4 * Copyright (c) 2004 Jocelyn Mayer
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
27 * Based on OpenPic implementations:
28 * - Motorola MPC8245 & MPC8540 user manuals.
29 * - Motorola Harrier programmer manual
33 #include "qemu/osdep.h"
35 #include "hw/pci/pci.h"
36 #include "hw/ppc/openpic.h"
37 #include "hw/ppc/ppc_e500.h"
38 #include "hw/qdev-properties.h"
39 #include "hw/sysbus.h"
40 #include "migration/vmstate.h"
41 #include "hw/pci/msi.h"
42 #include "qapi/error.h"
43 #include "qemu/bitops.h"
44 #include "qapi/qmp/qerror.h"
45 #include "qemu/module.h"
46 #include "qemu/timer.h"
47 #include "qemu/error-report.h"
49 /* #define DEBUG_OPENPIC */
52 static const int debug_openpic
= 1;
54 static const int debug_openpic
= 0;
57 static int get_current_cpu(void);
58 #define DPRINTF(fmt, ...) do { \
59 if (debug_openpic) { \
60 info_report("Core%d: " fmt, get_current_cpu(), ## __VA_ARGS__); \
64 /* OpenPIC capability flags */
65 #define OPENPIC_FLAG_IDR_CRIT (1 << 0)
66 #define OPENPIC_FLAG_ILR (2 << 0)
68 /* OpenPIC address map */
69 #define OPENPIC_GLB_REG_START 0x0
70 #define OPENPIC_GLB_REG_SIZE 0x10F0
71 #define OPENPIC_TMR_REG_START 0x10F0
72 #define OPENPIC_TMR_REG_SIZE 0x220
73 #define OPENPIC_MSI_REG_START 0x1600
74 #define OPENPIC_MSI_REG_SIZE 0x200
75 #define OPENPIC_SUMMARY_REG_START 0x3800
76 #define OPENPIC_SUMMARY_REG_SIZE 0x800
77 #define OPENPIC_SRC_REG_START 0x10000
78 #define OPENPIC_SRC_REG_SIZE (OPENPIC_MAX_SRC * 0x20)
79 #define OPENPIC_CPU_REG_START 0x20000
80 #define OPENPIC_CPU_REG_SIZE 0x100 + ((MAX_CPU - 1) * 0x1000)
82 static FslMpicInfo fsl_mpic_20
= {
86 static FslMpicInfo fsl_mpic_42
= {
90 #define FRR_NIRQ_SHIFT 16
91 #define FRR_NCPU_SHIFT 8
92 #define FRR_VID_SHIFT 0
94 #define VID_REVISION_1_2 2
95 #define VID_REVISION_1_3 3
97 #define VIR_GENERIC 0x00000000 /* Generic Vendor ID */
98 #define VIR_MPIC2A 0x00004614 /* IBM MPIC-2A */
100 #define GCR_RESET 0x80000000
101 #define GCR_MODE_PASS 0x00000000
102 #define GCR_MODE_MIXED 0x20000000
103 #define GCR_MODE_PROXY 0x60000000
105 #define TBCR_CI 0x80000000 /* count inhibit */
106 #define TCCR_TOG 0x80000000 /* toggles when decrement to zero */
108 #define IDR_EP_SHIFT 31
109 #define IDR_EP_MASK (1U << IDR_EP_SHIFT)
110 #define IDR_CI0_SHIFT 30
111 #define IDR_CI1_SHIFT 29
112 #define IDR_P1_SHIFT 1
113 #define IDR_P0_SHIFT 0
115 #define ILR_INTTGT_MASK 0x000000ff
116 #define ILR_INTTGT_INT 0x00
117 #define ILR_INTTGT_CINT 0x01 /* critical */
118 #define ILR_INTTGT_MCP 0x02 /* machine check */
121 * The currently supported INTTGT values happen to be the same as QEMU's
122 * openpic output codes, but don't depend on this. The output codes
123 * could change (unlikely, but...) or support could be added for
124 * more INTTGT values.
126 static const int inttgt_output
[][2] = {
127 { ILR_INTTGT_INT
, OPENPIC_OUTPUT_INT
},
128 { ILR_INTTGT_CINT
, OPENPIC_OUTPUT_CINT
},
129 { ILR_INTTGT_MCP
, OPENPIC_OUTPUT_MCK
},
132 static int inttgt_to_output(int inttgt
)
136 for (i
= 0; i
< ARRAY_SIZE(inttgt_output
); i
++) {
137 if (inttgt_output
[i
][0] == inttgt
) {
138 return inttgt_output
[i
][1];
142 error_report("%s: unsupported inttgt %d", __func__
, inttgt
);
143 return OPENPIC_OUTPUT_INT
;
146 static int output_to_inttgt(int output
)
150 for (i
= 0; i
< ARRAY_SIZE(inttgt_output
); i
++) {
151 if (inttgt_output
[i
][1] == output
) {
152 return inttgt_output
[i
][0];
159 #define MSIIR_OFFSET 0x140
160 #define MSIIR_SRS_SHIFT 29
161 #define MSIIR_SRS_MASK (0x7 << MSIIR_SRS_SHIFT)
162 #define MSIIR_IBS_SHIFT 24
163 #define MSIIR_IBS_MASK (0x1f << MSIIR_IBS_SHIFT)
165 static int get_current_cpu(void)
171 return current_cpu
->cpu_index
;
174 static uint32_t openpic_cpu_read_internal(void *opaque
, hwaddr addr
,
176 static void openpic_cpu_write_internal(void *opaque
, hwaddr addr
,
177 uint32_t val
, int idx
);
178 static void openpic_reset(DeviceState
*d
);
181 * Convert between openpic clock ticks and nanosecs. In the hardware the clock
182 * frequency is driven by board inputs to the PIC which the PIC would then
183 * divide by 4 or 8. For now hard code to 25MZ.
185 #define OPENPIC_TIMER_FREQ_MHZ 25
186 #define OPENPIC_TIMER_NS_PER_TICK (1000 / OPENPIC_TIMER_FREQ_MHZ)
187 static inline uint64_t ns_to_ticks(uint64_t ns
)
189 return ns
/ OPENPIC_TIMER_NS_PER_TICK
;
191 static inline uint64_t ticks_to_ns(uint64_t ticks
)
193 return ticks
* OPENPIC_TIMER_NS_PER_TICK
;
196 static inline void IRQ_setbit(IRQQueue
*q
, int n_IRQ
)
198 set_bit(n_IRQ
, q
->queue
);
201 static inline void IRQ_resetbit(IRQQueue
*q
, int n_IRQ
)
203 clear_bit(n_IRQ
, q
->queue
);
206 static void IRQ_check(OpenPICState
*opp
, IRQQueue
*q
)
213 irq
= find_next_bit(q
->queue
, opp
->max_irq
, irq
+ 1);
214 if (irq
== opp
->max_irq
) {
218 DPRINTF("IRQ_check: irq %d set ivpr_pr=%d pr=%d",
219 irq
, IVPR_PRIORITY(opp
->src
[irq
].ivpr
), priority
);
221 if (IVPR_PRIORITY(opp
->src
[irq
].ivpr
) > priority
) {
223 priority
= IVPR_PRIORITY(opp
->src
[irq
].ivpr
);
228 q
->priority
= priority
;
231 static int IRQ_get_next(OpenPICState
*opp
, IRQQueue
*q
)
239 static void IRQ_local_pipe(OpenPICState
*opp
, int n_CPU
, int n_IRQ
,
240 bool active
, bool was_active
)
246 dst
= &opp
->dst
[n_CPU
];
247 src
= &opp
->src
[n_IRQ
];
249 DPRINTF("%s: IRQ %d active %d was %d",
250 __func__
, n_IRQ
, active
, was_active
);
252 if (src
->output
!= OPENPIC_OUTPUT_INT
) {
253 DPRINTF("%s: output %d irq %d active %d was %d count %d",
254 __func__
, src
->output
, n_IRQ
, active
, was_active
,
255 dst
->outputs_active
[src
->output
]);
258 * On Freescale MPIC, critical interrupts ignore priority,
259 * IACK, EOI, etc. Before MPIC v4.1 they also ignore
263 if (!was_active
&& dst
->outputs_active
[src
->output
]++ == 0) {
264 DPRINTF("%s: Raise OpenPIC output %d cpu %d irq %d",
265 __func__
, src
->output
, n_CPU
, n_IRQ
);
266 qemu_irq_raise(dst
->irqs
[src
->output
]);
269 if (was_active
&& --dst
->outputs_active
[src
->output
] == 0) {
270 DPRINTF("%s: Lower OpenPIC output %d cpu %d irq %d",
271 __func__
, src
->output
, n_CPU
, n_IRQ
);
272 qemu_irq_lower(dst
->irqs
[src
->output
]);
279 priority
= IVPR_PRIORITY(src
->ivpr
);
282 * Even if the interrupt doesn't have enough priority,
283 * it is still raised, in case ctpr is lowered later.
286 IRQ_setbit(&dst
->raised
, n_IRQ
);
288 IRQ_resetbit(&dst
->raised
, n_IRQ
);
291 IRQ_check(opp
, &dst
->raised
);
293 if (active
&& priority
<= dst
->ctpr
) {
294 DPRINTF("%s: IRQ %d priority %d too low for ctpr %d on CPU %d",
295 __func__
, n_IRQ
, priority
, dst
->ctpr
, n_CPU
);
300 if (IRQ_get_next(opp
, &dst
->servicing
) >= 0 &&
301 priority
<= dst
->servicing
.priority
) {
302 DPRINTF("%s: IRQ %d is hidden by servicing IRQ %d on CPU %d",
303 __func__
, n_IRQ
, dst
->servicing
.next
, n_CPU
);
305 DPRINTF("%s: Raise OpenPIC INT output cpu %d irq %d/%d",
306 __func__
, n_CPU
, n_IRQ
, dst
->raised
.next
);
307 qemu_irq_raise(opp
->dst
[n_CPU
].irqs
[OPENPIC_OUTPUT_INT
]);
310 IRQ_get_next(opp
, &dst
->servicing
);
311 if (dst
->raised
.priority
> dst
->ctpr
&&
312 dst
->raised
.priority
> dst
->servicing
.priority
) {
313 DPRINTF("%s: IRQ %d inactive, IRQ %d prio %d above %d/%d, CPU %d",
314 __func__
, n_IRQ
, dst
->raised
.next
, dst
->raised
.priority
,
315 dst
->ctpr
, dst
->servicing
.priority
, n_CPU
);
316 /* IRQ line stays asserted */
318 DPRINTF("%s: IRQ %d inactive, current prio %d/%d, CPU %d",
319 __func__
, n_IRQ
, dst
->ctpr
, dst
->servicing
.priority
, n_CPU
);
320 qemu_irq_lower(opp
->dst
[n_CPU
].irqs
[OPENPIC_OUTPUT_INT
]);
325 /* update pic state because registers for n_IRQ have changed value */
326 static void openpic_update_irq(OpenPICState
*opp
, int n_IRQ
)
329 bool active
, was_active
;
332 src
= &opp
->src
[n_IRQ
];
333 active
= src
->pending
;
335 if ((src
->ivpr
& IVPR_MASK_MASK
) && !src
->nomask
) {
336 /* Interrupt source is disabled */
337 DPRINTF("%s: IRQ %d is disabled", __func__
, n_IRQ
);
341 was_active
= !!(src
->ivpr
& IVPR_ACTIVITY_MASK
);
344 * We don't have a similar check for already-active because
345 * ctpr may have changed and we need to withdraw the interrupt.
347 if (!active
&& !was_active
) {
348 DPRINTF("%s: IRQ %d is already inactive", __func__
, n_IRQ
);
353 src
->ivpr
|= IVPR_ACTIVITY_MASK
;
355 src
->ivpr
&= ~IVPR_ACTIVITY_MASK
;
358 if (src
->destmask
== 0) {
360 DPRINTF("%s: IRQ %d has no target", __func__
, n_IRQ
);
364 if (src
->destmask
== (1 << src
->last_cpu
)) {
365 /* Only one CPU is allowed to receive this IRQ */
366 IRQ_local_pipe(opp
, src
->last_cpu
, n_IRQ
, active
, was_active
);
367 } else if (!(src
->ivpr
& IVPR_MODE_MASK
)) {
368 /* Directed delivery mode */
369 for (i
= 0; i
< opp
->nb_cpus
; i
++) {
370 if (src
->destmask
& (1 << i
)) {
371 IRQ_local_pipe(opp
, i
, n_IRQ
, active
, was_active
);
375 /* Distributed delivery mode */
376 for (i
= src
->last_cpu
+ 1; i
!= src
->last_cpu
; i
++) {
377 if (i
== opp
->nb_cpus
) {
380 if (src
->destmask
& (1 << i
)) {
381 IRQ_local_pipe(opp
, i
, n_IRQ
, active
, was_active
);
389 static void openpic_set_irq(void *opaque
, int n_IRQ
, int level
)
391 OpenPICState
*opp
= opaque
;
394 if (n_IRQ
>= OPENPIC_MAX_IRQ
) {
395 error_report("%s: IRQ %d out of range", __func__
, n_IRQ
);
399 src
= &opp
->src
[n_IRQ
];
400 DPRINTF("openpic: set irq %d = %d ivpr=0x%08x",
401 n_IRQ
, level
, src
->ivpr
);
403 /* level-sensitive irq */
404 src
->pending
= level
;
405 openpic_update_irq(opp
, n_IRQ
);
407 /* edge-sensitive irq */
410 openpic_update_irq(opp
, n_IRQ
);
413 if (src
->output
!= OPENPIC_OUTPUT_INT
) {
415 * Edge-triggered interrupts shouldn't be used
416 * with non-INT delivery, but just in case,
417 * try to make it do something sane rather than
418 * cause an interrupt storm. This is close to
419 * what you'd probably see happen in real hardware.
422 openpic_update_irq(opp
, n_IRQ
);
427 static inline uint32_t read_IRQreg_idr(OpenPICState
*opp
, int n_IRQ
)
429 return opp
->src
[n_IRQ
].idr
;
432 static inline uint32_t read_IRQreg_ilr(OpenPICState
*opp
, int n_IRQ
)
434 if (opp
->flags
& OPENPIC_FLAG_ILR
) {
435 return output_to_inttgt(opp
->src
[n_IRQ
].output
);
441 static inline uint32_t read_IRQreg_ivpr(OpenPICState
*opp
, int n_IRQ
)
443 return opp
->src
[n_IRQ
].ivpr
;
446 static inline void write_IRQreg_idr(OpenPICState
*opp
, int n_IRQ
, uint32_t val
)
448 IRQSource
*src
= &opp
->src
[n_IRQ
];
449 uint32_t normal_mask
= (1UL << opp
->nb_cpus
) - 1;
450 uint32_t crit_mask
= 0;
451 uint32_t mask
= normal_mask
;
452 int crit_shift
= IDR_EP_SHIFT
- opp
->nb_cpus
;
455 if (opp
->flags
& OPENPIC_FLAG_IDR_CRIT
) {
456 crit_mask
= mask
<< crit_shift
;
457 mask
|= crit_mask
| IDR_EP
;
460 src
->idr
= val
& mask
;
461 DPRINTF("Set IDR %d to 0x%08x", n_IRQ
, src
->idr
);
463 if (opp
->flags
& OPENPIC_FLAG_IDR_CRIT
) {
464 if (src
->idr
& crit_mask
) {
465 if (src
->idr
& normal_mask
) {
466 DPRINTF("%s: IRQ configured for multiple output types, using "
467 "critical", __func__
);
470 src
->output
= OPENPIC_OUTPUT_CINT
;
474 for (i
= 0; i
< opp
->nb_cpus
; i
++) {
475 int n_ci
= IDR_CI0_SHIFT
- i
;
477 if (src
->idr
& (1UL << n_ci
)) {
478 src
->destmask
|= 1UL << i
;
482 src
->output
= OPENPIC_OUTPUT_INT
;
484 src
->destmask
= src
->idr
& normal_mask
;
487 src
->destmask
= src
->idr
;
491 static inline void write_IRQreg_ilr(OpenPICState
*opp
, int n_IRQ
, uint32_t val
)
493 if (opp
->flags
& OPENPIC_FLAG_ILR
) {
494 IRQSource
*src
= &opp
->src
[n_IRQ
];
496 src
->output
= inttgt_to_output(val
& ILR_INTTGT_MASK
);
497 DPRINTF("Set ILR %d to 0x%08x, output %d", n_IRQ
, src
->idr
,
500 /* TODO: on MPIC v4.0 only, set nomask for non-INT */
504 static inline void write_IRQreg_ivpr(OpenPICState
*opp
, int n_IRQ
, uint32_t val
)
509 * NOTE when implementing newer FSL MPIC models: starting with v4.0,
510 * the polarity bit is read-only on internal interrupts.
512 mask
= IVPR_MASK_MASK
| IVPR_PRIORITY_MASK
| IVPR_SENSE_MASK
|
513 IVPR_POLARITY_MASK
| opp
->vector_mask
;
515 /* ACTIVITY bit is read-only */
516 opp
->src
[n_IRQ
].ivpr
=
517 (opp
->src
[n_IRQ
].ivpr
& IVPR_ACTIVITY_MASK
) | (val
& mask
);
520 * For FSL internal interrupts, The sense bit is reserved and zero,
521 * and the interrupt is always level-triggered. Timers and IPIs
522 * have no sense or polarity bits, and are edge-triggered.
524 switch (opp
->src
[n_IRQ
].type
) {
525 case IRQ_TYPE_NORMAL
:
526 opp
->src
[n_IRQ
].level
= !!(opp
->src
[n_IRQ
].ivpr
& IVPR_SENSE_MASK
);
529 case IRQ_TYPE_FSLINT
:
530 opp
->src
[n_IRQ
].ivpr
&= ~IVPR_SENSE_MASK
;
533 case IRQ_TYPE_FSLSPECIAL
:
534 opp
->src
[n_IRQ
].ivpr
&= ~(IVPR_POLARITY_MASK
| IVPR_SENSE_MASK
);
538 openpic_update_irq(opp
, n_IRQ
);
539 DPRINTF("Set IVPR %d to 0x%08x -> 0x%08x", n_IRQ
, val
,
540 opp
->src
[n_IRQ
].ivpr
);
543 static void openpic_gcr_write(OpenPICState
*opp
, uint64_t val
)
545 bool mpic_proxy
= false;
547 if (val
& GCR_RESET
) {
548 openpic_reset(DEVICE(opp
));
552 opp
->gcr
&= ~opp
->mpic_mode_mask
;
553 opp
->gcr
|= val
& opp
->mpic_mode_mask
;
555 /* Set external proxy mode */
556 if ((val
& opp
->mpic_mode_mask
) == GCR_MODE_PROXY
) {
560 ppce500_set_mpic_proxy(mpic_proxy
);
563 static void openpic_gbl_write(void *opaque
, hwaddr addr
, uint64_t val
,
566 OpenPICState
*opp
= opaque
;
570 DPRINTF("%s: addr %#" HWADDR_PRIx
" <= %08" PRIx64
,
571 __func__
, addr
, val
);
576 case 0x00: /* Block Revision Register1 (BRR1) is Readonly */
586 openpic_cpu_write_internal(opp
, addr
, val
, get_current_cpu());
588 case 0x1000: /* FRR */
590 case 0x1020: /* GCR */
591 openpic_gcr_write(opp
, val
);
593 case 0x1080: /* VIR */
595 case 0x1090: /* PIR */
596 for (idx
= 0; idx
< opp
->nb_cpus
; idx
++) {
597 if ((val
& (1 << idx
)) && !(opp
->pir
& (1 << idx
))) {
598 DPRINTF("Raise OpenPIC RESET output for CPU %d", idx
);
599 dst
= &opp
->dst
[idx
];
600 qemu_irq_raise(dst
->irqs
[OPENPIC_OUTPUT_RESET
]);
601 } else if (!(val
& (1 << idx
)) && (opp
->pir
& (1 << idx
))) {
602 DPRINTF("Lower OpenPIC RESET output for CPU %d", idx
);
603 dst
= &opp
->dst
[idx
];
604 qemu_irq_lower(dst
->irqs
[OPENPIC_OUTPUT_RESET
]);
609 case 0x10A0: /* IPI_IVPR */
615 idx
= (addr
- 0x10A0) >> 4;
616 write_IRQreg_ivpr(opp
, opp
->irq_ipi0
+ idx
, val
);
619 case 0x10E0: /* SPVE */
620 opp
->spve
= val
& opp
->vector_mask
;
627 static uint64_t openpic_gbl_read(void *opaque
, hwaddr addr
, unsigned len
)
629 OpenPICState
*opp
= opaque
;
632 DPRINTF("%s: addr %#" HWADDR_PRIx
, __func__
, addr
);
638 case 0x1000: /* FRR */
641 case 0x1020: /* GCR */
644 case 0x1080: /* VIR */
647 case 0x1090: /* PIR */
650 case 0x00: /* Block Revision Register1 (BRR1) */
661 retval
= openpic_cpu_read_internal(opp
, addr
, get_current_cpu());
663 case 0x10A0: /* IPI_IVPR */
669 idx
= (addr
- 0x10A0) >> 4;
670 retval
= read_IRQreg_ivpr(opp
, opp
->irq_ipi0
+ idx
);
673 case 0x10E0: /* SPVE */
679 DPRINTF("%s: => 0x%08x", __func__
, retval
);
684 static void openpic_tmr_set_tmr(OpenPICTimer
*tmr
, uint32_t val
, bool enabled
);
686 static void qemu_timer_cb(void *opaque
)
688 OpenPICTimer
*tmr
= opaque
;
689 OpenPICState
*opp
= tmr
->opp
;
690 uint32_t n_IRQ
= tmr
->n_IRQ
;
691 uint32_t val
= tmr
->tbcr
& ~TBCR_CI
;
692 uint32_t tog
= ((tmr
->tccr
& TCCR_TOG
) ^ TCCR_TOG
); /* invert toggle. */
694 DPRINTF("%s n_IRQ=%d", __func__
, n_IRQ
);
695 /* Reload current count from base count and setup timer. */
696 tmr
->tccr
= val
| tog
;
697 openpic_tmr_set_tmr(tmr
, val
, /*enabled=*/true);
698 /* Raise the interrupt. */
699 opp
->src
[n_IRQ
].destmask
= read_IRQreg_idr(opp
, n_IRQ
);
700 openpic_set_irq(opp
, n_IRQ
, 1);
701 openpic_set_irq(opp
, n_IRQ
, 0);
705 * If enabled is true, arranges for an interrupt to be raised val clocks into
706 * the future, if enabled is false cancels the timer.
708 static void openpic_tmr_set_tmr(OpenPICTimer
*tmr
, uint32_t val
, bool enabled
)
710 uint64_t ns
= ticks_to_ns(val
& ~TCCR_TOG
);
712 * A count of zero causes a timer to be set to expire immediately. This
713 * effectively stops the simulation since the timer is constantly expiring
714 * which prevents guest code execution, so we don't honor that
715 * configuration. On real hardware, this situation would generate an
716 * interrupt on every clock cycle if the interrupt was unmasked.
718 if ((ns
== 0) || !enabled
) {
719 tmr
->qemu_timer_active
= false;
720 tmr
->tccr
= tmr
->tccr
& TCCR_TOG
;
721 timer_del(tmr
->qemu_timer
); /* set timer to never expire. */
723 tmr
->qemu_timer_active
= true;
724 uint64_t now
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
725 tmr
->origin_time
= now
;
726 timer_mod(tmr
->qemu_timer
, now
+ ns
); /* set timer expiration. */
731 * Returns the current tccr value, i.e., timer value (in clocks) with
734 static uint64_t openpic_tmr_get_timer(OpenPICTimer
*tmr
)
737 if (!tmr
->qemu_timer_active
) {
740 uint64_t now
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
741 uint64_t used
= now
- tmr
->origin_time
; /* nsecs */
742 uint32_t used_ticks
= (uint32_t)ns_to_ticks(used
);
743 uint32_t count
= (tmr
->tccr
& ~TCCR_TOG
) - used_ticks
;
744 retval
= (uint32_t)((tmr
->tccr
& TCCR_TOG
) | (count
& ~TCCR_TOG
));
749 static void openpic_tmr_write(void *opaque
, hwaddr addr
, uint64_t val
,
752 OpenPICState
*opp
= opaque
;
755 DPRINTF("%s: addr %#" HWADDR_PRIx
" <= %08" PRIx64
,
756 __func__
, (addr
+ 0x10f0), val
);
766 addr
-= 0x10; /* correct for TFRR */
767 idx
= (addr
>> 6) & 0x3;
769 switch (addr
& 0x30) {
770 case 0x00: /* TCCR */
772 case 0x10: /* TBCR */
773 /* Did the enable status change? */
774 if ((opp
->timers
[idx
].tbcr
& TBCR_CI
) != (val
& TBCR_CI
)) {
775 /* Did "Count Inhibit" transition from 1 to 0? */
776 if ((val
& TBCR_CI
) == 0) {
777 opp
->timers
[idx
].tccr
= val
& ~TCCR_TOG
;
779 openpic_tmr_set_tmr(&opp
->timers
[idx
],
781 /*enabled=*/((val
& TBCR_CI
) == 0));
783 opp
->timers
[idx
].tbcr
= val
;
785 case 0x20: /* TVPR */
786 write_IRQreg_ivpr(opp
, opp
->irq_tim0
+ idx
, val
);
789 write_IRQreg_idr(opp
, opp
->irq_tim0
+ idx
, val
);
794 static uint64_t openpic_tmr_read(void *opaque
, hwaddr addr
, unsigned len
)
796 OpenPICState
*opp
= opaque
;
797 uint32_t retval
= -1;
800 DPRINTF("%s: addr %#" HWADDR_PRIx
, __func__
, addr
+ 0x10f0);
809 addr
-= 0x10; /* correct for TFRR */
810 idx
= (addr
>> 6) & 0x3;
811 switch (addr
& 0x30) {
812 case 0x00: /* TCCR */
813 retval
= openpic_tmr_get_timer(&opp
->timers
[idx
]);
815 case 0x10: /* TBCR */
816 retval
= opp
->timers
[idx
].tbcr
;
818 case 0x20: /* TVPR */
819 retval
= read_IRQreg_ivpr(opp
, opp
->irq_tim0
+ idx
);
822 retval
= read_IRQreg_idr(opp
, opp
->irq_tim0
+ idx
);
827 DPRINTF("%s: => 0x%08x", __func__
, retval
);
832 static void openpic_src_write(void *opaque
, hwaddr addr
, uint64_t val
,
835 OpenPICState
*opp
= opaque
;
838 DPRINTF("%s: addr %#" HWADDR_PRIx
" <= %08" PRIx64
,
839 __func__
, addr
, val
);
841 addr
= addr
& 0xffff;
844 switch (addr
& 0x1f) {
846 write_IRQreg_ivpr(opp
, idx
, val
);
849 write_IRQreg_idr(opp
, idx
, val
);
852 write_IRQreg_ilr(opp
, idx
, val
);
857 static uint64_t openpic_src_read(void *opaque
, uint64_t addr
, unsigned len
)
859 OpenPICState
*opp
= opaque
;
863 DPRINTF("%s: addr %#" HWADDR_PRIx
, __func__
, addr
);
866 addr
= addr
& 0xffff;
869 switch (addr
& 0x1f) {
871 retval
= read_IRQreg_ivpr(opp
, idx
);
874 retval
= read_IRQreg_idr(opp
, idx
);
877 retval
= read_IRQreg_ilr(opp
, idx
);
881 DPRINTF("%s: => 0x%08x", __func__
, retval
);
885 static void openpic_msi_write(void *opaque
, hwaddr addr
, uint64_t val
,
888 OpenPICState
*opp
= opaque
;
889 int idx
= opp
->irq_msi
;
892 DPRINTF("%s: addr %#" HWADDR_PRIx
" <= 0x%08" PRIx64
,
893 __func__
, addr
, val
);
900 srs
= val
>> MSIIR_SRS_SHIFT
;
902 ibs
= (val
& MSIIR_IBS_MASK
) >> MSIIR_IBS_SHIFT
;
903 opp
->msi
[srs
].msir
|= 1 << ibs
;
904 openpic_set_irq(opp
, idx
, 1);
907 /* most registers are read-only, thus ignored */
912 static uint64_t openpic_msi_read(void *opaque
, hwaddr addr
, unsigned size
)
914 OpenPICState
*opp
= opaque
;
918 DPRINTF("%s: addr %#" HWADDR_PRIx
, __func__
, addr
);
933 case 0x70: /* MSIRs */
934 r
= opp
->msi
[srs
].msir
;
936 opp
->msi
[srs
].msir
= 0;
937 openpic_set_irq(opp
, opp
->irq_msi
+ srs
, 0);
939 case 0x120: /* MSISR */
940 for (i
= 0; i
< MAX_MSI
; i
++) {
941 r
|= (opp
->msi
[i
].msir
? 1 : 0) << i
;
949 static uint64_t openpic_summary_read(void *opaque
, hwaddr addr
, unsigned size
)
953 DPRINTF("%s: addr %#" HWADDR_PRIx
, __func__
, addr
);
955 /* TODO: EISR/EIMR */
960 static void openpic_summary_write(void *opaque
, hwaddr addr
, uint64_t val
,
963 DPRINTF("%s: addr %#" HWADDR_PRIx
" <= 0x%08" PRIx64
,
964 __func__
, addr
, val
);
966 /* TODO: EISR/EIMR */
969 static void openpic_cpu_write_internal(void *opaque
, hwaddr addr
,
970 uint32_t val
, int idx
)
972 OpenPICState
*opp
= opaque
;
977 DPRINTF("%s: cpu %d addr %#" HWADDR_PRIx
" <= 0x%08x", __func__
, idx
,
980 if (idx
< 0 || idx
>= opp
->nb_cpus
) {
987 dst
= &opp
->dst
[idx
];
990 case 0x40: /* IPIDR */
994 idx
= (addr
- 0x40) >> 4;
995 /* we use IDE as mask which CPUs to deliver the IPI to still. */
996 opp
->src
[opp
->irq_ipi0
+ idx
].destmask
|= val
;
997 openpic_set_irq(opp
, opp
->irq_ipi0
+ idx
, 1);
998 openpic_set_irq(opp
, opp
->irq_ipi0
+ idx
, 0);
1000 case 0x80: /* CTPR */
1001 dst
->ctpr
= val
& 0x0000000F;
1003 DPRINTF("%s: set CPU %d ctpr to %d, raised %d servicing %d",
1004 __func__
, idx
, dst
->ctpr
, dst
->raised
.priority
,
1005 dst
->servicing
.priority
);
1007 if (dst
->raised
.priority
<= dst
->ctpr
) {
1008 DPRINTF("%s: Lower OpenPIC INT output cpu %d due to ctpr",
1010 qemu_irq_lower(dst
->irqs
[OPENPIC_OUTPUT_INT
]);
1011 } else if (dst
->raised
.priority
> dst
->servicing
.priority
) {
1012 DPRINTF("%s: Raise OpenPIC INT output cpu %d irq %d",
1013 __func__
, idx
, dst
->raised
.next
);
1014 qemu_irq_raise(dst
->irqs
[OPENPIC_OUTPUT_INT
]);
1018 case 0x90: /* WHOAMI */
1019 /* Read-only register */
1021 case 0xA0: /* IACK */
1022 /* Read-only register */
1024 case 0xB0: /* EOI */
1026 s_IRQ
= IRQ_get_next(opp
, &dst
->servicing
);
1029 DPRINTF("%s: EOI with no interrupt in service", __func__
);
1033 IRQ_resetbit(&dst
->servicing
, s_IRQ
);
1034 /* Set up next servicing IRQ */
1035 s_IRQ
= IRQ_get_next(opp
, &dst
->servicing
);
1036 /* Check queued interrupts. */
1037 n_IRQ
= IRQ_get_next(opp
, &dst
->raised
);
1038 src
= &opp
->src
[n_IRQ
];
1041 IVPR_PRIORITY(src
->ivpr
) > dst
->servicing
.priority
)) {
1042 DPRINTF("Raise OpenPIC INT output cpu %d irq %d",
1044 qemu_irq_raise(opp
->dst
[idx
].irqs
[OPENPIC_OUTPUT_INT
]);
1052 static void openpic_cpu_write(void *opaque
, hwaddr addr
, uint64_t val
,
1055 openpic_cpu_write_internal(opaque
, addr
, val
, (addr
& 0x1f000) >> 12);
1059 static uint32_t openpic_iack(OpenPICState
*opp
, IRQDest
*dst
, int cpu
)
1064 DPRINTF("Lower OpenPIC INT output");
1065 qemu_irq_lower(dst
->irqs
[OPENPIC_OUTPUT_INT
]);
1067 irq
= IRQ_get_next(opp
, &dst
->raised
);
1068 DPRINTF("IACK: irq=%d", irq
);
1071 /* No more interrupt pending */
1075 src
= &opp
->src
[irq
];
1076 if (!(src
->ivpr
& IVPR_ACTIVITY_MASK
) ||
1077 !(IVPR_PRIORITY(src
->ivpr
) > dst
->ctpr
)) {
1078 error_report("%s: bad raised IRQ %d ctpr %d ivpr 0x%08x",
1079 __func__
, irq
, dst
->ctpr
, src
->ivpr
);
1080 openpic_update_irq(opp
, irq
);
1083 /* IRQ enter servicing state */
1084 IRQ_setbit(&dst
->servicing
, irq
);
1085 retval
= IVPR_VECTOR(opp
, src
->ivpr
);
1089 /* edge-sensitive IRQ */
1090 src
->ivpr
&= ~IVPR_ACTIVITY_MASK
;
1092 IRQ_resetbit(&dst
->raised
, irq
);
1095 /* Timers and IPIs support multicast. */
1096 if (((irq
>= opp
->irq_ipi0
) && (irq
< (opp
->irq_ipi0
+ OPENPIC_MAX_IPI
))) ||
1097 ((irq
>= opp
->irq_tim0
) && (irq
< (opp
->irq_tim0
+ OPENPIC_MAX_TMR
)))) {
1098 DPRINTF("irq is IPI or TMR");
1099 src
->destmask
&= ~(1 << cpu
);
1100 if (src
->destmask
&& !src
->level
) {
1101 /* trigger on CPUs that didn't know about it yet */
1102 openpic_set_irq(opp
, irq
, 1);
1103 openpic_set_irq(opp
, irq
, 0);
1104 /* if all CPUs knew about it, set active bit again */
1105 src
->ivpr
|= IVPR_ACTIVITY_MASK
;
1112 static uint32_t openpic_cpu_read_internal(void *opaque
, hwaddr addr
,
1115 OpenPICState
*opp
= opaque
;
1119 DPRINTF("%s: cpu %d addr %#" HWADDR_PRIx
, __func__
, idx
, addr
);
1120 retval
= 0xFFFFFFFF;
1122 if (idx
< 0 || idx
>= opp
->nb_cpus
) {
1129 dst
= &opp
->dst
[idx
];
1132 case 0x80: /* CTPR */
1135 case 0x90: /* WHOAMI */
1138 case 0xA0: /* IACK */
1139 retval
= openpic_iack(opp
, dst
, idx
);
1141 case 0xB0: /* EOI */
1147 DPRINTF("%s: => 0x%08x", __func__
, retval
);
1152 static uint64_t openpic_cpu_read(void *opaque
, hwaddr addr
, unsigned len
)
1154 return openpic_cpu_read_internal(opaque
, addr
, (addr
& 0x1f000) >> 12);
1157 static const MemoryRegionOps openpic_glb_ops_le
= {
1158 .write
= openpic_gbl_write
,
1159 .read
= openpic_gbl_read
,
1160 .endianness
= DEVICE_LITTLE_ENDIAN
,
1162 .min_access_size
= 4,
1163 .max_access_size
= 4,
1167 static const MemoryRegionOps openpic_glb_ops_be
= {
1168 .write
= openpic_gbl_write
,
1169 .read
= openpic_gbl_read
,
1170 .endianness
= DEVICE_BIG_ENDIAN
,
1172 .min_access_size
= 4,
1173 .max_access_size
= 4,
1177 static const MemoryRegionOps openpic_tmr_ops_le
= {
1178 .write
= openpic_tmr_write
,
1179 .read
= openpic_tmr_read
,
1180 .endianness
= DEVICE_LITTLE_ENDIAN
,
1182 .min_access_size
= 4,
1183 .max_access_size
= 4,
1187 static const MemoryRegionOps openpic_tmr_ops_be
= {
1188 .write
= openpic_tmr_write
,
1189 .read
= openpic_tmr_read
,
1190 .endianness
= DEVICE_BIG_ENDIAN
,
1192 .min_access_size
= 4,
1193 .max_access_size
= 4,
1197 static const MemoryRegionOps openpic_cpu_ops_le
= {
1198 .write
= openpic_cpu_write
,
1199 .read
= openpic_cpu_read
,
1200 .endianness
= DEVICE_LITTLE_ENDIAN
,
1202 .min_access_size
= 4,
1203 .max_access_size
= 4,
1207 static const MemoryRegionOps openpic_cpu_ops_be
= {
1208 .write
= openpic_cpu_write
,
1209 .read
= openpic_cpu_read
,
1210 .endianness
= DEVICE_BIG_ENDIAN
,
1212 .min_access_size
= 4,
1213 .max_access_size
= 4,
1217 static const MemoryRegionOps openpic_src_ops_le
= {
1218 .write
= openpic_src_write
,
1219 .read
= openpic_src_read
,
1220 .endianness
= DEVICE_LITTLE_ENDIAN
,
1222 .min_access_size
= 4,
1223 .max_access_size
= 4,
1227 static const MemoryRegionOps openpic_src_ops_be
= {
1228 .write
= openpic_src_write
,
1229 .read
= openpic_src_read
,
1230 .endianness
= DEVICE_BIG_ENDIAN
,
1232 .min_access_size
= 4,
1233 .max_access_size
= 4,
1237 static const MemoryRegionOps openpic_msi_ops_be
= {
1238 .read
= openpic_msi_read
,
1239 .write
= openpic_msi_write
,
1240 .endianness
= DEVICE_BIG_ENDIAN
,
1242 .min_access_size
= 4,
1243 .max_access_size
= 4,
1247 static const MemoryRegionOps openpic_summary_ops_be
= {
1248 .read
= openpic_summary_read
,
1249 .write
= openpic_summary_write
,
1250 .endianness
= DEVICE_BIG_ENDIAN
,
1252 .min_access_size
= 4,
1253 .max_access_size
= 4,
1257 static void openpic_reset(DeviceState
*d
)
1259 OpenPICState
*opp
= OPENPIC(d
);
1262 opp
->gcr
= GCR_RESET
;
1263 /* Initialise controller registers */
1264 opp
->frr
= ((opp
->nb_irqs
- 1) << FRR_NIRQ_SHIFT
) |
1265 ((opp
->nb_cpus
- 1) << FRR_NCPU_SHIFT
) |
1266 (opp
->vid
<< FRR_VID_SHIFT
);
1269 opp
->spve
= -1 & opp
->vector_mask
;
1270 opp
->tfrr
= opp
->tfrr_reset
;
1271 /* Initialise IRQ sources */
1272 for (i
= 0; i
< opp
->max_irq
; i
++) {
1273 opp
->src
[i
].ivpr
= opp
->ivpr_reset
;
1274 switch (opp
->src
[i
].type
) {
1275 case IRQ_TYPE_NORMAL
:
1276 opp
->src
[i
].level
= !!(opp
->ivpr_reset
& IVPR_SENSE_MASK
);
1279 case IRQ_TYPE_FSLINT
:
1280 opp
->src
[i
].ivpr
|= IVPR_POLARITY_MASK
;
1283 case IRQ_TYPE_FSLSPECIAL
:
1287 /* Mask all IPI interrupts for Freescale OpenPIC */
1288 if ((opp
->model
== OPENPIC_MODEL_FSL_MPIC_20
) ||
1289 (opp
->model
== OPENPIC_MODEL_FSL_MPIC_42
)) {
1290 if (i
>= opp
->irq_ipi0
&& i
< opp
->irq_tim0
) {
1291 write_IRQreg_idr(opp
, i
, 0);
1296 write_IRQreg_idr(opp
, i
, opp
->idr_reset
);
1298 /* Initialise IRQ destinations */
1299 for (i
= 0; i
< opp
->nb_cpus
; i
++) {
1300 opp
->dst
[i
].ctpr
= 15;
1301 opp
->dst
[i
].raised
.next
= -1;
1302 opp
->dst
[i
].raised
.priority
= 0;
1303 bitmap_clear(opp
->dst
[i
].raised
.queue
, 0, IRQQUEUE_SIZE_BITS
);
1304 opp
->dst
[i
].servicing
.next
= -1;
1305 opp
->dst
[i
].servicing
.priority
= 0;
1306 bitmap_clear(opp
->dst
[i
].servicing
.queue
, 0, IRQQUEUE_SIZE_BITS
);
1308 /* Initialise timers */
1309 for (i
= 0; i
< OPENPIC_MAX_TMR
; i
++) {
1310 opp
->timers
[i
].tccr
= 0;
1311 opp
->timers
[i
].tbcr
= TBCR_CI
;
1312 if (opp
->timers
[i
].qemu_timer_active
) {
1313 timer_del(opp
->timers
[i
].qemu_timer
); /* Inhibit timer */
1314 opp
->timers
[i
].qemu_timer_active
= false;
1317 /* Go out of RESET state */
1321 typedef struct MemReg
{
1323 MemoryRegionOps
const *ops
;
1328 static void fsl_common_init(OpenPICState
*opp
)
1331 int virq
= OPENPIC_MAX_SRC
;
1333 opp
->vid
= VID_REVISION_1_2
;
1334 opp
->vir
= VIR_GENERIC
;
1335 opp
->vector_mask
= 0xFFFF;
1336 opp
->tfrr_reset
= 0;
1337 opp
->ivpr_reset
= IVPR_MASK_MASK
;
1338 opp
->idr_reset
= 1 << 0;
1339 opp
->max_irq
= OPENPIC_MAX_IRQ
;
1341 opp
->irq_ipi0
= virq
;
1342 virq
+= OPENPIC_MAX_IPI
;
1343 opp
->irq_tim0
= virq
;
1344 virq
+= OPENPIC_MAX_TMR
;
1346 assert(virq
<= OPENPIC_MAX_IRQ
);
1350 msi_nonbroken
= true;
1351 for (i
= 0; i
< opp
->fsl
->max_ext
; i
++) {
1352 opp
->src
[i
].level
= false;
1355 /* Internal interrupts, including message and MSI */
1356 for (i
= 16; i
< OPENPIC_MAX_SRC
; i
++) {
1357 opp
->src
[i
].type
= IRQ_TYPE_FSLINT
;
1358 opp
->src
[i
].level
= true;
1361 /* timers and IPIs */
1362 for (i
= OPENPIC_MAX_SRC
; i
< virq
; i
++) {
1363 opp
->src
[i
].type
= IRQ_TYPE_FSLSPECIAL
;
1364 opp
->src
[i
].level
= false;
1367 for (i
= 0; i
< OPENPIC_MAX_TMR
; i
++) {
1368 opp
->timers
[i
].n_IRQ
= opp
->irq_tim0
+ i
;
1369 opp
->timers
[i
].qemu_timer_active
= false;
1370 opp
->timers
[i
].qemu_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
,
1373 opp
->timers
[i
].opp
= opp
;
1377 static void map_list(OpenPICState
*opp
, const MemReg
*list
, int *count
)
1379 while (list
->name
) {
1380 assert(*count
< ARRAY_SIZE(opp
->sub_io_mem
));
1382 memory_region_init_io(&opp
->sub_io_mem
[*count
], OBJECT(opp
), list
->ops
,
1383 opp
, list
->name
, list
->size
);
1385 memory_region_add_subregion(&opp
->mem
, list
->start_addr
,
1386 &opp
->sub_io_mem
[*count
]);
1393 static const VMStateDescription vmstate_openpic_irq_queue
= {
1394 .name
= "openpic_irq_queue",
1396 .minimum_version_id
= 0,
1397 .fields
= (VMStateField
[]) {
1398 VMSTATE_BITMAP(queue
, IRQQueue
, 0, queue_size
),
1399 VMSTATE_INT32(next
, IRQQueue
),
1400 VMSTATE_INT32(priority
, IRQQueue
),
1401 VMSTATE_END_OF_LIST()
1405 static const VMStateDescription vmstate_openpic_irqdest
= {
1406 .name
= "openpic_irqdest",
1408 .minimum_version_id
= 0,
1409 .fields
= (VMStateField
[]) {
1410 VMSTATE_INT32(ctpr
, IRQDest
),
1411 VMSTATE_STRUCT(raised
, IRQDest
, 0, vmstate_openpic_irq_queue
,
1413 VMSTATE_STRUCT(servicing
, IRQDest
, 0, vmstate_openpic_irq_queue
,
1415 VMSTATE_UINT32_ARRAY(outputs_active
, IRQDest
, OPENPIC_OUTPUT_NB
),
1416 VMSTATE_END_OF_LIST()
1420 static const VMStateDescription vmstate_openpic_irqsource
= {
1421 .name
= "openpic_irqsource",
1423 .minimum_version_id
= 0,
1424 .fields
= (VMStateField
[]) {
1425 VMSTATE_UINT32(ivpr
, IRQSource
),
1426 VMSTATE_UINT32(idr
, IRQSource
),
1427 VMSTATE_UINT32(destmask
, IRQSource
),
1428 VMSTATE_INT32(last_cpu
, IRQSource
),
1429 VMSTATE_INT32(pending
, IRQSource
),
1430 VMSTATE_END_OF_LIST()
1434 static const VMStateDescription vmstate_openpic_timer
= {
1435 .name
= "openpic_timer",
1437 .minimum_version_id
= 0,
1438 .fields
= (VMStateField
[]) {
1439 VMSTATE_UINT32(tccr
, OpenPICTimer
),
1440 VMSTATE_UINT32(tbcr
, OpenPICTimer
),
1441 VMSTATE_END_OF_LIST()
1445 static const VMStateDescription vmstate_openpic_msi
= {
1446 .name
= "openpic_msi",
1448 .minimum_version_id
= 0,
1449 .fields
= (VMStateField
[]) {
1450 VMSTATE_UINT32(msir
, OpenPICMSI
),
1451 VMSTATE_END_OF_LIST()
1455 static int openpic_post_load(void *opaque
, int version_id
)
1457 OpenPICState
*opp
= (OpenPICState
*)opaque
;
1460 /* Update internal ivpr and idr variables */
1461 for (i
= 0; i
< opp
->max_irq
; i
++) {
1462 write_IRQreg_idr(opp
, i
, opp
->src
[i
].idr
);
1463 write_IRQreg_ivpr(opp
, i
, opp
->src
[i
].ivpr
);
1469 static const VMStateDescription vmstate_openpic
= {
1472 .minimum_version_id
= 3,
1473 .post_load
= openpic_post_load
,
1474 .fields
= (VMStateField
[]) {
1475 VMSTATE_UINT32(gcr
, OpenPICState
),
1476 VMSTATE_UINT32(vir
, OpenPICState
),
1477 VMSTATE_UINT32(pir
, OpenPICState
),
1478 VMSTATE_UINT32(spve
, OpenPICState
),
1479 VMSTATE_UINT32(tfrr
, OpenPICState
),
1480 VMSTATE_UINT32(max_irq
, OpenPICState
),
1481 VMSTATE_STRUCT_VARRAY_UINT32(src
, OpenPICState
, max_irq
, 0,
1482 vmstate_openpic_irqsource
, IRQSource
),
1483 VMSTATE_UINT32_EQUAL(nb_cpus
, OpenPICState
, NULL
),
1484 VMSTATE_STRUCT_VARRAY_UINT32(dst
, OpenPICState
, nb_cpus
, 0,
1485 vmstate_openpic_irqdest
, IRQDest
),
1486 VMSTATE_STRUCT_ARRAY(timers
, OpenPICState
, OPENPIC_MAX_TMR
, 0,
1487 vmstate_openpic_timer
, OpenPICTimer
),
1488 VMSTATE_STRUCT_ARRAY(msi
, OpenPICState
, MAX_MSI
, 0,
1489 vmstate_openpic_msi
, OpenPICMSI
),
1490 VMSTATE_UINT32(irq_ipi0
, OpenPICState
),
1491 VMSTATE_UINT32(irq_tim0
, OpenPICState
),
1492 VMSTATE_UINT32(irq_msi
, OpenPICState
),
1493 VMSTATE_END_OF_LIST()
1497 static void openpic_init(Object
*obj
)
1499 OpenPICState
*opp
= OPENPIC(obj
);
1501 memory_region_init(&opp
->mem
, obj
, "openpic", 0x40000);
1504 static void openpic_realize(DeviceState
*dev
, Error
**errp
)
1506 SysBusDevice
*d
= SYS_BUS_DEVICE(dev
);
1507 OpenPICState
*opp
= OPENPIC(dev
);
1510 static const MemReg list_le
[] = {
1511 {"glb", &openpic_glb_ops_le
,
1512 OPENPIC_GLB_REG_START
, OPENPIC_GLB_REG_SIZE
},
1513 {"tmr", &openpic_tmr_ops_le
,
1514 OPENPIC_TMR_REG_START
, OPENPIC_TMR_REG_SIZE
},
1515 {"src", &openpic_src_ops_le
,
1516 OPENPIC_SRC_REG_START
, OPENPIC_SRC_REG_SIZE
},
1517 {"cpu", &openpic_cpu_ops_le
,
1518 OPENPIC_CPU_REG_START
, OPENPIC_CPU_REG_SIZE
},
1521 static const MemReg list_be
[] = {
1522 {"glb", &openpic_glb_ops_be
,
1523 OPENPIC_GLB_REG_START
, OPENPIC_GLB_REG_SIZE
},
1524 {"tmr", &openpic_tmr_ops_be
,
1525 OPENPIC_TMR_REG_START
, OPENPIC_TMR_REG_SIZE
},
1526 {"src", &openpic_src_ops_be
,
1527 OPENPIC_SRC_REG_START
, OPENPIC_SRC_REG_SIZE
},
1528 {"cpu", &openpic_cpu_ops_be
,
1529 OPENPIC_CPU_REG_START
, OPENPIC_CPU_REG_SIZE
},
1532 static const MemReg list_fsl
[] = {
1533 {"msi", &openpic_msi_ops_be
,
1534 OPENPIC_MSI_REG_START
, OPENPIC_MSI_REG_SIZE
},
1535 {"summary", &openpic_summary_ops_be
,
1536 OPENPIC_SUMMARY_REG_START
, OPENPIC_SUMMARY_REG_SIZE
},
1540 if (opp
->nb_cpus
> MAX_CPU
) {
1541 error_setg(errp
, QERR_PROPERTY_VALUE_OUT_OF_RANGE
,
1542 TYPE_OPENPIC
, "nb_cpus", (uint64_t)opp
->nb_cpus
,
1543 (uint64_t)0, (uint64_t)MAX_CPU
);
1547 switch (opp
->model
) {
1548 case OPENPIC_MODEL_FSL_MPIC_20
:
1550 opp
->fsl
= &fsl_mpic_20
;
1551 opp
->brr1
= 0x00400200;
1552 opp
->flags
|= OPENPIC_FLAG_IDR_CRIT
;
1554 opp
->mpic_mode_mask
= GCR_MODE_MIXED
;
1556 fsl_common_init(opp
);
1557 map_list(opp
, list_be
, &list_count
);
1558 map_list(opp
, list_fsl
, &list_count
);
1562 case OPENPIC_MODEL_FSL_MPIC_42
:
1563 opp
->fsl
= &fsl_mpic_42
;
1564 opp
->brr1
= 0x00400402;
1565 opp
->flags
|= OPENPIC_FLAG_ILR
;
1567 opp
->mpic_mode_mask
= GCR_MODE_PROXY
;
1569 fsl_common_init(opp
);
1570 map_list(opp
, list_be
, &list_count
);
1571 map_list(opp
, list_fsl
, &list_count
);
1575 case OPENPIC_MODEL_KEYLARGO
:
1576 opp
->nb_irqs
= KEYLARGO_MAX_EXT
;
1577 opp
->vid
= VID_REVISION_1_2
;
1578 opp
->vir
= VIR_GENERIC
;
1579 opp
->vector_mask
= 0xFF;
1580 opp
->tfrr_reset
= 4160000;
1581 opp
->ivpr_reset
= IVPR_MASK_MASK
| IVPR_MODE_MASK
;
1583 opp
->max_irq
= KEYLARGO_MAX_IRQ
;
1584 opp
->irq_ipi0
= KEYLARGO_IPI_IRQ
;
1585 opp
->irq_tim0
= KEYLARGO_TMR_IRQ
;
1587 opp
->mpic_mode_mask
= GCR_MODE_MIXED
;
1589 if (opp
->nb_cpus
!= 1) {
1590 error_setg(errp
, "Only UP supported today");
1594 map_list(opp
, list_le
, &list_count
);
1598 for (i
= 0; i
< opp
->nb_cpus
; i
++) {
1599 opp
->dst
[i
].irqs
= g_new0(qemu_irq
, OPENPIC_OUTPUT_NB
);
1600 for (j
= 0; j
< OPENPIC_OUTPUT_NB
; j
++) {
1601 sysbus_init_irq(d
, &opp
->dst
[i
].irqs
[j
]);
1604 opp
->dst
[i
].raised
.queue_size
= IRQQUEUE_SIZE_BITS
;
1605 opp
->dst
[i
].raised
.queue
= bitmap_new(IRQQUEUE_SIZE_BITS
);
1606 opp
->dst
[i
].servicing
.queue_size
= IRQQUEUE_SIZE_BITS
;
1607 opp
->dst
[i
].servicing
.queue
= bitmap_new(IRQQUEUE_SIZE_BITS
);
1610 sysbus_init_mmio(d
, &opp
->mem
);
1611 qdev_init_gpio_in(dev
, openpic_set_irq
, opp
->max_irq
);
1614 static Property openpic_properties
[] = {
1615 DEFINE_PROP_UINT32("model", OpenPICState
, model
, OPENPIC_MODEL_FSL_MPIC_20
),
1616 DEFINE_PROP_UINT32("nb_cpus", OpenPICState
, nb_cpus
, 1),
1617 DEFINE_PROP_END_OF_LIST(),
1620 static void openpic_class_init(ObjectClass
*oc
, void *data
)
1622 DeviceClass
*dc
= DEVICE_CLASS(oc
);
1624 dc
->realize
= openpic_realize
;
1625 device_class_set_props(dc
, openpic_properties
);
1626 dc
->reset
= openpic_reset
;
1627 dc
->vmsd
= &vmstate_openpic
;
1628 set_bit(DEVICE_CATEGORY_MISC
, dc
->categories
);
1631 static const TypeInfo openpic_info
= {
1632 .name
= TYPE_OPENPIC
,
1633 .parent
= TYPE_SYS_BUS_DEVICE
,
1634 .instance_size
= sizeof(OpenPICState
),
1635 .instance_init
= openpic_init
,
1636 .class_init
= openpic_class_init
,
1639 static void openpic_register_types(void)
1641 type_register_static(&openpic_info
);
1644 type_init(openpic_register_types
)