2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "hw/sysbus.h"
32 #include "hw/arm/arm.h"
33 #include "hw/arm/primecell.h"
34 #include "hw/arm/virt.h"
35 #include "hw/devices.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/device_tree.h"
39 #include "sysemu/sysemu.h"
40 #include "sysemu/kvm.h"
41 #include "hw/boards.h"
42 #include "hw/loader.h"
43 #include "exec/address-spaces.h"
44 #include "qemu/bitops.h"
45 #include "qemu/error-report.h"
46 #include "hw/pci-host/gpex.h"
47 #include "hw/arm/virt-acpi-build.h"
48 #include "hw/arm/sysbus-fdt.h"
49 #include "hw/platform-bus.h"
50 #include "hw/arm/fdt.h"
52 /* Number of external interrupt lines to configure the GIC with */
55 #define PLATFORM_BUS_NUM_IRQS 64
57 static ARMPlatformBusSystemParams platform_bus_params
;
59 typedef struct VirtBoardInfo
{
60 struct arm_boot_info bootinfo
;
61 const char *cpu_model
;
62 const MemMapEntry
*memmap
;
67 uint32_t clock_phandle
;
74 VirtBoardInfo
*daughterboard
;
82 #define TYPE_VIRT_MACHINE "virt"
83 #define VIRT_MACHINE(obj) \
84 OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE)
85 #define VIRT_MACHINE_GET_CLASS(obj) \
86 OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE)
87 #define VIRT_MACHINE_CLASS(klass) \
88 OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
90 /* Addresses and sizes of our components.
91 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
92 * 128MB..256MB is used for miscellaneous device I/O.
93 * 256MB..1GB is reserved for possible future PCI support (ie where the
94 * PCI memory window will go if we add a PCI host controller).
95 * 1GB and up is RAM (which may happily spill over into the
96 * high memory region beyond 4GB).
97 * This represents a compromise between how much RAM can be given to
98 * a 32 bit VM and leaving space for expansion and in particular for PCI.
99 * Note that devices should generally be placed at multiples of 0x10000,
100 * to accommodate guests using 64K pages.
102 static const MemMapEntry a15memmap
[] = {
103 /* Space up to 0x8000000 is reserved for a boot ROM */
104 [VIRT_FLASH
] = { 0, 0x08000000 },
105 [VIRT_CPUPERIPHS
] = { 0x08000000, 0x00020000 },
106 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
107 [VIRT_GIC_DIST
] = { 0x08000000, 0x00010000 },
108 [VIRT_GIC_CPU
] = { 0x08010000, 0x00010000 },
109 [VIRT_GIC_V2M
] = { 0x08020000, 0x00001000 },
110 [VIRT_UART
] = { 0x09000000, 0x00001000 },
111 [VIRT_RTC
] = { 0x09010000, 0x00001000 },
112 [VIRT_FW_CFG
] = { 0x09020000, 0x0000000a },
113 [VIRT_MMIO
] = { 0x0a000000, 0x00000200 },
114 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
115 [VIRT_PLATFORM_BUS
] = { 0x0c000000, 0x02000000 },
116 [VIRT_PCIE_MMIO
] = { 0x10000000, 0x2eff0000 },
117 [VIRT_PCIE_PIO
] = { 0x3eff0000, 0x00010000 },
118 [VIRT_PCIE_ECAM
] = { 0x3f000000, 0x01000000 },
119 [VIRT_MEM
] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 },
122 static const int a15irqmap
[] = {
125 [VIRT_PCIE
] = 3, /* ... to 6 */
126 [VIRT_MMIO
] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
127 [VIRT_GIC_V2M
] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
128 [VIRT_PLATFORM_BUS
] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
131 static VirtBoardInfo machines
[] = {
133 .cpu_model
= "cortex-a15",
138 .cpu_model
= "cortex-a53",
143 .cpu_model
= "cortex-a57",
154 static VirtBoardInfo
*find_machine_info(const char *cpu
)
158 for (i
= 0; i
< ARRAY_SIZE(machines
); i
++) {
159 if (strcmp(cpu
, machines
[i
].cpu_model
) == 0) {
166 static void create_fdt(VirtBoardInfo
*vbi
)
168 void *fdt
= create_device_tree(&vbi
->fdt_size
);
171 error_report("create_device_tree() failed");
178 qemu_fdt_setprop_string(fdt
, "/", "compatible", "linux,dummy-virt");
179 qemu_fdt_setprop_cell(fdt
, "/", "#address-cells", 0x2);
180 qemu_fdt_setprop_cell(fdt
, "/", "#size-cells", 0x2);
183 * /chosen and /memory nodes must exist for load_dtb
184 * to fill in necessary properties later
186 qemu_fdt_add_subnode(fdt
, "/chosen");
187 qemu_fdt_add_subnode(fdt
, "/memory");
188 qemu_fdt_setprop_string(fdt
, "/memory", "device_type", "memory");
190 /* Clock node, for the benefit of the UART. The kernel device tree
191 * binding documentation claims the PL011 node clock properties are
192 * optional but in practice if you omit them the kernel refuses to
193 * probe for the device.
195 vbi
->clock_phandle
= qemu_fdt_alloc_phandle(fdt
);
196 qemu_fdt_add_subnode(fdt
, "/apb-pclk");
197 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "compatible", "fixed-clock");
198 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "#clock-cells", 0x0);
199 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "clock-frequency", 24000000);
200 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "clock-output-names",
202 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "phandle", vbi
->clock_phandle
);
206 static void fdt_add_psci_node(const VirtBoardInfo
*vbi
)
208 uint32_t cpu_suspend_fn
;
212 void *fdt
= vbi
->fdt
;
213 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(0));
215 qemu_fdt_add_subnode(fdt
, "/psci");
216 if (armcpu
->psci_version
== 2) {
217 const char comp
[] = "arm,psci-0.2\0arm,psci";
218 qemu_fdt_setprop(fdt
, "/psci", "compatible", comp
, sizeof(comp
));
220 cpu_off_fn
= QEMU_PSCI_0_2_FN_CPU_OFF
;
221 if (arm_feature(&armcpu
->env
, ARM_FEATURE_AARCH64
)) {
222 cpu_suspend_fn
= QEMU_PSCI_0_2_FN64_CPU_SUSPEND
;
223 cpu_on_fn
= QEMU_PSCI_0_2_FN64_CPU_ON
;
224 migrate_fn
= QEMU_PSCI_0_2_FN64_MIGRATE
;
226 cpu_suspend_fn
= QEMU_PSCI_0_2_FN_CPU_SUSPEND
;
227 cpu_on_fn
= QEMU_PSCI_0_2_FN_CPU_ON
;
228 migrate_fn
= QEMU_PSCI_0_2_FN_MIGRATE
;
231 qemu_fdt_setprop_string(fdt
, "/psci", "compatible", "arm,psci");
233 cpu_suspend_fn
= QEMU_PSCI_0_1_FN_CPU_SUSPEND
;
234 cpu_off_fn
= QEMU_PSCI_0_1_FN_CPU_OFF
;
235 cpu_on_fn
= QEMU_PSCI_0_1_FN_CPU_ON
;
236 migrate_fn
= QEMU_PSCI_0_1_FN_MIGRATE
;
239 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
240 * to the instruction that should be used to invoke PSCI functions.
241 * However, the device tree binding uses 'method' instead, so that is
242 * what we should use here.
244 qemu_fdt_setprop_string(fdt
, "/psci", "method", "hvc");
246 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_suspend", cpu_suspend_fn
);
247 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_off", cpu_off_fn
);
248 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_on", cpu_on_fn
);
249 qemu_fdt_setprop_cell(fdt
, "/psci", "migrate", migrate_fn
);
252 static void fdt_add_timer_nodes(const VirtBoardInfo
*vbi
)
254 /* Note that on A15 h/w these interrupts are level-triggered,
255 * but for the GIC implementation provided by both QEMU and KVM
256 * they are edge-triggered.
259 uint32_t irqflags
= GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
;
261 irqflags
= deposit32(irqflags
, GIC_FDT_IRQ_PPI_CPU_START
,
262 GIC_FDT_IRQ_PPI_CPU_WIDTH
, (1 << vbi
->smp_cpus
) - 1);
264 qemu_fdt_add_subnode(vbi
->fdt
, "/timer");
266 armcpu
= ARM_CPU(qemu_get_cpu(0));
267 if (arm_feature(&armcpu
->env
, ARM_FEATURE_V8
)) {
268 const char compat
[] = "arm,armv8-timer\0arm,armv7-timer";
269 qemu_fdt_setprop(vbi
->fdt
, "/timer", "compatible",
270 compat
, sizeof(compat
));
272 qemu_fdt_setprop_string(vbi
->fdt
, "/timer", "compatible",
275 qemu_fdt_setprop_cells(vbi
->fdt
, "/timer", "interrupts",
276 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_S_EL1_IRQ
, irqflags
,
277 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_NS_EL1_IRQ
, irqflags
,
278 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_VIRT_IRQ
, irqflags
,
279 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_NS_EL2_IRQ
, irqflags
);
282 static void fdt_add_cpu_nodes(const VirtBoardInfo
*vbi
)
286 qemu_fdt_add_subnode(vbi
->fdt
, "/cpus");
287 qemu_fdt_setprop_cell(vbi
->fdt
, "/cpus", "#address-cells", 0x1);
288 qemu_fdt_setprop_cell(vbi
->fdt
, "/cpus", "#size-cells", 0x0);
290 for (cpu
= vbi
->smp_cpus
- 1; cpu
>= 0; cpu
--) {
291 char *nodename
= g_strdup_printf("/cpus/cpu@%d", cpu
);
292 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(cpu
));
294 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
295 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "device_type", "cpu");
296 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "compatible",
297 armcpu
->dtb_compatible
);
299 if (vbi
->smp_cpus
> 1) {
300 qemu_fdt_setprop_string(vbi
->fdt
, nodename
,
301 "enable-method", "psci");
304 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "reg", armcpu
->mp_affinity
);
309 static void fdt_add_v2m_gic_node(VirtBoardInfo
*vbi
)
311 vbi
->v2m_phandle
= qemu_fdt_alloc_phandle(vbi
->fdt
);
312 qemu_fdt_add_subnode(vbi
->fdt
, "/intc/v2m");
313 qemu_fdt_setprop_string(vbi
->fdt
, "/intc/v2m", "compatible",
314 "arm,gic-v2m-frame");
315 qemu_fdt_setprop(vbi
->fdt
, "/intc/v2m", "msi-controller", NULL
, 0);
316 qemu_fdt_setprop_sized_cells(vbi
->fdt
, "/intc/v2m", "reg",
317 2, vbi
->memmap
[VIRT_GIC_V2M
].base
,
318 2, vbi
->memmap
[VIRT_GIC_V2M
].size
);
319 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc/v2m", "phandle", vbi
->v2m_phandle
);
322 static void fdt_add_gic_node(VirtBoardInfo
*vbi
)
324 vbi
->gic_phandle
= qemu_fdt_alloc_phandle(vbi
->fdt
);
325 qemu_fdt_setprop_cell(vbi
->fdt
, "/", "interrupt-parent", vbi
->gic_phandle
);
327 qemu_fdt_add_subnode(vbi
->fdt
, "/intc");
328 /* 'cortex-a15-gic' means 'GIC v2' */
329 qemu_fdt_setprop_string(vbi
->fdt
, "/intc", "compatible",
330 "arm,cortex-a15-gic");
331 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc", "#interrupt-cells", 3);
332 qemu_fdt_setprop(vbi
->fdt
, "/intc", "interrupt-controller", NULL
, 0);
333 qemu_fdt_setprop_sized_cells(vbi
->fdt
, "/intc", "reg",
334 2, vbi
->memmap
[VIRT_GIC_DIST
].base
,
335 2, vbi
->memmap
[VIRT_GIC_DIST
].size
,
336 2, vbi
->memmap
[VIRT_GIC_CPU
].base
,
337 2, vbi
->memmap
[VIRT_GIC_CPU
].size
);
338 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc", "#address-cells", 0x2);
339 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc", "#size-cells", 0x2);
340 qemu_fdt_setprop(vbi
->fdt
, "/intc", "ranges", NULL
, 0);
341 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc", "phandle", vbi
->gic_phandle
);
344 static void create_v2m(VirtBoardInfo
*vbi
, qemu_irq
*pic
)
347 int irq
= vbi
->irqmap
[VIRT_GIC_V2M
];
350 dev
= qdev_create(NULL
, "arm-gicv2m");
351 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, vbi
->memmap
[VIRT_GIC_V2M
].base
);
352 qdev_prop_set_uint32(dev
, "base-spi", irq
);
353 qdev_prop_set_uint32(dev
, "num-spi", NUM_GICV2M_SPIS
);
354 qdev_init_nofail(dev
);
356 for (i
= 0; i
< NUM_GICV2M_SPIS
; i
++) {
357 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
, pic
[irq
+ i
]);
360 fdt_add_v2m_gic_node(vbi
);
363 static void create_gic(VirtBoardInfo
*vbi
, qemu_irq
*pic
)
365 /* We create a standalone GIC v2 */
367 SysBusDevice
*gicbusdev
;
368 const char *gictype
= "arm_gic";
371 if (kvm_irqchip_in_kernel()) {
372 gictype
= "kvm-arm-gic";
375 gicdev
= qdev_create(NULL
, gictype
);
376 qdev_prop_set_uint32(gicdev
, "revision", 2);
377 qdev_prop_set_uint32(gicdev
, "num-cpu", smp_cpus
);
378 /* Note that the num-irq property counts both internal and external
379 * interrupts; there are always 32 of the former (mandated by GIC spec).
381 qdev_prop_set_uint32(gicdev
, "num-irq", NUM_IRQS
+ 32);
382 qdev_init_nofail(gicdev
);
383 gicbusdev
= SYS_BUS_DEVICE(gicdev
);
384 sysbus_mmio_map(gicbusdev
, 0, vbi
->memmap
[VIRT_GIC_DIST
].base
);
385 sysbus_mmio_map(gicbusdev
, 1, vbi
->memmap
[VIRT_GIC_CPU
].base
);
387 /* Wire the outputs from each CPU's generic timer to the
388 * appropriate GIC PPI inputs, and the GIC's IRQ output to
389 * the CPU's IRQ input.
391 for (i
= 0; i
< smp_cpus
; i
++) {
392 DeviceState
*cpudev
= DEVICE(qemu_get_cpu(i
));
393 int ppibase
= NUM_IRQS
+ i
* 32;
394 /* physical timer; we wire it up to the non-secure timer's ID,
395 * since a real A15 always has TrustZone but QEMU doesn't.
397 qdev_connect_gpio_out(cpudev
, 0,
398 qdev_get_gpio_in(gicdev
, ppibase
+ 30));
400 qdev_connect_gpio_out(cpudev
, 1,
401 qdev_get_gpio_in(gicdev
, ppibase
+ 27));
403 sysbus_connect_irq(gicbusdev
, i
, qdev_get_gpio_in(cpudev
, ARM_CPU_IRQ
));
404 sysbus_connect_irq(gicbusdev
, i
+ smp_cpus
,
405 qdev_get_gpio_in(cpudev
, ARM_CPU_FIQ
));
408 for (i
= 0; i
< NUM_IRQS
; i
++) {
409 pic
[i
] = qdev_get_gpio_in(gicdev
, i
);
412 fdt_add_gic_node(vbi
);
414 create_v2m(vbi
, pic
);
417 static void create_uart(const VirtBoardInfo
*vbi
, qemu_irq
*pic
)
420 hwaddr base
= vbi
->memmap
[VIRT_UART
].base
;
421 hwaddr size
= vbi
->memmap
[VIRT_UART
].size
;
422 int irq
= vbi
->irqmap
[VIRT_UART
];
423 const char compat
[] = "arm,pl011\0arm,primecell";
424 const char clocknames
[] = "uartclk\0apb_pclk";
426 sysbus_create_simple("pl011", base
, pic
[irq
]);
428 nodename
= g_strdup_printf("/pl011@%" PRIx64
, base
);
429 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
430 /* Note that we can't use setprop_string because of the embedded NUL */
431 qemu_fdt_setprop(vbi
->fdt
, nodename
, "compatible",
432 compat
, sizeof(compat
));
433 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
435 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupts",
436 GIC_FDT_IRQ_TYPE_SPI
, irq
,
437 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
438 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "clocks",
439 vbi
->clock_phandle
, vbi
->clock_phandle
);
440 qemu_fdt_setprop(vbi
->fdt
, nodename
, "clock-names",
441 clocknames
, sizeof(clocknames
));
443 qemu_fdt_setprop_string(vbi
->fdt
, "/chosen", "stdout-path", nodename
);
447 static void create_rtc(const VirtBoardInfo
*vbi
, qemu_irq
*pic
)
450 hwaddr base
= vbi
->memmap
[VIRT_RTC
].base
;
451 hwaddr size
= vbi
->memmap
[VIRT_RTC
].size
;
452 int irq
= vbi
->irqmap
[VIRT_RTC
];
453 const char compat
[] = "arm,pl031\0arm,primecell";
455 sysbus_create_simple("pl031", base
, pic
[irq
]);
457 nodename
= g_strdup_printf("/pl031@%" PRIx64
, base
);
458 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
459 qemu_fdt_setprop(vbi
->fdt
, nodename
, "compatible", compat
, sizeof(compat
));
460 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
462 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupts",
463 GIC_FDT_IRQ_TYPE_SPI
, irq
,
464 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
465 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "clocks", vbi
->clock_phandle
);
466 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "clock-names", "apb_pclk");
470 static void create_virtio_devices(const VirtBoardInfo
*vbi
, qemu_irq
*pic
)
473 hwaddr size
= vbi
->memmap
[VIRT_MMIO
].size
;
475 /* We create the transports in forwards order. Since qbus_realize()
476 * prepends (not appends) new child buses, the incrementing loop below will
477 * create a list of virtio-mmio buses with decreasing base addresses.
479 * When a -device option is processed from the command line,
480 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
481 * order. The upshot is that -device options in increasing command line
482 * order are mapped to virtio-mmio buses with decreasing base addresses.
484 * When this code was originally written, that arrangement ensured that the
485 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
486 * the first -device on the command line. (The end-to-end order is a
487 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
488 * guest kernel's name-to-address assignment strategy.)
490 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
491 * the message, if not necessarily the code, of commit 70161ff336.
492 * Therefore the loop now establishes the inverse of the original intent.
494 * Unfortunately, we can't counteract the kernel change by reversing the
495 * loop; it would break existing command lines.
497 * In any case, the kernel makes no guarantee about the stability of
498 * enumeration order of virtio devices (as demonstrated by it changing
499 * between kernel versions). For reliable and stable identification
500 * of disks users must use UUIDs or similar mechanisms.
502 for (i
= 0; i
< NUM_VIRTIO_TRANSPORTS
; i
++) {
503 int irq
= vbi
->irqmap
[VIRT_MMIO
] + i
;
504 hwaddr base
= vbi
->memmap
[VIRT_MMIO
].base
+ i
* size
;
506 sysbus_create_simple("virtio-mmio", base
, pic
[irq
]);
509 /* We add dtb nodes in reverse order so that they appear in the finished
510 * device tree lowest address first.
512 * Note that this mapping is independent of the loop above. The previous
513 * loop influences virtio device to virtio transport assignment, whereas
514 * this loop controls how virtio transports are laid out in the dtb.
516 for (i
= NUM_VIRTIO_TRANSPORTS
- 1; i
>= 0; i
--) {
518 int irq
= vbi
->irqmap
[VIRT_MMIO
] + i
;
519 hwaddr base
= vbi
->memmap
[VIRT_MMIO
].base
+ i
* size
;
521 nodename
= g_strdup_printf("/virtio_mmio@%" PRIx64
, base
);
522 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
523 qemu_fdt_setprop_string(vbi
->fdt
, nodename
,
524 "compatible", "virtio,mmio");
525 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
527 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupts",
528 GIC_FDT_IRQ_TYPE_SPI
, irq
,
529 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
);
534 static void create_one_flash(const char *name
, hwaddr flashbase
,
537 /* Create and map a single flash device. We use the same
538 * parameters as the flash devices on the Versatile Express board.
540 DriveInfo
*dinfo
= drive_get_next(IF_PFLASH
);
541 DeviceState
*dev
= qdev_create(NULL
, "cfi.pflash01");
542 const uint64_t sectorlength
= 256 * 1024;
545 qdev_prop_set_drive(dev
, "drive", blk_by_legacy_dinfo(dinfo
),
549 qdev_prop_set_uint32(dev
, "num-blocks", flashsize
/ sectorlength
);
550 qdev_prop_set_uint64(dev
, "sector-length", sectorlength
);
551 qdev_prop_set_uint8(dev
, "width", 4);
552 qdev_prop_set_uint8(dev
, "device-width", 2);
553 qdev_prop_set_bit(dev
, "big-endian", false);
554 qdev_prop_set_uint16(dev
, "id0", 0x89);
555 qdev_prop_set_uint16(dev
, "id1", 0x18);
556 qdev_prop_set_uint16(dev
, "id2", 0x00);
557 qdev_prop_set_uint16(dev
, "id3", 0x00);
558 qdev_prop_set_string(dev
, "name", name
);
559 qdev_init_nofail(dev
);
561 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, flashbase
);
564 static void create_flash(const VirtBoardInfo
*vbi
)
566 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
567 * Any file passed via -bios goes in the first of these.
569 hwaddr flashsize
= vbi
->memmap
[VIRT_FLASH
].size
/ 2;
570 hwaddr flashbase
= vbi
->memmap
[VIRT_FLASH
].base
;
577 if (drive_get(IF_PFLASH
, 0, 0)) {
578 error_report("The contents of the first flash device may be "
579 "specified with -bios or with -drive if=pflash... "
580 "but you cannot use both options at once");
583 fn
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, bios_name
);
585 error_report("Could not find ROM image '%s'", bios_name
);
588 image_size
= load_image_targphys(fn
, flashbase
, flashsize
);
590 if (image_size
< 0) {
591 error_report("Could not load ROM image '%s'", bios_name
);
596 create_one_flash("virt.flash0", flashbase
, flashsize
);
597 create_one_flash("virt.flash1", flashbase
+ flashsize
, flashsize
);
599 nodename
= g_strdup_printf("/flash@%" PRIx64
, flashbase
);
600 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
601 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "compatible", "cfi-flash");
602 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
603 2, flashbase
, 2, flashsize
,
604 2, flashbase
+ flashsize
, 2, flashsize
);
605 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "bank-width", 4);
609 static void create_fw_cfg(const VirtBoardInfo
*vbi
)
611 hwaddr base
= vbi
->memmap
[VIRT_FW_CFG
].base
;
612 hwaddr size
= vbi
->memmap
[VIRT_FW_CFG
].size
;
615 fw_cfg_init_mem_wide(base
+ 8, base
, 8);
617 nodename
= g_strdup_printf("/fw-cfg@%" PRIx64
, base
);
618 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
619 qemu_fdt_setprop_string(vbi
->fdt
, nodename
,
620 "compatible", "qemu,fw-cfg-mmio");
621 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
626 static void create_pcie_irq_map(const VirtBoardInfo
*vbi
, uint32_t gic_phandle
,
627 int first_irq
, const char *nodename
)
630 uint32_t full_irq_map
[4 * 4 * 10] = { 0 };
631 uint32_t *irq_map
= full_irq_map
;
633 for (devfn
= 0; devfn
<= 0x18; devfn
+= 0x8) {
634 for (pin
= 0; pin
< 4; pin
++) {
635 int irq_type
= GIC_FDT_IRQ_TYPE_SPI
;
636 int irq_nr
= first_irq
+ ((pin
+ PCI_SLOT(devfn
)) % PCI_NUM_PINS
);
637 int irq_level
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
641 devfn
<< 8, 0, 0, /* devfn */
642 pin
+ 1, /* PCI pin */
643 gic_phandle
, 0, 0, irq_type
, irq_nr
, irq_level
}; /* GIC irq */
645 /* Convert map to big endian */
646 for (i
= 0; i
< 10; i
++) {
647 irq_map
[i
] = cpu_to_be32(map
[i
]);
653 qemu_fdt_setprop(vbi
->fdt
, nodename
, "interrupt-map",
654 full_irq_map
, sizeof(full_irq_map
));
656 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupt-map-mask",
657 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
661 static void create_pcie(const VirtBoardInfo
*vbi
, qemu_irq
*pic
)
663 hwaddr base_mmio
= vbi
->memmap
[VIRT_PCIE_MMIO
].base
;
664 hwaddr size_mmio
= vbi
->memmap
[VIRT_PCIE_MMIO
].size
;
665 hwaddr base_pio
= vbi
->memmap
[VIRT_PCIE_PIO
].base
;
666 hwaddr size_pio
= vbi
->memmap
[VIRT_PCIE_PIO
].size
;
667 hwaddr base_ecam
= vbi
->memmap
[VIRT_PCIE_ECAM
].base
;
668 hwaddr size_ecam
= vbi
->memmap
[VIRT_PCIE_ECAM
].size
;
669 hwaddr base
= base_mmio
;
670 int nr_pcie_buses
= size_ecam
/ PCIE_MMCFG_SIZE_MIN
;
671 int irq
= vbi
->irqmap
[VIRT_PCIE
];
672 MemoryRegion
*mmio_alias
;
673 MemoryRegion
*mmio_reg
;
674 MemoryRegion
*ecam_alias
;
675 MemoryRegion
*ecam_reg
;
680 dev
= qdev_create(NULL
, TYPE_GPEX_HOST
);
681 qdev_init_nofail(dev
);
683 /* Map only the first size_ecam bytes of ECAM space */
684 ecam_alias
= g_new0(MemoryRegion
, 1);
685 ecam_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 0);
686 memory_region_init_alias(ecam_alias
, OBJECT(dev
), "pcie-ecam",
687 ecam_reg
, 0, size_ecam
);
688 memory_region_add_subregion(get_system_memory(), base_ecam
, ecam_alias
);
690 /* Map the MMIO window into system address space so as to expose
691 * the section of PCI MMIO space which starts at the same base address
692 * (ie 1:1 mapping for that part of PCI MMIO space visible through
695 mmio_alias
= g_new0(MemoryRegion
, 1);
696 mmio_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 1);
697 memory_region_init_alias(mmio_alias
, OBJECT(dev
), "pcie-mmio",
698 mmio_reg
, base_mmio
, size_mmio
);
699 memory_region_add_subregion(get_system_memory(), base_mmio
, mmio_alias
);
701 /* Map IO port space */
702 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 2, base_pio
);
704 for (i
= 0; i
< GPEX_NUM_IRQS
; i
++) {
705 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
, pic
[irq
+ i
]);
708 nodename
= g_strdup_printf("/pcie@%" PRIx64
, base
);
709 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
710 qemu_fdt_setprop_string(vbi
->fdt
, nodename
,
711 "compatible", "pci-host-ecam-generic");
712 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "device_type", "pci");
713 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "#address-cells", 3);
714 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "#size-cells", 2);
715 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "bus-range", 0,
718 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "msi-parent", vbi
->v2m_phandle
);
720 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
721 2, base_ecam
, 2, size_ecam
);
722 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "ranges",
723 1, FDT_PCI_RANGE_IOPORT
, 2, 0,
724 2, base_pio
, 2, size_pio
,
725 1, FDT_PCI_RANGE_MMIO
, 2, base_mmio
,
726 2, base_mmio
, 2, size_mmio
);
728 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "#interrupt-cells", 1);
729 create_pcie_irq_map(vbi
, vbi
->gic_phandle
, irq
, nodename
);
734 static void create_platform_bus(VirtBoardInfo
*vbi
, qemu_irq
*pic
)
739 ARMPlatformBusFDTParams
*fdt_params
= g_new(ARMPlatformBusFDTParams
, 1);
740 MemoryRegion
*sysmem
= get_system_memory();
742 platform_bus_params
.platform_bus_base
= vbi
->memmap
[VIRT_PLATFORM_BUS
].base
;
743 platform_bus_params
.platform_bus_size
= vbi
->memmap
[VIRT_PLATFORM_BUS
].size
;
744 platform_bus_params
.platform_bus_first_irq
= vbi
->irqmap
[VIRT_PLATFORM_BUS
];
745 platform_bus_params
.platform_bus_num_irqs
= PLATFORM_BUS_NUM_IRQS
;
747 fdt_params
->system_params
= &platform_bus_params
;
748 fdt_params
->binfo
= &vbi
->bootinfo
;
749 fdt_params
->intc
= "/intc";
751 * register a machine init done notifier that creates the device tree
752 * nodes of the platform bus and its children dynamic sysbus devices
754 arm_register_platform_bus_fdt_creator(fdt_params
);
756 dev
= qdev_create(NULL
, TYPE_PLATFORM_BUS_DEVICE
);
757 dev
->id
= TYPE_PLATFORM_BUS_DEVICE
;
758 qdev_prop_set_uint32(dev
, "num_irqs",
759 platform_bus_params
.platform_bus_num_irqs
);
760 qdev_prop_set_uint32(dev
, "mmio_size",
761 platform_bus_params
.platform_bus_size
);
762 qdev_init_nofail(dev
);
763 s
= SYS_BUS_DEVICE(dev
);
765 for (i
= 0; i
< platform_bus_params
.platform_bus_num_irqs
; i
++) {
766 int irqn
= platform_bus_params
.platform_bus_first_irq
+ i
;
767 sysbus_connect_irq(s
, i
, pic
[irqn
]);
770 memory_region_add_subregion(sysmem
,
771 platform_bus_params
.platform_bus_base
,
772 sysbus_mmio_get_region(s
, 0));
775 static void *machvirt_dtb(const struct arm_boot_info
*binfo
, int *fdt_size
)
777 const VirtBoardInfo
*board
= (const VirtBoardInfo
*)binfo
;
779 *fdt_size
= board
->fdt_size
;
784 void virt_guest_info_machine_done(Notifier
*notifier
, void *data
)
786 VirtGuestInfoState
*guest_info_state
= container_of(notifier
,
787 VirtGuestInfoState
, machine_done
);
788 virt_acpi_setup(&guest_info_state
->info
);
791 static void machvirt_init(MachineState
*machine
)
793 VirtMachineState
*vms
= VIRT_MACHINE(machine
);
794 qemu_irq pic
[NUM_IRQS
];
795 MemoryRegion
*sysmem
= get_system_memory();
797 MemoryRegion
*ram
= g_new(MemoryRegion
, 1);
798 const char *cpu_model
= machine
->cpu_model
;
800 VirtGuestInfoState
*guest_info_state
= g_malloc0(sizeof *guest_info_state
);
801 VirtGuestInfo
*guest_info
= &guest_info_state
->info
;
805 cpu_model
= "cortex-a15";
808 /* Separate the actual CPU model name from any appended features */
809 cpustr
= g_strsplit(cpu_model
, ",", 2);
811 vbi
= find_machine_info(cpustr
[0]);
814 error_report("mach-virt: CPU %s not supported", cpustr
[0]);
818 vbi
->smp_cpus
= smp_cpus
;
820 if (machine
->ram_size
> vbi
->memmap
[VIRT_MEM
].size
) {
821 error_report("mach-virt: cannot model more than 30GB RAM");
827 for (n
= 0; n
< smp_cpus
; n
++) {
828 ObjectClass
*oc
= cpu_class_by_name(TYPE_ARM_CPU
, cpustr
[0]);
829 CPUClass
*cc
= CPU_CLASS(oc
);
832 char *cpuopts
= g_strdup(cpustr
[1]);
835 fprintf(stderr
, "Unable to find CPU definition\n");
838 cpuobj
= object_new(object_class_get_name(oc
));
840 /* Handle any CPU options specified by the user */
841 cc
->parse_features(CPU(cpuobj
), cpuopts
, &err
);
844 error_report_err(err
);
849 object_property_set_bool(cpuobj
, false, "has_el3", NULL
);
852 object_property_set_int(cpuobj
, QEMU_PSCI_CONDUIT_HVC
, "psci-conduit",
855 /* Secondary CPUs start in PSCI powered-down state */
857 object_property_set_bool(cpuobj
, true, "start-powered-off", NULL
);
860 if (object_property_find(cpuobj
, "reset-cbar", NULL
)) {
861 object_property_set_int(cpuobj
, vbi
->memmap
[VIRT_CPUPERIPHS
].base
,
862 "reset-cbar", &error_abort
);
865 object_property_set_bool(cpuobj
, true, "realized", NULL
);
868 fdt_add_timer_nodes(vbi
);
869 fdt_add_cpu_nodes(vbi
);
870 fdt_add_psci_node(vbi
);
872 memory_region_allocate_system_memory(ram
, NULL
, "mach-virt.ram",
874 memory_region_add_subregion(sysmem
, vbi
->memmap
[VIRT_MEM
].base
, ram
);
878 create_gic(vbi
, pic
);
880 create_uart(vbi
, pic
);
882 create_rtc(vbi
, pic
);
884 create_pcie(vbi
, pic
);
886 /* Create mmio transports, so the user can create virtio backends
887 * (which will be automatically plugged in to the transports). If
888 * no backend is created the transport will just sit harmlessly idle.
890 create_virtio_devices(vbi
, pic
);
893 rom_set_fw(fw_cfg_find());
895 guest_info
->smp_cpus
= smp_cpus
;
896 guest_info
->fw_cfg
= fw_cfg_find();
897 guest_info
->memmap
= vbi
->memmap
;
898 guest_info
->irqmap
= vbi
->irqmap
;
899 guest_info_state
->machine_done
.notify
= virt_guest_info_machine_done
;
900 qemu_add_machine_init_done_notifier(&guest_info_state
->machine_done
);
902 vbi
->bootinfo
.ram_size
= machine
->ram_size
;
903 vbi
->bootinfo
.kernel_filename
= machine
->kernel_filename
;
904 vbi
->bootinfo
.kernel_cmdline
= machine
->kernel_cmdline
;
905 vbi
->bootinfo
.initrd_filename
= machine
->initrd_filename
;
906 vbi
->bootinfo
.nb_cpus
= smp_cpus
;
907 vbi
->bootinfo
.board_id
= -1;
908 vbi
->bootinfo
.loader_start
= vbi
->memmap
[VIRT_MEM
].base
;
909 vbi
->bootinfo
.get_dtb
= machvirt_dtb
;
910 vbi
->bootinfo
.firmware_loaded
= bios_name
|| drive_get(IF_PFLASH
, 0, 0);
911 arm_load_kernel(ARM_CPU(first_cpu
), &vbi
->bootinfo
);
914 * arm_load_kernel machine init done notifier registration must
915 * happen before the platform_bus_create call. In this latter,
916 * another notifier is registered which adds platform bus nodes.
917 * Notifiers are executed in registration reverse order.
919 create_platform_bus(vbi
, pic
);
922 static bool virt_get_secure(Object
*obj
, Error
**errp
)
924 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
929 static void virt_set_secure(Object
*obj
, bool value
, Error
**errp
)
931 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
936 static void virt_instance_init(Object
*obj
)
938 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
940 /* EL3 is enabled by default on virt */
942 object_property_add_bool(obj
, "secure", virt_get_secure
,
943 virt_set_secure
, NULL
);
944 object_property_set_description(obj
, "secure",
945 "Set on/off to enable/disable the ARM "
946 "Security Extensions (TrustZone)",
950 static void virt_class_init(ObjectClass
*oc
, void *data
)
952 MachineClass
*mc
= MACHINE_CLASS(oc
);
954 mc
->name
= TYPE_VIRT_MACHINE
;
955 mc
->desc
= "ARM Virtual Machine",
956 mc
->init
= machvirt_init
;
958 mc
->has_dynamic_sysbus
= true;
959 mc
->block_default_type
= IF_VIRTIO
;
963 static const TypeInfo machvirt_info
= {
964 .name
= TYPE_VIRT_MACHINE
,
965 .parent
= TYPE_MACHINE
,
966 .instance_size
= sizeof(VirtMachineState
),
967 .instance_init
= virt_instance_init
,
968 .class_size
= sizeof(VirtMachineClass
),
969 .class_init
= virt_class_init
,
972 static void machvirt_machine_init(void)
974 type_register_static(&machvirt_info
);
977 machine_init(machvirt_machine_init
);