrix
[idx
+ 2] = cpu_to_be32(numa_info
[i
].distance
[j
]);
256 qemu_fdt_add_subnode(fdt
, "/distance-map");
257 qemu_fdt_setprop_string(fdt
, "/distance-map", "compatible",
258 "numa-distance-map-v1");
259 qemu_fdt_setprop(fdt
, "/distance-map", "distance-matrix",
265 static void fdt_add_timer_nodes(const VirtMachineState
*vms
)
267 /* On real hardware these interrupts are level-triggered.
268 * On KVM they were edge-triggered before host kernel version 4.4,
269 * and level-triggered afterwards.
270 * On emulated QEMU they are level-triggered.
272 * Getting the DTB info about them wrong is awkward for some
274 * pre-4.8 ignore the DT and leave the interrupt configured
275 * with whatever the GIC reset value (or the bootloader) left it at
276 * 4.8 before rc6 honour the incorrect data by programming it back
277 * into the GIC, causing problems
278 * 4.8rc6 and later ignore the DT and always write "level triggered"
281 * For backwards-compatibility, virt-2.8 and earlier will continue
282 * to say these are edge-triggered, but later machines will report
283 * the correct information.
286 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
287 uint32_t irqflags
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
289 if (vmc
->claim_edge_triggered_timers
) {
290 irqflags
= GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
;
293 if (vms
->gic_version
== 2) {
294 irqflags
= deposit32(irqflags
, GIC_FDT_IRQ_PPI_CPU_START
,
295 GIC_FDT_IRQ_PPI_CPU_WIDTH
,
296 (1 << vms
->smp_cpus
) - 1);
299 qemu_fdt_add_subnode(vms
->fdt
, "/timer");
301 armcpu
= ARM_CPU(qemu_get_cpu(0));
302 if (arm_feature(&armcpu
->env
, ARM_FEATURE_V8
)) {
303 const char compat
[] = "arm,armv8-timer\0arm,armv7-timer";
304 qemu_fdt_setprop(vms
->fdt
, "/timer", "compatible",
305 compat
, sizeof(compat
));
307 qemu_fdt_setprop_string(vms
->fdt
, "/timer", "compatible",
310 qemu_fdt_setprop(vms
->fdt
, "/timer", "always-on", NULL
, 0);
311 qemu_fdt_setprop_cells(vms
->fdt
, "/timer", "interrupts",
312 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_S_EL1_IRQ
, irqflags
,
313 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_NS_EL1_IRQ
, irqflags
,
314 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_VIRT_IRQ
, irqflags
,
315 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_NS_EL2_IRQ
, irqflags
);
318 static void fdt_add_cpu_nodes(const VirtMachineState
*vms
)
322 const MachineState
*ms
= MACHINE(vms
);
325 * From Documentation/devicetree/bindings/arm/cpus.txt
326 * On ARM v8 64-bit systems value should be set to 2,
327 * that corresponds to the MPIDR_EL1 register size.
328 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
329 * in the system, #address-cells can be set to 1, since
330 * MPIDR_EL1[63:32] bits are not used for CPUs
333 * Here we actually don't know whether our system is 32- or 64-bit one.
334 * The simplest way to go is to examine affinity IDs of all our CPUs. If
335 * at least one of them has Aff3 populated, we set #address-cells to 2.
337 for (cpu
= 0; cpu
< vms
->smp_cpus
; cpu
++) {
338 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(cpu
));
340 if (armcpu
->mp_affinity
& ARM_AFF3_MASK
) {
346 qemu_fdt_add_subnode(vms
->fdt
, "/cpus");
347 qemu_fdt_setprop_cell(vms
->fdt
, "/cpus", "#address-cells", addr_cells
);
348 qemu_fdt_setprop_cell(vms
->fdt
, "/cpus", "#size-cells", 0x0);
350 for (cpu
= vms
->smp_cpus
- 1; cpu
>= 0; cpu
--) {
351 char *nodename
= g_strdup_printf("/cpus/cpu@%d", cpu
);
352 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(cpu
));
353 CPUState
*cs
= CPU(armcpu
);
355 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
356 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "device_type", "cpu");
357 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
358 armcpu
->dtb_compatible
);
360 if (vms
->psci_conduit
!= QEMU_PSCI_CONDUIT_DISABLED
361 && vms
->smp_cpus
> 1) {
362 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
363 "enable-method", "psci");
366 if (addr_cells
== 2) {
367 qemu_fdt_setprop_u64(vms
->fdt
, nodename
, "reg",
368 armcpu
->mp_affinity
);
370 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "reg",
371 armcpu
->mp_affinity
);
374 if (ms
->possible_cpus
->cpus
[cs
->cpu_index
].props
.has_node_id
) {
375 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "numa-node-id",
376 ms
->possible_cpus
->cpus
[cs
->cpu_index
].props
.node_id
);
383 static void fdt_add_its_gic_node(VirtMachineState
*vms
)
387 vms
->msi_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
388 nodename
= g_strdup_printf("/intc/its@%" PRIx64
,
389 vms
->memmap
[VIRT_GIC_ITS
].base
);
390 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
391 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
393 qemu_fdt_setprop(vms
->fdt
, nodename
, "msi-controller", NULL
, 0);
394 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
395 2, vms
->memmap
[VIRT_GIC_ITS
].base
,
396 2, vms
->memmap
[VIRT_GIC_ITS
].size
);
397 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "phandle", vms
->msi_phandle
);
401 static void fdt_add_v2m_gic_node(VirtMachineState
*vms
)
405 nodename
= g_strdup_printf("/intc/v2m@%" PRIx64
,
406 vms
->memmap
[VIRT_GIC_V2M
].base
);
407 vms
->msi_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
408 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
409 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
410 "arm,gic-v2m-frame");
411 qemu_fdt_setprop(vms
->fdt
, nodename
, "msi-controller", NULL
, 0);
412 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
413 2, vms
->memmap
[VIRT_GIC_V2M
].base
,
414 2, vms
->memmap
[VIRT_GIC_V2M
].size
);
415 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "phandle", vms
->msi_phandle
);
419 static void fdt_add_gic_node(VirtMachineState
*vms
)
423 vms
->gic_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
424 qemu_fdt_setprop_cell(vms
->fdt
, "/", "interrupt-parent", vms
->gic_phandle
);
426 nodename
= g_strdup_printf("/intc@%" PRIx64
,
427 vms
->memmap
[VIRT_GIC_DIST
].base
);
428 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
429 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#interrupt-cells", 3);
430 qemu_fdt_setprop(vms
->fdt
, nodename
, "interrupt-controller", NULL
, 0);
431 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#address-cells", 0x2);
432 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#size-cells", 0x2);
433 qemu_fdt_setprop(vms
->fdt
, nodename
, "ranges", NULL
, 0);
434 if (vms
->gic_version
== 3) {
435 int nb_redist_regions
= virt_gicv3_redist_region_count(vms
);
437 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
440 qemu_fdt_setprop_cell(vms
->fdt
, nodename
,
441 "#redistributor-regions", nb_redist_regions
);
443 if (nb_redist_regions
== 1) {
444 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
445 2, vms
->memmap
[VIRT_GIC_DIST
].base
,
446 2, vms
->memmap
[VIRT_GIC_DIST
].size
,
447 2, vms
->memmap
[VIRT_GIC_REDIST
].base
,
448 2, vms
->memmap
[VIRT_GIC_REDIST
].size
);
450 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
451 2, vms
->memmap
[VIRT_GIC_DIST
].base
,
452 2, vms
->memmap
[VIRT_GIC_DIST
].size
,
453 2, vms
->memmap
[VIRT_GIC_REDIST
].base
,
454 2, vms
->memmap
[VIRT_GIC_REDIST
].size
,
455 2, vms
->memmap
[VIRT_HIGH_GIC_REDIST2
].base
,
456 2, vms
->memmap
[VIRT_HIGH_GIC_REDIST2
].size
);
460 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
461 GIC_FDT_IRQ_TYPE_PPI
, ARCH_GIC_MAINT_IRQ
,
462 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
465 /* 'cortex-a15-gic' means 'GIC v2' */
466 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
467 "arm,cortex-a15-gic");
469 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
470 2, vms
->memmap
[VIRT_GIC_DIST
].base
,
471 2, vms
->memmap
[VIRT_GIC_DIST
].size
,
472 2, vms
->memmap
[VIRT_GIC_CPU
].base
,
473 2, vms
->memmap
[VIRT_GIC_CPU
].size
);
475 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
476 2, vms
->memmap
[VIRT_GIC_DIST
].base
,
477 2, vms
->memmap
[VIRT_GIC_DIST
].size
,
478 2, vms
->memmap
[VIRT_GIC_CPU
].base
,
479 2, vms
->memmap
[VIRT_GIC_CPU
].size
,
480 2, vms
->memmap
[VIRT_GIC_HYP
].base
,
481 2, vms
->memmap
[VIRT_GIC_HYP
].size
,
482 2, vms
->memmap
[VIRT_GIC_VCPU
].base
,
483 2, vms
->memmap
[VIRT_GIC_VCPU
].size
);
484 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
485 GIC_FDT_IRQ_TYPE_PPI
, ARCH_GIC_MAINT_IRQ
,
486 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
490 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "phandle", vms
->gic_phandle
);
494 static void fdt_add_pmu_nodes(const VirtMachineState
*vms
)
498 uint32_t irqflags
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
501 armcpu
= ARM_CPU(cpu
);
502 if (!arm_feature(&armcpu
->env
, ARM_FEATURE_PMU
)) {
506 if (kvm_irqchip_in_kernel()) {
507 kvm_arm_pmu_set_irq(cpu
, PPI(VIRTUAL_PMU_IRQ
));
509 kvm_arm_pmu_init(cpu
);
513 if (vms
->gic_version
== 2) {
514 irqflags
= deposit32(irqflags
, GIC_FDT_IRQ_PPI_CPU_START
,
515 GIC_FDT_IRQ_PPI_CPU_WIDTH
,
516 (1 << vms
->smp_cpus
) - 1);
519 armcpu
= ARM_CPU(qemu_get_cpu(0));
520 qemu_fdt_add_subnode(vms
->fdt
, "/pmu");
521 if (arm_feature(&armcpu
->env
, ARM_FEATURE_V8
)) {
522 const char compat
[] = "arm,armv8-pmuv3";
523 qemu_fdt_setprop(vms
->fdt
, "/pmu", "compatible",
524 compat
, sizeof(compat
));
525 qemu_fdt_setprop_cells(vms
->fdt
, "/pmu", "interrupts",
526 GIC_FDT_IRQ_TYPE_PPI
, VIRTUAL_PMU_IRQ
, irqflags
);
530 static void create_its(VirtMachineState
*vms
, DeviceState
*gicdev
)
532 const char *itsclass
= its_class_name();
536 /* Do nothing if not supported */
540 dev
= qdev_create(NULL
, itsclass
);
542 object_property_set_link(OBJECT(dev
), OBJECT(gicdev
), "parent-gicv3",
544 qdev_init_nofail(dev
);
545 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, vms
->memmap
[VIRT_GIC_ITS
].base
);
547 fdt_add_its_gic_node(vms
);
550 static void create_v2m(VirtMachineState
*vms
, qemu_irq
*pic
)
553 int irq
= vms
->irqmap
[VIRT_GIC_V2M
];
556 dev
= qdev_create(NULL
, "arm-gicv2m");
557 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, vms
->memmap
[VIRT_GIC_V2M
].base
);
558 qdev_prop_set_uint32(dev
, "base-spi", irq
);
559 qdev_prop_set_uint32(dev
, "num-spi", NUM_GICV2M_SPIS
);
560 qdev_init_nofail(dev
);
562 for (i
= 0; i
< NUM_GICV2M_SPIS
; i
++) {
563 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
, pic
[irq
+ i
]);
566 fdt_add_v2m_gic_node(vms
);
569 static void create_gic(VirtMachineState
*vms
, qemu_irq
*pic
)
571 /* We create a standalone GIC */
573 SysBusDevice
*gicbusdev
;
575 int type
= vms
->gic_version
, i
;
576 uint32_t nb_redist_regions
= 0;
578 gictype
= (type
== 3) ? gicv3_class_name() : gic_class_name();
580 gicdev
= qdev_create(NULL
, gictype
);
581 qdev_prop_set_uint32(gicdev
, "revision", type
);
582 qdev_prop_set_uint32(gicdev
, "num-cpu", smp_cpus
);
583 /* Note that the num-irq property counts both internal and external
584 * interrupts; there are always 32 of the former (mandated by GIC spec).
586 qdev_prop_set_uint32(gicdev
, "num-irq", NUM_IRQS
+ 32);
587 if (!kvm_irqchip_in_kernel()) {
588 qdev_prop_set_bit(gicdev
, "has-security-extensions", vms
->secure
);
592 uint32_t redist0_capacity
=
593 vms
->memmap
[VIRT_GIC_REDIST
].size
/ GICV3_REDIST_SIZE
;
594 uint32_t redist0_count
= MIN(smp_cpus
, redist0_capacity
);
596 nb_redist_regions
= virt_gicv3_redist_region_count(vms
);
598 qdev_prop_set_uint32(gicdev
, "len-redist-region-count",
600 qdev_prop_set_uint32(gicdev
, "redist-region-count[0]", redist0_count
);
602 if (nb_redist_regions
== 2) {
603 uint32_t redist1_capacity
=
604 vms
->memmap
[VIRT_HIGH_GIC_REDIST2
].size
/ GICV3_REDIST_SIZE
;
606 qdev_prop_set_uint32(gicdev
, "redist-region-count[1]",
607 MIN(smp_cpus
- redist0_count
, redist1_capacity
));
610 if (!kvm_irqchip_in_kernel()) {
611 qdev_prop_set_bit(gicdev
, "has-virtualization-extensions",
615 qdev_init_nofail(gicdev
);
616 gicbusdev
= SYS_BUS_DEVICE(gicdev
);
617 sysbus_mmio_map(gicbusdev
, 0, vms
->memmap
[VIRT_GIC_DIST
].base
);
619 sysbus_mmio_map(gicbusdev
, 1, vms
->memmap
[VIRT_GIC_REDIST
].base
);
620 if (nb_redist_regions
== 2) {
621 sysbus_mmio_map(gicbusdev
, 2,
622 vms
->memmap
[VIRT_HIGH_GIC_REDIST2
].base
);
625 sysbus_mmio_map(gicbusdev
, 1, vms
->memmap
[VIRT_GIC_CPU
].base
);
627 sysbus_mmio_map(gicbusdev
, 2, vms
->memmap
[VIRT_GIC_HYP
].base
);
628 sysbus_mmio_map(gicbusdev
, 3, vms
->memmap
[VIRT_GIC_VCPU
].base
);
632 /* Wire the outputs from each CPU's generic timer and the GICv3
633 * maintenance interrupt signal to the appropriate GIC PPI inputs,
634 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
636 for (i
= 0; i
< smp_cpus
; i
++) {
637 DeviceState
*cpudev
= DEVICE(qemu_get_cpu(i
));
638 int ppibase
= NUM_IRQS
+ i
* GIC_INTERNAL
+ GIC_NR_SGIS
;
640 /* Mapping from the output timer irq lines from the CPU to the
641 * GIC PPI inputs we use for the virt board.
643 const int timer_irq
[] = {
644 [GTIMER_PHYS
] = ARCH_TIMER_NS_EL1_IRQ
,
645 [GTIMER_VIRT
] = ARCH_TIMER_VIRT_IRQ
,
646 [GTIMER_HYP
] = ARCH_TIMER_NS_EL2_IRQ
,
647 [GTIMER_SEC
] = ARCH_TIMER_S_EL1_IRQ
,
650 for (irq
= 0; irq
< ARRAY_SIZE(timer_irq
); irq
++) {
651 qdev_connect_gpio_out(cpudev
, irq
,
652 qdev_get_gpio_in(gicdev
,
653 ppibase
+ timer_irq
[irq
]));
657 qemu_irq irq
= qdev_get_gpio_in(gicdev
,
658 ppibase
+ ARCH_GIC_MAINT_IRQ
);
659 qdev_connect_gpio_out_named(cpudev
, "gicv3-maintenance-interrupt",
661 } else if (vms
->virt
) {
662 qemu_irq irq
= qdev_get_gpio_in(gicdev
,
663 ppibase
+ ARCH_GIC_MAINT_IRQ
);
664 sysbus_connect_irq(gicbusdev
, i
+ 4 * smp_cpus
, irq
);
667 qdev_connect_gpio_out_named(cpudev
, "pmu-interrupt", 0,
668 qdev_get_gpio_in(gicdev
, ppibase
671 sysbus_connect_irq(gicbusdev
, i
, qdev_get_gpio_in(cpudev
, ARM_CPU_IRQ
));
672 sysbus_connect_irq(gicbusdev
, i
+ smp_cpus
,
673 qdev_get_gpio_in(cpudev
, ARM_CPU_FIQ
));
674 sysbus_connect_irq(gicbusdev
, i
+ 2 * smp_cpus
,
675 qdev_get_gpio_in(cpudev
, ARM_CPU_VIRQ
));
676 sysbus_connect_irq(gicbusdev
, i
+ 3 * smp_cpus
,
677 qdev_get_gpio_in(cpudev
, ARM_CPU_VFIQ
));
680 for (i
= 0; i
< NUM_IRQS
; i
++) {
681 pic
[i
] = qdev_get_gpio_in(gicdev
, i
);
684 fdt_add_gic_node(vms
);
686 if (type
== 3 && vms
->its
) {
687 create_its(vms
, gicdev
);
688 } else if (type
== 2) {
689 create_v2m(vms
, pic
);
693 static void create_uart(const VirtMachineState
*vms
, qemu_irq
*pic
, int uart
,
694 MemoryRegion
*mem
, Chardev
*chr
)
697 hwaddr base
= vms
->memmap
[uart
].base
;
698 hwaddr size
= vms
->memmap
[uart
].size
;
699 int irq
= vms
->irqmap
[uart
];
700 const char compat
[] = "arm,pl011\0arm,primecell";
701 const char clocknames
[] = "uartclk\0apb_pclk";
702 DeviceState
*dev
= qdev_create(NULL
, "pl011");
703 SysBusDevice
*s
= SYS_BUS_DEVICE(dev
);
705 qdev_prop_set_chr(dev
, "chardev", chr
);
706 qdev_init_nofail(dev
);
707 memory_region_add_subregion(mem
, base
,
708 sysbus_mmio_get_region(s
, 0));
709 sysbus_connect_irq(s
, 0, pic
[irq
]);
711 nodename
= g_strdup_printf("/pl011@%" PRIx64
, base
);
712 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
713 /* Note that we can't use setprop_string because of the embedded NUL */
714 qemu_fdt_setprop(vms
->fdt
, nodename
, "compatible",
715 compat
, sizeof(compat
));
716 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
718 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
719 GIC_FDT_IRQ_TYPE_SPI
, irq
,
720 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
721 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "clocks",
722 vms
->clock_phandle
, vms
->clock_phandle
);
723 qemu_fdt_setprop(vms
->fdt
, nodename
, "clock-names",
724 clocknames
, sizeof(clocknames
));
726 if (uart
== VIRT_UART
) {
727 qemu_fdt_setprop_string(vms
->fdt
, "/chosen", "stdout-path", nodename
);
729 /* Mark as not usable by the normal world */
730 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "status", "disabled");
731 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "secure-status", "okay");
733 qemu_fdt_add_subnode(vms
->fdt
, "/secure-chosen");
734 qemu_fdt_setprop_string(vms
->fdt
, "/secure-chosen", "stdout-path",
741 static void create_rtc(const VirtMachineState
*vms
, qemu_irq
*pic
)
744 hwaddr base
= vms
->memmap
[VIRT_RTC
].base
;
745 hwaddr size
= vms
->memmap
[VIRT_RTC
].size
;
746 int irq
= vms
->irqmap
[VIRT_RTC
];
747 const char compat
[] = "arm,pl031\0arm,primecell";
749 sysbus_create_simple("pl031", base
, pic
[irq
]);
751 nodename
= g_strdup_printf("/pl031@%" PRIx64
, base
);
752 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
753 qemu_fdt_setprop(vms
->fdt
, nodename
, "compatible", compat
, sizeof(compat
));
754 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
756 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
757 GIC_FDT_IRQ_TYPE_SPI
, irq
,
758 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
759 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "clocks", vms
->clock_phandle
);
760 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "clock-names", "apb_pclk");
764 static DeviceState
*gpio_key_dev
;
765 static void virt_powerdown_req(Notifier
*n
, void *opaque
)
767 /* use gpio Pin 3 for power button event */
768 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev
, 0), 1);
771 static Notifier virt_system_powerdown_notifier
= {
772 .notify
= virt_powerdown_req
775 static void create_gpio(const VirtMachineState
*vms
, qemu_irq
*pic
)
778 DeviceState
*pl061_dev
;
779 hwaddr base
= vms
->memmap
[VIRT_GPIO
].base
;
780 hwaddr size
= vms
->memmap
[VIRT_GPIO
].size
;
781 int irq
= vms
->irqmap
[VIRT_GPIO
];
782 const char compat
[] = "arm,pl061\0arm,primecell";
784 pl061_dev
= sysbus_create_simple("pl061", base
, pic
[irq
]);
786 uint32_t phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
787 nodename
= g_strdup_printf("/pl061@%" PRIx64
, base
);
788 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
789 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
791 qemu_fdt_setprop(vms
->fdt
, nodename
, "compatible", compat
, sizeof(compat
));
792 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#gpio-cells", 2);
793 qemu_fdt_setprop(vms
->fdt
, nodename
, "gpio-controller", NULL
, 0);
794 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
795 GIC_FDT_IRQ_TYPE_SPI
, irq
,
796 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
797 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "clocks", vms
->clock_phandle
);
798 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "clock-names", "apb_pclk");
799 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "phandle", phandle
);
801 gpio_key_dev
= sysbus_create_simple("gpio-key", -1,
802 qdev_get_gpio_in(pl061_dev
, 3));
803 qemu_fdt_add_subnode(vms
->fdt
, "/gpio-keys");
804 qemu_fdt_setprop_string(vms
->fdt
, "/gpio-keys", "compatible", "gpio-keys");
805 qemu_fdt_setprop_cell(vms
->fdt
, "/gpio-keys", "#size-cells", 0);
806 qemu_fdt_setprop_cell(vms
->fdt
, "/gpio-keys", "#address-cells", 1);
808 qemu_fdt_add_subnode(vms
->fdt
, "/gpio-keys/poweroff");
809 qemu_fdt_setprop_string(vms
->fdt
, "/gpio-keys/poweroff",
810 "label", "GPIO Key Poweroff");
811 qemu_fdt_setprop_cell(vms
->fdt
, "/gpio-keys/poweroff", "linux,code",
813 qemu_fdt_setprop_cells(vms
->fdt
, "/gpio-keys/poweroff",
814 "gpios", phandle
, 3, 0);
816 /* connect powerdown request */
817 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier
);
822 static void create_virtio_devices(const VirtMachineState
*vms
, qemu_irq
*pic
)
825 hwaddr size
= vms
->memmap
[VIRT_MMIO
].size
;
827 /* We create the transports in forwards order. Since qbus_realize()
828 * prepends (not appends) new child buses, the incrementing loop below will
829 * create a list of virtio-mmio buses with decreasing base addresses.
831 * When a -device option is processed from the command line,
832 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
833 * order. The upshot is that -device options in increasing command line
834 * order are mapped to virtio-mmio buses with decreasing base addresses.
836 * When this code was originally written, that arrangement ensured that the
837 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
838 * the first -device on the command line. (The end-to-end order is a
839 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
840 * guest kernel's name-to-address assignment strategy.)
842 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
843 * the message, if not necessarily the code, of commit 70161ff336.
844 * Therefore the loop now establishes the inverse of the original intent.
846 * Unfortunately, we can't counteract the kernel change by reversing the
847 * loop; it would break existing command lines.
849 * In any case, the kernel makes no guarantee about the stability of
850 * enumeration order of virtio devices (as demonstrated by it changing
851 * between kernel versions). For reliable and stable identification
852 * of disks users must use UUIDs or similar mechanisms.
854 for (i
= 0; i
< NUM_VIRTIO_TRANSPORTS
; i
++) {
855 int irq
= vms
->irqmap
[VIRT_MMIO
] + i
;
856 hwaddr base
= vms
->memmap
[VIRT_MMIO
].base
+ i
* size
;
858 sysbus_create_simple("virtio-mmio", base
, pic
[irq
]);
861 /* We add dtb nodes in reverse order so that they appear in the finished
862 * device tree lowest address first.
864 * Note that this mapping is independent of the loop above. The previous
865 * loop influences virtio device to virtio transport assignment, whereas
866 * this loop controls how virtio transports are laid out in the dtb.
868 for (i
= NUM_VIRTIO_TRANSPORTS
- 1; i
>= 0; i
--) {
870 int irq
= vms
->irqmap
[VIRT_MMIO
] + i
;
871 hwaddr base
= vms
->memmap
[VIRT_MMIO
].base
+ i
* size
;
873 nodename
= g_strdup_printf("/virtio_mmio@%" PRIx64
, base
);
874 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
875 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
876 "compatible", "virtio,mmio");
877 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
879 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
880 GIC_FDT_IRQ_TYPE_SPI
, irq
,
881 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
);
882 qemu_fdt_setprop(vms
->fdt
, nodename
, "dma-coherent", NULL
, 0);
887 static void create_one_flash(const char *name
, hwaddr flashbase
,
888 hwaddr flashsize
, const char *file
,
889 MemoryRegion
*sysmem
)
891 /* Create and map a single flash device. We use the same
892 * parameters as the flash devices on the Versatile Express board.
894 DriveInfo
*dinfo
= drive_get_next(IF_PFLASH
);
895 DeviceState
*dev
= qdev_create(NULL
, "cfi.pflash01");
896 SysBusDevice
*sbd
= SYS_BUS_DEVICE(dev
);
897 const uint64_t sectorlength
= 256 * 1024;
900 qdev_prop_set_drive(dev
, "drive", blk_by_legacy_dinfo(dinfo
),
904 qdev_prop_set_uint32(dev
, "num-blocks", flashsize
/ sectorlength
);
905 qdev_prop_set_uint64(dev
, "sector-length", sectorlength
);
906 qdev_prop_set_uint8(dev
, "width", 4);
907 qdev_prop_set_uint8(dev
, "device-width", 2);
908 qdev_prop_set_bit(dev
, "big-endian", false);
909 qdev_prop_set_uint16(dev
, "id0", 0x89);
910 qdev_prop_set_uint16(dev
, "id1", 0x18);
911 qdev_prop_set_uint16(dev
, "id2", 0x00);
912 qdev_prop_set_uint16(dev
, "id3", 0x00);
913 qdev_prop_set_string(dev
, "name", name
);
914 qdev_init_nofail(dev
);
916 memory_region_add_subregion(sysmem
, flashbase
,
917 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 0));
923 if (drive_get(IF_PFLASH
, 0, 0)) {
924 error_report("The contents of the first flash device may be "
925 "specified with -bios or with -drive if=pflash... "
926 "but you cannot use both options at once");
929 fn
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, file
);
931 error_report("Could not find ROM image '%s'", file
);
934 image_size
= load_image_mr(fn
, sysbus_mmio_get_region(sbd
, 0));
936 if (image_size
< 0) {
937 error_report("Could not load ROM image '%s'", file
);
943 static void create_flash(const VirtMachineState
*vms
,
944 MemoryRegion
*sysmem
,
945 MemoryRegion
*secure_sysmem
)
947 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
948 * Any file passed via -bios goes in the first of these.
949 * sysmem is the system memory space. secure_sysmem is the secure view
950 * of the system, and the first flash device should be made visible only
951 * there. The second flash device is visible to both secure and nonsecure.
952 * If sysmem == secure_sysmem this means there is no separate Secure
953 * address space and both flash devices are generally visible.
955 hwaddr flashsize
= vms
->memmap
[VIRT_FLASH
].size
/ 2;
956 hwaddr flashbase
= vms
->memmap
[VIRT_FLASH
].base
;
959 create_one_flash("virt.flash0", flashbase
, flashsize
,
960 bios_name
, secure_sysmem
);
961 create_one_flash("virt.flash1", flashbase
+ flashsize
, flashsize
,
964 if (sysmem
== secure_sysmem
) {
965 /* Report both flash devices as a single node in the DT */
966 nodename
= g_strdup_printf("/flash@%" PRIx64
, flashbase
);
967 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
968 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible", "cfi-flash");
969 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
970 2, flashbase
, 2, flashsize
,
971 2, flashbase
+ flashsize
, 2, flashsize
);
972 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "bank-width", 4);
975 /* Report the devices as separate nodes so we can mark one as
976 * only visible to the secure world.
978 nodename
= g_strdup_printf("/secflash@%" PRIx64
, flashbase
);
979 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
980 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible", "cfi-flash");
981 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
982 2, flashbase
, 2, flashsize
);
983 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "bank-width", 4);
984 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "status", "disabled");
985 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "secure-status", "okay");
988 nodename
= g_strdup_printf("/flash@%" PRIx64
, flashbase
);
989 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
990 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible", "cfi-flash");
991 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
992 2, flashbase
+ flashsize
, 2, flashsize
);
993 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "bank-width", 4);
998 static FWCfgState
*create_fw_cfg(const VirtMachineState
*vms
, AddressSpace
*as
)
1000 hwaddr base
= vms
->memmap
[VIRT_FW_CFG
].base
;
1001 hwaddr size
= vms
->memmap
[VIRT_FW_CFG
].size
;
1005 fw_cfg
= fw_cfg_init_mem_wide(base
+ 8, base
, 8, base
+ 16, as
);
1006 fw_cfg_add_i16(fw_cfg
, FW_CFG_NB_CPUS
, (uint16_t)smp_cpus
);
1008 nodename
= g_strdup_printf("/fw-cfg@%" PRIx64
, base
);
1009 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
1010 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
1011 "compatible", "qemu,fw-cfg-mmio");
1012 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
1014 qemu_fdt_setprop(vms
->fdt
, nodename
, "dma-coherent", NULL
, 0);
1019 static void create_pcie_irq_map(const VirtMachineState
*vms
,
1020 uint32_t gic_phandle
,
1021 int first_irq
, const char *nodename
)
1024 uint32_t full_irq_map
[4 * 4 * 10] = { 0 };
1025 uint32_t *irq_map
= full_irq_map
;
1027 for (devfn
= 0; devfn
<= 0x18; devfn
+= 0x8) {
1028 for (pin
= 0; pin
< 4; pin
++) {
1029 int irq_type
= GIC_FDT_IRQ_TYPE_SPI
;
1030 int irq_nr
= first_irq
+ ((pin
+ PCI_SLOT(devfn
)) % PCI_NUM_PINS
);
1031 int irq_level
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
1035 devfn
<< 8, 0, 0, /* devfn */
1036 pin
+ 1, /* PCI pin */
1037 gic_phandle
, 0, 0, irq_type
, irq_nr
, irq_level
}; /* GIC irq */
1039 /* Convert map to big endian */
1040 for (i
= 0; i
< 10; i
++) {
1041 irq_map
[i
] = cpu_to_be32(map
[i
]);
1047 qemu_fdt_setprop(vms
->fdt
, nodename
, "interrupt-map",
1048 full_irq_map
, sizeof(full_irq_map
));
1050 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupt-map-mask",
1051 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
1055 static void create_smmu(const VirtMachineState
*vms
, qemu_irq
*pic
,
1059 const char compat
[] = "arm,smmu-v3";
1060 int irq
= vms
->irqmap
[VIRT_SMMU
];
1062 hwaddr base
= vms
->memmap
[VIRT_SMMU
].base
;
1063 hwaddr size
= vms
->memmap
[VIRT_SMMU
].size
;
1064 const char irq_names
[] = "eventq\0priq\0cmdq-sync\0gerror";
1067 if (vms
->iommu
!= VIRT_IOMMU_SMMUV3
|| !vms
->iommu_phandle
) {
1071 dev
= qdev_create(NULL
, "arm-smmuv3");
1073 object_property_set_link(OBJECT(dev
), OBJECT(bus
), "primary-bus",
1075 qdev_init_nofail(dev
);
1076 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, base
);
1077 for (i
= 0; i
< NUM_SMMU_IRQS
; i
++) {
1078 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
, pic
[irq
+ i
]);
1081 node
= g_strdup_printf("/smmuv3@%" PRIx64
, base
);
1082 qemu_fdt_add_subnode(vms
->fdt
, node
);
1083 qemu_fdt_setprop(vms
->fdt
, node
, "compatible", compat
, sizeof(compat
));
1084 qemu_fdt_setprop_sized_cells(vms
->fdt
, node
, "reg", 2, base
, 2, size
);
1086 qemu_fdt_setprop_cells(vms
->fdt
, node
, "interrupts",
1087 GIC_FDT_IRQ_TYPE_SPI
, irq
, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
,
1088 GIC_FDT_IRQ_TYPE_SPI
, irq
+ 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
,
1089 GIC_FDT_IRQ_TYPE_SPI
, irq
+ 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
,
1090 GIC_FDT_IRQ_TYPE_SPI
, irq
+ 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
);
1092 qemu_fdt_setprop(vms
->fdt
, node
, "interrupt-names", irq_names
,
1095 qemu_fdt_setprop_cell(vms
->fdt
, node
, "clocks", vms
->clock_phandle
);
1096 qemu_fdt_setprop_string(vms
->fdt
, node
, "clock-names", "apb_pclk");
1097 qemu_fdt_setprop(vms
->fdt
, node
, "dma-coherent", NULL
, 0);
1099 qemu_fdt_setprop_cell(vms
->fdt
, node
, "#iommu-cells", 1);
1101 qemu_fdt_setprop_cell(vms
->fdt
, node
, "phandle", vms
->iommu_phandle
);
1105 static void create_pcie(VirtMachineState
*vms
, qemu_irq
*pic
)
1107 hwaddr base_mmio
= vms
->memmap
[VIRT_PCIE_MMIO
].base
;
1108 hwaddr size_mmio
= vms
->memmap
[VIRT_PCIE_MMIO
].size
;
1109 hwaddr base_mmio_high
= vms
->memmap
[VIRT_HIGH_PCIE_MMIO
].base
;
1110 hwaddr size_mmio_high
= vms
->memmap
[VIRT_HIGH_PCIE_MMIO
].size
;
1111 hwaddr base_pio
= vms
->memmap
[VIRT_PCIE_PIO
].base
;
1112 hwaddr size_pio
= vms
->memmap
[VIRT_PCIE_PIO
].size
;
1113 hwaddr base_ecam
, size_ecam
;
1114 hwaddr base
= base_mmio
;
1116 int irq
= vms
->irqmap
[VIRT_PCIE
];
1117 MemoryRegion
*mmio_alias
;
1118 MemoryRegion
*mmio_reg
;
1119 MemoryRegion
*ecam_alias
;
1120 MemoryRegion
*ecam_reg
;
1126 dev
= qdev_create(NULL
, TYPE_GPEX_HOST
);
1127 qdev_init_nofail(dev
);
1129 ecam_id
= VIRT_ECAM_ID(vms
->highmem_ecam
);
1130 base_ecam
= vms
->memmap
[ecam_id
].base
;
1131 size_ecam
= vms
->memmap
[ecam_id
].size
;
1132 nr_pcie_buses
= size_ecam
/ PCIE_MMCFG_SIZE_MIN
;
1133 /* Map only the first size_ecam bytes of ECAM space */
1134 ecam_alias
= g_new0(MemoryRegion
, 1);
1135 ecam_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 0);
1136 memory_region_init_alias(ecam_alias
, OBJECT(dev
), "pcie-ecam",
1137 ecam_reg
, 0, size_ecam
);
1138 memory_region_add_subregion(get_system_memory(), base_ecam
, ecam_alias
);
1140 /* Map the MMIO window into system address space so as to expose
1141 * the section of PCI MMIO space which starts at the same base address
1142 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1145 mmio_alias
= g_new0(MemoryRegion
, 1);
1146 mmio_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 1);
1147 memory_region_init_alias(mmio_alias
, OBJECT(dev
), "pcie-mmio",
1148 mmio_reg
, base_mmio
, size_mmio
);
1149 memory_region_add_subregion(get_system_memory(), base_mmio
, mmio_alias
);
1152 /* Map high MMIO space */
1153 MemoryRegion
*high_mmio_alias
= g_new0(MemoryRegion
, 1);
1155 memory_region_init_alias(high_mmio_alias
, OBJECT(dev
), "pcie-mmio-high",
1156 mmio_reg
, base_mmio_high
, size_mmio_high
);
1157 memory_region_add_subregion(get_system_memory(), base_mmio_high
,
1161 /* Map IO port space */
1162 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 2, base_pio
);
1164 for (i
= 0; i
< GPEX_NUM_IRQS
; i
++) {
1165 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
, pic
[irq
+ i
]);
1166 gpex_set_irq_num(GPEX_HOST(dev
), i
, irq
+ i
);
1169 pci
= PCI_HOST_BRIDGE(dev
);
1171 for (i
= 0; i
< nb_nics
; i
++) {
1172 NICInfo
*nd
= &nd_table
[i
];
1175 nd
->model
= g_strdup("virtio");
1178 pci_nic_init_nofail(nd
, pci
->bus
, nd
->model
, NULL
);
1182 nodename
= g_strdup_printf("/pcie@%" PRIx64
, base
);
1183 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
1184 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
1185 "compatible", "pci-host-ecam-generic");
1186 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "device_type", "pci");
1187 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#address-cells", 3);
1188 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#size-cells", 2);
1189 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "linux,pci-domain", 0);
1190 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "bus-range", 0,
1192 qemu_fdt_setprop(vms
->fdt
, nodename
, "dma-coherent", NULL
, 0);
1194 if (vms
->msi_phandle
) {
1195 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "msi-parent",
1199 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
1200 2, base_ecam
, 2, size_ecam
);
1203 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "ranges",
1204 1, FDT_PCI_RANGE_IOPORT
, 2, 0,
1205 2, base_pio
, 2, size_pio
,
1206 1, FDT_PCI_RANGE_MMIO
, 2, base_mmio
,
1207 2, base_mmio
, 2, size_mmio
,
1208 1, FDT_PCI_RANGE_MMIO_64BIT
,
1210 2, base_mmio_high
, 2, size_mmio_high
);
1212 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "ranges",
1213 1, FDT_PCI_RANGE_IOPORT
, 2, 0,
1214 2, base_pio
, 2, size_pio
,
1215 1, FDT_PCI_RANGE_MMIO
, 2, base_mmio
,
1216 2, base_mmio
, 2, size_mmio
);
1219 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#interrupt-cells", 1);
1220 create_pcie_irq_map(vms
, vms
->gic_phandle
, irq
, nodename
);
1223 vms
->iommu_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
1225 create_smmu(vms
, pic
, pci
->bus
);
1227 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "iommu-map",
1228 0x0, vms
->iommu_phandle
, 0x0, 0x10000);
1234 static void create_platform_bus(VirtMachineState
*vms
, qemu_irq
*pic
)
1239 MemoryRegion
*sysmem
= get_system_memory();
1241 dev
= qdev_create(NULL
, TYPE_PLATFORM_BUS_DEVICE
);
1242 dev
->id
= TYPE_PLATFORM_BUS_DEVICE
;
1243 qdev_prop_set_uint32(dev
, "num_irqs", PLATFORM_BUS_NUM_IRQS
);
1244 qdev_prop_set_uint32(dev
, "mmio_size", vms
->memmap
[VIRT_PLATFORM_BUS
].size
);
1245 qdev_init_nofail(dev
);
1246 vms
->platform_bus_dev
= dev
;
1248 s
= SYS_BUS_DEVICE(dev
);
1249 for (i
= 0; i
< PLATFORM_BUS_NUM_IRQS
; i
++) {
1250 int irqn
= vms
->irqmap
[VIRT_PLATFORM_BUS
] + i
;
1251 sysbus_connect_irq(s
, i
, pic
[irqn
]);
1254 memory_region_add_subregion(sysmem
,
1255 vms
->memmap
[VIRT_PLATFORM_BUS
].base
,
1256 sysbus_mmio_get_region(s
, 0));
1259 static void create_secure_ram(VirtMachineState
*vms
,
1260 MemoryRegion
*secure_sysmem
)
1262 MemoryRegion
*secram
= g_new(MemoryRegion
, 1);
1264 hwaddr base
= vms
->memmap
[VIRT_SECURE_MEM
].base
;
1265 hwaddr size
= vms
->memmap
[VIRT_SECURE_MEM
].size
;
1267 memory_region_init_ram(secram
, NULL
, "virt.secure-ram", size
,
1269 memory_region_add_subregion(secure_sysmem
, base
, secram
);
1271 nodename
= g_strdup_printf("/secram@%" PRIx64
, base
);
1272 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
1273 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "device_type", "memory");
1274 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg", 2, base
, 2, size
);
1275 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "status", "disabled");
1276 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "secure-status", "okay");
1281 static void *machvirt_dtb(const struct arm_boot_info
*binfo
, int *fdt_size
)
1283 const VirtMachineState
*board
= container_of(binfo
, VirtMachineState
,
1286 *fdt_size
= board
->fdt_size
;
1290 static void virt_build_smbios(VirtMachineState
*vms
)
1292 MachineClass
*mc
= MACHINE_GET_CLASS(vms
);
1293 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
1294 uint8_t *smbios_tables
, *smbios_anchor
;
1295 size_t smbios_tables_len
, smbios_anchor_len
;
1296 const char *product
= "QEMU Virtual Machine";
1302 if (kvm_enabled()) {
1303 product
= "KVM Virtual Machine";
1306 smbios_set_defaults("QEMU", product
,
1307 vmc
->smbios_old_sys_ver
? "1.0" : mc
->name
, false,
1308 true, SMBIOS_ENTRY_POINT_30
);
1310 smbios_get_tables(NULL
, 0, &smbios_tables
, &smbios_tables_len
,
1311 &smbios_anchor
, &smbios_anchor_len
);
1313 if (smbios_anchor
) {
1314 fw_cfg_add_file(vms
->fw_cfg
, "etc/smbios/smbios-tables",
1315 smbios_tables
, smbios_tables_len
);
1316 fw_cfg_add_file(vms
->fw_cfg
, "etc/smbios/smbios-anchor",
1317 smbios_anchor
, smbios_anchor_len
);
1322 void virt_machine_done(Notifier
*notifier
, void *data
)
1324 VirtMachineState
*vms
= container_of(notifier
, VirtMachineState
,
1326 ARMCPU
*cpu
= ARM_CPU(first_cpu
);
1327 struct arm_boot_info
*info
= &vms
->bootinfo
;
1328 AddressSpace
*as
= arm_boot_address_space(cpu
, info
);
1331 * If the user provided a dtb, we assume the dynamic sysbus nodes
1332 * already are integrated there. This corresponds to a use case where
1333 * the dynamic sysbus nodes are complex and their generation is not yet
1334 * supported. In that case the user can take charge of the guest dt
1335 * while qemu takes charge of the qom stuff.
1337 if (info
->dtb_filename
== NULL
) {
1338 platform_bus_add_all_fdt_nodes(vms
->fdt
, "/intc",
1339 vms
->memmap
[VIRT_PLATFORM_BUS
].base
,
1340 vms
->memmap
[VIRT_PLATFORM_BUS
].size
,
1341 vms
->irqmap
[VIRT_PLATFORM_BUS
]);
1343 if (arm_load_dtb(info
->dtb_start
, info
, info
->dtb_limit
, as
) < 0) {
1347 virt_acpi_setup(vms
);
1348 virt_build_smbios(vms
);
1351 static uint64_t virt_cpu_mp_affinity(VirtMachineState
*vms
, int idx
)
1353 uint8_t clustersz
= ARM_DEFAULT_CPUS_PER_CLUSTER
;
1354 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
1356 if (!vmc
->disallow_affinity_adjustment
) {
1357 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1358 * GIC's target-list limitations. 32-bit KVM hosts currently
1359 * always create clusters of 4 CPUs, but that is expected to
1360 * change when they gain support for gicv3. When KVM is enabled
1361 * it will override the changes we make here, therefore our
1362 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1363 * and to improve SGI efficiency.
1365 if (vms
->gic_version
== 3) {
1366 clustersz
= GICV3_TARGETLIST_BITS
;
1368 clustersz
= GIC_TARGETLIST_BITS
;
1371 return arm_cpu_mp_affinity(idx
, clustersz
);
1374 static void virt_set_memmap(VirtMachineState
*vms
)
1376 MachineState
*ms
= MACHINE(vms
);
1377 hwaddr base
, device_memory_base
, device_memory_size
;
1380 vms
->memmap
= extended_memmap
;
1382 for (i
= 0; i
< ARRAY_SIZE(base_memmap
); i
++) {
1383 vms
->memmap
[i
] = base_memmap
[i
];
1386 if (ms
->ram_slots
> ACPI_MAX_RAM_SLOTS
) {
1387 error_report("unsupported number of memory slots: %"PRIu64
,
1393 * We compute the base of the high IO region depending on the
1394 * amount of initial and device memory. The device memory start/size
1395 * is aligned on 1GiB. We never put the high IO region below 256GiB
1396 * so that if maxram_size is < 255GiB we keep the legacy memory map.
1397 * The device region size assumes 1GiB page max alignment per slot.
1399 device_memory_base
=
1400 ROUND_UP(vms
->memmap
[VIRT_MEM
].base
+ ms
->ram_size
, GiB
);
1401 device_memory_size
= ms
->maxram_size
- ms
->ram_size
+ ms
->ram_slots
* GiB
;
1403 /* Base address of the high IO region */
1404 base
= device_memory_base
+ ROUND_UP(device_memory_size
, GiB
);
1405 if (base
< device_memory_base
) {
1406 error_report("maxmem/slots too huge");
1409 if (base
< vms
->memmap
[VIRT_MEM
].base
+ LEGACY_RAMLIMIT_BYTES
) {
1410 base
= vms
->memmap
[VIRT_MEM
].base
+ LEGACY_RAMLIMIT_BYTES
;
1413 for (i
= VIRT_LOWMEMMAP_LAST
; i
< ARRAY_SIZE(extended_memmap
); i
++) {
1414 hwaddr size
= extended_memmap
[i
].size
;
1416 base
= ROUND_UP(base
, size
);
1417 vms
->memmap
[i
].base
= base
;
1418 vms
->memmap
[i
].size
= size
;
1421 vms
->highest_gpa
= base
- 1;
1422 if (device_memory_size
> 0) {
1423 ms
->device_memory
= g_malloc0(sizeof(*ms
->device_memory
));
1424 ms
->device_memory
->base
= device_memory_base
;
1425 memory_region_init(&ms
->device_memory
->mr
, OBJECT(vms
),
1426 "device-memory", device_memory_size
);
1430 static void machvirt_init(MachineState
*machine
)
1432 VirtMachineState
*vms
= VIRT_MACHINE(machine
);
1433 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(machine
);
1434 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
1435 const CPUArchIdList
*possible_cpus
;
1436 qemu_irq pic
[NUM_IRQS
];
1437 MemoryRegion
*sysmem
= get_system_memory();
1438 MemoryRegion
*secure_sysmem
= NULL
;
1439 int n
, virt_max_cpus
;
1440 MemoryRegion
*ram
= g_new(MemoryRegion
, 1);
1441 bool firmware_loaded
= bios_name
|| drive_get(IF_PFLASH
, 0, 0);
1442 bool aarch64
= true;
1445 * In accelerated mode, the memory map is computed earlier in kvm_type()
1446 * to create a VM with the right number of IPA bits.
1449 virt_set_memmap(vms
);
1452 /* We can probe only here because during property set
1453 * KVM is not available yet
1455 if (vms
->gic_version
<= 0) {
1456 /* "host" or "max" */
1457 if (!kvm_enabled()) {
1458 if (vms
->gic_version
== 0) {
1459 error_report("gic-version=host requires KVM");
1462 /* "max": currently means 3 for TCG */
1463 vms
->gic_version
= 3;
1466 vms
->gic_version
= kvm_arm_vgic_probe();
1467 if (!vms
->gic_version
) {
1469 "Unable to determine GIC version supported by host");
1475 if (!cpu_type_valid(machine
->cpu_type
)) {
1476 error_report("mach-virt: CPU type %s not supported", machine
->cpu_type
);
1480 /* If we have an EL3 boot ROM then the assumption is that it will
1481 * implement PSCI itself, so disable QEMU's internal implementation
1482 * so it doesn't get in the way. Instead of starting secondary
1483 * CPUs in PSCI powerdown state we will start them all running and
1484 * let the boot ROM sort them out.
1485 * The usual case is that we do use QEMU's PSCI implementation;
1486 * if the guest has EL2 then we will use SMC as the conduit,
1487 * and otherwise we will use HVC (for backwards compatibility and
1488 * because if we're using KVM then we must use HVC).
1490 if (vms
->secure
&& firmware_loaded
) {
1491 vms
->psci_conduit
= QEMU_PSCI_CONDUIT_DISABLED
;
1492 } else if (vms
->virt
) {
1493 vms
->psci_conduit
= QEMU_PSCI_CONDUIT_SMC
;
1495 vms
->psci_conduit
= QEMU_PSCI_CONDUIT_HVC
;
1498 /* The maximum number of CPUs depends on the GIC version, or on how
1499 * many redistributors we can fit into the memory map.
1501 if (vms
->gic_version
== 3) {
1503 vms
->memmap
[VIRT_GIC_REDIST
].size
/ GICV3_REDIST_SIZE
;
1505 vms
->memmap
[VIRT_HIGH_GIC_REDIST2
].size
/ GICV3_REDIST_SIZE
;
1507 virt_max_cpus
= GIC_NCPU
;
1510 if (max_cpus
> virt_max_cpus
) {
1511 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1512 "supported by machine 'mach-virt' (%d)",
1513 max_cpus
, virt_max_cpus
);
1517 vms
->smp_cpus
= smp_cpus
;
1519 if (machine
->ram_size
> vms
->memmap
[VIRT_MEM
].size
) {
1520 error_report("mach-virt: cannot model more than %dGB RAM",
1521 LEGACY_RAMLIMIT_GB
);
1525 if (vms
->virt
&& kvm_enabled()) {
1526 error_report("mach-virt: KVM does not support providing "
1527 "Virtualization extensions to the guest CPU");
1532 if (kvm_enabled()) {
1533 error_report("mach-virt: KVM does not support Security extensions");
1537 /* The Secure view of the world is the same as the NonSecure,
1538 * but with a few extra devices. Create it as a container region
1539 * containing the system memory at low priority; any secure-only
1540 * devices go in at higher priority and take precedence.
1542 secure_sysmem
= g_new(MemoryRegion
, 1);
1543 memory_region_init(secure_sysmem
, OBJECT(machine
), "secure-memory",
1545 memory_region_add_subregion_overlap(secure_sysmem
, 0, sysmem
, -1);
1550 possible_cpus
= mc
->possible_cpu_arch_ids(machine
);
1551 for (n
= 0; n
< possible_cpus
->len
; n
++) {
1555 if (n
>= smp_cpus
) {
1559 cpuobj
= object_new(possible_cpus
->cpus
[n
].type
);
1560 object_property_set_int(cpuobj
, possible_cpus
->cpus
[n
].arch_id
,
1561 "mp-affinity", NULL
);
1566 numa_cpu_pre_plug(&possible_cpus
->cpus
[cs
->cpu_index
], DEVICE(cpuobj
),
1569 aarch64
&= object_property_get_bool(cpuobj
, "aarch64", NULL
);
1572 object_property_set_bool(cpuobj
, false, "has_el3", NULL
);
1575 if (!vms
->virt
&& object_property_find(cpuobj
, "has_el2", NULL
)) {
1576 object_property_set_bool(cpuobj
, false, "has_el2", NULL
);
1579 if (vms
->psci_conduit
!= QEMU_PSCI_CONDUIT_DISABLED
) {
1580 object_property_set_int(cpuobj
, vms
->psci_conduit
,
1581 "psci-conduit", NULL
);
1583 /* Secondary CPUs start in PSCI powered-down state */
1585 object_property_set_bool(cpuobj
, true,
1586 "start-powered-off", NULL
);
1590 if (vmc
->no_pmu
&& object_property_find(cpuobj
, "pmu", NULL
)) {
1591 object_property_set_bool(cpuobj
, false, "pmu", NULL
);
1594 if (object_property_find(cpuobj
, "reset-cbar", NULL
)) {
1595 object_property_set_int(cpuobj
, vms
->memmap
[VIRT_CPUPERIPHS
].base
,
1596 "reset-cbar", &error_abort
);
1599 object_property_set_link(cpuobj
, OBJECT(sysmem
), "memory",
1602 object_property_set_link(cpuobj
, OBJECT(secure_sysmem
),
1603 "secure-memory", &error_abort
);
1606 object_property_set_bool(cpuobj
, true, "realized", &error_fatal
);
1607 object_unref(cpuobj
);
1609 fdt_add_timer_nodes(vms
);
1610 fdt_add_cpu_nodes(vms
);
1612 if (!kvm_enabled()) {
1613 ARMCPU
*cpu
= ARM_CPU(first_cpu
);
1614 bool aarch64
= object_property_get_bool(OBJECT(cpu
), "aarch64", NULL
);
1616 if (aarch64
&& vms
->highmem
) {
1617 int requested_pa_size
, pamax
= arm_pamax(cpu
);
1619 requested_pa_size
= 64 - clz64(vms
->highest_gpa
);
1620 if (pamax
< requested_pa_size
) {
1621 error_report("VCPU supports less PA bits (%d) than requested "
1622 "by the memory map (%d)", pamax
, requested_pa_size
);
1628 memory_region_allocate_system_memory(ram
, NULL
, "mach-virt.ram",
1630 memory_region_add_subregion(sysmem
, vms
->memmap
[VIRT_MEM
].base
, ram
);
1631 if (machine
->device_memory
) {
1632 memory_region_add_subregion(sysmem
, machine
->device_memory
->base
,
1633 &machine
->device_memory
->mr
);
1636 create_flash(vms
, sysmem
, secure_sysmem
? secure_sysmem
: sysmem
);
1638 create_gic(vms
, pic
);
1640 fdt_add_pmu_nodes(vms
);
1642 create_uart(vms
, pic
, VIRT_UART
, sysmem
, serial_hd(0));
1645 create_secure_ram(vms
, secure_sysmem
);
1646 create_uart(vms
, pic
, VIRT_SECURE_UART
, secure_sysmem
, serial_hd(1));
1649 vms
->highmem_ecam
&= vms
->highmem
&& (!firmware_loaded
|| aarch64
);
1651 create_rtc(vms
, pic
);
1653 create_pcie(vms
, pic
);
1655 create_gpio(vms
, pic
);
1657 /* Create mmio transports, so the user can create virtio backends
1658 * (which will be automatically plugged in to the transports). If
1659 * no backend is created the transport will just sit harmlessly idle.
1661 create_virtio_devices(vms
, pic
);
1663 vms
->fw_cfg
= create_fw_cfg(vms
, &address_space_memory
);
1664 rom_set_fw(vms
->fw_cfg
);
1666 create_platform_bus(vms
, pic
);
1668 vms
->bootinfo
.ram_size
= machine
->ram_size
;
1669 vms
->bootinfo
.kernel_filename
= machine
->kernel_filename
;
1670 vms
->bootinfo
.kernel_cmdline
= machine
->kernel_cmdline
;
1671 vms
->bootinfo
.initrd_filename
= machine
->initrd_filename
;
1672 vms
->bootinfo
.nb_cpus
= smp_cpus
;
1673 vms
->bootinfo
.board_id
= -1;
1674 vms
->bootinfo
.loader_start
= vms
->memmap
[VIRT_MEM
].base
;
1675 vms
->bootinfo
.get_dtb
= machvirt_dtb
;
1676 vms
->bootinfo
.skip_dtb_autoload
= true;
1677 vms
->bootinfo
.firmware_loaded
= firmware_loaded
;
1678 arm_load_kernel(ARM_CPU(first_cpu
), &vms
->bootinfo
);
1680 vms
->machine_done
.notify
= virt_machine_done
;
1681 qemu_add_machine_init_done_notifier(&vms
->machine_done
);
1684 static bool virt_get_secure(Object
*obj
, Error
**errp
)
1686 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1691 static void virt_set_secure(Object
*obj
, bool value
, Error
**errp
)
1693 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1695 vms
->secure
= value
;
1698 static bool virt_get_virt(Object
*obj
, Error
**errp
)
1700 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1705 static void virt_set_virt(Object
*obj
, bool value
, Error
**errp
)
1707 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1712 static bool virt_get_highmem(Object
*obj
, Error
**errp
)
1714 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1716 return vms
->highmem
;
1719 static void virt_set_highmem(Object
*obj
, bool value
, Error
**errp
)
1721 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1723 vms
->highmem
= value
;
1726 static bool virt_get_its(Object
*obj
, Error
**errp
)
1728 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1733 static void virt_set_its(Object
*obj
, bool value
, Error
**errp
)
1735 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1740 static char *virt_get_gic_version(Object
*obj
, Error
**errp
)
1742 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1743 const char *val
= vms
->gic_version
== 3 ? "3" : "2";
1745 return g_strdup(val
);
1748 static void virt_set_gic_version(Object
*obj
, const char *value
, Error
**errp
)
1750 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1752 if (!strcmp(value
, "3")) {
1753 vms
->gic_version
= 3;
1754 } else if (!strcmp(value
, "2")) {
1755 vms
->gic_version
= 2;
1756 } else if (!strcmp(value
, "host")) {
1757 vms
->gic_version
= 0; /* Will probe later */
1758 } else if (!strcmp(value
, "max")) {
1759 vms
->gic_version
= -1; /* Will probe later */
1761 error_setg(errp
, "Invalid gic-version value");
1762 error_append_hint(errp
, "Valid values are 3, 2, host, max.\n");
1766 static char *virt_get_iommu(Object
*obj
, Error
**errp
)
1768 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1770 switch (vms
->iommu
) {
1771 case VIRT_IOMMU_NONE
:
1772 return g_strdup("none");
1773 case VIRT_IOMMU_SMMUV3
:
1774 return g_strdup("smmuv3");
1776 g_assert_not_reached();
1780 static void virt_set_iommu(Object
*obj
, const char *value
, Error
**errp
)
1782 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1784 if (!strcmp(value
, "smmuv3")) {
1785 vms
->iommu
= VIRT_IOMMU_SMMUV3
;
1786 } else if (!strcmp(value
, "none")) {
1787 vms
->iommu
= VIRT_IOMMU_NONE
;
1789 error_setg(errp
, "Invalid iommu value");
1790 error_append_hint(errp
, "Valid values are none, smmuv3.\n");
1794 static CpuInstanceProperties
1795 virt_cpu_index_to_props(MachineState
*ms
, unsigned cpu_index
)
1797 MachineClass
*mc
= MACHINE_GET_CLASS(ms
);
1798 const CPUArchIdList
*possible_cpus
= mc
->possible_cpu_arch_ids(ms
);
1800 assert(cpu_index
< possible_cpus
->len
);
1801 return possible_cpus
->cpus
[cpu_index
].props
;
1804 static int64_t virt_get_default_cpu_node_id(const MachineState
*ms
, int idx
)
1806 return idx
% nb_numa_nodes
;
1809 static const CPUArchIdList
*virt_possible_cpu_arch_ids(MachineState
*ms
)
1812 VirtMachineState
*vms
= VIRT_MACHINE(ms
);
1814 if (ms
->possible_cpus
) {
1815 assert(ms
->possible_cpus
->len
== max_cpus
);
1816 return ms
->possible_cpus
;
1819 ms
->possible_cpus
= g_malloc0(sizeof(CPUArchIdList
) +
1820 sizeof(CPUArchId
) * max_cpus
);
1821 ms
->possible_cpus
->len
= max_cpus
;
1822 for (n
= 0; n
< ms
->possible_cpus
->len
; n
++) {
1823 ms
->possible_cpus
->cpus
[n
].type
= ms
->cpu_type
;
1824 ms
->possible_cpus
->cpus
[n
].arch_id
=
1825 virt_cpu_mp_affinity(vms
, n
);
1826 ms
->possible_cpus
->cpus
[n
].props
.has_thread_id
= true;
1827 ms
->possible_cpus
->cpus
[n
].props
.thread_id
= n
;
1829 return ms
->possible_cpus
;
1832 static void virt_machine_device_plug_cb(HotplugHandler
*hotplug_dev
,
1833 DeviceState
*dev
, Error
**errp
)
1835 VirtMachineState
*vms
= VIRT_MACHINE(hotplug_dev
);
1837 if (vms
->platform_bus_dev
) {
1838 if (object_dynamic_cast(OBJECT(dev
), TYPE_SYS_BUS_DEVICE
)) {
1839 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms
->platform_bus_dev
),
1840 SYS_BUS_DEVICE(dev
));
1845 static HotplugHandler
*virt_machine_get_hotplug_handler(MachineState
*machine
,
1848 if (object_dynamic_cast(OBJECT(dev
), TYPE_SYS_BUS_DEVICE
)) {
1849 return HOTPLUG_HANDLER(machine
);
1856 * for arm64 kvm_type [7-0] encodes the requested number of bits
1857 * in the IPA address space
1859 static int virt_kvm_type(MachineState
*ms
, const char *type_str
)
1861 VirtMachineState
*vms
= VIRT_MACHINE(ms
);
1862 int max_vm_pa_size
= kvm_arm_get_max_vm_ipa_size(ms
);
1863 int requested_pa_size
;
1865 /* we freeze the memory map to compute the highest gpa */
1866 virt_set_memmap(vms
);
1868 requested_pa_size
= 64 - clz64(vms
->highest_gpa
);
1870 if (requested_pa_size
> max_vm_pa_size
) {
1871 error_report("-m and ,maxmem option values "
1872 "require an IPA range (%d bits) larger than "
1873 "the one supported by the host (%d bits)",
1874 requested_pa_size
, max_vm_pa_size
);
1878 * By default we return 0 which corresponds to an implicit legacy
1879 * 40b IPA setting. Otherwise we return the actual requested PA
1882 return requested_pa_size
> 40 ? requested_pa_size
: 0;
1885 static void virt_machine_class_init(ObjectClass
*oc
, void *data
)
1887 MachineClass
*mc
= MACHINE_CLASS(oc
);
1888 HotplugHandlerClass
*hc
= HOTPLUG_HANDLER_CLASS(oc
);
1890 mc
->init
= machvirt_init
;
1891 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
1892 * The value may be reduced later when we have more information about the
1893 * configuration of the particular instance.
1896 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_VFIO_CALXEDA_XGMAC
);
1897 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_VFIO_AMD_XGBE
);
1898 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_RAMFB_DEVICE
);
1899 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_VFIO_PLATFORM
);
1900 mc
->block_default_type
= IF_VIRTIO
;
1902 mc
->pci_allow_0_address
= true;
1903 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1904 mc
->minimum_page_bits
= 12;
1905 mc
->possible_cpu_arch_ids
= virt_possible_cpu_arch_ids
;
1906 mc
->cpu_index_to_instance_props
= virt_cpu_index_to_props
;
1907 mc
->default_cpu_type
= ARM_CPU_TYPE_NAME("cortex-a15");
1908 mc
->get_default_cpu_node_id
= virt_get_default_cpu_node_id
;
1909 mc
->kvm_type
= virt_kvm_type
;
1910 assert(!mc
->get_hotplug_handler
);
1911 mc
->get_hotplug_handler
= virt_machine_get_hotplug_handler
;
1912 hc
->plug
= virt_machine_device_plug_cb
;
1915 static void virt_instance_init(Object
*obj
)
1917 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1918 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
1920 /* EL3 is disabled by default on virt: this makes us consistent
1921 * between KVM and TCG for this board, and it also allows us to
1922 * boot UEFI blobs which assume no TrustZone support.
1924 vms
->secure
= false;
1925 object_property_add_bool(obj
, "secure", virt_get_secure
,
1926 virt_set_secure
, NULL
);
1927 object_property_set_description(obj
, "secure",
1928 "Set on/off to enable/disable the ARM "
1929 "Security Extensions (TrustZone)",
1932 /* EL2 is also disabled by default, for similar reasons */
1934 object_property_add_bool(obj
, "virtualization", virt_get_virt
,
1935 virt_set_virt
, NULL
);
1936 object_property_set_description(obj
, "virtualization",
1937 "Set on/off to enable/disable emulating a "
1938 "guest CPU which implements the ARM "
1939 "Virtualization Extensions",
1942 /* High memory is enabled by default */
1943 vms
->highmem
= true;
1944 object_property_add_bool(obj
, "highmem", virt_get_highmem
,
1945 virt_set_highmem
, NULL
);
1946 object_property_set_description(obj
, "highmem",
1947 "Set on/off to enable/disable using "
1948 "physical address space above 32 bits",
1950 /* Default GIC type is v2 */
1951 vms
->gic_version
= 2;
1952 object_property_add_str(obj
, "gic-version", virt_get_gic_version
,
1953 virt_set_gic_version
, NULL
);
1954 object_property_set_description(obj
, "gic-version",
1956 "Valid values are 2, 3 and host", NULL
);
1958 vms
->highmem_ecam
= !vmc
->no_highmem_ecam
;
1963 /* Default allows ITS instantiation */
1965 object_property_add_bool(obj
, "its", virt_get_its
,
1966 virt_set_its
, NULL
);
1967 object_property_set_description(obj
, "its",
1968 "Set on/off to enable/disable "
1969 "ITS instantiation",
1973 /* Default disallows iommu instantiation */
1974 vms
->iommu
= VIRT_IOMMU_NONE
;
1975 object_property_add_str(obj
, "iommu", virt_get_iommu
, virt_set_iommu
, NULL
);
1976 object_property_set_description(obj
, "iommu",
1977 "Set the IOMMU type. "
1978 "Valid values are none and smmuv3",
1981 vms
->irqmap
= a15irqmap
;
1984 static const TypeInfo virt_machine_info
= {
1985 .name
= TYPE_VIRT_MACHINE
,
1986 .parent
= TYPE_MACHINE
,
1988 .instance_size
= sizeof(VirtMachineState
),
1989 .class_size
= sizeof(VirtMachineClass
),
1990 .class_init
= virt_machine_class_init
,
1991 .instance_init
= virt_instance_init
,
1992 .interfaces
= (InterfaceInfo
[]) {
1993 { TYPE_HOTPLUG_HANDLER
},
1998 static void machvirt_machine_init(void)
2000 type_register_static(&virt_machine_info
);
2002 type_init(machvirt_machine_init
);
2004 static void virt_machine_4_0_options(MachineClass
*mc
)
2007 DEFINE_VIRT_MACHINE_AS_LATEST(4, 0)
2009 static void virt_machine_3_1_options(MachineClass
*mc
)
2011 virt_machine_4_0_options(mc
);
2012 compat_props_add(mc
->compat_props
, hw_compat_3_1
, hw_compat_3_1_len
);
2014 DEFINE_VIRT_MACHINE(3, 1)
2016 static void virt_machine_3_0_options(MachineClass
*mc
)
2018 virt_machine_3_1_options(mc
);
2019 compat_props_add(mc
->compat_props
, hw_compat_3_0
, hw_compat_3_0_len
);
2021 DEFINE_VIRT_MACHINE(3, 0)
2023 static void virt_machine_2_12_options(MachineClass
*mc
)
2025 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2027 virt_machine_3_0_options(mc
);
2028 compat_props_add(mc
->compat_props
, hw_compat_2_12
, hw_compat_2_12_len
);
2029 vmc
->no_highmem_ecam
= true;
2032 DEFINE_VIRT_MACHINE(2, 12)
2034 static void virt_machine_2_11_options(MachineClass
*mc
)
2036 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2038 virt_machine_2_12_options(mc
);
2039 compat_props_add(mc
->compat_props
, hw_compat_2_11
, hw_compat_2_11_len
);
2040 vmc
->smbios_old_sys_ver
= true;
2042 DEFINE_VIRT_MACHINE(2, 11)
2044 static void virt_machine_2_10_options(MachineClass
*mc
)
2046 virt_machine_2_11_options(mc
);
2047 compat_props_add(mc
->compat_props
, hw_compat_2_10
, hw_compat_2_10_len
);
2048 /* before 2.11 we never faulted accesses to bad addresses */
2049 mc
->ignore_memory_transaction_failures
= true;
2051 DEFINE_VIRT_MACHINE(2, 10)
2053 static void virt_machine_2_9_options(MachineClass
*mc
)
2055 virt_machine_2_10_options(mc
);
2056 compat_props_add(mc
->compat_props
, hw_compat_2_9
, hw_compat_2_9_len
);
2058 DEFINE_VIRT_MACHINE(2, 9)
2060 static void virt_machine_2_8_options(MachineClass
*mc
)
2062 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2064 virt_machine_2_9_options(mc
);
2065 compat_props_add(mc
->compat_props
, hw_compat_2_8
, hw_compat_2_8_len
);
2066 /* For 2.8 and earlier we falsely claimed in the DT that
2067 * our timers were edge-triggered, not level-triggered.
2069 vmc
->claim_edge_triggered_timers
= true;
2071 DEFINE_VIRT_MACHINE(2, 8)
2073 static void virt_machine_2_7_options(MachineClass
*mc
)
2075 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2077 virt_machine_2_8_options(mc
);
2078 compat_props_add(mc
->compat_props
, hw_compat_2_7
, hw_compat_2_7_len
);
2079 /* ITS was introduced with 2.8 */
2081 /* Stick with 1K pages for migration compatibility */
2082 mc
->minimum_page_bits
= 0;
2084 DEFINE_VIRT_MACHINE(2, 7)
2086 static void virt_machine_2_6_options(MachineClass
*mc
)
2088 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2090 virt_machine_2_7_options(mc
);
2091 compat_props_add(mc
->compat_props
, hw_compat_2_6
, hw_compat_2_6_len
);
2092 vmc
->disallow_affinity_adjustment
= true;
2093 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
2096 DEFINE_VIRT_MACHINE(2, 6)