hw/arm/mps2-tz: Create PL081s and MSCs
[qemu/kevin.git] / hw / arm / mps2-tz.c
blobd810e51a1b4f0c6384a0d54d57bfbf550a30bfa7
1 /*
2 * ARM V2M MPS2 board emulation, trustzone aware FPGA images
4 * Copyright (c) 2017 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
12 /* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger
13 * FPGA but is otherwise the same as the 2). Since the CPU itself
14 * and most of the devices are in the FPGA, the details of the board
15 * as seen by the guest depend significantly on the FPGA image.
16 * This source file covers the following FPGA images, for TrustZone cores:
17 * "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505
19 * Links to the TRM for the board itself and to the various Application
20 * Notes which document the FPGA images can be found here:
21 * https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2
23 * Board TRM:
24 * http://infocenter.arm.com/help/topic/com.arm.doc.100112_0200_06_en/versatile_express_cortex_m_prototyping_systems_v2m_mps2_and_v2m_mps2plus_technical_reference_100112_0200_06_en.pdf
25 * Application Note AN505:
26 * http://infocenter.arm.com/help/topic/com.arm.doc.dai0505b/index.html
28 * The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide
29 * (ARM ECM0601256) for the details of some of the device layout:
30 * http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ecm0601256/index.html
33 #include "qemu/osdep.h"
34 #include "qapi/error.h"
35 #include "qemu/error-report.h"
36 #include "hw/arm/arm.h"
37 #include "hw/arm/armv7m.h"
38 #include "hw/or-irq.h"
39 #include "hw/boards.h"
40 #include "exec/address-spaces.h"
41 #include "sysemu/sysemu.h"
42 #include "hw/misc/unimp.h"
43 #include "hw/char/cmsdk-apb-uart.h"
44 #include "hw/timer/cmsdk-apb-timer.h"
45 #include "hw/misc/mps2-scc.h"
46 #include "hw/misc/mps2-fpgaio.h"
47 #include "hw/misc/tz-mpc.h"
48 #include "hw/misc/tz-msc.h"
49 #include "hw/arm/iotkit.h"
50 #include "hw/dma/pl080.h"
51 #include "hw/devices.h"
52 #include "net/net.h"
53 #include "hw/core/split-irq.h"
55 typedef enum MPS2TZFPGAType {
56 FPGA_AN505,
57 } MPS2TZFPGAType;
59 typedef struct {
60 MachineClass parent;
61 MPS2TZFPGAType fpga_type;
62 uint32_t scc_id;
63 } MPS2TZMachineClass;
65 typedef struct {
66 MachineState parent;
68 IoTKit iotkit;
69 MemoryRegion psram;
70 MemoryRegion ssram[3];
71 MemoryRegion ssram1_m;
72 MPS2SCC scc;
73 MPS2FPGAIO fpgaio;
74 TZPPC ppc[5];
75 TZMPC ssram_mpc[3];
76 UnimplementedDeviceState spi[5];
77 UnimplementedDeviceState i2c[4];
78 UnimplementedDeviceState i2s_audio;
79 UnimplementedDeviceState gpio[4];
80 UnimplementedDeviceState gfx;
81 PL080State dma[4];
82 TZMSC msc[4];
83 CMSDKAPBUART uart[5];
84 SplitIRQ sec_resp_splitter;
85 qemu_or_irq uart_irq_orgate;
86 DeviceState *lan9118;
87 } MPS2TZMachineState;
89 #define TYPE_MPS2TZ_MACHINE "mps2tz"
90 #define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505")
92 #define MPS2TZ_MACHINE(obj) \
93 OBJECT_CHECK(MPS2TZMachineState, obj, TYPE_MPS2TZ_MACHINE)
94 #define MPS2TZ_MACHINE_GET_CLASS(obj) \
95 OBJECT_GET_CLASS(MPS2TZMachineClass, obj, TYPE_MPS2TZ_MACHINE)
96 #define MPS2TZ_MACHINE_CLASS(klass) \
97 OBJECT_CLASS_CHECK(MPS2TZMachineClass, klass, TYPE_MPS2TZ_MACHINE)
99 /* Main SYSCLK frequency in Hz */
100 #define SYSCLK_FRQ 20000000
102 /* Create an alias of an entire original MemoryRegion @orig
103 * located at @base in the memory map.
105 static void make_ram_alias(MemoryRegion *mr, const char *name,
106 MemoryRegion *orig, hwaddr base)
108 memory_region_init_alias(mr, NULL, name, orig, 0,
109 memory_region_size(orig));
110 memory_region_add_subregion(get_system_memory(), base, mr);
113 /* Most of the devices in the AN505 FPGA image sit behind
114 * Peripheral Protection Controllers. These data structures
115 * define the layout of which devices sit behind which PPCs.
116 * The devfn for each port is a function which creates, configures
117 * and initializes the device, returning the MemoryRegion which
118 * needs to be plugged into the downstream end of the PPC port.
120 typedef MemoryRegion *MakeDevFn(MPS2TZMachineState *mms, void *opaque,
121 const char *name, hwaddr size);
123 typedef struct PPCPortInfo {
124 const char *name;
125 MakeDevFn *devfn;
126 void *opaque;
127 hwaddr addr;
128 hwaddr size;
129 } PPCPortInfo;
131 typedef struct PPCInfo {
132 const char *name;
133 PPCPortInfo ports[TZ_NUM_PORTS];
134 } PPCInfo;
136 static MemoryRegion *make_unimp_dev(MPS2TZMachineState *mms,
137 void *opaque,
138 const char *name, hwaddr size)
140 /* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
141 * and return a pointer to its MemoryRegion.
143 UnimplementedDeviceState *uds = opaque;
145 sysbus_init_child_obj(OBJECT(mms), name, uds,
146 sizeof(UnimplementedDeviceState),
147 TYPE_UNIMPLEMENTED_DEVICE);
148 qdev_prop_set_string(DEVICE(uds), "name", name);
149 qdev_prop_set_uint64(DEVICE(uds), "size", size);
150 object_property_set_bool(OBJECT(uds), true, "realized", &error_fatal);
151 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
154 static MemoryRegion *make_uart(MPS2TZMachineState *mms, void *opaque,
155 const char *name, hwaddr size)
157 CMSDKAPBUART *uart = opaque;
158 int i = uart - &mms->uart[0];
159 int rxirqno = i * 2;
160 int txirqno = i * 2 + 1;
161 int combirqno = i + 10;
162 SysBusDevice *s;
163 DeviceState *iotkitdev = DEVICE(&mms->iotkit);
164 DeviceState *orgate_dev = DEVICE(&mms->uart_irq_orgate);
166 sysbus_init_child_obj(OBJECT(mms), name, uart, sizeof(mms->uart[0]),
167 TYPE_CMSDK_APB_UART);
168 qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
169 qdev_prop_set_uint32(DEVICE(uart), "pclk-frq", SYSCLK_FRQ);
170 object_property_set_bool(OBJECT(uart), true, "realized", &error_fatal);
171 s = SYS_BUS_DEVICE(uart);
172 sysbus_connect_irq(s, 0, qdev_get_gpio_in_named(iotkitdev,
173 "EXP_IRQ", txirqno));
174 sysbus_connect_irq(s, 1, qdev_get_gpio_in_named(iotkitdev,
175 "EXP_IRQ", rxirqno));
176 sysbus_connect_irq(s, 2, qdev_get_gpio_in(orgate_dev, i * 2));
177 sysbus_connect_irq(s, 3, qdev_get_gpio_in(orgate_dev, i * 2 + 1));
178 sysbus_connect_irq(s, 4, qdev_get_gpio_in_named(iotkitdev,
179 "EXP_IRQ", combirqno));
180 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
183 static MemoryRegion *make_scc(MPS2TZMachineState *mms, void *opaque,
184 const char *name, hwaddr size)
186 MPS2SCC *scc = opaque;
187 DeviceState *sccdev;
188 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
190 object_initialize(scc, sizeof(mms->scc), TYPE_MPS2_SCC);
191 sccdev = DEVICE(scc);
192 qdev_set_parent_bus(sccdev, sysbus_get_default());
193 qdev_prop_set_uint32(sccdev, "scc-cfg4", 0x2);
194 qdev_prop_set_uint32(sccdev, "scc-aid", 0x02000008);
195 qdev_prop_set_uint32(sccdev, "scc-id", mmc->scc_id);
196 object_property_set_bool(OBJECT(scc), true, "realized", &error_fatal);
197 return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev), 0);
200 static MemoryRegion *make_fpgaio(MPS2TZMachineState *mms, void *opaque,
201 const char *name, hwaddr size)
203 MPS2FPGAIO *fpgaio = opaque;
205 object_initialize(fpgaio, sizeof(mms->fpgaio), TYPE_MPS2_FPGAIO);
206 qdev_set_parent_bus(DEVICE(fpgaio), sysbus_get_default());
207 object_property_set_bool(OBJECT(fpgaio), true, "realized", &error_fatal);
208 return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio), 0);
211 static MemoryRegion *make_eth_dev(MPS2TZMachineState *mms, void *opaque,
212 const char *name, hwaddr size)
214 SysBusDevice *s;
215 DeviceState *iotkitdev = DEVICE(&mms->iotkit);
216 NICInfo *nd = &nd_table[0];
218 /* In hardware this is a LAN9220; the LAN9118 is software compatible
219 * except that it doesn't support the checksum-offload feature.
221 qemu_check_nic_model(nd, "lan9118");
222 mms->lan9118 = qdev_create(NULL, "lan9118");
223 qdev_set_nic_properties(mms->lan9118, nd);
224 qdev_init_nofail(mms->lan9118);
226 s = SYS_BUS_DEVICE(mms->lan9118);
227 sysbus_connect_irq(s, 0, qdev_get_gpio_in_named(iotkitdev, "EXP_IRQ", 16));
228 return sysbus_mmio_get_region(s, 0);
231 static MemoryRegion *make_mpc(MPS2TZMachineState *mms, void *opaque,
232 const char *name, hwaddr size)
234 TZMPC *mpc = opaque;
235 int i = mpc - &mms->ssram_mpc[0];
236 MemoryRegion *ssram = &mms->ssram[i];
237 MemoryRegion *upstream;
238 char *mpcname = g_strdup_printf("%s-mpc", name);
239 static uint32_t ramsize[] = { 0x00400000, 0x00200000, 0x00200000 };
240 static uint32_t rambase[] = { 0x00000000, 0x28000000, 0x28200000 };
242 memory_region_init_ram(ssram, NULL, name, ramsize[i], &error_fatal);
244 sysbus_init_child_obj(OBJECT(mms), mpcname, mpc, sizeof(mms->ssram_mpc[0]),
245 TYPE_TZ_MPC);
246 object_property_set_link(OBJECT(mpc), OBJECT(ssram),
247 "downstream", &error_fatal);
248 object_property_set_bool(OBJECT(mpc), true, "realized", &error_fatal);
249 /* Map the upstream end of the MPC into system memory */
250 upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
251 memory_region_add_subregion(get_system_memory(), rambase[i], upstream);
252 /* and connect its interrupt to the IoTKit */
253 qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
254 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
255 "mpcexp_status", i));
257 /* The first SSRAM is a special case as it has an alias; accesses to
258 * the alias region at 0x00400000 must also go to the MPC upstream.
260 if (i == 0) {
261 make_ram_alias(&mms->ssram1_m, "mps.ssram1_m", upstream, 0x00400000);
264 g_free(mpcname);
265 /* Return the register interface MR for our caller to map behind the PPC */
266 return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
269 static MemoryRegion *make_dma(MPS2TZMachineState *mms, void *opaque,
270 const char *name, hwaddr size)
272 PL080State *dma = opaque;
273 int i = dma - &mms->dma[0];
274 SysBusDevice *s;
275 char *mscname = g_strdup_printf("%s-msc", name);
276 TZMSC *msc = &mms->msc[i];
277 DeviceState *iotkitdev = DEVICE(&mms->iotkit);
278 MemoryRegion *msc_upstream;
279 MemoryRegion *msc_downstream;
282 * Each DMA device is a PL081 whose transaction master interface
283 * is guarded by a Master Security Controller. The downstream end of
284 * the MSC connects to the IoTKit AHB Slave Expansion port, so the
285 * DMA devices can see all devices and memory that the CPU does.
287 sysbus_init_child_obj(OBJECT(mms), mscname, msc, sizeof(*msc), TYPE_TZ_MSC);
288 msc_downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(&mms->iotkit), 0);
289 object_property_set_link(OBJECT(msc), OBJECT(msc_downstream),
290 "downstream", &error_fatal);
291 object_property_set_link(OBJECT(msc), OBJECT(mms),
292 "idau", &error_fatal);
293 object_property_set_bool(OBJECT(msc), true, "realized", &error_fatal);
295 qdev_connect_gpio_out_named(DEVICE(msc), "irq", 0,
296 qdev_get_gpio_in_named(iotkitdev,
297 "mscexp_status", i));
298 qdev_connect_gpio_out_named(iotkitdev, "mscexp_clear", i,
299 qdev_get_gpio_in_named(DEVICE(msc),
300 "irq_clear", 0));
301 qdev_connect_gpio_out_named(iotkitdev, "mscexp_ns", i,
302 qdev_get_gpio_in_named(DEVICE(msc),
303 "cfg_nonsec", 0));
304 qdev_connect_gpio_out(DEVICE(&mms->sec_resp_splitter),
305 ARRAY_SIZE(mms->ppc) + i,
306 qdev_get_gpio_in_named(DEVICE(msc),
307 "cfg_sec_resp", 0));
308 msc_upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(msc), 0);
310 sysbus_init_child_obj(OBJECT(mms), name, dma, sizeof(*dma), TYPE_PL081);
311 object_property_set_link(OBJECT(dma), OBJECT(msc_upstream),
312 "downstream", &error_fatal);
313 object_property_set_bool(OBJECT(dma), true, "realized", &error_fatal);
315 s = SYS_BUS_DEVICE(dma);
316 /* Wire up DMACINTR, DMACINTERR, DMACINTTC */
317 sysbus_connect_irq(s, 0, qdev_get_gpio_in_named(iotkitdev,
318 "EXP_IRQ", 58 + i * 3));
319 sysbus_connect_irq(s, 1, qdev_get_gpio_in_named(iotkitdev,
320 "EXP_IRQ", 56 + i * 3));
321 sysbus_connect_irq(s, 2, qdev_get_gpio_in_named(iotkitdev,
322 "EXP_IRQ", 57 + i * 3));
324 return sysbus_mmio_get_region(s, 0);
327 static void mps2tz_common_init(MachineState *machine)
329 MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
330 MachineClass *mc = MACHINE_GET_CLASS(machine);
331 MemoryRegion *system_memory = get_system_memory();
332 DeviceState *iotkitdev;
333 DeviceState *dev_splitter;
334 int i;
336 if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
337 error_report("This board can only be used with CPU %s",
338 mc->default_cpu_type);
339 exit(1);
342 sysbus_init_child_obj(OBJECT(machine), "iotkit", &mms->iotkit,
343 sizeof(mms->iotkit), TYPE_IOTKIT);
344 iotkitdev = DEVICE(&mms->iotkit);
345 object_property_set_link(OBJECT(&mms->iotkit), OBJECT(system_memory),
346 "memory", &error_abort);
347 qdev_prop_set_uint32(iotkitdev, "EXP_NUMIRQ", 92);
348 qdev_prop_set_uint32(iotkitdev, "MAINCLK", SYSCLK_FRQ);
349 object_property_set_bool(OBJECT(&mms->iotkit), true, "realized",
350 &error_fatal);
352 /* The sec_resp_cfg output from the IoTKit must be split into multiple
353 * lines, one for each of the PPCs we create here, plus one per MSC.
355 object_initialize(&mms->sec_resp_splitter, sizeof(mms->sec_resp_splitter),
356 TYPE_SPLIT_IRQ);
357 object_property_add_child(OBJECT(machine), "sec-resp-splitter",
358 OBJECT(&mms->sec_resp_splitter), &error_abort);
359 object_property_set_int(OBJECT(&mms->sec_resp_splitter),
360 ARRAY_SIZE(mms->ppc) + ARRAY_SIZE(mms->msc),
361 "num-lines", &error_fatal);
362 object_property_set_bool(OBJECT(&mms->sec_resp_splitter), true,
363 "realized", &error_fatal);
364 dev_splitter = DEVICE(&mms->sec_resp_splitter);
365 qdev_connect_gpio_out_named(iotkitdev, "sec_resp_cfg", 0,
366 qdev_get_gpio_in(dev_splitter, 0));
368 /* The IoTKit sets up much of the memory layout, including
369 * the aliases between secure and non-secure regions in the
370 * address space. The FPGA itself contains:
372 * 0x00000000..0x003fffff SSRAM1
373 * 0x00400000..0x007fffff alias of SSRAM1
374 * 0x28000000..0x283fffff 4MB SSRAM2 + SSRAM3
375 * 0x40100000..0x4fffffff AHB Master Expansion 1 interface devices
376 * 0x80000000..0x80ffffff 16MB PSRAM
379 /* The FPGA images have an odd combination of different RAMs,
380 * because in hardware they are different implementations and
381 * connected to different buses, giving varying performance/size
382 * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily
383 * call the 16MB our "system memory", as it's the largest lump.
385 memory_region_allocate_system_memory(&mms->psram,
386 NULL, "mps.ram", 0x01000000);
387 memory_region_add_subregion(system_memory, 0x80000000, &mms->psram);
389 /* The overflow IRQs for all UARTs are ORed together.
390 * Tx, Rx and "combined" IRQs are sent to the NVIC separately.
391 * Create the OR gate for this.
393 object_initialize(&mms->uart_irq_orgate, sizeof(mms->uart_irq_orgate),
394 TYPE_OR_IRQ);
395 object_property_add_child(OBJECT(mms), "uart-irq-orgate",
396 OBJECT(&mms->uart_irq_orgate), &error_abort);
397 object_property_set_int(OBJECT(&mms->uart_irq_orgate), 10, "num-lines",
398 &error_fatal);
399 object_property_set_bool(OBJECT(&mms->uart_irq_orgate), true,
400 "realized", &error_fatal);
401 qdev_connect_gpio_out(DEVICE(&mms->uart_irq_orgate), 0,
402 qdev_get_gpio_in_named(iotkitdev, "EXP_IRQ", 15));
404 /* Most of the devices in the FPGA are behind Peripheral Protection
405 * Controllers. The required order for initializing things is:
406 * + initialize the PPC
407 * + initialize, configure and realize downstream devices
408 * + connect downstream device MemoryRegions to the PPC
409 * + realize the PPC
410 * + map the PPC's MemoryRegions to the places in the address map
411 * where the downstream devices should appear
412 * + wire up the PPC's control lines to the IoTKit object
415 const PPCInfo ppcs[] = { {
416 .name = "apb_ppcexp0",
417 .ports = {
418 { "ssram-0", make_mpc, &mms->ssram_mpc[0], 0x58007000, 0x1000 },
419 { "ssram-1", make_mpc, &mms->ssram_mpc[1], 0x58008000, 0x1000 },
420 { "ssram-2", make_mpc, &mms->ssram_mpc[2], 0x58009000, 0x1000 },
422 }, {
423 .name = "apb_ppcexp1",
424 .ports = {
425 { "spi0", make_unimp_dev, &mms->spi[0], 0x40205000, 0x1000 },
426 { "spi1", make_unimp_dev, &mms->spi[1], 0x40206000, 0x1000 },
427 { "spi2", make_unimp_dev, &mms->spi[2], 0x40209000, 0x1000 },
428 { "spi3", make_unimp_dev, &mms->spi[3], 0x4020a000, 0x1000 },
429 { "spi4", make_unimp_dev, &mms->spi[4], 0x4020b000, 0x1000 },
430 { "uart0", make_uart, &mms->uart[0], 0x40200000, 0x1000 },
431 { "uart1", make_uart, &mms->uart[1], 0x40201000, 0x1000 },
432 { "uart2", make_uart, &mms->uart[2], 0x40202000, 0x1000 },
433 { "uart3", make_uart, &mms->uart[3], 0x40203000, 0x1000 },
434 { "uart4", make_uart, &mms->uart[4], 0x40204000, 0x1000 },
435 { "i2c0", make_unimp_dev, &mms->i2c[0], 0x40207000, 0x1000 },
436 { "i2c1", make_unimp_dev, &mms->i2c[1], 0x40208000, 0x1000 },
437 { "i2c2", make_unimp_dev, &mms->i2c[2], 0x4020c000, 0x1000 },
438 { "i2c3", make_unimp_dev, &mms->i2c[3], 0x4020d000, 0x1000 },
440 }, {
441 .name = "apb_ppcexp2",
442 .ports = {
443 { "scc", make_scc, &mms->scc, 0x40300000, 0x1000 },
444 { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
445 0x40301000, 0x1000 },
446 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x40302000, 0x1000 },
448 }, {
449 .name = "ahb_ppcexp0",
450 .ports = {
451 { "gfx", make_unimp_dev, &mms->gfx, 0x41000000, 0x140000 },
452 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x40100000, 0x1000 },
453 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x40101000, 0x1000 },
454 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x40102000, 0x1000 },
455 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x40103000, 0x1000 },
456 { "eth", make_eth_dev, NULL, 0x42000000, 0x100000 },
458 }, {
459 .name = "ahb_ppcexp1",
460 .ports = {
461 { "dma0", make_dma, &mms->dma[0], 0x40110000, 0x1000 },
462 { "dma1", make_dma, &mms->dma[1], 0x40111000, 0x1000 },
463 { "dma2", make_dma, &mms->dma[2], 0x40112000, 0x1000 },
464 { "dma3", make_dma, &mms->dma[3], 0x40113000, 0x1000 },
469 for (i = 0; i < ARRAY_SIZE(ppcs); i++) {
470 const PPCInfo *ppcinfo = &ppcs[i];
471 TZPPC *ppc = &mms->ppc[i];
472 DeviceState *ppcdev;
473 int port;
474 char *gpioname;
476 sysbus_init_child_obj(OBJECT(machine), ppcinfo->name, ppc,
477 sizeof(TZPPC), TYPE_TZ_PPC);
478 ppcdev = DEVICE(ppc);
480 for (port = 0; port < TZ_NUM_PORTS; port++) {
481 const PPCPortInfo *pinfo = &ppcinfo->ports[port];
482 MemoryRegion *mr;
483 char *portname;
485 if (!pinfo->devfn) {
486 continue;
489 mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size);
490 portname = g_strdup_printf("port[%d]", port);
491 object_property_set_link(OBJECT(ppc), OBJECT(mr),
492 portname, &error_fatal);
493 g_free(portname);
496 object_property_set_bool(OBJECT(ppc), true, "realized", &error_fatal);
498 for (port = 0; port < TZ_NUM_PORTS; port++) {
499 const PPCPortInfo *pinfo = &ppcinfo->ports[port];
501 if (!pinfo->devfn) {
502 continue;
504 sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
506 gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
507 qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
508 qdev_get_gpio_in_named(ppcdev,
509 "cfg_nonsec",
510 port));
511 g_free(gpioname);
512 gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
513 qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
514 qdev_get_gpio_in_named(ppcdev,
515 "cfg_ap", port));
516 g_free(gpioname);
519 gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
520 qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
521 qdev_get_gpio_in_named(ppcdev,
522 "irq_enable", 0));
523 g_free(gpioname);
524 gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
525 qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
526 qdev_get_gpio_in_named(ppcdev,
527 "irq_clear", 0));
528 g_free(gpioname);
529 gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
530 qdev_connect_gpio_out_named(ppcdev, "irq", 0,
531 qdev_get_gpio_in_named(iotkitdev,
532 gpioname, 0));
533 g_free(gpioname);
535 qdev_connect_gpio_out(dev_splitter, i,
536 qdev_get_gpio_in_named(ppcdev,
537 "cfg_sec_resp", 0));
540 create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000);
542 armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename, 0x400000);
545 static void mps2_tz_idau_check(IDAUInterface *ii, uint32_t address,
546 int *iregion, bool *exempt, bool *ns, bool *nsc)
549 * The MPS2 TZ FPGA images have IDAUs in them which are connected to
550 * the Master Security Controllers. Thes have the same logic as
551 * is used by the IoTKit for the IDAU connected to the CPU, except
552 * that MSCs don't care about the NSC attribute.
554 int region = extract32(address, 28, 4);
556 *ns = !(region & 1);
557 *nsc = false;
558 /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
559 *exempt = (address & 0xeff00000) == 0xe0000000;
560 *iregion = region;
563 static void mps2tz_class_init(ObjectClass *oc, void *data)
565 MachineClass *mc = MACHINE_CLASS(oc);
566 IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(oc);
568 mc->init = mps2tz_common_init;
569 mc->max_cpus = 1;
570 iic->check = mps2_tz_idau_check;
573 static void mps2tz_an505_class_init(ObjectClass *oc, void *data)
575 MachineClass *mc = MACHINE_CLASS(oc);
576 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
578 mc->desc = "ARM MPS2 with AN505 FPGA image for Cortex-M33";
579 mmc->fpga_type = FPGA_AN505;
580 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
581 mmc->scc_id = 0x41040000 | (505 << 4);
584 static const TypeInfo mps2tz_info = {
585 .name = TYPE_MPS2TZ_MACHINE,
586 .parent = TYPE_MACHINE,
587 .abstract = true,
588 .instance_size = sizeof(MPS2TZMachineState),
589 .class_size = sizeof(MPS2TZMachineClass),
590 .class_init = mps2tz_class_init,
591 .interfaces = (InterfaceInfo[]) {
592 { TYPE_IDAU_INTERFACE },
597 static const TypeInfo mps2tz_an505_info = {
598 .name = TYPE_MPS2TZ_AN505_MACHINE,
599 .parent = TYPE_MPS2TZ_MACHINE,
600 .class_init = mps2tz_an505_class_init,
603 static void mps2tz_machine_init(void)
605 type_register_static(&mps2tz_info);
606 type_register_static(&mps2tz_an505_info);
609 type_init(mps2tz_machine_init);