msf2-mac: switch to use qemu_receive_packet() for loopback
[qemu/kevin.git] / block / io.c
blobca2dca30070e4bb4b8f04c10bed1977e18a5df5d
1 /*
2 * Block layer I/O functions
4 * Copyright (c) 2003 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "block/coroutines.h"
33 #include "qemu/cutils.h"
34 #include "qapi/error.h"
35 #include "qemu/error-report.h"
36 #include "qemu/main-loop.h"
37 #include "sysemu/replay.h"
39 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
40 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
42 static void bdrv_parent_cb_resize(BlockDriverState *bs);
43 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
44 int64_t offset, int64_t bytes, BdrvRequestFlags flags);
46 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore,
47 bool ignore_bds_parents)
49 BdrvChild *c, *next;
51 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
52 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
53 continue;
55 bdrv_parent_drained_begin_single(c, false);
59 static void bdrv_parent_drained_end_single_no_poll(BdrvChild *c,
60 int *drained_end_counter)
62 assert(c->parent_quiesce_counter > 0);
63 c->parent_quiesce_counter--;
64 if (c->klass->drained_end) {
65 c->klass->drained_end(c, drained_end_counter);
69 void bdrv_parent_drained_end_single(BdrvChild *c)
71 int drained_end_counter = 0;
72 bdrv_parent_drained_end_single_no_poll(c, &drained_end_counter);
73 BDRV_POLL_WHILE(c->bs, qatomic_read(&drained_end_counter) > 0);
76 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore,
77 bool ignore_bds_parents,
78 int *drained_end_counter)
80 BdrvChild *c;
82 QLIST_FOREACH(c, &bs->parents, next_parent) {
83 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
84 continue;
86 bdrv_parent_drained_end_single_no_poll(c, drained_end_counter);
90 static bool bdrv_parent_drained_poll_single(BdrvChild *c)
92 if (c->klass->drained_poll) {
93 return c->klass->drained_poll(c);
95 return false;
98 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
99 bool ignore_bds_parents)
101 BdrvChild *c, *next;
102 bool busy = false;
104 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
105 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
106 continue;
108 busy |= bdrv_parent_drained_poll_single(c);
111 return busy;
114 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll)
116 c->parent_quiesce_counter++;
117 if (c->klass->drained_begin) {
118 c->klass->drained_begin(c);
120 if (poll) {
121 BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c));
125 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
127 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
128 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
129 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
130 src->opt_mem_alignment);
131 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
132 src->min_mem_alignment);
133 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
136 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
138 ERRP_GUARD();
139 BlockDriver *drv = bs->drv;
140 BdrvChild *c;
141 bool have_limits;
143 memset(&bs->bl, 0, sizeof(bs->bl));
145 if (!drv) {
146 return;
149 /* Default alignment based on whether driver has byte interface */
150 bs->bl.request_alignment = (drv->bdrv_co_preadv ||
151 drv->bdrv_aio_preadv ||
152 drv->bdrv_co_preadv_part) ? 1 : 512;
154 /* Take some limits from the children as a default */
155 have_limits = false;
156 QLIST_FOREACH(c, &bs->children, next) {
157 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW))
159 bdrv_refresh_limits(c->bs, errp);
160 if (*errp) {
161 return;
163 bdrv_merge_limits(&bs->bl, &c->bs->bl);
164 have_limits = true;
168 if (!have_limits) {
169 bs->bl.min_mem_alignment = 512;
170 bs->bl.opt_mem_alignment = qemu_real_host_page_size;
172 /* Safe default since most protocols use readv()/writev()/etc */
173 bs->bl.max_iov = IOV_MAX;
176 /* Then let the driver override it */
177 if (drv->bdrv_refresh_limits) {
178 drv->bdrv_refresh_limits(bs, errp);
179 if (*errp) {
180 return;
184 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) {
185 error_setg(errp, "Driver requires too large request alignment");
190 * The copy-on-read flag is actually a reference count so multiple users may
191 * use the feature without worrying about clobbering its previous state.
192 * Copy-on-read stays enabled until all users have called to disable it.
194 void bdrv_enable_copy_on_read(BlockDriverState *bs)
196 qatomic_inc(&bs->copy_on_read);
199 void bdrv_disable_copy_on_read(BlockDriverState *bs)
201 int old = qatomic_fetch_dec(&bs->copy_on_read);
202 assert(old >= 1);
205 typedef struct {
206 Coroutine *co;
207 BlockDriverState *bs;
208 bool done;
209 bool begin;
210 bool recursive;
211 bool poll;
212 BdrvChild *parent;
213 bool ignore_bds_parents;
214 int *drained_end_counter;
215 } BdrvCoDrainData;
217 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
219 BdrvCoDrainData *data = opaque;
220 BlockDriverState *bs = data->bs;
222 if (data->begin) {
223 bs->drv->bdrv_co_drain_begin(bs);
224 } else {
225 bs->drv->bdrv_co_drain_end(bs);
228 /* Set data->done and decrement drained_end_counter before bdrv_wakeup() */
229 qatomic_mb_set(&data->done, true);
230 if (!data->begin) {
231 qatomic_dec(data->drained_end_counter);
233 bdrv_dec_in_flight(bs);
235 g_free(data);
238 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */
239 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin,
240 int *drained_end_counter)
242 BdrvCoDrainData *data;
244 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) ||
245 (!begin && !bs->drv->bdrv_co_drain_end)) {
246 return;
249 data = g_new(BdrvCoDrainData, 1);
250 *data = (BdrvCoDrainData) {
251 .bs = bs,
252 .done = false,
253 .begin = begin,
254 .drained_end_counter = drained_end_counter,
257 if (!begin) {
258 qatomic_inc(drained_end_counter);
261 /* Make sure the driver callback completes during the polling phase for
262 * drain_begin. */
263 bdrv_inc_in_flight(bs);
264 data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data);
265 aio_co_schedule(bdrv_get_aio_context(bs), data->co);
268 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
269 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive,
270 BdrvChild *ignore_parent, bool ignore_bds_parents)
272 BdrvChild *child, *next;
274 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
275 return true;
278 if (qatomic_read(&bs->in_flight)) {
279 return true;
282 if (recursive) {
283 assert(!ignore_bds_parents);
284 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
285 if (bdrv_drain_poll(child->bs, recursive, child, false)) {
286 return true;
291 return false;
294 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive,
295 BdrvChild *ignore_parent)
297 return bdrv_drain_poll(bs, recursive, ignore_parent, false);
300 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
301 BdrvChild *parent, bool ignore_bds_parents,
302 bool poll);
303 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
304 BdrvChild *parent, bool ignore_bds_parents,
305 int *drained_end_counter);
307 static void bdrv_co_drain_bh_cb(void *opaque)
309 BdrvCoDrainData *data = opaque;
310 Coroutine *co = data->co;
311 BlockDriverState *bs = data->bs;
313 if (bs) {
314 AioContext *ctx = bdrv_get_aio_context(bs);
315 aio_context_acquire(ctx);
316 bdrv_dec_in_flight(bs);
317 if (data->begin) {
318 assert(!data->drained_end_counter);
319 bdrv_do_drained_begin(bs, data->recursive, data->parent,
320 data->ignore_bds_parents, data->poll);
321 } else {
322 assert(!data->poll);
323 bdrv_do_drained_end(bs, data->recursive, data->parent,
324 data->ignore_bds_parents,
325 data->drained_end_counter);
327 aio_context_release(ctx);
328 } else {
329 assert(data->begin);
330 bdrv_drain_all_begin();
333 data->done = true;
334 aio_co_wake(co);
337 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
338 bool begin, bool recursive,
339 BdrvChild *parent,
340 bool ignore_bds_parents,
341 bool poll,
342 int *drained_end_counter)
344 BdrvCoDrainData data;
345 Coroutine *self = qemu_coroutine_self();
346 AioContext *ctx = bdrv_get_aio_context(bs);
347 AioContext *co_ctx = qemu_coroutine_get_aio_context(self);
349 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
350 * other coroutines run if they were queued by aio_co_enter(). */
352 assert(qemu_in_coroutine());
353 data = (BdrvCoDrainData) {
354 .co = self,
355 .bs = bs,
356 .done = false,
357 .begin = begin,
358 .recursive = recursive,
359 .parent = parent,
360 .ignore_bds_parents = ignore_bds_parents,
361 .poll = poll,
362 .drained_end_counter = drained_end_counter,
365 if (bs) {
366 bdrv_inc_in_flight(bs);
370 * Temporarily drop the lock across yield or we would get deadlocks.
371 * bdrv_co_drain_bh_cb() reaquires the lock as needed.
373 * When we yield below, the lock for the current context will be
374 * released, so if this is actually the lock that protects bs, don't drop
375 * it a second time.
377 if (ctx != co_ctx) {
378 aio_context_release(ctx);
380 replay_bh_schedule_oneshot_event(ctx, bdrv_co_drain_bh_cb, &data);
382 qemu_coroutine_yield();
383 /* If we are resumed from some other event (such as an aio completion or a
384 * timer callback), it is a bug in the caller that should be fixed. */
385 assert(data.done);
387 /* Reaquire the AioContext of bs if we dropped it */
388 if (ctx != co_ctx) {
389 aio_context_acquire(ctx);
393 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs,
394 BdrvChild *parent, bool ignore_bds_parents)
396 assert(!qemu_in_coroutine());
398 /* Stop things in parent-to-child order */
399 if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) {
400 aio_disable_external(bdrv_get_aio_context(bs));
403 bdrv_parent_drained_begin(bs, parent, ignore_bds_parents);
404 bdrv_drain_invoke(bs, true, NULL);
407 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
408 BdrvChild *parent, bool ignore_bds_parents,
409 bool poll)
411 BdrvChild *child, *next;
413 if (qemu_in_coroutine()) {
414 bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents,
415 poll, NULL);
416 return;
419 bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents);
421 if (recursive) {
422 assert(!ignore_bds_parents);
423 bs->recursive_quiesce_counter++;
424 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
425 bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents,
426 false);
431 * Wait for drained requests to finish.
433 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
434 * call is needed so things in this AioContext can make progress even
435 * though we don't return to the main AioContext loop - this automatically
436 * includes other nodes in the same AioContext and therefore all child
437 * nodes.
439 if (poll) {
440 assert(!ignore_bds_parents);
441 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent));
445 void bdrv_drained_begin(BlockDriverState *bs)
447 bdrv_do_drained_begin(bs, false, NULL, false, true);
450 void bdrv_subtree_drained_begin(BlockDriverState *bs)
452 bdrv_do_drained_begin(bs, true, NULL, false, true);
456 * This function does not poll, nor must any of its recursively called
457 * functions. The *drained_end_counter pointee will be incremented
458 * once for every background operation scheduled, and decremented once
459 * the operation settles. Therefore, the pointer must remain valid
460 * until the pointee reaches 0. That implies that whoever sets up the
461 * pointee has to poll until it is 0.
463 * We use atomic operations to access *drained_end_counter, because
464 * (1) when called from bdrv_set_aio_context_ignore(), the subgraph of
465 * @bs may contain nodes in different AioContexts,
466 * (2) bdrv_drain_all_end() uses the same counter for all nodes,
467 * regardless of which AioContext they are in.
469 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
470 BdrvChild *parent, bool ignore_bds_parents,
471 int *drained_end_counter)
473 BdrvChild *child;
474 int old_quiesce_counter;
476 assert(drained_end_counter != NULL);
478 if (qemu_in_coroutine()) {
479 bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents,
480 false, drained_end_counter);
481 return;
483 assert(bs->quiesce_counter > 0);
485 /* Re-enable things in child-to-parent order */
486 bdrv_drain_invoke(bs, false, drained_end_counter);
487 bdrv_parent_drained_end(bs, parent, ignore_bds_parents,
488 drained_end_counter);
490 old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter);
491 if (old_quiesce_counter == 1) {
492 aio_enable_external(bdrv_get_aio_context(bs));
495 if (recursive) {
496 assert(!ignore_bds_parents);
497 bs->recursive_quiesce_counter--;
498 QLIST_FOREACH(child, &bs->children, next) {
499 bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents,
500 drained_end_counter);
505 void bdrv_drained_end(BlockDriverState *bs)
507 int drained_end_counter = 0;
508 bdrv_do_drained_end(bs, false, NULL, false, &drained_end_counter);
509 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
512 void bdrv_drained_end_no_poll(BlockDriverState *bs, int *drained_end_counter)
514 bdrv_do_drained_end(bs, false, NULL, false, drained_end_counter);
517 void bdrv_subtree_drained_end(BlockDriverState *bs)
519 int drained_end_counter = 0;
520 bdrv_do_drained_end(bs, true, NULL, false, &drained_end_counter);
521 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
524 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent)
526 int i;
528 for (i = 0; i < new_parent->recursive_quiesce_counter; i++) {
529 bdrv_do_drained_begin(child->bs, true, child, false, true);
533 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent)
535 int drained_end_counter = 0;
536 int i;
538 for (i = 0; i < old_parent->recursive_quiesce_counter; i++) {
539 bdrv_do_drained_end(child->bs, true, child, false,
540 &drained_end_counter);
543 BDRV_POLL_WHILE(child->bs, qatomic_read(&drained_end_counter) > 0);
547 * Wait for pending requests to complete on a single BlockDriverState subtree,
548 * and suspend block driver's internal I/O until next request arrives.
550 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
551 * AioContext.
553 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
555 assert(qemu_in_coroutine());
556 bdrv_drained_begin(bs);
557 bdrv_drained_end(bs);
560 void bdrv_drain(BlockDriverState *bs)
562 bdrv_drained_begin(bs);
563 bdrv_drained_end(bs);
566 static void bdrv_drain_assert_idle(BlockDriverState *bs)
568 BdrvChild *child, *next;
570 assert(qatomic_read(&bs->in_flight) == 0);
571 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
572 bdrv_drain_assert_idle(child->bs);
576 unsigned int bdrv_drain_all_count = 0;
578 static bool bdrv_drain_all_poll(void)
580 BlockDriverState *bs = NULL;
581 bool result = false;
583 /* bdrv_drain_poll() can't make changes to the graph and we are holding the
584 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
585 while ((bs = bdrv_next_all_states(bs))) {
586 AioContext *aio_context = bdrv_get_aio_context(bs);
587 aio_context_acquire(aio_context);
588 result |= bdrv_drain_poll(bs, false, NULL, true);
589 aio_context_release(aio_context);
592 return result;
596 * Wait for pending requests to complete across all BlockDriverStates
598 * This function does not flush data to disk, use bdrv_flush_all() for that
599 * after calling this function.
601 * This pauses all block jobs and disables external clients. It must
602 * be paired with bdrv_drain_all_end().
604 * NOTE: no new block jobs or BlockDriverStates can be created between
605 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
607 void bdrv_drain_all_begin(void)
609 BlockDriverState *bs = NULL;
611 if (qemu_in_coroutine()) {
612 bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true, NULL);
613 return;
617 * bdrv queue is managed by record/replay,
618 * waiting for finishing the I/O requests may
619 * be infinite
621 if (replay_events_enabled()) {
622 return;
625 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
626 * loop AioContext, so make sure we're in the main context. */
627 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
628 assert(bdrv_drain_all_count < INT_MAX);
629 bdrv_drain_all_count++;
631 /* Quiesce all nodes, without polling in-flight requests yet. The graph
632 * cannot change during this loop. */
633 while ((bs = bdrv_next_all_states(bs))) {
634 AioContext *aio_context = bdrv_get_aio_context(bs);
636 aio_context_acquire(aio_context);
637 bdrv_do_drained_begin(bs, false, NULL, true, false);
638 aio_context_release(aio_context);
641 /* Now poll the in-flight requests */
642 AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll());
644 while ((bs = bdrv_next_all_states(bs))) {
645 bdrv_drain_assert_idle(bs);
649 void bdrv_drain_all_end_quiesce(BlockDriverState *bs)
651 int drained_end_counter = 0;
653 g_assert(bs->quiesce_counter > 0);
654 g_assert(!bs->refcnt);
656 while (bs->quiesce_counter) {
657 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter);
659 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
662 void bdrv_drain_all_end(void)
664 BlockDriverState *bs = NULL;
665 int drained_end_counter = 0;
668 * bdrv queue is managed by record/replay,
669 * waiting for finishing the I/O requests may
670 * be endless
672 if (replay_events_enabled()) {
673 return;
676 while ((bs = bdrv_next_all_states(bs))) {
677 AioContext *aio_context = bdrv_get_aio_context(bs);
679 aio_context_acquire(aio_context);
680 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter);
681 aio_context_release(aio_context);
684 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
685 AIO_WAIT_WHILE(NULL, qatomic_read(&drained_end_counter) > 0);
687 assert(bdrv_drain_all_count > 0);
688 bdrv_drain_all_count--;
691 void bdrv_drain_all(void)
693 bdrv_drain_all_begin();
694 bdrv_drain_all_end();
698 * Remove an active request from the tracked requests list
700 * This function should be called when a tracked request is completing.
702 static void tracked_request_end(BdrvTrackedRequest *req)
704 if (req->serialising) {
705 qatomic_dec(&req->bs->serialising_in_flight);
708 qemu_co_mutex_lock(&req->bs->reqs_lock);
709 QLIST_REMOVE(req, list);
710 qemu_co_queue_restart_all(&req->wait_queue);
711 qemu_co_mutex_unlock(&req->bs->reqs_lock);
715 * Add an active request to the tracked requests list
717 static void tracked_request_begin(BdrvTrackedRequest *req,
718 BlockDriverState *bs,
719 int64_t offset,
720 int64_t bytes,
721 enum BdrvTrackedRequestType type)
723 bdrv_check_request(offset, bytes, &error_abort);
725 *req = (BdrvTrackedRequest){
726 .bs = bs,
727 .offset = offset,
728 .bytes = bytes,
729 .type = type,
730 .co = qemu_coroutine_self(),
731 .serialising = false,
732 .overlap_offset = offset,
733 .overlap_bytes = bytes,
736 qemu_co_queue_init(&req->wait_queue);
738 qemu_co_mutex_lock(&bs->reqs_lock);
739 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
740 qemu_co_mutex_unlock(&bs->reqs_lock);
743 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
744 int64_t offset, int64_t bytes)
746 bdrv_check_request(offset, bytes, &error_abort);
748 /* aaaa bbbb */
749 if (offset >= req->overlap_offset + req->overlap_bytes) {
750 return false;
752 /* bbbb aaaa */
753 if (req->overlap_offset >= offset + bytes) {
754 return false;
756 return true;
759 /* Called with self->bs->reqs_lock held */
760 static BdrvTrackedRequest *
761 bdrv_find_conflicting_request(BdrvTrackedRequest *self)
763 BdrvTrackedRequest *req;
765 QLIST_FOREACH(req, &self->bs->tracked_requests, list) {
766 if (req == self || (!req->serialising && !self->serialising)) {
767 continue;
769 if (tracked_request_overlaps(req, self->overlap_offset,
770 self->overlap_bytes))
773 * Hitting this means there was a reentrant request, for
774 * example, a block driver issuing nested requests. This must
775 * never happen since it means deadlock.
777 assert(qemu_coroutine_self() != req->co);
780 * If the request is already (indirectly) waiting for us, or
781 * will wait for us as soon as it wakes up, then just go on
782 * (instead of producing a deadlock in the former case).
784 if (!req->waiting_for) {
785 return req;
790 return NULL;
793 /* Called with self->bs->reqs_lock held */
794 static bool coroutine_fn
795 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self)
797 BdrvTrackedRequest *req;
798 bool waited = false;
800 while ((req = bdrv_find_conflicting_request(self))) {
801 self->waiting_for = req;
802 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock);
803 self->waiting_for = NULL;
804 waited = true;
807 return waited;
810 /* Called with req->bs->reqs_lock held */
811 static void tracked_request_set_serialising(BdrvTrackedRequest *req,
812 uint64_t align)
814 int64_t overlap_offset = req->offset & ~(align - 1);
815 int64_t overlap_bytes =
816 ROUND_UP(req->offset + req->bytes, align) - overlap_offset;
818 bdrv_check_request(req->offset, req->bytes, &error_abort);
820 if (!req->serialising) {
821 qatomic_inc(&req->bs->serialising_in_flight);
822 req->serialising = true;
825 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
826 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
830 * Return the tracked request on @bs for the current coroutine, or
831 * NULL if there is none.
833 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs)
835 BdrvTrackedRequest *req;
836 Coroutine *self = qemu_coroutine_self();
838 QLIST_FOREACH(req, &bs->tracked_requests, list) {
839 if (req->co == self) {
840 return req;
844 return NULL;
848 * Round a region to cluster boundaries
850 void bdrv_round_to_clusters(BlockDriverState *bs,
851 int64_t offset, int64_t bytes,
852 int64_t *cluster_offset,
853 int64_t *cluster_bytes)
855 BlockDriverInfo bdi;
857 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
858 *cluster_offset = offset;
859 *cluster_bytes = bytes;
860 } else {
861 int64_t c = bdi.cluster_size;
862 *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
863 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
867 static int bdrv_get_cluster_size(BlockDriverState *bs)
869 BlockDriverInfo bdi;
870 int ret;
872 ret = bdrv_get_info(bs, &bdi);
873 if (ret < 0 || bdi.cluster_size == 0) {
874 return bs->bl.request_alignment;
875 } else {
876 return bdi.cluster_size;
880 void bdrv_inc_in_flight(BlockDriverState *bs)
882 qatomic_inc(&bs->in_flight);
885 void bdrv_wakeup(BlockDriverState *bs)
887 aio_wait_kick();
890 void bdrv_dec_in_flight(BlockDriverState *bs)
892 qatomic_dec(&bs->in_flight);
893 bdrv_wakeup(bs);
896 static bool coroutine_fn bdrv_wait_serialising_requests(BdrvTrackedRequest *self)
898 BlockDriverState *bs = self->bs;
899 bool waited = false;
901 if (!qatomic_read(&bs->serialising_in_flight)) {
902 return false;
905 qemu_co_mutex_lock(&bs->reqs_lock);
906 waited = bdrv_wait_serialising_requests_locked(self);
907 qemu_co_mutex_unlock(&bs->reqs_lock);
909 return waited;
912 bool coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req,
913 uint64_t align)
915 bool waited;
917 qemu_co_mutex_lock(&req->bs->reqs_lock);
919 tracked_request_set_serialising(req, align);
920 waited = bdrv_wait_serialising_requests_locked(req);
922 qemu_co_mutex_unlock(&req->bs->reqs_lock);
924 return waited;
927 static int bdrv_check_qiov_request(int64_t offset, int64_t bytes,
928 QEMUIOVector *qiov, size_t qiov_offset,
929 Error **errp)
932 * Check generic offset/bytes correctness
935 if (offset < 0) {
936 error_setg(errp, "offset is negative: %" PRIi64, offset);
937 return -EIO;
940 if (bytes < 0) {
941 error_setg(errp, "bytes is negative: %" PRIi64, bytes);
942 return -EIO;
945 if (bytes > BDRV_MAX_LENGTH) {
946 error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
947 bytes, BDRV_MAX_LENGTH);
948 return -EIO;
951 if (offset > BDRV_MAX_LENGTH) {
952 error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
953 offset, BDRV_MAX_LENGTH);
954 return -EIO;
957 if (offset > BDRV_MAX_LENGTH - bytes) {
958 error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") "
959 "exceeds maximum(%" PRIi64 ")", offset, bytes,
960 BDRV_MAX_LENGTH);
961 return -EIO;
964 if (!qiov) {
965 return 0;
969 * Check qiov and qiov_offset
972 if (qiov_offset > qiov->size) {
973 error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)",
974 qiov_offset, qiov->size);
975 return -EIO;
978 if (bytes > qiov->size - qiov_offset) {
979 error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io "
980 "vector size(%zu)", bytes, qiov_offset, qiov->size);
981 return -EIO;
984 return 0;
987 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp)
989 return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp);
992 static int bdrv_check_request32(int64_t offset, int64_t bytes,
993 QEMUIOVector *qiov, size_t qiov_offset)
995 int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
996 if (ret < 0) {
997 return ret;
1000 if (bytes > BDRV_REQUEST_MAX_BYTES) {
1001 return -EIO;
1004 return 0;
1007 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
1008 int64_t bytes, BdrvRequestFlags flags)
1010 return bdrv_pwritev(child, offset, bytes, NULL,
1011 BDRV_REQ_ZERO_WRITE | flags);
1015 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
1016 * The operation is sped up by checking the block status and only writing
1017 * zeroes to the device if they currently do not return zeroes. Optional
1018 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
1019 * BDRV_REQ_FUA).
1021 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite().
1023 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
1025 int ret;
1026 int64_t target_size, bytes, offset = 0;
1027 BlockDriverState *bs = child->bs;
1029 target_size = bdrv_getlength(bs);
1030 if (target_size < 0) {
1031 return target_size;
1034 for (;;) {
1035 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
1036 if (bytes <= 0) {
1037 return 0;
1039 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
1040 if (ret < 0) {
1041 return ret;
1043 if (ret & BDRV_BLOCK_ZERO) {
1044 offset += bytes;
1045 continue;
1047 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
1048 if (ret < 0) {
1049 return ret;
1051 offset += bytes;
1055 /* See bdrv_pwrite() for the return codes */
1056 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int64_t bytes)
1058 int ret;
1059 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
1061 if (bytes < 0) {
1062 return -EINVAL;
1065 ret = bdrv_preadv(child, offset, bytes, &qiov, 0);
1067 return ret < 0 ? ret : bytes;
1070 /* Return no. of bytes on success or < 0 on error. Important errors are:
1071 -EIO generic I/O error (may happen for all errors)
1072 -ENOMEDIUM No media inserted.
1073 -EINVAL Invalid offset or number of bytes
1074 -EACCES Trying to write a read-only device
1076 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf,
1077 int64_t bytes)
1079 int ret;
1080 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
1082 if (bytes < 0) {
1083 return -EINVAL;
1086 ret = bdrv_pwritev(child, offset, bytes, &qiov, 0);
1088 return ret < 0 ? ret : bytes;
1092 * Writes to the file and ensures that no writes are reordered across this
1093 * request (acts as a barrier)
1095 * Returns 0 on success, -errno in error cases.
1097 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
1098 const void *buf, int64_t count)
1100 int ret;
1102 ret = bdrv_pwrite(child, offset, buf, count);
1103 if (ret < 0) {
1104 return ret;
1107 ret = bdrv_flush(child->bs);
1108 if (ret < 0) {
1109 return ret;
1112 return 0;
1115 typedef struct CoroutineIOCompletion {
1116 Coroutine *coroutine;
1117 int ret;
1118 } CoroutineIOCompletion;
1120 static void bdrv_co_io_em_complete(void *opaque, int ret)
1122 CoroutineIOCompletion *co = opaque;
1124 co->ret = ret;
1125 aio_co_wake(co->coroutine);
1128 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
1129 int64_t offset, int64_t bytes,
1130 QEMUIOVector *qiov,
1131 size_t qiov_offset, int flags)
1133 BlockDriver *drv = bs->drv;
1134 int64_t sector_num;
1135 unsigned int nb_sectors;
1136 QEMUIOVector local_qiov;
1137 int ret;
1139 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1140 assert(!(flags & ~BDRV_REQ_MASK));
1141 assert(!(flags & BDRV_REQ_NO_FALLBACK));
1143 if (!drv) {
1144 return -ENOMEDIUM;
1147 if (drv->bdrv_co_preadv_part) {
1148 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
1149 flags);
1152 if (qiov_offset > 0 || bytes != qiov->size) {
1153 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1154 qiov = &local_qiov;
1157 if (drv->bdrv_co_preadv) {
1158 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1159 goto out;
1162 if (drv->bdrv_aio_preadv) {
1163 BlockAIOCB *acb;
1164 CoroutineIOCompletion co = {
1165 .coroutine = qemu_coroutine_self(),
1168 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1169 bdrv_co_io_em_complete, &co);
1170 if (acb == NULL) {
1171 ret = -EIO;
1172 goto out;
1173 } else {
1174 qemu_coroutine_yield();
1175 ret = co.ret;
1176 goto out;
1180 sector_num = offset >> BDRV_SECTOR_BITS;
1181 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1183 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1184 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1185 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1186 assert(drv->bdrv_co_readv);
1188 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1190 out:
1191 if (qiov == &local_qiov) {
1192 qemu_iovec_destroy(&local_qiov);
1195 return ret;
1198 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
1199 int64_t offset, int64_t bytes,
1200 QEMUIOVector *qiov,
1201 size_t qiov_offset, int flags)
1203 BlockDriver *drv = bs->drv;
1204 int64_t sector_num;
1205 unsigned int nb_sectors;
1206 QEMUIOVector local_qiov;
1207 int ret;
1209 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1210 assert(!(flags & ~BDRV_REQ_MASK));
1211 assert(!(flags & BDRV_REQ_NO_FALLBACK));
1213 if (!drv) {
1214 return -ENOMEDIUM;
1217 if (drv->bdrv_co_pwritev_part) {
1218 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1219 flags & bs->supported_write_flags);
1220 flags &= ~bs->supported_write_flags;
1221 goto emulate_flags;
1224 if (qiov_offset > 0 || bytes != qiov->size) {
1225 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1226 qiov = &local_qiov;
1229 if (drv->bdrv_co_pwritev) {
1230 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
1231 flags & bs->supported_write_flags);
1232 flags &= ~bs->supported_write_flags;
1233 goto emulate_flags;
1236 if (drv->bdrv_aio_pwritev) {
1237 BlockAIOCB *acb;
1238 CoroutineIOCompletion co = {
1239 .coroutine = qemu_coroutine_self(),
1242 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov,
1243 flags & bs->supported_write_flags,
1244 bdrv_co_io_em_complete, &co);
1245 flags &= ~bs->supported_write_flags;
1246 if (acb == NULL) {
1247 ret = -EIO;
1248 } else {
1249 qemu_coroutine_yield();
1250 ret = co.ret;
1252 goto emulate_flags;
1255 sector_num = offset >> BDRV_SECTOR_BITS;
1256 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1258 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1259 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1260 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1262 assert(drv->bdrv_co_writev);
1263 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov,
1264 flags & bs->supported_write_flags);
1265 flags &= ~bs->supported_write_flags;
1267 emulate_flags:
1268 if (ret == 0 && (flags & BDRV_REQ_FUA)) {
1269 ret = bdrv_co_flush(bs);
1272 if (qiov == &local_qiov) {
1273 qemu_iovec_destroy(&local_qiov);
1276 return ret;
1279 static int coroutine_fn
1280 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset,
1281 int64_t bytes, QEMUIOVector *qiov,
1282 size_t qiov_offset)
1284 BlockDriver *drv = bs->drv;
1285 QEMUIOVector local_qiov;
1286 int ret;
1288 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1290 if (!drv) {
1291 return -ENOMEDIUM;
1294 if (!block_driver_can_compress(drv)) {
1295 return -ENOTSUP;
1298 if (drv->bdrv_co_pwritev_compressed_part) {
1299 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1300 qiov, qiov_offset);
1303 if (qiov_offset == 0) {
1304 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1307 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1308 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1309 qemu_iovec_destroy(&local_qiov);
1311 return ret;
1314 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
1315 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1316 size_t qiov_offset, int flags)
1318 BlockDriverState *bs = child->bs;
1320 /* Perform I/O through a temporary buffer so that users who scribble over
1321 * their read buffer while the operation is in progress do not end up
1322 * modifying the image file. This is critical for zero-copy guest I/O
1323 * where anything might happen inside guest memory.
1325 void *bounce_buffer = NULL;
1327 BlockDriver *drv = bs->drv;
1328 int64_t cluster_offset;
1329 int64_t cluster_bytes;
1330 int64_t skip_bytes;
1331 int ret;
1332 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1333 BDRV_REQUEST_MAX_BYTES);
1334 int64_t progress = 0;
1335 bool skip_write;
1337 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1339 if (!drv) {
1340 return -ENOMEDIUM;
1344 * Do not write anything when the BDS is inactive. That is not
1345 * allowed, and it would not help.
1347 skip_write = (bs->open_flags & BDRV_O_INACTIVE);
1349 /* FIXME We cannot require callers to have write permissions when all they
1350 * are doing is a read request. If we did things right, write permissions
1351 * would be obtained anyway, but internally by the copy-on-read code. As
1352 * long as it is implemented here rather than in a separate filter driver,
1353 * the copy-on-read code doesn't have its own BdrvChild, however, for which
1354 * it could request permissions. Therefore we have to bypass the permission
1355 * system for the moment. */
1356 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1358 /* Cover entire cluster so no additional backing file I/O is required when
1359 * allocating cluster in the image file. Note that this value may exceed
1360 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1361 * is one reason we loop rather than doing it all at once.
1363 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1364 skip_bytes = offset - cluster_offset;
1366 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1367 cluster_offset, cluster_bytes);
1369 while (cluster_bytes) {
1370 int64_t pnum;
1372 if (skip_write) {
1373 ret = 1; /* "already allocated", so nothing will be copied */
1374 pnum = MIN(cluster_bytes, max_transfer);
1375 } else {
1376 ret = bdrv_is_allocated(bs, cluster_offset,
1377 MIN(cluster_bytes, max_transfer), &pnum);
1378 if (ret < 0) {
1380 * Safe to treat errors in querying allocation as if
1381 * unallocated; we'll probably fail again soon on the
1382 * read, but at least that will set a decent errno.
1384 pnum = MIN(cluster_bytes, max_transfer);
1387 /* Stop at EOF if the image ends in the middle of the cluster */
1388 if (ret == 0 && pnum == 0) {
1389 assert(progress >= bytes);
1390 break;
1393 assert(skip_bytes < pnum);
1396 if (ret <= 0) {
1397 QEMUIOVector local_qiov;
1399 /* Must copy-on-read; use the bounce buffer */
1400 pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1401 if (!bounce_buffer) {
1402 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum);
1403 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1404 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1406 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1407 if (!bounce_buffer) {
1408 ret = -ENOMEM;
1409 goto err;
1412 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1414 ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1415 &local_qiov, 0, 0);
1416 if (ret < 0) {
1417 goto err;
1420 bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1421 if (drv->bdrv_co_pwrite_zeroes &&
1422 buffer_is_zero(bounce_buffer, pnum)) {
1423 /* FIXME: Should we (perhaps conditionally) be setting
1424 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1425 * that still correctly reads as zero? */
1426 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1427 BDRV_REQ_WRITE_UNCHANGED);
1428 } else {
1429 /* This does not change the data on the disk, it is not
1430 * necessary to flush even in cache=writethrough mode.
1432 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1433 &local_qiov, 0,
1434 BDRV_REQ_WRITE_UNCHANGED);
1437 if (ret < 0) {
1438 /* It might be okay to ignore write errors for guest
1439 * requests. If this is a deliberate copy-on-read
1440 * then we don't want to ignore the error. Simply
1441 * report it in all cases.
1443 goto err;
1446 if (!(flags & BDRV_REQ_PREFETCH)) {
1447 qemu_iovec_from_buf(qiov, qiov_offset + progress,
1448 bounce_buffer + skip_bytes,
1449 MIN(pnum - skip_bytes, bytes - progress));
1451 } else if (!(flags & BDRV_REQ_PREFETCH)) {
1452 /* Read directly into the destination */
1453 ret = bdrv_driver_preadv(bs, offset + progress,
1454 MIN(pnum - skip_bytes, bytes - progress),
1455 qiov, qiov_offset + progress, 0);
1456 if (ret < 0) {
1457 goto err;
1461 cluster_offset += pnum;
1462 cluster_bytes -= pnum;
1463 progress += pnum - skip_bytes;
1464 skip_bytes = 0;
1466 ret = 0;
1468 err:
1469 qemu_vfree(bounce_buffer);
1470 return ret;
1474 * Forwards an already correctly aligned request to the BlockDriver. This
1475 * handles copy on read, zeroing after EOF, and fragmentation of large
1476 * reads; any other features must be implemented by the caller.
1478 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1479 BdrvTrackedRequest *req, int64_t offset, int64_t bytes,
1480 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
1482 BlockDriverState *bs = child->bs;
1483 int64_t total_bytes, max_bytes;
1484 int ret = 0;
1485 int64_t bytes_remaining = bytes;
1486 int max_transfer;
1488 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1489 assert(is_power_of_2(align));
1490 assert((offset & (align - 1)) == 0);
1491 assert((bytes & (align - 1)) == 0);
1492 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1493 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1494 align);
1496 /* TODO: We would need a per-BDS .supported_read_flags and
1497 * potential fallback support, if we ever implement any read flags
1498 * to pass through to drivers. For now, there aren't any
1499 * passthrough flags. */
1500 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH)));
1502 /* Handle Copy on Read and associated serialisation */
1503 if (flags & BDRV_REQ_COPY_ON_READ) {
1504 /* If we touch the same cluster it counts as an overlap. This
1505 * guarantees that allocating writes will be serialized and not race
1506 * with each other for the same cluster. For example, in copy-on-read
1507 * it ensures that the CoR read and write operations are atomic and
1508 * guest writes cannot interleave between them. */
1509 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs));
1510 } else {
1511 bdrv_wait_serialising_requests(req);
1514 if (flags & BDRV_REQ_COPY_ON_READ) {
1515 int64_t pnum;
1517 /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */
1518 flags &= ~BDRV_REQ_COPY_ON_READ;
1520 ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1521 if (ret < 0) {
1522 goto out;
1525 if (!ret || pnum != bytes) {
1526 ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1527 qiov, qiov_offset, flags);
1528 goto out;
1529 } else if (flags & BDRV_REQ_PREFETCH) {
1530 goto out;
1534 /* Forward the request to the BlockDriver, possibly fragmenting it */
1535 total_bytes = bdrv_getlength(bs);
1536 if (total_bytes < 0) {
1537 ret = total_bytes;
1538 goto out;
1541 assert(!(flags & ~bs->supported_read_flags));
1543 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1544 if (bytes <= max_bytes && bytes <= max_transfer) {
1545 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags);
1546 goto out;
1549 while (bytes_remaining) {
1550 int64_t num;
1552 if (max_bytes) {
1553 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1554 assert(num);
1556 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1557 num, qiov,
1558 qiov_offset + bytes - bytes_remaining,
1559 flags);
1560 max_bytes -= num;
1561 } else {
1562 num = bytes_remaining;
1563 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining,
1564 0, bytes_remaining);
1566 if (ret < 0) {
1567 goto out;
1569 bytes_remaining -= num;
1572 out:
1573 return ret < 0 ? ret : 0;
1577 * Request padding
1579 * |<---- align ----->| |<----- align ---->|
1580 * |<- head ->|<------------- bytes ------------->|<-- tail -->|
1581 * | | | | | |
1582 * -*----------$-------*-------- ... --------*-----$------------*---
1583 * | | | | | |
1584 * | offset | | end |
1585 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end)
1586 * [buf ... ) [tail_buf )
1588 * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1589 * is placed at the beginning of @buf and @tail at the @end.
1591 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1592 * around tail, if tail exists.
1594 * @merge_reads is true for small requests,
1595 * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1596 * head and tail exist but @buf_len == align and @tail_buf == @buf.
1598 typedef struct BdrvRequestPadding {
1599 uint8_t *buf;
1600 size_t buf_len;
1601 uint8_t *tail_buf;
1602 size_t head;
1603 size_t tail;
1604 bool merge_reads;
1605 QEMUIOVector local_qiov;
1606 } BdrvRequestPadding;
1608 static bool bdrv_init_padding(BlockDriverState *bs,
1609 int64_t offset, int64_t bytes,
1610 BdrvRequestPadding *pad)
1612 int64_t align = bs->bl.request_alignment;
1613 int64_t sum;
1615 bdrv_check_request(offset, bytes, &error_abort);
1616 assert(align <= INT_MAX); /* documented in block/block_int.h */
1617 assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */
1619 memset(pad, 0, sizeof(*pad));
1621 pad->head = offset & (align - 1);
1622 pad->tail = ((offset + bytes) & (align - 1));
1623 if (pad->tail) {
1624 pad->tail = align - pad->tail;
1627 if (!pad->head && !pad->tail) {
1628 return false;
1631 assert(bytes); /* Nothing good in aligning zero-length requests */
1633 sum = pad->head + bytes + pad->tail;
1634 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1635 pad->buf = qemu_blockalign(bs, pad->buf_len);
1636 pad->merge_reads = sum == pad->buf_len;
1637 if (pad->tail) {
1638 pad->tail_buf = pad->buf + pad->buf_len - align;
1641 return true;
1644 static int bdrv_padding_rmw_read(BdrvChild *child,
1645 BdrvTrackedRequest *req,
1646 BdrvRequestPadding *pad,
1647 bool zero_middle)
1649 QEMUIOVector local_qiov;
1650 BlockDriverState *bs = child->bs;
1651 uint64_t align = bs->bl.request_alignment;
1652 int ret;
1654 assert(req->serialising && pad->buf);
1656 if (pad->head || pad->merge_reads) {
1657 int64_t bytes = pad->merge_reads ? pad->buf_len : align;
1659 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1661 if (pad->head) {
1662 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1664 if (pad->merge_reads && pad->tail) {
1665 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1667 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1668 align, &local_qiov, 0, 0);
1669 if (ret < 0) {
1670 return ret;
1672 if (pad->head) {
1673 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1675 if (pad->merge_reads && pad->tail) {
1676 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1679 if (pad->merge_reads) {
1680 goto zero_mem;
1684 if (pad->tail) {
1685 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1687 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1688 ret = bdrv_aligned_preadv(
1689 child, req,
1690 req->overlap_offset + req->overlap_bytes - align,
1691 align, align, &local_qiov, 0, 0);
1692 if (ret < 0) {
1693 return ret;
1695 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1698 zero_mem:
1699 if (zero_middle) {
1700 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1703 return 0;
1706 static void bdrv_padding_destroy(BdrvRequestPadding *pad)
1708 if (pad->buf) {
1709 qemu_vfree(pad->buf);
1710 qemu_iovec_destroy(&pad->local_qiov);
1712 memset(pad, 0, sizeof(*pad));
1716 * bdrv_pad_request
1718 * Exchange request parameters with padded request if needed. Don't include RMW
1719 * read of padding, bdrv_padding_rmw_read() should be called separately if
1720 * needed.
1722 * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out:
1723 * - on function start they represent original request
1724 * - on failure or when padding is not needed they are unchanged
1725 * - on success when padding is needed they represent padded request
1727 static int bdrv_pad_request(BlockDriverState *bs,
1728 QEMUIOVector **qiov, size_t *qiov_offset,
1729 int64_t *offset, int64_t *bytes,
1730 BdrvRequestPadding *pad, bool *padded)
1732 int ret;
1734 bdrv_check_qiov_request(*offset, *bytes, *qiov, *qiov_offset, &error_abort);
1736 if (!bdrv_init_padding(bs, *offset, *bytes, pad)) {
1737 if (padded) {
1738 *padded = false;
1740 return 0;
1743 ret = qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head,
1744 *qiov, *qiov_offset, *bytes,
1745 pad->buf + pad->buf_len - pad->tail,
1746 pad->tail);
1747 if (ret < 0) {
1748 bdrv_padding_destroy(pad);
1749 return ret;
1751 *bytes += pad->head + pad->tail;
1752 *offset -= pad->head;
1753 *qiov = &pad->local_qiov;
1754 *qiov_offset = 0;
1755 if (padded) {
1756 *padded = true;
1759 return 0;
1762 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1763 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1764 BdrvRequestFlags flags)
1766 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
1769 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
1770 int64_t offset, int64_t bytes,
1771 QEMUIOVector *qiov, size_t qiov_offset,
1772 BdrvRequestFlags flags)
1774 BlockDriverState *bs = child->bs;
1775 BdrvTrackedRequest req;
1776 BdrvRequestPadding pad;
1777 int ret;
1779 trace_bdrv_co_preadv_part(bs, offset, bytes, flags);
1781 if (!bdrv_is_inserted(bs)) {
1782 return -ENOMEDIUM;
1785 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
1786 if (ret < 0) {
1787 return ret;
1790 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
1792 * Aligning zero request is nonsense. Even if driver has special meaning
1793 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
1794 * it to driver due to request_alignment.
1796 * Still, no reason to return an error if someone do unaligned
1797 * zero-length read occasionally.
1799 return 0;
1802 bdrv_inc_in_flight(bs);
1804 /* Don't do copy-on-read if we read data before write operation */
1805 if (qatomic_read(&bs->copy_on_read)) {
1806 flags |= BDRV_REQ_COPY_ON_READ;
1809 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad,
1810 NULL);
1811 if (ret < 0) {
1812 return ret;
1815 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1816 ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1817 bs->bl.request_alignment,
1818 qiov, qiov_offset, flags);
1819 tracked_request_end(&req);
1820 bdrv_dec_in_flight(bs);
1822 bdrv_padding_destroy(&pad);
1824 return ret;
1827 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1828 int64_t offset, int64_t bytes, BdrvRequestFlags flags)
1830 BlockDriver *drv = bs->drv;
1831 QEMUIOVector qiov;
1832 void *buf = NULL;
1833 int ret = 0;
1834 bool need_flush = false;
1835 int head = 0;
1836 int tail = 0;
1838 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1839 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1840 bs->bl.request_alignment);
1841 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1843 bdrv_check_request(offset, bytes, &error_abort);
1845 if (!drv) {
1846 return -ENOMEDIUM;
1849 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1850 return -ENOTSUP;
1853 assert(alignment % bs->bl.request_alignment == 0);
1854 head = offset % alignment;
1855 tail = (offset + bytes) % alignment;
1856 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1857 assert(max_write_zeroes >= bs->bl.request_alignment);
1859 while (bytes > 0 && !ret) {
1860 int64_t num = bytes;
1862 /* Align request. Block drivers can expect the "bulk" of the request
1863 * to be aligned, and that unaligned requests do not cross cluster
1864 * boundaries.
1866 if (head) {
1867 /* Make a small request up to the first aligned sector. For
1868 * convenience, limit this request to max_transfer even if
1869 * we don't need to fall back to writes. */
1870 num = MIN(MIN(bytes, max_transfer), alignment - head);
1871 head = (head + num) % alignment;
1872 assert(num < max_write_zeroes);
1873 } else if (tail && num > alignment) {
1874 /* Shorten the request to the last aligned sector. */
1875 num -= tail;
1878 /* limit request size */
1879 if (num > max_write_zeroes) {
1880 num = max_write_zeroes;
1883 ret = -ENOTSUP;
1884 /* First try the efficient write zeroes operation */
1885 if (drv->bdrv_co_pwrite_zeroes) {
1886 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1887 flags & bs->supported_zero_flags);
1888 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1889 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1890 need_flush = true;
1892 } else {
1893 assert(!bs->supported_zero_flags);
1896 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1897 /* Fall back to bounce buffer if write zeroes is unsupported */
1898 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1900 if ((flags & BDRV_REQ_FUA) &&
1901 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1902 /* No need for bdrv_driver_pwrite() to do a fallback
1903 * flush on each chunk; use just one at the end */
1904 write_flags &= ~BDRV_REQ_FUA;
1905 need_flush = true;
1907 num = MIN(num, max_transfer);
1908 if (buf == NULL) {
1909 buf = qemu_try_blockalign0(bs, num);
1910 if (buf == NULL) {
1911 ret = -ENOMEM;
1912 goto fail;
1915 qemu_iovec_init_buf(&qiov, buf, num);
1917 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1919 /* Keep bounce buffer around if it is big enough for all
1920 * all future requests.
1922 if (num < max_transfer) {
1923 qemu_vfree(buf);
1924 buf = NULL;
1928 offset += num;
1929 bytes -= num;
1932 fail:
1933 if (ret == 0 && need_flush) {
1934 ret = bdrv_co_flush(bs);
1936 qemu_vfree(buf);
1937 return ret;
1940 static inline int coroutine_fn
1941 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes,
1942 BdrvTrackedRequest *req, int flags)
1944 BlockDriverState *bs = child->bs;
1946 bdrv_check_request(offset, bytes, &error_abort);
1948 if (bs->read_only) {
1949 return -EPERM;
1952 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1953 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1954 assert(!(flags & ~BDRV_REQ_MASK));
1955 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING)));
1957 if (flags & BDRV_REQ_SERIALISING) {
1958 QEMU_LOCK_GUARD(&bs->reqs_lock);
1960 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs));
1962 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) {
1963 return -EBUSY;
1966 bdrv_wait_serialising_requests_locked(req);
1967 } else {
1968 bdrv_wait_serialising_requests(req);
1971 assert(req->overlap_offset <= offset);
1972 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1973 assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE ||
1974 child->perm & BLK_PERM_RESIZE);
1976 switch (req->type) {
1977 case BDRV_TRACKED_WRITE:
1978 case BDRV_TRACKED_DISCARD:
1979 if (flags & BDRV_REQ_WRITE_UNCHANGED) {
1980 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1981 } else {
1982 assert(child->perm & BLK_PERM_WRITE);
1984 return notifier_with_return_list_notify(&bs->before_write_notifiers,
1985 req);
1986 case BDRV_TRACKED_TRUNCATE:
1987 assert(child->perm & BLK_PERM_RESIZE);
1988 return 0;
1989 default:
1990 abort();
1994 static inline void coroutine_fn
1995 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes,
1996 BdrvTrackedRequest *req, int ret)
1998 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1999 BlockDriverState *bs = child->bs;
2001 bdrv_check_request(offset, bytes, &error_abort);
2003 qatomic_inc(&bs->write_gen);
2006 * Discard cannot extend the image, but in error handling cases, such as
2007 * when reverting a qcow2 cluster allocation, the discarded range can pass
2008 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
2009 * here. Instead, just skip it, since semantically a discard request
2010 * beyond EOF cannot expand the image anyway.
2012 if (ret == 0 &&
2013 (req->type == BDRV_TRACKED_TRUNCATE ||
2014 end_sector > bs->total_sectors) &&
2015 req->type != BDRV_TRACKED_DISCARD) {
2016 bs->total_sectors = end_sector;
2017 bdrv_parent_cb_resize(bs);
2018 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
2020 if (req->bytes) {
2021 switch (req->type) {
2022 case BDRV_TRACKED_WRITE:
2023 stat64_max(&bs->wr_highest_offset, offset + bytes);
2024 /* fall through, to set dirty bits */
2025 case BDRV_TRACKED_DISCARD:
2026 bdrv_set_dirty(bs, offset, bytes);
2027 break;
2028 default:
2029 break;
2035 * Forwards an already correctly aligned write request to the BlockDriver,
2036 * after possibly fragmenting it.
2038 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
2039 BdrvTrackedRequest *req, int64_t offset, int64_t bytes,
2040 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
2042 BlockDriverState *bs = child->bs;
2043 BlockDriver *drv = bs->drv;
2044 int ret;
2046 int64_t bytes_remaining = bytes;
2047 int max_transfer;
2049 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
2051 if (!drv) {
2052 return -ENOMEDIUM;
2055 if (bdrv_has_readonly_bitmaps(bs)) {
2056 return -EPERM;
2059 assert(is_power_of_2(align));
2060 assert((offset & (align - 1)) == 0);
2061 assert((bytes & (align - 1)) == 0);
2062 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
2063 align);
2065 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
2067 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
2068 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
2069 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
2070 flags |= BDRV_REQ_ZERO_WRITE;
2071 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
2072 flags |= BDRV_REQ_MAY_UNMAP;
2076 if (ret < 0) {
2077 /* Do nothing, write notifier decided to fail this request */
2078 } else if (flags & BDRV_REQ_ZERO_WRITE) {
2079 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
2080 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
2081 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
2082 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
2083 qiov, qiov_offset);
2084 } else if (bytes <= max_transfer) {
2085 bdrv_debug_event(bs, BLKDBG_PWRITEV);
2086 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
2087 } else {
2088 bdrv_debug_event(bs, BLKDBG_PWRITEV);
2089 while (bytes_remaining) {
2090 int num = MIN(bytes_remaining, max_transfer);
2091 int local_flags = flags;
2093 assert(num);
2094 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
2095 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
2096 /* If FUA is going to be emulated by flush, we only
2097 * need to flush on the last iteration */
2098 local_flags &= ~BDRV_REQ_FUA;
2101 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
2102 num, qiov,
2103 qiov_offset + bytes - bytes_remaining,
2104 local_flags);
2105 if (ret < 0) {
2106 break;
2108 bytes_remaining -= num;
2111 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
2113 if (ret >= 0) {
2114 ret = 0;
2116 bdrv_co_write_req_finish(child, offset, bytes, req, ret);
2118 return ret;
2121 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
2122 int64_t offset,
2123 int64_t bytes,
2124 BdrvRequestFlags flags,
2125 BdrvTrackedRequest *req)
2127 BlockDriverState *bs = child->bs;
2128 QEMUIOVector local_qiov;
2129 uint64_t align = bs->bl.request_alignment;
2130 int ret = 0;
2131 bool padding;
2132 BdrvRequestPadding pad;
2134 padding = bdrv_init_padding(bs, offset, bytes, &pad);
2135 if (padding) {
2136 bdrv_make_request_serialising(req, align);
2138 bdrv_padding_rmw_read(child, req, &pad, true);
2140 if (pad.head || pad.merge_reads) {
2141 int64_t aligned_offset = offset & ~(align - 1);
2142 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
2144 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
2145 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
2146 align, &local_qiov, 0,
2147 flags & ~BDRV_REQ_ZERO_WRITE);
2148 if (ret < 0 || pad.merge_reads) {
2149 /* Error or all work is done */
2150 goto out;
2152 offset += write_bytes - pad.head;
2153 bytes -= write_bytes - pad.head;
2157 assert(!bytes || (offset & (align - 1)) == 0);
2158 if (bytes >= align) {
2159 /* Write the aligned part in the middle. */
2160 int64_t aligned_bytes = bytes & ~(align - 1);
2161 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
2162 NULL, 0, flags);
2163 if (ret < 0) {
2164 goto out;
2166 bytes -= aligned_bytes;
2167 offset += aligned_bytes;
2170 assert(!bytes || (offset & (align - 1)) == 0);
2171 if (bytes) {
2172 assert(align == pad.tail + bytes);
2174 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2175 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2176 &local_qiov, 0,
2177 flags & ~BDRV_REQ_ZERO_WRITE);
2180 out:
2181 bdrv_padding_destroy(&pad);
2183 return ret;
2187 * Handle a write request in coroutine context
2189 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2190 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
2191 BdrvRequestFlags flags)
2193 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
2196 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
2197 int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset,
2198 BdrvRequestFlags flags)
2200 BlockDriverState *bs = child->bs;
2201 BdrvTrackedRequest req;
2202 uint64_t align = bs->bl.request_alignment;
2203 BdrvRequestPadding pad;
2204 int ret;
2205 bool padded = false;
2207 trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags);
2209 if (!bdrv_is_inserted(bs)) {
2210 return -ENOMEDIUM;
2213 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
2214 if (ret < 0) {
2215 return ret;
2218 /* If the request is misaligned then we can't make it efficient */
2219 if ((flags & BDRV_REQ_NO_FALLBACK) &&
2220 !QEMU_IS_ALIGNED(offset | bytes, align))
2222 return -ENOTSUP;
2225 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
2227 * Aligning zero request is nonsense. Even if driver has special meaning
2228 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
2229 * it to driver due to request_alignment.
2231 * Still, no reason to return an error if someone do unaligned
2232 * zero-length write occasionally.
2234 return 0;
2237 if (!(flags & BDRV_REQ_ZERO_WRITE)) {
2239 * Pad request for following read-modify-write cycle.
2240 * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do
2241 * alignment only if there is no ZERO flag.
2243 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad,
2244 &padded);
2245 if (ret < 0) {
2246 return ret;
2250 bdrv_inc_in_flight(bs);
2251 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2253 if (flags & BDRV_REQ_ZERO_WRITE) {
2254 assert(!padded);
2255 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2256 goto out;
2259 if (padded) {
2261 * Request was unaligned to request_alignment and therefore
2262 * padded. We are going to do read-modify-write, and must
2263 * serialize the request to prevent interactions of the
2264 * widened region with other transactions.
2266 bdrv_make_request_serialising(&req, align);
2267 bdrv_padding_rmw_read(child, &req, &pad, false);
2270 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2271 qiov, qiov_offset, flags);
2273 bdrv_padding_destroy(&pad);
2275 out:
2276 tracked_request_end(&req);
2277 bdrv_dec_in_flight(bs);
2279 return ret;
2282 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2283 int64_t bytes, BdrvRequestFlags flags)
2285 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2287 if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
2288 flags &= ~BDRV_REQ_MAY_UNMAP;
2291 return bdrv_co_pwritev(child, offset, bytes, NULL,
2292 BDRV_REQ_ZERO_WRITE | flags);
2296 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2298 int bdrv_flush_all(void)
2300 BdrvNextIterator it;
2301 BlockDriverState *bs = NULL;
2302 int result = 0;
2305 * bdrv queue is managed by record/replay,
2306 * creating new flush request for stopping
2307 * the VM may break the determinism
2309 if (replay_events_enabled()) {
2310 return result;
2313 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2314 AioContext *aio_context = bdrv_get_aio_context(bs);
2315 int ret;
2317 aio_context_acquire(aio_context);
2318 ret = bdrv_flush(bs);
2319 if (ret < 0 && !result) {
2320 result = ret;
2322 aio_context_release(aio_context);
2325 return result;
2329 * Returns the allocation status of the specified sectors.
2330 * Drivers not implementing the functionality are assumed to not support
2331 * backing files, hence all their sectors are reported as allocated.
2333 * If 'want_zero' is true, the caller is querying for mapping
2334 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2335 * _ZERO where possible; otherwise, the result favors larger 'pnum',
2336 * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2338 * If 'offset' is beyond the end of the disk image the return value is
2339 * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2341 * 'bytes' is the max value 'pnum' should be set to. If bytes goes
2342 * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2343 * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2345 * 'pnum' is set to the number of bytes (including and immediately
2346 * following the specified offset) that are easily known to be in the
2347 * same allocated/unallocated state. Note that a second call starting
2348 * at the original offset plus returned pnum may have the same status.
2349 * The returned value is non-zero on success except at end-of-file.
2351 * Returns negative errno on failure. Otherwise, if the
2352 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2353 * set to the host mapping and BDS corresponding to the guest offset.
2355 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
2356 bool want_zero,
2357 int64_t offset, int64_t bytes,
2358 int64_t *pnum, int64_t *map,
2359 BlockDriverState **file)
2361 int64_t total_size;
2362 int64_t n; /* bytes */
2363 int ret;
2364 int64_t local_map = 0;
2365 BlockDriverState *local_file = NULL;
2366 int64_t aligned_offset, aligned_bytes;
2367 uint32_t align;
2368 bool has_filtered_child;
2370 assert(pnum);
2371 *pnum = 0;
2372 total_size = bdrv_getlength(bs);
2373 if (total_size < 0) {
2374 ret = total_size;
2375 goto early_out;
2378 if (offset >= total_size) {
2379 ret = BDRV_BLOCK_EOF;
2380 goto early_out;
2382 if (!bytes) {
2383 ret = 0;
2384 goto early_out;
2387 n = total_size - offset;
2388 if (n < bytes) {
2389 bytes = n;
2392 /* Must be non-NULL or bdrv_getlength() would have failed */
2393 assert(bs->drv);
2394 has_filtered_child = bdrv_filter_child(bs);
2395 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) {
2396 *pnum = bytes;
2397 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2398 if (offset + bytes == total_size) {
2399 ret |= BDRV_BLOCK_EOF;
2401 if (bs->drv->protocol_name) {
2402 ret |= BDRV_BLOCK_OFFSET_VALID;
2403 local_map = offset;
2404 local_file = bs;
2406 goto early_out;
2409 bdrv_inc_in_flight(bs);
2411 /* Round out to request_alignment boundaries */
2412 align = bs->bl.request_alignment;
2413 aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2414 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2416 if (bs->drv->bdrv_co_block_status) {
2417 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2418 aligned_bytes, pnum, &local_map,
2419 &local_file);
2420 } else {
2421 /* Default code for filters */
2423 local_file = bdrv_filter_bs(bs);
2424 assert(local_file);
2426 *pnum = aligned_bytes;
2427 local_map = aligned_offset;
2428 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2430 if (ret < 0) {
2431 *pnum = 0;
2432 goto out;
2436 * The driver's result must be a non-zero multiple of request_alignment.
2437 * Clamp pnum and adjust map to original request.
2439 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2440 align > offset - aligned_offset);
2441 if (ret & BDRV_BLOCK_RECURSE) {
2442 assert(ret & BDRV_BLOCK_DATA);
2443 assert(ret & BDRV_BLOCK_OFFSET_VALID);
2444 assert(!(ret & BDRV_BLOCK_ZERO));
2447 *pnum -= offset - aligned_offset;
2448 if (*pnum > bytes) {
2449 *pnum = bytes;
2451 if (ret & BDRV_BLOCK_OFFSET_VALID) {
2452 local_map += offset - aligned_offset;
2455 if (ret & BDRV_BLOCK_RAW) {
2456 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2457 ret = bdrv_co_block_status(local_file, want_zero, local_map,
2458 *pnum, pnum, &local_map, &local_file);
2459 goto out;
2462 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2463 ret |= BDRV_BLOCK_ALLOCATED;
2464 } else if (bs->drv->supports_backing) {
2465 BlockDriverState *cow_bs = bdrv_cow_bs(bs);
2467 if (!cow_bs) {
2468 ret |= BDRV_BLOCK_ZERO;
2469 } else if (want_zero) {
2470 int64_t size2 = bdrv_getlength(cow_bs);
2472 if (size2 >= 0 && offset >= size2) {
2473 ret |= BDRV_BLOCK_ZERO;
2478 if (want_zero && ret & BDRV_BLOCK_RECURSE &&
2479 local_file && local_file != bs &&
2480 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2481 (ret & BDRV_BLOCK_OFFSET_VALID)) {
2482 int64_t file_pnum;
2483 int ret2;
2485 ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2486 *pnum, &file_pnum, NULL, NULL);
2487 if (ret2 >= 0) {
2488 /* Ignore errors. This is just providing extra information, it
2489 * is useful but not necessary.
2491 if (ret2 & BDRV_BLOCK_EOF &&
2492 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2494 * It is valid for the format block driver to read
2495 * beyond the end of the underlying file's current
2496 * size; such areas read as zero.
2498 ret |= BDRV_BLOCK_ZERO;
2499 } else {
2500 /* Limit request to the range reported by the protocol driver */
2501 *pnum = file_pnum;
2502 ret |= (ret2 & BDRV_BLOCK_ZERO);
2507 out:
2508 bdrv_dec_in_flight(bs);
2509 if (ret >= 0 && offset + *pnum == total_size) {
2510 ret |= BDRV_BLOCK_EOF;
2512 early_out:
2513 if (file) {
2514 *file = local_file;
2516 if (map) {
2517 *map = local_map;
2519 return ret;
2522 int coroutine_fn
2523 bdrv_co_common_block_status_above(BlockDriverState *bs,
2524 BlockDriverState *base,
2525 bool include_base,
2526 bool want_zero,
2527 int64_t offset,
2528 int64_t bytes,
2529 int64_t *pnum,
2530 int64_t *map,
2531 BlockDriverState **file,
2532 int *depth)
2534 int ret;
2535 BlockDriverState *p;
2536 int64_t eof = 0;
2537 int dummy;
2539 assert(!include_base || base); /* Can't include NULL base */
2541 if (!depth) {
2542 depth = &dummy;
2544 *depth = 0;
2546 if (!include_base && bs == base) {
2547 *pnum = bytes;
2548 return 0;
2551 ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file);
2552 ++*depth;
2553 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) {
2554 return ret;
2557 if (ret & BDRV_BLOCK_EOF) {
2558 eof = offset + *pnum;
2561 assert(*pnum <= bytes);
2562 bytes = *pnum;
2564 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base;
2565 p = bdrv_filter_or_cow_bs(p))
2567 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2568 file);
2569 ++*depth;
2570 if (ret < 0) {
2571 return ret;
2573 if (*pnum == 0) {
2575 * The top layer deferred to this layer, and because this layer is
2576 * short, any zeroes that we synthesize beyond EOF behave as if they
2577 * were allocated at this layer.
2579 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be
2580 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2581 * below.
2583 assert(ret & BDRV_BLOCK_EOF);
2584 *pnum = bytes;
2585 if (file) {
2586 *file = p;
2588 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED;
2589 break;
2591 if (ret & BDRV_BLOCK_ALLOCATED) {
2593 * We've found the node and the status, we must break.
2595 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be
2596 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2597 * below.
2599 ret &= ~BDRV_BLOCK_EOF;
2600 break;
2603 if (p == base) {
2604 assert(include_base);
2605 break;
2609 * OK, [offset, offset + *pnum) region is unallocated on this layer,
2610 * let's continue the diving.
2612 assert(*pnum <= bytes);
2613 bytes = *pnum;
2616 if (offset + *pnum == eof) {
2617 ret |= BDRV_BLOCK_EOF;
2620 return ret;
2623 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2624 int64_t offset, int64_t bytes, int64_t *pnum,
2625 int64_t *map, BlockDriverState **file)
2627 return bdrv_common_block_status_above(bs, base, false, true, offset, bytes,
2628 pnum, map, file, NULL);
2631 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2632 int64_t *pnum, int64_t *map, BlockDriverState **file)
2634 return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs),
2635 offset, bytes, pnum, map, file);
2639 * Check @bs (and its backing chain) to see if the range defined
2640 * by @offset and @bytes is known to read as zeroes.
2641 * Return 1 if that is the case, 0 otherwise and -errno on error.
2642 * This test is meant to be fast rather than accurate so returning 0
2643 * does not guarantee non-zero data.
2645 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset,
2646 int64_t bytes)
2648 int ret;
2649 int64_t pnum = bytes;
2651 if (!bytes) {
2652 return 1;
2655 ret = bdrv_common_block_status_above(bs, NULL, false, false, offset,
2656 bytes, &pnum, NULL, NULL, NULL);
2658 if (ret < 0) {
2659 return ret;
2662 return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO);
2665 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
2666 int64_t bytes, int64_t *pnum)
2668 int ret;
2669 int64_t dummy;
2671 ret = bdrv_common_block_status_above(bs, bs, true, false, offset,
2672 bytes, pnum ? pnum : &dummy, NULL,
2673 NULL, NULL);
2674 if (ret < 0) {
2675 return ret;
2677 return !!(ret & BDRV_BLOCK_ALLOCATED);
2681 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2683 * Return a positive depth if (a prefix of) the given range is allocated
2684 * in any image between BASE and TOP (BASE is only included if include_base
2685 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth.
2686 * BASE can be NULL to check if the given offset is allocated in any
2687 * image of the chain. Return 0 otherwise, or negative errno on
2688 * failure.
2690 * 'pnum' is set to the number of bytes (including and immediately
2691 * following the specified offset) that are known to be in the same
2692 * allocated/unallocated state. Note that a subsequent call starting
2693 * at 'offset + *pnum' may return the same allocation status (in other
2694 * words, the result is not necessarily the maximum possible range);
2695 * but 'pnum' will only be 0 when end of file is reached.
2697 int bdrv_is_allocated_above(BlockDriverState *top,
2698 BlockDriverState *base,
2699 bool include_base, int64_t offset,
2700 int64_t bytes, int64_t *pnum)
2702 int depth;
2703 int ret = bdrv_common_block_status_above(top, base, include_base, false,
2704 offset, bytes, pnum, NULL, NULL,
2705 &depth);
2706 if (ret < 0) {
2707 return ret;
2710 if (ret & BDRV_BLOCK_ALLOCATED) {
2711 return depth;
2713 return 0;
2716 int coroutine_fn
2717 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2719 BlockDriver *drv = bs->drv;
2720 BlockDriverState *child_bs = bdrv_primary_bs(bs);
2721 int ret = -ENOTSUP;
2723 if (!drv) {
2724 return -ENOMEDIUM;
2727 bdrv_inc_in_flight(bs);
2729 if (drv->bdrv_load_vmstate) {
2730 ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2731 } else if (child_bs) {
2732 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos);
2735 bdrv_dec_in_flight(bs);
2737 return ret;
2740 int coroutine_fn
2741 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2743 BlockDriver *drv = bs->drv;
2744 BlockDriverState *child_bs = bdrv_primary_bs(bs);
2745 int ret = -ENOTSUP;
2747 if (!drv) {
2748 return -ENOMEDIUM;
2751 bdrv_inc_in_flight(bs);
2753 if (drv->bdrv_save_vmstate) {
2754 ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2755 } else if (child_bs) {
2756 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos);
2759 bdrv_dec_in_flight(bs);
2761 return ret;
2764 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2765 int64_t pos, int size)
2767 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2768 int ret = bdrv_writev_vmstate(bs, &qiov, pos);
2770 return ret < 0 ? ret : size;
2773 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2774 int64_t pos, int size)
2776 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2777 int ret = bdrv_readv_vmstate(bs, &qiov, pos);
2779 return ret < 0 ? ret : size;
2782 /**************************************************************/
2783 /* async I/Os */
2785 void bdrv_aio_cancel(BlockAIOCB *acb)
2787 qemu_aio_ref(acb);
2788 bdrv_aio_cancel_async(acb);
2789 while (acb->refcnt > 1) {
2790 if (acb->aiocb_info->get_aio_context) {
2791 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2792 } else if (acb->bs) {
2793 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2794 * assert that we're not using an I/O thread. Thread-safe
2795 * code should use bdrv_aio_cancel_async exclusively.
2797 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2798 aio_poll(bdrv_get_aio_context(acb->bs), true);
2799 } else {
2800 abort();
2803 qemu_aio_unref(acb);
2806 /* Async version of aio cancel. The caller is not blocked if the acb implements
2807 * cancel_async, otherwise we do nothing and let the request normally complete.
2808 * In either case the completion callback must be called. */
2809 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2811 if (acb->aiocb_info->cancel_async) {
2812 acb->aiocb_info->cancel_async(acb);
2816 /**************************************************************/
2817 /* Coroutine block device emulation */
2819 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2821 BdrvChild *primary_child = bdrv_primary_child(bs);
2822 BdrvChild *child;
2823 int current_gen;
2824 int ret = 0;
2826 bdrv_inc_in_flight(bs);
2828 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2829 bdrv_is_sg(bs)) {
2830 goto early_exit;
2833 qemu_co_mutex_lock(&bs->reqs_lock);
2834 current_gen = qatomic_read(&bs->write_gen);
2836 /* Wait until any previous flushes are completed */
2837 while (bs->active_flush_req) {
2838 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2841 /* Flushes reach this point in nondecreasing current_gen order. */
2842 bs->active_flush_req = true;
2843 qemu_co_mutex_unlock(&bs->reqs_lock);
2845 /* Write back all layers by calling one driver function */
2846 if (bs->drv->bdrv_co_flush) {
2847 ret = bs->drv->bdrv_co_flush(bs);
2848 goto out;
2851 /* Write back cached data to the OS even with cache=unsafe */
2852 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_OS);
2853 if (bs->drv->bdrv_co_flush_to_os) {
2854 ret = bs->drv->bdrv_co_flush_to_os(bs);
2855 if (ret < 0) {
2856 goto out;
2860 /* But don't actually force it to the disk with cache=unsafe */
2861 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2862 goto flush_children;
2865 /* Check if we really need to flush anything */
2866 if (bs->flushed_gen == current_gen) {
2867 goto flush_children;
2870 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK);
2871 if (!bs->drv) {
2872 /* bs->drv->bdrv_co_flush() might have ejected the BDS
2873 * (even in case of apparent success) */
2874 ret = -ENOMEDIUM;
2875 goto out;
2877 if (bs->drv->bdrv_co_flush_to_disk) {
2878 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2879 } else if (bs->drv->bdrv_aio_flush) {
2880 BlockAIOCB *acb;
2881 CoroutineIOCompletion co = {
2882 .coroutine = qemu_coroutine_self(),
2885 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2886 if (acb == NULL) {
2887 ret = -EIO;
2888 } else {
2889 qemu_coroutine_yield();
2890 ret = co.ret;
2892 } else {
2894 * Some block drivers always operate in either writethrough or unsafe
2895 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2896 * know how the server works (because the behaviour is hardcoded or
2897 * depends on server-side configuration), so we can't ensure that
2898 * everything is safe on disk. Returning an error doesn't work because
2899 * that would break guests even if the server operates in writethrough
2900 * mode.
2902 * Let's hope the user knows what he's doing.
2904 ret = 0;
2907 if (ret < 0) {
2908 goto out;
2911 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2912 * in the case of cache=unsafe, so there are no useless flushes.
2914 flush_children:
2915 ret = 0;
2916 QLIST_FOREACH(child, &bs->children, next) {
2917 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) {
2918 int this_child_ret = bdrv_co_flush(child->bs);
2919 if (!ret) {
2920 ret = this_child_ret;
2925 out:
2926 /* Notify any pending flushes that we have completed */
2927 if (ret == 0) {
2928 bs->flushed_gen = current_gen;
2931 qemu_co_mutex_lock(&bs->reqs_lock);
2932 bs->active_flush_req = false;
2933 /* Return value is ignored - it's ok if wait queue is empty */
2934 qemu_co_queue_next(&bs->flush_queue);
2935 qemu_co_mutex_unlock(&bs->reqs_lock);
2937 early_exit:
2938 bdrv_dec_in_flight(bs);
2939 return ret;
2942 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
2943 int64_t bytes)
2945 BdrvTrackedRequest req;
2946 int max_pdiscard, ret;
2947 int head, tail, align;
2948 BlockDriverState *bs = child->bs;
2950 if (!bs || !bs->drv || !bdrv_is_inserted(bs)) {
2951 return -ENOMEDIUM;
2954 if (bdrv_has_readonly_bitmaps(bs)) {
2955 return -EPERM;
2958 ret = bdrv_check_request(offset, bytes, NULL);
2959 if (ret < 0) {
2960 return ret;
2963 /* Do nothing if disabled. */
2964 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2965 return 0;
2968 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2969 return 0;
2972 /* Discard is advisory, but some devices track and coalesce
2973 * unaligned requests, so we must pass everything down rather than
2974 * round here. Still, most devices will just silently ignore
2975 * unaligned requests (by returning -ENOTSUP), so we must fragment
2976 * the request accordingly. */
2977 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2978 assert(align % bs->bl.request_alignment == 0);
2979 head = offset % align;
2980 tail = (offset + bytes) % align;
2982 bdrv_inc_in_flight(bs);
2983 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
2985 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
2986 if (ret < 0) {
2987 goto out;
2990 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2991 align);
2992 assert(max_pdiscard >= bs->bl.request_alignment);
2994 while (bytes > 0) {
2995 int64_t num = bytes;
2997 if (head) {
2998 /* Make small requests to get to alignment boundaries. */
2999 num = MIN(bytes, align - head);
3000 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
3001 num %= bs->bl.request_alignment;
3003 head = (head + num) % align;
3004 assert(num < max_pdiscard);
3005 } else if (tail) {
3006 if (num > align) {
3007 /* Shorten the request to the last aligned cluster. */
3008 num -= tail;
3009 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
3010 tail > bs->bl.request_alignment) {
3011 tail %= bs->bl.request_alignment;
3012 num -= tail;
3015 /* limit request size */
3016 if (num > max_pdiscard) {
3017 num = max_pdiscard;
3020 if (!bs->drv) {
3021 ret = -ENOMEDIUM;
3022 goto out;
3024 if (bs->drv->bdrv_co_pdiscard) {
3025 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
3026 } else {
3027 BlockAIOCB *acb;
3028 CoroutineIOCompletion co = {
3029 .coroutine = qemu_coroutine_self(),
3032 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
3033 bdrv_co_io_em_complete, &co);
3034 if (acb == NULL) {
3035 ret = -EIO;
3036 goto out;
3037 } else {
3038 qemu_coroutine_yield();
3039 ret = co.ret;
3042 if (ret && ret != -ENOTSUP) {
3043 goto out;
3046 offset += num;
3047 bytes -= num;
3049 ret = 0;
3050 out:
3051 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
3052 tracked_request_end(&req);
3053 bdrv_dec_in_flight(bs);
3054 return ret;
3057 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
3059 BlockDriver *drv = bs->drv;
3060 CoroutineIOCompletion co = {
3061 .coroutine = qemu_coroutine_self(),
3063 BlockAIOCB *acb;
3065 bdrv_inc_in_flight(bs);
3066 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
3067 co.ret = -ENOTSUP;
3068 goto out;
3071 if (drv->bdrv_co_ioctl) {
3072 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
3073 } else {
3074 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
3075 if (!acb) {
3076 co.ret = -ENOTSUP;
3077 goto out;
3079 qemu_coroutine_yield();
3081 out:
3082 bdrv_dec_in_flight(bs);
3083 return co.ret;
3086 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3088 return qemu_memalign(bdrv_opt_mem_align(bs), size);
3091 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
3093 return memset(qemu_blockalign(bs, size), 0, size);
3096 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
3098 size_t align = bdrv_opt_mem_align(bs);
3100 /* Ensure that NULL is never returned on success */
3101 assert(align > 0);
3102 if (size == 0) {
3103 size = align;
3106 return qemu_try_memalign(align, size);
3109 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
3111 void *mem = qemu_try_blockalign(bs, size);
3113 if (mem) {
3114 memset(mem, 0, size);
3117 return mem;
3121 * Check if all memory in this vector is sector aligned.
3123 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
3125 int i;
3126 size_t alignment = bdrv_min_mem_align(bs);
3128 for (i = 0; i < qiov->niov; i++) {
3129 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
3130 return false;
3132 if (qiov->iov[i].iov_len % alignment) {
3133 return false;
3137 return true;
3140 void bdrv_add_before_write_notifier(BlockDriverState *bs,
3141 NotifierWithReturn *notifier)
3143 notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
3146 void bdrv_io_plug(BlockDriverState *bs)
3148 BdrvChild *child;
3150 QLIST_FOREACH(child, &bs->children, next) {
3151 bdrv_io_plug(child->bs);
3154 if (qatomic_fetch_inc(&bs->io_plugged) == 0) {
3155 BlockDriver *drv = bs->drv;
3156 if (drv && drv->bdrv_io_plug) {
3157 drv->bdrv_io_plug(bs);
3162 void bdrv_io_unplug(BlockDriverState *bs)
3164 BdrvChild *child;
3166 assert(bs->io_plugged);
3167 if (qatomic_fetch_dec(&bs->io_plugged) == 1) {
3168 BlockDriver *drv = bs->drv;
3169 if (drv && drv->bdrv_io_unplug) {
3170 drv->bdrv_io_unplug(bs);
3174 QLIST_FOREACH(child, &bs->children, next) {
3175 bdrv_io_unplug(child->bs);
3179 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size)
3181 BdrvChild *child;
3183 if (bs->drv && bs->drv->bdrv_register_buf) {
3184 bs->drv->bdrv_register_buf(bs, host, size);
3186 QLIST_FOREACH(child, &bs->children, next) {
3187 bdrv_register_buf(child->bs, host, size);
3191 void bdrv_unregister_buf(BlockDriverState *bs, void *host)
3193 BdrvChild *child;
3195 if (bs->drv && bs->drv->bdrv_unregister_buf) {
3196 bs->drv->bdrv_unregister_buf(bs, host);
3198 QLIST_FOREACH(child, &bs->children, next) {
3199 bdrv_unregister_buf(child->bs, host);
3203 static int coroutine_fn bdrv_co_copy_range_internal(
3204 BdrvChild *src, int64_t src_offset, BdrvChild *dst,
3205 int64_t dst_offset, int64_t bytes,
3206 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3207 bool recurse_src)
3209 BdrvTrackedRequest req;
3210 int ret;
3212 /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3213 assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3214 assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3216 if (!dst || !dst->bs || !bdrv_is_inserted(dst->bs)) {
3217 return -ENOMEDIUM;
3219 ret = bdrv_check_request32(dst_offset, bytes, NULL, 0);
3220 if (ret) {
3221 return ret;
3223 if (write_flags & BDRV_REQ_ZERO_WRITE) {
3224 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3227 if (!src || !src->bs || !bdrv_is_inserted(src->bs)) {
3228 return -ENOMEDIUM;
3230 ret = bdrv_check_request32(src_offset, bytes, NULL, 0);
3231 if (ret) {
3232 return ret;
3235 if (!src->bs->drv->bdrv_co_copy_range_from
3236 || !dst->bs->drv->bdrv_co_copy_range_to
3237 || src->bs->encrypted || dst->bs->encrypted) {
3238 return -ENOTSUP;
3241 if (recurse_src) {
3242 bdrv_inc_in_flight(src->bs);
3243 tracked_request_begin(&req, src->bs, src_offset, bytes,
3244 BDRV_TRACKED_READ);
3246 /* BDRV_REQ_SERIALISING is only for write operation */
3247 assert(!(read_flags & BDRV_REQ_SERIALISING));
3248 bdrv_wait_serialising_requests(&req);
3250 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3251 src, src_offset,
3252 dst, dst_offset,
3253 bytes,
3254 read_flags, write_flags);
3256 tracked_request_end(&req);
3257 bdrv_dec_in_flight(src->bs);
3258 } else {
3259 bdrv_inc_in_flight(dst->bs);
3260 tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3261 BDRV_TRACKED_WRITE);
3262 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3263 write_flags);
3264 if (!ret) {
3265 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3266 src, src_offset,
3267 dst, dst_offset,
3268 bytes,
3269 read_flags, write_flags);
3271 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3272 tracked_request_end(&req);
3273 bdrv_dec_in_flight(dst->bs);
3276 return ret;
3279 /* Copy range from @src to @dst.
3281 * See the comment of bdrv_co_copy_range for the parameter and return value
3282 * semantics. */
3283 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset,
3284 BdrvChild *dst, int64_t dst_offset,
3285 int64_t bytes,
3286 BdrvRequestFlags read_flags,
3287 BdrvRequestFlags write_flags)
3289 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3290 read_flags, write_flags);
3291 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3292 bytes, read_flags, write_flags, true);
3295 /* Copy range from @src to @dst.
3297 * See the comment of bdrv_co_copy_range for the parameter and return value
3298 * semantics. */
3299 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset,
3300 BdrvChild *dst, int64_t dst_offset,
3301 int64_t bytes,
3302 BdrvRequestFlags read_flags,
3303 BdrvRequestFlags write_flags)
3305 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3306 read_flags, write_flags);
3307 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3308 bytes, read_flags, write_flags, false);
3311 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset,
3312 BdrvChild *dst, int64_t dst_offset,
3313 int64_t bytes, BdrvRequestFlags read_flags,
3314 BdrvRequestFlags write_flags)
3316 return bdrv_co_copy_range_from(src, src_offset,
3317 dst, dst_offset,
3318 bytes, read_flags, write_flags);
3321 static void bdrv_parent_cb_resize(BlockDriverState *bs)
3323 BdrvChild *c;
3324 QLIST_FOREACH(c, &bs->parents, next_parent) {
3325 if (c->klass->resize) {
3326 c->klass->resize(c);
3332 * Truncate file to 'offset' bytes (needed only for file protocols)
3334 * If 'exact' is true, the file must be resized to exactly the given
3335 * 'offset'. Otherwise, it is sufficient for the node to be at least
3336 * 'offset' bytes in length.
3338 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact,
3339 PreallocMode prealloc, BdrvRequestFlags flags,
3340 Error **errp)
3342 BlockDriverState *bs = child->bs;
3343 BdrvChild *filtered, *backing;
3344 BlockDriver *drv = bs->drv;
3345 BdrvTrackedRequest req;
3346 int64_t old_size, new_bytes;
3347 int ret;
3350 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3351 if (!drv) {
3352 error_setg(errp, "No medium inserted");
3353 return -ENOMEDIUM;
3355 if (offset < 0) {
3356 error_setg(errp, "Image size cannot be negative");
3357 return -EINVAL;
3360 ret = bdrv_check_request(offset, 0, errp);
3361 if (ret < 0) {
3362 return ret;
3365 old_size = bdrv_getlength(bs);
3366 if (old_size < 0) {
3367 error_setg_errno(errp, -old_size, "Failed to get old image size");
3368 return old_size;
3371 if (offset > old_size) {
3372 new_bytes = offset - old_size;
3373 } else {
3374 new_bytes = 0;
3377 bdrv_inc_in_flight(bs);
3378 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3379 BDRV_TRACKED_TRUNCATE);
3381 /* If we are growing the image and potentially using preallocation for the
3382 * new area, we need to make sure that no write requests are made to it
3383 * concurrently or they might be overwritten by preallocation. */
3384 if (new_bytes) {
3385 bdrv_make_request_serialising(&req, 1);
3387 if (bs->read_only) {
3388 error_setg(errp, "Image is read-only");
3389 ret = -EACCES;
3390 goto out;
3392 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3394 if (ret < 0) {
3395 error_setg_errno(errp, -ret,
3396 "Failed to prepare request for truncation");
3397 goto out;
3400 filtered = bdrv_filter_child(bs);
3401 backing = bdrv_cow_child(bs);
3404 * If the image has a backing file that is large enough that it would
3405 * provide data for the new area, we cannot leave it unallocated because
3406 * then the backing file content would become visible. Instead, zero-fill
3407 * the new area.
3409 * Note that if the image has a backing file, but was opened without the
3410 * backing file, taking care of keeping things consistent with that backing
3411 * file is the user's responsibility.
3413 if (new_bytes && backing) {
3414 int64_t backing_len;
3416 backing_len = bdrv_getlength(backing->bs);
3417 if (backing_len < 0) {
3418 ret = backing_len;
3419 error_setg_errno(errp, -ret, "Could not get backing file size");
3420 goto out;
3423 if (backing_len > old_size) {
3424 flags |= BDRV_REQ_ZERO_WRITE;
3428 if (drv->bdrv_co_truncate) {
3429 if (flags & ~bs->supported_truncate_flags) {
3430 error_setg(errp, "Block driver does not support requested flags");
3431 ret = -ENOTSUP;
3432 goto out;
3434 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp);
3435 } else if (filtered) {
3436 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp);
3437 } else {
3438 error_setg(errp, "Image format driver does not support resize");
3439 ret = -ENOTSUP;
3440 goto out;
3442 if (ret < 0) {
3443 goto out;
3446 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3447 if (ret < 0) {
3448 error_setg_errno(errp, -ret, "Could not refresh total sector count");
3449 } else {
3450 offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3452 /* It's possible that truncation succeeded but refresh_total_sectors
3453 * failed, but the latter doesn't affect how we should finish the request.
3454 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */
3455 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3457 out:
3458 tracked_request_end(&req);
3459 bdrv_dec_in_flight(bs);
3461 return ret;
3464 void bdrv_cancel_in_flight(BlockDriverState *bs)
3466 if (!bs || !bs->drv) {
3467 return;
3470 if (bs->drv->bdrv_cancel_in_flight) {
3471 bs->drv->bdrv_cancel_in_flight(bs);