block/block-copy: add max_chunk and max_workers parameters
[qemu/kevin.git] / include / exec / cpu-common.h
blob5a0a2d93e0664e15f70c360035ba2af46bda98ec
1 #ifndef CPU_COMMON_H
2 #define CPU_COMMON_H
4 /* CPU interfaces that are target independent. */
6 #ifndef CONFIG_USER_ONLY
7 #include "exec/hwaddr.h"
8 #endif
10 /* The CPU list lock nests outside page_(un)lock or mmap_(un)lock */
11 void qemu_init_cpu_list(void);
12 void cpu_list_lock(void);
13 void cpu_list_unlock(void);
15 void tcg_flush_softmmu_tlb(CPUState *cs);
17 void tcg_iommu_init_notifier_list(CPUState *cpu);
18 void tcg_iommu_free_notifier_list(CPUState *cpu);
20 #if !defined(CONFIG_USER_ONLY)
22 enum device_endian {
23 DEVICE_NATIVE_ENDIAN,
24 DEVICE_BIG_ENDIAN,
25 DEVICE_LITTLE_ENDIAN,
28 #if defined(HOST_WORDS_BIGENDIAN)
29 #define DEVICE_HOST_ENDIAN DEVICE_BIG_ENDIAN
30 #else
31 #define DEVICE_HOST_ENDIAN DEVICE_LITTLE_ENDIAN
32 #endif
34 /* address in the RAM (different from a physical address) */
35 #if defined(CONFIG_XEN_BACKEND)
36 typedef uint64_t ram_addr_t;
37 # define RAM_ADDR_MAX UINT64_MAX
38 # define RAM_ADDR_FMT "%" PRIx64
39 #else
40 typedef uintptr_t ram_addr_t;
41 # define RAM_ADDR_MAX UINTPTR_MAX
42 # define RAM_ADDR_FMT "%" PRIxPTR
43 #endif
45 /* memory API */
47 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length);
48 /* This should not be used by devices. */
49 ram_addr_t qemu_ram_addr_from_host(void *ptr);
50 RAMBlock *qemu_ram_block_by_name(const char *name);
51 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
52 ram_addr_t *offset);
53 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host);
54 void qemu_ram_set_idstr(RAMBlock *block, const char *name, DeviceState *dev);
55 void qemu_ram_unset_idstr(RAMBlock *block);
56 const char *qemu_ram_get_idstr(RAMBlock *rb);
57 void *qemu_ram_get_host_addr(RAMBlock *rb);
58 ram_addr_t qemu_ram_get_offset(RAMBlock *rb);
59 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb);
60 bool qemu_ram_is_shared(RAMBlock *rb);
61 bool qemu_ram_is_uf_zeroable(RAMBlock *rb);
62 void qemu_ram_set_uf_zeroable(RAMBlock *rb);
63 bool qemu_ram_is_migratable(RAMBlock *rb);
64 void qemu_ram_set_migratable(RAMBlock *rb);
65 void qemu_ram_unset_migratable(RAMBlock *rb);
67 size_t qemu_ram_pagesize(RAMBlock *block);
68 size_t qemu_ram_pagesize_largest(void);
70 void cpu_physical_memory_rw(hwaddr addr, void *buf,
71 hwaddr len, bool is_write);
72 static inline void cpu_physical_memory_read(hwaddr addr,
73 void *buf, hwaddr len)
75 cpu_physical_memory_rw(addr, buf, len, false);
77 static inline void cpu_physical_memory_write(hwaddr addr,
78 const void *buf, hwaddr len)
80 cpu_physical_memory_rw(addr, (void *)buf, len, true);
82 void *cpu_physical_memory_map(hwaddr addr,
83 hwaddr *plen,
84 bool is_write);
85 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
86 bool is_write, hwaddr access_len);
87 void cpu_register_map_client(QEMUBH *bh);
88 void cpu_unregister_map_client(QEMUBH *bh);
90 bool cpu_physical_memory_is_io(hwaddr phys_addr);
92 /* Coalesced MMIO regions are areas where write operations can be reordered.
93 * This usually implies that write operations are side-effect free. This allows
94 * batching which can make a major impact on performance when using
95 * virtualization.
97 void qemu_flush_coalesced_mmio_buffer(void);
99 void cpu_flush_icache_range(hwaddr start, hwaddr len);
101 typedef int (RAMBlockIterFunc)(RAMBlock *rb, void *opaque);
103 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque);
104 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length);
106 #endif
108 /* vl.c */
109 extern int singlestep;
111 #endif /* CPU_COMMON_H */