virtio-balloon: Fix page-poison subsection name
[qemu/kevin.git] / target / arm / translate-a64.c
blobab6b346e357cd7d0a52c295953184fd32b0d0a8b
1 /*
2 * AArch64 translation
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "tcg/tcg-op.h"
24 #include "tcg/tcg-op-gvec.h"
25 #include "qemu/log.h"
26 #include "arm_ldst.h"
27 #include "translate.h"
28 #include "internals.h"
29 #include "qemu/host-utils.h"
31 #include "semihosting/semihost.h"
32 #include "exec/gen-icount.h"
34 #include "exec/helper-proto.h"
35 #include "exec/helper-gen.h"
36 #include "exec/log.h"
38 #include "translate-a64.h"
39 #include "qemu/atomic128.h"
41 static TCGv_i64 cpu_X[32];
42 static TCGv_i64 cpu_pc;
44 /* Load/store exclusive handling */
45 static TCGv_i64 cpu_exclusive_high;
47 static const char *regnames[] = {
48 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
49 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
50 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
51 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
54 enum a64_shift_type {
55 A64_SHIFT_TYPE_LSL = 0,
56 A64_SHIFT_TYPE_LSR = 1,
57 A64_SHIFT_TYPE_ASR = 2,
58 A64_SHIFT_TYPE_ROR = 3
61 /* Table based decoder typedefs - used when the relevant bits for decode
62 * are too awkwardly scattered across the instruction (eg SIMD).
64 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
66 typedef struct AArch64DecodeTable {
67 uint32_t pattern;
68 uint32_t mask;
69 AArch64DecodeFn *disas_fn;
70 } AArch64DecodeTable;
72 /* initialize TCG globals. */
73 void a64_translate_init(void)
75 int i;
77 cpu_pc = tcg_global_mem_new_i64(cpu_env,
78 offsetof(CPUARMState, pc),
79 "pc");
80 for (i = 0; i < 32; i++) {
81 cpu_X[i] = tcg_global_mem_new_i64(cpu_env,
82 offsetof(CPUARMState, xregs[i]),
83 regnames[i]);
86 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env,
87 offsetof(CPUARMState, exclusive_high), "exclusive_high");
91 * Return the core mmu_idx to use for A64 "unprivileged load/store" insns
93 static int get_a64_user_mem_index(DisasContext *s)
96 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
97 * which is the usual mmu_idx for this cpu state.
99 ARMMMUIdx useridx = s->mmu_idx;
101 if (s->unpriv) {
103 * We have pre-computed the condition for AccType_UNPRIV.
104 * Therefore we should never get here with a mmu_idx for
105 * which we do not know the corresponding user mmu_idx.
107 switch (useridx) {
108 case ARMMMUIdx_E10_1:
109 case ARMMMUIdx_E10_1_PAN:
110 useridx = ARMMMUIdx_E10_0;
111 break;
112 case ARMMMUIdx_E20_2:
113 case ARMMMUIdx_E20_2_PAN:
114 useridx = ARMMMUIdx_E20_0;
115 break;
116 case ARMMMUIdx_SE10_1:
117 case ARMMMUIdx_SE10_1_PAN:
118 useridx = ARMMMUIdx_SE10_0;
119 break;
120 case ARMMMUIdx_SE20_2:
121 case ARMMMUIdx_SE20_2_PAN:
122 useridx = ARMMMUIdx_SE20_0;
123 break;
124 default:
125 g_assert_not_reached();
128 return arm_to_core_mmu_idx(useridx);
131 static void reset_btype(DisasContext *s)
133 if (s->btype != 0) {
134 TCGv_i32 zero = tcg_const_i32(0);
135 tcg_gen_st_i32(zero, cpu_env, offsetof(CPUARMState, btype));
136 tcg_temp_free_i32(zero);
137 s->btype = 0;
141 static void set_btype(DisasContext *s, int val)
143 TCGv_i32 tcg_val;
145 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */
146 tcg_debug_assert(val >= 1 && val <= 3);
148 tcg_val = tcg_const_i32(val);
149 tcg_gen_st_i32(tcg_val, cpu_env, offsetof(CPUARMState, btype));
150 tcg_temp_free_i32(tcg_val);
151 s->btype = -1;
154 void gen_a64_set_pc_im(uint64_t val)
156 tcg_gen_movi_i64(cpu_pc, val);
160 * Handle Top Byte Ignore (TBI) bits.
162 * If address tagging is enabled via the TCR TBI bits:
163 * + for EL2 and EL3 there is only one TBI bit, and if it is set
164 * then the address is zero-extended, clearing bits [63:56]
165 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
166 * and TBI1 controls addressses with bit 55 == 1.
167 * If the appropriate TBI bit is set for the address then
168 * the address is sign-extended from bit 55 into bits [63:56]
170 * Here We have concatenated TBI{1,0} into tbi.
172 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
173 TCGv_i64 src, int tbi)
175 if (tbi == 0) {
176 /* Load unmodified address */
177 tcg_gen_mov_i64(dst, src);
178 } else if (!regime_has_2_ranges(s->mmu_idx)) {
179 /* Force tag byte to all zero */
180 tcg_gen_extract_i64(dst, src, 0, 56);
181 } else {
182 /* Sign-extend from bit 55. */
183 tcg_gen_sextract_i64(dst, src, 0, 56);
185 switch (tbi) {
186 case 1:
187 /* tbi0 but !tbi1: only use the extension if positive */
188 tcg_gen_and_i64(dst, dst, src);
189 break;
190 case 2:
191 /* !tbi0 but tbi1: only use the extension if negative */
192 tcg_gen_or_i64(dst, dst, src);
193 break;
194 case 3:
195 /* tbi0 and tbi1: always use the extension */
196 break;
197 default:
198 g_assert_not_reached();
203 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
206 * If address tagging is enabled for instructions via the TCR TBI bits,
207 * then loading an address into the PC will clear out any tag.
209 gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
213 * Handle MTE and/or TBI.
215 * For TBI, ideally, we would do nothing. Proper behaviour on fault is
216 * for the tag to be present in the FAR_ELx register. But for user-only
217 * mode we do not have a TLB with which to implement this, so we must
218 * remove the top byte now.
220 * Always return a fresh temporary that we can increment independently
221 * of the write-back address.
224 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
226 TCGv_i64 clean = new_tmp_a64(s);
227 #ifdef CONFIG_USER_ONLY
228 gen_top_byte_ignore(s, clean, addr, s->tbid);
229 #else
230 tcg_gen_mov_i64(clean, addr);
231 #endif
232 return clean;
235 /* Insert a zero tag into src, with the result at dst. */
236 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
238 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
241 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
242 MMUAccessType acc, int log2_size)
244 TCGv_i32 t_acc = tcg_const_i32(acc);
245 TCGv_i32 t_idx = tcg_const_i32(get_mem_index(s));
246 TCGv_i32 t_size = tcg_const_i32(1 << log2_size);
248 gen_helper_probe_access(cpu_env, ptr, t_acc, t_idx, t_size);
249 tcg_temp_free_i32(t_acc);
250 tcg_temp_free_i32(t_idx);
251 tcg_temp_free_i32(t_size);
255 * For MTE, check a single logical or atomic access. This probes a single
256 * address, the exact one specified. The size and alignment of the access
257 * is not relevant to MTE, per se, but watchpoints do require the size,
258 * and we want to recognize those before making any other changes to state.
260 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
261 bool is_write, bool tag_checked,
262 int log2_size, bool is_unpriv,
263 int core_idx)
265 if (tag_checked && s->mte_active[is_unpriv]) {
266 TCGv_i32 tcg_desc;
267 TCGv_i64 ret;
268 int desc = 0;
270 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
271 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
272 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
273 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
274 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, (1 << log2_size) - 1);
275 tcg_desc = tcg_const_i32(desc);
277 ret = new_tmp_a64(s);
278 gen_helper_mte_check(ret, cpu_env, tcg_desc, addr);
279 tcg_temp_free_i32(tcg_desc);
281 return ret;
283 return clean_data_tbi(s, addr);
286 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
287 bool tag_checked, int log2_size)
289 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, log2_size,
290 false, get_mem_index(s));
294 * For MTE, check multiple logical sequential accesses.
296 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
297 bool tag_checked, int size)
299 if (tag_checked && s->mte_active[0]) {
300 TCGv_i32 tcg_desc;
301 TCGv_i64 ret;
302 int desc = 0;
304 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
305 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
306 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
307 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
308 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, size - 1);
309 tcg_desc = tcg_const_i32(desc);
311 ret = new_tmp_a64(s);
312 gen_helper_mte_check(ret, cpu_env, tcg_desc, addr);
313 tcg_temp_free_i32(tcg_desc);
315 return ret;
317 return clean_data_tbi(s, addr);
320 typedef struct DisasCompare64 {
321 TCGCond cond;
322 TCGv_i64 value;
323 } DisasCompare64;
325 static void a64_test_cc(DisasCompare64 *c64, int cc)
327 DisasCompare c32;
329 arm_test_cc(&c32, cc);
331 /* Sign-extend the 32-bit value so that the GE/LT comparisons work
332 * properly. The NE/EQ comparisons are also fine with this choice. */
333 c64->cond = c32.cond;
334 c64->value = tcg_temp_new_i64();
335 tcg_gen_ext_i32_i64(c64->value, c32.value);
337 arm_free_cc(&c32);
340 static void a64_free_cc(DisasCompare64 *c64)
342 tcg_temp_free_i64(c64->value);
345 static void gen_exception_internal(int excp)
347 TCGv_i32 tcg_excp = tcg_const_i32(excp);
349 assert(excp_is_internal(excp));
350 gen_helper_exception_internal(cpu_env, tcg_excp);
351 tcg_temp_free_i32(tcg_excp);
354 static void gen_exception_internal_insn(DisasContext *s, uint64_t pc, int excp)
356 gen_a64_set_pc_im(pc);
357 gen_exception_internal(excp);
358 s->base.is_jmp = DISAS_NORETURN;
361 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
363 TCGv_i32 tcg_syn;
365 gen_a64_set_pc_im(s->pc_curr);
366 tcg_syn = tcg_const_i32(syndrome);
367 gen_helper_exception_bkpt_insn(cpu_env, tcg_syn);
368 tcg_temp_free_i32(tcg_syn);
369 s->base.is_jmp = DISAS_NORETURN;
372 static void gen_step_complete_exception(DisasContext *s)
374 /* We just completed step of an insn. Move from Active-not-pending
375 * to Active-pending, and then also take the swstep exception.
376 * This corresponds to making the (IMPDEF) choice to prioritize
377 * swstep exceptions over asynchronous exceptions taken to an exception
378 * level where debug is disabled. This choice has the advantage that
379 * we do not need to maintain internal state corresponding to the
380 * ISV/EX syndrome bits between completion of the step and generation
381 * of the exception, and our syndrome information is always correct.
383 gen_ss_advance(s);
384 gen_swstep_exception(s, 1, s->is_ldex);
385 s->base.is_jmp = DISAS_NORETURN;
388 static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
390 if (s->ss_active) {
391 return false;
393 return translator_use_goto_tb(&s->base, dest);
396 static inline void gen_goto_tb(DisasContext *s, int n, uint64_t dest)
398 if (use_goto_tb(s, dest)) {
399 tcg_gen_goto_tb(n);
400 gen_a64_set_pc_im(dest);
401 tcg_gen_exit_tb(s->base.tb, n);
402 s->base.is_jmp = DISAS_NORETURN;
403 } else {
404 gen_a64_set_pc_im(dest);
405 if (s->ss_active) {
406 gen_step_complete_exception(s);
407 } else if (s->base.singlestep_enabled) {
408 gen_exception_internal(EXCP_DEBUG);
409 } else {
410 tcg_gen_lookup_and_goto_ptr();
411 s->base.is_jmp = DISAS_NORETURN;
416 static void init_tmp_a64_array(DisasContext *s)
418 #ifdef CONFIG_DEBUG_TCG
419 memset(s->tmp_a64, 0, sizeof(s->tmp_a64));
420 #endif
421 s->tmp_a64_count = 0;
424 static void free_tmp_a64(DisasContext *s)
426 int i;
427 for (i = 0; i < s->tmp_a64_count; i++) {
428 tcg_temp_free_i64(s->tmp_a64[i]);
430 init_tmp_a64_array(s);
433 TCGv_i64 new_tmp_a64(DisasContext *s)
435 assert(s->tmp_a64_count < TMP_A64_MAX);
436 return s->tmp_a64[s->tmp_a64_count++] = tcg_temp_new_i64();
439 TCGv_i64 new_tmp_a64_local(DisasContext *s)
441 assert(s->tmp_a64_count < TMP_A64_MAX);
442 return s->tmp_a64[s->tmp_a64_count++] = tcg_temp_local_new_i64();
445 TCGv_i64 new_tmp_a64_zero(DisasContext *s)
447 TCGv_i64 t = new_tmp_a64(s);
448 tcg_gen_movi_i64(t, 0);
449 return t;
453 * Register access functions
455 * These functions are used for directly accessing a register in where
456 * changes to the final register value are likely to be made. If you
457 * need to use a register for temporary calculation (e.g. index type
458 * operations) use the read_* form.
460 * B1.2.1 Register mappings
462 * In instruction register encoding 31 can refer to ZR (zero register) or
463 * the SP (stack pointer) depending on context. In QEMU's case we map SP
464 * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
465 * This is the point of the _sp forms.
467 TCGv_i64 cpu_reg(DisasContext *s, int reg)
469 if (reg == 31) {
470 return new_tmp_a64_zero(s);
471 } else {
472 return cpu_X[reg];
476 /* register access for when 31 == SP */
477 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
479 return cpu_X[reg];
482 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
483 * representing the register contents. This TCGv is an auto-freed
484 * temporary so it need not be explicitly freed, and may be modified.
486 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
488 TCGv_i64 v = new_tmp_a64(s);
489 if (reg != 31) {
490 if (sf) {
491 tcg_gen_mov_i64(v, cpu_X[reg]);
492 } else {
493 tcg_gen_ext32u_i64(v, cpu_X[reg]);
495 } else {
496 tcg_gen_movi_i64(v, 0);
498 return v;
501 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
503 TCGv_i64 v = new_tmp_a64(s);
504 if (sf) {
505 tcg_gen_mov_i64(v, cpu_X[reg]);
506 } else {
507 tcg_gen_ext32u_i64(v, cpu_X[reg]);
509 return v;
512 /* Return the offset into CPUARMState of a slice (from
513 * the least significant end) of FP register Qn (ie
514 * Dn, Sn, Hn or Bn).
515 * (Note that this is not the same mapping as for A32; see cpu.h)
517 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
519 return vec_reg_offset(s, regno, 0, size);
522 /* Offset of the high half of the 128 bit vector Qn */
523 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
525 return vec_reg_offset(s, regno, 1, MO_64);
528 /* Convenience accessors for reading and writing single and double
529 * FP registers. Writing clears the upper parts of the associated
530 * 128 bit vector register, as required by the architecture.
531 * Note that unlike the GP register accessors, the values returned
532 * by the read functions must be manually freed.
534 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
536 TCGv_i64 v = tcg_temp_new_i64();
538 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
539 return v;
542 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
544 TCGv_i32 v = tcg_temp_new_i32();
546 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32));
547 return v;
550 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
552 TCGv_i32 v = tcg_temp_new_i32();
554 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16));
555 return v;
558 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
559 * If SVE is not enabled, then there are only 128 bits in the vector.
561 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
563 unsigned ofs = fp_reg_offset(s, rd, MO_64);
564 unsigned vsz = vec_full_reg_size(s);
566 /* Nop move, with side effect of clearing the tail. */
567 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
570 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
572 unsigned ofs = fp_reg_offset(s, reg, MO_64);
574 tcg_gen_st_i64(v, cpu_env, ofs);
575 clear_vec_high(s, false, reg);
578 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
580 TCGv_i64 tmp = tcg_temp_new_i64();
582 tcg_gen_extu_i32_i64(tmp, v);
583 write_fp_dreg(s, reg, tmp);
584 tcg_temp_free_i64(tmp);
587 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */
588 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
589 GVecGen2Fn *gvec_fn, int vece)
591 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
592 is_q ? 16 : 8, vec_full_reg_size(s));
595 /* Expand a 2-operand + immediate AdvSIMD vector operation using
596 * an expander function.
598 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
599 int64_t imm, GVecGen2iFn *gvec_fn, int vece)
601 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
602 imm, is_q ? 16 : 8, vec_full_reg_size(s));
605 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */
606 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
607 GVecGen3Fn *gvec_fn, int vece)
609 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
610 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
613 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */
614 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
615 int rx, GVecGen4Fn *gvec_fn, int vece)
617 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
618 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
619 is_q ? 16 : 8, vec_full_reg_size(s));
622 /* Expand a 2-operand operation using an out-of-line helper. */
623 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
624 int rn, int data, gen_helper_gvec_2 *fn)
626 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
627 vec_full_reg_offset(s, rn),
628 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
631 /* Expand a 3-operand operation using an out-of-line helper. */
632 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
633 int rn, int rm, int data, gen_helper_gvec_3 *fn)
635 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
636 vec_full_reg_offset(s, rn),
637 vec_full_reg_offset(s, rm),
638 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
641 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
642 * an out-of-line helper.
644 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
645 int rm, bool is_fp16, int data,
646 gen_helper_gvec_3_ptr *fn)
648 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
649 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
650 vec_full_reg_offset(s, rn),
651 vec_full_reg_offset(s, rm), fpst,
652 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
653 tcg_temp_free_ptr(fpst);
656 /* Expand a 3-operand + qc + operation using an out-of-line helper. */
657 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn,
658 int rm, gen_helper_gvec_3_ptr *fn)
660 TCGv_ptr qc_ptr = tcg_temp_new_ptr();
662 tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc));
663 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
664 vec_full_reg_offset(s, rn),
665 vec_full_reg_offset(s, rm), qc_ptr,
666 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
667 tcg_temp_free_ptr(qc_ptr);
670 /* Expand a 4-operand operation using an out-of-line helper. */
671 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
672 int rm, int ra, int data, gen_helper_gvec_4 *fn)
674 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
675 vec_full_reg_offset(s, rn),
676 vec_full_reg_offset(s, rm),
677 vec_full_reg_offset(s, ra),
678 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
682 * Expand a 4-operand + fpstatus pointer + simd data value operation using
683 * an out-of-line helper.
685 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
686 int rm, int ra, bool is_fp16, int data,
687 gen_helper_gvec_4_ptr *fn)
689 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
690 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
691 vec_full_reg_offset(s, rn),
692 vec_full_reg_offset(s, rm),
693 vec_full_reg_offset(s, ra), fpst,
694 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
695 tcg_temp_free_ptr(fpst);
698 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
699 * than the 32 bit equivalent.
701 static inline void gen_set_NZ64(TCGv_i64 result)
703 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
704 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
707 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
708 static inline void gen_logic_CC(int sf, TCGv_i64 result)
710 if (sf) {
711 gen_set_NZ64(result);
712 } else {
713 tcg_gen_extrl_i64_i32(cpu_ZF, result);
714 tcg_gen_mov_i32(cpu_NF, cpu_ZF);
716 tcg_gen_movi_i32(cpu_CF, 0);
717 tcg_gen_movi_i32(cpu_VF, 0);
720 /* dest = T0 + T1; compute C, N, V and Z flags */
721 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
723 if (sf) {
724 TCGv_i64 result, flag, tmp;
725 result = tcg_temp_new_i64();
726 flag = tcg_temp_new_i64();
727 tmp = tcg_temp_new_i64();
729 tcg_gen_movi_i64(tmp, 0);
730 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
732 tcg_gen_extrl_i64_i32(cpu_CF, flag);
734 gen_set_NZ64(result);
736 tcg_gen_xor_i64(flag, result, t0);
737 tcg_gen_xor_i64(tmp, t0, t1);
738 tcg_gen_andc_i64(flag, flag, tmp);
739 tcg_temp_free_i64(tmp);
740 tcg_gen_extrh_i64_i32(cpu_VF, flag);
742 tcg_gen_mov_i64(dest, result);
743 tcg_temp_free_i64(result);
744 tcg_temp_free_i64(flag);
745 } else {
746 /* 32 bit arithmetic */
747 TCGv_i32 t0_32 = tcg_temp_new_i32();
748 TCGv_i32 t1_32 = tcg_temp_new_i32();
749 TCGv_i32 tmp = tcg_temp_new_i32();
751 tcg_gen_movi_i32(tmp, 0);
752 tcg_gen_extrl_i64_i32(t0_32, t0);
753 tcg_gen_extrl_i64_i32(t1_32, t1);
754 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
755 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
756 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
757 tcg_gen_xor_i32(tmp, t0_32, t1_32);
758 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
759 tcg_gen_extu_i32_i64(dest, cpu_NF);
761 tcg_temp_free_i32(tmp);
762 tcg_temp_free_i32(t0_32);
763 tcg_temp_free_i32(t1_32);
767 /* dest = T0 - T1; compute C, N, V and Z flags */
768 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
770 if (sf) {
771 /* 64 bit arithmetic */
772 TCGv_i64 result, flag, tmp;
774 result = tcg_temp_new_i64();
775 flag = tcg_temp_new_i64();
776 tcg_gen_sub_i64(result, t0, t1);
778 gen_set_NZ64(result);
780 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
781 tcg_gen_extrl_i64_i32(cpu_CF, flag);
783 tcg_gen_xor_i64(flag, result, t0);
784 tmp = tcg_temp_new_i64();
785 tcg_gen_xor_i64(tmp, t0, t1);
786 tcg_gen_and_i64(flag, flag, tmp);
787 tcg_temp_free_i64(tmp);
788 tcg_gen_extrh_i64_i32(cpu_VF, flag);
789 tcg_gen_mov_i64(dest, result);
790 tcg_temp_free_i64(flag);
791 tcg_temp_free_i64(result);
792 } else {
793 /* 32 bit arithmetic */
794 TCGv_i32 t0_32 = tcg_temp_new_i32();
795 TCGv_i32 t1_32 = tcg_temp_new_i32();
796 TCGv_i32 tmp;
798 tcg_gen_extrl_i64_i32(t0_32, t0);
799 tcg_gen_extrl_i64_i32(t1_32, t1);
800 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
801 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
802 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
803 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
804 tmp = tcg_temp_new_i32();
805 tcg_gen_xor_i32(tmp, t0_32, t1_32);
806 tcg_temp_free_i32(t0_32);
807 tcg_temp_free_i32(t1_32);
808 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
809 tcg_temp_free_i32(tmp);
810 tcg_gen_extu_i32_i64(dest, cpu_NF);
814 /* dest = T0 + T1 + CF; do not compute flags. */
815 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
817 TCGv_i64 flag = tcg_temp_new_i64();
818 tcg_gen_extu_i32_i64(flag, cpu_CF);
819 tcg_gen_add_i64(dest, t0, t1);
820 tcg_gen_add_i64(dest, dest, flag);
821 tcg_temp_free_i64(flag);
823 if (!sf) {
824 tcg_gen_ext32u_i64(dest, dest);
828 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
829 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
831 if (sf) {
832 TCGv_i64 result, cf_64, vf_64, tmp;
833 result = tcg_temp_new_i64();
834 cf_64 = tcg_temp_new_i64();
835 vf_64 = tcg_temp_new_i64();
836 tmp = tcg_const_i64(0);
838 tcg_gen_extu_i32_i64(cf_64, cpu_CF);
839 tcg_gen_add2_i64(result, cf_64, t0, tmp, cf_64, tmp);
840 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, tmp);
841 tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
842 gen_set_NZ64(result);
844 tcg_gen_xor_i64(vf_64, result, t0);
845 tcg_gen_xor_i64(tmp, t0, t1);
846 tcg_gen_andc_i64(vf_64, vf_64, tmp);
847 tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
849 tcg_gen_mov_i64(dest, result);
851 tcg_temp_free_i64(tmp);
852 tcg_temp_free_i64(vf_64);
853 tcg_temp_free_i64(cf_64);
854 tcg_temp_free_i64(result);
855 } else {
856 TCGv_i32 t0_32, t1_32, tmp;
857 t0_32 = tcg_temp_new_i32();
858 t1_32 = tcg_temp_new_i32();
859 tmp = tcg_const_i32(0);
861 tcg_gen_extrl_i64_i32(t0_32, t0);
862 tcg_gen_extrl_i64_i32(t1_32, t1);
863 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, cpu_CF, tmp);
864 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, tmp);
866 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
867 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
868 tcg_gen_xor_i32(tmp, t0_32, t1_32);
869 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
870 tcg_gen_extu_i32_i64(dest, cpu_NF);
872 tcg_temp_free_i32(tmp);
873 tcg_temp_free_i32(t1_32);
874 tcg_temp_free_i32(t0_32);
879 * Load/Store generators
883 * Store from GPR register to memory.
885 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
886 TCGv_i64 tcg_addr, MemOp memop, int memidx,
887 bool iss_valid,
888 unsigned int iss_srt,
889 bool iss_sf, bool iss_ar)
891 memop = finalize_memop(s, memop);
892 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
894 if (iss_valid) {
895 uint32_t syn;
897 syn = syn_data_abort_with_iss(0,
898 (memop & MO_SIZE),
899 false,
900 iss_srt,
901 iss_sf,
902 iss_ar,
903 0, 0, 0, 0, 0, false);
904 disas_set_insn_syndrome(s, syn);
908 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
909 TCGv_i64 tcg_addr, MemOp memop,
910 bool iss_valid,
911 unsigned int iss_srt,
912 bool iss_sf, bool iss_ar)
914 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
915 iss_valid, iss_srt, iss_sf, iss_ar);
919 * Load from memory to GPR register
921 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
922 MemOp memop, bool extend, int memidx,
923 bool iss_valid, unsigned int iss_srt,
924 bool iss_sf, bool iss_ar)
926 memop = finalize_memop(s, memop);
927 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
929 if (extend && (memop & MO_SIGN)) {
930 g_assert((memop & MO_SIZE) <= MO_32);
931 tcg_gen_ext32u_i64(dest, dest);
934 if (iss_valid) {
935 uint32_t syn;
937 syn = syn_data_abort_with_iss(0,
938 (memop & MO_SIZE),
939 (memop & MO_SIGN) != 0,
940 iss_srt,
941 iss_sf,
942 iss_ar,
943 0, 0, 0, 0, 0, false);
944 disas_set_insn_syndrome(s, syn);
948 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
949 MemOp memop, bool extend,
950 bool iss_valid, unsigned int iss_srt,
951 bool iss_sf, bool iss_ar)
953 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
954 iss_valid, iss_srt, iss_sf, iss_ar);
958 * Store from FP register to memory
960 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size)
962 /* This writes the bottom N bits of a 128 bit wide vector to memory */
963 TCGv_i64 tmplo = tcg_temp_new_i64();
964 MemOp mop;
966 tcg_gen_ld_i64(tmplo, cpu_env, fp_reg_offset(s, srcidx, MO_64));
968 if (size < 4) {
969 mop = finalize_memop(s, size);
970 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
971 } else {
972 bool be = s->be_data == MO_BE;
973 TCGv_i64 tcg_hiaddr = tcg_temp_new_i64();
974 TCGv_i64 tmphi = tcg_temp_new_i64();
976 tcg_gen_ld_i64(tmphi, cpu_env, fp_reg_hi_offset(s, srcidx));
978 mop = s->be_data | MO_Q;
979 tcg_gen_qemu_st_i64(be ? tmphi : tmplo, tcg_addr, get_mem_index(s),
980 mop | (s->align_mem ? MO_ALIGN_16 : 0));
981 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
982 tcg_gen_qemu_st_i64(be ? tmplo : tmphi, tcg_hiaddr,
983 get_mem_index(s), mop);
985 tcg_temp_free_i64(tcg_hiaddr);
986 tcg_temp_free_i64(tmphi);
989 tcg_temp_free_i64(tmplo);
993 * Load from memory to FP register
995 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size)
997 /* This always zero-extends and writes to a full 128 bit wide vector */
998 TCGv_i64 tmplo = tcg_temp_new_i64();
999 TCGv_i64 tmphi = NULL;
1000 MemOp mop;
1002 if (size < 4) {
1003 mop = finalize_memop(s, size);
1004 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1005 } else {
1006 bool be = s->be_data == MO_BE;
1007 TCGv_i64 tcg_hiaddr;
1009 tmphi = tcg_temp_new_i64();
1010 tcg_hiaddr = tcg_temp_new_i64();
1012 mop = s->be_data | MO_Q;
1013 tcg_gen_qemu_ld_i64(be ? tmphi : tmplo, tcg_addr, get_mem_index(s),
1014 mop | (s->align_mem ? MO_ALIGN_16 : 0));
1015 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
1016 tcg_gen_qemu_ld_i64(be ? tmplo : tmphi, tcg_hiaddr,
1017 get_mem_index(s), mop);
1018 tcg_temp_free_i64(tcg_hiaddr);
1021 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64));
1022 tcg_temp_free_i64(tmplo);
1024 if (tmphi) {
1025 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx));
1026 tcg_temp_free_i64(tmphi);
1028 clear_vec_high(s, tmphi != NULL, destidx);
1032 * Vector load/store helpers.
1034 * The principal difference between this and a FP load is that we don't
1035 * zero extend as we are filling a partial chunk of the vector register.
1036 * These functions don't support 128 bit loads/stores, which would be
1037 * normal load/store operations.
1039 * The _i32 versions are useful when operating on 32 bit quantities
1040 * (eg for floating point single or using Neon helper functions).
1043 /* Get value of an element within a vector register */
1044 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1045 int element, MemOp memop)
1047 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1048 switch (memop) {
1049 case MO_8:
1050 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off);
1051 break;
1052 case MO_16:
1053 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off);
1054 break;
1055 case MO_32:
1056 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off);
1057 break;
1058 case MO_8|MO_SIGN:
1059 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off);
1060 break;
1061 case MO_16|MO_SIGN:
1062 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off);
1063 break;
1064 case MO_32|MO_SIGN:
1065 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off);
1066 break;
1067 case MO_64:
1068 case MO_64|MO_SIGN:
1069 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off);
1070 break;
1071 default:
1072 g_assert_not_reached();
1076 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1077 int element, MemOp memop)
1079 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1080 switch (memop) {
1081 case MO_8:
1082 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off);
1083 break;
1084 case MO_16:
1085 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off);
1086 break;
1087 case MO_8|MO_SIGN:
1088 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off);
1089 break;
1090 case MO_16|MO_SIGN:
1091 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off);
1092 break;
1093 case MO_32:
1094 case MO_32|MO_SIGN:
1095 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off);
1096 break;
1097 default:
1098 g_assert_not_reached();
1102 /* Set value of an element within a vector register */
1103 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1104 int element, MemOp memop)
1106 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1107 switch (memop) {
1108 case MO_8:
1109 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off);
1110 break;
1111 case MO_16:
1112 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off);
1113 break;
1114 case MO_32:
1115 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off);
1116 break;
1117 case MO_64:
1118 tcg_gen_st_i64(tcg_src, cpu_env, vect_off);
1119 break;
1120 default:
1121 g_assert_not_reached();
1125 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1126 int destidx, int element, MemOp memop)
1128 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1129 switch (memop) {
1130 case MO_8:
1131 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off);
1132 break;
1133 case MO_16:
1134 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off);
1135 break;
1136 case MO_32:
1137 tcg_gen_st_i32(tcg_src, cpu_env, vect_off);
1138 break;
1139 default:
1140 g_assert_not_reached();
1144 /* Store from vector register to memory */
1145 static void do_vec_st(DisasContext *s, int srcidx, int element,
1146 TCGv_i64 tcg_addr, MemOp mop)
1148 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1150 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1151 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1153 tcg_temp_free_i64(tcg_tmp);
1156 /* Load from memory to vector register */
1157 static void do_vec_ld(DisasContext *s, int destidx, int element,
1158 TCGv_i64 tcg_addr, MemOp mop)
1160 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1162 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1163 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1165 tcg_temp_free_i64(tcg_tmp);
1168 /* Check that FP/Neon access is enabled. If it is, return
1169 * true. If not, emit code to generate an appropriate exception,
1170 * and return false; the caller should not emit any code for
1171 * the instruction. Note that this check must happen after all
1172 * unallocated-encoding checks (otherwise the syndrome information
1173 * for the resulting exception will be incorrect).
1175 static bool fp_access_check(DisasContext *s)
1177 if (s->fp_excp_el) {
1178 assert(!s->fp_access_checked);
1179 s->fp_access_checked = true;
1181 gen_exception_insn(s, s->pc_curr, EXCP_UDEF,
1182 syn_fp_access_trap(1, 0xe, false), s->fp_excp_el);
1183 return false;
1185 s->fp_access_checked = true;
1186 return true;
1189 /* Check that SVE access is enabled. If it is, return true.
1190 * If not, emit code to generate an appropriate exception and return false.
1192 bool sve_access_check(DisasContext *s)
1194 if (s->sve_excp_el) {
1195 assert(!s->sve_access_checked);
1196 s->sve_access_checked = true;
1198 gen_exception_insn(s, s->pc_curr, EXCP_UDEF,
1199 syn_sve_access_trap(), s->sve_excp_el);
1200 return false;
1202 s->sve_access_checked = true;
1203 return fp_access_check(s);
1207 * This utility function is for doing register extension with an
1208 * optional shift. You will likely want to pass a temporary for the
1209 * destination register. See DecodeRegExtend() in the ARM ARM.
1211 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1212 int option, unsigned int shift)
1214 int extsize = extract32(option, 0, 2);
1215 bool is_signed = extract32(option, 2, 1);
1217 if (is_signed) {
1218 switch (extsize) {
1219 case 0:
1220 tcg_gen_ext8s_i64(tcg_out, tcg_in);
1221 break;
1222 case 1:
1223 tcg_gen_ext16s_i64(tcg_out, tcg_in);
1224 break;
1225 case 2:
1226 tcg_gen_ext32s_i64(tcg_out, tcg_in);
1227 break;
1228 case 3:
1229 tcg_gen_mov_i64(tcg_out, tcg_in);
1230 break;
1232 } else {
1233 switch (extsize) {
1234 case 0:
1235 tcg_gen_ext8u_i64(tcg_out, tcg_in);
1236 break;
1237 case 1:
1238 tcg_gen_ext16u_i64(tcg_out, tcg_in);
1239 break;
1240 case 2:
1241 tcg_gen_ext32u_i64(tcg_out, tcg_in);
1242 break;
1243 case 3:
1244 tcg_gen_mov_i64(tcg_out, tcg_in);
1245 break;
1249 if (shift) {
1250 tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1254 static inline void gen_check_sp_alignment(DisasContext *s)
1256 /* The AArch64 architecture mandates that (if enabled via PSTATE
1257 * or SCTLR bits) there is a check that SP is 16-aligned on every
1258 * SP-relative load or store (with an exception generated if it is not).
1259 * In line with general QEMU practice regarding misaligned accesses,
1260 * we omit these checks for the sake of guest program performance.
1261 * This function is provided as a hook so we can more easily add these
1262 * checks in future (possibly as a "favour catching guest program bugs
1263 * over speed" user selectable option).
1268 * This provides a simple table based table lookup decoder. It is
1269 * intended to be used when the relevant bits for decode are too
1270 * awkwardly placed and switch/if based logic would be confusing and
1271 * deeply nested. Since it's a linear search through the table, tables
1272 * should be kept small.
1274 * It returns the first handler where insn & mask == pattern, or
1275 * NULL if there is no match.
1276 * The table is terminated by an empty mask (i.e. 0)
1278 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1279 uint32_t insn)
1281 const AArch64DecodeTable *tptr = table;
1283 while (tptr->mask) {
1284 if ((insn & tptr->mask) == tptr->pattern) {
1285 return tptr->disas_fn;
1287 tptr++;
1289 return NULL;
1293 * The instruction disassembly implemented here matches
1294 * the instruction encoding classifications in chapter C4
1295 * of the ARM Architecture Reference Manual (DDI0487B_a);
1296 * classification names and decode diagrams here should generally
1297 * match up with those in the manual.
1300 /* Unconditional branch (immediate)
1301 * 31 30 26 25 0
1302 * +----+-----------+-------------------------------------+
1303 * | op | 0 0 1 0 1 | imm26 |
1304 * +----+-----------+-------------------------------------+
1306 static void disas_uncond_b_imm(DisasContext *s, uint32_t insn)
1308 uint64_t addr = s->pc_curr + sextract32(insn, 0, 26) * 4;
1310 if (insn & (1U << 31)) {
1311 /* BL Branch with link */
1312 tcg_gen_movi_i64(cpu_reg(s, 30), s->base.pc_next);
1315 /* B Branch / BL Branch with link */
1316 reset_btype(s);
1317 gen_goto_tb(s, 0, addr);
1320 /* Compare and branch (immediate)
1321 * 31 30 25 24 23 5 4 0
1322 * +----+-------------+----+---------------------+--------+
1323 * | sf | 0 1 1 0 1 0 | op | imm19 | Rt |
1324 * +----+-------------+----+---------------------+--------+
1326 static void disas_comp_b_imm(DisasContext *s, uint32_t insn)
1328 unsigned int sf, op, rt;
1329 uint64_t addr;
1330 TCGLabel *label_match;
1331 TCGv_i64 tcg_cmp;
1333 sf = extract32(insn, 31, 1);
1334 op = extract32(insn, 24, 1); /* 0: CBZ; 1: CBNZ */
1335 rt = extract32(insn, 0, 5);
1336 addr = s->pc_curr + sextract32(insn, 5, 19) * 4;
1338 tcg_cmp = read_cpu_reg(s, rt, sf);
1339 label_match = gen_new_label();
1341 reset_btype(s);
1342 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1343 tcg_cmp, 0, label_match);
1345 gen_goto_tb(s, 0, s->base.pc_next);
1346 gen_set_label(label_match);
1347 gen_goto_tb(s, 1, addr);
1350 /* Test and branch (immediate)
1351 * 31 30 25 24 23 19 18 5 4 0
1352 * +----+-------------+----+-------+-------------+------+
1353 * | b5 | 0 1 1 0 1 1 | op | b40 | imm14 | Rt |
1354 * +----+-------------+----+-------+-------------+------+
1356 static void disas_test_b_imm(DisasContext *s, uint32_t insn)
1358 unsigned int bit_pos, op, rt;
1359 uint64_t addr;
1360 TCGLabel *label_match;
1361 TCGv_i64 tcg_cmp;
1363 bit_pos = (extract32(insn, 31, 1) << 5) | extract32(insn, 19, 5);
1364 op = extract32(insn, 24, 1); /* 0: TBZ; 1: TBNZ */
1365 addr = s->pc_curr + sextract32(insn, 5, 14) * 4;
1366 rt = extract32(insn, 0, 5);
1368 tcg_cmp = tcg_temp_new_i64();
1369 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, rt), (1ULL << bit_pos));
1370 label_match = gen_new_label();
1372 reset_btype(s);
1373 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1374 tcg_cmp, 0, label_match);
1375 tcg_temp_free_i64(tcg_cmp);
1376 gen_goto_tb(s, 0, s->base.pc_next);
1377 gen_set_label(label_match);
1378 gen_goto_tb(s, 1, addr);
1381 /* Conditional branch (immediate)
1382 * 31 25 24 23 5 4 3 0
1383 * +---------------+----+---------------------+----+------+
1384 * | 0 1 0 1 0 1 0 | o1 | imm19 | o0 | cond |
1385 * +---------------+----+---------------------+----+------+
1387 static void disas_cond_b_imm(DisasContext *s, uint32_t insn)
1389 unsigned int cond;
1390 uint64_t addr;
1392 if ((insn & (1 << 4)) || (insn & (1 << 24))) {
1393 unallocated_encoding(s);
1394 return;
1396 addr = s->pc_curr + sextract32(insn, 5, 19) * 4;
1397 cond = extract32(insn, 0, 4);
1399 reset_btype(s);
1400 if (cond < 0x0e) {
1401 /* genuinely conditional branches */
1402 TCGLabel *label_match = gen_new_label();
1403 arm_gen_test_cc(cond, label_match);
1404 gen_goto_tb(s, 0, s->base.pc_next);
1405 gen_set_label(label_match);
1406 gen_goto_tb(s, 1, addr);
1407 } else {
1408 /* 0xe and 0xf are both "always" conditions */
1409 gen_goto_tb(s, 0, addr);
1413 /* HINT instruction group, including various allocated HINTs */
1414 static void handle_hint(DisasContext *s, uint32_t insn,
1415 unsigned int op1, unsigned int op2, unsigned int crm)
1417 unsigned int selector = crm << 3 | op2;
1419 if (op1 != 3) {
1420 unallocated_encoding(s);
1421 return;
1424 switch (selector) {
1425 case 0b00000: /* NOP */
1426 break;
1427 case 0b00011: /* WFI */
1428 s->base.is_jmp = DISAS_WFI;
1429 break;
1430 case 0b00001: /* YIELD */
1431 /* When running in MTTCG we don't generate jumps to the yield and
1432 * WFE helpers as it won't affect the scheduling of other vCPUs.
1433 * If we wanted to more completely model WFE/SEV so we don't busy
1434 * spin unnecessarily we would need to do something more involved.
1436 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1437 s->base.is_jmp = DISAS_YIELD;
1439 break;
1440 case 0b00010: /* WFE */
1441 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1442 s->base.is_jmp = DISAS_WFE;
1444 break;
1445 case 0b00100: /* SEV */
1446 case 0b00101: /* SEVL */
1447 /* we treat all as NOP at least for now */
1448 break;
1449 case 0b00111: /* XPACLRI */
1450 if (s->pauth_active) {
1451 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]);
1453 break;
1454 case 0b01000: /* PACIA1716 */
1455 if (s->pauth_active) {
1456 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1458 break;
1459 case 0b01010: /* PACIB1716 */
1460 if (s->pauth_active) {
1461 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1463 break;
1464 case 0b01100: /* AUTIA1716 */
1465 if (s->pauth_active) {
1466 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1468 break;
1469 case 0b01110: /* AUTIB1716 */
1470 if (s->pauth_active) {
1471 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1473 break;
1474 case 0b11000: /* PACIAZ */
1475 if (s->pauth_active) {
1476 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30],
1477 new_tmp_a64_zero(s));
1479 break;
1480 case 0b11001: /* PACIASP */
1481 if (s->pauth_active) {
1482 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1484 break;
1485 case 0b11010: /* PACIBZ */
1486 if (s->pauth_active) {
1487 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30],
1488 new_tmp_a64_zero(s));
1490 break;
1491 case 0b11011: /* PACIBSP */
1492 if (s->pauth_active) {
1493 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1495 break;
1496 case 0b11100: /* AUTIAZ */
1497 if (s->pauth_active) {
1498 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30],
1499 new_tmp_a64_zero(s));
1501 break;
1502 case 0b11101: /* AUTIASP */
1503 if (s->pauth_active) {
1504 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1506 break;
1507 case 0b11110: /* AUTIBZ */
1508 if (s->pauth_active) {
1509 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30],
1510 new_tmp_a64_zero(s));
1512 break;
1513 case 0b11111: /* AUTIBSP */
1514 if (s->pauth_active) {
1515 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1517 break;
1518 default:
1519 /* default specified as NOP equivalent */
1520 break;
1524 static void gen_clrex(DisasContext *s, uint32_t insn)
1526 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1529 /* CLREX, DSB, DMB, ISB */
1530 static void handle_sync(DisasContext *s, uint32_t insn,
1531 unsigned int op1, unsigned int op2, unsigned int crm)
1533 TCGBar bar;
1535 if (op1 != 3) {
1536 unallocated_encoding(s);
1537 return;
1540 switch (op2) {
1541 case 2: /* CLREX */
1542 gen_clrex(s, insn);
1543 return;
1544 case 4: /* DSB */
1545 case 5: /* DMB */
1546 switch (crm & 3) {
1547 case 1: /* MBReqTypes_Reads */
1548 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1549 break;
1550 case 2: /* MBReqTypes_Writes */
1551 bar = TCG_BAR_SC | TCG_MO_ST_ST;
1552 break;
1553 default: /* MBReqTypes_All */
1554 bar = TCG_BAR_SC | TCG_MO_ALL;
1555 break;
1557 tcg_gen_mb(bar);
1558 return;
1559 case 6: /* ISB */
1560 /* We need to break the TB after this insn to execute
1561 * a self-modified code correctly and also to take
1562 * any pending interrupts immediately.
1564 reset_btype(s);
1565 gen_goto_tb(s, 0, s->base.pc_next);
1566 return;
1568 case 7: /* SB */
1569 if (crm != 0 || !dc_isar_feature(aa64_sb, s)) {
1570 goto do_unallocated;
1573 * TODO: There is no speculation barrier opcode for TCG;
1574 * MB and end the TB instead.
1576 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1577 gen_goto_tb(s, 0, s->base.pc_next);
1578 return;
1580 default:
1581 do_unallocated:
1582 unallocated_encoding(s);
1583 return;
1587 static void gen_xaflag(void)
1589 TCGv_i32 z = tcg_temp_new_i32();
1591 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1594 * (!C & !Z) << 31
1595 * (!(C | Z)) << 31
1596 * ~((C | Z) << 31)
1597 * ~-(C | Z)
1598 * (C | Z) - 1
1600 tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1601 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1603 /* !(Z & C) */
1604 tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1605 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1607 /* (!C & Z) << 31 -> -(Z & ~C) */
1608 tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
1609 tcg_gen_neg_i32(cpu_VF, cpu_VF);
1611 /* C | Z */
1612 tcg_gen_or_i32(cpu_CF, cpu_CF, z);
1614 tcg_temp_free_i32(z);
1617 static void gen_axflag(void)
1619 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */
1620 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */
1622 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
1623 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
1625 tcg_gen_movi_i32(cpu_NF, 0);
1626 tcg_gen_movi_i32(cpu_VF, 0);
1629 /* MSR (immediate) - move immediate to processor state field */
1630 static void handle_msr_i(DisasContext *s, uint32_t insn,
1631 unsigned int op1, unsigned int op2, unsigned int crm)
1633 TCGv_i32 t1;
1634 int op = op1 << 3 | op2;
1636 /* End the TB by default, chaining is ok. */
1637 s->base.is_jmp = DISAS_TOO_MANY;
1639 switch (op) {
1640 case 0x00: /* CFINV */
1641 if (crm != 0 || !dc_isar_feature(aa64_condm_4, s)) {
1642 goto do_unallocated;
1644 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1645 s->base.is_jmp = DISAS_NEXT;
1646 break;
1648 case 0x01: /* XAFlag */
1649 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) {
1650 goto do_unallocated;
1652 gen_xaflag();
1653 s->base.is_jmp = DISAS_NEXT;
1654 break;
1656 case 0x02: /* AXFlag */
1657 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) {
1658 goto do_unallocated;
1660 gen_axflag();
1661 s->base.is_jmp = DISAS_NEXT;
1662 break;
1664 case 0x03: /* UAO */
1665 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
1666 goto do_unallocated;
1668 if (crm & 1) {
1669 set_pstate_bits(PSTATE_UAO);
1670 } else {
1671 clear_pstate_bits(PSTATE_UAO);
1673 t1 = tcg_const_i32(s->current_el);
1674 gen_helper_rebuild_hflags_a64(cpu_env, t1);
1675 tcg_temp_free_i32(t1);
1676 break;
1678 case 0x04: /* PAN */
1679 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
1680 goto do_unallocated;
1682 if (crm & 1) {
1683 set_pstate_bits(PSTATE_PAN);
1684 } else {
1685 clear_pstate_bits(PSTATE_PAN);
1687 t1 = tcg_const_i32(s->current_el);
1688 gen_helper_rebuild_hflags_a64(cpu_env, t1);
1689 tcg_temp_free_i32(t1);
1690 break;
1692 case 0x05: /* SPSel */
1693 if (s->current_el == 0) {
1694 goto do_unallocated;
1696 t1 = tcg_const_i32(crm & PSTATE_SP);
1697 gen_helper_msr_i_spsel(cpu_env, t1);
1698 tcg_temp_free_i32(t1);
1699 break;
1701 case 0x19: /* SSBS */
1702 if (!dc_isar_feature(aa64_ssbs, s)) {
1703 goto do_unallocated;
1705 if (crm & 1) {
1706 set_pstate_bits(PSTATE_SSBS);
1707 } else {
1708 clear_pstate_bits(PSTATE_SSBS);
1710 /* Don't need to rebuild hflags since SSBS is a nop */
1711 break;
1713 case 0x1a: /* DIT */
1714 if (!dc_isar_feature(aa64_dit, s)) {
1715 goto do_unallocated;
1717 if (crm & 1) {
1718 set_pstate_bits(PSTATE_DIT);
1719 } else {
1720 clear_pstate_bits(PSTATE_DIT);
1722 /* There's no need to rebuild hflags because DIT is a nop */
1723 break;
1725 case 0x1e: /* DAIFSet */
1726 t1 = tcg_const_i32(crm);
1727 gen_helper_msr_i_daifset(cpu_env, t1);
1728 tcg_temp_free_i32(t1);
1729 break;
1731 case 0x1f: /* DAIFClear */
1732 t1 = tcg_const_i32(crm);
1733 gen_helper_msr_i_daifclear(cpu_env, t1);
1734 tcg_temp_free_i32(t1);
1735 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */
1736 s->base.is_jmp = DISAS_UPDATE_EXIT;
1737 break;
1739 case 0x1c: /* TCO */
1740 if (dc_isar_feature(aa64_mte, s)) {
1741 /* Full MTE is enabled -- set the TCO bit as directed. */
1742 if (crm & 1) {
1743 set_pstate_bits(PSTATE_TCO);
1744 } else {
1745 clear_pstate_bits(PSTATE_TCO);
1747 t1 = tcg_const_i32(s->current_el);
1748 gen_helper_rebuild_hflags_a64(cpu_env, t1);
1749 tcg_temp_free_i32(t1);
1750 /* Many factors, including TCO, go into MTE_ACTIVE. */
1751 s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
1752 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
1753 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */
1754 s->base.is_jmp = DISAS_NEXT;
1755 } else {
1756 goto do_unallocated;
1758 break;
1760 default:
1761 do_unallocated:
1762 unallocated_encoding(s);
1763 return;
1767 static void gen_get_nzcv(TCGv_i64 tcg_rt)
1769 TCGv_i32 tmp = tcg_temp_new_i32();
1770 TCGv_i32 nzcv = tcg_temp_new_i32();
1772 /* build bit 31, N */
1773 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
1774 /* build bit 30, Z */
1775 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
1776 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
1777 /* build bit 29, C */
1778 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
1779 /* build bit 28, V */
1780 tcg_gen_shri_i32(tmp, cpu_VF, 31);
1781 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
1782 /* generate result */
1783 tcg_gen_extu_i32_i64(tcg_rt, nzcv);
1785 tcg_temp_free_i32(nzcv);
1786 tcg_temp_free_i32(tmp);
1789 static void gen_set_nzcv(TCGv_i64 tcg_rt)
1791 TCGv_i32 nzcv = tcg_temp_new_i32();
1793 /* take NZCV from R[t] */
1794 tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
1796 /* bit 31, N */
1797 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
1798 /* bit 30, Z */
1799 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
1800 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
1801 /* bit 29, C */
1802 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
1803 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
1804 /* bit 28, V */
1805 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
1806 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
1807 tcg_temp_free_i32(nzcv);
1810 /* MRS - move from system register
1811 * MSR (register) - move to system register
1812 * SYS
1813 * SYSL
1814 * These are all essentially the same insn in 'read' and 'write'
1815 * versions, with varying op0 fields.
1817 static void handle_sys(DisasContext *s, uint32_t insn, bool isread,
1818 unsigned int op0, unsigned int op1, unsigned int op2,
1819 unsigned int crn, unsigned int crm, unsigned int rt)
1821 const ARMCPRegInfo *ri;
1822 TCGv_i64 tcg_rt;
1824 ri = get_arm_cp_reginfo(s->cp_regs,
1825 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
1826 crn, crm, op0, op1, op2));
1828 if (!ri) {
1829 /* Unknown register; this might be a guest error or a QEMU
1830 * unimplemented feature.
1832 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
1833 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
1834 isread ? "read" : "write", op0, op1, crn, crm, op2);
1835 unallocated_encoding(s);
1836 return;
1839 /* Check access permissions */
1840 if (!cp_access_ok(s->current_el, ri, isread)) {
1841 unallocated_encoding(s);
1842 return;
1845 if (ri->accessfn) {
1846 /* Emit code to perform further access permissions checks at
1847 * runtime; this may result in an exception.
1849 TCGv_ptr tmpptr;
1850 TCGv_i32 tcg_syn, tcg_isread;
1851 uint32_t syndrome;
1853 gen_a64_set_pc_im(s->pc_curr);
1854 tmpptr = tcg_const_ptr(ri);
1855 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
1856 tcg_syn = tcg_const_i32(syndrome);
1857 tcg_isread = tcg_const_i32(isread);
1858 gen_helper_access_check_cp_reg(cpu_env, tmpptr, tcg_syn, tcg_isread);
1859 tcg_temp_free_ptr(tmpptr);
1860 tcg_temp_free_i32(tcg_syn);
1861 tcg_temp_free_i32(tcg_isread);
1862 } else if (ri->type & ARM_CP_RAISES_EXC) {
1864 * The readfn or writefn might raise an exception;
1865 * synchronize the CPU state in case it does.
1867 gen_a64_set_pc_im(s->pc_curr);
1870 /* Handle special cases first */
1871 switch (ri->type & ~(ARM_CP_FLAG_MASK & ~ARM_CP_SPECIAL)) {
1872 case ARM_CP_NOP:
1873 return;
1874 case ARM_CP_NZCV:
1875 tcg_rt = cpu_reg(s, rt);
1876 if (isread) {
1877 gen_get_nzcv(tcg_rt);
1878 } else {
1879 gen_set_nzcv(tcg_rt);
1881 return;
1882 case ARM_CP_CURRENTEL:
1883 /* Reads as current EL value from pstate, which is
1884 * guaranteed to be constant by the tb flags.
1886 tcg_rt = cpu_reg(s, rt);
1887 tcg_gen_movi_i64(tcg_rt, s->current_el << 2);
1888 return;
1889 case ARM_CP_DC_ZVA:
1890 /* Writes clear the aligned block of memory which rt points into. */
1891 if (s->mte_active[0]) {
1892 TCGv_i32 t_desc;
1893 int desc = 0;
1895 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
1896 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
1897 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
1898 t_desc = tcg_const_i32(desc);
1900 tcg_rt = new_tmp_a64(s);
1901 gen_helper_mte_check_zva(tcg_rt, cpu_env, t_desc, cpu_reg(s, rt));
1902 tcg_temp_free_i32(t_desc);
1903 } else {
1904 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
1906 gen_helper_dc_zva(cpu_env, tcg_rt);
1907 return;
1908 case ARM_CP_DC_GVA:
1910 TCGv_i64 clean_addr, tag;
1913 * DC_GVA, like DC_ZVA, requires that we supply the original
1914 * pointer for an invalid page. Probe that address first.
1916 tcg_rt = cpu_reg(s, rt);
1917 clean_addr = clean_data_tbi(s, tcg_rt);
1918 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
1920 if (s->ata) {
1921 /* Extract the tag from the register to match STZGM. */
1922 tag = tcg_temp_new_i64();
1923 tcg_gen_shri_i64(tag, tcg_rt, 56);
1924 gen_helper_stzgm_tags(cpu_env, clean_addr, tag);
1925 tcg_temp_free_i64(tag);
1928 return;
1929 case ARM_CP_DC_GZVA:
1931 TCGv_i64 clean_addr, tag;
1933 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
1934 tcg_rt = cpu_reg(s, rt);
1935 clean_addr = clean_data_tbi(s, tcg_rt);
1936 gen_helper_dc_zva(cpu_env, clean_addr);
1938 if (s->ata) {
1939 /* Extract the tag from the register to match STZGM. */
1940 tag = tcg_temp_new_i64();
1941 tcg_gen_shri_i64(tag, tcg_rt, 56);
1942 gen_helper_stzgm_tags(cpu_env, clean_addr, tag);
1943 tcg_temp_free_i64(tag);
1946 return;
1947 default:
1948 break;
1950 if ((ri->type & ARM_CP_FPU) && !fp_access_check(s)) {
1951 return;
1952 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
1953 return;
1956 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1957 gen_io_start();
1960 tcg_rt = cpu_reg(s, rt);
1962 if (isread) {
1963 if (ri->type & ARM_CP_CONST) {
1964 tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
1965 } else if (ri->readfn) {
1966 TCGv_ptr tmpptr;
1967 tmpptr = tcg_const_ptr(ri);
1968 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tmpptr);
1969 tcg_temp_free_ptr(tmpptr);
1970 } else {
1971 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset);
1973 } else {
1974 if (ri->type & ARM_CP_CONST) {
1975 /* If not forbidden by access permissions, treat as WI */
1976 return;
1977 } else if (ri->writefn) {
1978 TCGv_ptr tmpptr;
1979 tmpptr = tcg_const_ptr(ri);
1980 gen_helper_set_cp_reg64(cpu_env, tmpptr, tcg_rt);
1981 tcg_temp_free_ptr(tmpptr);
1982 } else {
1983 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset);
1987 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1988 /* I/O operations must end the TB here (whether read or write) */
1989 s->base.is_jmp = DISAS_UPDATE_EXIT;
1991 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
1993 * A write to any coprocessor regiser that ends a TB
1994 * must rebuild the hflags for the next TB.
1996 TCGv_i32 tcg_el = tcg_const_i32(s->current_el);
1997 gen_helper_rebuild_hflags_a64(cpu_env, tcg_el);
1998 tcg_temp_free_i32(tcg_el);
2000 * We default to ending the TB on a coprocessor register write,
2001 * but allow this to be suppressed by the register definition
2002 * (usually only necessary to work around guest bugs).
2004 s->base.is_jmp = DISAS_UPDATE_EXIT;
2008 /* System
2009 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0
2010 * +---------------------+---+-----+-----+-------+-------+-----+------+
2011 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt |
2012 * +---------------------+---+-----+-----+-------+-------+-----+------+
2014 static void disas_system(DisasContext *s, uint32_t insn)
2016 unsigned int l, op0, op1, crn, crm, op2, rt;
2017 l = extract32(insn, 21, 1);
2018 op0 = extract32(insn, 19, 2);
2019 op1 = extract32(insn, 16, 3);
2020 crn = extract32(insn, 12, 4);
2021 crm = extract32(insn, 8, 4);
2022 op2 = extract32(insn, 5, 3);
2023 rt = extract32(insn, 0, 5);
2025 if (op0 == 0) {
2026 if (l || rt != 31) {
2027 unallocated_encoding(s);
2028 return;
2030 switch (crn) {
2031 case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */
2032 handle_hint(s, insn, op1, op2, crm);
2033 break;
2034 case 3: /* CLREX, DSB, DMB, ISB */
2035 handle_sync(s, insn, op1, op2, crm);
2036 break;
2037 case 4: /* MSR (immediate) */
2038 handle_msr_i(s, insn, op1, op2, crm);
2039 break;
2040 default:
2041 unallocated_encoding(s);
2042 break;
2044 return;
2046 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt);
2049 /* Exception generation
2051 * 31 24 23 21 20 5 4 2 1 0
2052 * +-----------------+-----+------------------------+-----+----+
2053 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL |
2054 * +-----------------------+------------------------+----------+
2056 static void disas_exc(DisasContext *s, uint32_t insn)
2058 int opc = extract32(insn, 21, 3);
2059 int op2_ll = extract32(insn, 0, 5);
2060 int imm16 = extract32(insn, 5, 16);
2061 TCGv_i32 tmp;
2063 switch (opc) {
2064 case 0:
2065 /* For SVC, HVC and SMC we advance the single-step state
2066 * machine before taking the exception. This is architecturally
2067 * mandated, to ensure that single-stepping a system call
2068 * instruction works properly.
2070 switch (op2_ll) {
2071 case 1: /* SVC */
2072 gen_ss_advance(s);
2073 gen_exception_insn(s, s->base.pc_next, EXCP_SWI,
2074 syn_aa64_svc(imm16), default_exception_el(s));
2075 break;
2076 case 2: /* HVC */
2077 if (s->current_el == 0) {
2078 unallocated_encoding(s);
2079 break;
2081 /* The pre HVC helper handles cases when HVC gets trapped
2082 * as an undefined insn by runtime configuration.
2084 gen_a64_set_pc_im(s->pc_curr);
2085 gen_helper_pre_hvc(cpu_env);
2086 gen_ss_advance(s);
2087 gen_exception_insn(s, s->base.pc_next, EXCP_HVC,
2088 syn_aa64_hvc(imm16), 2);
2089 break;
2090 case 3: /* SMC */
2091 if (s->current_el == 0) {
2092 unallocated_encoding(s);
2093 break;
2095 gen_a64_set_pc_im(s->pc_curr);
2096 tmp = tcg_const_i32(syn_aa64_smc(imm16));
2097 gen_helper_pre_smc(cpu_env, tmp);
2098 tcg_temp_free_i32(tmp);
2099 gen_ss_advance(s);
2100 gen_exception_insn(s, s->base.pc_next, EXCP_SMC,
2101 syn_aa64_smc(imm16), 3);
2102 break;
2103 default:
2104 unallocated_encoding(s);
2105 break;
2107 break;
2108 case 1:
2109 if (op2_ll != 0) {
2110 unallocated_encoding(s);
2111 break;
2113 /* BRK */
2114 gen_exception_bkpt_insn(s, syn_aa64_bkpt(imm16));
2115 break;
2116 case 2:
2117 if (op2_ll != 0) {
2118 unallocated_encoding(s);
2119 break;
2121 /* HLT. This has two purposes.
2122 * Architecturally, it is an external halting debug instruction.
2123 * Since QEMU doesn't implement external debug, we treat this as
2124 * it is required for halting debug disabled: it will UNDEF.
2125 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2127 if (semihosting_enabled() && imm16 == 0xf000) {
2128 #ifndef CONFIG_USER_ONLY
2129 /* In system mode, don't allow userspace access to semihosting,
2130 * to provide some semblance of security (and for consistency
2131 * with our 32-bit semihosting).
2133 if (s->current_el == 0) {
2134 unsupported_encoding(s, insn);
2135 break;
2137 #endif
2138 gen_exception_internal_insn(s, s->pc_curr, EXCP_SEMIHOST);
2139 } else {
2140 unsupported_encoding(s, insn);
2142 break;
2143 case 5:
2144 if (op2_ll < 1 || op2_ll > 3) {
2145 unallocated_encoding(s);
2146 break;
2148 /* DCPS1, DCPS2, DCPS3 */
2149 unsupported_encoding(s, insn);
2150 break;
2151 default:
2152 unallocated_encoding(s);
2153 break;
2157 /* Unconditional branch (register)
2158 * 31 25 24 21 20 16 15 10 9 5 4 0
2159 * +---------------+-------+-------+-------+------+-------+
2160 * | 1 1 0 1 0 1 1 | opc | op2 | op3 | Rn | op4 |
2161 * +---------------+-------+-------+-------+------+-------+
2163 static void disas_uncond_b_reg(DisasContext *s, uint32_t insn)
2165 unsigned int opc, op2, op3, rn, op4;
2166 unsigned btype_mod = 2; /* 0: BR, 1: BLR, 2: other */
2167 TCGv_i64 dst;
2168 TCGv_i64 modifier;
2170 opc = extract32(insn, 21, 4);
2171 op2 = extract32(insn, 16, 5);
2172 op3 = extract32(insn, 10, 6);
2173 rn = extract32(insn, 5, 5);
2174 op4 = extract32(insn, 0, 5);
2176 if (op2 != 0x1f) {
2177 goto do_unallocated;
2180 switch (opc) {
2181 case 0: /* BR */
2182 case 1: /* BLR */
2183 case 2: /* RET */
2184 btype_mod = opc;
2185 switch (op3) {
2186 case 0:
2187 /* BR, BLR, RET */
2188 if (op4 != 0) {
2189 goto do_unallocated;
2191 dst = cpu_reg(s, rn);
2192 break;
2194 case 2:
2195 case 3:
2196 if (!dc_isar_feature(aa64_pauth, s)) {
2197 goto do_unallocated;
2199 if (opc == 2) {
2200 /* RETAA, RETAB */
2201 if (rn != 0x1f || op4 != 0x1f) {
2202 goto do_unallocated;
2204 rn = 30;
2205 modifier = cpu_X[31];
2206 } else {
2207 /* BRAAZ, BRABZ, BLRAAZ, BLRABZ */
2208 if (op4 != 0x1f) {
2209 goto do_unallocated;
2211 modifier = new_tmp_a64_zero(s);
2213 if (s->pauth_active) {
2214 dst = new_tmp_a64(s);
2215 if (op3 == 2) {
2216 gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier);
2217 } else {
2218 gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier);
2220 } else {
2221 dst = cpu_reg(s, rn);
2223 break;
2225 default:
2226 goto do_unallocated;
2228 gen_a64_set_pc(s, dst);
2229 /* BLR also needs to load return address */
2230 if (opc == 1) {
2231 tcg_gen_movi_i64(cpu_reg(s, 30), s->base.pc_next);
2233 break;
2235 case 8: /* BRAA */
2236 case 9: /* BLRAA */
2237 if (!dc_isar_feature(aa64_pauth, s)) {
2238 goto do_unallocated;
2240 if ((op3 & ~1) != 2) {
2241 goto do_unallocated;
2243 btype_mod = opc & 1;
2244 if (s->pauth_active) {
2245 dst = new_tmp_a64(s);
2246 modifier = cpu_reg_sp(s, op4);
2247 if (op3 == 2) {
2248 gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier);
2249 } else {
2250 gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier);
2252 } else {
2253 dst = cpu_reg(s, rn);
2255 gen_a64_set_pc(s, dst);
2256 /* BLRAA also needs to load return address */
2257 if (opc == 9) {
2258 tcg_gen_movi_i64(cpu_reg(s, 30), s->base.pc_next);
2260 break;
2262 case 4: /* ERET */
2263 if (s->current_el == 0) {
2264 goto do_unallocated;
2266 switch (op3) {
2267 case 0: /* ERET */
2268 if (op4 != 0) {
2269 goto do_unallocated;
2271 dst = tcg_temp_new_i64();
2272 tcg_gen_ld_i64(dst, cpu_env,
2273 offsetof(CPUARMState, elr_el[s->current_el]));
2274 break;
2276 case 2: /* ERETAA */
2277 case 3: /* ERETAB */
2278 if (!dc_isar_feature(aa64_pauth, s)) {
2279 goto do_unallocated;
2281 if (rn != 0x1f || op4 != 0x1f) {
2282 goto do_unallocated;
2284 dst = tcg_temp_new_i64();
2285 tcg_gen_ld_i64(dst, cpu_env,
2286 offsetof(CPUARMState, elr_el[s->current_el]));
2287 if (s->pauth_active) {
2288 modifier = cpu_X[31];
2289 if (op3 == 2) {
2290 gen_helper_autia(dst, cpu_env, dst, modifier);
2291 } else {
2292 gen_helper_autib(dst, cpu_env, dst, modifier);
2295 break;
2297 default:
2298 goto do_unallocated;
2300 if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) {
2301 gen_io_start();
2304 gen_helper_exception_return(cpu_env, dst);
2305 tcg_temp_free_i64(dst);
2306 /* Must exit loop to check un-masked IRQs */
2307 s->base.is_jmp = DISAS_EXIT;
2308 return;
2310 case 5: /* DRPS */
2311 if (op3 != 0 || op4 != 0 || rn != 0x1f) {
2312 goto do_unallocated;
2313 } else {
2314 unsupported_encoding(s, insn);
2316 return;
2318 default:
2319 do_unallocated:
2320 unallocated_encoding(s);
2321 return;
2324 switch (btype_mod) {
2325 case 0: /* BR */
2326 if (dc_isar_feature(aa64_bti, s)) {
2327 /* BR to {x16,x17} or !guard -> 1, else 3. */
2328 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
2330 break;
2332 case 1: /* BLR */
2333 if (dc_isar_feature(aa64_bti, s)) {
2334 /* BLR sets BTYPE to 2, regardless of source guarded page. */
2335 set_btype(s, 2);
2337 break;
2339 default: /* RET or none of the above. */
2340 /* BTYPE will be set to 0 by normal end-of-insn processing. */
2341 break;
2344 s->base.is_jmp = DISAS_JUMP;
2347 /* Branches, exception generating and system instructions */
2348 static void disas_b_exc_sys(DisasContext *s, uint32_t insn)
2350 switch (extract32(insn, 25, 7)) {
2351 case 0x0a: case 0x0b:
2352 case 0x4a: case 0x4b: /* Unconditional branch (immediate) */
2353 disas_uncond_b_imm(s, insn);
2354 break;
2355 case 0x1a: case 0x5a: /* Compare & branch (immediate) */
2356 disas_comp_b_imm(s, insn);
2357 break;
2358 case 0x1b: case 0x5b: /* Test & branch (immediate) */
2359 disas_test_b_imm(s, insn);
2360 break;
2361 case 0x2a: /* Conditional branch (immediate) */
2362 disas_cond_b_imm(s, insn);
2363 break;
2364 case 0x6a: /* Exception generation / System */
2365 if (insn & (1 << 24)) {
2366 if (extract32(insn, 22, 2) == 0) {
2367 disas_system(s, insn);
2368 } else {
2369 unallocated_encoding(s);
2371 } else {
2372 disas_exc(s, insn);
2374 break;
2375 case 0x6b: /* Unconditional branch (register) */
2376 disas_uncond_b_reg(s, insn);
2377 break;
2378 default:
2379 unallocated_encoding(s);
2380 break;
2385 * Load/Store exclusive instructions are implemented by remembering
2386 * the value/address loaded, and seeing if these are the same
2387 * when the store is performed. This is not actually the architecturally
2388 * mandated semantics, but it works for typical guest code sequences
2389 * and avoids having to monitor regular stores.
2391 * The store exclusive uses the atomic cmpxchg primitives to avoid
2392 * races in multi-threaded linux-user and when MTTCG softmmu is
2393 * enabled.
2395 static void gen_load_exclusive(DisasContext *s, int rt, int rt2,
2396 TCGv_i64 addr, int size, bool is_pair)
2398 int idx = get_mem_index(s);
2399 MemOp memop = s->be_data;
2401 g_assert(size <= 3);
2402 if (is_pair) {
2403 g_assert(size >= 2);
2404 if (size == 2) {
2405 /* The pair must be single-copy atomic for the doubleword. */
2406 memop |= MO_64 | MO_ALIGN;
2407 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2408 if (s->be_data == MO_LE) {
2409 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2410 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2411 } else {
2412 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2413 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2415 } else {
2416 /* The pair must be single-copy atomic for *each* doubleword, not
2417 the entire quadword, however it must be quadword aligned. */
2418 memop |= MO_64;
2419 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx,
2420 memop | MO_ALIGN_16);
2422 TCGv_i64 addr2 = tcg_temp_new_i64();
2423 tcg_gen_addi_i64(addr2, addr, 8);
2424 tcg_gen_qemu_ld_i64(cpu_exclusive_high, addr2, idx, memop);
2425 tcg_temp_free_i64(addr2);
2427 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2428 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2430 } else {
2431 memop |= size | MO_ALIGN;
2432 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2433 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2435 tcg_gen_mov_i64(cpu_exclusive_addr, addr);
2438 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2439 TCGv_i64 addr, int size, int is_pair)
2441 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2442 * && (!is_pair || env->exclusive_high == [addr + datasize])) {
2443 * [addr] = {Rt};
2444 * if (is_pair) {
2445 * [addr + datasize] = {Rt2};
2447 * {Rd} = 0;
2448 * } else {
2449 * {Rd} = 1;
2451 * env->exclusive_addr = -1;
2453 TCGLabel *fail_label = gen_new_label();
2454 TCGLabel *done_label = gen_new_label();
2455 TCGv_i64 tmp;
2457 tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label);
2459 tmp = tcg_temp_new_i64();
2460 if (is_pair) {
2461 if (size == 2) {
2462 if (s->be_data == MO_LE) {
2463 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2464 } else {
2465 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2467 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2468 cpu_exclusive_val, tmp,
2469 get_mem_index(s),
2470 MO_64 | MO_ALIGN | s->be_data);
2471 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2472 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2473 if (!HAVE_CMPXCHG128) {
2474 gen_helper_exit_atomic(cpu_env);
2475 s->base.is_jmp = DISAS_NORETURN;
2476 } else if (s->be_data == MO_LE) {
2477 gen_helper_paired_cmpxchg64_le_parallel(tmp, cpu_env,
2478 cpu_exclusive_addr,
2479 cpu_reg(s, rt),
2480 cpu_reg(s, rt2));
2481 } else {
2482 gen_helper_paired_cmpxchg64_be_parallel(tmp, cpu_env,
2483 cpu_exclusive_addr,
2484 cpu_reg(s, rt),
2485 cpu_reg(s, rt2));
2487 } else if (s->be_data == MO_LE) {
2488 gen_helper_paired_cmpxchg64_le(tmp, cpu_env, cpu_exclusive_addr,
2489 cpu_reg(s, rt), cpu_reg(s, rt2));
2490 } else {
2491 gen_helper_paired_cmpxchg64_be(tmp, cpu_env, cpu_exclusive_addr,
2492 cpu_reg(s, rt), cpu_reg(s, rt2));
2494 } else {
2495 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2496 cpu_reg(s, rt), get_mem_index(s),
2497 size | MO_ALIGN | s->be_data);
2498 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2500 tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2501 tcg_temp_free_i64(tmp);
2502 tcg_gen_br(done_label);
2504 gen_set_label(fail_label);
2505 tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2506 gen_set_label(done_label);
2507 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2510 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2511 int rn, int size)
2513 TCGv_i64 tcg_rs = cpu_reg(s, rs);
2514 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2515 int memidx = get_mem_index(s);
2516 TCGv_i64 clean_addr;
2518 if (rn == 31) {
2519 gen_check_sp_alignment(s);
2521 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size);
2522 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, memidx,
2523 size | MO_ALIGN | s->be_data);
2526 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2527 int rn, int size)
2529 TCGv_i64 s1 = cpu_reg(s, rs);
2530 TCGv_i64 s2 = cpu_reg(s, rs + 1);
2531 TCGv_i64 t1 = cpu_reg(s, rt);
2532 TCGv_i64 t2 = cpu_reg(s, rt + 1);
2533 TCGv_i64 clean_addr;
2534 int memidx = get_mem_index(s);
2536 if (rn == 31) {
2537 gen_check_sp_alignment(s);
2540 /* This is a single atomic access, despite the "pair". */
2541 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size + 1);
2543 if (size == 2) {
2544 TCGv_i64 cmp = tcg_temp_new_i64();
2545 TCGv_i64 val = tcg_temp_new_i64();
2547 if (s->be_data == MO_LE) {
2548 tcg_gen_concat32_i64(val, t1, t2);
2549 tcg_gen_concat32_i64(cmp, s1, s2);
2550 } else {
2551 tcg_gen_concat32_i64(val, t2, t1);
2552 tcg_gen_concat32_i64(cmp, s2, s1);
2555 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx,
2556 MO_64 | MO_ALIGN | s->be_data);
2557 tcg_temp_free_i64(val);
2559 if (s->be_data == MO_LE) {
2560 tcg_gen_extr32_i64(s1, s2, cmp);
2561 } else {
2562 tcg_gen_extr32_i64(s2, s1, cmp);
2564 tcg_temp_free_i64(cmp);
2565 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2566 if (HAVE_CMPXCHG128) {
2567 TCGv_i32 tcg_rs = tcg_const_i32(rs);
2568 if (s->be_data == MO_LE) {
2569 gen_helper_casp_le_parallel(cpu_env, tcg_rs,
2570 clean_addr, t1, t2);
2571 } else {
2572 gen_helper_casp_be_parallel(cpu_env, tcg_rs,
2573 clean_addr, t1, t2);
2575 tcg_temp_free_i32(tcg_rs);
2576 } else {
2577 gen_helper_exit_atomic(cpu_env);
2578 s->base.is_jmp = DISAS_NORETURN;
2580 } else {
2581 TCGv_i64 d1 = tcg_temp_new_i64();
2582 TCGv_i64 d2 = tcg_temp_new_i64();
2583 TCGv_i64 a2 = tcg_temp_new_i64();
2584 TCGv_i64 c1 = tcg_temp_new_i64();
2585 TCGv_i64 c2 = tcg_temp_new_i64();
2586 TCGv_i64 zero = tcg_const_i64(0);
2588 /* Load the two words, in memory order. */
2589 tcg_gen_qemu_ld_i64(d1, clean_addr, memidx,
2590 MO_64 | MO_ALIGN_16 | s->be_data);
2591 tcg_gen_addi_i64(a2, clean_addr, 8);
2592 tcg_gen_qemu_ld_i64(d2, a2, memidx, MO_64 | s->be_data);
2594 /* Compare the two words, also in memory order. */
2595 tcg_gen_setcond_i64(TCG_COND_EQ, c1, d1, s1);
2596 tcg_gen_setcond_i64(TCG_COND_EQ, c2, d2, s2);
2597 tcg_gen_and_i64(c2, c2, c1);
2599 /* If compare equal, write back new data, else write back old data. */
2600 tcg_gen_movcond_i64(TCG_COND_NE, c1, c2, zero, t1, d1);
2601 tcg_gen_movcond_i64(TCG_COND_NE, c2, c2, zero, t2, d2);
2602 tcg_gen_qemu_st_i64(c1, clean_addr, memidx, MO_64 | s->be_data);
2603 tcg_gen_qemu_st_i64(c2, a2, memidx, MO_64 | s->be_data);
2604 tcg_temp_free_i64(a2);
2605 tcg_temp_free_i64(c1);
2606 tcg_temp_free_i64(c2);
2607 tcg_temp_free_i64(zero);
2609 /* Write back the data from memory to Rs. */
2610 tcg_gen_mov_i64(s1, d1);
2611 tcg_gen_mov_i64(s2, d2);
2612 tcg_temp_free_i64(d1);
2613 tcg_temp_free_i64(d2);
2617 /* Update the Sixty-Four bit (SF) registersize. This logic is derived
2618 * from the ARMv8 specs for LDR (Shared decode for all encodings).
2620 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc)
2622 int opc0 = extract32(opc, 0, 1);
2623 int regsize;
2625 if (is_signed) {
2626 regsize = opc0 ? 32 : 64;
2627 } else {
2628 regsize = size == 3 ? 64 : 32;
2630 return regsize == 64;
2633 /* Load/store exclusive
2635 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0
2636 * +-----+-------------+----+---+----+------+----+-------+------+------+
2637 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt |
2638 * +-----+-------------+----+---+----+------+----+-------+------+------+
2640 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit
2641 * L: 0 -> store, 1 -> load
2642 * o2: 0 -> exclusive, 1 -> not
2643 * o1: 0 -> single register, 1 -> register pair
2644 * o0: 1 -> load-acquire/store-release, 0 -> not
2646 static void disas_ldst_excl(DisasContext *s, uint32_t insn)
2648 int rt = extract32(insn, 0, 5);
2649 int rn = extract32(insn, 5, 5);
2650 int rt2 = extract32(insn, 10, 5);
2651 int rs = extract32(insn, 16, 5);
2652 int is_lasr = extract32(insn, 15, 1);
2653 int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr;
2654 int size = extract32(insn, 30, 2);
2655 TCGv_i64 clean_addr;
2657 switch (o2_L_o1_o0) {
2658 case 0x0: /* STXR */
2659 case 0x1: /* STLXR */
2660 if (rn == 31) {
2661 gen_check_sp_alignment(s);
2663 if (is_lasr) {
2664 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2666 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2667 true, rn != 31, size);
2668 gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, false);
2669 return;
2671 case 0x4: /* LDXR */
2672 case 0x5: /* LDAXR */
2673 if (rn == 31) {
2674 gen_check_sp_alignment(s);
2676 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2677 false, rn != 31, size);
2678 s->is_ldex = true;
2679 gen_load_exclusive(s, rt, rt2, clean_addr, size, false);
2680 if (is_lasr) {
2681 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2683 return;
2685 case 0x8: /* STLLR */
2686 if (!dc_isar_feature(aa64_lor, s)) {
2687 break;
2689 /* StoreLORelease is the same as Store-Release for QEMU. */
2690 /* fall through */
2691 case 0x9: /* STLR */
2692 /* Generate ISS for non-exclusive accesses including LASR. */
2693 if (rn == 31) {
2694 gen_check_sp_alignment(s);
2696 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2697 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2698 true, rn != 31, size);
2699 /* TODO: ARMv8.4-LSE SCTLR.nAA */
2700 do_gpr_st(s, cpu_reg(s, rt), clean_addr, size | MO_ALIGN, true, rt,
2701 disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2702 return;
2704 case 0xc: /* LDLAR */
2705 if (!dc_isar_feature(aa64_lor, s)) {
2706 break;
2708 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */
2709 /* fall through */
2710 case 0xd: /* LDAR */
2711 /* Generate ISS for non-exclusive accesses including LASR. */
2712 if (rn == 31) {
2713 gen_check_sp_alignment(s);
2715 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2716 false, rn != 31, size);
2717 /* TODO: ARMv8.4-LSE SCTLR.nAA */
2718 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size | MO_ALIGN, false, true,
2719 rt, disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2720 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2721 return;
2723 case 0x2: case 0x3: /* CASP / STXP */
2724 if (size & 2) { /* STXP / STLXP */
2725 if (rn == 31) {
2726 gen_check_sp_alignment(s);
2728 if (is_lasr) {
2729 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2731 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2732 true, rn != 31, size);
2733 gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, true);
2734 return;
2736 if (rt2 == 31
2737 && ((rt | rs) & 1) == 0
2738 && dc_isar_feature(aa64_atomics, s)) {
2739 /* CASP / CASPL */
2740 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2741 return;
2743 break;
2745 case 0x6: case 0x7: /* CASPA / LDXP */
2746 if (size & 2) { /* LDXP / LDAXP */
2747 if (rn == 31) {
2748 gen_check_sp_alignment(s);
2750 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2751 false, rn != 31, size);
2752 s->is_ldex = true;
2753 gen_load_exclusive(s, rt, rt2, clean_addr, size, true);
2754 if (is_lasr) {
2755 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2757 return;
2759 if (rt2 == 31
2760 && ((rt | rs) & 1) == 0
2761 && dc_isar_feature(aa64_atomics, s)) {
2762 /* CASPA / CASPAL */
2763 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2764 return;
2766 break;
2768 case 0xa: /* CAS */
2769 case 0xb: /* CASL */
2770 case 0xe: /* CASA */
2771 case 0xf: /* CASAL */
2772 if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) {
2773 gen_compare_and_swap(s, rs, rt, rn, size);
2774 return;
2776 break;
2778 unallocated_encoding(s);
2782 * Load register (literal)
2784 * 31 30 29 27 26 25 24 23 5 4 0
2785 * +-----+-------+---+-----+-------------------+-------+
2786 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt |
2787 * +-----+-------+---+-----+-------------------+-------+
2789 * V: 1 -> vector (simd/fp)
2790 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit,
2791 * 10-> 32 bit signed, 11 -> prefetch
2792 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated)
2794 static void disas_ld_lit(DisasContext *s, uint32_t insn)
2796 int rt = extract32(insn, 0, 5);
2797 int64_t imm = sextract32(insn, 5, 19) << 2;
2798 bool is_vector = extract32(insn, 26, 1);
2799 int opc = extract32(insn, 30, 2);
2800 bool is_signed = false;
2801 int size = 2;
2802 TCGv_i64 tcg_rt, clean_addr;
2804 if (is_vector) {
2805 if (opc == 3) {
2806 unallocated_encoding(s);
2807 return;
2809 size = 2 + opc;
2810 if (!fp_access_check(s)) {
2811 return;
2813 } else {
2814 if (opc == 3) {
2815 /* PRFM (literal) : prefetch */
2816 return;
2818 size = 2 + extract32(opc, 0, 1);
2819 is_signed = extract32(opc, 1, 1);
2822 tcg_rt = cpu_reg(s, rt);
2824 clean_addr = tcg_const_i64(s->pc_curr + imm);
2825 if (is_vector) {
2826 do_fp_ld(s, rt, clean_addr, size);
2827 } else {
2828 /* Only unsigned 32bit loads target 32bit registers. */
2829 bool iss_sf = opc != 0;
2831 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN,
2832 false, true, rt, iss_sf, false);
2834 tcg_temp_free_i64(clean_addr);
2838 * LDNP (Load Pair - non-temporal hint)
2839 * LDP (Load Pair - non vector)
2840 * LDPSW (Load Pair Signed Word - non vector)
2841 * STNP (Store Pair - non-temporal hint)
2842 * STP (Store Pair - non vector)
2843 * LDNP (Load Pair of SIMD&FP - non-temporal hint)
2844 * LDP (Load Pair of SIMD&FP)
2845 * STNP (Store Pair of SIMD&FP - non-temporal hint)
2846 * STP (Store Pair of SIMD&FP)
2848 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0
2849 * +-----+-------+---+---+-------+---+-----------------------------+
2850 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt |
2851 * +-----+-------+---+---+-------+---+-------+-------+------+------+
2853 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit
2854 * LDPSW/STGP 01
2855 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit
2856 * V: 0 -> GPR, 1 -> Vector
2857 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index,
2858 * 10 -> signed offset, 11 -> pre-index
2859 * L: 0 -> Store 1 -> Load
2861 * Rt, Rt2 = GPR or SIMD registers to be stored
2862 * Rn = general purpose register containing address
2863 * imm7 = signed offset (multiple of 4 or 8 depending on size)
2865 static void disas_ldst_pair(DisasContext *s, uint32_t insn)
2867 int rt = extract32(insn, 0, 5);
2868 int rn = extract32(insn, 5, 5);
2869 int rt2 = extract32(insn, 10, 5);
2870 uint64_t offset = sextract64(insn, 15, 7);
2871 int index = extract32(insn, 23, 2);
2872 bool is_vector = extract32(insn, 26, 1);
2873 bool is_load = extract32(insn, 22, 1);
2874 int opc = extract32(insn, 30, 2);
2876 bool is_signed = false;
2877 bool postindex = false;
2878 bool wback = false;
2879 bool set_tag = false;
2881 TCGv_i64 clean_addr, dirty_addr;
2883 int size;
2885 if (opc == 3) {
2886 unallocated_encoding(s);
2887 return;
2890 if (is_vector) {
2891 size = 2 + opc;
2892 } else if (opc == 1 && !is_load) {
2893 /* STGP */
2894 if (!dc_isar_feature(aa64_mte_insn_reg, s) || index == 0) {
2895 unallocated_encoding(s);
2896 return;
2898 size = 3;
2899 set_tag = true;
2900 } else {
2901 size = 2 + extract32(opc, 1, 1);
2902 is_signed = extract32(opc, 0, 1);
2903 if (!is_load && is_signed) {
2904 unallocated_encoding(s);
2905 return;
2909 switch (index) {
2910 case 1: /* post-index */
2911 postindex = true;
2912 wback = true;
2913 break;
2914 case 0:
2915 /* signed offset with "non-temporal" hint. Since we don't emulate
2916 * caches we don't care about hints to the cache system about
2917 * data access patterns, and handle this identically to plain
2918 * signed offset.
2920 if (is_signed) {
2921 /* There is no non-temporal-hint version of LDPSW */
2922 unallocated_encoding(s);
2923 return;
2925 postindex = false;
2926 break;
2927 case 2: /* signed offset, rn not updated */
2928 postindex = false;
2929 break;
2930 case 3: /* pre-index */
2931 postindex = false;
2932 wback = true;
2933 break;
2936 if (is_vector && !fp_access_check(s)) {
2937 return;
2940 offset <<= (set_tag ? LOG2_TAG_GRANULE : size);
2942 if (rn == 31) {
2943 gen_check_sp_alignment(s);
2946 dirty_addr = read_cpu_reg_sp(s, rn, 1);
2947 if (!postindex) {
2948 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
2951 if (set_tag) {
2952 if (!s->ata) {
2954 * TODO: We could rely on the stores below, at least for
2955 * system mode, if we arrange to add MO_ALIGN_16.
2957 gen_helper_stg_stub(cpu_env, dirty_addr);
2958 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2959 gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr);
2960 } else {
2961 gen_helper_stg(cpu_env, dirty_addr, dirty_addr);
2965 clean_addr = gen_mte_checkN(s, dirty_addr, !is_load,
2966 (wback || rn != 31) && !set_tag, 2 << size);
2968 if (is_vector) {
2969 if (is_load) {
2970 do_fp_ld(s, rt, clean_addr, size);
2971 } else {
2972 do_fp_st(s, rt, clean_addr, size);
2974 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
2975 if (is_load) {
2976 do_fp_ld(s, rt2, clean_addr, size);
2977 } else {
2978 do_fp_st(s, rt2, clean_addr, size);
2980 } else {
2981 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2982 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2);
2984 if (is_load) {
2985 TCGv_i64 tmp = tcg_temp_new_i64();
2987 /* Do not modify tcg_rt before recognizing any exception
2988 * from the second load.
2990 do_gpr_ld(s, tmp, clean_addr, size + is_signed * MO_SIGN,
2991 false, false, 0, false, false);
2992 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
2993 do_gpr_ld(s, tcg_rt2, clean_addr, size + is_signed * MO_SIGN,
2994 false, false, 0, false, false);
2996 tcg_gen_mov_i64(tcg_rt, tmp);
2997 tcg_temp_free_i64(tmp);
2998 } else {
2999 do_gpr_st(s, tcg_rt, clean_addr, size,
3000 false, 0, false, false);
3001 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
3002 do_gpr_st(s, tcg_rt2, clean_addr, size,
3003 false, 0, false, false);
3007 if (wback) {
3008 if (postindex) {
3009 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3011 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr);
3016 * Load/store (immediate post-indexed)
3017 * Load/store (immediate pre-indexed)
3018 * Load/store (unscaled immediate)
3020 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
3021 * +----+-------+---+-----+-----+---+--------+-----+------+------+
3022 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt |
3023 * +----+-------+---+-----+-----+---+--------+-----+------+------+
3025 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback)
3026 10 -> unprivileged
3027 * V = 0 -> non-vector
3028 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit
3029 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3031 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn,
3032 int opc,
3033 int size,
3034 int rt,
3035 bool is_vector)
3037 int rn = extract32(insn, 5, 5);
3038 int imm9 = sextract32(insn, 12, 9);
3039 int idx = extract32(insn, 10, 2);
3040 bool is_signed = false;
3041 bool is_store = false;
3042 bool is_extended = false;
3043 bool is_unpriv = (idx == 2);
3044 bool iss_valid = !is_vector;
3045 bool post_index;
3046 bool writeback;
3047 int memidx;
3049 TCGv_i64 clean_addr, dirty_addr;
3051 if (is_vector) {
3052 size |= (opc & 2) << 1;
3053 if (size > 4 || is_unpriv) {
3054 unallocated_encoding(s);
3055 return;
3057 is_store = ((opc & 1) == 0);
3058 if (!fp_access_check(s)) {
3059 return;
3061 } else {
3062 if (size == 3 && opc == 2) {
3063 /* PRFM - prefetch */
3064 if (idx != 0) {
3065 unallocated_encoding(s);
3066 return;
3068 return;
3070 if (opc == 3 && size > 1) {
3071 unallocated_encoding(s);
3072 return;
3074 is_store = (opc == 0);
3075 is_signed = extract32(opc, 1, 1);
3076 is_extended = (size < 3) && extract32(opc, 0, 1);
3079 switch (idx) {
3080 case 0:
3081 case 2:
3082 post_index = false;
3083 writeback = false;
3084 break;
3085 case 1:
3086 post_index = true;
3087 writeback = true;
3088 break;
3089 case 3:
3090 post_index = false;
3091 writeback = true;
3092 break;
3093 default:
3094 g_assert_not_reached();
3097 if (rn == 31) {
3098 gen_check_sp_alignment(s);
3101 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3102 if (!post_index) {
3103 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9);
3106 memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
3107 clean_addr = gen_mte_check1_mmuidx(s, dirty_addr, is_store,
3108 writeback || rn != 31,
3109 size, is_unpriv, memidx);
3111 if (is_vector) {
3112 if (is_store) {
3113 do_fp_st(s, rt, clean_addr, size);
3114 } else {
3115 do_fp_ld(s, rt, clean_addr, size);
3117 } else {
3118 TCGv_i64 tcg_rt = cpu_reg(s, rt);
3119 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3121 if (is_store) {
3122 do_gpr_st_memidx(s, tcg_rt, clean_addr, size, memidx,
3123 iss_valid, rt, iss_sf, false);
3124 } else {
3125 do_gpr_ld_memidx(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN,
3126 is_extended, memidx,
3127 iss_valid, rt, iss_sf, false);
3131 if (writeback) {
3132 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
3133 if (post_index) {
3134 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9);
3136 tcg_gen_mov_i64(tcg_rn, dirty_addr);
3141 * Load/store (register offset)
3143 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3144 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
3145 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt |
3146 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
3148 * For non-vector:
3149 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
3150 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3151 * For vector:
3152 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
3153 * opc<0>: 0 -> store, 1 -> load
3154 * V: 1 -> vector/simd
3155 * opt: extend encoding (see DecodeRegExtend)
3156 * S: if S=1 then scale (essentially index by sizeof(size))
3157 * Rt: register to transfer into/out of
3158 * Rn: address register or SP for base
3159 * Rm: offset register or ZR for offset
3161 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn,
3162 int opc,
3163 int size,
3164 int rt,
3165 bool is_vector)
3167 int rn = extract32(insn, 5, 5);
3168 int shift = extract32(insn, 12, 1);
3169 int rm = extract32(insn, 16, 5);
3170 int opt = extract32(insn, 13, 3);
3171 bool is_signed = false;
3172 bool is_store = false;
3173 bool is_extended = false;
3175 TCGv_i64 tcg_rm, clean_addr, dirty_addr;
3177 if (extract32(opt, 1, 1) == 0) {
3178 unallocated_encoding(s);
3179 return;
3182 if (is_vector) {
3183 size |= (opc & 2) << 1;
3184 if (size > 4) {
3185 unallocated_encoding(s);
3186 return;
3188 is_store = !extract32(opc, 0, 1);
3189 if (!fp_access_check(s)) {
3190 return;
3192 } else {
3193 if (size == 3 && opc == 2) {
3194 /* PRFM - prefetch */
3195 return;
3197 if (opc == 3 && size > 1) {
3198 unallocated_encoding(s);
3199 return;
3201 is_store = (opc == 0);
3202 is_signed = extract32(opc, 1, 1);
3203 is_extended = (size < 3) && extract32(opc, 0, 1);
3206 if (rn == 31) {
3207 gen_check_sp_alignment(s);
3209 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3211 tcg_rm = read_cpu_reg(s, rm, 1);
3212 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0);
3214 tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm);
3215 clean_addr = gen_mte_check1(s, dirty_addr, is_store, true, size);
3217 if (is_vector) {
3218 if (is_store) {
3219 do_fp_st(s, rt, clean_addr, size);
3220 } else {
3221 do_fp_ld(s, rt, clean_addr, size);
3223 } else {
3224 TCGv_i64 tcg_rt = cpu_reg(s, rt);
3225 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3226 if (is_store) {
3227 do_gpr_st(s, tcg_rt, clean_addr, size,
3228 true, rt, iss_sf, false);
3229 } else {
3230 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN,
3231 is_extended, true, rt, iss_sf, false);
3237 * Load/store (unsigned immediate)
3239 * 31 30 29 27 26 25 24 23 22 21 10 9 5
3240 * +----+-------+---+-----+-----+------------+-------+------+
3241 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt |
3242 * +----+-------+---+-----+-----+------------+-------+------+
3244 * For non-vector:
3245 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
3246 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3247 * For vector:
3248 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
3249 * opc<0>: 0 -> store, 1 -> load
3250 * Rn: base address register (inc SP)
3251 * Rt: target register
3253 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn,
3254 int opc,
3255 int size,
3256 int rt,
3257 bool is_vector)
3259 int rn = extract32(insn, 5, 5);
3260 unsigned int imm12 = extract32(insn, 10, 12);
3261 unsigned int offset;
3263 TCGv_i64 clean_addr, dirty_addr;
3265 bool is_store;
3266 bool is_signed = false;
3267 bool is_extended = false;
3269 if (is_vector) {
3270 size |= (opc & 2) << 1;
3271 if (size > 4) {
3272 unallocated_encoding(s);
3273 return;
3275 is_store = !extract32(opc, 0, 1);
3276 if (!fp_access_check(s)) {
3277 return;
3279 } else {
3280 if (size == 3 && opc == 2) {
3281 /* PRFM - prefetch */
3282 return;
3284 if (opc == 3 && size > 1) {
3285 unallocated_encoding(s);
3286 return;
3288 is_store = (opc == 0);
3289 is_signed = extract32(opc, 1, 1);
3290 is_extended = (size < 3) && extract32(opc, 0, 1);
3293 if (rn == 31) {
3294 gen_check_sp_alignment(s);
3296 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3297 offset = imm12 << size;
3298 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3299 clean_addr = gen_mte_check1(s, dirty_addr, is_store, rn != 31, size);
3301 if (is_vector) {
3302 if (is_store) {
3303 do_fp_st(s, rt, clean_addr, size);
3304 } else {
3305 do_fp_ld(s, rt, clean_addr, size);
3307 } else {
3308 TCGv_i64 tcg_rt = cpu_reg(s, rt);
3309 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3310 if (is_store) {
3311 do_gpr_st(s, tcg_rt, clean_addr, size,
3312 true, rt, iss_sf, false);
3313 } else {
3314 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN,
3315 is_extended, true, rt, iss_sf, false);
3320 /* Atomic memory operations
3322 * 31 30 27 26 24 22 21 16 15 12 10 5 0
3323 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+
3324 * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt |
3325 * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+
3327 * Rt: the result register
3328 * Rn: base address or SP
3329 * Rs: the source register for the operation
3330 * V: vector flag (always 0 as of v8.3)
3331 * A: acquire flag
3332 * R: release flag
3334 static void disas_ldst_atomic(DisasContext *s, uint32_t insn,
3335 int size, int rt, bool is_vector)
3337 int rs = extract32(insn, 16, 5);
3338 int rn = extract32(insn, 5, 5);
3339 int o3_opc = extract32(insn, 12, 4);
3340 bool r = extract32(insn, 22, 1);
3341 bool a = extract32(insn, 23, 1);
3342 TCGv_i64 tcg_rs, tcg_rt, clean_addr;
3343 AtomicThreeOpFn *fn = NULL;
3344 MemOp mop = s->be_data | size | MO_ALIGN;
3346 if (is_vector || !dc_isar_feature(aa64_atomics, s)) {
3347 unallocated_encoding(s);
3348 return;
3350 switch (o3_opc) {
3351 case 000: /* LDADD */
3352 fn = tcg_gen_atomic_fetch_add_i64;
3353 break;
3354 case 001: /* LDCLR */
3355 fn = tcg_gen_atomic_fetch_and_i64;
3356 break;
3357 case 002: /* LDEOR */
3358 fn = tcg_gen_atomic_fetch_xor_i64;
3359 break;
3360 case 003: /* LDSET */
3361 fn = tcg_gen_atomic_fetch_or_i64;
3362 break;
3363 case 004: /* LDSMAX */
3364 fn = tcg_gen_atomic_fetch_smax_i64;
3365 mop |= MO_SIGN;
3366 break;
3367 case 005: /* LDSMIN */
3368 fn = tcg_gen_atomic_fetch_smin_i64;
3369 mop |= MO_SIGN;
3370 break;
3371 case 006: /* LDUMAX */
3372 fn = tcg_gen_atomic_fetch_umax_i64;
3373 break;
3374 case 007: /* LDUMIN */
3375 fn = tcg_gen_atomic_fetch_umin_i64;
3376 break;
3377 case 010: /* SWP */
3378 fn = tcg_gen_atomic_xchg_i64;
3379 break;
3380 case 014: /* LDAPR, LDAPRH, LDAPRB */
3381 if (!dc_isar_feature(aa64_rcpc_8_3, s) ||
3382 rs != 31 || a != 1 || r != 0) {
3383 unallocated_encoding(s);
3384 return;
3386 break;
3387 default:
3388 unallocated_encoding(s);
3389 return;
3392 if (rn == 31) {
3393 gen_check_sp_alignment(s);
3395 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), false, rn != 31, size);
3397 if (o3_opc == 014) {
3399 * LDAPR* are a special case because they are a simple load, not a
3400 * fetch-and-do-something op.
3401 * The architectural consistency requirements here are weaker than
3402 * full load-acquire (we only need "load-acquire processor consistent"),
3403 * but we choose to implement them as full LDAQ.
3405 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size, false,
3406 true, rt, disas_ldst_compute_iss_sf(size, false, 0), true);
3407 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3408 return;
3411 tcg_rs = read_cpu_reg(s, rs, true);
3412 tcg_rt = cpu_reg(s, rt);
3414 if (o3_opc == 1) { /* LDCLR */
3415 tcg_gen_not_i64(tcg_rs, tcg_rs);
3418 /* The tcg atomic primitives are all full barriers. Therefore we
3419 * can ignore the Acquire and Release bits of this instruction.
3421 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3423 if ((mop & MO_SIGN) && size != MO_64) {
3424 tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3429 * PAC memory operations
3431 * 31 30 27 26 24 22 21 12 11 10 5 0
3432 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3433 * | size | 1 1 1 | V | 0 0 | M S | 1 | imm9 | W | 1 | Rn | Rt |
3434 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3436 * Rt: the result register
3437 * Rn: base address or SP
3438 * V: vector flag (always 0 as of v8.3)
3439 * M: clear for key DA, set for key DB
3440 * W: pre-indexing flag
3441 * S: sign for imm9.
3443 static void disas_ldst_pac(DisasContext *s, uint32_t insn,
3444 int size, int rt, bool is_vector)
3446 int rn = extract32(insn, 5, 5);
3447 bool is_wback = extract32(insn, 11, 1);
3448 bool use_key_a = !extract32(insn, 23, 1);
3449 int offset;
3450 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3452 if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) {
3453 unallocated_encoding(s);
3454 return;
3457 if (rn == 31) {
3458 gen_check_sp_alignment(s);
3460 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3462 if (s->pauth_active) {
3463 if (use_key_a) {
3464 gen_helper_autda(dirty_addr, cpu_env, dirty_addr,
3465 new_tmp_a64_zero(s));
3466 } else {
3467 gen_helper_autdb(dirty_addr, cpu_env, dirty_addr,
3468 new_tmp_a64_zero(s));
3472 /* Form the 10-bit signed, scaled offset. */
3473 offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9);
3474 offset = sextract32(offset << size, 0, 10 + size);
3475 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3477 /* Note that "clean" and "dirty" here refer to TBI not PAC. */
3478 clean_addr = gen_mte_check1(s, dirty_addr, false,
3479 is_wback || rn != 31, size);
3481 tcg_rt = cpu_reg(s, rt);
3482 do_gpr_ld(s, tcg_rt, clean_addr, size,
3483 /* extend */ false, /* iss_valid */ !is_wback,
3484 /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false);
3486 if (is_wback) {
3487 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr);
3492 * LDAPR/STLR (unscaled immediate)
3494 * 31 30 24 22 21 12 10 5 0
3495 * +------+-------------+-----+---+--------+-----+----+-----+
3496 * | size | 0 1 1 0 0 1 | opc | 0 | imm9 | 0 0 | Rn | Rt |
3497 * +------+-------------+-----+---+--------+-----+----+-----+
3499 * Rt: source or destination register
3500 * Rn: base register
3501 * imm9: unscaled immediate offset
3502 * opc: 00: STLUR*, 01/10/11: various LDAPUR*
3503 * size: size of load/store
3505 static void disas_ldst_ldapr_stlr(DisasContext *s, uint32_t insn)
3507 int rt = extract32(insn, 0, 5);
3508 int rn = extract32(insn, 5, 5);
3509 int offset = sextract32(insn, 12, 9);
3510 int opc = extract32(insn, 22, 2);
3511 int size = extract32(insn, 30, 2);
3512 TCGv_i64 clean_addr, dirty_addr;
3513 bool is_store = false;
3514 bool extend = false;
3515 bool iss_sf;
3516 MemOp mop;
3518 if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3519 unallocated_encoding(s);
3520 return;
3523 /* TODO: ARMv8.4-LSE SCTLR.nAA */
3524 mop = size | MO_ALIGN;
3526 switch (opc) {
3527 case 0: /* STLURB */
3528 is_store = true;
3529 break;
3530 case 1: /* LDAPUR* */
3531 break;
3532 case 2: /* LDAPURS* 64-bit variant */
3533 if (size == 3) {
3534 unallocated_encoding(s);
3535 return;
3537 mop |= MO_SIGN;
3538 break;
3539 case 3: /* LDAPURS* 32-bit variant */
3540 if (size > 1) {
3541 unallocated_encoding(s);
3542 return;
3544 mop |= MO_SIGN;
3545 extend = true; /* zero-extend 32->64 after signed load */
3546 break;
3547 default:
3548 g_assert_not_reached();
3551 iss_sf = disas_ldst_compute_iss_sf(size, (mop & MO_SIGN) != 0, opc);
3553 if (rn == 31) {
3554 gen_check_sp_alignment(s);
3557 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3558 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3559 clean_addr = clean_data_tbi(s, dirty_addr);
3561 if (is_store) {
3562 /* Store-Release semantics */
3563 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3564 do_gpr_st(s, cpu_reg(s, rt), clean_addr, mop, true, rt, iss_sf, true);
3565 } else {
3567 * Load-AcquirePC semantics; we implement as the slightly more
3568 * restrictive Load-Acquire.
3570 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop,
3571 extend, true, rt, iss_sf, true);
3572 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3576 /* Load/store register (all forms) */
3577 static void disas_ldst_reg(DisasContext *s, uint32_t insn)
3579 int rt = extract32(insn, 0, 5);
3580 int opc = extract32(insn, 22, 2);
3581 bool is_vector = extract32(insn, 26, 1);
3582 int size = extract32(insn, 30, 2);
3584 switch (extract32(insn, 24, 2)) {
3585 case 0:
3586 if (extract32(insn, 21, 1) == 0) {
3587 /* Load/store register (unscaled immediate)
3588 * Load/store immediate pre/post-indexed
3589 * Load/store register unprivileged
3591 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector);
3592 return;
3594 switch (extract32(insn, 10, 2)) {
3595 case 0:
3596 disas_ldst_atomic(s, insn, size, rt, is_vector);
3597 return;
3598 case 2:
3599 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector);
3600 return;
3601 default:
3602 disas_ldst_pac(s, insn, size, rt, is_vector);
3603 return;
3605 break;
3606 case 1:
3607 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector);
3608 return;
3610 unallocated_encoding(s);
3613 /* AdvSIMD load/store multiple structures
3615 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0
3616 * +---+---+---------------+---+-------------+--------+------+------+------+
3617 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt |
3618 * +---+---+---------------+---+-------------+--------+------+------+------+
3620 * AdvSIMD load/store multiple structures (post-indexed)
3622 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0
3623 * +---+---+---------------+---+---+---------+--------+------+------+------+
3624 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt |
3625 * +---+---+---------------+---+---+---------+--------+------+------+------+
3627 * Rt: first (or only) SIMD&FP register to be transferred
3628 * Rn: base address or SP
3629 * Rm (post-index only): post-index register (when !31) or size dependent #imm
3631 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn)
3633 int rt = extract32(insn, 0, 5);
3634 int rn = extract32(insn, 5, 5);
3635 int rm = extract32(insn, 16, 5);
3636 int size = extract32(insn, 10, 2);
3637 int opcode = extract32(insn, 12, 4);
3638 bool is_store = !extract32(insn, 22, 1);
3639 bool is_postidx = extract32(insn, 23, 1);
3640 bool is_q = extract32(insn, 30, 1);
3641 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3642 MemOp endian, align, mop;
3644 int total; /* total bytes */
3645 int elements; /* elements per vector */
3646 int rpt; /* num iterations */
3647 int selem; /* structure elements */
3648 int r;
3650 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) {
3651 unallocated_encoding(s);
3652 return;
3655 if (!is_postidx && rm != 0) {
3656 unallocated_encoding(s);
3657 return;
3660 /* From the shared decode logic */
3661 switch (opcode) {
3662 case 0x0:
3663 rpt = 1;
3664 selem = 4;
3665 break;
3666 case 0x2:
3667 rpt = 4;
3668 selem = 1;
3669 break;
3670 case 0x4:
3671 rpt = 1;
3672 selem = 3;
3673 break;
3674 case 0x6:
3675 rpt = 3;
3676 selem = 1;
3677 break;
3678 case 0x7:
3679 rpt = 1;
3680 selem = 1;
3681 break;
3682 case 0x8:
3683 rpt = 1;
3684 selem = 2;
3685 break;
3686 case 0xa:
3687 rpt = 2;
3688 selem = 1;
3689 break;
3690 default:
3691 unallocated_encoding(s);
3692 return;
3695 if (size == 3 && !is_q && selem != 1) {
3696 /* reserved */
3697 unallocated_encoding(s);
3698 return;
3701 if (!fp_access_check(s)) {
3702 return;
3705 if (rn == 31) {
3706 gen_check_sp_alignment(s);
3709 /* For our purposes, bytes are always little-endian. */
3710 endian = s->be_data;
3711 if (size == 0) {
3712 endian = MO_LE;
3715 total = rpt * selem * (is_q ? 16 : 8);
3716 tcg_rn = cpu_reg_sp(s, rn);
3719 * Issue the MTE check vs the logical repeat count, before we
3720 * promote consecutive little-endian elements below.
3722 clean_addr = gen_mte_checkN(s, tcg_rn, is_store, is_postidx || rn != 31,
3723 total);
3726 * Consecutive little-endian elements from a single register
3727 * can be promoted to a larger little-endian operation.
3729 align = MO_ALIGN;
3730 if (selem == 1 && endian == MO_LE) {
3731 align = pow2_align(size);
3732 size = 3;
3734 if (!s->align_mem) {
3735 align = 0;
3737 mop = endian | size | align;
3739 elements = (is_q ? 16 : 8) >> size;
3740 tcg_ebytes = tcg_const_i64(1 << size);
3741 for (r = 0; r < rpt; r++) {
3742 int e;
3743 for (e = 0; e < elements; e++) {
3744 int xs;
3745 for (xs = 0; xs < selem; xs++) {
3746 int tt = (rt + r + xs) % 32;
3747 if (is_store) {
3748 do_vec_st(s, tt, e, clean_addr, mop);
3749 } else {
3750 do_vec_ld(s, tt, e, clean_addr, mop);
3752 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3756 tcg_temp_free_i64(tcg_ebytes);
3758 if (!is_store) {
3759 /* For non-quad operations, setting a slice of the low
3760 * 64 bits of the register clears the high 64 bits (in
3761 * the ARM ARM pseudocode this is implicit in the fact
3762 * that 'rval' is a 64 bit wide variable).
3763 * For quad operations, we might still need to zero the
3764 * high bits of SVE.
3766 for (r = 0; r < rpt * selem; r++) {
3767 int tt = (rt + r) % 32;
3768 clear_vec_high(s, is_q, tt);
3772 if (is_postidx) {
3773 if (rm == 31) {
3774 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3775 } else {
3776 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3781 /* AdvSIMD load/store single structure
3783 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3784 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3785 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt |
3786 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3788 * AdvSIMD load/store single structure (post-indexed)
3790 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3791 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3792 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt |
3793 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3795 * Rt: first (or only) SIMD&FP register to be transferred
3796 * Rn: base address or SP
3797 * Rm (post-index only): post-index register (when !31) or size dependent #imm
3798 * index = encoded in Q:S:size dependent on size
3800 * lane_size = encoded in R, opc
3801 * transfer width = encoded in opc, S, size
3803 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
3805 int rt = extract32(insn, 0, 5);
3806 int rn = extract32(insn, 5, 5);
3807 int rm = extract32(insn, 16, 5);
3808 int size = extract32(insn, 10, 2);
3809 int S = extract32(insn, 12, 1);
3810 int opc = extract32(insn, 13, 3);
3811 int R = extract32(insn, 21, 1);
3812 int is_load = extract32(insn, 22, 1);
3813 int is_postidx = extract32(insn, 23, 1);
3814 int is_q = extract32(insn, 30, 1);
3816 int scale = extract32(opc, 1, 2);
3817 int selem = (extract32(opc, 0, 1) << 1 | R) + 1;
3818 bool replicate = false;
3819 int index = is_q << 3 | S << 2 | size;
3820 int xs, total;
3821 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3822 MemOp mop;
3824 if (extract32(insn, 31, 1)) {
3825 unallocated_encoding(s);
3826 return;
3828 if (!is_postidx && rm != 0) {
3829 unallocated_encoding(s);
3830 return;
3833 switch (scale) {
3834 case 3:
3835 if (!is_load || S) {
3836 unallocated_encoding(s);
3837 return;
3839 scale = size;
3840 replicate = true;
3841 break;
3842 case 0:
3843 break;
3844 case 1:
3845 if (extract32(size, 0, 1)) {
3846 unallocated_encoding(s);
3847 return;
3849 index >>= 1;
3850 break;
3851 case 2:
3852 if (extract32(size, 1, 1)) {
3853 unallocated_encoding(s);
3854 return;
3856 if (!extract32(size, 0, 1)) {
3857 index >>= 2;
3858 } else {
3859 if (S) {
3860 unallocated_encoding(s);
3861 return;
3863 index >>= 3;
3864 scale = 3;
3866 break;
3867 default:
3868 g_assert_not_reached();
3871 if (!fp_access_check(s)) {
3872 return;
3875 if (rn == 31) {
3876 gen_check_sp_alignment(s);
3879 total = selem << scale;
3880 tcg_rn = cpu_reg_sp(s, rn);
3882 clean_addr = gen_mte_checkN(s, tcg_rn, !is_load, is_postidx || rn != 31,
3883 total);
3884 mop = finalize_memop(s, scale);
3886 tcg_ebytes = tcg_const_i64(1 << scale);
3887 for (xs = 0; xs < selem; xs++) {
3888 if (replicate) {
3889 /* Load and replicate to all elements */
3890 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3892 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
3893 tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt),
3894 (is_q + 1) * 8, vec_full_reg_size(s),
3895 tcg_tmp);
3896 tcg_temp_free_i64(tcg_tmp);
3897 } else {
3898 /* Load/store one element per register */
3899 if (is_load) {
3900 do_vec_ld(s, rt, index, clean_addr, mop);
3901 } else {
3902 do_vec_st(s, rt, index, clean_addr, mop);
3905 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3906 rt = (rt + 1) % 32;
3908 tcg_temp_free_i64(tcg_ebytes);
3910 if (is_postidx) {
3911 if (rm == 31) {
3912 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3913 } else {
3914 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3920 * Load/Store memory tags
3922 * 31 30 29 24 22 21 12 10 5 0
3923 * +-----+-------------+-----+---+------+-----+------+------+
3924 * | 1 1 | 0 1 1 0 0 1 | op1 | 1 | imm9 | op2 | Rn | Rt |
3925 * +-----+-------------+-----+---+------+-----+------+------+
3927 static void disas_ldst_tag(DisasContext *s, uint32_t insn)
3929 int rt = extract32(insn, 0, 5);
3930 int rn = extract32(insn, 5, 5);
3931 uint64_t offset = sextract64(insn, 12, 9) << LOG2_TAG_GRANULE;
3932 int op2 = extract32(insn, 10, 2);
3933 int op1 = extract32(insn, 22, 2);
3934 bool is_load = false, is_pair = false, is_zero = false, is_mult = false;
3935 int index = 0;
3936 TCGv_i64 addr, clean_addr, tcg_rt;
3938 /* We checked insn bits [29:24,21] in the caller. */
3939 if (extract32(insn, 30, 2) != 3) {
3940 goto do_unallocated;
3944 * @index is a tri-state variable which has 3 states:
3945 * < 0 : post-index, writeback
3946 * = 0 : signed offset
3947 * > 0 : pre-index, writeback
3949 switch (op1) {
3950 case 0:
3951 if (op2 != 0) {
3952 /* STG */
3953 index = op2 - 2;
3954 } else {
3955 /* STZGM */
3956 if (s->current_el == 0 || offset != 0) {
3957 goto do_unallocated;
3959 is_mult = is_zero = true;
3961 break;
3962 case 1:
3963 if (op2 != 0) {
3964 /* STZG */
3965 is_zero = true;
3966 index = op2 - 2;
3967 } else {
3968 /* LDG */
3969 is_load = true;
3971 break;
3972 case 2:
3973 if (op2 != 0) {
3974 /* ST2G */
3975 is_pair = true;
3976 index = op2 - 2;
3977 } else {
3978 /* STGM */
3979 if (s->current_el == 0 || offset != 0) {
3980 goto do_unallocated;
3982 is_mult = true;
3984 break;
3985 case 3:
3986 if (op2 != 0) {
3987 /* STZ2G */
3988 is_pair = is_zero = true;
3989 index = op2 - 2;
3990 } else {
3991 /* LDGM */
3992 if (s->current_el == 0 || offset != 0) {
3993 goto do_unallocated;
3995 is_mult = is_load = true;
3997 break;
3999 default:
4000 do_unallocated:
4001 unallocated_encoding(s);
4002 return;
4005 if (is_mult
4006 ? !dc_isar_feature(aa64_mte, s)
4007 : !dc_isar_feature(aa64_mte_insn_reg, s)) {
4008 goto do_unallocated;
4011 if (rn == 31) {
4012 gen_check_sp_alignment(s);
4015 addr = read_cpu_reg_sp(s, rn, true);
4016 if (index >= 0) {
4017 /* pre-index or signed offset */
4018 tcg_gen_addi_i64(addr, addr, offset);
4021 if (is_mult) {
4022 tcg_rt = cpu_reg(s, rt);
4024 if (is_zero) {
4025 int size = 4 << s->dcz_blocksize;
4027 if (s->ata) {
4028 gen_helper_stzgm_tags(cpu_env, addr, tcg_rt);
4031 * The non-tags portion of STZGM is mostly like DC_ZVA,
4032 * except the alignment happens before the access.
4034 clean_addr = clean_data_tbi(s, addr);
4035 tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4036 gen_helper_dc_zva(cpu_env, clean_addr);
4037 } else if (s->ata) {
4038 if (is_load) {
4039 gen_helper_ldgm(tcg_rt, cpu_env, addr);
4040 } else {
4041 gen_helper_stgm(cpu_env, addr, tcg_rt);
4043 } else {
4044 MMUAccessType acc = is_load ? MMU_DATA_LOAD : MMU_DATA_STORE;
4045 int size = 4 << GMID_EL1_BS;
4047 clean_addr = clean_data_tbi(s, addr);
4048 tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4049 gen_probe_access(s, clean_addr, acc, size);
4051 if (is_load) {
4052 /* The result tags are zeros. */
4053 tcg_gen_movi_i64(tcg_rt, 0);
4056 return;
4059 if (is_load) {
4060 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
4061 tcg_rt = cpu_reg(s, rt);
4062 if (s->ata) {
4063 gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt);
4064 } else {
4065 clean_addr = clean_data_tbi(s, addr);
4066 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
4067 gen_address_with_allocation_tag0(tcg_rt, addr);
4069 } else {
4070 tcg_rt = cpu_reg_sp(s, rt);
4071 if (!s->ata) {
4073 * For STG and ST2G, we need to check alignment and probe memory.
4074 * TODO: For STZG and STZ2G, we could rely on the stores below,
4075 * at least for system mode; user-only won't enforce alignment.
4077 if (is_pair) {
4078 gen_helper_st2g_stub(cpu_env, addr);
4079 } else {
4080 gen_helper_stg_stub(cpu_env, addr);
4082 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
4083 if (is_pair) {
4084 gen_helper_st2g_parallel(cpu_env, addr, tcg_rt);
4085 } else {
4086 gen_helper_stg_parallel(cpu_env, addr, tcg_rt);
4088 } else {
4089 if (is_pair) {
4090 gen_helper_st2g(cpu_env, addr, tcg_rt);
4091 } else {
4092 gen_helper_stg(cpu_env, addr, tcg_rt);
4097 if (is_zero) {
4098 TCGv_i64 clean_addr = clean_data_tbi(s, addr);
4099 TCGv_i64 tcg_zero = tcg_const_i64(0);
4100 int mem_index = get_mem_index(s);
4101 int i, n = (1 + is_pair) << LOG2_TAG_GRANULE;
4103 tcg_gen_qemu_st_i64(tcg_zero, clean_addr, mem_index,
4104 MO_Q | MO_ALIGN_16);
4105 for (i = 8; i < n; i += 8) {
4106 tcg_gen_addi_i64(clean_addr, clean_addr, 8);
4107 tcg_gen_qemu_st_i64(tcg_zero, clean_addr, mem_index, MO_Q);
4109 tcg_temp_free_i64(tcg_zero);
4112 if (index != 0) {
4113 /* pre-index or post-index */
4114 if (index < 0) {
4115 /* post-index */
4116 tcg_gen_addi_i64(addr, addr, offset);
4118 tcg_gen_mov_i64(cpu_reg_sp(s, rn), addr);
4122 /* Loads and stores */
4123 static void disas_ldst(DisasContext *s, uint32_t insn)
4125 switch (extract32(insn, 24, 6)) {
4126 case 0x08: /* Load/store exclusive */
4127 disas_ldst_excl(s, insn);
4128 break;
4129 case 0x18: case 0x1c: /* Load register (literal) */
4130 disas_ld_lit(s, insn);
4131 break;
4132 case 0x28: case 0x29:
4133 case 0x2c: case 0x2d: /* Load/store pair (all forms) */
4134 disas_ldst_pair(s, insn);
4135 break;
4136 case 0x38: case 0x39:
4137 case 0x3c: case 0x3d: /* Load/store register (all forms) */
4138 disas_ldst_reg(s, insn);
4139 break;
4140 case 0x0c: /* AdvSIMD load/store multiple structures */
4141 disas_ldst_multiple_struct(s, insn);
4142 break;
4143 case 0x0d: /* AdvSIMD load/store single structure */
4144 disas_ldst_single_struct(s, insn);
4145 break;
4146 case 0x19:
4147 if (extract32(insn, 21, 1) != 0) {
4148 disas_ldst_tag(s, insn);
4149 } else if (extract32(insn, 10, 2) == 0) {
4150 disas_ldst_ldapr_stlr(s, insn);
4151 } else {
4152 unallocated_encoding(s);
4154 break;
4155 default:
4156 unallocated_encoding(s);
4157 break;
4161 /* PC-rel. addressing
4162 * 31 30 29 28 24 23 5 4 0
4163 * +----+-------+-----------+-------------------+------+
4164 * | op | immlo | 1 0 0 0 0 | immhi | Rd |
4165 * +----+-------+-----------+-------------------+------+
4167 static void disas_pc_rel_adr(DisasContext *s, uint32_t insn)
4169 unsigned int page, rd;
4170 uint64_t base;
4171 uint64_t offset;
4173 page = extract32(insn, 31, 1);
4174 /* SignExtend(immhi:immlo) -> offset */
4175 offset = sextract64(insn, 5, 19);
4176 offset = offset << 2 | extract32(insn, 29, 2);
4177 rd = extract32(insn, 0, 5);
4178 base = s->pc_curr;
4180 if (page) {
4181 /* ADRP (page based) */
4182 base &= ~0xfff;
4183 offset <<= 12;
4186 tcg_gen_movi_i64(cpu_reg(s, rd), base + offset);
4190 * Add/subtract (immediate)
4192 * 31 30 29 28 23 22 21 10 9 5 4 0
4193 * +--+--+--+-------------+--+-------------+-----+-----+
4194 * |sf|op| S| 1 0 0 0 1 0 |sh| imm12 | Rn | Rd |
4195 * +--+--+--+-------------+--+-------------+-----+-----+
4197 * sf: 0 -> 32bit, 1 -> 64bit
4198 * op: 0 -> add , 1 -> sub
4199 * S: 1 -> set flags
4200 * sh: 1 -> LSL imm by 12
4202 static void disas_add_sub_imm(DisasContext *s, uint32_t insn)
4204 int rd = extract32(insn, 0, 5);
4205 int rn = extract32(insn, 5, 5);
4206 uint64_t imm = extract32(insn, 10, 12);
4207 bool shift = extract32(insn, 22, 1);
4208 bool setflags = extract32(insn, 29, 1);
4209 bool sub_op = extract32(insn, 30, 1);
4210 bool is_64bit = extract32(insn, 31, 1);
4212 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
4213 TCGv_i64 tcg_rd = setflags ? cpu_reg(s, rd) : cpu_reg_sp(s, rd);
4214 TCGv_i64 tcg_result;
4216 if (shift) {
4217 imm <<= 12;
4220 tcg_result = tcg_temp_new_i64();
4221 if (!setflags) {
4222 if (sub_op) {
4223 tcg_gen_subi_i64(tcg_result, tcg_rn, imm);
4224 } else {
4225 tcg_gen_addi_i64(tcg_result, tcg_rn, imm);
4227 } else {
4228 TCGv_i64 tcg_imm = tcg_const_i64(imm);
4229 if (sub_op) {
4230 gen_sub_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
4231 } else {
4232 gen_add_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
4234 tcg_temp_free_i64(tcg_imm);
4237 if (is_64bit) {
4238 tcg_gen_mov_i64(tcg_rd, tcg_result);
4239 } else {
4240 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4243 tcg_temp_free_i64(tcg_result);
4247 * Add/subtract (immediate, with tags)
4249 * 31 30 29 28 23 22 21 16 14 10 9 5 4 0
4250 * +--+--+--+-------------+--+---------+--+-------+-----+-----+
4251 * |sf|op| S| 1 0 0 0 1 1 |o2| uimm6 |o3| uimm4 | Rn | Rd |
4252 * +--+--+--+-------------+--+---------+--+-------+-----+-----+
4254 * op: 0 -> add, 1 -> sub
4256 static void disas_add_sub_imm_with_tags(DisasContext *s, uint32_t insn)
4258 int rd = extract32(insn, 0, 5);
4259 int rn = extract32(insn, 5, 5);
4260 int uimm4 = extract32(insn, 10, 4);
4261 int uimm6 = extract32(insn, 16, 6);
4262 bool sub_op = extract32(insn, 30, 1);
4263 TCGv_i64 tcg_rn, tcg_rd;
4264 int imm;
4266 /* Test all of sf=1, S=0, o2=0, o3=0. */
4267 if ((insn & 0xa040c000u) != 0x80000000u ||
4268 !dc_isar_feature(aa64_mte_insn_reg, s)) {
4269 unallocated_encoding(s);
4270 return;
4273 imm = uimm6 << LOG2_TAG_GRANULE;
4274 if (sub_op) {
4275 imm = -imm;
4278 tcg_rn = cpu_reg_sp(s, rn);
4279 tcg_rd = cpu_reg_sp(s, rd);
4281 if (s->ata) {
4282 TCGv_i32 offset = tcg_const_i32(imm);
4283 TCGv_i32 tag_offset = tcg_const_i32(uimm4);
4285 gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn, offset, tag_offset);
4286 tcg_temp_free_i32(tag_offset);
4287 tcg_temp_free_i32(offset);
4288 } else {
4289 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4290 gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4294 /* The input should be a value in the bottom e bits (with higher
4295 * bits zero); returns that value replicated into every element
4296 * of size e in a 64 bit integer.
4298 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4300 assert(e != 0);
4301 while (e < 64) {
4302 mask |= mask << e;
4303 e *= 2;
4305 return mask;
4308 /* Return a value with the bottom len bits set (where 0 < len <= 64) */
4309 static inline uint64_t bitmask64(unsigned int length)
4311 assert(length > 0 && length <= 64);
4312 return ~0ULL >> (64 - length);
4315 /* Simplified variant of pseudocode DecodeBitMasks() for the case where we
4316 * only require the wmask. Returns false if the imms/immr/immn are a reserved
4317 * value (ie should cause a guest UNDEF exception), and true if they are
4318 * valid, in which case the decoded bit pattern is written to result.
4320 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4321 unsigned int imms, unsigned int immr)
4323 uint64_t mask;
4324 unsigned e, levels, s, r;
4325 int len;
4327 assert(immn < 2 && imms < 64 && immr < 64);
4329 /* The bit patterns we create here are 64 bit patterns which
4330 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4331 * 64 bits each. Each element contains the same value: a run
4332 * of between 1 and e-1 non-zero bits, rotated within the
4333 * element by between 0 and e-1 bits.
4335 * The element size and run length are encoded into immn (1 bit)
4336 * and imms (6 bits) as follows:
4337 * 64 bit elements: immn = 1, imms = <length of run - 1>
4338 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4339 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4340 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4341 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4342 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4343 * Notice that immn = 0, imms = 11111x is the only combination
4344 * not covered by one of the above options; this is reserved.
4345 * Further, <length of run - 1> all-ones is a reserved pattern.
4347 * In all cases the rotation is by immr % e (and immr is 6 bits).
4350 /* First determine the element size */
4351 len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4352 if (len < 1) {
4353 /* This is the immn == 0, imms == 0x11111x case */
4354 return false;
4356 e = 1 << len;
4358 levels = e - 1;
4359 s = imms & levels;
4360 r = immr & levels;
4362 if (s == levels) {
4363 /* <length of run - 1> mustn't be all-ones. */
4364 return false;
4367 /* Create the value of one element: s+1 set bits rotated
4368 * by r within the element (which is e bits wide)...
4370 mask = bitmask64(s + 1);
4371 if (r) {
4372 mask = (mask >> r) | (mask << (e - r));
4373 mask &= bitmask64(e);
4375 /* ...then replicate the element over the whole 64 bit value */
4376 mask = bitfield_replicate(mask, e);
4377 *result = mask;
4378 return true;
4381 /* Logical (immediate)
4382 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
4383 * +----+-----+-------------+---+------+------+------+------+
4384 * | sf | opc | 1 0 0 1 0 0 | N | immr | imms | Rn | Rd |
4385 * +----+-----+-------------+---+------+------+------+------+
4387 static void disas_logic_imm(DisasContext *s, uint32_t insn)
4389 unsigned int sf, opc, is_n, immr, imms, rn, rd;
4390 TCGv_i64 tcg_rd, tcg_rn;
4391 uint64_t wmask;
4392 bool is_and = false;
4394 sf = extract32(insn, 31, 1);
4395 opc = extract32(insn, 29, 2);
4396 is_n = extract32(insn, 22, 1);
4397 immr = extract32(insn, 16, 6);
4398 imms = extract32(insn, 10, 6);
4399 rn = extract32(insn, 5, 5);
4400 rd = extract32(insn, 0, 5);
4402 if (!sf && is_n) {
4403 unallocated_encoding(s);
4404 return;
4407 if (opc == 0x3) { /* ANDS */
4408 tcg_rd = cpu_reg(s, rd);
4409 } else {
4410 tcg_rd = cpu_reg_sp(s, rd);
4412 tcg_rn = cpu_reg(s, rn);
4414 if (!logic_imm_decode_wmask(&wmask, is_n, imms, immr)) {
4415 /* some immediate field values are reserved */
4416 unallocated_encoding(s);
4417 return;
4420 if (!sf) {
4421 wmask &= 0xffffffff;
4424 switch (opc) {
4425 case 0x3: /* ANDS */
4426 case 0x0: /* AND */
4427 tcg_gen_andi_i64(tcg_rd, tcg_rn, wmask);
4428 is_and = true;
4429 break;
4430 case 0x1: /* ORR */
4431 tcg_gen_ori_i64(tcg_rd, tcg_rn, wmask);
4432 break;
4433 case 0x2: /* EOR */
4434 tcg_gen_xori_i64(tcg_rd, tcg_rn, wmask);
4435 break;
4436 default:
4437 assert(FALSE); /* must handle all above */
4438 break;
4441 if (!sf && !is_and) {
4442 /* zero extend final result; we know we can skip this for AND
4443 * since the immediate had the high 32 bits clear.
4445 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4448 if (opc == 3) { /* ANDS */
4449 gen_logic_CC(sf, tcg_rd);
4454 * Move wide (immediate)
4456 * 31 30 29 28 23 22 21 20 5 4 0
4457 * +--+-----+-------------+-----+----------------+------+
4458 * |sf| opc | 1 0 0 1 0 1 | hw | imm16 | Rd |
4459 * +--+-----+-------------+-----+----------------+------+
4461 * sf: 0 -> 32 bit, 1 -> 64 bit
4462 * opc: 00 -> N, 10 -> Z, 11 -> K
4463 * hw: shift/16 (0,16, and sf only 32, 48)
4465 static void disas_movw_imm(DisasContext *s, uint32_t insn)
4467 int rd = extract32(insn, 0, 5);
4468 uint64_t imm = extract32(insn, 5, 16);
4469 int sf = extract32(insn, 31, 1);
4470 int opc = extract32(insn, 29, 2);
4471 int pos = extract32(insn, 21, 2) << 4;
4472 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4473 TCGv_i64 tcg_imm;
4475 if (!sf && (pos >= 32)) {
4476 unallocated_encoding(s);
4477 return;
4480 switch (opc) {
4481 case 0: /* MOVN */
4482 case 2: /* MOVZ */
4483 imm <<= pos;
4484 if (opc == 0) {
4485 imm = ~imm;
4487 if (!sf) {
4488 imm &= 0xffffffffu;
4490 tcg_gen_movi_i64(tcg_rd, imm);
4491 break;
4492 case 3: /* MOVK */
4493 tcg_imm = tcg_const_i64(imm);
4494 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_imm, pos, 16);
4495 tcg_temp_free_i64(tcg_imm);
4496 if (!sf) {
4497 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4499 break;
4500 default:
4501 unallocated_encoding(s);
4502 break;
4506 /* Bitfield
4507 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
4508 * +----+-----+-------------+---+------+------+------+------+
4509 * | sf | opc | 1 0 0 1 1 0 | N | immr | imms | Rn | Rd |
4510 * +----+-----+-------------+---+------+------+------+------+
4512 static void disas_bitfield(DisasContext *s, uint32_t insn)
4514 unsigned int sf, n, opc, ri, si, rn, rd, bitsize, pos, len;
4515 TCGv_i64 tcg_rd, tcg_tmp;
4517 sf = extract32(insn, 31, 1);
4518 opc = extract32(insn, 29, 2);
4519 n = extract32(insn, 22, 1);
4520 ri = extract32(insn, 16, 6);
4521 si = extract32(insn, 10, 6);
4522 rn = extract32(insn, 5, 5);
4523 rd = extract32(insn, 0, 5);
4524 bitsize = sf ? 64 : 32;
4526 if (sf != n || ri >= bitsize || si >= bitsize || opc > 2) {
4527 unallocated_encoding(s);
4528 return;
4531 tcg_rd = cpu_reg(s, rd);
4533 /* Suppress the zero-extend for !sf. Since RI and SI are constrained
4534 to be smaller than bitsize, we'll never reference data outside the
4535 low 32-bits anyway. */
4536 tcg_tmp = read_cpu_reg(s, rn, 1);
4538 /* Recognize simple(r) extractions. */
4539 if (si >= ri) {
4540 /* Wd<s-r:0> = Wn<s:r> */
4541 len = (si - ri) + 1;
4542 if (opc == 0) { /* SBFM: ASR, SBFX, SXTB, SXTH, SXTW */
4543 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4544 goto done;
4545 } else if (opc == 2) { /* UBFM: UBFX, LSR, UXTB, UXTH */
4546 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4547 return;
4549 /* opc == 1, BFXIL fall through to deposit */
4550 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4551 pos = 0;
4552 } else {
4553 /* Handle the ri > si case with a deposit
4554 * Wd<32+s-r,32-r> = Wn<s:0>
4556 len = si + 1;
4557 pos = (bitsize - ri) & (bitsize - 1);
4560 if (opc == 0 && len < ri) {
4561 /* SBFM: sign extend the destination field from len to fill
4562 the balance of the word. Let the deposit below insert all
4563 of those sign bits. */
4564 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4565 len = ri;
4568 if (opc == 1) { /* BFM, BFXIL */
4569 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4570 } else {
4571 /* SBFM or UBFM: We start with zero, and we haven't modified
4572 any bits outside bitsize, therefore the zero-extension
4573 below is unneeded. */
4574 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4575 return;
4578 done:
4579 if (!sf) { /* zero extend final result */
4580 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4584 /* Extract
4585 * 31 30 29 28 23 22 21 20 16 15 10 9 5 4 0
4586 * +----+------+-------------+---+----+------+--------+------+------+
4587 * | sf | op21 | 1 0 0 1 1 1 | N | o0 | Rm | imms | Rn | Rd |
4588 * +----+------+-------------+---+----+------+--------+------+------+
4590 static void disas_extract(DisasContext *s, uint32_t insn)
4592 unsigned int sf, n, rm, imm, rn, rd, bitsize, op21, op0;
4594 sf = extract32(insn, 31, 1);
4595 n = extract32(insn, 22, 1);
4596 rm = extract32(insn, 16, 5);
4597 imm = extract32(insn, 10, 6);
4598 rn = extract32(insn, 5, 5);
4599 rd = extract32(insn, 0, 5);
4600 op21 = extract32(insn, 29, 2);
4601 op0 = extract32(insn, 21, 1);
4602 bitsize = sf ? 64 : 32;
4604 if (sf != n || op21 || op0 || imm >= bitsize) {
4605 unallocated_encoding(s);
4606 } else {
4607 TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4609 tcg_rd = cpu_reg(s, rd);
4611 if (unlikely(imm == 0)) {
4612 /* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4613 * so an extract from bit 0 is a special case.
4615 if (sf) {
4616 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, rm));
4617 } else {
4618 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rm));
4620 } else {
4621 tcg_rm = cpu_reg(s, rm);
4622 tcg_rn = cpu_reg(s, rn);
4624 if (sf) {
4625 /* Specialization to ROR happens in EXTRACT2. */
4626 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, imm);
4627 } else {
4628 TCGv_i32 t0 = tcg_temp_new_i32();
4630 tcg_gen_extrl_i64_i32(t0, tcg_rm);
4631 if (rm == rn) {
4632 tcg_gen_rotri_i32(t0, t0, imm);
4633 } else {
4634 TCGv_i32 t1 = tcg_temp_new_i32();
4635 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4636 tcg_gen_extract2_i32(t0, t0, t1, imm);
4637 tcg_temp_free_i32(t1);
4639 tcg_gen_extu_i32_i64(tcg_rd, t0);
4640 tcg_temp_free_i32(t0);
4646 /* Data processing - immediate */
4647 static void disas_data_proc_imm(DisasContext *s, uint32_t insn)
4649 switch (extract32(insn, 23, 6)) {
4650 case 0x20: case 0x21: /* PC-rel. addressing */
4651 disas_pc_rel_adr(s, insn);
4652 break;
4653 case 0x22: /* Add/subtract (immediate) */
4654 disas_add_sub_imm(s, insn);
4655 break;
4656 case 0x23: /* Add/subtract (immediate, with tags) */
4657 disas_add_sub_imm_with_tags(s, insn);
4658 break;
4659 case 0x24: /* Logical (immediate) */
4660 disas_logic_imm(s, insn);
4661 break;
4662 case 0x25: /* Move wide (immediate) */
4663 disas_movw_imm(s, insn);
4664 break;
4665 case 0x26: /* Bitfield */
4666 disas_bitfield(s, insn);
4667 break;
4668 case 0x27: /* Extract */
4669 disas_extract(s, insn);
4670 break;
4671 default:
4672 unallocated_encoding(s);
4673 break;
4677 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
4678 * Note that it is the caller's responsibility to ensure that the
4679 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
4680 * mandated semantics for out of range shifts.
4682 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
4683 enum a64_shift_type shift_type, TCGv_i64 shift_amount)
4685 switch (shift_type) {
4686 case A64_SHIFT_TYPE_LSL:
4687 tcg_gen_shl_i64(dst, src, shift_amount);
4688 break;
4689 case A64_SHIFT_TYPE_LSR:
4690 tcg_gen_shr_i64(dst, src, shift_amount);
4691 break;
4692 case A64_SHIFT_TYPE_ASR:
4693 if (!sf) {
4694 tcg_gen_ext32s_i64(dst, src);
4696 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
4697 break;
4698 case A64_SHIFT_TYPE_ROR:
4699 if (sf) {
4700 tcg_gen_rotr_i64(dst, src, shift_amount);
4701 } else {
4702 TCGv_i32 t0, t1;
4703 t0 = tcg_temp_new_i32();
4704 t1 = tcg_temp_new_i32();
4705 tcg_gen_extrl_i64_i32(t0, src);
4706 tcg_gen_extrl_i64_i32(t1, shift_amount);
4707 tcg_gen_rotr_i32(t0, t0, t1);
4708 tcg_gen_extu_i32_i64(dst, t0);
4709 tcg_temp_free_i32(t0);
4710 tcg_temp_free_i32(t1);
4712 break;
4713 default:
4714 assert(FALSE); /* all shift types should be handled */
4715 break;
4718 if (!sf) { /* zero extend final result */
4719 tcg_gen_ext32u_i64(dst, dst);
4723 /* Shift a TCGv src by immediate, put result in dst.
4724 * The shift amount must be in range (this should always be true as the
4725 * relevant instructions will UNDEF on bad shift immediates).
4727 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
4728 enum a64_shift_type shift_type, unsigned int shift_i)
4730 assert(shift_i < (sf ? 64 : 32));
4732 if (shift_i == 0) {
4733 tcg_gen_mov_i64(dst, src);
4734 } else {
4735 TCGv_i64 shift_const;
4737 shift_const = tcg_const_i64(shift_i);
4738 shift_reg(dst, src, sf, shift_type, shift_const);
4739 tcg_temp_free_i64(shift_const);
4743 /* Logical (shifted register)
4744 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
4745 * +----+-----+-----------+-------+---+------+--------+------+------+
4746 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd |
4747 * +----+-----+-----------+-------+---+------+--------+------+------+
4749 static void disas_logic_reg(DisasContext *s, uint32_t insn)
4751 TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
4752 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
4754 sf = extract32(insn, 31, 1);
4755 opc = extract32(insn, 29, 2);
4756 shift_type = extract32(insn, 22, 2);
4757 invert = extract32(insn, 21, 1);
4758 rm = extract32(insn, 16, 5);
4759 shift_amount = extract32(insn, 10, 6);
4760 rn = extract32(insn, 5, 5);
4761 rd = extract32(insn, 0, 5);
4763 if (!sf && (shift_amount & (1 << 5))) {
4764 unallocated_encoding(s);
4765 return;
4768 tcg_rd = cpu_reg(s, rd);
4770 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
4771 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
4772 * register-register MOV and MVN, so it is worth special casing.
4774 tcg_rm = cpu_reg(s, rm);
4775 if (invert) {
4776 tcg_gen_not_i64(tcg_rd, tcg_rm);
4777 if (!sf) {
4778 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4780 } else {
4781 if (sf) {
4782 tcg_gen_mov_i64(tcg_rd, tcg_rm);
4783 } else {
4784 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
4787 return;
4790 tcg_rm = read_cpu_reg(s, rm, sf);
4792 if (shift_amount) {
4793 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
4796 tcg_rn = cpu_reg(s, rn);
4798 switch (opc | (invert << 2)) {
4799 case 0: /* AND */
4800 case 3: /* ANDS */
4801 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
4802 break;
4803 case 1: /* ORR */
4804 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
4805 break;
4806 case 2: /* EOR */
4807 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
4808 break;
4809 case 4: /* BIC */
4810 case 7: /* BICS */
4811 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
4812 break;
4813 case 5: /* ORN */
4814 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
4815 break;
4816 case 6: /* EON */
4817 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
4818 break;
4819 default:
4820 assert(FALSE);
4821 break;
4824 if (!sf) {
4825 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4828 if (opc == 3) {
4829 gen_logic_CC(sf, tcg_rd);
4834 * Add/subtract (extended register)
4836 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0|
4837 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4838 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd |
4839 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4841 * sf: 0 -> 32bit, 1 -> 64bit
4842 * op: 0 -> add , 1 -> sub
4843 * S: 1 -> set flags
4844 * opt: 00
4845 * option: extension type (see DecodeRegExtend)
4846 * imm3: optional shift to Rm
4848 * Rd = Rn + LSL(extend(Rm), amount)
4850 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
4852 int rd = extract32(insn, 0, 5);
4853 int rn = extract32(insn, 5, 5);
4854 int imm3 = extract32(insn, 10, 3);
4855 int option = extract32(insn, 13, 3);
4856 int rm = extract32(insn, 16, 5);
4857 int opt = extract32(insn, 22, 2);
4858 bool setflags = extract32(insn, 29, 1);
4859 bool sub_op = extract32(insn, 30, 1);
4860 bool sf = extract32(insn, 31, 1);
4862 TCGv_i64 tcg_rm, tcg_rn; /* temps */
4863 TCGv_i64 tcg_rd;
4864 TCGv_i64 tcg_result;
4866 if (imm3 > 4 || opt != 0) {
4867 unallocated_encoding(s);
4868 return;
4871 /* non-flag setting ops may use SP */
4872 if (!setflags) {
4873 tcg_rd = cpu_reg_sp(s, rd);
4874 } else {
4875 tcg_rd = cpu_reg(s, rd);
4877 tcg_rn = read_cpu_reg_sp(s, rn, sf);
4879 tcg_rm = read_cpu_reg(s, rm, sf);
4880 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
4882 tcg_result = tcg_temp_new_i64();
4884 if (!setflags) {
4885 if (sub_op) {
4886 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4887 } else {
4888 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4890 } else {
4891 if (sub_op) {
4892 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4893 } else {
4894 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4898 if (sf) {
4899 tcg_gen_mov_i64(tcg_rd, tcg_result);
4900 } else {
4901 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4904 tcg_temp_free_i64(tcg_result);
4908 * Add/subtract (shifted register)
4910 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
4911 * +--+--+--+-----------+-----+--+-------+---------+------+------+
4912 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd |
4913 * +--+--+--+-----------+-----+--+-------+---------+------+------+
4915 * sf: 0 -> 32bit, 1 -> 64bit
4916 * op: 0 -> add , 1 -> sub
4917 * S: 1 -> set flags
4918 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
4919 * imm6: Shift amount to apply to Rm before the add/sub
4921 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
4923 int rd = extract32(insn, 0, 5);
4924 int rn = extract32(insn, 5, 5);
4925 int imm6 = extract32(insn, 10, 6);
4926 int rm = extract32(insn, 16, 5);
4927 int shift_type = extract32(insn, 22, 2);
4928 bool setflags = extract32(insn, 29, 1);
4929 bool sub_op = extract32(insn, 30, 1);
4930 bool sf = extract32(insn, 31, 1);
4932 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4933 TCGv_i64 tcg_rn, tcg_rm;
4934 TCGv_i64 tcg_result;
4936 if ((shift_type == 3) || (!sf && (imm6 > 31))) {
4937 unallocated_encoding(s);
4938 return;
4941 tcg_rn = read_cpu_reg(s, rn, sf);
4942 tcg_rm = read_cpu_reg(s, rm, sf);
4944 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
4946 tcg_result = tcg_temp_new_i64();
4948 if (!setflags) {
4949 if (sub_op) {
4950 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4951 } else {
4952 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4954 } else {
4955 if (sub_op) {
4956 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4957 } else {
4958 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4962 if (sf) {
4963 tcg_gen_mov_i64(tcg_rd, tcg_result);
4964 } else {
4965 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4968 tcg_temp_free_i64(tcg_result);
4971 /* Data-processing (3 source)
4973 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0
4974 * +--+------+-----------+------+------+----+------+------+------+
4975 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd |
4976 * +--+------+-----------+------+------+----+------+------+------+
4978 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
4980 int rd = extract32(insn, 0, 5);
4981 int rn = extract32(insn, 5, 5);
4982 int ra = extract32(insn, 10, 5);
4983 int rm = extract32(insn, 16, 5);
4984 int op_id = (extract32(insn, 29, 3) << 4) |
4985 (extract32(insn, 21, 3) << 1) |
4986 extract32(insn, 15, 1);
4987 bool sf = extract32(insn, 31, 1);
4988 bool is_sub = extract32(op_id, 0, 1);
4989 bool is_high = extract32(op_id, 2, 1);
4990 bool is_signed = false;
4991 TCGv_i64 tcg_op1;
4992 TCGv_i64 tcg_op2;
4993 TCGv_i64 tcg_tmp;
4995 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
4996 switch (op_id) {
4997 case 0x42: /* SMADDL */
4998 case 0x43: /* SMSUBL */
4999 case 0x44: /* SMULH */
5000 is_signed = true;
5001 break;
5002 case 0x0: /* MADD (32bit) */
5003 case 0x1: /* MSUB (32bit) */
5004 case 0x40: /* MADD (64bit) */
5005 case 0x41: /* MSUB (64bit) */
5006 case 0x4a: /* UMADDL */
5007 case 0x4b: /* UMSUBL */
5008 case 0x4c: /* UMULH */
5009 break;
5010 default:
5011 unallocated_encoding(s);
5012 return;
5015 if (is_high) {
5016 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
5017 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5018 TCGv_i64 tcg_rn = cpu_reg(s, rn);
5019 TCGv_i64 tcg_rm = cpu_reg(s, rm);
5021 if (is_signed) {
5022 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
5023 } else {
5024 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
5027 tcg_temp_free_i64(low_bits);
5028 return;
5031 tcg_op1 = tcg_temp_new_i64();
5032 tcg_op2 = tcg_temp_new_i64();
5033 tcg_tmp = tcg_temp_new_i64();
5035 if (op_id < 0x42) {
5036 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
5037 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
5038 } else {
5039 if (is_signed) {
5040 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
5041 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
5042 } else {
5043 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
5044 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
5048 if (ra == 31 && !is_sub) {
5049 /* Special-case MADD with rA == XZR; it is the standard MUL alias */
5050 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
5051 } else {
5052 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
5053 if (is_sub) {
5054 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
5055 } else {
5056 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
5060 if (!sf) {
5061 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
5064 tcg_temp_free_i64(tcg_op1);
5065 tcg_temp_free_i64(tcg_op2);
5066 tcg_temp_free_i64(tcg_tmp);
5069 /* Add/subtract (with carry)
5070 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
5071 * +--+--+--+------------------------+------+-------------+------+-----+
5072 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd |
5073 * +--+--+--+------------------------+------+-------------+------+-----+
5076 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
5078 unsigned int sf, op, setflags, rm, rn, rd;
5079 TCGv_i64 tcg_y, tcg_rn, tcg_rd;
5081 sf = extract32(insn, 31, 1);
5082 op = extract32(insn, 30, 1);
5083 setflags = extract32(insn, 29, 1);
5084 rm = extract32(insn, 16, 5);
5085 rn = extract32(insn, 5, 5);
5086 rd = extract32(insn, 0, 5);
5088 tcg_rd = cpu_reg(s, rd);
5089 tcg_rn = cpu_reg(s, rn);
5091 if (op) {
5092 tcg_y = new_tmp_a64(s);
5093 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
5094 } else {
5095 tcg_y = cpu_reg(s, rm);
5098 if (setflags) {
5099 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
5100 } else {
5101 gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
5106 * Rotate right into flags
5107 * 31 30 29 21 15 10 5 4 0
5108 * +--+--+--+-----------------+--------+-----------+------+--+------+
5109 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask |
5110 * +--+--+--+-----------------+--------+-----------+------+--+------+
5112 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
5114 int mask = extract32(insn, 0, 4);
5115 int o2 = extract32(insn, 4, 1);
5116 int rn = extract32(insn, 5, 5);
5117 int imm6 = extract32(insn, 15, 6);
5118 int sf_op_s = extract32(insn, 29, 3);
5119 TCGv_i64 tcg_rn;
5120 TCGv_i32 nzcv;
5122 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
5123 unallocated_encoding(s);
5124 return;
5127 tcg_rn = read_cpu_reg(s, rn, 1);
5128 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
5130 nzcv = tcg_temp_new_i32();
5131 tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
5133 if (mask & 8) { /* N */
5134 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
5136 if (mask & 4) { /* Z */
5137 tcg_gen_not_i32(cpu_ZF, nzcv);
5138 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
5140 if (mask & 2) { /* C */
5141 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
5143 if (mask & 1) { /* V */
5144 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
5147 tcg_temp_free_i32(nzcv);
5151 * Evaluate into flags
5152 * 31 30 29 21 15 14 10 5 4 0
5153 * +--+--+--+-----------------+---------+----+---------+------+--+------+
5154 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask |
5155 * +--+--+--+-----------------+---------+----+---------+------+--+------+
5157 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
5159 int o3_mask = extract32(insn, 0, 5);
5160 int rn = extract32(insn, 5, 5);
5161 int o2 = extract32(insn, 15, 6);
5162 int sz = extract32(insn, 14, 1);
5163 int sf_op_s = extract32(insn, 29, 3);
5164 TCGv_i32 tmp;
5165 int shift;
5167 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
5168 !dc_isar_feature(aa64_condm_4, s)) {
5169 unallocated_encoding(s);
5170 return;
5172 shift = sz ? 16 : 24; /* SETF16 or SETF8 */
5174 tmp = tcg_temp_new_i32();
5175 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
5176 tcg_gen_shli_i32(cpu_NF, tmp, shift);
5177 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
5178 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
5179 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
5180 tcg_temp_free_i32(tmp);
5183 /* Conditional compare (immediate / register)
5184 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
5185 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5186 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv |
5187 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5188 * [1] y [0] [0]
5190 static void disas_cc(DisasContext *s, uint32_t insn)
5192 unsigned int sf, op, y, cond, rn, nzcv, is_imm;
5193 TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
5194 TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
5195 DisasCompare c;
5197 if (!extract32(insn, 29, 1)) {
5198 unallocated_encoding(s);
5199 return;
5201 if (insn & (1 << 10 | 1 << 4)) {
5202 unallocated_encoding(s);
5203 return;
5205 sf = extract32(insn, 31, 1);
5206 op = extract32(insn, 30, 1);
5207 is_imm = extract32(insn, 11, 1);
5208 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
5209 cond = extract32(insn, 12, 4);
5210 rn = extract32(insn, 5, 5);
5211 nzcv = extract32(insn, 0, 4);
5213 /* Set T0 = !COND. */
5214 tcg_t0 = tcg_temp_new_i32();
5215 arm_test_cc(&c, cond);
5216 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
5217 arm_free_cc(&c);
5219 /* Load the arguments for the new comparison. */
5220 if (is_imm) {
5221 tcg_y = new_tmp_a64(s);
5222 tcg_gen_movi_i64(tcg_y, y);
5223 } else {
5224 tcg_y = cpu_reg(s, y);
5226 tcg_rn = cpu_reg(s, rn);
5228 /* Set the flags for the new comparison. */
5229 tcg_tmp = tcg_temp_new_i64();
5230 if (op) {
5231 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5232 } else {
5233 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5235 tcg_temp_free_i64(tcg_tmp);
5237 /* If COND was false, force the flags to #nzcv. Compute two masks
5238 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
5239 * For tcg hosts that support ANDC, we can make do with just T1.
5240 * In either case, allow the tcg optimizer to delete any unused mask.
5242 tcg_t1 = tcg_temp_new_i32();
5243 tcg_t2 = tcg_temp_new_i32();
5244 tcg_gen_neg_i32(tcg_t1, tcg_t0);
5245 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
5247 if (nzcv & 8) { /* N */
5248 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
5249 } else {
5250 if (TCG_TARGET_HAS_andc_i32) {
5251 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
5252 } else {
5253 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
5256 if (nzcv & 4) { /* Z */
5257 if (TCG_TARGET_HAS_andc_i32) {
5258 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
5259 } else {
5260 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
5262 } else {
5263 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
5265 if (nzcv & 2) { /* C */
5266 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
5267 } else {
5268 if (TCG_TARGET_HAS_andc_i32) {
5269 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
5270 } else {
5271 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
5274 if (nzcv & 1) { /* V */
5275 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
5276 } else {
5277 if (TCG_TARGET_HAS_andc_i32) {
5278 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
5279 } else {
5280 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
5283 tcg_temp_free_i32(tcg_t0);
5284 tcg_temp_free_i32(tcg_t1);
5285 tcg_temp_free_i32(tcg_t2);
5288 /* Conditional select
5289 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0
5290 * +----+----+---+-----------------+------+------+-----+------+------+
5291 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd |
5292 * +----+----+---+-----------------+------+------+-----+------+------+
5294 static void disas_cond_select(DisasContext *s, uint32_t insn)
5296 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
5297 TCGv_i64 tcg_rd, zero;
5298 DisasCompare64 c;
5300 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
5301 /* S == 1 or op2<1> == 1 */
5302 unallocated_encoding(s);
5303 return;
5305 sf = extract32(insn, 31, 1);
5306 else_inv = extract32(insn, 30, 1);
5307 rm = extract32(insn, 16, 5);
5308 cond = extract32(insn, 12, 4);
5309 else_inc = extract32(insn, 10, 1);
5310 rn = extract32(insn, 5, 5);
5311 rd = extract32(insn, 0, 5);
5313 tcg_rd = cpu_reg(s, rd);
5315 a64_test_cc(&c, cond);
5316 zero = tcg_const_i64(0);
5318 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
5319 /* CSET & CSETM. */
5320 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero);
5321 if (else_inv) {
5322 tcg_gen_neg_i64(tcg_rd, tcg_rd);
5324 } else {
5325 TCGv_i64 t_true = cpu_reg(s, rn);
5326 TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
5327 if (else_inv && else_inc) {
5328 tcg_gen_neg_i64(t_false, t_false);
5329 } else if (else_inv) {
5330 tcg_gen_not_i64(t_false, t_false);
5331 } else if (else_inc) {
5332 tcg_gen_addi_i64(t_false, t_false, 1);
5334 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
5337 tcg_temp_free_i64(zero);
5338 a64_free_cc(&c);
5340 if (!sf) {
5341 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5345 static void handle_clz(DisasContext *s, unsigned int sf,
5346 unsigned int rn, unsigned int rd)
5348 TCGv_i64 tcg_rd, tcg_rn;
5349 tcg_rd = cpu_reg(s, rd);
5350 tcg_rn = cpu_reg(s, rn);
5352 if (sf) {
5353 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
5354 } else {
5355 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5356 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5357 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
5358 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5359 tcg_temp_free_i32(tcg_tmp32);
5363 static void handle_cls(DisasContext *s, unsigned int sf,
5364 unsigned int rn, unsigned int rd)
5366 TCGv_i64 tcg_rd, tcg_rn;
5367 tcg_rd = cpu_reg(s, rd);
5368 tcg_rn = cpu_reg(s, rn);
5370 if (sf) {
5371 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
5372 } else {
5373 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5374 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5375 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
5376 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5377 tcg_temp_free_i32(tcg_tmp32);
5381 static void handle_rbit(DisasContext *s, unsigned int sf,
5382 unsigned int rn, unsigned int rd)
5384 TCGv_i64 tcg_rd, tcg_rn;
5385 tcg_rd = cpu_reg(s, rd);
5386 tcg_rn = cpu_reg(s, rn);
5388 if (sf) {
5389 gen_helper_rbit64(tcg_rd, tcg_rn);
5390 } else {
5391 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5392 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5393 gen_helper_rbit(tcg_tmp32, tcg_tmp32);
5394 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5395 tcg_temp_free_i32(tcg_tmp32);
5399 /* REV with sf==1, opcode==3 ("REV64") */
5400 static void handle_rev64(DisasContext *s, unsigned int sf,
5401 unsigned int rn, unsigned int rd)
5403 if (!sf) {
5404 unallocated_encoding(s);
5405 return;
5407 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
5410 /* REV with sf==0, opcode==2
5411 * REV32 (sf==1, opcode==2)
5413 static void handle_rev32(DisasContext *s, unsigned int sf,
5414 unsigned int rn, unsigned int rd)
5416 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5417 TCGv_i64 tcg_rn = cpu_reg(s, rn);
5419 if (sf) {
5420 tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
5421 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
5422 } else {
5423 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
5427 /* REV16 (opcode==1) */
5428 static void handle_rev16(DisasContext *s, unsigned int sf,
5429 unsigned int rn, unsigned int rd)
5431 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5432 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
5433 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5434 TCGv_i64 mask = tcg_const_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
5436 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
5437 tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
5438 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
5439 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
5440 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
5442 tcg_temp_free_i64(mask);
5443 tcg_temp_free_i64(tcg_tmp);
5446 /* Data-processing (1 source)
5447 * 31 30 29 28 21 20 16 15 10 9 5 4 0
5448 * +----+---+---+-----------------+---------+--------+------+------+
5449 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd |
5450 * +----+---+---+-----------------+---------+--------+------+------+
5452 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
5454 unsigned int sf, opcode, opcode2, rn, rd;
5455 TCGv_i64 tcg_rd;
5457 if (extract32(insn, 29, 1)) {
5458 unallocated_encoding(s);
5459 return;
5462 sf = extract32(insn, 31, 1);
5463 opcode = extract32(insn, 10, 6);
5464 opcode2 = extract32(insn, 16, 5);
5465 rn = extract32(insn, 5, 5);
5466 rd = extract32(insn, 0, 5);
5468 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
5470 switch (MAP(sf, opcode2, opcode)) {
5471 case MAP(0, 0x00, 0x00): /* RBIT */
5472 case MAP(1, 0x00, 0x00):
5473 handle_rbit(s, sf, rn, rd);
5474 break;
5475 case MAP(0, 0x00, 0x01): /* REV16 */
5476 case MAP(1, 0x00, 0x01):
5477 handle_rev16(s, sf, rn, rd);
5478 break;
5479 case MAP(0, 0x00, 0x02): /* REV/REV32 */
5480 case MAP(1, 0x00, 0x02):
5481 handle_rev32(s, sf, rn, rd);
5482 break;
5483 case MAP(1, 0x00, 0x03): /* REV64 */
5484 handle_rev64(s, sf, rn, rd);
5485 break;
5486 case MAP(0, 0x00, 0x04): /* CLZ */
5487 case MAP(1, 0x00, 0x04):
5488 handle_clz(s, sf, rn, rd);
5489 break;
5490 case MAP(0, 0x00, 0x05): /* CLS */
5491 case MAP(1, 0x00, 0x05):
5492 handle_cls(s, sf, rn, rd);
5493 break;
5494 case MAP(1, 0x01, 0x00): /* PACIA */
5495 if (s->pauth_active) {
5496 tcg_rd = cpu_reg(s, rd);
5497 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5498 } else if (!dc_isar_feature(aa64_pauth, s)) {
5499 goto do_unallocated;
5501 break;
5502 case MAP(1, 0x01, 0x01): /* PACIB */
5503 if (s->pauth_active) {
5504 tcg_rd = cpu_reg(s, rd);
5505 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5506 } else if (!dc_isar_feature(aa64_pauth, s)) {
5507 goto do_unallocated;
5509 break;
5510 case MAP(1, 0x01, 0x02): /* PACDA */
5511 if (s->pauth_active) {
5512 tcg_rd = cpu_reg(s, rd);
5513 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5514 } else if (!dc_isar_feature(aa64_pauth, s)) {
5515 goto do_unallocated;
5517 break;
5518 case MAP(1, 0x01, 0x03): /* PACDB */
5519 if (s->pauth_active) {
5520 tcg_rd = cpu_reg(s, rd);
5521 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5522 } else if (!dc_isar_feature(aa64_pauth, s)) {
5523 goto do_unallocated;
5525 break;
5526 case MAP(1, 0x01, 0x04): /* AUTIA */
5527 if (s->pauth_active) {
5528 tcg_rd = cpu_reg(s, rd);
5529 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5530 } else if (!dc_isar_feature(aa64_pauth, s)) {
5531 goto do_unallocated;
5533 break;
5534 case MAP(1, 0x01, 0x05): /* AUTIB */
5535 if (s->pauth_active) {
5536 tcg_rd = cpu_reg(s, rd);
5537 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5538 } else if (!dc_isar_feature(aa64_pauth, s)) {
5539 goto do_unallocated;
5541 break;
5542 case MAP(1, 0x01, 0x06): /* AUTDA */
5543 if (s->pauth_active) {
5544 tcg_rd = cpu_reg(s, rd);
5545 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5546 } else if (!dc_isar_feature(aa64_pauth, s)) {
5547 goto do_unallocated;
5549 break;
5550 case MAP(1, 0x01, 0x07): /* AUTDB */
5551 if (s->pauth_active) {
5552 tcg_rd = cpu_reg(s, rd);
5553 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5554 } else if (!dc_isar_feature(aa64_pauth, s)) {
5555 goto do_unallocated;
5557 break;
5558 case MAP(1, 0x01, 0x08): /* PACIZA */
5559 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5560 goto do_unallocated;
5561 } else if (s->pauth_active) {
5562 tcg_rd = cpu_reg(s, rd);
5563 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5565 break;
5566 case MAP(1, 0x01, 0x09): /* PACIZB */
5567 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5568 goto do_unallocated;
5569 } else if (s->pauth_active) {
5570 tcg_rd = cpu_reg(s, rd);
5571 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5573 break;
5574 case MAP(1, 0x01, 0x0a): /* PACDZA */
5575 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5576 goto do_unallocated;
5577 } else if (s->pauth_active) {
5578 tcg_rd = cpu_reg(s, rd);
5579 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5581 break;
5582 case MAP(1, 0x01, 0x0b): /* PACDZB */
5583 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5584 goto do_unallocated;
5585 } else if (s->pauth_active) {
5586 tcg_rd = cpu_reg(s, rd);
5587 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5589 break;
5590 case MAP(1, 0x01, 0x0c): /* AUTIZA */
5591 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5592 goto do_unallocated;
5593 } else if (s->pauth_active) {
5594 tcg_rd = cpu_reg(s, rd);
5595 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5597 break;
5598 case MAP(1, 0x01, 0x0d): /* AUTIZB */
5599 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5600 goto do_unallocated;
5601 } else if (s->pauth_active) {
5602 tcg_rd = cpu_reg(s, rd);
5603 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5605 break;
5606 case MAP(1, 0x01, 0x0e): /* AUTDZA */
5607 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5608 goto do_unallocated;
5609 } else if (s->pauth_active) {
5610 tcg_rd = cpu_reg(s, rd);
5611 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5613 break;
5614 case MAP(1, 0x01, 0x0f): /* AUTDZB */
5615 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5616 goto do_unallocated;
5617 } else if (s->pauth_active) {
5618 tcg_rd = cpu_reg(s, rd);
5619 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5621 break;
5622 case MAP(1, 0x01, 0x10): /* XPACI */
5623 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5624 goto do_unallocated;
5625 } else if (s->pauth_active) {
5626 tcg_rd = cpu_reg(s, rd);
5627 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd);
5629 break;
5630 case MAP(1, 0x01, 0x11): /* XPACD */
5631 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5632 goto do_unallocated;
5633 } else if (s->pauth_active) {
5634 tcg_rd = cpu_reg(s, rd);
5635 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd);
5637 break;
5638 default:
5639 do_unallocated:
5640 unallocated_encoding(s);
5641 break;
5644 #undef MAP
5647 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
5648 unsigned int rm, unsigned int rn, unsigned int rd)
5650 TCGv_i64 tcg_n, tcg_m, tcg_rd;
5651 tcg_rd = cpu_reg(s, rd);
5653 if (!sf && is_signed) {
5654 tcg_n = new_tmp_a64(s);
5655 tcg_m = new_tmp_a64(s);
5656 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
5657 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
5658 } else {
5659 tcg_n = read_cpu_reg(s, rn, sf);
5660 tcg_m = read_cpu_reg(s, rm, sf);
5663 if (is_signed) {
5664 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
5665 } else {
5666 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
5669 if (!sf) { /* zero extend final result */
5670 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5674 /* LSLV, LSRV, ASRV, RORV */
5675 static void handle_shift_reg(DisasContext *s,
5676 enum a64_shift_type shift_type, unsigned int sf,
5677 unsigned int rm, unsigned int rn, unsigned int rd)
5679 TCGv_i64 tcg_shift = tcg_temp_new_i64();
5680 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5681 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5683 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
5684 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
5685 tcg_temp_free_i64(tcg_shift);
5688 /* CRC32[BHWX], CRC32C[BHWX] */
5689 static void handle_crc32(DisasContext *s,
5690 unsigned int sf, unsigned int sz, bool crc32c,
5691 unsigned int rm, unsigned int rn, unsigned int rd)
5693 TCGv_i64 tcg_acc, tcg_val;
5694 TCGv_i32 tcg_bytes;
5696 if (!dc_isar_feature(aa64_crc32, s)
5697 || (sf == 1 && sz != 3)
5698 || (sf == 0 && sz == 3)) {
5699 unallocated_encoding(s);
5700 return;
5703 if (sz == 3) {
5704 tcg_val = cpu_reg(s, rm);
5705 } else {
5706 uint64_t mask;
5707 switch (sz) {
5708 case 0:
5709 mask = 0xFF;
5710 break;
5711 case 1:
5712 mask = 0xFFFF;
5713 break;
5714 case 2:
5715 mask = 0xFFFFFFFF;
5716 break;
5717 default:
5718 g_assert_not_reached();
5720 tcg_val = new_tmp_a64(s);
5721 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
5724 tcg_acc = cpu_reg(s, rn);
5725 tcg_bytes = tcg_const_i32(1 << sz);
5727 if (crc32c) {
5728 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5729 } else {
5730 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5733 tcg_temp_free_i32(tcg_bytes);
5736 /* Data-processing (2 source)
5737 * 31 30 29 28 21 20 16 15 10 9 5 4 0
5738 * +----+---+---+-----------------+------+--------+------+------+
5739 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd |
5740 * +----+---+---+-----------------+------+--------+------+------+
5742 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
5744 unsigned int sf, rm, opcode, rn, rd, setflag;
5745 sf = extract32(insn, 31, 1);
5746 setflag = extract32(insn, 29, 1);
5747 rm = extract32(insn, 16, 5);
5748 opcode = extract32(insn, 10, 6);
5749 rn = extract32(insn, 5, 5);
5750 rd = extract32(insn, 0, 5);
5752 if (setflag && opcode != 0) {
5753 unallocated_encoding(s);
5754 return;
5757 switch (opcode) {
5758 case 0: /* SUBP(S) */
5759 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5760 goto do_unallocated;
5761 } else {
5762 TCGv_i64 tcg_n, tcg_m, tcg_d;
5764 tcg_n = read_cpu_reg_sp(s, rn, true);
5765 tcg_m = read_cpu_reg_sp(s, rm, true);
5766 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
5767 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
5768 tcg_d = cpu_reg(s, rd);
5770 if (setflag) {
5771 gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
5772 } else {
5773 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
5776 break;
5777 case 2: /* UDIV */
5778 handle_div(s, false, sf, rm, rn, rd);
5779 break;
5780 case 3: /* SDIV */
5781 handle_div(s, true, sf, rm, rn, rd);
5782 break;
5783 case 4: /* IRG */
5784 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5785 goto do_unallocated;
5787 if (s->ata) {
5788 gen_helper_irg(cpu_reg_sp(s, rd), cpu_env,
5789 cpu_reg_sp(s, rn), cpu_reg(s, rm));
5790 } else {
5791 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
5792 cpu_reg_sp(s, rn));
5794 break;
5795 case 5: /* GMI */
5796 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5797 goto do_unallocated;
5798 } else {
5799 TCGv_i64 t1 = tcg_const_i64(1);
5800 TCGv_i64 t2 = tcg_temp_new_i64();
5802 tcg_gen_extract_i64(t2, cpu_reg_sp(s, rn), 56, 4);
5803 tcg_gen_shl_i64(t1, t1, t2);
5804 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t1);
5806 tcg_temp_free_i64(t1);
5807 tcg_temp_free_i64(t2);
5809 break;
5810 case 8: /* LSLV */
5811 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
5812 break;
5813 case 9: /* LSRV */
5814 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
5815 break;
5816 case 10: /* ASRV */
5817 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
5818 break;
5819 case 11: /* RORV */
5820 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
5821 break;
5822 case 12: /* PACGA */
5823 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
5824 goto do_unallocated;
5826 gen_helper_pacga(cpu_reg(s, rd), cpu_env,
5827 cpu_reg(s, rn), cpu_reg_sp(s, rm));
5828 break;
5829 case 16:
5830 case 17:
5831 case 18:
5832 case 19:
5833 case 20:
5834 case 21:
5835 case 22:
5836 case 23: /* CRC32 */
5838 int sz = extract32(opcode, 0, 2);
5839 bool crc32c = extract32(opcode, 2, 1);
5840 handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
5841 break;
5843 default:
5844 do_unallocated:
5845 unallocated_encoding(s);
5846 break;
5851 * Data processing - register
5852 * 31 30 29 28 25 21 20 16 10 0
5853 * +--+---+--+---+-------+-----+-------+-------+---------+
5854 * | |op0| |op1| 1 0 1 | op2 | | op3 | |
5855 * +--+---+--+---+-------+-----+-------+-------+---------+
5857 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
5859 int op0 = extract32(insn, 30, 1);
5860 int op1 = extract32(insn, 28, 1);
5861 int op2 = extract32(insn, 21, 4);
5862 int op3 = extract32(insn, 10, 6);
5864 if (!op1) {
5865 if (op2 & 8) {
5866 if (op2 & 1) {
5867 /* Add/sub (extended register) */
5868 disas_add_sub_ext_reg(s, insn);
5869 } else {
5870 /* Add/sub (shifted register) */
5871 disas_add_sub_reg(s, insn);
5873 } else {
5874 /* Logical (shifted register) */
5875 disas_logic_reg(s, insn);
5877 return;
5880 switch (op2) {
5881 case 0x0:
5882 switch (op3) {
5883 case 0x00: /* Add/subtract (with carry) */
5884 disas_adc_sbc(s, insn);
5885 break;
5887 case 0x01: /* Rotate right into flags */
5888 case 0x21:
5889 disas_rotate_right_into_flags(s, insn);
5890 break;
5892 case 0x02: /* Evaluate into flags */
5893 case 0x12:
5894 case 0x22:
5895 case 0x32:
5896 disas_evaluate_into_flags(s, insn);
5897 break;
5899 default:
5900 goto do_unallocated;
5902 break;
5904 case 0x2: /* Conditional compare */
5905 disas_cc(s, insn); /* both imm and reg forms */
5906 break;
5908 case 0x4: /* Conditional select */
5909 disas_cond_select(s, insn);
5910 break;
5912 case 0x6: /* Data-processing */
5913 if (op0) { /* (1 source) */
5914 disas_data_proc_1src(s, insn);
5915 } else { /* (2 source) */
5916 disas_data_proc_2src(s, insn);
5918 break;
5919 case 0x8 ... 0xf: /* (3 source) */
5920 disas_data_proc_3src(s, insn);
5921 break;
5923 default:
5924 do_unallocated:
5925 unallocated_encoding(s);
5926 break;
5930 static void handle_fp_compare(DisasContext *s, int size,
5931 unsigned int rn, unsigned int rm,
5932 bool cmp_with_zero, bool signal_all_nans)
5934 TCGv_i64 tcg_flags = tcg_temp_new_i64();
5935 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
5937 if (size == MO_64) {
5938 TCGv_i64 tcg_vn, tcg_vm;
5940 tcg_vn = read_fp_dreg(s, rn);
5941 if (cmp_with_zero) {
5942 tcg_vm = tcg_const_i64(0);
5943 } else {
5944 tcg_vm = read_fp_dreg(s, rm);
5946 if (signal_all_nans) {
5947 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5948 } else {
5949 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5951 tcg_temp_free_i64(tcg_vn);
5952 tcg_temp_free_i64(tcg_vm);
5953 } else {
5954 TCGv_i32 tcg_vn = tcg_temp_new_i32();
5955 TCGv_i32 tcg_vm = tcg_temp_new_i32();
5957 read_vec_element_i32(s, tcg_vn, rn, 0, size);
5958 if (cmp_with_zero) {
5959 tcg_gen_movi_i32(tcg_vm, 0);
5960 } else {
5961 read_vec_element_i32(s, tcg_vm, rm, 0, size);
5964 switch (size) {
5965 case MO_32:
5966 if (signal_all_nans) {
5967 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5968 } else {
5969 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5971 break;
5972 case MO_16:
5973 if (signal_all_nans) {
5974 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5975 } else {
5976 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5978 break;
5979 default:
5980 g_assert_not_reached();
5983 tcg_temp_free_i32(tcg_vn);
5984 tcg_temp_free_i32(tcg_vm);
5987 tcg_temp_free_ptr(fpst);
5989 gen_set_nzcv(tcg_flags);
5991 tcg_temp_free_i64(tcg_flags);
5994 /* Floating point compare
5995 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0
5996 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5997 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 |
5998 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
6000 static void disas_fp_compare(DisasContext *s, uint32_t insn)
6002 unsigned int mos, type, rm, op, rn, opc, op2r;
6003 int size;
6005 mos = extract32(insn, 29, 3);
6006 type = extract32(insn, 22, 2);
6007 rm = extract32(insn, 16, 5);
6008 op = extract32(insn, 14, 2);
6009 rn = extract32(insn, 5, 5);
6010 opc = extract32(insn, 3, 2);
6011 op2r = extract32(insn, 0, 3);
6013 if (mos || op || op2r) {
6014 unallocated_encoding(s);
6015 return;
6018 switch (type) {
6019 case 0:
6020 size = MO_32;
6021 break;
6022 case 1:
6023 size = MO_64;
6024 break;
6025 case 3:
6026 size = MO_16;
6027 if (dc_isar_feature(aa64_fp16, s)) {
6028 break;
6030 /* fallthru */
6031 default:
6032 unallocated_encoding(s);
6033 return;
6036 if (!fp_access_check(s)) {
6037 return;
6040 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
6043 /* Floating point conditional compare
6044 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
6045 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
6046 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv |
6047 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
6049 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
6051 unsigned int mos, type, rm, cond, rn, op, nzcv;
6052 TCGv_i64 tcg_flags;
6053 TCGLabel *label_continue = NULL;
6054 int size;
6056 mos = extract32(insn, 29, 3);
6057 type = extract32(insn, 22, 2);
6058 rm = extract32(insn, 16, 5);
6059 cond = extract32(insn, 12, 4);
6060 rn = extract32(insn, 5, 5);
6061 op = extract32(insn, 4, 1);
6062 nzcv = extract32(insn, 0, 4);
6064 if (mos) {
6065 unallocated_encoding(s);
6066 return;
6069 switch (type) {
6070 case 0:
6071 size = MO_32;
6072 break;
6073 case 1:
6074 size = MO_64;
6075 break;
6076 case 3:
6077 size = MO_16;
6078 if (dc_isar_feature(aa64_fp16, s)) {
6079 break;
6081 /* fallthru */
6082 default:
6083 unallocated_encoding(s);
6084 return;
6087 if (!fp_access_check(s)) {
6088 return;
6091 if (cond < 0x0e) { /* not always */
6092 TCGLabel *label_match = gen_new_label();
6093 label_continue = gen_new_label();
6094 arm_gen_test_cc(cond, label_match);
6095 /* nomatch: */
6096 tcg_flags = tcg_const_i64(nzcv << 28);
6097 gen_set_nzcv(tcg_flags);
6098 tcg_temp_free_i64(tcg_flags);
6099 tcg_gen_br(label_continue);
6100 gen_set_label(label_match);
6103 handle_fp_compare(s, size, rn, rm, false, op);
6105 if (cond < 0x0e) {
6106 gen_set_label(label_continue);
6110 /* Floating point conditional select
6111 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
6112 * +---+---+---+-----------+------+---+------+------+-----+------+------+
6113 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd |
6114 * +---+---+---+-----------+------+---+------+------+-----+------+------+
6116 static void disas_fp_csel(DisasContext *s, uint32_t insn)
6118 unsigned int mos, type, rm, cond, rn, rd;
6119 TCGv_i64 t_true, t_false, t_zero;
6120 DisasCompare64 c;
6121 MemOp sz;
6123 mos = extract32(insn, 29, 3);
6124 type = extract32(insn, 22, 2);
6125 rm = extract32(insn, 16, 5);
6126 cond = extract32(insn, 12, 4);
6127 rn = extract32(insn, 5, 5);
6128 rd = extract32(insn, 0, 5);
6130 if (mos) {
6131 unallocated_encoding(s);
6132 return;
6135 switch (type) {
6136 case 0:
6137 sz = MO_32;
6138 break;
6139 case 1:
6140 sz = MO_64;
6141 break;
6142 case 3:
6143 sz = MO_16;
6144 if (dc_isar_feature(aa64_fp16, s)) {
6145 break;
6147 /* fallthru */
6148 default:
6149 unallocated_encoding(s);
6150 return;
6153 if (!fp_access_check(s)) {
6154 return;
6157 /* Zero extend sreg & hreg inputs to 64 bits now. */
6158 t_true = tcg_temp_new_i64();
6159 t_false = tcg_temp_new_i64();
6160 read_vec_element(s, t_true, rn, 0, sz);
6161 read_vec_element(s, t_false, rm, 0, sz);
6163 a64_test_cc(&c, cond);
6164 t_zero = tcg_const_i64(0);
6165 tcg_gen_movcond_i64(c.cond, t_true, c.value, t_zero, t_true, t_false);
6166 tcg_temp_free_i64(t_zero);
6167 tcg_temp_free_i64(t_false);
6168 a64_free_cc(&c);
6170 /* Note that sregs & hregs write back zeros to the high bits,
6171 and we've already done the zero-extension. */
6172 write_fp_dreg(s, rd, t_true);
6173 tcg_temp_free_i64(t_true);
6176 /* Floating-point data-processing (1 source) - half precision */
6177 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
6179 TCGv_ptr fpst = NULL;
6180 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
6181 TCGv_i32 tcg_res = tcg_temp_new_i32();
6183 switch (opcode) {
6184 case 0x0: /* FMOV */
6185 tcg_gen_mov_i32(tcg_res, tcg_op);
6186 break;
6187 case 0x1: /* FABS */
6188 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
6189 break;
6190 case 0x2: /* FNEG */
6191 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
6192 break;
6193 case 0x3: /* FSQRT */
6194 fpst = fpstatus_ptr(FPST_FPCR_F16);
6195 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
6196 break;
6197 case 0x8: /* FRINTN */
6198 case 0x9: /* FRINTP */
6199 case 0xa: /* FRINTM */
6200 case 0xb: /* FRINTZ */
6201 case 0xc: /* FRINTA */
6203 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
6204 fpst = fpstatus_ptr(FPST_FPCR_F16);
6206 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6207 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6209 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6210 tcg_temp_free_i32(tcg_rmode);
6211 break;
6213 case 0xe: /* FRINTX */
6214 fpst = fpstatus_ptr(FPST_FPCR_F16);
6215 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
6216 break;
6217 case 0xf: /* FRINTI */
6218 fpst = fpstatus_ptr(FPST_FPCR_F16);
6219 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6220 break;
6221 default:
6222 abort();
6225 write_fp_sreg(s, rd, tcg_res);
6227 if (fpst) {
6228 tcg_temp_free_ptr(fpst);
6230 tcg_temp_free_i32(tcg_op);
6231 tcg_temp_free_i32(tcg_res);
6234 /* Floating-point data-processing (1 source) - single precision */
6235 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
6237 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
6238 TCGv_i32 tcg_op, tcg_res;
6239 TCGv_ptr fpst;
6240 int rmode = -1;
6242 tcg_op = read_fp_sreg(s, rn);
6243 tcg_res = tcg_temp_new_i32();
6245 switch (opcode) {
6246 case 0x0: /* FMOV */
6247 tcg_gen_mov_i32(tcg_res, tcg_op);
6248 goto done;
6249 case 0x1: /* FABS */
6250 gen_helper_vfp_abss(tcg_res, tcg_op);
6251 goto done;
6252 case 0x2: /* FNEG */
6253 gen_helper_vfp_negs(tcg_res, tcg_op);
6254 goto done;
6255 case 0x3: /* FSQRT */
6256 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
6257 goto done;
6258 case 0x6: /* BFCVT */
6259 gen_fpst = gen_helper_bfcvt;
6260 break;
6261 case 0x8: /* FRINTN */
6262 case 0x9: /* FRINTP */
6263 case 0xa: /* FRINTM */
6264 case 0xb: /* FRINTZ */
6265 case 0xc: /* FRINTA */
6266 rmode = arm_rmode_to_sf(opcode & 7);
6267 gen_fpst = gen_helper_rints;
6268 break;
6269 case 0xe: /* FRINTX */
6270 gen_fpst = gen_helper_rints_exact;
6271 break;
6272 case 0xf: /* FRINTI */
6273 gen_fpst = gen_helper_rints;
6274 break;
6275 case 0x10: /* FRINT32Z */
6276 rmode = float_round_to_zero;
6277 gen_fpst = gen_helper_frint32_s;
6278 break;
6279 case 0x11: /* FRINT32X */
6280 gen_fpst = gen_helper_frint32_s;
6281 break;
6282 case 0x12: /* FRINT64Z */
6283 rmode = float_round_to_zero;
6284 gen_fpst = gen_helper_frint64_s;
6285 break;
6286 case 0x13: /* FRINT64X */
6287 gen_fpst = gen_helper_frint64_s;
6288 break;
6289 default:
6290 g_assert_not_reached();
6293 fpst = fpstatus_ptr(FPST_FPCR);
6294 if (rmode >= 0) {
6295 TCGv_i32 tcg_rmode = tcg_const_i32(rmode);
6296 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6297 gen_fpst(tcg_res, tcg_op, fpst);
6298 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6299 tcg_temp_free_i32(tcg_rmode);
6300 } else {
6301 gen_fpst(tcg_res, tcg_op, fpst);
6303 tcg_temp_free_ptr(fpst);
6305 done:
6306 write_fp_sreg(s, rd, tcg_res);
6307 tcg_temp_free_i32(tcg_op);
6308 tcg_temp_free_i32(tcg_res);
6311 /* Floating-point data-processing (1 source) - double precision */
6312 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
6314 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
6315 TCGv_i64 tcg_op, tcg_res;
6316 TCGv_ptr fpst;
6317 int rmode = -1;
6319 switch (opcode) {
6320 case 0x0: /* FMOV */
6321 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
6322 return;
6325 tcg_op = read_fp_dreg(s, rn);
6326 tcg_res = tcg_temp_new_i64();
6328 switch (opcode) {
6329 case 0x1: /* FABS */
6330 gen_helper_vfp_absd(tcg_res, tcg_op);
6331 goto done;
6332 case 0x2: /* FNEG */
6333 gen_helper_vfp_negd(tcg_res, tcg_op);
6334 goto done;
6335 case 0x3: /* FSQRT */
6336 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env);
6337 goto done;
6338 case 0x8: /* FRINTN */
6339 case 0x9: /* FRINTP */
6340 case 0xa: /* FRINTM */
6341 case 0xb: /* FRINTZ */
6342 case 0xc: /* FRINTA */
6343 rmode = arm_rmode_to_sf(opcode & 7);
6344 gen_fpst = gen_helper_rintd;
6345 break;
6346 case 0xe: /* FRINTX */
6347 gen_fpst = gen_helper_rintd_exact;
6348 break;
6349 case 0xf: /* FRINTI */
6350 gen_fpst = gen_helper_rintd;
6351 break;
6352 case 0x10: /* FRINT32Z */
6353 rmode = float_round_to_zero;
6354 gen_fpst = gen_helper_frint32_d;
6355 break;
6356 case 0x11: /* FRINT32X */
6357 gen_fpst = gen_helper_frint32_d;
6358 break;
6359 case 0x12: /* FRINT64Z */
6360 rmode = float_round_to_zero;
6361 gen_fpst = gen_helper_frint64_d;
6362 break;
6363 case 0x13: /* FRINT64X */
6364 gen_fpst = gen_helper_frint64_d;
6365 break;
6366 default:
6367 g_assert_not_reached();
6370 fpst = fpstatus_ptr(FPST_FPCR);
6371 if (rmode >= 0) {
6372 TCGv_i32 tcg_rmode = tcg_const_i32(rmode);
6373 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6374 gen_fpst(tcg_res, tcg_op, fpst);
6375 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6376 tcg_temp_free_i32(tcg_rmode);
6377 } else {
6378 gen_fpst(tcg_res, tcg_op, fpst);
6380 tcg_temp_free_ptr(fpst);
6382 done:
6383 write_fp_dreg(s, rd, tcg_res);
6384 tcg_temp_free_i64(tcg_op);
6385 tcg_temp_free_i64(tcg_res);
6388 static void handle_fp_fcvt(DisasContext *s, int opcode,
6389 int rd, int rn, int dtype, int ntype)
6391 switch (ntype) {
6392 case 0x0:
6394 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6395 if (dtype == 1) {
6396 /* Single to double */
6397 TCGv_i64 tcg_rd = tcg_temp_new_i64();
6398 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env);
6399 write_fp_dreg(s, rd, tcg_rd);
6400 tcg_temp_free_i64(tcg_rd);
6401 } else {
6402 /* Single to half */
6403 TCGv_i32 tcg_rd = tcg_temp_new_i32();
6404 TCGv_i32 ahp = get_ahp_flag();
6405 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6407 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6408 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6409 write_fp_sreg(s, rd, tcg_rd);
6410 tcg_temp_free_i32(tcg_rd);
6411 tcg_temp_free_i32(ahp);
6412 tcg_temp_free_ptr(fpst);
6414 tcg_temp_free_i32(tcg_rn);
6415 break;
6417 case 0x1:
6419 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
6420 TCGv_i32 tcg_rd = tcg_temp_new_i32();
6421 if (dtype == 0) {
6422 /* Double to single */
6423 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env);
6424 } else {
6425 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6426 TCGv_i32 ahp = get_ahp_flag();
6427 /* Double to half */
6428 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6429 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6430 tcg_temp_free_ptr(fpst);
6431 tcg_temp_free_i32(ahp);
6433 write_fp_sreg(s, rd, tcg_rd);
6434 tcg_temp_free_i32(tcg_rd);
6435 tcg_temp_free_i64(tcg_rn);
6436 break;
6438 case 0x3:
6440 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6441 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR);
6442 TCGv_i32 tcg_ahp = get_ahp_flag();
6443 tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
6444 if (dtype == 0) {
6445 /* Half to single */
6446 TCGv_i32 tcg_rd = tcg_temp_new_i32();
6447 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6448 write_fp_sreg(s, rd, tcg_rd);
6449 tcg_temp_free_i32(tcg_rd);
6450 } else {
6451 /* Half to double */
6452 TCGv_i64 tcg_rd = tcg_temp_new_i64();
6453 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6454 write_fp_dreg(s, rd, tcg_rd);
6455 tcg_temp_free_i64(tcg_rd);
6457 tcg_temp_free_i32(tcg_rn);
6458 tcg_temp_free_ptr(tcg_fpst);
6459 tcg_temp_free_i32(tcg_ahp);
6460 break;
6462 default:
6463 abort();
6467 /* Floating point data-processing (1 source)
6468 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0
6469 * +---+---+---+-----------+------+---+--------+-----------+------+------+
6470 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd |
6471 * +---+---+---+-----------+------+---+--------+-----------+------+------+
6473 static void disas_fp_1src(DisasContext *s, uint32_t insn)
6475 int mos = extract32(insn, 29, 3);
6476 int type = extract32(insn, 22, 2);
6477 int opcode = extract32(insn, 15, 6);
6478 int rn = extract32(insn, 5, 5);
6479 int rd = extract32(insn, 0, 5);
6481 if (mos) {
6482 goto do_unallocated;
6485 switch (opcode) {
6486 case 0x4: case 0x5: case 0x7:
6488 /* FCVT between half, single and double precision */
6489 int dtype = extract32(opcode, 0, 2);
6490 if (type == 2 || dtype == type) {
6491 goto do_unallocated;
6493 if (!fp_access_check(s)) {
6494 return;
6497 handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
6498 break;
6501 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
6502 if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
6503 goto do_unallocated;
6505 /* fall through */
6506 case 0x0 ... 0x3:
6507 case 0x8 ... 0xc:
6508 case 0xe ... 0xf:
6509 /* 32-to-32 and 64-to-64 ops */
6510 switch (type) {
6511 case 0:
6512 if (!fp_access_check(s)) {
6513 return;
6515 handle_fp_1src_single(s, opcode, rd, rn);
6516 break;
6517 case 1:
6518 if (!fp_access_check(s)) {
6519 return;
6521 handle_fp_1src_double(s, opcode, rd, rn);
6522 break;
6523 case 3:
6524 if (!dc_isar_feature(aa64_fp16, s)) {
6525 goto do_unallocated;
6528 if (!fp_access_check(s)) {
6529 return;
6531 handle_fp_1src_half(s, opcode, rd, rn);
6532 break;
6533 default:
6534 goto do_unallocated;
6536 break;
6538 case 0x6:
6539 switch (type) {
6540 case 1: /* BFCVT */
6541 if (!dc_isar_feature(aa64_bf16, s)) {
6542 goto do_unallocated;
6544 if (!fp_access_check(s)) {
6545 return;
6547 handle_fp_1src_single(s, opcode, rd, rn);
6548 break;
6549 default:
6550 goto do_unallocated;
6552 break;
6554 default:
6555 do_unallocated:
6556 unallocated_encoding(s);
6557 break;
6561 /* Floating-point data-processing (2 source) - single precision */
6562 static void handle_fp_2src_single(DisasContext *s, int opcode,
6563 int rd, int rn, int rm)
6565 TCGv_i32 tcg_op1;
6566 TCGv_i32 tcg_op2;
6567 TCGv_i32 tcg_res;
6568 TCGv_ptr fpst;
6570 tcg_res = tcg_temp_new_i32();
6571 fpst = fpstatus_ptr(FPST_FPCR);
6572 tcg_op1 = read_fp_sreg(s, rn);
6573 tcg_op2 = read_fp_sreg(s, rm);
6575 switch (opcode) {
6576 case 0x0: /* FMUL */
6577 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6578 break;
6579 case 0x1: /* FDIV */
6580 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
6581 break;
6582 case 0x2: /* FADD */
6583 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
6584 break;
6585 case 0x3: /* FSUB */
6586 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
6587 break;
6588 case 0x4: /* FMAX */
6589 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
6590 break;
6591 case 0x5: /* FMIN */
6592 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
6593 break;
6594 case 0x6: /* FMAXNM */
6595 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
6596 break;
6597 case 0x7: /* FMINNM */
6598 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
6599 break;
6600 case 0x8: /* FNMUL */
6601 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6602 gen_helper_vfp_negs(tcg_res, tcg_res);
6603 break;
6606 write_fp_sreg(s, rd, tcg_res);
6608 tcg_temp_free_ptr(fpst);
6609 tcg_temp_free_i32(tcg_op1);
6610 tcg_temp_free_i32(tcg_op2);
6611 tcg_temp_free_i32(tcg_res);
6614 /* Floating-point data-processing (2 source) - double precision */
6615 static void handle_fp_2src_double(DisasContext *s, int opcode,
6616 int rd, int rn, int rm)
6618 TCGv_i64 tcg_op1;
6619 TCGv_i64 tcg_op2;
6620 TCGv_i64 tcg_res;
6621 TCGv_ptr fpst;
6623 tcg_res = tcg_temp_new_i64();
6624 fpst = fpstatus_ptr(FPST_FPCR);
6625 tcg_op1 = read_fp_dreg(s, rn);
6626 tcg_op2 = read_fp_dreg(s, rm);
6628 switch (opcode) {
6629 case 0x0: /* FMUL */
6630 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6631 break;
6632 case 0x1: /* FDIV */
6633 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
6634 break;
6635 case 0x2: /* FADD */
6636 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
6637 break;
6638 case 0x3: /* FSUB */
6639 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
6640 break;
6641 case 0x4: /* FMAX */
6642 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
6643 break;
6644 case 0x5: /* FMIN */
6645 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
6646 break;
6647 case 0x6: /* FMAXNM */
6648 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6649 break;
6650 case 0x7: /* FMINNM */
6651 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6652 break;
6653 case 0x8: /* FNMUL */
6654 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6655 gen_helper_vfp_negd(tcg_res, tcg_res);
6656 break;
6659 write_fp_dreg(s, rd, tcg_res);
6661 tcg_temp_free_ptr(fpst);
6662 tcg_temp_free_i64(tcg_op1);
6663 tcg_temp_free_i64(tcg_op2);
6664 tcg_temp_free_i64(tcg_res);
6667 /* Floating-point data-processing (2 source) - half precision */
6668 static void handle_fp_2src_half(DisasContext *s, int opcode,
6669 int rd, int rn, int rm)
6671 TCGv_i32 tcg_op1;
6672 TCGv_i32 tcg_op2;
6673 TCGv_i32 tcg_res;
6674 TCGv_ptr fpst;
6676 tcg_res = tcg_temp_new_i32();
6677 fpst = fpstatus_ptr(FPST_FPCR_F16);
6678 tcg_op1 = read_fp_hreg(s, rn);
6679 tcg_op2 = read_fp_hreg(s, rm);
6681 switch (opcode) {
6682 case 0x0: /* FMUL */
6683 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6684 break;
6685 case 0x1: /* FDIV */
6686 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
6687 break;
6688 case 0x2: /* FADD */
6689 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
6690 break;
6691 case 0x3: /* FSUB */
6692 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
6693 break;
6694 case 0x4: /* FMAX */
6695 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
6696 break;
6697 case 0x5: /* FMIN */
6698 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
6699 break;
6700 case 0x6: /* FMAXNM */
6701 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6702 break;
6703 case 0x7: /* FMINNM */
6704 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6705 break;
6706 case 0x8: /* FNMUL */
6707 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6708 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000);
6709 break;
6710 default:
6711 g_assert_not_reached();
6714 write_fp_sreg(s, rd, tcg_res);
6716 tcg_temp_free_ptr(fpst);
6717 tcg_temp_free_i32(tcg_op1);
6718 tcg_temp_free_i32(tcg_op2);
6719 tcg_temp_free_i32(tcg_res);
6722 /* Floating point data-processing (2 source)
6723 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
6724 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6725 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd |
6726 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6728 static void disas_fp_2src(DisasContext *s, uint32_t insn)
6730 int mos = extract32(insn, 29, 3);
6731 int type = extract32(insn, 22, 2);
6732 int rd = extract32(insn, 0, 5);
6733 int rn = extract32(insn, 5, 5);
6734 int rm = extract32(insn, 16, 5);
6735 int opcode = extract32(insn, 12, 4);
6737 if (opcode > 8 || mos) {
6738 unallocated_encoding(s);
6739 return;
6742 switch (type) {
6743 case 0:
6744 if (!fp_access_check(s)) {
6745 return;
6747 handle_fp_2src_single(s, opcode, rd, rn, rm);
6748 break;
6749 case 1:
6750 if (!fp_access_check(s)) {
6751 return;
6753 handle_fp_2src_double(s, opcode, rd, rn, rm);
6754 break;
6755 case 3:
6756 if (!dc_isar_feature(aa64_fp16, s)) {
6757 unallocated_encoding(s);
6758 return;
6760 if (!fp_access_check(s)) {
6761 return;
6763 handle_fp_2src_half(s, opcode, rd, rn, rm);
6764 break;
6765 default:
6766 unallocated_encoding(s);
6770 /* Floating-point data-processing (3 source) - single precision */
6771 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
6772 int rd, int rn, int rm, int ra)
6774 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6775 TCGv_i32 tcg_res = tcg_temp_new_i32();
6776 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6778 tcg_op1 = read_fp_sreg(s, rn);
6779 tcg_op2 = read_fp_sreg(s, rm);
6780 tcg_op3 = read_fp_sreg(s, ra);
6782 /* These are fused multiply-add, and must be done as one
6783 * floating point operation with no rounding between the
6784 * multiplication and addition steps.
6785 * NB that doing the negations here as separate steps is
6786 * correct : an input NaN should come out with its sign bit
6787 * flipped if it is a negated-input.
6789 if (o1 == true) {
6790 gen_helper_vfp_negs(tcg_op3, tcg_op3);
6793 if (o0 != o1) {
6794 gen_helper_vfp_negs(tcg_op1, tcg_op1);
6797 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6799 write_fp_sreg(s, rd, tcg_res);
6801 tcg_temp_free_ptr(fpst);
6802 tcg_temp_free_i32(tcg_op1);
6803 tcg_temp_free_i32(tcg_op2);
6804 tcg_temp_free_i32(tcg_op3);
6805 tcg_temp_free_i32(tcg_res);
6808 /* Floating-point data-processing (3 source) - double precision */
6809 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
6810 int rd, int rn, int rm, int ra)
6812 TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
6813 TCGv_i64 tcg_res = tcg_temp_new_i64();
6814 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6816 tcg_op1 = read_fp_dreg(s, rn);
6817 tcg_op2 = read_fp_dreg(s, rm);
6818 tcg_op3 = read_fp_dreg(s, ra);
6820 /* These are fused multiply-add, and must be done as one
6821 * floating point operation with no rounding between the
6822 * multiplication and addition steps.
6823 * NB that doing the negations here as separate steps is
6824 * correct : an input NaN should come out with its sign bit
6825 * flipped if it is a negated-input.
6827 if (o1 == true) {
6828 gen_helper_vfp_negd(tcg_op3, tcg_op3);
6831 if (o0 != o1) {
6832 gen_helper_vfp_negd(tcg_op1, tcg_op1);
6835 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6837 write_fp_dreg(s, rd, tcg_res);
6839 tcg_temp_free_ptr(fpst);
6840 tcg_temp_free_i64(tcg_op1);
6841 tcg_temp_free_i64(tcg_op2);
6842 tcg_temp_free_i64(tcg_op3);
6843 tcg_temp_free_i64(tcg_res);
6846 /* Floating-point data-processing (3 source) - half precision */
6847 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
6848 int rd, int rn, int rm, int ra)
6850 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6851 TCGv_i32 tcg_res = tcg_temp_new_i32();
6852 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16);
6854 tcg_op1 = read_fp_hreg(s, rn);
6855 tcg_op2 = read_fp_hreg(s, rm);
6856 tcg_op3 = read_fp_hreg(s, ra);
6858 /* These are fused multiply-add, and must be done as one
6859 * floating point operation with no rounding between the
6860 * multiplication and addition steps.
6861 * NB that doing the negations here as separate steps is
6862 * correct : an input NaN should come out with its sign bit
6863 * flipped if it is a negated-input.
6865 if (o1 == true) {
6866 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000);
6869 if (o0 != o1) {
6870 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
6873 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6875 write_fp_sreg(s, rd, tcg_res);
6877 tcg_temp_free_ptr(fpst);
6878 tcg_temp_free_i32(tcg_op1);
6879 tcg_temp_free_i32(tcg_op2);
6880 tcg_temp_free_i32(tcg_op3);
6881 tcg_temp_free_i32(tcg_res);
6884 /* Floating point data-processing (3 source)
6885 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0
6886 * +---+---+---+-----------+------+----+------+----+------+------+------+
6887 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd |
6888 * +---+---+---+-----------+------+----+------+----+------+------+------+
6890 static void disas_fp_3src(DisasContext *s, uint32_t insn)
6892 int mos = extract32(insn, 29, 3);
6893 int type = extract32(insn, 22, 2);
6894 int rd = extract32(insn, 0, 5);
6895 int rn = extract32(insn, 5, 5);
6896 int ra = extract32(insn, 10, 5);
6897 int rm = extract32(insn, 16, 5);
6898 bool o0 = extract32(insn, 15, 1);
6899 bool o1 = extract32(insn, 21, 1);
6901 if (mos) {
6902 unallocated_encoding(s);
6903 return;
6906 switch (type) {
6907 case 0:
6908 if (!fp_access_check(s)) {
6909 return;
6911 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
6912 break;
6913 case 1:
6914 if (!fp_access_check(s)) {
6915 return;
6917 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
6918 break;
6919 case 3:
6920 if (!dc_isar_feature(aa64_fp16, s)) {
6921 unallocated_encoding(s);
6922 return;
6924 if (!fp_access_check(s)) {
6925 return;
6927 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra);
6928 break;
6929 default:
6930 unallocated_encoding(s);
6934 /* Floating point immediate
6935 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0
6936 * +---+---+---+-----------+------+---+------------+-------+------+------+
6937 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd |
6938 * +---+---+---+-----------+------+---+------------+-------+------+------+
6940 static void disas_fp_imm(DisasContext *s, uint32_t insn)
6942 int rd = extract32(insn, 0, 5);
6943 int imm5 = extract32(insn, 5, 5);
6944 int imm8 = extract32(insn, 13, 8);
6945 int type = extract32(insn, 22, 2);
6946 int mos = extract32(insn, 29, 3);
6947 uint64_t imm;
6948 TCGv_i64 tcg_res;
6949 MemOp sz;
6951 if (mos || imm5) {
6952 unallocated_encoding(s);
6953 return;
6956 switch (type) {
6957 case 0:
6958 sz = MO_32;
6959 break;
6960 case 1:
6961 sz = MO_64;
6962 break;
6963 case 3:
6964 sz = MO_16;
6965 if (dc_isar_feature(aa64_fp16, s)) {
6966 break;
6968 /* fallthru */
6969 default:
6970 unallocated_encoding(s);
6971 return;
6974 if (!fp_access_check(s)) {
6975 return;
6978 imm = vfp_expand_imm(sz, imm8);
6980 tcg_res = tcg_const_i64(imm);
6981 write_fp_dreg(s, rd, tcg_res);
6982 tcg_temp_free_i64(tcg_res);
6985 /* Handle floating point <=> fixed point conversions. Note that we can
6986 * also deal with fp <=> integer conversions as a special case (scale == 64)
6987 * OPTME: consider handling that special case specially or at least skipping
6988 * the call to scalbn in the helpers for zero shifts.
6990 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
6991 bool itof, int rmode, int scale, int sf, int type)
6993 bool is_signed = !(opcode & 1);
6994 TCGv_ptr tcg_fpstatus;
6995 TCGv_i32 tcg_shift, tcg_single;
6996 TCGv_i64 tcg_double;
6998 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR);
7000 tcg_shift = tcg_const_i32(64 - scale);
7002 if (itof) {
7003 TCGv_i64 tcg_int = cpu_reg(s, rn);
7004 if (!sf) {
7005 TCGv_i64 tcg_extend = new_tmp_a64(s);
7007 if (is_signed) {
7008 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
7009 } else {
7010 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
7013 tcg_int = tcg_extend;
7016 switch (type) {
7017 case 1: /* float64 */
7018 tcg_double = tcg_temp_new_i64();
7019 if (is_signed) {
7020 gen_helper_vfp_sqtod(tcg_double, tcg_int,
7021 tcg_shift, tcg_fpstatus);
7022 } else {
7023 gen_helper_vfp_uqtod(tcg_double, tcg_int,
7024 tcg_shift, tcg_fpstatus);
7026 write_fp_dreg(s, rd, tcg_double);
7027 tcg_temp_free_i64(tcg_double);
7028 break;
7030 case 0: /* float32 */
7031 tcg_single = tcg_temp_new_i32();
7032 if (is_signed) {
7033 gen_helper_vfp_sqtos(tcg_single, tcg_int,
7034 tcg_shift, tcg_fpstatus);
7035 } else {
7036 gen_helper_vfp_uqtos(tcg_single, tcg_int,
7037 tcg_shift, tcg_fpstatus);
7039 write_fp_sreg(s, rd, tcg_single);
7040 tcg_temp_free_i32(tcg_single);
7041 break;
7043 case 3: /* float16 */
7044 tcg_single = tcg_temp_new_i32();
7045 if (is_signed) {
7046 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
7047 tcg_shift, tcg_fpstatus);
7048 } else {
7049 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
7050 tcg_shift, tcg_fpstatus);
7052 write_fp_sreg(s, rd, tcg_single);
7053 tcg_temp_free_i32(tcg_single);
7054 break;
7056 default:
7057 g_assert_not_reached();
7059 } else {
7060 TCGv_i64 tcg_int = cpu_reg(s, rd);
7061 TCGv_i32 tcg_rmode;
7063 if (extract32(opcode, 2, 1)) {
7064 /* There are too many rounding modes to all fit into rmode,
7065 * so FCVTA[US] is a special case.
7067 rmode = FPROUNDING_TIEAWAY;
7070 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
7072 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
7074 switch (type) {
7075 case 1: /* float64 */
7076 tcg_double = read_fp_dreg(s, rn);
7077 if (is_signed) {
7078 if (!sf) {
7079 gen_helper_vfp_tosld(tcg_int, tcg_double,
7080 tcg_shift, tcg_fpstatus);
7081 } else {
7082 gen_helper_vfp_tosqd(tcg_int, tcg_double,
7083 tcg_shift, tcg_fpstatus);
7085 } else {
7086 if (!sf) {
7087 gen_helper_vfp_tould(tcg_int, tcg_double,
7088 tcg_shift, tcg_fpstatus);
7089 } else {
7090 gen_helper_vfp_touqd(tcg_int, tcg_double,
7091 tcg_shift, tcg_fpstatus);
7094 if (!sf) {
7095 tcg_gen_ext32u_i64(tcg_int, tcg_int);
7097 tcg_temp_free_i64(tcg_double);
7098 break;
7100 case 0: /* float32 */
7101 tcg_single = read_fp_sreg(s, rn);
7102 if (sf) {
7103 if (is_signed) {
7104 gen_helper_vfp_tosqs(tcg_int, tcg_single,
7105 tcg_shift, tcg_fpstatus);
7106 } else {
7107 gen_helper_vfp_touqs(tcg_int, tcg_single,
7108 tcg_shift, tcg_fpstatus);
7110 } else {
7111 TCGv_i32 tcg_dest = tcg_temp_new_i32();
7112 if (is_signed) {
7113 gen_helper_vfp_tosls(tcg_dest, tcg_single,
7114 tcg_shift, tcg_fpstatus);
7115 } else {
7116 gen_helper_vfp_touls(tcg_dest, tcg_single,
7117 tcg_shift, tcg_fpstatus);
7119 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
7120 tcg_temp_free_i32(tcg_dest);
7122 tcg_temp_free_i32(tcg_single);
7123 break;
7125 case 3: /* float16 */
7126 tcg_single = read_fp_sreg(s, rn);
7127 if (sf) {
7128 if (is_signed) {
7129 gen_helper_vfp_tosqh(tcg_int, tcg_single,
7130 tcg_shift, tcg_fpstatus);
7131 } else {
7132 gen_helper_vfp_touqh(tcg_int, tcg_single,
7133 tcg_shift, tcg_fpstatus);
7135 } else {
7136 TCGv_i32 tcg_dest = tcg_temp_new_i32();
7137 if (is_signed) {
7138 gen_helper_vfp_toslh(tcg_dest, tcg_single,
7139 tcg_shift, tcg_fpstatus);
7140 } else {
7141 gen_helper_vfp_toulh(tcg_dest, tcg_single,
7142 tcg_shift, tcg_fpstatus);
7144 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
7145 tcg_temp_free_i32(tcg_dest);
7147 tcg_temp_free_i32(tcg_single);
7148 break;
7150 default:
7151 g_assert_not_reached();
7154 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
7155 tcg_temp_free_i32(tcg_rmode);
7158 tcg_temp_free_ptr(tcg_fpstatus);
7159 tcg_temp_free_i32(tcg_shift);
7162 /* Floating point <-> fixed point conversions
7163 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
7164 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7165 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd |
7166 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7168 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
7170 int rd = extract32(insn, 0, 5);
7171 int rn = extract32(insn, 5, 5);
7172 int scale = extract32(insn, 10, 6);
7173 int opcode = extract32(insn, 16, 3);
7174 int rmode = extract32(insn, 19, 2);
7175 int type = extract32(insn, 22, 2);
7176 bool sbit = extract32(insn, 29, 1);
7177 bool sf = extract32(insn, 31, 1);
7178 bool itof;
7180 if (sbit || (!sf && scale < 32)) {
7181 unallocated_encoding(s);
7182 return;
7185 switch (type) {
7186 case 0: /* float32 */
7187 case 1: /* float64 */
7188 break;
7189 case 3: /* float16 */
7190 if (dc_isar_feature(aa64_fp16, s)) {
7191 break;
7193 /* fallthru */
7194 default:
7195 unallocated_encoding(s);
7196 return;
7199 switch ((rmode << 3) | opcode) {
7200 case 0x2: /* SCVTF */
7201 case 0x3: /* UCVTF */
7202 itof = true;
7203 break;
7204 case 0x18: /* FCVTZS */
7205 case 0x19: /* FCVTZU */
7206 itof = false;
7207 break;
7208 default:
7209 unallocated_encoding(s);
7210 return;
7213 if (!fp_access_check(s)) {
7214 return;
7217 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
7220 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
7222 /* FMOV: gpr to or from float, double, or top half of quad fp reg,
7223 * without conversion.
7226 if (itof) {
7227 TCGv_i64 tcg_rn = cpu_reg(s, rn);
7228 TCGv_i64 tmp;
7230 switch (type) {
7231 case 0:
7232 /* 32 bit */
7233 tmp = tcg_temp_new_i64();
7234 tcg_gen_ext32u_i64(tmp, tcg_rn);
7235 write_fp_dreg(s, rd, tmp);
7236 tcg_temp_free_i64(tmp);
7237 break;
7238 case 1:
7239 /* 64 bit */
7240 write_fp_dreg(s, rd, tcg_rn);
7241 break;
7242 case 2:
7243 /* 64 bit to top half. */
7244 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd));
7245 clear_vec_high(s, true, rd);
7246 break;
7247 case 3:
7248 /* 16 bit */
7249 tmp = tcg_temp_new_i64();
7250 tcg_gen_ext16u_i64(tmp, tcg_rn);
7251 write_fp_dreg(s, rd, tmp);
7252 tcg_temp_free_i64(tmp);
7253 break;
7254 default:
7255 g_assert_not_reached();
7257 } else {
7258 TCGv_i64 tcg_rd = cpu_reg(s, rd);
7260 switch (type) {
7261 case 0:
7262 /* 32 bit */
7263 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32));
7264 break;
7265 case 1:
7266 /* 64 bit */
7267 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64));
7268 break;
7269 case 2:
7270 /* 64 bits from top half */
7271 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn));
7272 break;
7273 case 3:
7274 /* 16 bit */
7275 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16));
7276 break;
7277 default:
7278 g_assert_not_reached();
7283 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
7285 TCGv_i64 t = read_fp_dreg(s, rn);
7286 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR);
7288 gen_helper_fjcvtzs(t, t, fpstatus);
7290 tcg_temp_free_ptr(fpstatus);
7292 tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
7293 tcg_gen_extrh_i64_i32(cpu_ZF, t);
7294 tcg_gen_movi_i32(cpu_CF, 0);
7295 tcg_gen_movi_i32(cpu_NF, 0);
7296 tcg_gen_movi_i32(cpu_VF, 0);
7298 tcg_temp_free_i64(t);
7301 /* Floating point <-> integer conversions
7302 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
7303 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7304 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
7305 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7307 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
7309 int rd = extract32(insn, 0, 5);
7310 int rn = extract32(insn, 5, 5);
7311 int opcode = extract32(insn, 16, 3);
7312 int rmode = extract32(insn, 19, 2);
7313 int type = extract32(insn, 22, 2);
7314 bool sbit = extract32(insn, 29, 1);
7315 bool sf = extract32(insn, 31, 1);
7316 bool itof = false;
7318 if (sbit) {
7319 goto do_unallocated;
7322 switch (opcode) {
7323 case 2: /* SCVTF */
7324 case 3: /* UCVTF */
7325 itof = true;
7326 /* fallthru */
7327 case 4: /* FCVTAS */
7328 case 5: /* FCVTAU */
7329 if (rmode != 0) {
7330 goto do_unallocated;
7332 /* fallthru */
7333 case 0: /* FCVT[NPMZ]S */
7334 case 1: /* FCVT[NPMZ]U */
7335 switch (type) {
7336 case 0: /* float32 */
7337 case 1: /* float64 */
7338 break;
7339 case 3: /* float16 */
7340 if (!dc_isar_feature(aa64_fp16, s)) {
7341 goto do_unallocated;
7343 break;
7344 default:
7345 goto do_unallocated;
7347 if (!fp_access_check(s)) {
7348 return;
7350 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
7351 break;
7353 default:
7354 switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
7355 case 0b01100110: /* FMOV half <-> 32-bit int */
7356 case 0b01100111:
7357 case 0b11100110: /* FMOV half <-> 64-bit int */
7358 case 0b11100111:
7359 if (!dc_isar_feature(aa64_fp16, s)) {
7360 goto do_unallocated;
7362 /* fallthru */
7363 case 0b00000110: /* FMOV 32-bit */
7364 case 0b00000111:
7365 case 0b10100110: /* FMOV 64-bit */
7366 case 0b10100111:
7367 case 0b11001110: /* FMOV top half of 128-bit */
7368 case 0b11001111:
7369 if (!fp_access_check(s)) {
7370 return;
7372 itof = opcode & 1;
7373 handle_fmov(s, rd, rn, type, itof);
7374 break;
7376 case 0b00111110: /* FJCVTZS */
7377 if (!dc_isar_feature(aa64_jscvt, s)) {
7378 goto do_unallocated;
7379 } else if (fp_access_check(s)) {
7380 handle_fjcvtzs(s, rd, rn);
7382 break;
7384 default:
7385 do_unallocated:
7386 unallocated_encoding(s);
7387 return;
7389 break;
7393 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
7394 * 31 30 29 28 25 24 0
7395 * +---+---+---+---------+-----------------------------+
7396 * | | 0 | | 1 1 1 1 | |
7397 * +---+---+---+---------+-----------------------------+
7399 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
7401 if (extract32(insn, 24, 1)) {
7402 /* Floating point data-processing (3 source) */
7403 disas_fp_3src(s, insn);
7404 } else if (extract32(insn, 21, 1) == 0) {
7405 /* Floating point to fixed point conversions */
7406 disas_fp_fixed_conv(s, insn);
7407 } else {
7408 switch (extract32(insn, 10, 2)) {
7409 case 1:
7410 /* Floating point conditional compare */
7411 disas_fp_ccomp(s, insn);
7412 break;
7413 case 2:
7414 /* Floating point data-processing (2 source) */
7415 disas_fp_2src(s, insn);
7416 break;
7417 case 3:
7418 /* Floating point conditional select */
7419 disas_fp_csel(s, insn);
7420 break;
7421 case 0:
7422 switch (ctz32(extract32(insn, 12, 4))) {
7423 case 0: /* [15:12] == xxx1 */
7424 /* Floating point immediate */
7425 disas_fp_imm(s, insn);
7426 break;
7427 case 1: /* [15:12] == xx10 */
7428 /* Floating point compare */
7429 disas_fp_compare(s, insn);
7430 break;
7431 case 2: /* [15:12] == x100 */
7432 /* Floating point data-processing (1 source) */
7433 disas_fp_1src(s, insn);
7434 break;
7435 case 3: /* [15:12] == 1000 */
7436 unallocated_encoding(s);
7437 break;
7438 default: /* [15:12] == 0000 */
7439 /* Floating point <-> integer conversions */
7440 disas_fp_int_conv(s, insn);
7441 break;
7443 break;
7448 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
7449 int pos)
7451 /* Extract 64 bits from the middle of two concatenated 64 bit
7452 * vector register slices left:right. The extracted bits start
7453 * at 'pos' bits into the right (least significant) side.
7454 * We return the result in tcg_right, and guarantee not to
7455 * trash tcg_left.
7457 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
7458 assert(pos > 0 && pos < 64);
7460 tcg_gen_shri_i64(tcg_right, tcg_right, pos);
7461 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
7462 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
7464 tcg_temp_free_i64(tcg_tmp);
7467 /* EXT
7468 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0
7469 * +---+---+-------------+-----+---+------+---+------+---+------+------+
7470 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd |
7471 * +---+---+-------------+-----+---+------+---+------+---+------+------+
7473 static void disas_simd_ext(DisasContext *s, uint32_t insn)
7475 int is_q = extract32(insn, 30, 1);
7476 int op2 = extract32(insn, 22, 2);
7477 int imm4 = extract32(insn, 11, 4);
7478 int rm = extract32(insn, 16, 5);
7479 int rn = extract32(insn, 5, 5);
7480 int rd = extract32(insn, 0, 5);
7481 int pos = imm4 << 3;
7482 TCGv_i64 tcg_resl, tcg_resh;
7484 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
7485 unallocated_encoding(s);
7486 return;
7489 if (!fp_access_check(s)) {
7490 return;
7493 tcg_resh = tcg_temp_new_i64();
7494 tcg_resl = tcg_temp_new_i64();
7496 /* Vd gets bits starting at pos bits into Vm:Vn. This is
7497 * either extracting 128 bits from a 128:128 concatenation, or
7498 * extracting 64 bits from a 64:64 concatenation.
7500 if (!is_q) {
7501 read_vec_element(s, tcg_resl, rn, 0, MO_64);
7502 if (pos != 0) {
7503 read_vec_element(s, tcg_resh, rm, 0, MO_64);
7504 do_ext64(s, tcg_resh, tcg_resl, pos);
7506 } else {
7507 TCGv_i64 tcg_hh;
7508 typedef struct {
7509 int reg;
7510 int elt;
7511 } EltPosns;
7512 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
7513 EltPosns *elt = eltposns;
7515 if (pos >= 64) {
7516 elt++;
7517 pos -= 64;
7520 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
7521 elt++;
7522 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
7523 elt++;
7524 if (pos != 0) {
7525 do_ext64(s, tcg_resh, tcg_resl, pos);
7526 tcg_hh = tcg_temp_new_i64();
7527 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
7528 do_ext64(s, tcg_hh, tcg_resh, pos);
7529 tcg_temp_free_i64(tcg_hh);
7533 write_vec_element(s, tcg_resl, rd, 0, MO_64);
7534 tcg_temp_free_i64(tcg_resl);
7535 if (is_q) {
7536 write_vec_element(s, tcg_resh, rd, 1, MO_64);
7538 tcg_temp_free_i64(tcg_resh);
7539 clear_vec_high(s, is_q, rd);
7542 /* TBL/TBX
7543 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
7544 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7545 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd |
7546 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7548 static void disas_simd_tb(DisasContext *s, uint32_t insn)
7550 int op2 = extract32(insn, 22, 2);
7551 int is_q = extract32(insn, 30, 1);
7552 int rm = extract32(insn, 16, 5);
7553 int rn = extract32(insn, 5, 5);
7554 int rd = extract32(insn, 0, 5);
7555 int is_tbx = extract32(insn, 12, 1);
7556 int len = (extract32(insn, 13, 2) + 1) * 16;
7558 if (op2 != 0) {
7559 unallocated_encoding(s);
7560 return;
7563 if (!fp_access_check(s)) {
7564 return;
7567 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
7568 vec_full_reg_offset(s, rm), cpu_env,
7569 is_q ? 16 : 8, vec_full_reg_size(s),
7570 (len << 6) | (is_tbx << 5) | rn,
7571 gen_helper_simd_tblx);
7574 /* ZIP/UZP/TRN
7575 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
7576 * +---+---+-------------+------+---+------+---+------------------+------+
7577 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd |
7578 * +---+---+-------------+------+---+------+---+------------------+------+
7580 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
7582 int rd = extract32(insn, 0, 5);
7583 int rn = extract32(insn, 5, 5);
7584 int rm = extract32(insn, 16, 5);
7585 int size = extract32(insn, 22, 2);
7586 /* opc field bits [1:0] indicate ZIP/UZP/TRN;
7587 * bit 2 indicates 1 vs 2 variant of the insn.
7589 int opcode = extract32(insn, 12, 2);
7590 bool part = extract32(insn, 14, 1);
7591 bool is_q = extract32(insn, 30, 1);
7592 int esize = 8 << size;
7593 int i, ofs;
7594 int datasize = is_q ? 128 : 64;
7595 int elements = datasize / esize;
7596 TCGv_i64 tcg_res, tcg_resl, tcg_resh;
7598 if (opcode == 0 || (size == 3 && !is_q)) {
7599 unallocated_encoding(s);
7600 return;
7603 if (!fp_access_check(s)) {
7604 return;
7607 tcg_resl = tcg_const_i64(0);
7608 tcg_resh = is_q ? tcg_const_i64(0) : NULL;
7609 tcg_res = tcg_temp_new_i64();
7611 for (i = 0; i < elements; i++) {
7612 switch (opcode) {
7613 case 1: /* UZP1/2 */
7615 int midpoint = elements / 2;
7616 if (i < midpoint) {
7617 read_vec_element(s, tcg_res, rn, 2 * i + part, size);
7618 } else {
7619 read_vec_element(s, tcg_res, rm,
7620 2 * (i - midpoint) + part, size);
7622 break;
7624 case 2: /* TRN1/2 */
7625 if (i & 1) {
7626 read_vec_element(s, tcg_res, rm, (i & ~1) + part, size);
7627 } else {
7628 read_vec_element(s, tcg_res, rn, (i & ~1) + part, size);
7630 break;
7631 case 3: /* ZIP1/2 */
7633 int base = part * elements / 2;
7634 if (i & 1) {
7635 read_vec_element(s, tcg_res, rm, base + (i >> 1), size);
7636 } else {
7637 read_vec_element(s, tcg_res, rn, base + (i >> 1), size);
7639 break;
7641 default:
7642 g_assert_not_reached();
7645 ofs = i * esize;
7646 if (ofs < 64) {
7647 tcg_gen_shli_i64(tcg_res, tcg_res, ofs);
7648 tcg_gen_or_i64(tcg_resl, tcg_resl, tcg_res);
7649 } else {
7650 tcg_gen_shli_i64(tcg_res, tcg_res, ofs - 64);
7651 tcg_gen_or_i64(tcg_resh, tcg_resh, tcg_res);
7655 tcg_temp_free_i64(tcg_res);
7657 write_vec_element(s, tcg_resl, rd, 0, MO_64);
7658 tcg_temp_free_i64(tcg_resl);
7660 if (is_q) {
7661 write_vec_element(s, tcg_resh, rd, 1, MO_64);
7662 tcg_temp_free_i64(tcg_resh);
7664 clear_vec_high(s, is_q, rd);
7668 * do_reduction_op helper
7670 * This mirrors the Reduce() pseudocode in the ARM ARM. It is
7671 * important for correct NaN propagation that we do these
7672 * operations in exactly the order specified by the pseudocode.
7674 * This is a recursive function, TCG temps should be freed by the
7675 * calling function once it is done with the values.
7677 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
7678 int esize, int size, int vmap, TCGv_ptr fpst)
7680 if (esize == size) {
7681 int element;
7682 MemOp msize = esize == 16 ? MO_16 : MO_32;
7683 TCGv_i32 tcg_elem;
7685 /* We should have one register left here */
7686 assert(ctpop8(vmap) == 1);
7687 element = ctz32(vmap);
7688 assert(element < 8);
7690 tcg_elem = tcg_temp_new_i32();
7691 read_vec_element_i32(s, tcg_elem, rn, element, msize);
7692 return tcg_elem;
7693 } else {
7694 int bits = size / 2;
7695 int shift = ctpop8(vmap) / 2;
7696 int vmap_lo = (vmap >> shift) & vmap;
7697 int vmap_hi = (vmap & ~vmap_lo);
7698 TCGv_i32 tcg_hi, tcg_lo, tcg_res;
7700 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
7701 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
7702 tcg_res = tcg_temp_new_i32();
7704 switch (fpopcode) {
7705 case 0x0c: /* fmaxnmv half-precision */
7706 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7707 break;
7708 case 0x0f: /* fmaxv half-precision */
7709 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
7710 break;
7711 case 0x1c: /* fminnmv half-precision */
7712 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7713 break;
7714 case 0x1f: /* fminv half-precision */
7715 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
7716 break;
7717 case 0x2c: /* fmaxnmv */
7718 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
7719 break;
7720 case 0x2f: /* fmaxv */
7721 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
7722 break;
7723 case 0x3c: /* fminnmv */
7724 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
7725 break;
7726 case 0x3f: /* fminv */
7727 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
7728 break;
7729 default:
7730 g_assert_not_reached();
7733 tcg_temp_free_i32(tcg_hi);
7734 tcg_temp_free_i32(tcg_lo);
7735 return tcg_res;
7739 /* AdvSIMD across lanes
7740 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
7741 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7742 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
7743 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7745 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
7747 int rd = extract32(insn, 0, 5);
7748 int rn = extract32(insn, 5, 5);
7749 int size = extract32(insn, 22, 2);
7750 int opcode = extract32(insn, 12, 5);
7751 bool is_q = extract32(insn, 30, 1);
7752 bool is_u = extract32(insn, 29, 1);
7753 bool is_fp = false;
7754 bool is_min = false;
7755 int esize;
7756 int elements;
7757 int i;
7758 TCGv_i64 tcg_res, tcg_elt;
7760 switch (opcode) {
7761 case 0x1b: /* ADDV */
7762 if (is_u) {
7763 unallocated_encoding(s);
7764 return;
7766 /* fall through */
7767 case 0x3: /* SADDLV, UADDLV */
7768 case 0xa: /* SMAXV, UMAXV */
7769 case 0x1a: /* SMINV, UMINV */
7770 if (size == 3 || (size == 2 && !is_q)) {
7771 unallocated_encoding(s);
7772 return;
7774 break;
7775 case 0xc: /* FMAXNMV, FMINNMV */
7776 case 0xf: /* FMAXV, FMINV */
7777 /* Bit 1 of size field encodes min vs max and the actual size
7778 * depends on the encoding of the U bit. If not set (and FP16
7779 * enabled) then we do half-precision float instead of single
7780 * precision.
7782 is_min = extract32(size, 1, 1);
7783 is_fp = true;
7784 if (!is_u && dc_isar_feature(aa64_fp16, s)) {
7785 size = 1;
7786 } else if (!is_u || !is_q || extract32(size, 0, 1)) {
7787 unallocated_encoding(s);
7788 return;
7789 } else {
7790 size = 2;
7792 break;
7793 default:
7794 unallocated_encoding(s);
7795 return;
7798 if (!fp_access_check(s)) {
7799 return;
7802 esize = 8 << size;
7803 elements = (is_q ? 128 : 64) / esize;
7805 tcg_res = tcg_temp_new_i64();
7806 tcg_elt = tcg_temp_new_i64();
7808 /* These instructions operate across all lanes of a vector
7809 * to produce a single result. We can guarantee that a 64
7810 * bit intermediate is sufficient:
7811 * + for [US]ADDLV the maximum element size is 32 bits, and
7812 * the result type is 64 bits
7813 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the
7814 * same as the element size, which is 32 bits at most
7815 * For the integer operations we can choose to work at 64
7816 * or 32 bits and truncate at the end; for simplicity
7817 * we use 64 bits always. The floating point
7818 * ops do require 32 bit intermediates, though.
7820 if (!is_fp) {
7821 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
7823 for (i = 1; i < elements; i++) {
7824 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
7826 switch (opcode) {
7827 case 0x03: /* SADDLV / UADDLV */
7828 case 0x1b: /* ADDV */
7829 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
7830 break;
7831 case 0x0a: /* SMAXV / UMAXV */
7832 if (is_u) {
7833 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
7834 } else {
7835 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
7837 break;
7838 case 0x1a: /* SMINV / UMINV */
7839 if (is_u) {
7840 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
7841 } else {
7842 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
7844 break;
7845 default:
7846 g_assert_not_reached();
7850 } else {
7851 /* Floating point vector reduction ops which work across 32
7852 * bit (single) or 16 bit (half-precision) intermediates.
7853 * Note that correct NaN propagation requires that we do these
7854 * operations in exactly the order specified by the pseudocode.
7856 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
7857 int fpopcode = opcode | is_min << 4 | is_u << 5;
7858 int vmap = (1 << elements) - 1;
7859 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
7860 (is_q ? 128 : 64), vmap, fpst);
7861 tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
7862 tcg_temp_free_i32(tcg_res32);
7863 tcg_temp_free_ptr(fpst);
7866 tcg_temp_free_i64(tcg_elt);
7868 /* Now truncate the result to the width required for the final output */
7869 if (opcode == 0x03) {
7870 /* SADDLV, UADDLV: result is 2*esize */
7871 size++;
7874 switch (size) {
7875 case 0:
7876 tcg_gen_ext8u_i64(tcg_res, tcg_res);
7877 break;
7878 case 1:
7879 tcg_gen_ext16u_i64(tcg_res, tcg_res);
7880 break;
7881 case 2:
7882 tcg_gen_ext32u_i64(tcg_res, tcg_res);
7883 break;
7884 case 3:
7885 break;
7886 default:
7887 g_assert_not_reached();
7890 write_fp_dreg(s, rd, tcg_res);
7891 tcg_temp_free_i64(tcg_res);
7894 /* DUP (Element, Vector)
7896 * 31 30 29 21 20 16 15 10 9 5 4 0
7897 * +---+---+-------------------+--------+-------------+------+------+
7898 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
7899 * +---+---+-------------------+--------+-------------+------+------+
7901 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7903 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
7904 int imm5)
7906 int size = ctz32(imm5);
7907 int index;
7909 if (size > 3 || (size == 3 && !is_q)) {
7910 unallocated_encoding(s);
7911 return;
7914 if (!fp_access_check(s)) {
7915 return;
7918 index = imm5 >> (size + 1);
7919 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd),
7920 vec_reg_offset(s, rn, index, size),
7921 is_q ? 16 : 8, vec_full_reg_size(s));
7924 /* DUP (element, scalar)
7925 * 31 21 20 16 15 10 9 5 4 0
7926 * +-----------------------+--------+-------------+------+------+
7927 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
7928 * +-----------------------+--------+-------------+------+------+
7930 static void handle_simd_dupes(DisasContext *s, int rd, int rn,
7931 int imm5)
7933 int size = ctz32(imm5);
7934 int index;
7935 TCGv_i64 tmp;
7937 if (size > 3) {
7938 unallocated_encoding(s);
7939 return;
7942 if (!fp_access_check(s)) {
7943 return;
7946 index = imm5 >> (size + 1);
7948 /* This instruction just extracts the specified element and
7949 * zero-extends it into the bottom of the destination register.
7951 tmp = tcg_temp_new_i64();
7952 read_vec_element(s, tmp, rn, index, size);
7953 write_fp_dreg(s, rd, tmp);
7954 tcg_temp_free_i64(tmp);
7957 /* DUP (General)
7959 * 31 30 29 21 20 16 15 10 9 5 4 0
7960 * +---+---+-------------------+--------+-------------+------+------+
7961 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd |
7962 * +---+---+-------------------+--------+-------------+------+------+
7964 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7966 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
7967 int imm5)
7969 int size = ctz32(imm5);
7970 uint32_t dofs, oprsz, maxsz;
7972 if (size > 3 || ((size == 3) && !is_q)) {
7973 unallocated_encoding(s);
7974 return;
7977 if (!fp_access_check(s)) {
7978 return;
7981 dofs = vec_full_reg_offset(s, rd);
7982 oprsz = is_q ? 16 : 8;
7983 maxsz = vec_full_reg_size(s);
7985 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn));
7988 /* INS (Element)
7990 * 31 21 20 16 15 14 11 10 9 5 4 0
7991 * +-----------------------+--------+------------+---+------+------+
7992 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
7993 * +-----------------------+--------+------------+---+------+------+
7995 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7996 * index: encoded in imm5<4:size+1>
7998 static void handle_simd_inse(DisasContext *s, int rd, int rn,
7999 int imm4, int imm5)
8001 int size = ctz32(imm5);
8002 int src_index, dst_index;
8003 TCGv_i64 tmp;
8005 if (size > 3) {
8006 unallocated_encoding(s);
8007 return;
8010 if (!fp_access_check(s)) {
8011 return;
8014 dst_index = extract32(imm5, 1+size, 5);
8015 src_index = extract32(imm4, size, 4);
8017 tmp = tcg_temp_new_i64();
8019 read_vec_element(s, tmp, rn, src_index, size);
8020 write_vec_element(s, tmp, rd, dst_index, size);
8022 tcg_temp_free_i64(tmp);
8024 /* INS is considered a 128-bit write for SVE. */
8025 clear_vec_high(s, true, rd);
8029 /* INS (General)
8031 * 31 21 20 16 15 10 9 5 4 0
8032 * +-----------------------+--------+-------------+------+------+
8033 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd |
8034 * +-----------------------+--------+-------------+------+------+
8036 * size: encoded in imm5 (see ARM ARM LowestSetBit())
8037 * index: encoded in imm5<4:size+1>
8039 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
8041 int size = ctz32(imm5);
8042 int idx;
8044 if (size > 3) {
8045 unallocated_encoding(s);
8046 return;
8049 if (!fp_access_check(s)) {
8050 return;
8053 idx = extract32(imm5, 1 + size, 4 - size);
8054 write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
8056 /* INS is considered a 128-bit write for SVE. */
8057 clear_vec_high(s, true, rd);
8061 * UMOV (General)
8062 * SMOV (General)
8064 * 31 30 29 21 20 16 15 12 10 9 5 4 0
8065 * +---+---+-------------------+--------+-------------+------+------+
8066 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd |
8067 * +---+---+-------------------+--------+-------------+------+------+
8069 * U: unsigned when set
8070 * size: encoded in imm5 (see ARM ARM LowestSetBit())
8072 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
8073 int rn, int rd, int imm5)
8075 int size = ctz32(imm5);
8076 int element;
8077 TCGv_i64 tcg_rd;
8079 /* Check for UnallocatedEncodings */
8080 if (is_signed) {
8081 if (size > 2 || (size == 2 && !is_q)) {
8082 unallocated_encoding(s);
8083 return;
8085 } else {
8086 if (size > 3
8087 || (size < 3 && is_q)
8088 || (size == 3 && !is_q)) {
8089 unallocated_encoding(s);
8090 return;
8094 if (!fp_access_check(s)) {
8095 return;
8098 element = extract32(imm5, 1+size, 4);
8100 tcg_rd = cpu_reg(s, rd);
8101 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
8102 if (is_signed && !is_q) {
8103 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
8107 /* AdvSIMD copy
8108 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
8109 * +---+---+----+-----------------+------+---+------+---+------+------+
8110 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
8111 * +---+---+----+-----------------+------+---+------+---+------+------+
8113 static void disas_simd_copy(DisasContext *s, uint32_t insn)
8115 int rd = extract32(insn, 0, 5);
8116 int rn = extract32(insn, 5, 5);
8117 int imm4 = extract32(insn, 11, 4);
8118 int op = extract32(insn, 29, 1);
8119 int is_q = extract32(insn, 30, 1);
8120 int imm5 = extract32(insn, 16, 5);
8122 if (op) {
8123 if (is_q) {
8124 /* INS (element) */
8125 handle_simd_inse(s, rd, rn, imm4, imm5);
8126 } else {
8127 unallocated_encoding(s);
8129 } else {
8130 switch (imm4) {
8131 case 0:
8132 /* DUP (element - vector) */
8133 handle_simd_dupe(s, is_q, rd, rn, imm5);
8134 break;
8135 case 1:
8136 /* DUP (general) */
8137 handle_simd_dupg(s, is_q, rd, rn, imm5);
8138 break;
8139 case 3:
8140 if (is_q) {
8141 /* INS (general) */
8142 handle_simd_insg(s, rd, rn, imm5);
8143 } else {
8144 unallocated_encoding(s);
8146 break;
8147 case 5:
8148 case 7:
8149 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
8150 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
8151 break;
8152 default:
8153 unallocated_encoding(s);
8154 break;
8159 /* AdvSIMD modified immediate
8160 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0
8161 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8162 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd |
8163 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8165 * There are a number of operations that can be carried out here:
8166 * MOVI - move (shifted) imm into register
8167 * MVNI - move inverted (shifted) imm into register
8168 * ORR - bitwise OR of (shifted) imm with register
8169 * BIC - bitwise clear of (shifted) imm with register
8170 * With ARMv8.2 we also have:
8171 * FMOV half-precision
8173 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
8175 int rd = extract32(insn, 0, 5);
8176 int cmode = extract32(insn, 12, 4);
8177 int o2 = extract32(insn, 11, 1);
8178 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
8179 bool is_neg = extract32(insn, 29, 1);
8180 bool is_q = extract32(insn, 30, 1);
8181 uint64_t imm = 0;
8183 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
8184 /* Check for FMOV (vector, immediate) - half-precision */
8185 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) {
8186 unallocated_encoding(s);
8187 return;
8191 if (!fp_access_check(s)) {
8192 return;
8195 if (cmode == 15 && o2 && !is_neg) {
8196 /* FMOV (vector, immediate) - half-precision */
8197 imm = vfp_expand_imm(MO_16, abcdefgh);
8198 /* now duplicate across the lanes */
8199 imm = dup_const(MO_16, imm);
8200 } else {
8201 imm = asimd_imm_const(abcdefgh, cmode, is_neg);
8204 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
8205 /* MOVI or MVNI, with MVNI negation handled above. */
8206 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
8207 vec_full_reg_size(s), imm);
8208 } else {
8209 /* ORR or BIC, with BIC negation to AND handled above. */
8210 if (is_neg) {
8211 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
8212 } else {
8213 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
8218 /* AdvSIMD scalar copy
8219 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
8220 * +-----+----+-----------------+------+---+------+---+------+------+
8221 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
8222 * +-----+----+-----------------+------+---+------+---+------+------+
8224 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
8226 int rd = extract32(insn, 0, 5);
8227 int rn = extract32(insn, 5, 5);
8228 int imm4 = extract32(insn, 11, 4);
8229 int imm5 = extract32(insn, 16, 5);
8230 int op = extract32(insn, 29, 1);
8232 if (op != 0 || imm4 != 0) {
8233 unallocated_encoding(s);
8234 return;
8237 /* DUP (element, scalar) */
8238 handle_simd_dupes(s, rd, rn, imm5);
8241 /* AdvSIMD scalar pairwise
8242 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
8243 * +-----+---+-----------+------+-----------+--------+-----+------+------+
8244 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
8245 * +-----+---+-----------+------+-----------+--------+-----+------+------+
8247 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
8249 int u = extract32(insn, 29, 1);
8250 int size = extract32(insn, 22, 2);
8251 int opcode = extract32(insn, 12, 5);
8252 int rn = extract32(insn, 5, 5);
8253 int rd = extract32(insn, 0, 5);
8254 TCGv_ptr fpst;
8256 /* For some ops (the FP ones), size[1] is part of the encoding.
8257 * For ADDP strictly it is not but size[1] is always 1 for valid
8258 * encodings.
8260 opcode |= (extract32(size, 1, 1) << 5);
8262 switch (opcode) {
8263 case 0x3b: /* ADDP */
8264 if (u || size != 3) {
8265 unallocated_encoding(s);
8266 return;
8268 if (!fp_access_check(s)) {
8269 return;
8272 fpst = NULL;
8273 break;
8274 case 0xc: /* FMAXNMP */
8275 case 0xd: /* FADDP */
8276 case 0xf: /* FMAXP */
8277 case 0x2c: /* FMINNMP */
8278 case 0x2f: /* FMINP */
8279 /* FP op, size[0] is 32 or 64 bit*/
8280 if (!u) {
8281 if (!dc_isar_feature(aa64_fp16, s)) {
8282 unallocated_encoding(s);
8283 return;
8284 } else {
8285 size = MO_16;
8287 } else {
8288 size = extract32(size, 0, 1) ? MO_64 : MO_32;
8291 if (!fp_access_check(s)) {
8292 return;
8295 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8296 break;
8297 default:
8298 unallocated_encoding(s);
8299 return;
8302 if (size == MO_64) {
8303 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8304 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8305 TCGv_i64 tcg_res = tcg_temp_new_i64();
8307 read_vec_element(s, tcg_op1, rn, 0, MO_64);
8308 read_vec_element(s, tcg_op2, rn, 1, MO_64);
8310 switch (opcode) {
8311 case 0x3b: /* ADDP */
8312 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
8313 break;
8314 case 0xc: /* FMAXNMP */
8315 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8316 break;
8317 case 0xd: /* FADDP */
8318 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
8319 break;
8320 case 0xf: /* FMAXP */
8321 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
8322 break;
8323 case 0x2c: /* FMINNMP */
8324 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8325 break;
8326 case 0x2f: /* FMINP */
8327 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
8328 break;
8329 default:
8330 g_assert_not_reached();
8333 write_fp_dreg(s, rd, tcg_res);
8335 tcg_temp_free_i64(tcg_op1);
8336 tcg_temp_free_i64(tcg_op2);
8337 tcg_temp_free_i64(tcg_res);
8338 } else {
8339 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8340 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8341 TCGv_i32 tcg_res = tcg_temp_new_i32();
8343 read_vec_element_i32(s, tcg_op1, rn, 0, size);
8344 read_vec_element_i32(s, tcg_op2, rn, 1, size);
8346 if (size == MO_16) {
8347 switch (opcode) {
8348 case 0xc: /* FMAXNMP */
8349 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8350 break;
8351 case 0xd: /* FADDP */
8352 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
8353 break;
8354 case 0xf: /* FMAXP */
8355 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
8356 break;
8357 case 0x2c: /* FMINNMP */
8358 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8359 break;
8360 case 0x2f: /* FMINP */
8361 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
8362 break;
8363 default:
8364 g_assert_not_reached();
8366 } else {
8367 switch (opcode) {
8368 case 0xc: /* FMAXNMP */
8369 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
8370 break;
8371 case 0xd: /* FADDP */
8372 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
8373 break;
8374 case 0xf: /* FMAXP */
8375 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
8376 break;
8377 case 0x2c: /* FMINNMP */
8378 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
8379 break;
8380 case 0x2f: /* FMINP */
8381 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
8382 break;
8383 default:
8384 g_assert_not_reached();
8388 write_fp_sreg(s, rd, tcg_res);
8390 tcg_temp_free_i32(tcg_op1);
8391 tcg_temp_free_i32(tcg_op2);
8392 tcg_temp_free_i32(tcg_res);
8395 if (fpst) {
8396 tcg_temp_free_ptr(fpst);
8401 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
8403 * This code is handles the common shifting code and is used by both
8404 * the vector and scalar code.
8406 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
8407 TCGv_i64 tcg_rnd, bool accumulate,
8408 bool is_u, int size, int shift)
8410 bool extended_result = false;
8411 bool round = tcg_rnd != NULL;
8412 int ext_lshift = 0;
8413 TCGv_i64 tcg_src_hi;
8415 if (round && size == 3) {
8416 extended_result = true;
8417 ext_lshift = 64 - shift;
8418 tcg_src_hi = tcg_temp_new_i64();
8419 } else if (shift == 64) {
8420 if (!accumulate && is_u) {
8421 /* result is zero */
8422 tcg_gen_movi_i64(tcg_res, 0);
8423 return;
8427 /* Deal with the rounding step */
8428 if (round) {
8429 if (extended_result) {
8430 TCGv_i64 tcg_zero = tcg_const_i64(0);
8431 if (!is_u) {
8432 /* take care of sign extending tcg_res */
8433 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
8434 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8435 tcg_src, tcg_src_hi,
8436 tcg_rnd, tcg_zero);
8437 } else {
8438 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8439 tcg_src, tcg_zero,
8440 tcg_rnd, tcg_zero);
8442 tcg_temp_free_i64(tcg_zero);
8443 } else {
8444 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
8448 /* Now do the shift right */
8449 if (round && extended_result) {
8450 /* extended case, >64 bit precision required */
8451 if (ext_lshift == 0) {
8452 /* special case, only high bits matter */
8453 tcg_gen_mov_i64(tcg_src, tcg_src_hi);
8454 } else {
8455 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8456 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
8457 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
8459 } else {
8460 if (is_u) {
8461 if (shift == 64) {
8462 /* essentially shifting in 64 zeros */
8463 tcg_gen_movi_i64(tcg_src, 0);
8464 } else {
8465 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8467 } else {
8468 if (shift == 64) {
8469 /* effectively extending the sign-bit */
8470 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
8471 } else {
8472 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
8477 if (accumulate) {
8478 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
8479 } else {
8480 tcg_gen_mov_i64(tcg_res, tcg_src);
8483 if (extended_result) {
8484 tcg_temp_free_i64(tcg_src_hi);
8488 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
8489 static void handle_scalar_simd_shri(DisasContext *s,
8490 bool is_u, int immh, int immb,
8491 int opcode, int rn, int rd)
8493 const int size = 3;
8494 int immhb = immh << 3 | immb;
8495 int shift = 2 * (8 << size) - immhb;
8496 bool accumulate = false;
8497 bool round = false;
8498 bool insert = false;
8499 TCGv_i64 tcg_rn;
8500 TCGv_i64 tcg_rd;
8501 TCGv_i64 tcg_round;
8503 if (!extract32(immh, 3, 1)) {
8504 unallocated_encoding(s);
8505 return;
8508 if (!fp_access_check(s)) {
8509 return;
8512 switch (opcode) {
8513 case 0x02: /* SSRA / USRA (accumulate) */
8514 accumulate = true;
8515 break;
8516 case 0x04: /* SRSHR / URSHR (rounding) */
8517 round = true;
8518 break;
8519 case 0x06: /* SRSRA / URSRA (accum + rounding) */
8520 accumulate = round = true;
8521 break;
8522 case 0x08: /* SRI */
8523 insert = true;
8524 break;
8527 if (round) {
8528 uint64_t round_const = 1ULL << (shift - 1);
8529 tcg_round = tcg_const_i64(round_const);
8530 } else {
8531 tcg_round = NULL;
8534 tcg_rn = read_fp_dreg(s, rn);
8535 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8537 if (insert) {
8538 /* shift count same as element size is valid but does nothing;
8539 * special case to avoid potential shift by 64.
8541 int esize = 8 << size;
8542 if (shift != esize) {
8543 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
8544 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
8546 } else {
8547 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8548 accumulate, is_u, size, shift);
8551 write_fp_dreg(s, rd, tcg_rd);
8553 tcg_temp_free_i64(tcg_rn);
8554 tcg_temp_free_i64(tcg_rd);
8555 if (round) {
8556 tcg_temp_free_i64(tcg_round);
8560 /* SHL/SLI - Scalar shift left */
8561 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
8562 int immh, int immb, int opcode,
8563 int rn, int rd)
8565 int size = 32 - clz32(immh) - 1;
8566 int immhb = immh << 3 | immb;
8567 int shift = immhb - (8 << size);
8568 TCGv_i64 tcg_rn;
8569 TCGv_i64 tcg_rd;
8571 if (!extract32(immh, 3, 1)) {
8572 unallocated_encoding(s);
8573 return;
8576 if (!fp_access_check(s)) {
8577 return;
8580 tcg_rn = read_fp_dreg(s, rn);
8581 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8583 if (insert) {
8584 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
8585 } else {
8586 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
8589 write_fp_dreg(s, rd, tcg_rd);
8591 tcg_temp_free_i64(tcg_rn);
8592 tcg_temp_free_i64(tcg_rd);
8595 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
8596 * (signed/unsigned) narrowing */
8597 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
8598 bool is_u_shift, bool is_u_narrow,
8599 int immh, int immb, int opcode,
8600 int rn, int rd)
8602 int immhb = immh << 3 | immb;
8603 int size = 32 - clz32(immh) - 1;
8604 int esize = 8 << size;
8605 int shift = (2 * esize) - immhb;
8606 int elements = is_scalar ? 1 : (64 / esize);
8607 bool round = extract32(opcode, 0, 1);
8608 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
8609 TCGv_i64 tcg_rn, tcg_rd, tcg_round;
8610 TCGv_i32 tcg_rd_narrowed;
8611 TCGv_i64 tcg_final;
8613 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
8614 { gen_helper_neon_narrow_sat_s8,
8615 gen_helper_neon_unarrow_sat8 },
8616 { gen_helper_neon_narrow_sat_s16,
8617 gen_helper_neon_unarrow_sat16 },
8618 { gen_helper_neon_narrow_sat_s32,
8619 gen_helper_neon_unarrow_sat32 },
8620 { NULL, NULL },
8622 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
8623 gen_helper_neon_narrow_sat_u8,
8624 gen_helper_neon_narrow_sat_u16,
8625 gen_helper_neon_narrow_sat_u32,
8626 NULL
8628 NeonGenNarrowEnvFn *narrowfn;
8630 int i;
8632 assert(size < 4);
8634 if (extract32(immh, 3, 1)) {
8635 unallocated_encoding(s);
8636 return;
8639 if (!fp_access_check(s)) {
8640 return;
8643 if (is_u_shift) {
8644 narrowfn = unsigned_narrow_fns[size];
8645 } else {
8646 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
8649 tcg_rn = tcg_temp_new_i64();
8650 tcg_rd = tcg_temp_new_i64();
8651 tcg_rd_narrowed = tcg_temp_new_i32();
8652 tcg_final = tcg_const_i64(0);
8654 if (round) {
8655 uint64_t round_const = 1ULL << (shift - 1);
8656 tcg_round = tcg_const_i64(round_const);
8657 } else {
8658 tcg_round = NULL;
8661 for (i = 0; i < elements; i++) {
8662 read_vec_element(s, tcg_rn, rn, i, ldop);
8663 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8664 false, is_u_shift, size+1, shift);
8665 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd);
8666 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
8667 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8670 if (!is_q) {
8671 write_vec_element(s, tcg_final, rd, 0, MO_64);
8672 } else {
8673 write_vec_element(s, tcg_final, rd, 1, MO_64);
8676 if (round) {
8677 tcg_temp_free_i64(tcg_round);
8679 tcg_temp_free_i64(tcg_rn);
8680 tcg_temp_free_i64(tcg_rd);
8681 tcg_temp_free_i32(tcg_rd_narrowed);
8682 tcg_temp_free_i64(tcg_final);
8684 clear_vec_high(s, is_q, rd);
8687 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
8688 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
8689 bool src_unsigned, bool dst_unsigned,
8690 int immh, int immb, int rn, int rd)
8692 int immhb = immh << 3 | immb;
8693 int size = 32 - clz32(immh) - 1;
8694 int shift = immhb - (8 << size);
8695 int pass;
8697 assert(immh != 0);
8698 assert(!(scalar && is_q));
8700 if (!scalar) {
8701 if (!is_q && extract32(immh, 3, 1)) {
8702 unallocated_encoding(s);
8703 return;
8706 /* Since we use the variable-shift helpers we must
8707 * replicate the shift count into each element of
8708 * the tcg_shift value.
8710 switch (size) {
8711 case 0:
8712 shift |= shift << 8;
8713 /* fall through */
8714 case 1:
8715 shift |= shift << 16;
8716 break;
8717 case 2:
8718 case 3:
8719 break;
8720 default:
8721 g_assert_not_reached();
8725 if (!fp_access_check(s)) {
8726 return;
8729 if (size == 3) {
8730 TCGv_i64 tcg_shift = tcg_const_i64(shift);
8731 static NeonGenTwo64OpEnvFn * const fns[2][2] = {
8732 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
8733 { NULL, gen_helper_neon_qshl_u64 },
8735 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
8736 int maxpass = is_q ? 2 : 1;
8738 for (pass = 0; pass < maxpass; pass++) {
8739 TCGv_i64 tcg_op = tcg_temp_new_i64();
8741 read_vec_element(s, tcg_op, rn, pass, MO_64);
8742 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8743 write_vec_element(s, tcg_op, rd, pass, MO_64);
8745 tcg_temp_free_i64(tcg_op);
8747 tcg_temp_free_i64(tcg_shift);
8748 clear_vec_high(s, is_q, rd);
8749 } else {
8750 TCGv_i32 tcg_shift = tcg_const_i32(shift);
8751 static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
8753 { gen_helper_neon_qshl_s8,
8754 gen_helper_neon_qshl_s16,
8755 gen_helper_neon_qshl_s32 },
8756 { gen_helper_neon_qshlu_s8,
8757 gen_helper_neon_qshlu_s16,
8758 gen_helper_neon_qshlu_s32 }
8759 }, {
8760 { NULL, NULL, NULL },
8761 { gen_helper_neon_qshl_u8,
8762 gen_helper_neon_qshl_u16,
8763 gen_helper_neon_qshl_u32 }
8766 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
8767 MemOp memop = scalar ? size : MO_32;
8768 int maxpass = scalar ? 1 : is_q ? 4 : 2;
8770 for (pass = 0; pass < maxpass; pass++) {
8771 TCGv_i32 tcg_op = tcg_temp_new_i32();
8773 read_vec_element_i32(s, tcg_op, rn, pass, memop);
8774 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8775 if (scalar) {
8776 switch (size) {
8777 case 0:
8778 tcg_gen_ext8u_i32(tcg_op, tcg_op);
8779 break;
8780 case 1:
8781 tcg_gen_ext16u_i32(tcg_op, tcg_op);
8782 break;
8783 case 2:
8784 break;
8785 default:
8786 g_assert_not_reached();
8788 write_fp_sreg(s, rd, tcg_op);
8789 } else {
8790 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
8793 tcg_temp_free_i32(tcg_op);
8795 tcg_temp_free_i32(tcg_shift);
8797 if (!scalar) {
8798 clear_vec_high(s, is_q, rd);
8803 /* Common vector code for handling integer to FP conversion */
8804 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
8805 int elements, int is_signed,
8806 int fracbits, int size)
8808 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8809 TCGv_i32 tcg_shift = NULL;
8811 MemOp mop = size | (is_signed ? MO_SIGN : 0);
8812 int pass;
8814 if (fracbits || size == MO_64) {
8815 tcg_shift = tcg_const_i32(fracbits);
8818 if (size == MO_64) {
8819 TCGv_i64 tcg_int64 = tcg_temp_new_i64();
8820 TCGv_i64 tcg_double = tcg_temp_new_i64();
8822 for (pass = 0; pass < elements; pass++) {
8823 read_vec_element(s, tcg_int64, rn, pass, mop);
8825 if (is_signed) {
8826 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
8827 tcg_shift, tcg_fpst);
8828 } else {
8829 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
8830 tcg_shift, tcg_fpst);
8832 if (elements == 1) {
8833 write_fp_dreg(s, rd, tcg_double);
8834 } else {
8835 write_vec_element(s, tcg_double, rd, pass, MO_64);
8839 tcg_temp_free_i64(tcg_int64);
8840 tcg_temp_free_i64(tcg_double);
8842 } else {
8843 TCGv_i32 tcg_int32 = tcg_temp_new_i32();
8844 TCGv_i32 tcg_float = tcg_temp_new_i32();
8846 for (pass = 0; pass < elements; pass++) {
8847 read_vec_element_i32(s, tcg_int32, rn, pass, mop);
8849 switch (size) {
8850 case MO_32:
8851 if (fracbits) {
8852 if (is_signed) {
8853 gen_helper_vfp_sltos(tcg_float, tcg_int32,
8854 tcg_shift, tcg_fpst);
8855 } else {
8856 gen_helper_vfp_ultos(tcg_float, tcg_int32,
8857 tcg_shift, tcg_fpst);
8859 } else {
8860 if (is_signed) {
8861 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
8862 } else {
8863 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
8866 break;
8867 case MO_16:
8868 if (fracbits) {
8869 if (is_signed) {
8870 gen_helper_vfp_sltoh(tcg_float, tcg_int32,
8871 tcg_shift, tcg_fpst);
8872 } else {
8873 gen_helper_vfp_ultoh(tcg_float, tcg_int32,
8874 tcg_shift, tcg_fpst);
8876 } else {
8877 if (is_signed) {
8878 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
8879 } else {
8880 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
8883 break;
8884 default:
8885 g_assert_not_reached();
8888 if (elements == 1) {
8889 write_fp_sreg(s, rd, tcg_float);
8890 } else {
8891 write_vec_element_i32(s, tcg_float, rd, pass, size);
8895 tcg_temp_free_i32(tcg_int32);
8896 tcg_temp_free_i32(tcg_float);
8899 tcg_temp_free_ptr(tcg_fpst);
8900 if (tcg_shift) {
8901 tcg_temp_free_i32(tcg_shift);
8904 clear_vec_high(s, elements << size == 16, rd);
8907 /* UCVTF/SCVTF - Integer to FP conversion */
8908 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
8909 bool is_q, bool is_u,
8910 int immh, int immb, int opcode,
8911 int rn, int rd)
8913 int size, elements, fracbits;
8914 int immhb = immh << 3 | immb;
8916 if (immh & 8) {
8917 size = MO_64;
8918 if (!is_scalar && !is_q) {
8919 unallocated_encoding(s);
8920 return;
8922 } else if (immh & 4) {
8923 size = MO_32;
8924 } else if (immh & 2) {
8925 size = MO_16;
8926 if (!dc_isar_feature(aa64_fp16, s)) {
8927 unallocated_encoding(s);
8928 return;
8930 } else {
8931 /* immh == 0 would be a failure of the decode logic */
8932 g_assert(immh == 1);
8933 unallocated_encoding(s);
8934 return;
8937 if (is_scalar) {
8938 elements = 1;
8939 } else {
8940 elements = (8 << is_q) >> size;
8942 fracbits = (16 << size) - immhb;
8944 if (!fp_access_check(s)) {
8945 return;
8948 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
8951 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
8952 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
8953 bool is_q, bool is_u,
8954 int immh, int immb, int rn, int rd)
8956 int immhb = immh << 3 | immb;
8957 int pass, size, fracbits;
8958 TCGv_ptr tcg_fpstatus;
8959 TCGv_i32 tcg_rmode, tcg_shift;
8961 if (immh & 0x8) {
8962 size = MO_64;
8963 if (!is_scalar && !is_q) {
8964 unallocated_encoding(s);
8965 return;
8967 } else if (immh & 0x4) {
8968 size = MO_32;
8969 } else if (immh & 0x2) {
8970 size = MO_16;
8971 if (!dc_isar_feature(aa64_fp16, s)) {
8972 unallocated_encoding(s);
8973 return;
8975 } else {
8976 /* Should have split out AdvSIMD modified immediate earlier. */
8977 assert(immh == 1);
8978 unallocated_encoding(s);
8979 return;
8982 if (!fp_access_check(s)) {
8983 return;
8986 assert(!(is_scalar && is_q));
8988 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(FPROUNDING_ZERO));
8989 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8990 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
8991 fracbits = (16 << size) - immhb;
8992 tcg_shift = tcg_const_i32(fracbits);
8994 if (size == MO_64) {
8995 int maxpass = is_scalar ? 1 : 2;
8997 for (pass = 0; pass < maxpass; pass++) {
8998 TCGv_i64 tcg_op = tcg_temp_new_i64();
9000 read_vec_element(s, tcg_op, rn, pass, MO_64);
9001 if (is_u) {
9002 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9003 } else {
9004 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9006 write_vec_element(s, tcg_op, rd, pass, MO_64);
9007 tcg_temp_free_i64(tcg_op);
9009 clear_vec_high(s, is_q, rd);
9010 } else {
9011 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
9012 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
9014 switch (size) {
9015 case MO_16:
9016 if (is_u) {
9017 fn = gen_helper_vfp_touhh;
9018 } else {
9019 fn = gen_helper_vfp_toshh;
9021 break;
9022 case MO_32:
9023 if (is_u) {
9024 fn = gen_helper_vfp_touls;
9025 } else {
9026 fn = gen_helper_vfp_tosls;
9028 break;
9029 default:
9030 g_assert_not_reached();
9033 for (pass = 0; pass < maxpass; pass++) {
9034 TCGv_i32 tcg_op = tcg_temp_new_i32();
9036 read_vec_element_i32(s, tcg_op, rn, pass, size);
9037 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9038 if (is_scalar) {
9039 write_fp_sreg(s, rd, tcg_op);
9040 } else {
9041 write_vec_element_i32(s, tcg_op, rd, pass, size);
9043 tcg_temp_free_i32(tcg_op);
9045 if (!is_scalar) {
9046 clear_vec_high(s, is_q, rd);
9050 tcg_temp_free_ptr(tcg_fpstatus);
9051 tcg_temp_free_i32(tcg_shift);
9052 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
9053 tcg_temp_free_i32(tcg_rmode);
9056 /* AdvSIMD scalar shift by immediate
9057 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
9058 * +-----+---+-------------+------+------+--------+---+------+------+
9059 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
9060 * +-----+---+-------------+------+------+--------+---+------+------+
9062 * This is the scalar version so it works on a fixed sized registers
9064 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
9066 int rd = extract32(insn, 0, 5);
9067 int rn = extract32(insn, 5, 5);
9068 int opcode = extract32(insn, 11, 5);
9069 int immb = extract32(insn, 16, 3);
9070 int immh = extract32(insn, 19, 4);
9071 bool is_u = extract32(insn, 29, 1);
9073 if (immh == 0) {
9074 unallocated_encoding(s);
9075 return;
9078 switch (opcode) {
9079 case 0x08: /* SRI */
9080 if (!is_u) {
9081 unallocated_encoding(s);
9082 return;
9084 /* fall through */
9085 case 0x00: /* SSHR / USHR */
9086 case 0x02: /* SSRA / USRA */
9087 case 0x04: /* SRSHR / URSHR */
9088 case 0x06: /* SRSRA / URSRA */
9089 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
9090 break;
9091 case 0x0a: /* SHL / SLI */
9092 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
9093 break;
9094 case 0x1c: /* SCVTF, UCVTF */
9095 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
9096 opcode, rn, rd);
9097 break;
9098 case 0x10: /* SQSHRUN, SQSHRUN2 */
9099 case 0x11: /* SQRSHRUN, SQRSHRUN2 */
9100 if (!is_u) {
9101 unallocated_encoding(s);
9102 return;
9104 handle_vec_simd_sqshrn(s, true, false, false, true,
9105 immh, immb, opcode, rn, rd);
9106 break;
9107 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
9108 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
9109 handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
9110 immh, immb, opcode, rn, rd);
9111 break;
9112 case 0xc: /* SQSHLU */
9113 if (!is_u) {
9114 unallocated_encoding(s);
9115 return;
9117 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
9118 break;
9119 case 0xe: /* SQSHL, UQSHL */
9120 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
9121 break;
9122 case 0x1f: /* FCVTZS, FCVTZU */
9123 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
9124 break;
9125 default:
9126 unallocated_encoding(s);
9127 break;
9131 /* AdvSIMD scalar three different
9132 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
9133 * +-----+---+-----------+------+---+------+--------+-----+------+------+
9134 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
9135 * +-----+---+-----------+------+---+------+--------+-----+------+------+
9137 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
9139 bool is_u = extract32(insn, 29, 1);
9140 int size = extract32(insn, 22, 2);
9141 int opcode = extract32(insn, 12, 4);
9142 int rm = extract32(insn, 16, 5);
9143 int rn = extract32(insn, 5, 5);
9144 int rd = extract32(insn, 0, 5);
9146 if (is_u) {
9147 unallocated_encoding(s);
9148 return;
9151 switch (opcode) {
9152 case 0x9: /* SQDMLAL, SQDMLAL2 */
9153 case 0xb: /* SQDMLSL, SQDMLSL2 */
9154 case 0xd: /* SQDMULL, SQDMULL2 */
9155 if (size == 0 || size == 3) {
9156 unallocated_encoding(s);
9157 return;
9159 break;
9160 default:
9161 unallocated_encoding(s);
9162 return;
9165 if (!fp_access_check(s)) {
9166 return;
9169 if (size == 2) {
9170 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9171 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9172 TCGv_i64 tcg_res = tcg_temp_new_i64();
9174 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
9175 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
9177 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
9178 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res);
9180 switch (opcode) {
9181 case 0xd: /* SQDMULL, SQDMULL2 */
9182 break;
9183 case 0xb: /* SQDMLSL, SQDMLSL2 */
9184 tcg_gen_neg_i64(tcg_res, tcg_res);
9185 /* fall through */
9186 case 0x9: /* SQDMLAL, SQDMLAL2 */
9187 read_vec_element(s, tcg_op1, rd, 0, MO_64);
9188 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env,
9189 tcg_res, tcg_op1);
9190 break;
9191 default:
9192 g_assert_not_reached();
9195 write_fp_dreg(s, rd, tcg_res);
9197 tcg_temp_free_i64(tcg_op1);
9198 tcg_temp_free_i64(tcg_op2);
9199 tcg_temp_free_i64(tcg_res);
9200 } else {
9201 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
9202 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
9203 TCGv_i64 tcg_res = tcg_temp_new_i64();
9205 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
9206 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res);
9208 switch (opcode) {
9209 case 0xd: /* SQDMULL, SQDMULL2 */
9210 break;
9211 case 0xb: /* SQDMLSL, SQDMLSL2 */
9212 gen_helper_neon_negl_u32(tcg_res, tcg_res);
9213 /* fall through */
9214 case 0x9: /* SQDMLAL, SQDMLAL2 */
9216 TCGv_i64 tcg_op3 = tcg_temp_new_i64();
9217 read_vec_element(s, tcg_op3, rd, 0, MO_32);
9218 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env,
9219 tcg_res, tcg_op3);
9220 tcg_temp_free_i64(tcg_op3);
9221 break;
9223 default:
9224 g_assert_not_reached();
9227 tcg_gen_ext32u_i64(tcg_res, tcg_res);
9228 write_fp_dreg(s, rd, tcg_res);
9230 tcg_temp_free_i32(tcg_op1);
9231 tcg_temp_free_i32(tcg_op2);
9232 tcg_temp_free_i64(tcg_res);
9236 static void handle_3same_64(DisasContext *s, int opcode, bool u,
9237 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
9239 /* Handle 64x64->64 opcodes which are shared between the scalar
9240 * and vector 3-same groups. We cover every opcode where size == 3
9241 * is valid in either the three-reg-same (integer, not pairwise)
9242 * or scalar-three-reg-same groups.
9244 TCGCond cond;
9246 switch (opcode) {
9247 case 0x1: /* SQADD */
9248 if (u) {
9249 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9250 } else {
9251 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9253 break;
9254 case 0x5: /* SQSUB */
9255 if (u) {
9256 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9257 } else {
9258 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9260 break;
9261 case 0x6: /* CMGT, CMHI */
9262 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0.
9263 * We implement this using setcond (test) and then negating.
9265 cond = u ? TCG_COND_GTU : TCG_COND_GT;
9266 do_cmop:
9267 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
9268 tcg_gen_neg_i64(tcg_rd, tcg_rd);
9269 break;
9270 case 0x7: /* CMGE, CMHS */
9271 cond = u ? TCG_COND_GEU : TCG_COND_GE;
9272 goto do_cmop;
9273 case 0x11: /* CMTST, CMEQ */
9274 if (u) {
9275 cond = TCG_COND_EQ;
9276 goto do_cmop;
9278 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
9279 break;
9280 case 0x8: /* SSHL, USHL */
9281 if (u) {
9282 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm);
9283 } else {
9284 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm);
9286 break;
9287 case 0x9: /* SQSHL, UQSHL */
9288 if (u) {
9289 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9290 } else {
9291 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9293 break;
9294 case 0xa: /* SRSHL, URSHL */
9295 if (u) {
9296 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
9297 } else {
9298 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
9300 break;
9301 case 0xb: /* SQRSHL, UQRSHL */
9302 if (u) {
9303 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9304 } else {
9305 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9307 break;
9308 case 0x10: /* ADD, SUB */
9309 if (u) {
9310 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
9311 } else {
9312 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
9314 break;
9315 default:
9316 g_assert_not_reached();
9320 /* Handle the 3-same-operands float operations; shared by the scalar
9321 * and vector encodings. The caller must filter out any encodings
9322 * not allocated for the encoding it is dealing with.
9324 static void handle_3same_float(DisasContext *s, int size, int elements,
9325 int fpopcode, int rd, int rn, int rm)
9327 int pass;
9328 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9330 for (pass = 0; pass < elements; pass++) {
9331 if (size) {
9332 /* Double */
9333 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9334 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9335 TCGv_i64 tcg_res = tcg_temp_new_i64();
9337 read_vec_element(s, tcg_op1, rn, pass, MO_64);
9338 read_vec_element(s, tcg_op2, rm, pass, MO_64);
9340 switch (fpopcode) {
9341 case 0x39: /* FMLS */
9342 /* As usual for ARM, separate negation for fused multiply-add */
9343 gen_helper_vfp_negd(tcg_op1, tcg_op1);
9344 /* fall through */
9345 case 0x19: /* FMLA */
9346 read_vec_element(s, tcg_res, rd, pass, MO_64);
9347 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
9348 tcg_res, fpst);
9349 break;
9350 case 0x18: /* FMAXNM */
9351 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
9352 break;
9353 case 0x1a: /* FADD */
9354 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
9355 break;
9356 case 0x1b: /* FMULX */
9357 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
9358 break;
9359 case 0x1c: /* FCMEQ */
9360 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9361 break;
9362 case 0x1e: /* FMAX */
9363 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
9364 break;
9365 case 0x1f: /* FRECPS */
9366 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9367 break;
9368 case 0x38: /* FMINNM */
9369 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
9370 break;
9371 case 0x3a: /* FSUB */
9372 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
9373 break;
9374 case 0x3e: /* FMIN */
9375 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
9376 break;
9377 case 0x3f: /* FRSQRTS */
9378 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9379 break;
9380 case 0x5b: /* FMUL */
9381 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
9382 break;
9383 case 0x5c: /* FCMGE */
9384 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9385 break;
9386 case 0x5d: /* FACGE */
9387 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9388 break;
9389 case 0x5f: /* FDIV */
9390 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
9391 break;
9392 case 0x7a: /* FABD */
9393 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
9394 gen_helper_vfp_absd(tcg_res, tcg_res);
9395 break;
9396 case 0x7c: /* FCMGT */
9397 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9398 break;
9399 case 0x7d: /* FACGT */
9400 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9401 break;
9402 default:
9403 g_assert_not_reached();
9406 write_vec_element(s, tcg_res, rd, pass, MO_64);
9408 tcg_temp_free_i64(tcg_res);
9409 tcg_temp_free_i64(tcg_op1);
9410 tcg_temp_free_i64(tcg_op2);
9411 } else {
9412 /* Single */
9413 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
9414 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9415 TCGv_i32 tcg_res = tcg_temp_new_i32();
9417 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
9418 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
9420 switch (fpopcode) {
9421 case 0x39: /* FMLS */
9422 /* As usual for ARM, separate negation for fused multiply-add */
9423 gen_helper_vfp_negs(tcg_op1, tcg_op1);
9424 /* fall through */
9425 case 0x19: /* FMLA */
9426 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9427 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
9428 tcg_res, fpst);
9429 break;
9430 case 0x1a: /* FADD */
9431 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
9432 break;
9433 case 0x1b: /* FMULX */
9434 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
9435 break;
9436 case 0x1c: /* FCMEQ */
9437 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9438 break;
9439 case 0x1e: /* FMAX */
9440 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
9441 break;
9442 case 0x1f: /* FRECPS */
9443 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9444 break;
9445 case 0x18: /* FMAXNM */
9446 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
9447 break;
9448 case 0x38: /* FMINNM */
9449 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
9450 break;
9451 case 0x3a: /* FSUB */
9452 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9453 break;
9454 case 0x3e: /* FMIN */
9455 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
9456 break;
9457 case 0x3f: /* FRSQRTS */
9458 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9459 break;
9460 case 0x5b: /* FMUL */
9461 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
9462 break;
9463 case 0x5c: /* FCMGE */
9464 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9465 break;
9466 case 0x5d: /* FACGE */
9467 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9468 break;
9469 case 0x5f: /* FDIV */
9470 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
9471 break;
9472 case 0x7a: /* FABD */
9473 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9474 gen_helper_vfp_abss(tcg_res, tcg_res);
9475 break;
9476 case 0x7c: /* FCMGT */
9477 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9478 break;
9479 case 0x7d: /* FACGT */
9480 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9481 break;
9482 default:
9483 g_assert_not_reached();
9486 if (elements == 1) {
9487 /* scalar single so clear high part */
9488 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
9490 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
9491 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
9492 tcg_temp_free_i64(tcg_tmp);
9493 } else {
9494 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9497 tcg_temp_free_i32(tcg_res);
9498 tcg_temp_free_i32(tcg_op1);
9499 tcg_temp_free_i32(tcg_op2);
9503 tcg_temp_free_ptr(fpst);
9505 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd);
9508 /* AdvSIMD scalar three same
9509 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
9510 * +-----+---+-----------+------+---+------+--------+---+------+------+
9511 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
9512 * +-----+---+-----------+------+---+------+--------+---+------+------+
9514 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
9516 int rd = extract32(insn, 0, 5);
9517 int rn = extract32(insn, 5, 5);
9518 int opcode = extract32(insn, 11, 5);
9519 int rm = extract32(insn, 16, 5);
9520 int size = extract32(insn, 22, 2);
9521 bool u = extract32(insn, 29, 1);
9522 TCGv_i64 tcg_rd;
9524 if (opcode >= 0x18) {
9525 /* Floating point: U, size[1] and opcode indicate operation */
9526 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
9527 switch (fpopcode) {
9528 case 0x1b: /* FMULX */
9529 case 0x1f: /* FRECPS */
9530 case 0x3f: /* FRSQRTS */
9531 case 0x5d: /* FACGE */
9532 case 0x7d: /* FACGT */
9533 case 0x1c: /* FCMEQ */
9534 case 0x5c: /* FCMGE */
9535 case 0x7c: /* FCMGT */
9536 case 0x7a: /* FABD */
9537 break;
9538 default:
9539 unallocated_encoding(s);
9540 return;
9543 if (!fp_access_check(s)) {
9544 return;
9547 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
9548 return;
9551 switch (opcode) {
9552 case 0x1: /* SQADD, UQADD */
9553 case 0x5: /* SQSUB, UQSUB */
9554 case 0x9: /* SQSHL, UQSHL */
9555 case 0xb: /* SQRSHL, UQRSHL */
9556 break;
9557 case 0x8: /* SSHL, USHL */
9558 case 0xa: /* SRSHL, URSHL */
9559 case 0x6: /* CMGT, CMHI */
9560 case 0x7: /* CMGE, CMHS */
9561 case 0x11: /* CMTST, CMEQ */
9562 case 0x10: /* ADD, SUB (vector) */
9563 if (size != 3) {
9564 unallocated_encoding(s);
9565 return;
9567 break;
9568 case 0x16: /* SQDMULH, SQRDMULH (vector) */
9569 if (size != 1 && size != 2) {
9570 unallocated_encoding(s);
9571 return;
9573 break;
9574 default:
9575 unallocated_encoding(s);
9576 return;
9579 if (!fp_access_check(s)) {
9580 return;
9583 tcg_rd = tcg_temp_new_i64();
9585 if (size == 3) {
9586 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9587 TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
9589 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
9590 tcg_temp_free_i64(tcg_rn);
9591 tcg_temp_free_i64(tcg_rm);
9592 } else {
9593 /* Do a single operation on the lowest element in the vector.
9594 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
9595 * no side effects for all these operations.
9596 * OPTME: special-purpose helpers would avoid doing some
9597 * unnecessary work in the helper for the 8 and 16 bit cases.
9599 NeonGenTwoOpEnvFn *genenvfn;
9600 TCGv_i32 tcg_rn = tcg_temp_new_i32();
9601 TCGv_i32 tcg_rm = tcg_temp_new_i32();
9602 TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
9604 read_vec_element_i32(s, tcg_rn, rn, 0, size);
9605 read_vec_element_i32(s, tcg_rm, rm, 0, size);
9607 switch (opcode) {
9608 case 0x1: /* SQADD, UQADD */
9610 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9611 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9612 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9613 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9615 genenvfn = fns[size][u];
9616 break;
9618 case 0x5: /* SQSUB, UQSUB */
9620 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9621 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9622 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9623 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9625 genenvfn = fns[size][u];
9626 break;
9628 case 0x9: /* SQSHL, UQSHL */
9630 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9631 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9632 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9633 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9635 genenvfn = fns[size][u];
9636 break;
9638 case 0xb: /* SQRSHL, UQRSHL */
9640 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9641 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9642 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9643 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9645 genenvfn = fns[size][u];
9646 break;
9648 case 0x16: /* SQDMULH, SQRDMULH */
9650 static NeonGenTwoOpEnvFn * const fns[2][2] = {
9651 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9652 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9654 assert(size == 1 || size == 2);
9655 genenvfn = fns[size - 1][u];
9656 break;
9658 default:
9659 g_assert_not_reached();
9662 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm);
9663 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
9664 tcg_temp_free_i32(tcg_rd32);
9665 tcg_temp_free_i32(tcg_rn);
9666 tcg_temp_free_i32(tcg_rm);
9669 write_fp_dreg(s, rd, tcg_rd);
9671 tcg_temp_free_i64(tcg_rd);
9674 /* AdvSIMD scalar three same FP16
9675 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
9676 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9677 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
9678 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9679 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400
9680 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400
9682 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s,
9683 uint32_t insn)
9685 int rd = extract32(insn, 0, 5);
9686 int rn = extract32(insn, 5, 5);
9687 int opcode = extract32(insn, 11, 3);
9688 int rm = extract32(insn, 16, 5);
9689 bool u = extract32(insn, 29, 1);
9690 bool a = extract32(insn, 23, 1);
9691 int fpopcode = opcode | (a << 3) | (u << 4);
9692 TCGv_ptr fpst;
9693 TCGv_i32 tcg_op1;
9694 TCGv_i32 tcg_op2;
9695 TCGv_i32 tcg_res;
9697 switch (fpopcode) {
9698 case 0x03: /* FMULX */
9699 case 0x04: /* FCMEQ (reg) */
9700 case 0x07: /* FRECPS */
9701 case 0x0f: /* FRSQRTS */
9702 case 0x14: /* FCMGE (reg) */
9703 case 0x15: /* FACGE */
9704 case 0x1a: /* FABD */
9705 case 0x1c: /* FCMGT (reg) */
9706 case 0x1d: /* FACGT */
9707 break;
9708 default:
9709 unallocated_encoding(s);
9710 return;
9713 if (!dc_isar_feature(aa64_fp16, s)) {
9714 unallocated_encoding(s);
9717 if (!fp_access_check(s)) {
9718 return;
9721 fpst = fpstatus_ptr(FPST_FPCR_F16);
9723 tcg_op1 = read_fp_hreg(s, rn);
9724 tcg_op2 = read_fp_hreg(s, rm);
9725 tcg_res = tcg_temp_new_i32();
9727 switch (fpopcode) {
9728 case 0x03: /* FMULX */
9729 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
9730 break;
9731 case 0x04: /* FCMEQ (reg) */
9732 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9733 break;
9734 case 0x07: /* FRECPS */
9735 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9736 break;
9737 case 0x0f: /* FRSQRTS */
9738 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9739 break;
9740 case 0x14: /* FCMGE (reg) */
9741 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9742 break;
9743 case 0x15: /* FACGE */
9744 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9745 break;
9746 case 0x1a: /* FABD */
9747 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
9748 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
9749 break;
9750 case 0x1c: /* FCMGT (reg) */
9751 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9752 break;
9753 case 0x1d: /* FACGT */
9754 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9755 break;
9756 default:
9757 g_assert_not_reached();
9760 write_fp_sreg(s, rd, tcg_res);
9763 tcg_temp_free_i32(tcg_res);
9764 tcg_temp_free_i32(tcg_op1);
9765 tcg_temp_free_i32(tcg_op2);
9766 tcg_temp_free_ptr(fpst);
9769 /* AdvSIMD scalar three same extra
9770 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
9771 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9772 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
9773 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9775 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
9776 uint32_t insn)
9778 int rd = extract32(insn, 0, 5);
9779 int rn = extract32(insn, 5, 5);
9780 int opcode = extract32(insn, 11, 4);
9781 int rm = extract32(insn, 16, 5);
9782 int size = extract32(insn, 22, 2);
9783 bool u = extract32(insn, 29, 1);
9784 TCGv_i32 ele1, ele2, ele3;
9785 TCGv_i64 res;
9786 bool feature;
9788 switch (u * 16 + opcode) {
9789 case 0x10: /* SQRDMLAH (vector) */
9790 case 0x11: /* SQRDMLSH (vector) */
9791 if (size != 1 && size != 2) {
9792 unallocated_encoding(s);
9793 return;
9795 feature = dc_isar_feature(aa64_rdm, s);
9796 break;
9797 default:
9798 unallocated_encoding(s);
9799 return;
9801 if (!feature) {
9802 unallocated_encoding(s);
9803 return;
9805 if (!fp_access_check(s)) {
9806 return;
9809 /* Do a single operation on the lowest element in the vector.
9810 * We use the standard Neon helpers and rely on 0 OP 0 == 0
9811 * with no side effects for all these operations.
9812 * OPTME: special-purpose helpers would avoid doing some
9813 * unnecessary work in the helper for the 16 bit cases.
9815 ele1 = tcg_temp_new_i32();
9816 ele2 = tcg_temp_new_i32();
9817 ele3 = tcg_temp_new_i32();
9819 read_vec_element_i32(s, ele1, rn, 0, size);
9820 read_vec_element_i32(s, ele2, rm, 0, size);
9821 read_vec_element_i32(s, ele3, rd, 0, size);
9823 switch (opcode) {
9824 case 0x0: /* SQRDMLAH */
9825 if (size == 1) {
9826 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3);
9827 } else {
9828 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3);
9830 break;
9831 case 0x1: /* SQRDMLSH */
9832 if (size == 1) {
9833 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3);
9834 } else {
9835 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3);
9837 break;
9838 default:
9839 g_assert_not_reached();
9841 tcg_temp_free_i32(ele1);
9842 tcg_temp_free_i32(ele2);
9844 res = tcg_temp_new_i64();
9845 tcg_gen_extu_i32_i64(res, ele3);
9846 tcg_temp_free_i32(ele3);
9848 write_fp_dreg(s, rd, res);
9849 tcg_temp_free_i64(res);
9852 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9853 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9854 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9856 /* Handle 64->64 opcodes which are shared between the scalar and
9857 * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9858 * is valid in either group and also the double-precision fp ops.
9859 * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9860 * requires them.
9862 TCGCond cond;
9864 switch (opcode) {
9865 case 0x4: /* CLS, CLZ */
9866 if (u) {
9867 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9868 } else {
9869 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9871 break;
9872 case 0x5: /* NOT */
9873 /* This opcode is shared with CNT and RBIT but we have earlier
9874 * enforced that size == 3 if and only if this is the NOT insn.
9876 tcg_gen_not_i64(tcg_rd, tcg_rn);
9877 break;
9878 case 0x7: /* SQABS, SQNEG */
9879 if (u) {
9880 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn);
9881 } else {
9882 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn);
9884 break;
9885 case 0xa: /* CMLT */
9886 /* 64 bit integer comparison against zero, result is
9887 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and
9888 * subtracting 1.
9890 cond = TCG_COND_LT;
9891 do_cmop:
9892 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0);
9893 tcg_gen_neg_i64(tcg_rd, tcg_rd);
9894 break;
9895 case 0x8: /* CMGT, CMGE */
9896 cond = u ? TCG_COND_GE : TCG_COND_GT;
9897 goto do_cmop;
9898 case 0x9: /* CMEQ, CMLE */
9899 cond = u ? TCG_COND_LE : TCG_COND_EQ;
9900 goto do_cmop;
9901 case 0xb: /* ABS, NEG */
9902 if (u) {
9903 tcg_gen_neg_i64(tcg_rd, tcg_rn);
9904 } else {
9905 tcg_gen_abs_i64(tcg_rd, tcg_rn);
9907 break;
9908 case 0x2f: /* FABS */
9909 gen_helper_vfp_absd(tcg_rd, tcg_rn);
9910 break;
9911 case 0x6f: /* FNEG */
9912 gen_helper_vfp_negd(tcg_rd, tcg_rn);
9913 break;
9914 case 0x7f: /* FSQRT */
9915 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env);
9916 break;
9917 case 0x1a: /* FCVTNS */
9918 case 0x1b: /* FCVTMS */
9919 case 0x1c: /* FCVTAS */
9920 case 0x3a: /* FCVTPS */
9921 case 0x3b: /* FCVTZS */
9923 TCGv_i32 tcg_shift = tcg_const_i32(0);
9924 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
9925 tcg_temp_free_i32(tcg_shift);
9926 break;
9928 case 0x5a: /* FCVTNU */
9929 case 0x5b: /* FCVTMU */
9930 case 0x5c: /* FCVTAU */
9931 case 0x7a: /* FCVTPU */
9932 case 0x7b: /* FCVTZU */
9934 TCGv_i32 tcg_shift = tcg_const_i32(0);
9935 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
9936 tcg_temp_free_i32(tcg_shift);
9937 break;
9939 case 0x18: /* FRINTN */
9940 case 0x19: /* FRINTM */
9941 case 0x38: /* FRINTP */
9942 case 0x39: /* FRINTZ */
9943 case 0x58: /* FRINTA */
9944 case 0x79: /* FRINTI */
9945 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9946 break;
9947 case 0x59: /* FRINTX */
9948 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9949 break;
9950 case 0x1e: /* FRINT32Z */
9951 case 0x5e: /* FRINT32X */
9952 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
9953 break;
9954 case 0x1f: /* FRINT64Z */
9955 case 0x5f: /* FRINT64X */
9956 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
9957 break;
9958 default:
9959 g_assert_not_reached();
9963 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9964 bool is_scalar, bool is_u, bool is_q,
9965 int size, int rn, int rd)
9967 bool is_double = (size == MO_64);
9968 TCGv_ptr fpst;
9970 if (!fp_access_check(s)) {
9971 return;
9974 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9976 if (is_double) {
9977 TCGv_i64 tcg_op = tcg_temp_new_i64();
9978 TCGv_i64 tcg_zero = tcg_const_i64(0);
9979 TCGv_i64 tcg_res = tcg_temp_new_i64();
9980 NeonGenTwoDoubleOpFn *genfn;
9981 bool swap = false;
9982 int pass;
9984 switch (opcode) {
9985 case 0x2e: /* FCMLT (zero) */
9986 swap = true;
9987 /* fallthrough */
9988 case 0x2c: /* FCMGT (zero) */
9989 genfn = gen_helper_neon_cgt_f64;
9990 break;
9991 case 0x2d: /* FCMEQ (zero) */
9992 genfn = gen_helper_neon_ceq_f64;
9993 break;
9994 case 0x6d: /* FCMLE (zero) */
9995 swap = true;
9996 /* fall through */
9997 case 0x6c: /* FCMGE (zero) */
9998 genfn = gen_helper_neon_cge_f64;
9999 break;
10000 default:
10001 g_assert_not_reached();
10004 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10005 read_vec_element(s, tcg_op, rn, pass, MO_64);
10006 if (swap) {
10007 genfn(tcg_res, tcg_zero, tcg_op, fpst);
10008 } else {
10009 genfn(tcg_res, tcg_op, tcg_zero, fpst);
10011 write_vec_element(s, tcg_res, rd, pass, MO_64);
10013 tcg_temp_free_i64(tcg_res);
10014 tcg_temp_free_i64(tcg_zero);
10015 tcg_temp_free_i64(tcg_op);
10017 clear_vec_high(s, !is_scalar, rd);
10018 } else {
10019 TCGv_i32 tcg_op = tcg_temp_new_i32();
10020 TCGv_i32 tcg_zero = tcg_const_i32(0);
10021 TCGv_i32 tcg_res = tcg_temp_new_i32();
10022 NeonGenTwoSingleOpFn *genfn;
10023 bool swap = false;
10024 int pass, maxpasses;
10026 if (size == MO_16) {
10027 switch (opcode) {
10028 case 0x2e: /* FCMLT (zero) */
10029 swap = true;
10030 /* fall through */
10031 case 0x2c: /* FCMGT (zero) */
10032 genfn = gen_helper_advsimd_cgt_f16;
10033 break;
10034 case 0x2d: /* FCMEQ (zero) */
10035 genfn = gen_helper_advsimd_ceq_f16;
10036 break;
10037 case 0x6d: /* FCMLE (zero) */
10038 swap = true;
10039 /* fall through */
10040 case 0x6c: /* FCMGE (zero) */
10041 genfn = gen_helper_advsimd_cge_f16;
10042 break;
10043 default:
10044 g_assert_not_reached();
10046 } else {
10047 switch (opcode) {
10048 case 0x2e: /* FCMLT (zero) */
10049 swap = true;
10050 /* fall through */
10051 case 0x2c: /* FCMGT (zero) */
10052 genfn = gen_helper_neon_cgt_f32;
10053 break;
10054 case 0x2d: /* FCMEQ (zero) */
10055 genfn = gen_helper_neon_ceq_f32;
10056 break;
10057 case 0x6d: /* FCMLE (zero) */
10058 swap = true;
10059 /* fall through */
10060 case 0x6c: /* FCMGE (zero) */
10061 genfn = gen_helper_neon_cge_f32;
10062 break;
10063 default:
10064 g_assert_not_reached();
10068 if (is_scalar) {
10069 maxpasses = 1;
10070 } else {
10071 int vector_size = 8 << is_q;
10072 maxpasses = vector_size >> size;
10075 for (pass = 0; pass < maxpasses; pass++) {
10076 read_vec_element_i32(s, tcg_op, rn, pass, size);
10077 if (swap) {
10078 genfn(tcg_res, tcg_zero, tcg_op, fpst);
10079 } else {
10080 genfn(tcg_res, tcg_op, tcg_zero, fpst);
10082 if (is_scalar) {
10083 write_fp_sreg(s, rd, tcg_res);
10084 } else {
10085 write_vec_element_i32(s, tcg_res, rd, pass, size);
10088 tcg_temp_free_i32(tcg_res);
10089 tcg_temp_free_i32(tcg_zero);
10090 tcg_temp_free_i32(tcg_op);
10091 if (!is_scalar) {
10092 clear_vec_high(s, is_q, rd);
10096 tcg_temp_free_ptr(fpst);
10099 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
10100 bool is_scalar, bool is_u, bool is_q,
10101 int size, int rn, int rd)
10103 bool is_double = (size == 3);
10104 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10106 if (is_double) {
10107 TCGv_i64 tcg_op = tcg_temp_new_i64();
10108 TCGv_i64 tcg_res = tcg_temp_new_i64();
10109 int pass;
10111 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10112 read_vec_element(s, tcg_op, rn, pass, MO_64);
10113 switch (opcode) {
10114 case 0x3d: /* FRECPE */
10115 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
10116 break;
10117 case 0x3f: /* FRECPX */
10118 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
10119 break;
10120 case 0x7d: /* FRSQRTE */
10121 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
10122 break;
10123 default:
10124 g_assert_not_reached();
10126 write_vec_element(s, tcg_res, rd, pass, MO_64);
10128 tcg_temp_free_i64(tcg_res);
10129 tcg_temp_free_i64(tcg_op);
10130 clear_vec_high(s, !is_scalar, rd);
10131 } else {
10132 TCGv_i32 tcg_op = tcg_temp_new_i32();
10133 TCGv_i32 tcg_res = tcg_temp_new_i32();
10134 int pass, maxpasses;
10136 if (is_scalar) {
10137 maxpasses = 1;
10138 } else {
10139 maxpasses = is_q ? 4 : 2;
10142 for (pass = 0; pass < maxpasses; pass++) {
10143 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
10145 switch (opcode) {
10146 case 0x3c: /* URECPE */
10147 gen_helper_recpe_u32(tcg_res, tcg_op);
10148 break;
10149 case 0x3d: /* FRECPE */
10150 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
10151 break;
10152 case 0x3f: /* FRECPX */
10153 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
10154 break;
10155 case 0x7d: /* FRSQRTE */
10156 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
10157 break;
10158 default:
10159 g_assert_not_reached();
10162 if (is_scalar) {
10163 write_fp_sreg(s, rd, tcg_res);
10164 } else {
10165 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
10168 tcg_temp_free_i32(tcg_res);
10169 tcg_temp_free_i32(tcg_op);
10170 if (!is_scalar) {
10171 clear_vec_high(s, is_q, rd);
10174 tcg_temp_free_ptr(fpst);
10177 static void handle_2misc_narrow(DisasContext *s, bool scalar,
10178 int opcode, bool u, bool is_q,
10179 int size, int rn, int rd)
10181 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
10182 * in the source becomes a size element in the destination).
10184 int pass;
10185 TCGv_i32 tcg_res[2];
10186 int destelt = is_q ? 2 : 0;
10187 int passes = scalar ? 1 : 2;
10189 if (scalar) {
10190 tcg_res[1] = tcg_const_i32(0);
10193 for (pass = 0; pass < passes; pass++) {
10194 TCGv_i64 tcg_op = tcg_temp_new_i64();
10195 NeonGenNarrowFn *genfn = NULL;
10196 NeonGenNarrowEnvFn *genenvfn = NULL;
10198 if (scalar) {
10199 read_vec_element(s, tcg_op, rn, pass, size + 1);
10200 } else {
10201 read_vec_element(s, tcg_op, rn, pass, MO_64);
10203 tcg_res[pass] = tcg_temp_new_i32();
10205 switch (opcode) {
10206 case 0x12: /* XTN, SQXTUN */
10208 static NeonGenNarrowFn * const xtnfns[3] = {
10209 gen_helper_neon_narrow_u8,
10210 gen_helper_neon_narrow_u16,
10211 tcg_gen_extrl_i64_i32,
10213 static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
10214 gen_helper_neon_unarrow_sat8,
10215 gen_helper_neon_unarrow_sat16,
10216 gen_helper_neon_unarrow_sat32,
10218 if (u) {
10219 genenvfn = sqxtunfns[size];
10220 } else {
10221 genfn = xtnfns[size];
10223 break;
10225 case 0x14: /* SQXTN, UQXTN */
10227 static NeonGenNarrowEnvFn * const fns[3][2] = {
10228 { gen_helper_neon_narrow_sat_s8,
10229 gen_helper_neon_narrow_sat_u8 },
10230 { gen_helper_neon_narrow_sat_s16,
10231 gen_helper_neon_narrow_sat_u16 },
10232 { gen_helper_neon_narrow_sat_s32,
10233 gen_helper_neon_narrow_sat_u32 },
10235 genenvfn = fns[size][u];
10236 break;
10238 case 0x16: /* FCVTN, FCVTN2 */
10239 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
10240 if (size == 2) {
10241 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env);
10242 } else {
10243 TCGv_i32 tcg_lo = tcg_temp_new_i32();
10244 TCGv_i32 tcg_hi = tcg_temp_new_i32();
10245 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10246 TCGv_i32 ahp = get_ahp_flag();
10248 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
10249 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
10250 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
10251 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
10252 tcg_temp_free_i32(tcg_lo);
10253 tcg_temp_free_i32(tcg_hi);
10254 tcg_temp_free_ptr(fpst);
10255 tcg_temp_free_i32(ahp);
10257 break;
10258 case 0x36: /* BFCVTN, BFCVTN2 */
10260 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10261 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst);
10262 tcg_temp_free_ptr(fpst);
10264 break;
10265 case 0x56: /* FCVTXN, FCVTXN2 */
10266 /* 64 bit to 32 bit float conversion
10267 * with von Neumann rounding (round to odd)
10269 assert(size == 2);
10270 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env);
10271 break;
10272 default:
10273 g_assert_not_reached();
10276 if (genfn) {
10277 genfn(tcg_res[pass], tcg_op);
10278 } else if (genenvfn) {
10279 genenvfn(tcg_res[pass], cpu_env, tcg_op);
10282 tcg_temp_free_i64(tcg_op);
10285 for (pass = 0; pass < 2; pass++) {
10286 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
10287 tcg_temp_free_i32(tcg_res[pass]);
10289 clear_vec_high(s, is_q, rd);
10292 /* Remaining saturating accumulating ops */
10293 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
10294 bool is_q, int size, int rn, int rd)
10296 bool is_double = (size == 3);
10298 if (is_double) {
10299 TCGv_i64 tcg_rn = tcg_temp_new_i64();
10300 TCGv_i64 tcg_rd = tcg_temp_new_i64();
10301 int pass;
10303 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10304 read_vec_element(s, tcg_rn, rn, pass, MO_64);
10305 read_vec_element(s, tcg_rd, rd, pass, MO_64);
10307 if (is_u) { /* USQADD */
10308 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10309 } else { /* SUQADD */
10310 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10312 write_vec_element(s, tcg_rd, rd, pass, MO_64);
10314 tcg_temp_free_i64(tcg_rd);
10315 tcg_temp_free_i64(tcg_rn);
10316 clear_vec_high(s, !is_scalar, rd);
10317 } else {
10318 TCGv_i32 tcg_rn = tcg_temp_new_i32();
10319 TCGv_i32 tcg_rd = tcg_temp_new_i32();
10320 int pass, maxpasses;
10322 if (is_scalar) {
10323 maxpasses = 1;
10324 } else {
10325 maxpasses = is_q ? 4 : 2;
10328 for (pass = 0; pass < maxpasses; pass++) {
10329 if (is_scalar) {
10330 read_vec_element_i32(s, tcg_rn, rn, pass, size);
10331 read_vec_element_i32(s, tcg_rd, rd, pass, size);
10332 } else {
10333 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
10334 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
10337 if (is_u) { /* USQADD */
10338 switch (size) {
10339 case 0:
10340 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10341 break;
10342 case 1:
10343 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10344 break;
10345 case 2:
10346 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10347 break;
10348 default:
10349 g_assert_not_reached();
10351 } else { /* SUQADD */
10352 switch (size) {
10353 case 0:
10354 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10355 break;
10356 case 1:
10357 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10358 break;
10359 case 2:
10360 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10361 break;
10362 default:
10363 g_assert_not_reached();
10367 if (is_scalar) {
10368 TCGv_i64 tcg_zero = tcg_const_i64(0);
10369 write_vec_element(s, tcg_zero, rd, 0, MO_64);
10370 tcg_temp_free_i64(tcg_zero);
10372 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
10374 tcg_temp_free_i32(tcg_rd);
10375 tcg_temp_free_i32(tcg_rn);
10376 clear_vec_high(s, is_q, rd);
10380 /* AdvSIMD scalar two reg misc
10381 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
10382 * +-----+---+-----------+------+-----------+--------+-----+------+------+
10383 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
10384 * +-----+---+-----------+------+-----------+--------+-----+------+------+
10386 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
10388 int rd = extract32(insn, 0, 5);
10389 int rn = extract32(insn, 5, 5);
10390 int opcode = extract32(insn, 12, 5);
10391 int size = extract32(insn, 22, 2);
10392 bool u = extract32(insn, 29, 1);
10393 bool is_fcvt = false;
10394 int rmode;
10395 TCGv_i32 tcg_rmode;
10396 TCGv_ptr tcg_fpstatus;
10398 switch (opcode) {
10399 case 0x3: /* USQADD / SUQADD*/
10400 if (!fp_access_check(s)) {
10401 return;
10403 handle_2misc_satacc(s, true, u, false, size, rn, rd);
10404 return;
10405 case 0x7: /* SQABS / SQNEG */
10406 break;
10407 case 0xa: /* CMLT */
10408 if (u) {
10409 unallocated_encoding(s);
10410 return;
10412 /* fall through */
10413 case 0x8: /* CMGT, CMGE */
10414 case 0x9: /* CMEQ, CMLE */
10415 case 0xb: /* ABS, NEG */
10416 if (size != 3) {
10417 unallocated_encoding(s);
10418 return;
10420 break;
10421 case 0x12: /* SQXTUN */
10422 if (!u) {
10423 unallocated_encoding(s);
10424 return;
10426 /* fall through */
10427 case 0x14: /* SQXTN, UQXTN */
10428 if (size == 3) {
10429 unallocated_encoding(s);
10430 return;
10432 if (!fp_access_check(s)) {
10433 return;
10435 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
10436 return;
10437 case 0xc ... 0xf:
10438 case 0x16 ... 0x1d:
10439 case 0x1f:
10440 /* Floating point: U, size[1] and opcode indicate operation;
10441 * size[0] indicates single or double precision.
10443 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10444 size = extract32(size, 0, 1) ? 3 : 2;
10445 switch (opcode) {
10446 case 0x2c: /* FCMGT (zero) */
10447 case 0x2d: /* FCMEQ (zero) */
10448 case 0x2e: /* FCMLT (zero) */
10449 case 0x6c: /* FCMGE (zero) */
10450 case 0x6d: /* FCMLE (zero) */
10451 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
10452 return;
10453 case 0x1d: /* SCVTF */
10454 case 0x5d: /* UCVTF */
10456 bool is_signed = (opcode == 0x1d);
10457 if (!fp_access_check(s)) {
10458 return;
10460 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
10461 return;
10463 case 0x3d: /* FRECPE */
10464 case 0x3f: /* FRECPX */
10465 case 0x7d: /* FRSQRTE */
10466 if (!fp_access_check(s)) {
10467 return;
10469 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
10470 return;
10471 case 0x1a: /* FCVTNS */
10472 case 0x1b: /* FCVTMS */
10473 case 0x3a: /* FCVTPS */
10474 case 0x3b: /* FCVTZS */
10475 case 0x5a: /* FCVTNU */
10476 case 0x5b: /* FCVTMU */
10477 case 0x7a: /* FCVTPU */
10478 case 0x7b: /* FCVTZU */
10479 is_fcvt = true;
10480 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10481 break;
10482 case 0x1c: /* FCVTAS */
10483 case 0x5c: /* FCVTAU */
10484 /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10485 is_fcvt = true;
10486 rmode = FPROUNDING_TIEAWAY;
10487 break;
10488 case 0x56: /* FCVTXN, FCVTXN2 */
10489 if (size == 2) {
10490 unallocated_encoding(s);
10491 return;
10493 if (!fp_access_check(s)) {
10494 return;
10496 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
10497 return;
10498 default:
10499 unallocated_encoding(s);
10500 return;
10502 break;
10503 default:
10504 unallocated_encoding(s);
10505 return;
10508 if (!fp_access_check(s)) {
10509 return;
10512 if (is_fcvt) {
10513 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
10514 tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
10515 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
10516 } else {
10517 tcg_rmode = NULL;
10518 tcg_fpstatus = NULL;
10521 if (size == 3) {
10522 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
10523 TCGv_i64 tcg_rd = tcg_temp_new_i64();
10525 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
10526 write_fp_dreg(s, rd, tcg_rd);
10527 tcg_temp_free_i64(tcg_rd);
10528 tcg_temp_free_i64(tcg_rn);
10529 } else {
10530 TCGv_i32 tcg_rn = tcg_temp_new_i32();
10531 TCGv_i32 tcg_rd = tcg_temp_new_i32();
10533 read_vec_element_i32(s, tcg_rn, rn, 0, size);
10535 switch (opcode) {
10536 case 0x7: /* SQABS, SQNEG */
10538 NeonGenOneOpEnvFn *genfn;
10539 static NeonGenOneOpEnvFn * const fns[3][2] = {
10540 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10541 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10542 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
10544 genfn = fns[size][u];
10545 genfn(tcg_rd, cpu_env, tcg_rn);
10546 break;
10548 case 0x1a: /* FCVTNS */
10549 case 0x1b: /* FCVTMS */
10550 case 0x1c: /* FCVTAS */
10551 case 0x3a: /* FCVTPS */
10552 case 0x3b: /* FCVTZS */
10554 TCGv_i32 tcg_shift = tcg_const_i32(0);
10555 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
10556 tcg_temp_free_i32(tcg_shift);
10557 break;
10559 case 0x5a: /* FCVTNU */
10560 case 0x5b: /* FCVTMU */
10561 case 0x5c: /* FCVTAU */
10562 case 0x7a: /* FCVTPU */
10563 case 0x7b: /* FCVTZU */
10565 TCGv_i32 tcg_shift = tcg_const_i32(0);
10566 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
10567 tcg_temp_free_i32(tcg_shift);
10568 break;
10570 default:
10571 g_assert_not_reached();
10574 write_fp_sreg(s, rd, tcg_rd);
10575 tcg_temp_free_i32(tcg_rd);
10576 tcg_temp_free_i32(tcg_rn);
10579 if (is_fcvt) {
10580 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
10581 tcg_temp_free_i32(tcg_rmode);
10582 tcg_temp_free_ptr(tcg_fpstatus);
10586 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10587 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10588 int immh, int immb, int opcode, int rn, int rd)
10590 int size = 32 - clz32(immh) - 1;
10591 int immhb = immh << 3 | immb;
10592 int shift = 2 * (8 << size) - immhb;
10593 GVecGen2iFn *gvec_fn;
10595 if (extract32(immh, 3, 1) && !is_q) {
10596 unallocated_encoding(s);
10597 return;
10599 tcg_debug_assert(size <= 3);
10601 if (!fp_access_check(s)) {
10602 return;
10605 switch (opcode) {
10606 case 0x02: /* SSRA / USRA (accumulate) */
10607 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
10608 break;
10610 case 0x08: /* SRI */
10611 gvec_fn = gen_gvec_sri;
10612 break;
10614 case 0x00: /* SSHR / USHR */
10615 if (is_u) {
10616 if (shift == 8 << size) {
10617 /* Shift count the same size as element size produces zero. */
10618 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
10619 is_q ? 16 : 8, vec_full_reg_size(s), 0);
10620 return;
10622 gvec_fn = tcg_gen_gvec_shri;
10623 } else {
10624 /* Shift count the same size as element size produces all sign. */
10625 if (shift == 8 << size) {
10626 shift -= 1;
10628 gvec_fn = tcg_gen_gvec_sari;
10630 break;
10632 case 0x04: /* SRSHR / URSHR (rounding) */
10633 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
10634 break;
10636 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10637 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
10638 break;
10640 default:
10641 g_assert_not_reached();
10644 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
10647 /* SHL/SLI - Vector shift left */
10648 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10649 int immh, int immb, int opcode, int rn, int rd)
10651 int size = 32 - clz32(immh) - 1;
10652 int immhb = immh << 3 | immb;
10653 int shift = immhb - (8 << size);
10655 /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10656 assert(size >= 0 && size <= 3);
10658 if (extract32(immh, 3, 1) && !is_q) {
10659 unallocated_encoding(s);
10660 return;
10663 if (!fp_access_check(s)) {
10664 return;
10667 if (insert) {
10668 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
10669 } else {
10670 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10674 /* USHLL/SHLL - Vector shift left with widening */
10675 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10676 int immh, int immb, int opcode, int rn, int rd)
10678 int size = 32 - clz32(immh) - 1;
10679 int immhb = immh << 3 | immb;
10680 int shift = immhb - (8 << size);
10681 int dsize = 64;
10682 int esize = 8 << size;
10683 int elements = dsize/esize;
10684 TCGv_i64 tcg_rn = new_tmp_a64(s);
10685 TCGv_i64 tcg_rd = new_tmp_a64(s);
10686 int i;
10688 if (size >= 3) {
10689 unallocated_encoding(s);
10690 return;
10693 if (!fp_access_check(s)) {
10694 return;
10697 /* For the LL variants the store is larger than the load,
10698 * so if rd == rn we would overwrite parts of our input.
10699 * So load everything right now and use shifts in the main loop.
10701 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10703 for (i = 0; i < elements; i++) {
10704 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10705 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10706 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10707 write_vec_element(s, tcg_rd, rd, i, size + 1);
10711 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10712 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10713 int immh, int immb, int opcode, int rn, int rd)
10715 int immhb = immh << 3 | immb;
10716 int size = 32 - clz32(immh) - 1;
10717 int dsize = 64;
10718 int esize = 8 << size;
10719 int elements = dsize/esize;
10720 int shift = (2 * esize) - immhb;
10721 bool round = extract32(opcode, 0, 1);
10722 TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10723 TCGv_i64 tcg_round;
10724 int i;
10726 if (extract32(immh, 3, 1)) {
10727 unallocated_encoding(s);
10728 return;
10731 if (!fp_access_check(s)) {
10732 return;
10735 tcg_rn = tcg_temp_new_i64();
10736 tcg_rd = tcg_temp_new_i64();
10737 tcg_final = tcg_temp_new_i64();
10738 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10740 if (round) {
10741 uint64_t round_const = 1ULL << (shift - 1);
10742 tcg_round = tcg_const_i64(round_const);
10743 } else {
10744 tcg_round = NULL;
10747 for (i = 0; i < elements; i++) {
10748 read_vec_element(s, tcg_rn, rn, i, size+1);
10749 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10750 false, true, size+1, shift);
10752 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10755 if (!is_q) {
10756 write_vec_element(s, tcg_final, rd, 0, MO_64);
10757 } else {
10758 write_vec_element(s, tcg_final, rd, 1, MO_64);
10760 if (round) {
10761 tcg_temp_free_i64(tcg_round);
10763 tcg_temp_free_i64(tcg_rn);
10764 tcg_temp_free_i64(tcg_rd);
10765 tcg_temp_free_i64(tcg_final);
10767 clear_vec_high(s, is_q, rd);
10771 /* AdvSIMD shift by immediate
10772 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
10773 * +---+---+---+-------------+------+------+--------+---+------+------+
10774 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
10775 * +---+---+---+-------------+------+------+--------+---+------+------+
10777 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10779 int rd = extract32(insn, 0, 5);
10780 int rn = extract32(insn, 5, 5);
10781 int opcode = extract32(insn, 11, 5);
10782 int immb = extract32(insn, 16, 3);
10783 int immh = extract32(insn, 19, 4);
10784 bool is_u = extract32(insn, 29, 1);
10785 bool is_q = extract32(insn, 30, 1);
10787 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10788 assert(immh != 0);
10790 switch (opcode) {
10791 case 0x08: /* SRI */
10792 if (!is_u) {
10793 unallocated_encoding(s);
10794 return;
10796 /* fall through */
10797 case 0x00: /* SSHR / USHR */
10798 case 0x02: /* SSRA / USRA (accumulate) */
10799 case 0x04: /* SRSHR / URSHR (rounding) */
10800 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10801 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10802 break;
10803 case 0x0a: /* SHL / SLI */
10804 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10805 break;
10806 case 0x10: /* SHRN */
10807 case 0x11: /* RSHRN / SQRSHRUN */
10808 if (is_u) {
10809 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10810 opcode, rn, rd);
10811 } else {
10812 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10814 break;
10815 case 0x12: /* SQSHRN / UQSHRN */
10816 case 0x13: /* SQRSHRN / UQRSHRN */
10817 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10818 opcode, rn, rd);
10819 break;
10820 case 0x14: /* SSHLL / USHLL */
10821 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10822 break;
10823 case 0x1c: /* SCVTF / UCVTF */
10824 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10825 opcode, rn, rd);
10826 break;
10827 case 0xc: /* SQSHLU */
10828 if (!is_u) {
10829 unallocated_encoding(s);
10830 return;
10832 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10833 break;
10834 case 0xe: /* SQSHL, UQSHL */
10835 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10836 break;
10837 case 0x1f: /* FCVTZS/ FCVTZU */
10838 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10839 return;
10840 default:
10841 unallocated_encoding(s);
10842 return;
10846 /* Generate code to do a "long" addition or subtraction, ie one done in
10847 * TCGv_i64 on vector lanes twice the width specified by size.
10849 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10850 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10852 static NeonGenTwo64OpFn * const fns[3][2] = {
10853 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10854 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10855 { tcg_gen_add_i64, tcg_gen_sub_i64 },
10857 NeonGenTwo64OpFn *genfn;
10858 assert(size < 3);
10860 genfn = fns[size][is_sub];
10861 genfn(tcg_res, tcg_op1, tcg_op2);
10864 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10865 int opcode, int rd, int rn, int rm)
10867 /* 3-reg-different widening insns: 64 x 64 -> 128 */
10868 TCGv_i64 tcg_res[2];
10869 int pass, accop;
10871 tcg_res[0] = tcg_temp_new_i64();
10872 tcg_res[1] = tcg_temp_new_i64();
10874 /* Does this op do an adding accumulate, a subtracting accumulate,
10875 * or no accumulate at all?
10877 switch (opcode) {
10878 case 5:
10879 case 8:
10880 case 9:
10881 accop = 1;
10882 break;
10883 case 10:
10884 case 11:
10885 accop = -1;
10886 break;
10887 default:
10888 accop = 0;
10889 break;
10892 if (accop != 0) {
10893 read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10894 read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10897 /* size == 2 means two 32x32->64 operations; this is worth special
10898 * casing because we can generally handle it inline.
10900 if (size == 2) {
10901 for (pass = 0; pass < 2; pass++) {
10902 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10903 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10904 TCGv_i64 tcg_passres;
10905 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10907 int elt = pass + is_q * 2;
10909 read_vec_element(s, tcg_op1, rn, elt, memop);
10910 read_vec_element(s, tcg_op2, rm, elt, memop);
10912 if (accop == 0) {
10913 tcg_passres = tcg_res[pass];
10914 } else {
10915 tcg_passres = tcg_temp_new_i64();
10918 switch (opcode) {
10919 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10920 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10921 break;
10922 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10923 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10924 break;
10925 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10926 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10928 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10929 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10931 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10932 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10933 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10934 tcg_passres,
10935 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10936 tcg_temp_free_i64(tcg_tmp1);
10937 tcg_temp_free_i64(tcg_tmp2);
10938 break;
10940 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10941 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10942 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10943 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10944 break;
10945 case 9: /* SQDMLAL, SQDMLAL2 */
10946 case 11: /* SQDMLSL, SQDMLSL2 */
10947 case 13: /* SQDMULL, SQDMULL2 */
10948 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10949 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
10950 tcg_passres, tcg_passres);
10951 break;
10952 default:
10953 g_assert_not_reached();
10956 if (opcode == 9 || opcode == 11) {
10957 /* saturating accumulate ops */
10958 if (accop < 0) {
10959 tcg_gen_neg_i64(tcg_passres, tcg_passres);
10961 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
10962 tcg_res[pass], tcg_passres);
10963 } else if (accop > 0) {
10964 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10965 } else if (accop < 0) {
10966 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10969 if (accop != 0) {
10970 tcg_temp_free_i64(tcg_passres);
10973 tcg_temp_free_i64(tcg_op1);
10974 tcg_temp_free_i64(tcg_op2);
10976 } else {
10977 /* size 0 or 1, generally helper functions */
10978 for (pass = 0; pass < 2; pass++) {
10979 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10980 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10981 TCGv_i64 tcg_passres;
10982 int elt = pass + is_q * 2;
10984 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10985 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10987 if (accop == 0) {
10988 tcg_passres = tcg_res[pass];
10989 } else {
10990 tcg_passres = tcg_temp_new_i64();
10993 switch (opcode) {
10994 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10995 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10997 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10998 static NeonGenWidenFn * const widenfns[2][2] = {
10999 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
11000 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
11002 NeonGenWidenFn *widenfn = widenfns[size][is_u];
11004 widenfn(tcg_op2_64, tcg_op2);
11005 widenfn(tcg_passres, tcg_op1);
11006 gen_neon_addl(size, (opcode == 2), tcg_passres,
11007 tcg_passres, tcg_op2_64);
11008 tcg_temp_free_i64(tcg_op2_64);
11009 break;
11011 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
11012 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
11013 if (size == 0) {
11014 if (is_u) {
11015 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
11016 } else {
11017 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
11019 } else {
11020 if (is_u) {
11021 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
11022 } else {
11023 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
11026 break;
11027 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
11028 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
11029 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
11030 if (size == 0) {
11031 if (is_u) {
11032 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
11033 } else {
11034 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
11036 } else {
11037 if (is_u) {
11038 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
11039 } else {
11040 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
11043 break;
11044 case 9: /* SQDMLAL, SQDMLAL2 */
11045 case 11: /* SQDMLSL, SQDMLSL2 */
11046 case 13: /* SQDMULL, SQDMULL2 */
11047 assert(size == 1);
11048 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
11049 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
11050 tcg_passres, tcg_passres);
11051 break;
11052 default:
11053 g_assert_not_reached();
11055 tcg_temp_free_i32(tcg_op1);
11056 tcg_temp_free_i32(tcg_op2);
11058 if (accop != 0) {
11059 if (opcode == 9 || opcode == 11) {
11060 /* saturating accumulate ops */
11061 if (accop < 0) {
11062 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
11064 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
11065 tcg_res[pass],
11066 tcg_passres);
11067 } else {
11068 gen_neon_addl(size, (accop < 0), tcg_res[pass],
11069 tcg_res[pass], tcg_passres);
11071 tcg_temp_free_i64(tcg_passres);
11076 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
11077 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
11078 tcg_temp_free_i64(tcg_res[0]);
11079 tcg_temp_free_i64(tcg_res[1]);
11082 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
11083 int opcode, int rd, int rn, int rm)
11085 TCGv_i64 tcg_res[2];
11086 int part = is_q ? 2 : 0;
11087 int pass;
11089 for (pass = 0; pass < 2; pass++) {
11090 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11091 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11092 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
11093 static NeonGenWidenFn * const widenfns[3][2] = {
11094 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
11095 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
11096 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
11098 NeonGenWidenFn *widenfn = widenfns[size][is_u];
11100 read_vec_element(s, tcg_op1, rn, pass, MO_64);
11101 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
11102 widenfn(tcg_op2_wide, tcg_op2);
11103 tcg_temp_free_i32(tcg_op2);
11104 tcg_res[pass] = tcg_temp_new_i64();
11105 gen_neon_addl(size, (opcode == 3),
11106 tcg_res[pass], tcg_op1, tcg_op2_wide);
11107 tcg_temp_free_i64(tcg_op1);
11108 tcg_temp_free_i64(tcg_op2_wide);
11111 for (pass = 0; pass < 2; pass++) {
11112 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11113 tcg_temp_free_i64(tcg_res[pass]);
11117 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
11119 tcg_gen_addi_i64(in, in, 1U << 31);
11120 tcg_gen_extrh_i64_i32(res, in);
11123 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
11124 int opcode, int rd, int rn, int rm)
11126 TCGv_i32 tcg_res[2];
11127 int part = is_q ? 2 : 0;
11128 int pass;
11130 for (pass = 0; pass < 2; pass++) {
11131 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11132 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11133 TCGv_i64 tcg_wideres = tcg_temp_new_i64();
11134 static NeonGenNarrowFn * const narrowfns[3][2] = {
11135 { gen_helper_neon_narrow_high_u8,
11136 gen_helper_neon_narrow_round_high_u8 },
11137 { gen_helper_neon_narrow_high_u16,
11138 gen_helper_neon_narrow_round_high_u16 },
11139 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
11141 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
11143 read_vec_element(s, tcg_op1, rn, pass, MO_64);
11144 read_vec_element(s, tcg_op2, rm, pass, MO_64);
11146 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
11148 tcg_temp_free_i64(tcg_op1);
11149 tcg_temp_free_i64(tcg_op2);
11151 tcg_res[pass] = tcg_temp_new_i32();
11152 gennarrow(tcg_res[pass], tcg_wideres);
11153 tcg_temp_free_i64(tcg_wideres);
11156 for (pass = 0; pass < 2; pass++) {
11157 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
11158 tcg_temp_free_i32(tcg_res[pass]);
11160 clear_vec_high(s, is_q, rd);
11163 /* AdvSIMD three different
11164 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
11165 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
11166 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
11167 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
11169 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
11171 /* Instructions in this group fall into three basic classes
11172 * (in each case with the operation working on each element in
11173 * the input vectors):
11174 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
11175 * 128 bit input)
11176 * (2) wide 64 x 128 -> 128
11177 * (3) narrowing 128 x 128 -> 64
11178 * Here we do initial decode, catch unallocated cases and
11179 * dispatch to separate functions for each class.
11181 int is_q = extract32(insn, 30, 1);
11182 int is_u = extract32(insn, 29, 1);
11183 int size = extract32(insn, 22, 2);
11184 int opcode = extract32(insn, 12, 4);
11185 int rm = extract32(insn, 16, 5);
11186 int rn = extract32(insn, 5, 5);
11187 int rd = extract32(insn, 0, 5);
11189 switch (opcode) {
11190 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
11191 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
11192 /* 64 x 128 -> 128 */
11193 if (size == 3) {
11194 unallocated_encoding(s);
11195 return;
11197 if (!fp_access_check(s)) {
11198 return;
11200 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
11201 break;
11202 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
11203 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
11204 /* 128 x 128 -> 64 */
11205 if (size == 3) {
11206 unallocated_encoding(s);
11207 return;
11209 if (!fp_access_check(s)) {
11210 return;
11212 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
11213 break;
11214 case 14: /* PMULL, PMULL2 */
11215 if (is_u) {
11216 unallocated_encoding(s);
11217 return;
11219 switch (size) {
11220 case 0: /* PMULL.P8 */
11221 if (!fp_access_check(s)) {
11222 return;
11224 /* The Q field specifies lo/hi half input for this insn. */
11225 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
11226 gen_helper_neon_pmull_h);
11227 break;
11229 case 3: /* PMULL.P64 */
11230 if (!dc_isar_feature(aa64_pmull, s)) {
11231 unallocated_encoding(s);
11232 return;
11234 if (!fp_access_check(s)) {
11235 return;
11237 /* The Q field specifies lo/hi half input for this insn. */
11238 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
11239 gen_helper_gvec_pmull_q);
11240 break;
11242 default:
11243 unallocated_encoding(s);
11244 break;
11246 return;
11247 case 9: /* SQDMLAL, SQDMLAL2 */
11248 case 11: /* SQDMLSL, SQDMLSL2 */
11249 case 13: /* SQDMULL, SQDMULL2 */
11250 if (is_u || size == 0) {
11251 unallocated_encoding(s);
11252 return;
11254 /* fall through */
11255 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
11256 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
11257 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
11258 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
11259 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
11260 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
11261 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
11262 /* 64 x 64 -> 128 */
11263 if (size == 3) {
11264 unallocated_encoding(s);
11265 return;
11267 if (!fp_access_check(s)) {
11268 return;
11271 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
11272 break;
11273 default:
11274 /* opcode 15 not allocated */
11275 unallocated_encoding(s);
11276 break;
11280 /* Logic op (opcode == 3) subgroup of C3.6.16. */
11281 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
11283 int rd = extract32(insn, 0, 5);
11284 int rn = extract32(insn, 5, 5);
11285 int rm = extract32(insn, 16, 5);
11286 int size = extract32(insn, 22, 2);
11287 bool is_u = extract32(insn, 29, 1);
11288 bool is_q = extract32(insn, 30, 1);
11290 if (!fp_access_check(s)) {
11291 return;
11294 switch (size + 4 * is_u) {
11295 case 0: /* AND */
11296 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
11297 return;
11298 case 1: /* BIC */
11299 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
11300 return;
11301 case 2: /* ORR */
11302 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
11303 return;
11304 case 3: /* ORN */
11305 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
11306 return;
11307 case 4: /* EOR */
11308 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
11309 return;
11311 case 5: /* BSL bitwise select */
11312 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0);
11313 return;
11314 case 6: /* BIT, bitwise insert if true */
11315 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0);
11316 return;
11317 case 7: /* BIF, bitwise insert if false */
11318 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0);
11319 return;
11321 default:
11322 g_assert_not_reached();
11326 /* Pairwise op subgroup of C3.6.16.
11328 * This is called directly or via the handle_3same_float for float pairwise
11329 * operations where the opcode and size are calculated differently.
11331 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
11332 int size, int rn, int rm, int rd)
11334 TCGv_ptr fpst;
11335 int pass;
11337 /* Floating point operations need fpst */
11338 if (opcode >= 0x58) {
11339 fpst = fpstatus_ptr(FPST_FPCR);
11340 } else {
11341 fpst = NULL;
11344 if (!fp_access_check(s)) {
11345 return;
11348 /* These operations work on the concatenated rm:rn, with each pair of
11349 * adjacent elements being operated on to produce an element in the result.
11351 if (size == 3) {
11352 TCGv_i64 tcg_res[2];
11354 for (pass = 0; pass < 2; pass++) {
11355 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11356 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11357 int passreg = (pass == 0) ? rn : rm;
11359 read_vec_element(s, tcg_op1, passreg, 0, MO_64);
11360 read_vec_element(s, tcg_op2, passreg, 1, MO_64);
11361 tcg_res[pass] = tcg_temp_new_i64();
11363 switch (opcode) {
11364 case 0x17: /* ADDP */
11365 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11366 break;
11367 case 0x58: /* FMAXNMP */
11368 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11369 break;
11370 case 0x5a: /* FADDP */
11371 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11372 break;
11373 case 0x5e: /* FMAXP */
11374 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11375 break;
11376 case 0x78: /* FMINNMP */
11377 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11378 break;
11379 case 0x7e: /* FMINP */
11380 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11381 break;
11382 default:
11383 g_assert_not_reached();
11386 tcg_temp_free_i64(tcg_op1);
11387 tcg_temp_free_i64(tcg_op2);
11390 for (pass = 0; pass < 2; pass++) {
11391 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11392 tcg_temp_free_i64(tcg_res[pass]);
11394 } else {
11395 int maxpass = is_q ? 4 : 2;
11396 TCGv_i32 tcg_res[4];
11398 for (pass = 0; pass < maxpass; pass++) {
11399 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11400 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11401 NeonGenTwoOpFn *genfn = NULL;
11402 int passreg = pass < (maxpass / 2) ? rn : rm;
11403 int passelt = (is_q && (pass & 1)) ? 2 : 0;
11405 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
11406 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
11407 tcg_res[pass] = tcg_temp_new_i32();
11409 switch (opcode) {
11410 case 0x17: /* ADDP */
11412 static NeonGenTwoOpFn * const fns[3] = {
11413 gen_helper_neon_padd_u8,
11414 gen_helper_neon_padd_u16,
11415 tcg_gen_add_i32,
11417 genfn = fns[size];
11418 break;
11420 case 0x14: /* SMAXP, UMAXP */
11422 static NeonGenTwoOpFn * const fns[3][2] = {
11423 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
11424 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
11425 { tcg_gen_smax_i32, tcg_gen_umax_i32 },
11427 genfn = fns[size][u];
11428 break;
11430 case 0x15: /* SMINP, UMINP */
11432 static NeonGenTwoOpFn * const fns[3][2] = {
11433 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
11434 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
11435 { tcg_gen_smin_i32, tcg_gen_umin_i32 },
11437 genfn = fns[size][u];
11438 break;
11440 /* The FP operations are all on single floats (32 bit) */
11441 case 0x58: /* FMAXNMP */
11442 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11443 break;
11444 case 0x5a: /* FADDP */
11445 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11446 break;
11447 case 0x5e: /* FMAXP */
11448 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11449 break;
11450 case 0x78: /* FMINNMP */
11451 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11452 break;
11453 case 0x7e: /* FMINP */
11454 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11455 break;
11456 default:
11457 g_assert_not_reached();
11460 /* FP ops called directly, otherwise call now */
11461 if (genfn) {
11462 genfn(tcg_res[pass], tcg_op1, tcg_op2);
11465 tcg_temp_free_i32(tcg_op1);
11466 tcg_temp_free_i32(tcg_op2);
11469 for (pass = 0; pass < maxpass; pass++) {
11470 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11471 tcg_temp_free_i32(tcg_res[pass]);
11473 clear_vec_high(s, is_q, rd);
11476 if (fpst) {
11477 tcg_temp_free_ptr(fpst);
11481 /* Floating point op subgroup of C3.6.16. */
11482 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
11484 /* For floating point ops, the U, size[1] and opcode bits
11485 * together indicate the operation. size[0] indicates single
11486 * or double.
11488 int fpopcode = extract32(insn, 11, 5)
11489 | (extract32(insn, 23, 1) << 5)
11490 | (extract32(insn, 29, 1) << 6);
11491 int is_q = extract32(insn, 30, 1);
11492 int size = extract32(insn, 22, 1);
11493 int rm = extract32(insn, 16, 5);
11494 int rn = extract32(insn, 5, 5);
11495 int rd = extract32(insn, 0, 5);
11497 int datasize = is_q ? 128 : 64;
11498 int esize = 32 << size;
11499 int elements = datasize / esize;
11501 if (size == 1 && !is_q) {
11502 unallocated_encoding(s);
11503 return;
11506 switch (fpopcode) {
11507 case 0x58: /* FMAXNMP */
11508 case 0x5a: /* FADDP */
11509 case 0x5e: /* FMAXP */
11510 case 0x78: /* FMINNMP */
11511 case 0x7e: /* FMINP */
11512 if (size && !is_q) {
11513 unallocated_encoding(s);
11514 return;
11516 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
11517 rn, rm, rd);
11518 return;
11519 case 0x1b: /* FMULX */
11520 case 0x1f: /* FRECPS */
11521 case 0x3f: /* FRSQRTS */
11522 case 0x5d: /* FACGE */
11523 case 0x7d: /* FACGT */
11524 case 0x19: /* FMLA */
11525 case 0x39: /* FMLS */
11526 case 0x18: /* FMAXNM */
11527 case 0x1a: /* FADD */
11528 case 0x1c: /* FCMEQ */
11529 case 0x1e: /* FMAX */
11530 case 0x38: /* FMINNM */
11531 case 0x3a: /* FSUB */
11532 case 0x3e: /* FMIN */
11533 case 0x5b: /* FMUL */
11534 case 0x5c: /* FCMGE */
11535 case 0x5f: /* FDIV */
11536 case 0x7a: /* FABD */
11537 case 0x7c: /* FCMGT */
11538 if (!fp_access_check(s)) {
11539 return;
11541 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
11542 return;
11544 case 0x1d: /* FMLAL */
11545 case 0x3d: /* FMLSL */
11546 case 0x59: /* FMLAL2 */
11547 case 0x79: /* FMLSL2 */
11548 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) {
11549 unallocated_encoding(s);
11550 return;
11552 if (fp_access_check(s)) {
11553 int is_s = extract32(insn, 23, 1);
11554 int is_2 = extract32(insn, 29, 1);
11555 int data = (is_2 << 1) | is_s;
11556 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
11557 vec_full_reg_offset(s, rn),
11558 vec_full_reg_offset(s, rm), cpu_env,
11559 is_q ? 16 : 8, vec_full_reg_size(s),
11560 data, gen_helper_gvec_fmlal_a64);
11562 return;
11564 default:
11565 unallocated_encoding(s);
11566 return;
11570 /* Integer op subgroup of C3.6.16. */
11571 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
11573 int is_q = extract32(insn, 30, 1);
11574 int u = extract32(insn, 29, 1);
11575 int size = extract32(insn, 22, 2);
11576 int opcode = extract32(insn, 11, 5);
11577 int rm = extract32(insn, 16, 5);
11578 int rn = extract32(insn, 5, 5);
11579 int rd = extract32(insn, 0, 5);
11580 int pass;
11581 TCGCond cond;
11583 switch (opcode) {
11584 case 0x13: /* MUL, PMUL */
11585 if (u && size != 0) {
11586 unallocated_encoding(s);
11587 return;
11589 /* fall through */
11590 case 0x0: /* SHADD, UHADD */
11591 case 0x2: /* SRHADD, URHADD */
11592 case 0x4: /* SHSUB, UHSUB */
11593 case 0xc: /* SMAX, UMAX */
11594 case 0xd: /* SMIN, UMIN */
11595 case 0xe: /* SABD, UABD */
11596 case 0xf: /* SABA, UABA */
11597 case 0x12: /* MLA, MLS */
11598 if (size == 3) {
11599 unallocated_encoding(s);
11600 return;
11602 break;
11603 case 0x16: /* SQDMULH, SQRDMULH */
11604 if (size == 0 || size == 3) {
11605 unallocated_encoding(s);
11606 return;
11608 break;
11609 default:
11610 if (size == 3 && !is_q) {
11611 unallocated_encoding(s);
11612 return;
11614 break;
11617 if (!fp_access_check(s)) {
11618 return;
11621 switch (opcode) {
11622 case 0x01: /* SQADD, UQADD */
11623 if (u) {
11624 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size);
11625 } else {
11626 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size);
11628 return;
11629 case 0x05: /* SQSUB, UQSUB */
11630 if (u) {
11631 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size);
11632 } else {
11633 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size);
11635 return;
11636 case 0x08: /* SSHL, USHL */
11637 if (u) {
11638 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size);
11639 } else {
11640 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size);
11642 return;
11643 case 0x0c: /* SMAX, UMAX */
11644 if (u) {
11645 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size);
11646 } else {
11647 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size);
11649 return;
11650 case 0x0d: /* SMIN, UMIN */
11651 if (u) {
11652 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size);
11653 } else {
11654 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size);
11656 return;
11657 case 0xe: /* SABD, UABD */
11658 if (u) {
11659 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size);
11660 } else {
11661 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size);
11663 return;
11664 case 0xf: /* SABA, UABA */
11665 if (u) {
11666 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size);
11667 } else {
11668 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size);
11670 return;
11671 case 0x10: /* ADD, SUB */
11672 if (u) {
11673 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
11674 } else {
11675 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
11677 return;
11678 case 0x13: /* MUL, PMUL */
11679 if (!u) { /* MUL */
11680 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
11681 } else { /* PMUL */
11682 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b);
11684 return;
11685 case 0x12: /* MLA, MLS */
11686 if (u) {
11687 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size);
11688 } else {
11689 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size);
11691 return;
11692 case 0x16: /* SQDMULH, SQRDMULH */
11694 static gen_helper_gvec_3_ptr * const fns[2][2] = {
11695 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h },
11696 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s },
11698 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]);
11700 return;
11701 case 0x11:
11702 if (!u) { /* CMTST */
11703 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size);
11704 return;
11706 /* else CMEQ */
11707 cond = TCG_COND_EQ;
11708 goto do_gvec_cmp;
11709 case 0x06: /* CMGT, CMHI */
11710 cond = u ? TCG_COND_GTU : TCG_COND_GT;
11711 goto do_gvec_cmp;
11712 case 0x07: /* CMGE, CMHS */
11713 cond = u ? TCG_COND_GEU : TCG_COND_GE;
11714 do_gvec_cmp:
11715 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
11716 vec_full_reg_offset(s, rn),
11717 vec_full_reg_offset(s, rm),
11718 is_q ? 16 : 8, vec_full_reg_size(s));
11719 return;
11722 if (size == 3) {
11723 assert(is_q);
11724 for (pass = 0; pass < 2; pass++) {
11725 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11726 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11727 TCGv_i64 tcg_res = tcg_temp_new_i64();
11729 read_vec_element(s, tcg_op1, rn, pass, MO_64);
11730 read_vec_element(s, tcg_op2, rm, pass, MO_64);
11732 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
11734 write_vec_element(s, tcg_res, rd, pass, MO_64);
11736 tcg_temp_free_i64(tcg_res);
11737 tcg_temp_free_i64(tcg_op1);
11738 tcg_temp_free_i64(tcg_op2);
11740 } else {
11741 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11742 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11743 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11744 TCGv_i32 tcg_res = tcg_temp_new_i32();
11745 NeonGenTwoOpFn *genfn = NULL;
11746 NeonGenTwoOpEnvFn *genenvfn = NULL;
11748 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
11749 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
11751 switch (opcode) {
11752 case 0x0: /* SHADD, UHADD */
11754 static NeonGenTwoOpFn * const fns[3][2] = {
11755 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
11756 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
11757 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
11759 genfn = fns[size][u];
11760 break;
11762 case 0x2: /* SRHADD, URHADD */
11764 static NeonGenTwoOpFn * const fns[3][2] = {
11765 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
11766 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
11767 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
11769 genfn = fns[size][u];
11770 break;
11772 case 0x4: /* SHSUB, UHSUB */
11774 static NeonGenTwoOpFn * const fns[3][2] = {
11775 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
11776 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
11777 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
11779 genfn = fns[size][u];
11780 break;
11782 case 0x9: /* SQSHL, UQSHL */
11784 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11785 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
11786 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
11787 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
11789 genenvfn = fns[size][u];
11790 break;
11792 case 0xa: /* SRSHL, URSHL */
11794 static NeonGenTwoOpFn * const fns[3][2] = {
11795 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
11796 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
11797 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
11799 genfn = fns[size][u];
11800 break;
11802 case 0xb: /* SQRSHL, UQRSHL */
11804 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11805 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
11806 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
11807 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
11809 genenvfn = fns[size][u];
11810 break;
11812 default:
11813 g_assert_not_reached();
11816 if (genenvfn) {
11817 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2);
11818 } else {
11819 genfn(tcg_res, tcg_op1, tcg_op2);
11822 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11824 tcg_temp_free_i32(tcg_res);
11825 tcg_temp_free_i32(tcg_op1);
11826 tcg_temp_free_i32(tcg_op2);
11829 clear_vec_high(s, is_q, rd);
11832 /* AdvSIMD three same
11833 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
11834 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11835 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
11836 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11838 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
11840 int opcode = extract32(insn, 11, 5);
11842 switch (opcode) {
11843 case 0x3: /* logic ops */
11844 disas_simd_3same_logic(s, insn);
11845 break;
11846 case 0x17: /* ADDP */
11847 case 0x14: /* SMAXP, UMAXP */
11848 case 0x15: /* SMINP, UMINP */
11850 /* Pairwise operations */
11851 int is_q = extract32(insn, 30, 1);
11852 int u = extract32(insn, 29, 1);
11853 int size = extract32(insn, 22, 2);
11854 int rm = extract32(insn, 16, 5);
11855 int rn = extract32(insn, 5, 5);
11856 int rd = extract32(insn, 0, 5);
11857 if (opcode == 0x17) {
11858 if (u || (size == 3 && !is_q)) {
11859 unallocated_encoding(s);
11860 return;
11862 } else {
11863 if (size == 3) {
11864 unallocated_encoding(s);
11865 return;
11868 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
11869 break;
11871 case 0x18 ... 0x31:
11872 /* floating point ops, sz[1] and U are part of opcode */
11873 disas_simd_3same_float(s, insn);
11874 break;
11875 default:
11876 disas_simd_3same_int(s, insn);
11877 break;
11882 * Advanced SIMD three same (ARMv8.2 FP16 variants)
11884 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
11885 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11886 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
11887 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11889 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE
11890 * (register), FACGE, FABD, FCMGT (register) and FACGT.
11893 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn)
11895 int opcode = extract32(insn, 11, 3);
11896 int u = extract32(insn, 29, 1);
11897 int a = extract32(insn, 23, 1);
11898 int is_q = extract32(insn, 30, 1);
11899 int rm = extract32(insn, 16, 5);
11900 int rn = extract32(insn, 5, 5);
11901 int rd = extract32(insn, 0, 5);
11903 * For these floating point ops, the U, a and opcode bits
11904 * together indicate the operation.
11906 int fpopcode = opcode | (a << 3) | (u << 4);
11907 int datasize = is_q ? 128 : 64;
11908 int elements = datasize / 16;
11909 bool pairwise;
11910 TCGv_ptr fpst;
11911 int pass;
11913 switch (fpopcode) {
11914 case 0x0: /* FMAXNM */
11915 case 0x1: /* FMLA */
11916 case 0x2: /* FADD */
11917 case 0x3: /* FMULX */
11918 case 0x4: /* FCMEQ */
11919 case 0x6: /* FMAX */
11920 case 0x7: /* FRECPS */
11921 case 0x8: /* FMINNM */
11922 case 0x9: /* FMLS */
11923 case 0xa: /* FSUB */
11924 case 0xe: /* FMIN */
11925 case 0xf: /* FRSQRTS */
11926 case 0x13: /* FMUL */
11927 case 0x14: /* FCMGE */
11928 case 0x15: /* FACGE */
11929 case 0x17: /* FDIV */
11930 case 0x1a: /* FABD */
11931 case 0x1c: /* FCMGT */
11932 case 0x1d: /* FACGT */
11933 pairwise = false;
11934 break;
11935 case 0x10: /* FMAXNMP */
11936 case 0x12: /* FADDP */
11937 case 0x16: /* FMAXP */
11938 case 0x18: /* FMINNMP */
11939 case 0x1e: /* FMINP */
11940 pairwise = true;
11941 break;
11942 default:
11943 unallocated_encoding(s);
11944 return;
11947 if (!dc_isar_feature(aa64_fp16, s)) {
11948 unallocated_encoding(s);
11949 return;
11952 if (!fp_access_check(s)) {
11953 return;
11956 fpst = fpstatus_ptr(FPST_FPCR_F16);
11958 if (pairwise) {
11959 int maxpass = is_q ? 8 : 4;
11960 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11961 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11962 TCGv_i32 tcg_res[8];
11964 for (pass = 0; pass < maxpass; pass++) {
11965 int passreg = pass < (maxpass / 2) ? rn : rm;
11966 int passelt = (pass << 1) & (maxpass - 1);
11968 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16);
11969 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16);
11970 tcg_res[pass] = tcg_temp_new_i32();
11972 switch (fpopcode) {
11973 case 0x10: /* FMAXNMP */
11974 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2,
11975 fpst);
11976 break;
11977 case 0x12: /* FADDP */
11978 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11979 break;
11980 case 0x16: /* FMAXP */
11981 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11982 break;
11983 case 0x18: /* FMINNMP */
11984 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2,
11985 fpst);
11986 break;
11987 case 0x1e: /* FMINP */
11988 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11989 break;
11990 default:
11991 g_assert_not_reached();
11995 for (pass = 0; pass < maxpass; pass++) {
11996 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16);
11997 tcg_temp_free_i32(tcg_res[pass]);
12000 tcg_temp_free_i32(tcg_op1);
12001 tcg_temp_free_i32(tcg_op2);
12003 } else {
12004 for (pass = 0; pass < elements; pass++) {
12005 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
12006 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
12007 TCGv_i32 tcg_res = tcg_temp_new_i32();
12009 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16);
12010 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16);
12012 switch (fpopcode) {
12013 case 0x0: /* FMAXNM */
12014 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
12015 break;
12016 case 0x1: /* FMLA */
12017 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12018 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
12019 fpst);
12020 break;
12021 case 0x2: /* FADD */
12022 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
12023 break;
12024 case 0x3: /* FMULX */
12025 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
12026 break;
12027 case 0x4: /* FCMEQ */
12028 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12029 break;
12030 case 0x6: /* FMAX */
12031 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
12032 break;
12033 case 0x7: /* FRECPS */
12034 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12035 break;
12036 case 0x8: /* FMINNM */
12037 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
12038 break;
12039 case 0x9: /* FMLS */
12040 /* As usual for ARM, separate negation for fused multiply-add */
12041 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
12042 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12043 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
12044 fpst);
12045 break;
12046 case 0xa: /* FSUB */
12047 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
12048 break;
12049 case 0xe: /* FMIN */
12050 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
12051 break;
12052 case 0xf: /* FRSQRTS */
12053 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12054 break;
12055 case 0x13: /* FMUL */
12056 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
12057 break;
12058 case 0x14: /* FCMGE */
12059 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12060 break;
12061 case 0x15: /* FACGE */
12062 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12063 break;
12064 case 0x17: /* FDIV */
12065 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
12066 break;
12067 case 0x1a: /* FABD */
12068 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
12069 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
12070 break;
12071 case 0x1c: /* FCMGT */
12072 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12073 break;
12074 case 0x1d: /* FACGT */
12075 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12076 break;
12077 default:
12078 g_assert_not_reached();
12081 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12082 tcg_temp_free_i32(tcg_res);
12083 tcg_temp_free_i32(tcg_op1);
12084 tcg_temp_free_i32(tcg_op2);
12088 tcg_temp_free_ptr(fpst);
12090 clear_vec_high(s, is_q, rd);
12093 /* AdvSIMD three same extra
12094 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
12095 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
12096 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
12097 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
12099 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
12101 int rd = extract32(insn, 0, 5);
12102 int rn = extract32(insn, 5, 5);
12103 int opcode = extract32(insn, 11, 4);
12104 int rm = extract32(insn, 16, 5);
12105 int size = extract32(insn, 22, 2);
12106 bool u = extract32(insn, 29, 1);
12107 bool is_q = extract32(insn, 30, 1);
12108 bool feature;
12109 int rot;
12111 switch (u * 16 + opcode) {
12112 case 0x10: /* SQRDMLAH (vector) */
12113 case 0x11: /* SQRDMLSH (vector) */
12114 if (size != 1 && size != 2) {
12115 unallocated_encoding(s);
12116 return;
12118 feature = dc_isar_feature(aa64_rdm, s);
12119 break;
12120 case 0x02: /* SDOT (vector) */
12121 case 0x12: /* UDOT (vector) */
12122 if (size != MO_32) {
12123 unallocated_encoding(s);
12124 return;
12126 feature = dc_isar_feature(aa64_dp, s);
12127 break;
12128 case 0x03: /* USDOT */
12129 if (size != MO_32) {
12130 unallocated_encoding(s);
12131 return;
12133 feature = dc_isar_feature(aa64_i8mm, s);
12134 break;
12135 case 0x04: /* SMMLA */
12136 case 0x14: /* UMMLA */
12137 case 0x05: /* USMMLA */
12138 if (!is_q || size != MO_32) {
12139 unallocated_encoding(s);
12140 return;
12142 feature = dc_isar_feature(aa64_i8mm, s);
12143 break;
12144 case 0x18: /* FCMLA, #0 */
12145 case 0x19: /* FCMLA, #90 */
12146 case 0x1a: /* FCMLA, #180 */
12147 case 0x1b: /* FCMLA, #270 */
12148 case 0x1c: /* FCADD, #90 */
12149 case 0x1e: /* FCADD, #270 */
12150 if (size == 0
12151 || (size == 1 && !dc_isar_feature(aa64_fp16, s))
12152 || (size == 3 && !is_q)) {
12153 unallocated_encoding(s);
12154 return;
12156 feature = dc_isar_feature(aa64_fcma, s);
12157 break;
12158 case 0x1d: /* BFMMLA */
12159 if (size != MO_16 || !is_q) {
12160 unallocated_encoding(s);
12161 return;
12163 feature = dc_isar_feature(aa64_bf16, s);
12164 break;
12165 case 0x1f:
12166 switch (size) {
12167 case 1: /* BFDOT */
12168 case 3: /* BFMLAL{B,T} */
12169 feature = dc_isar_feature(aa64_bf16, s);
12170 break;
12171 default:
12172 unallocated_encoding(s);
12173 return;
12175 break;
12176 default:
12177 unallocated_encoding(s);
12178 return;
12180 if (!feature) {
12181 unallocated_encoding(s);
12182 return;
12184 if (!fp_access_check(s)) {
12185 return;
12188 switch (opcode) {
12189 case 0x0: /* SQRDMLAH (vector) */
12190 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size);
12191 return;
12193 case 0x1: /* SQRDMLSH (vector) */
12194 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size);
12195 return;
12197 case 0x2: /* SDOT / UDOT */
12198 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0,
12199 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
12200 return;
12202 case 0x3: /* USDOT */
12203 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b);
12204 return;
12206 case 0x04: /* SMMLA, UMMLA */
12207 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0,
12208 u ? gen_helper_gvec_ummla_b
12209 : gen_helper_gvec_smmla_b);
12210 return;
12211 case 0x05: /* USMMLA */
12212 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b);
12213 return;
12215 case 0x8: /* FCMLA, #0 */
12216 case 0x9: /* FCMLA, #90 */
12217 case 0xa: /* FCMLA, #180 */
12218 case 0xb: /* FCMLA, #270 */
12219 rot = extract32(opcode, 0, 2);
12220 switch (size) {
12221 case 1:
12222 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot,
12223 gen_helper_gvec_fcmlah);
12224 break;
12225 case 2:
12226 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
12227 gen_helper_gvec_fcmlas);
12228 break;
12229 case 3:
12230 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
12231 gen_helper_gvec_fcmlad);
12232 break;
12233 default:
12234 g_assert_not_reached();
12236 return;
12238 case 0xc: /* FCADD, #90 */
12239 case 0xe: /* FCADD, #270 */
12240 rot = extract32(opcode, 1, 1);
12241 switch (size) {
12242 case 1:
12243 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
12244 gen_helper_gvec_fcaddh);
12245 break;
12246 case 2:
12247 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
12248 gen_helper_gvec_fcadds);
12249 break;
12250 case 3:
12251 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
12252 gen_helper_gvec_fcaddd);
12253 break;
12254 default:
12255 g_assert_not_reached();
12257 return;
12259 case 0xd: /* BFMMLA */
12260 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla);
12261 return;
12262 case 0xf:
12263 switch (size) {
12264 case 1: /* BFDOT */
12265 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot);
12266 break;
12267 case 3: /* BFMLAL{B,T} */
12268 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q,
12269 gen_helper_gvec_bfmlal);
12270 break;
12271 default:
12272 g_assert_not_reached();
12274 return;
12276 default:
12277 g_assert_not_reached();
12281 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
12282 int size, int rn, int rd)
12284 /* Handle 2-reg-misc ops which are widening (so each size element
12285 * in the source becomes a 2*size element in the destination.
12286 * The only instruction like this is FCVTL.
12288 int pass;
12290 if (size == 3) {
12291 /* 32 -> 64 bit fp conversion */
12292 TCGv_i64 tcg_res[2];
12293 int srcelt = is_q ? 2 : 0;
12295 for (pass = 0; pass < 2; pass++) {
12296 TCGv_i32 tcg_op = tcg_temp_new_i32();
12297 tcg_res[pass] = tcg_temp_new_i64();
12299 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
12300 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env);
12301 tcg_temp_free_i32(tcg_op);
12303 for (pass = 0; pass < 2; pass++) {
12304 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12305 tcg_temp_free_i64(tcg_res[pass]);
12307 } else {
12308 /* 16 -> 32 bit fp conversion */
12309 int srcelt = is_q ? 4 : 0;
12310 TCGv_i32 tcg_res[4];
12311 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
12312 TCGv_i32 ahp = get_ahp_flag();
12314 for (pass = 0; pass < 4; pass++) {
12315 tcg_res[pass] = tcg_temp_new_i32();
12317 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
12318 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
12319 fpst, ahp);
12321 for (pass = 0; pass < 4; pass++) {
12322 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
12323 tcg_temp_free_i32(tcg_res[pass]);
12326 tcg_temp_free_ptr(fpst);
12327 tcg_temp_free_i32(ahp);
12331 static void handle_rev(DisasContext *s, int opcode, bool u,
12332 bool is_q, int size, int rn, int rd)
12334 int op = (opcode << 1) | u;
12335 int opsz = op + size;
12336 int grp_size = 3 - opsz;
12337 int dsize = is_q ? 128 : 64;
12338 int i;
12340 if (opsz >= 3) {
12341 unallocated_encoding(s);
12342 return;
12345 if (!fp_access_check(s)) {
12346 return;
12349 if (size == 0) {
12350 /* Special case bytes, use bswap op on each group of elements */
12351 int groups = dsize / (8 << grp_size);
12353 for (i = 0; i < groups; i++) {
12354 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
12356 read_vec_element(s, tcg_tmp, rn, i, grp_size);
12357 switch (grp_size) {
12358 case MO_16:
12359 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
12360 break;
12361 case MO_32:
12362 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
12363 break;
12364 case MO_64:
12365 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
12366 break;
12367 default:
12368 g_assert_not_reached();
12370 write_vec_element(s, tcg_tmp, rd, i, grp_size);
12371 tcg_temp_free_i64(tcg_tmp);
12373 clear_vec_high(s, is_q, rd);
12374 } else {
12375 int revmask = (1 << grp_size) - 1;
12376 int esize = 8 << size;
12377 int elements = dsize / esize;
12378 TCGv_i64 tcg_rn = tcg_temp_new_i64();
12379 TCGv_i64 tcg_rd = tcg_const_i64(0);
12380 TCGv_i64 tcg_rd_hi = tcg_const_i64(0);
12382 for (i = 0; i < elements; i++) {
12383 int e_rev = (i & 0xf) ^ revmask;
12384 int off = e_rev * esize;
12385 read_vec_element(s, tcg_rn, rn, i, size);
12386 if (off >= 64) {
12387 tcg_gen_deposit_i64(tcg_rd_hi, tcg_rd_hi,
12388 tcg_rn, off - 64, esize);
12389 } else {
12390 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, off, esize);
12393 write_vec_element(s, tcg_rd, rd, 0, MO_64);
12394 write_vec_element(s, tcg_rd_hi, rd, 1, MO_64);
12396 tcg_temp_free_i64(tcg_rd_hi);
12397 tcg_temp_free_i64(tcg_rd);
12398 tcg_temp_free_i64(tcg_rn);
12402 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
12403 bool is_q, int size, int rn, int rd)
12405 /* Implement the pairwise operations from 2-misc:
12406 * SADDLP, UADDLP, SADALP, UADALP.
12407 * These all add pairs of elements in the input to produce a
12408 * double-width result element in the output (possibly accumulating).
12410 bool accum = (opcode == 0x6);
12411 int maxpass = is_q ? 2 : 1;
12412 int pass;
12413 TCGv_i64 tcg_res[2];
12415 if (size == 2) {
12416 /* 32 + 32 -> 64 op */
12417 MemOp memop = size + (u ? 0 : MO_SIGN);
12419 for (pass = 0; pass < maxpass; pass++) {
12420 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
12421 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
12423 tcg_res[pass] = tcg_temp_new_i64();
12425 read_vec_element(s, tcg_op1, rn, pass * 2, memop);
12426 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
12427 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
12428 if (accum) {
12429 read_vec_element(s, tcg_op1, rd, pass, MO_64);
12430 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
12433 tcg_temp_free_i64(tcg_op1);
12434 tcg_temp_free_i64(tcg_op2);
12436 } else {
12437 for (pass = 0; pass < maxpass; pass++) {
12438 TCGv_i64 tcg_op = tcg_temp_new_i64();
12439 NeonGenOne64OpFn *genfn;
12440 static NeonGenOne64OpFn * const fns[2][2] = {
12441 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 },
12442 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 },
12445 genfn = fns[size][u];
12447 tcg_res[pass] = tcg_temp_new_i64();
12449 read_vec_element(s, tcg_op, rn, pass, MO_64);
12450 genfn(tcg_res[pass], tcg_op);
12452 if (accum) {
12453 read_vec_element(s, tcg_op, rd, pass, MO_64);
12454 if (size == 0) {
12455 gen_helper_neon_addl_u16(tcg_res[pass],
12456 tcg_res[pass], tcg_op);
12457 } else {
12458 gen_helper_neon_addl_u32(tcg_res[pass],
12459 tcg_res[pass], tcg_op);
12462 tcg_temp_free_i64(tcg_op);
12465 if (!is_q) {
12466 tcg_res[1] = tcg_const_i64(0);
12468 for (pass = 0; pass < 2; pass++) {
12469 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12470 tcg_temp_free_i64(tcg_res[pass]);
12474 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
12476 /* Implement SHLL and SHLL2 */
12477 int pass;
12478 int part = is_q ? 2 : 0;
12479 TCGv_i64 tcg_res[2];
12481 for (pass = 0; pass < 2; pass++) {
12482 static NeonGenWidenFn * const widenfns[3] = {
12483 gen_helper_neon_widen_u8,
12484 gen_helper_neon_widen_u16,
12485 tcg_gen_extu_i32_i64,
12487 NeonGenWidenFn *widenfn = widenfns[size];
12488 TCGv_i32 tcg_op = tcg_temp_new_i32();
12490 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
12491 tcg_res[pass] = tcg_temp_new_i64();
12492 widenfn(tcg_res[pass], tcg_op);
12493 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
12495 tcg_temp_free_i32(tcg_op);
12498 for (pass = 0; pass < 2; pass++) {
12499 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12500 tcg_temp_free_i64(tcg_res[pass]);
12504 /* AdvSIMD two reg misc
12505 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
12506 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12507 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
12508 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12510 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
12512 int size = extract32(insn, 22, 2);
12513 int opcode = extract32(insn, 12, 5);
12514 bool u = extract32(insn, 29, 1);
12515 bool is_q = extract32(insn, 30, 1);
12516 int rn = extract32(insn, 5, 5);
12517 int rd = extract32(insn, 0, 5);
12518 bool need_fpstatus = false;
12519 bool need_rmode = false;
12520 int rmode = -1;
12521 TCGv_i32 tcg_rmode;
12522 TCGv_ptr tcg_fpstatus;
12524 switch (opcode) {
12525 case 0x0: /* REV64, REV32 */
12526 case 0x1: /* REV16 */
12527 handle_rev(s, opcode, u, is_q, size, rn, rd);
12528 return;
12529 case 0x5: /* CNT, NOT, RBIT */
12530 if (u && size == 0) {
12531 /* NOT */
12532 break;
12533 } else if (u && size == 1) {
12534 /* RBIT */
12535 break;
12536 } else if (!u && size == 0) {
12537 /* CNT */
12538 break;
12540 unallocated_encoding(s);
12541 return;
12542 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
12543 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
12544 if (size == 3) {
12545 unallocated_encoding(s);
12546 return;
12548 if (!fp_access_check(s)) {
12549 return;
12552 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
12553 return;
12554 case 0x4: /* CLS, CLZ */
12555 if (size == 3) {
12556 unallocated_encoding(s);
12557 return;
12559 break;
12560 case 0x2: /* SADDLP, UADDLP */
12561 case 0x6: /* SADALP, UADALP */
12562 if (size == 3) {
12563 unallocated_encoding(s);
12564 return;
12566 if (!fp_access_check(s)) {
12567 return;
12569 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
12570 return;
12571 case 0x13: /* SHLL, SHLL2 */
12572 if (u == 0 || size == 3) {
12573 unallocated_encoding(s);
12574 return;
12576 if (!fp_access_check(s)) {
12577 return;
12579 handle_shll(s, is_q, size, rn, rd);
12580 return;
12581 case 0xa: /* CMLT */
12582 if (u == 1) {
12583 unallocated_encoding(s);
12584 return;
12586 /* fall through */
12587 case 0x8: /* CMGT, CMGE */
12588 case 0x9: /* CMEQ, CMLE */
12589 case 0xb: /* ABS, NEG */
12590 if (size == 3 && !is_q) {
12591 unallocated_encoding(s);
12592 return;
12594 break;
12595 case 0x3: /* SUQADD, USQADD */
12596 if (size == 3 && !is_q) {
12597 unallocated_encoding(s);
12598 return;
12600 if (!fp_access_check(s)) {
12601 return;
12603 handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
12604 return;
12605 case 0x7: /* SQABS, SQNEG */
12606 if (size == 3 && !is_q) {
12607 unallocated_encoding(s);
12608 return;
12610 break;
12611 case 0xc ... 0xf:
12612 case 0x16 ... 0x1f:
12614 /* Floating point: U, size[1] and opcode indicate operation;
12615 * size[0] indicates single or double precision.
12617 int is_double = extract32(size, 0, 1);
12618 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
12619 size = is_double ? 3 : 2;
12620 switch (opcode) {
12621 case 0x2f: /* FABS */
12622 case 0x6f: /* FNEG */
12623 if (size == 3 && !is_q) {
12624 unallocated_encoding(s);
12625 return;
12627 break;
12628 case 0x1d: /* SCVTF */
12629 case 0x5d: /* UCVTF */
12631 bool is_signed = (opcode == 0x1d) ? true : false;
12632 int elements = is_double ? 2 : is_q ? 4 : 2;
12633 if (is_double && !is_q) {
12634 unallocated_encoding(s);
12635 return;
12637 if (!fp_access_check(s)) {
12638 return;
12640 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
12641 return;
12643 case 0x2c: /* FCMGT (zero) */
12644 case 0x2d: /* FCMEQ (zero) */
12645 case 0x2e: /* FCMLT (zero) */
12646 case 0x6c: /* FCMGE (zero) */
12647 case 0x6d: /* FCMLE (zero) */
12648 if (size == 3 && !is_q) {
12649 unallocated_encoding(s);
12650 return;
12652 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
12653 return;
12654 case 0x7f: /* FSQRT */
12655 if (size == 3 && !is_q) {
12656 unallocated_encoding(s);
12657 return;
12659 break;
12660 case 0x1a: /* FCVTNS */
12661 case 0x1b: /* FCVTMS */
12662 case 0x3a: /* FCVTPS */
12663 case 0x3b: /* FCVTZS */
12664 case 0x5a: /* FCVTNU */
12665 case 0x5b: /* FCVTMU */
12666 case 0x7a: /* FCVTPU */
12667 case 0x7b: /* FCVTZU */
12668 need_fpstatus = true;
12669 need_rmode = true;
12670 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12671 if (size == 3 && !is_q) {
12672 unallocated_encoding(s);
12673 return;
12675 break;
12676 case 0x5c: /* FCVTAU */
12677 case 0x1c: /* FCVTAS */
12678 need_fpstatus = true;
12679 need_rmode = true;
12680 rmode = FPROUNDING_TIEAWAY;
12681 if (size == 3 && !is_q) {
12682 unallocated_encoding(s);
12683 return;
12685 break;
12686 case 0x3c: /* URECPE */
12687 if (size == 3) {
12688 unallocated_encoding(s);
12689 return;
12691 /* fall through */
12692 case 0x3d: /* FRECPE */
12693 case 0x7d: /* FRSQRTE */
12694 if (size == 3 && !is_q) {
12695 unallocated_encoding(s);
12696 return;
12698 if (!fp_access_check(s)) {
12699 return;
12701 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
12702 return;
12703 case 0x56: /* FCVTXN, FCVTXN2 */
12704 if (size == 2) {
12705 unallocated_encoding(s);
12706 return;
12708 /* fall through */
12709 case 0x16: /* FCVTN, FCVTN2 */
12710 /* handle_2misc_narrow does a 2*size -> size operation, but these
12711 * instructions encode the source size rather than dest size.
12713 if (!fp_access_check(s)) {
12714 return;
12716 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12717 return;
12718 case 0x36: /* BFCVTN, BFCVTN2 */
12719 if (!dc_isar_feature(aa64_bf16, s) || size != 2) {
12720 unallocated_encoding(s);
12721 return;
12723 if (!fp_access_check(s)) {
12724 return;
12726 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12727 return;
12728 case 0x17: /* FCVTL, FCVTL2 */
12729 if (!fp_access_check(s)) {
12730 return;
12732 handle_2misc_widening(s, opcode, is_q, size, rn, rd);
12733 return;
12734 case 0x18: /* FRINTN */
12735 case 0x19: /* FRINTM */
12736 case 0x38: /* FRINTP */
12737 case 0x39: /* FRINTZ */
12738 need_rmode = true;
12739 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12740 /* fall through */
12741 case 0x59: /* FRINTX */
12742 case 0x79: /* FRINTI */
12743 need_fpstatus = true;
12744 if (size == 3 && !is_q) {
12745 unallocated_encoding(s);
12746 return;
12748 break;
12749 case 0x58: /* FRINTA */
12750 need_rmode = true;
12751 rmode = FPROUNDING_TIEAWAY;
12752 need_fpstatus = true;
12753 if (size == 3 && !is_q) {
12754 unallocated_encoding(s);
12755 return;
12757 break;
12758 case 0x7c: /* URSQRTE */
12759 if (size == 3) {
12760 unallocated_encoding(s);
12761 return;
12763 break;
12764 case 0x1e: /* FRINT32Z */
12765 case 0x1f: /* FRINT64Z */
12766 need_rmode = true;
12767 rmode = FPROUNDING_ZERO;
12768 /* fall through */
12769 case 0x5e: /* FRINT32X */
12770 case 0x5f: /* FRINT64X */
12771 need_fpstatus = true;
12772 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
12773 unallocated_encoding(s);
12774 return;
12776 break;
12777 default:
12778 unallocated_encoding(s);
12779 return;
12781 break;
12783 default:
12784 unallocated_encoding(s);
12785 return;
12788 if (!fp_access_check(s)) {
12789 return;
12792 if (need_fpstatus || need_rmode) {
12793 tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
12794 } else {
12795 tcg_fpstatus = NULL;
12797 if (need_rmode) {
12798 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
12799 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12800 } else {
12801 tcg_rmode = NULL;
12804 switch (opcode) {
12805 case 0x5:
12806 if (u && size == 0) { /* NOT */
12807 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
12808 return;
12810 break;
12811 case 0x8: /* CMGT, CMGE */
12812 if (u) {
12813 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
12814 } else {
12815 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
12817 return;
12818 case 0x9: /* CMEQ, CMLE */
12819 if (u) {
12820 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
12821 } else {
12822 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
12824 return;
12825 case 0xa: /* CMLT */
12826 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
12827 return;
12828 case 0xb:
12829 if (u) { /* ABS, NEG */
12830 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
12831 } else {
12832 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
12834 return;
12837 if (size == 3) {
12838 /* All 64-bit element operations can be shared with scalar 2misc */
12839 int pass;
12841 /* Coverity claims (size == 3 && !is_q) has been eliminated
12842 * from all paths leading to here.
12844 tcg_debug_assert(is_q);
12845 for (pass = 0; pass < 2; pass++) {
12846 TCGv_i64 tcg_op = tcg_temp_new_i64();
12847 TCGv_i64 tcg_res = tcg_temp_new_i64();
12849 read_vec_element(s, tcg_op, rn, pass, MO_64);
12851 handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
12852 tcg_rmode, tcg_fpstatus);
12854 write_vec_element(s, tcg_res, rd, pass, MO_64);
12856 tcg_temp_free_i64(tcg_res);
12857 tcg_temp_free_i64(tcg_op);
12859 } else {
12860 int pass;
12862 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
12863 TCGv_i32 tcg_op = tcg_temp_new_i32();
12864 TCGv_i32 tcg_res = tcg_temp_new_i32();
12866 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
12868 if (size == 2) {
12869 /* Special cases for 32 bit elements */
12870 switch (opcode) {
12871 case 0x4: /* CLS */
12872 if (u) {
12873 tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
12874 } else {
12875 tcg_gen_clrsb_i32(tcg_res, tcg_op);
12877 break;
12878 case 0x7: /* SQABS, SQNEG */
12879 if (u) {
12880 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op);
12881 } else {
12882 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op);
12884 break;
12885 case 0x2f: /* FABS */
12886 gen_helper_vfp_abss(tcg_res, tcg_op);
12887 break;
12888 case 0x6f: /* FNEG */
12889 gen_helper_vfp_negs(tcg_res, tcg_op);
12890 break;
12891 case 0x7f: /* FSQRT */
12892 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
12893 break;
12894 case 0x1a: /* FCVTNS */
12895 case 0x1b: /* FCVTMS */
12896 case 0x1c: /* FCVTAS */
12897 case 0x3a: /* FCVTPS */
12898 case 0x3b: /* FCVTZS */
12900 TCGv_i32 tcg_shift = tcg_const_i32(0);
12901 gen_helper_vfp_tosls(tcg_res, tcg_op,
12902 tcg_shift, tcg_fpstatus);
12903 tcg_temp_free_i32(tcg_shift);
12904 break;
12906 case 0x5a: /* FCVTNU */
12907 case 0x5b: /* FCVTMU */
12908 case 0x5c: /* FCVTAU */
12909 case 0x7a: /* FCVTPU */
12910 case 0x7b: /* FCVTZU */
12912 TCGv_i32 tcg_shift = tcg_const_i32(0);
12913 gen_helper_vfp_touls(tcg_res, tcg_op,
12914 tcg_shift, tcg_fpstatus);
12915 tcg_temp_free_i32(tcg_shift);
12916 break;
12918 case 0x18: /* FRINTN */
12919 case 0x19: /* FRINTM */
12920 case 0x38: /* FRINTP */
12921 case 0x39: /* FRINTZ */
12922 case 0x58: /* FRINTA */
12923 case 0x79: /* FRINTI */
12924 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
12925 break;
12926 case 0x59: /* FRINTX */
12927 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
12928 break;
12929 case 0x7c: /* URSQRTE */
12930 gen_helper_rsqrte_u32(tcg_res, tcg_op);
12931 break;
12932 case 0x1e: /* FRINT32Z */
12933 case 0x5e: /* FRINT32X */
12934 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
12935 break;
12936 case 0x1f: /* FRINT64Z */
12937 case 0x5f: /* FRINT64X */
12938 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
12939 break;
12940 default:
12941 g_assert_not_reached();
12943 } else {
12944 /* Use helpers for 8 and 16 bit elements */
12945 switch (opcode) {
12946 case 0x5: /* CNT, RBIT */
12947 /* For these two insns size is part of the opcode specifier
12948 * (handled earlier); they always operate on byte elements.
12950 if (u) {
12951 gen_helper_neon_rbit_u8(tcg_res, tcg_op);
12952 } else {
12953 gen_helper_neon_cnt_u8(tcg_res, tcg_op);
12955 break;
12956 case 0x7: /* SQABS, SQNEG */
12958 NeonGenOneOpEnvFn *genfn;
12959 static NeonGenOneOpEnvFn * const fns[2][2] = {
12960 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
12961 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
12963 genfn = fns[size][u];
12964 genfn(tcg_res, cpu_env, tcg_op);
12965 break;
12967 case 0x4: /* CLS, CLZ */
12968 if (u) {
12969 if (size == 0) {
12970 gen_helper_neon_clz_u8(tcg_res, tcg_op);
12971 } else {
12972 gen_helper_neon_clz_u16(tcg_res, tcg_op);
12974 } else {
12975 if (size == 0) {
12976 gen_helper_neon_cls_s8(tcg_res, tcg_op);
12977 } else {
12978 gen_helper_neon_cls_s16(tcg_res, tcg_op);
12981 break;
12982 default:
12983 g_assert_not_reached();
12987 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12989 tcg_temp_free_i32(tcg_res);
12990 tcg_temp_free_i32(tcg_op);
12993 clear_vec_high(s, is_q, rd);
12995 if (need_rmode) {
12996 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12997 tcg_temp_free_i32(tcg_rmode);
12999 if (need_fpstatus) {
13000 tcg_temp_free_ptr(tcg_fpstatus);
13004 /* AdvSIMD [scalar] two register miscellaneous (FP16)
13006 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0
13007 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
13008 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd |
13009 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
13010 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
13011 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
13013 * This actually covers two groups where scalar access is governed by
13014 * bit 28. A bunch of the instructions (float to integral) only exist
13015 * in the vector form and are un-allocated for the scalar decode. Also
13016 * in the scalar decode Q is always 1.
13018 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
13020 int fpop, opcode, a, u;
13021 int rn, rd;
13022 bool is_q;
13023 bool is_scalar;
13024 bool only_in_vector = false;
13026 int pass;
13027 TCGv_i32 tcg_rmode = NULL;
13028 TCGv_ptr tcg_fpstatus = NULL;
13029 bool need_rmode = false;
13030 bool need_fpst = true;
13031 int rmode;
13033 if (!dc_isar_feature(aa64_fp16, s)) {
13034 unallocated_encoding(s);
13035 return;
13038 rd = extract32(insn, 0, 5);
13039 rn = extract32(insn, 5, 5);
13041 a = extract32(insn, 23, 1);
13042 u = extract32(insn, 29, 1);
13043 is_scalar = extract32(insn, 28, 1);
13044 is_q = extract32(insn, 30, 1);
13046 opcode = extract32(insn, 12, 5);
13047 fpop = deposit32(opcode, 5, 1, a);
13048 fpop = deposit32(fpop, 6, 1, u);
13050 switch (fpop) {
13051 case 0x1d: /* SCVTF */
13052 case 0x5d: /* UCVTF */
13054 int elements;
13056 if (is_scalar) {
13057 elements = 1;
13058 } else {
13059 elements = (is_q ? 8 : 4);
13062 if (!fp_access_check(s)) {
13063 return;
13065 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
13066 return;
13068 break;
13069 case 0x2c: /* FCMGT (zero) */
13070 case 0x2d: /* FCMEQ (zero) */
13071 case 0x2e: /* FCMLT (zero) */
13072 case 0x6c: /* FCMGE (zero) */
13073 case 0x6d: /* FCMLE (zero) */
13074 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
13075 return;
13076 case 0x3d: /* FRECPE */
13077 case 0x3f: /* FRECPX */
13078 break;
13079 case 0x18: /* FRINTN */
13080 need_rmode = true;
13081 only_in_vector = true;
13082 rmode = FPROUNDING_TIEEVEN;
13083 break;
13084 case 0x19: /* FRINTM */
13085 need_rmode = true;
13086 only_in_vector = true;
13087 rmode = FPROUNDING_NEGINF;
13088 break;
13089 case 0x38: /* FRINTP */
13090 need_rmode = true;
13091 only_in_vector = true;
13092 rmode = FPROUNDING_POSINF;
13093 break;
13094 case 0x39: /* FRINTZ */
13095 need_rmode = true;
13096 only_in_vector = true;
13097 rmode = FPROUNDING_ZERO;
13098 break;
13099 case 0x58: /* FRINTA */
13100 need_rmode = true;
13101 only_in_vector = true;
13102 rmode = FPROUNDING_TIEAWAY;
13103 break;
13104 case 0x59: /* FRINTX */
13105 case 0x79: /* FRINTI */
13106 only_in_vector = true;
13107 /* current rounding mode */
13108 break;
13109 case 0x1a: /* FCVTNS */
13110 need_rmode = true;
13111 rmode = FPROUNDING_TIEEVEN;
13112 break;
13113 case 0x1b: /* FCVTMS */
13114 need_rmode = true;
13115 rmode = FPROUNDING_NEGINF;
13116 break;
13117 case 0x1c: /* FCVTAS */
13118 need_rmode = true;
13119 rmode = FPROUNDING_TIEAWAY;
13120 break;
13121 case 0x3a: /* FCVTPS */
13122 need_rmode = true;
13123 rmode = FPROUNDING_POSINF;
13124 break;
13125 case 0x3b: /* FCVTZS */
13126 need_rmode = true;
13127 rmode = FPROUNDING_ZERO;
13128 break;
13129 case 0x5a: /* FCVTNU */
13130 need_rmode = true;
13131 rmode = FPROUNDING_TIEEVEN;
13132 break;
13133 case 0x5b: /* FCVTMU */
13134 need_rmode = true;
13135 rmode = FPROUNDING_NEGINF;
13136 break;
13137 case 0x5c: /* FCVTAU */
13138 need_rmode = true;
13139 rmode = FPROUNDING_TIEAWAY;
13140 break;
13141 case 0x7a: /* FCVTPU */
13142 need_rmode = true;
13143 rmode = FPROUNDING_POSINF;
13144 break;
13145 case 0x7b: /* FCVTZU */
13146 need_rmode = true;
13147 rmode = FPROUNDING_ZERO;
13148 break;
13149 case 0x2f: /* FABS */
13150 case 0x6f: /* FNEG */
13151 need_fpst = false;
13152 break;
13153 case 0x7d: /* FRSQRTE */
13154 case 0x7f: /* FSQRT (vector) */
13155 break;
13156 default:
13157 unallocated_encoding(s);
13158 return;
13162 /* Check additional constraints for the scalar encoding */
13163 if (is_scalar) {
13164 if (!is_q) {
13165 unallocated_encoding(s);
13166 return;
13168 /* FRINTxx is only in the vector form */
13169 if (only_in_vector) {
13170 unallocated_encoding(s);
13171 return;
13175 if (!fp_access_check(s)) {
13176 return;
13179 if (need_rmode || need_fpst) {
13180 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16);
13183 if (need_rmode) {
13184 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
13185 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
13188 if (is_scalar) {
13189 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
13190 TCGv_i32 tcg_res = tcg_temp_new_i32();
13192 switch (fpop) {
13193 case 0x1a: /* FCVTNS */
13194 case 0x1b: /* FCVTMS */
13195 case 0x1c: /* FCVTAS */
13196 case 0x3a: /* FCVTPS */
13197 case 0x3b: /* FCVTZS */
13198 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
13199 break;
13200 case 0x3d: /* FRECPE */
13201 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
13202 break;
13203 case 0x3f: /* FRECPX */
13204 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
13205 break;
13206 case 0x5a: /* FCVTNU */
13207 case 0x5b: /* FCVTMU */
13208 case 0x5c: /* FCVTAU */
13209 case 0x7a: /* FCVTPU */
13210 case 0x7b: /* FCVTZU */
13211 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
13212 break;
13213 case 0x6f: /* FNEG */
13214 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
13215 break;
13216 case 0x7d: /* FRSQRTE */
13217 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
13218 break;
13219 default:
13220 g_assert_not_reached();
13223 /* limit any sign extension going on */
13224 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
13225 write_fp_sreg(s, rd, tcg_res);
13227 tcg_temp_free_i32(tcg_res);
13228 tcg_temp_free_i32(tcg_op);
13229 } else {
13230 for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
13231 TCGv_i32 tcg_op = tcg_temp_new_i32();
13232 TCGv_i32 tcg_res = tcg_temp_new_i32();
13234 read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
13236 switch (fpop) {
13237 case 0x1a: /* FCVTNS */
13238 case 0x1b: /* FCVTMS */
13239 case 0x1c: /* FCVTAS */
13240 case 0x3a: /* FCVTPS */
13241 case 0x3b: /* FCVTZS */
13242 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
13243 break;
13244 case 0x3d: /* FRECPE */
13245 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
13246 break;
13247 case 0x5a: /* FCVTNU */
13248 case 0x5b: /* FCVTMU */
13249 case 0x5c: /* FCVTAU */
13250 case 0x7a: /* FCVTPU */
13251 case 0x7b: /* FCVTZU */
13252 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
13253 break;
13254 case 0x18: /* FRINTN */
13255 case 0x19: /* FRINTM */
13256 case 0x38: /* FRINTP */
13257 case 0x39: /* FRINTZ */
13258 case 0x58: /* FRINTA */
13259 case 0x79: /* FRINTI */
13260 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
13261 break;
13262 case 0x59: /* FRINTX */
13263 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
13264 break;
13265 case 0x2f: /* FABS */
13266 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
13267 break;
13268 case 0x6f: /* FNEG */
13269 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
13270 break;
13271 case 0x7d: /* FRSQRTE */
13272 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
13273 break;
13274 case 0x7f: /* FSQRT */
13275 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
13276 break;
13277 default:
13278 g_assert_not_reached();
13281 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
13283 tcg_temp_free_i32(tcg_res);
13284 tcg_temp_free_i32(tcg_op);
13287 clear_vec_high(s, is_q, rd);
13290 if (tcg_rmode) {
13291 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
13292 tcg_temp_free_i32(tcg_rmode);
13295 if (tcg_fpstatus) {
13296 tcg_temp_free_ptr(tcg_fpstatus);
13300 /* AdvSIMD scalar x indexed element
13301 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
13302 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
13303 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
13304 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
13305 * AdvSIMD vector x indexed element
13306 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
13307 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
13308 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
13309 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
13311 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
13313 /* This encoding has two kinds of instruction:
13314 * normal, where we perform elt x idxelt => elt for each
13315 * element in the vector
13316 * long, where we perform elt x idxelt and generate a result of
13317 * double the width of the input element
13318 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
13320 bool is_scalar = extract32(insn, 28, 1);
13321 bool is_q = extract32(insn, 30, 1);
13322 bool u = extract32(insn, 29, 1);
13323 int size = extract32(insn, 22, 2);
13324 int l = extract32(insn, 21, 1);
13325 int m = extract32(insn, 20, 1);
13326 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
13327 int rm = extract32(insn, 16, 4);
13328 int opcode = extract32(insn, 12, 4);
13329 int h = extract32(insn, 11, 1);
13330 int rn = extract32(insn, 5, 5);
13331 int rd = extract32(insn, 0, 5);
13332 bool is_long = false;
13333 int is_fp = 0;
13334 bool is_fp16 = false;
13335 int index;
13336 TCGv_ptr fpst;
13338 switch (16 * u + opcode) {
13339 case 0x08: /* MUL */
13340 case 0x10: /* MLA */
13341 case 0x14: /* MLS */
13342 if (is_scalar) {
13343 unallocated_encoding(s);
13344 return;
13346 break;
13347 case 0x02: /* SMLAL, SMLAL2 */
13348 case 0x12: /* UMLAL, UMLAL2 */
13349 case 0x06: /* SMLSL, SMLSL2 */
13350 case 0x16: /* UMLSL, UMLSL2 */
13351 case 0x0a: /* SMULL, SMULL2 */
13352 case 0x1a: /* UMULL, UMULL2 */
13353 if (is_scalar) {
13354 unallocated_encoding(s);
13355 return;
13357 is_long = true;
13358 break;
13359 case 0x03: /* SQDMLAL, SQDMLAL2 */
13360 case 0x07: /* SQDMLSL, SQDMLSL2 */
13361 case 0x0b: /* SQDMULL, SQDMULL2 */
13362 is_long = true;
13363 break;
13364 case 0x0c: /* SQDMULH */
13365 case 0x0d: /* SQRDMULH */
13366 break;
13367 case 0x01: /* FMLA */
13368 case 0x05: /* FMLS */
13369 case 0x09: /* FMUL */
13370 case 0x19: /* FMULX */
13371 is_fp = 1;
13372 break;
13373 case 0x1d: /* SQRDMLAH */
13374 case 0x1f: /* SQRDMLSH */
13375 if (!dc_isar_feature(aa64_rdm, s)) {
13376 unallocated_encoding(s);
13377 return;
13379 break;
13380 case 0x0e: /* SDOT */
13381 case 0x1e: /* UDOT */
13382 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
13383 unallocated_encoding(s);
13384 return;
13386 break;
13387 case 0x0f:
13388 switch (size) {
13389 case 0: /* SUDOT */
13390 case 2: /* USDOT */
13391 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) {
13392 unallocated_encoding(s);
13393 return;
13395 size = MO_32;
13396 break;
13397 case 1: /* BFDOT */
13398 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
13399 unallocated_encoding(s);
13400 return;
13402 size = MO_32;
13403 break;
13404 case 3: /* BFMLAL{B,T} */
13405 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
13406 unallocated_encoding(s);
13407 return;
13409 /* can't set is_fp without other incorrect size checks */
13410 size = MO_16;
13411 break;
13412 default:
13413 unallocated_encoding(s);
13414 return;
13416 break;
13417 case 0x11: /* FCMLA #0 */
13418 case 0x13: /* FCMLA #90 */
13419 case 0x15: /* FCMLA #180 */
13420 case 0x17: /* FCMLA #270 */
13421 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
13422 unallocated_encoding(s);
13423 return;
13425 is_fp = 2;
13426 break;
13427 case 0x00: /* FMLAL */
13428 case 0x04: /* FMLSL */
13429 case 0x18: /* FMLAL2 */
13430 case 0x1c: /* FMLSL2 */
13431 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) {
13432 unallocated_encoding(s);
13433 return;
13435 size = MO_16;
13436 /* is_fp, but we pass cpu_env not fp_status. */
13437 break;
13438 default:
13439 unallocated_encoding(s);
13440 return;
13443 switch (is_fp) {
13444 case 1: /* normal fp */
13445 /* convert insn encoded size to MemOp size */
13446 switch (size) {
13447 case 0: /* half-precision */
13448 size = MO_16;
13449 is_fp16 = true;
13450 break;
13451 case MO_32: /* single precision */
13452 case MO_64: /* double precision */
13453 break;
13454 default:
13455 unallocated_encoding(s);
13456 return;
13458 break;
13460 case 2: /* complex fp */
13461 /* Each indexable element is a complex pair. */
13462 size += 1;
13463 switch (size) {
13464 case MO_32:
13465 if (h && !is_q) {
13466 unallocated_encoding(s);
13467 return;
13469 is_fp16 = true;
13470 break;
13471 case MO_64:
13472 break;
13473 default:
13474 unallocated_encoding(s);
13475 return;
13477 break;
13479 default: /* integer */
13480 switch (size) {
13481 case MO_8:
13482 case MO_64:
13483 unallocated_encoding(s);
13484 return;
13486 break;
13488 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
13489 unallocated_encoding(s);
13490 return;
13493 /* Given MemOp size, adjust register and indexing. */
13494 switch (size) {
13495 case MO_16:
13496 index = h << 2 | l << 1 | m;
13497 break;
13498 case MO_32:
13499 index = h << 1 | l;
13500 rm |= m << 4;
13501 break;
13502 case MO_64:
13503 if (l || !is_q) {
13504 unallocated_encoding(s);
13505 return;
13507 index = h;
13508 rm |= m << 4;
13509 break;
13510 default:
13511 g_assert_not_reached();
13514 if (!fp_access_check(s)) {
13515 return;
13518 if (is_fp) {
13519 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
13520 } else {
13521 fpst = NULL;
13524 switch (16 * u + opcode) {
13525 case 0x0e: /* SDOT */
13526 case 0x1e: /* UDOT */
13527 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13528 u ? gen_helper_gvec_udot_idx_b
13529 : gen_helper_gvec_sdot_idx_b);
13530 return;
13531 case 0x0f:
13532 switch (extract32(insn, 22, 2)) {
13533 case 0: /* SUDOT */
13534 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13535 gen_helper_gvec_sudot_idx_b);
13536 return;
13537 case 1: /* BFDOT */
13538 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13539 gen_helper_gvec_bfdot_idx);
13540 return;
13541 case 2: /* USDOT */
13542 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13543 gen_helper_gvec_usdot_idx_b);
13544 return;
13545 case 3: /* BFMLAL{B,T} */
13546 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q,
13547 gen_helper_gvec_bfmlal_idx);
13548 return;
13550 g_assert_not_reached();
13551 case 0x11: /* FCMLA #0 */
13552 case 0x13: /* FCMLA #90 */
13553 case 0x15: /* FCMLA #180 */
13554 case 0x17: /* FCMLA #270 */
13556 int rot = extract32(insn, 13, 2);
13557 int data = (index << 2) | rot;
13558 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
13559 vec_full_reg_offset(s, rn),
13560 vec_full_reg_offset(s, rm),
13561 vec_full_reg_offset(s, rd), fpst,
13562 is_q ? 16 : 8, vec_full_reg_size(s), data,
13563 size == MO_64
13564 ? gen_helper_gvec_fcmlas_idx
13565 : gen_helper_gvec_fcmlah_idx);
13566 tcg_temp_free_ptr(fpst);
13568 return;
13570 case 0x00: /* FMLAL */
13571 case 0x04: /* FMLSL */
13572 case 0x18: /* FMLAL2 */
13573 case 0x1c: /* FMLSL2 */
13575 int is_s = extract32(opcode, 2, 1);
13576 int is_2 = u;
13577 int data = (index << 2) | (is_2 << 1) | is_s;
13578 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
13579 vec_full_reg_offset(s, rn),
13580 vec_full_reg_offset(s, rm), cpu_env,
13581 is_q ? 16 : 8, vec_full_reg_size(s),
13582 data, gen_helper_gvec_fmlal_idx_a64);
13584 return;
13586 case 0x08: /* MUL */
13587 if (!is_long && !is_scalar) {
13588 static gen_helper_gvec_3 * const fns[3] = {
13589 gen_helper_gvec_mul_idx_h,
13590 gen_helper_gvec_mul_idx_s,
13591 gen_helper_gvec_mul_idx_d,
13593 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
13594 vec_full_reg_offset(s, rn),
13595 vec_full_reg_offset(s, rm),
13596 is_q ? 16 : 8, vec_full_reg_size(s),
13597 index, fns[size - 1]);
13598 return;
13600 break;
13602 case 0x10: /* MLA */
13603 if (!is_long && !is_scalar) {
13604 static gen_helper_gvec_4 * const fns[3] = {
13605 gen_helper_gvec_mla_idx_h,
13606 gen_helper_gvec_mla_idx_s,
13607 gen_helper_gvec_mla_idx_d,
13609 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
13610 vec_full_reg_offset(s, rn),
13611 vec_full_reg_offset(s, rm),
13612 vec_full_reg_offset(s, rd),
13613 is_q ? 16 : 8, vec_full_reg_size(s),
13614 index, fns[size - 1]);
13615 return;
13617 break;
13619 case 0x14: /* MLS */
13620 if (!is_long && !is_scalar) {
13621 static gen_helper_gvec_4 * const fns[3] = {
13622 gen_helper_gvec_mls_idx_h,
13623 gen_helper_gvec_mls_idx_s,
13624 gen_helper_gvec_mls_idx_d,
13626 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
13627 vec_full_reg_offset(s, rn),
13628 vec_full_reg_offset(s, rm),
13629 vec_full_reg_offset(s, rd),
13630 is_q ? 16 : 8, vec_full_reg_size(s),
13631 index, fns[size - 1]);
13632 return;
13634 break;
13637 if (size == 3) {
13638 TCGv_i64 tcg_idx = tcg_temp_new_i64();
13639 int pass;
13641 assert(is_fp && is_q && !is_long);
13643 read_vec_element(s, tcg_idx, rm, index, MO_64);
13645 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13646 TCGv_i64 tcg_op = tcg_temp_new_i64();
13647 TCGv_i64 tcg_res = tcg_temp_new_i64();
13649 read_vec_element(s, tcg_op, rn, pass, MO_64);
13651 switch (16 * u + opcode) {
13652 case 0x05: /* FMLS */
13653 /* As usual for ARM, separate negation for fused multiply-add */
13654 gen_helper_vfp_negd(tcg_op, tcg_op);
13655 /* fall through */
13656 case 0x01: /* FMLA */
13657 read_vec_element(s, tcg_res, rd, pass, MO_64);
13658 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
13659 break;
13660 case 0x09: /* FMUL */
13661 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
13662 break;
13663 case 0x19: /* FMULX */
13664 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
13665 break;
13666 default:
13667 g_assert_not_reached();
13670 write_vec_element(s, tcg_res, rd, pass, MO_64);
13671 tcg_temp_free_i64(tcg_op);
13672 tcg_temp_free_i64(tcg_res);
13675 tcg_temp_free_i64(tcg_idx);
13676 clear_vec_high(s, !is_scalar, rd);
13677 } else if (!is_long) {
13678 /* 32 bit floating point, or 16 or 32 bit integer.
13679 * For the 16 bit scalar case we use the usual Neon helpers and
13680 * rely on the fact that 0 op 0 == 0 with no side effects.
13682 TCGv_i32 tcg_idx = tcg_temp_new_i32();
13683 int pass, maxpasses;
13685 if (is_scalar) {
13686 maxpasses = 1;
13687 } else {
13688 maxpasses = is_q ? 4 : 2;
13691 read_vec_element_i32(s, tcg_idx, rm, index, size);
13693 if (size == 1 && !is_scalar) {
13694 /* The simplest way to handle the 16x16 indexed ops is to duplicate
13695 * the index into both halves of the 32 bit tcg_idx and then use
13696 * the usual Neon helpers.
13698 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13701 for (pass = 0; pass < maxpasses; pass++) {
13702 TCGv_i32 tcg_op = tcg_temp_new_i32();
13703 TCGv_i32 tcg_res = tcg_temp_new_i32();
13705 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
13707 switch (16 * u + opcode) {
13708 case 0x08: /* MUL */
13709 case 0x10: /* MLA */
13710 case 0x14: /* MLS */
13712 static NeonGenTwoOpFn * const fns[2][2] = {
13713 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
13714 { tcg_gen_add_i32, tcg_gen_sub_i32 },
13716 NeonGenTwoOpFn *genfn;
13717 bool is_sub = opcode == 0x4;
13719 if (size == 1) {
13720 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
13721 } else {
13722 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
13724 if (opcode == 0x8) {
13725 break;
13727 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
13728 genfn = fns[size - 1][is_sub];
13729 genfn(tcg_res, tcg_op, tcg_res);
13730 break;
13732 case 0x05: /* FMLS */
13733 case 0x01: /* FMLA */
13734 read_vec_element_i32(s, tcg_res, rd, pass,
13735 is_scalar ? size : MO_32);
13736 switch (size) {
13737 case 1:
13738 if (opcode == 0x5) {
13739 /* As usual for ARM, separate negation for fused
13740 * multiply-add */
13741 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000);
13743 if (is_scalar) {
13744 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx,
13745 tcg_res, fpst);
13746 } else {
13747 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx,
13748 tcg_res, fpst);
13750 break;
13751 case 2:
13752 if (opcode == 0x5) {
13753 /* As usual for ARM, separate negation for
13754 * fused multiply-add */
13755 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000);
13757 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx,
13758 tcg_res, fpst);
13759 break;
13760 default:
13761 g_assert_not_reached();
13763 break;
13764 case 0x09: /* FMUL */
13765 switch (size) {
13766 case 1:
13767 if (is_scalar) {
13768 gen_helper_advsimd_mulh(tcg_res, tcg_op,
13769 tcg_idx, fpst);
13770 } else {
13771 gen_helper_advsimd_mul2h(tcg_res, tcg_op,
13772 tcg_idx, fpst);
13774 break;
13775 case 2:
13776 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
13777 break;
13778 default:
13779 g_assert_not_reached();
13781 break;
13782 case 0x19: /* FMULX */
13783 switch (size) {
13784 case 1:
13785 if (is_scalar) {
13786 gen_helper_advsimd_mulxh(tcg_res, tcg_op,
13787 tcg_idx, fpst);
13788 } else {
13789 gen_helper_advsimd_mulx2h(tcg_res, tcg_op,
13790 tcg_idx, fpst);
13792 break;
13793 case 2:
13794 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
13795 break;
13796 default:
13797 g_assert_not_reached();
13799 break;
13800 case 0x0c: /* SQDMULH */
13801 if (size == 1) {
13802 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env,
13803 tcg_op, tcg_idx);
13804 } else {
13805 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env,
13806 tcg_op, tcg_idx);
13808 break;
13809 case 0x0d: /* SQRDMULH */
13810 if (size == 1) {
13811 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env,
13812 tcg_op, tcg_idx);
13813 } else {
13814 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env,
13815 tcg_op, tcg_idx);
13817 break;
13818 case 0x1d: /* SQRDMLAH */
13819 read_vec_element_i32(s, tcg_res, rd, pass,
13820 is_scalar ? size : MO_32);
13821 if (size == 1) {
13822 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env,
13823 tcg_op, tcg_idx, tcg_res);
13824 } else {
13825 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env,
13826 tcg_op, tcg_idx, tcg_res);
13828 break;
13829 case 0x1f: /* SQRDMLSH */
13830 read_vec_element_i32(s, tcg_res, rd, pass,
13831 is_scalar ? size : MO_32);
13832 if (size == 1) {
13833 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env,
13834 tcg_op, tcg_idx, tcg_res);
13835 } else {
13836 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env,
13837 tcg_op, tcg_idx, tcg_res);
13839 break;
13840 default:
13841 g_assert_not_reached();
13844 if (is_scalar) {
13845 write_fp_sreg(s, rd, tcg_res);
13846 } else {
13847 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
13850 tcg_temp_free_i32(tcg_op);
13851 tcg_temp_free_i32(tcg_res);
13854 tcg_temp_free_i32(tcg_idx);
13855 clear_vec_high(s, is_q, rd);
13856 } else {
13857 /* long ops: 16x16->32 or 32x32->64 */
13858 TCGv_i64 tcg_res[2];
13859 int pass;
13860 bool satop = extract32(opcode, 0, 1);
13861 MemOp memop = MO_32;
13863 if (satop || !u) {
13864 memop |= MO_SIGN;
13867 if (size == 2) {
13868 TCGv_i64 tcg_idx = tcg_temp_new_i64();
13870 read_vec_element(s, tcg_idx, rm, index, memop);
13872 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13873 TCGv_i64 tcg_op = tcg_temp_new_i64();
13874 TCGv_i64 tcg_passres;
13875 int passelt;
13877 if (is_scalar) {
13878 passelt = 0;
13879 } else {
13880 passelt = pass + (is_q * 2);
13883 read_vec_element(s, tcg_op, rn, passelt, memop);
13885 tcg_res[pass] = tcg_temp_new_i64();
13887 if (opcode == 0xa || opcode == 0xb) {
13888 /* Non-accumulating ops */
13889 tcg_passres = tcg_res[pass];
13890 } else {
13891 tcg_passres = tcg_temp_new_i64();
13894 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
13895 tcg_temp_free_i64(tcg_op);
13897 if (satop) {
13898 /* saturating, doubling */
13899 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
13900 tcg_passres, tcg_passres);
13903 if (opcode == 0xa || opcode == 0xb) {
13904 continue;
13907 /* Accumulating op: handle accumulate step */
13908 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13910 switch (opcode) {
13911 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13912 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13913 break;
13914 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13915 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13916 break;
13917 case 0x7: /* SQDMLSL, SQDMLSL2 */
13918 tcg_gen_neg_i64(tcg_passres, tcg_passres);
13919 /* fall through */
13920 case 0x3: /* SQDMLAL, SQDMLAL2 */
13921 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
13922 tcg_res[pass],
13923 tcg_passres);
13924 break;
13925 default:
13926 g_assert_not_reached();
13928 tcg_temp_free_i64(tcg_passres);
13930 tcg_temp_free_i64(tcg_idx);
13932 clear_vec_high(s, !is_scalar, rd);
13933 } else {
13934 TCGv_i32 tcg_idx = tcg_temp_new_i32();
13936 assert(size == 1);
13937 read_vec_element_i32(s, tcg_idx, rm, index, size);
13939 if (!is_scalar) {
13940 /* The simplest way to handle the 16x16 indexed ops is to
13941 * duplicate the index into both halves of the 32 bit tcg_idx
13942 * and then use the usual Neon helpers.
13944 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13947 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13948 TCGv_i32 tcg_op = tcg_temp_new_i32();
13949 TCGv_i64 tcg_passres;
13951 if (is_scalar) {
13952 read_vec_element_i32(s, tcg_op, rn, pass, size);
13953 } else {
13954 read_vec_element_i32(s, tcg_op, rn,
13955 pass + (is_q * 2), MO_32);
13958 tcg_res[pass] = tcg_temp_new_i64();
13960 if (opcode == 0xa || opcode == 0xb) {
13961 /* Non-accumulating ops */
13962 tcg_passres = tcg_res[pass];
13963 } else {
13964 tcg_passres = tcg_temp_new_i64();
13967 if (memop & MO_SIGN) {
13968 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
13969 } else {
13970 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
13972 if (satop) {
13973 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
13974 tcg_passres, tcg_passres);
13976 tcg_temp_free_i32(tcg_op);
13978 if (opcode == 0xa || opcode == 0xb) {
13979 continue;
13982 /* Accumulating op: handle accumulate step */
13983 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13985 switch (opcode) {
13986 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13987 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
13988 tcg_passres);
13989 break;
13990 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13991 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
13992 tcg_passres);
13993 break;
13994 case 0x7: /* SQDMLSL, SQDMLSL2 */
13995 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
13996 /* fall through */
13997 case 0x3: /* SQDMLAL, SQDMLAL2 */
13998 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
13999 tcg_res[pass],
14000 tcg_passres);
14001 break;
14002 default:
14003 g_assert_not_reached();
14005 tcg_temp_free_i64(tcg_passres);
14007 tcg_temp_free_i32(tcg_idx);
14009 if (is_scalar) {
14010 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
14014 if (is_scalar) {
14015 tcg_res[1] = tcg_const_i64(0);
14018 for (pass = 0; pass < 2; pass++) {
14019 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
14020 tcg_temp_free_i64(tcg_res[pass]);
14024 if (fpst) {
14025 tcg_temp_free_ptr(fpst);
14029 /* Crypto AES
14030 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
14031 * +-----------------+------+-----------+--------+-----+------+------+
14032 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
14033 * +-----------------+------+-----------+--------+-----+------+------+
14035 static void disas_crypto_aes(DisasContext *s, uint32_t insn)
14037 int size = extract32(insn, 22, 2);
14038 int opcode = extract32(insn, 12, 5);
14039 int rn = extract32(insn, 5, 5);
14040 int rd = extract32(insn, 0, 5);
14041 int decrypt;
14042 gen_helper_gvec_2 *genfn2 = NULL;
14043 gen_helper_gvec_3 *genfn3 = NULL;
14045 if (!dc_isar_feature(aa64_aes, s) || size != 0) {
14046 unallocated_encoding(s);
14047 return;
14050 switch (opcode) {
14051 case 0x4: /* AESE */
14052 decrypt = 0;
14053 genfn3 = gen_helper_crypto_aese;
14054 break;
14055 case 0x6: /* AESMC */
14056 decrypt = 0;
14057 genfn2 = gen_helper_crypto_aesmc;
14058 break;
14059 case 0x5: /* AESD */
14060 decrypt = 1;
14061 genfn3 = gen_helper_crypto_aese;
14062 break;
14063 case 0x7: /* AESIMC */
14064 decrypt = 1;
14065 genfn2 = gen_helper_crypto_aesmc;
14066 break;
14067 default:
14068 unallocated_encoding(s);
14069 return;
14072 if (!fp_access_check(s)) {
14073 return;
14075 if (genfn2) {
14076 gen_gvec_op2_ool(s, true, rd, rn, decrypt, genfn2);
14077 } else {
14078 gen_gvec_op3_ool(s, true, rd, rd, rn, decrypt, genfn3);
14082 /* Crypto three-reg SHA
14083 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
14084 * +-----------------+------+---+------+---+--------+-----+------+------+
14085 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd |
14086 * +-----------------+------+---+------+---+--------+-----+------+------+
14088 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
14090 int size = extract32(insn, 22, 2);
14091 int opcode = extract32(insn, 12, 3);
14092 int rm = extract32(insn, 16, 5);
14093 int rn = extract32(insn, 5, 5);
14094 int rd = extract32(insn, 0, 5);
14095 gen_helper_gvec_3 *genfn;
14096 bool feature;
14098 if (size != 0) {
14099 unallocated_encoding(s);
14100 return;
14103 switch (opcode) {
14104 case 0: /* SHA1C */
14105 genfn = gen_helper_crypto_sha1c;
14106 feature = dc_isar_feature(aa64_sha1, s);
14107 break;
14108 case 1: /* SHA1P */
14109 genfn = gen_helper_crypto_sha1p;
14110 feature = dc_isar_feature(aa64_sha1, s);
14111 break;
14112 case 2: /* SHA1M */
14113 genfn = gen_helper_crypto_sha1m;
14114 feature = dc_isar_feature(aa64_sha1, s);
14115 break;
14116 case 3: /* SHA1SU0 */
14117 genfn = gen_helper_crypto_sha1su0;
14118 feature = dc_isar_feature(aa64_sha1, s);
14119 break;
14120 case 4: /* SHA256H */
14121 genfn = gen_helper_crypto_sha256h;
14122 feature = dc_isar_feature(aa64_sha256, s);
14123 break;
14124 case 5: /* SHA256H2 */
14125 genfn = gen_helper_crypto_sha256h2;
14126 feature = dc_isar_feature(aa64_sha256, s);
14127 break;
14128 case 6: /* SHA256SU1 */
14129 genfn = gen_helper_crypto_sha256su1;
14130 feature = dc_isar_feature(aa64_sha256, s);
14131 break;
14132 default:
14133 unallocated_encoding(s);
14134 return;
14137 if (!feature) {
14138 unallocated_encoding(s);
14139 return;
14142 if (!fp_access_check(s)) {
14143 return;
14145 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn);
14148 /* Crypto two-reg SHA
14149 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
14150 * +-----------------+------+-----------+--------+-----+------+------+
14151 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
14152 * +-----------------+------+-----------+--------+-----+------+------+
14154 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
14156 int size = extract32(insn, 22, 2);
14157 int opcode = extract32(insn, 12, 5);
14158 int rn = extract32(insn, 5, 5);
14159 int rd = extract32(insn, 0, 5);
14160 gen_helper_gvec_2 *genfn;
14161 bool feature;
14163 if (size != 0) {
14164 unallocated_encoding(s);
14165 return;
14168 switch (opcode) {
14169 case 0: /* SHA1H */
14170 feature = dc_isar_feature(aa64_sha1, s);
14171 genfn = gen_helper_crypto_sha1h;
14172 break;
14173 case 1: /* SHA1SU1 */
14174 feature = dc_isar_feature(aa64_sha1, s);
14175 genfn = gen_helper_crypto_sha1su1;
14176 break;
14177 case 2: /* SHA256SU0 */
14178 feature = dc_isar_feature(aa64_sha256, s);
14179 genfn = gen_helper_crypto_sha256su0;
14180 break;
14181 default:
14182 unallocated_encoding(s);
14183 return;
14186 if (!feature) {
14187 unallocated_encoding(s);
14188 return;
14191 if (!fp_access_check(s)) {
14192 return;
14194 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn);
14197 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
14199 tcg_gen_rotli_i64(d, m, 1);
14200 tcg_gen_xor_i64(d, d, n);
14203 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m)
14205 tcg_gen_rotli_vec(vece, d, m, 1);
14206 tcg_gen_xor_vec(vece, d, d, n);
14209 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
14210 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
14212 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 };
14213 static const GVecGen3 op = {
14214 .fni8 = gen_rax1_i64,
14215 .fniv = gen_rax1_vec,
14216 .opt_opc = vecop_list,
14217 .fno = gen_helper_crypto_rax1,
14218 .vece = MO_64,
14220 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op);
14223 /* Crypto three-reg SHA512
14224 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
14225 * +-----------------------+------+---+---+-----+--------+------+------+
14226 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd |
14227 * +-----------------------+------+---+---+-----+--------+------+------+
14229 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn)
14231 int opcode = extract32(insn, 10, 2);
14232 int o = extract32(insn, 14, 1);
14233 int rm = extract32(insn, 16, 5);
14234 int rn = extract32(insn, 5, 5);
14235 int rd = extract32(insn, 0, 5);
14236 bool feature;
14237 gen_helper_gvec_3 *oolfn = NULL;
14238 GVecGen3Fn *gvecfn = NULL;
14240 if (o == 0) {
14241 switch (opcode) {
14242 case 0: /* SHA512H */
14243 feature = dc_isar_feature(aa64_sha512, s);
14244 oolfn = gen_helper_crypto_sha512h;
14245 break;
14246 case 1: /* SHA512H2 */
14247 feature = dc_isar_feature(aa64_sha512, s);
14248 oolfn = gen_helper_crypto_sha512h2;
14249 break;
14250 case 2: /* SHA512SU1 */
14251 feature = dc_isar_feature(aa64_sha512, s);
14252 oolfn = gen_helper_crypto_sha512su1;
14253 break;
14254 case 3: /* RAX1 */
14255 feature = dc_isar_feature(aa64_sha3, s);
14256 gvecfn = gen_gvec_rax1;
14257 break;
14258 default:
14259 g_assert_not_reached();
14261 } else {
14262 switch (opcode) {
14263 case 0: /* SM3PARTW1 */
14264 feature = dc_isar_feature(aa64_sm3, s);
14265 oolfn = gen_helper_crypto_sm3partw1;
14266 break;
14267 case 1: /* SM3PARTW2 */
14268 feature = dc_isar_feature(aa64_sm3, s);
14269 oolfn = gen_helper_crypto_sm3partw2;
14270 break;
14271 case 2: /* SM4EKEY */
14272 feature = dc_isar_feature(aa64_sm4, s);
14273 oolfn = gen_helper_crypto_sm4ekey;
14274 break;
14275 default:
14276 unallocated_encoding(s);
14277 return;
14281 if (!feature) {
14282 unallocated_encoding(s);
14283 return;
14286 if (!fp_access_check(s)) {
14287 return;
14290 if (oolfn) {
14291 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn);
14292 } else {
14293 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64);
14297 /* Crypto two-reg SHA512
14298 * 31 12 11 10 9 5 4 0
14299 * +-----------------------------------------+--------+------+------+
14300 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd |
14301 * +-----------------------------------------+--------+------+------+
14303 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn)
14305 int opcode = extract32(insn, 10, 2);
14306 int rn = extract32(insn, 5, 5);
14307 int rd = extract32(insn, 0, 5);
14308 bool feature;
14310 switch (opcode) {
14311 case 0: /* SHA512SU0 */
14312 feature = dc_isar_feature(aa64_sha512, s);
14313 break;
14314 case 1: /* SM4E */
14315 feature = dc_isar_feature(aa64_sm4, s);
14316 break;
14317 default:
14318 unallocated_encoding(s);
14319 return;
14322 if (!feature) {
14323 unallocated_encoding(s);
14324 return;
14327 if (!fp_access_check(s)) {
14328 return;
14331 switch (opcode) {
14332 case 0: /* SHA512SU0 */
14333 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0);
14334 break;
14335 case 1: /* SM4E */
14336 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e);
14337 break;
14338 default:
14339 g_assert_not_reached();
14343 /* Crypto four-register
14344 * 31 23 22 21 20 16 15 14 10 9 5 4 0
14345 * +-------------------+-----+------+---+------+------+------+
14346 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd |
14347 * +-------------------+-----+------+---+------+------+------+
14349 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn)
14351 int op0 = extract32(insn, 21, 2);
14352 int rm = extract32(insn, 16, 5);
14353 int ra = extract32(insn, 10, 5);
14354 int rn = extract32(insn, 5, 5);
14355 int rd = extract32(insn, 0, 5);
14356 bool feature;
14358 switch (op0) {
14359 case 0: /* EOR3 */
14360 case 1: /* BCAX */
14361 feature = dc_isar_feature(aa64_sha3, s);
14362 break;
14363 case 2: /* SM3SS1 */
14364 feature = dc_isar_feature(aa64_sm3, s);
14365 break;
14366 default:
14367 unallocated_encoding(s);
14368 return;
14371 if (!feature) {
14372 unallocated_encoding(s);
14373 return;
14376 if (!fp_access_check(s)) {
14377 return;
14380 if (op0 < 2) {
14381 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2];
14382 int pass;
14384 tcg_op1 = tcg_temp_new_i64();
14385 tcg_op2 = tcg_temp_new_i64();
14386 tcg_op3 = tcg_temp_new_i64();
14387 tcg_res[0] = tcg_temp_new_i64();
14388 tcg_res[1] = tcg_temp_new_i64();
14390 for (pass = 0; pass < 2; pass++) {
14391 read_vec_element(s, tcg_op1, rn, pass, MO_64);
14392 read_vec_element(s, tcg_op2, rm, pass, MO_64);
14393 read_vec_element(s, tcg_op3, ra, pass, MO_64);
14395 if (op0 == 0) {
14396 /* EOR3 */
14397 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3);
14398 } else {
14399 /* BCAX */
14400 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3);
14402 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
14404 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
14405 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
14407 tcg_temp_free_i64(tcg_op1);
14408 tcg_temp_free_i64(tcg_op2);
14409 tcg_temp_free_i64(tcg_op3);
14410 tcg_temp_free_i64(tcg_res[0]);
14411 tcg_temp_free_i64(tcg_res[1]);
14412 } else {
14413 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero;
14415 tcg_op1 = tcg_temp_new_i32();
14416 tcg_op2 = tcg_temp_new_i32();
14417 tcg_op3 = tcg_temp_new_i32();
14418 tcg_res = tcg_temp_new_i32();
14419 tcg_zero = tcg_const_i32(0);
14421 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32);
14422 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32);
14423 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32);
14425 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
14426 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
14427 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
14428 tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
14430 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32);
14431 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32);
14432 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32);
14433 write_vec_element_i32(s, tcg_res, rd, 3, MO_32);
14435 tcg_temp_free_i32(tcg_op1);
14436 tcg_temp_free_i32(tcg_op2);
14437 tcg_temp_free_i32(tcg_op3);
14438 tcg_temp_free_i32(tcg_res);
14439 tcg_temp_free_i32(tcg_zero);
14443 /* Crypto XAR
14444 * 31 21 20 16 15 10 9 5 4 0
14445 * +-----------------------+------+--------+------+------+
14446 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd |
14447 * +-----------------------+------+--------+------+------+
14449 static void disas_crypto_xar(DisasContext *s, uint32_t insn)
14451 int rm = extract32(insn, 16, 5);
14452 int imm6 = extract32(insn, 10, 6);
14453 int rn = extract32(insn, 5, 5);
14454 int rd = extract32(insn, 0, 5);
14456 if (!dc_isar_feature(aa64_sha3, s)) {
14457 unallocated_encoding(s);
14458 return;
14461 if (!fp_access_check(s)) {
14462 return;
14465 gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd),
14466 vec_full_reg_offset(s, rn),
14467 vec_full_reg_offset(s, rm), imm6, 16,
14468 vec_full_reg_size(s));
14471 /* Crypto three-reg imm2
14472 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
14473 * +-----------------------+------+-----+------+--------+------+------+
14474 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd |
14475 * +-----------------------+------+-----+------+--------+------+------+
14477 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn)
14479 static gen_helper_gvec_3 * const fns[4] = {
14480 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b,
14481 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b,
14483 int opcode = extract32(insn, 10, 2);
14484 int imm2 = extract32(insn, 12, 2);
14485 int rm = extract32(insn, 16, 5);
14486 int rn = extract32(insn, 5, 5);
14487 int rd = extract32(insn, 0, 5);
14489 if (!dc_isar_feature(aa64_sm3, s)) {
14490 unallocated_encoding(s);
14491 return;
14494 if (!fp_access_check(s)) {
14495 return;
14498 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]);
14501 /* C3.6 Data processing - SIMD, inc Crypto
14503 * As the decode gets a little complex we are using a table based
14504 * approach for this part of the decode.
14506 static const AArch64DecodeTable data_proc_simd[] = {
14507 /* pattern , mask , fn */
14508 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
14509 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
14510 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
14511 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
14512 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
14513 { 0x0e000400, 0x9fe08400, disas_simd_copy },
14514 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
14515 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
14516 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
14517 { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
14518 { 0x0e000000, 0xbf208c00, disas_simd_tb },
14519 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
14520 { 0x2e000000, 0xbf208400, disas_simd_ext },
14521 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
14522 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
14523 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
14524 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
14525 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
14526 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
14527 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
14528 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
14529 { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
14530 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
14531 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
14532 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 },
14533 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 },
14534 { 0xce000000, 0xff808000, disas_crypto_four_reg },
14535 { 0xce800000, 0xffe00000, disas_crypto_xar },
14536 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 },
14537 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 },
14538 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
14539 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 },
14540 { 0x00000000, 0x00000000, NULL }
14543 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
14545 /* Note that this is called with all non-FP cases from
14546 * table C3-6 so it must UNDEF for entries not specifically
14547 * allocated to instructions in that table.
14549 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
14550 if (fn) {
14551 fn(s, insn);
14552 } else {
14553 unallocated_encoding(s);
14557 /* C3.6 Data processing - SIMD and floating point */
14558 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
14560 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
14561 disas_data_proc_fp(s, insn);
14562 } else {
14563 /* SIMD, including crypto */
14564 disas_data_proc_simd(s, insn);
14569 * is_guarded_page:
14570 * @env: The cpu environment
14571 * @s: The DisasContext
14573 * Return true if the page is guarded.
14575 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
14577 uint64_t addr = s->base.pc_first;
14578 #ifdef CONFIG_USER_ONLY
14579 return page_get_flags(addr) & PAGE_BTI;
14580 #else
14581 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
14582 unsigned int index = tlb_index(env, mmu_idx, addr);
14583 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
14586 * We test this immediately after reading an insn, which means
14587 * that any normal page must be in the TLB. The only exception
14588 * would be for executing from flash or device memory, which
14589 * does not retain the TLB entry.
14591 * FIXME: Assume false for those, for now. We could use
14592 * arm_cpu_get_phys_page_attrs_debug to re-read the page
14593 * table entry even for that case.
14595 return (tlb_hit(entry->addr_code, addr) &&
14596 arm_tlb_bti_gp(&env_tlb(env)->d[mmu_idx].iotlb[index].attrs));
14597 #endif
14601 * btype_destination_ok:
14602 * @insn: The instruction at the branch destination
14603 * @bt: SCTLR_ELx.BT
14604 * @btype: PSTATE.BTYPE, and is non-zero
14606 * On a guarded page, there are a limited number of insns
14607 * that may be present at the branch target:
14608 * - branch target identifiers,
14609 * - paciasp, pacibsp,
14610 * - BRK insn
14611 * - HLT insn
14612 * Anything else causes a Branch Target Exception.
14614 * Return true if the branch is compatible, false to raise BTITRAP.
14616 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
14618 if ((insn & 0xfffff01fu) == 0xd503201fu) {
14619 /* HINT space */
14620 switch (extract32(insn, 5, 7)) {
14621 case 0b011001: /* PACIASP */
14622 case 0b011011: /* PACIBSP */
14624 * If SCTLR_ELx.BT, then PACI*SP are not compatible
14625 * with btype == 3. Otherwise all btype are ok.
14627 return !bt || btype != 3;
14628 case 0b100000: /* BTI */
14629 /* Not compatible with any btype. */
14630 return false;
14631 case 0b100010: /* BTI c */
14632 /* Not compatible with btype == 3 */
14633 return btype != 3;
14634 case 0b100100: /* BTI j */
14635 /* Not compatible with btype == 2 */
14636 return btype != 2;
14637 case 0b100110: /* BTI jc */
14638 /* Compatible with any btype. */
14639 return true;
14641 } else {
14642 switch (insn & 0xffe0001fu) {
14643 case 0xd4200000u: /* BRK */
14644 case 0xd4400000u: /* HLT */
14645 /* Give priority to the breakpoint exception. */
14646 return true;
14649 return false;
14652 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
14653 CPUState *cpu)
14655 DisasContext *dc = container_of(dcbase, DisasContext, base);
14656 CPUARMState *env = cpu->env_ptr;
14657 ARMCPU *arm_cpu = env_archcpu(env);
14658 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
14659 int bound, core_mmu_idx;
14661 dc->isar = &arm_cpu->isar;
14662 dc->condjmp = 0;
14664 dc->aarch64 = 1;
14665 /* If we are coming from secure EL0 in a system with a 32-bit EL3, then
14666 * there is no secure EL1, so we route exceptions to EL3.
14668 dc->secure_routed_to_el3 = arm_feature(env, ARM_FEATURE_EL3) &&
14669 !arm_el_is_aa64(env, 3);
14670 dc->thumb = 0;
14671 dc->sctlr_b = 0;
14672 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
14673 dc->condexec_mask = 0;
14674 dc->condexec_cond = 0;
14675 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
14676 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
14677 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
14678 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
14679 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
14680 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
14681 #if !defined(CONFIG_USER_ONLY)
14682 dc->user = (dc->current_el == 0);
14683 #endif
14684 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
14685 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
14686 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
14687 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
14688 dc->sve_len = (EX_TBFLAG_A64(tb_flags, ZCR_LEN) + 1) * 16;
14689 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
14690 dc->bt = EX_TBFLAG_A64(tb_flags, BT);
14691 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
14692 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
14693 dc->ata = EX_TBFLAG_A64(tb_flags, ATA);
14694 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
14695 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
14696 dc->vec_len = 0;
14697 dc->vec_stride = 0;
14698 dc->cp_regs = arm_cpu->cp_regs;
14699 dc->features = env->features;
14700 dc->dcz_blocksize = arm_cpu->dcz_blocksize;
14702 #ifdef CONFIG_USER_ONLY
14703 /* In sve_probe_page, we assume TBI is enabled. */
14704 tcg_debug_assert(dc->tbid & 1);
14705 #endif
14707 /* Single step state. The code-generation logic here is:
14708 * SS_ACTIVE == 0:
14709 * generate code with no special handling for single-stepping (except
14710 * that anything that can make us go to SS_ACTIVE == 1 must end the TB;
14711 * this happens anyway because those changes are all system register or
14712 * PSTATE writes).
14713 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
14714 * emit code for one insn
14715 * emit code to clear PSTATE.SS
14716 * emit code to generate software step exception for completed step
14717 * end TB (as usual for having generated an exception)
14718 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
14719 * emit code to generate a software step exception
14720 * end the TB
14722 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
14723 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
14724 dc->is_ldex = false;
14725 dc->debug_target_el = EX_TBFLAG_ANY(tb_flags, DEBUG_TARGET_EL);
14727 /* Bound the number of insns to execute to those left on the page. */
14728 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
14730 /* If architectural single step active, limit to 1. */
14731 if (dc->ss_active) {
14732 bound = 1;
14734 dc->base.max_insns = MIN(dc->base.max_insns, bound);
14736 init_tmp_a64_array(dc);
14739 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
14743 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
14745 DisasContext *dc = container_of(dcbase, DisasContext, base);
14747 tcg_gen_insn_start(dc->base.pc_next, 0, 0);
14748 dc->insn_start = tcg_last_op();
14751 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
14753 DisasContext *s = container_of(dcbase, DisasContext, base);
14754 CPUARMState *env = cpu->env_ptr;
14755 uint32_t insn;
14757 if (s->ss_active && !s->pstate_ss) {
14758 /* Singlestep state is Active-pending.
14759 * If we're in this state at the start of a TB then either
14760 * a) we just took an exception to an EL which is being debugged
14761 * and this is the first insn in the exception handler
14762 * b) debug exceptions were masked and we just unmasked them
14763 * without changing EL (eg by clearing PSTATE.D)
14764 * In either case we're going to take a swstep exception in the
14765 * "did not step an insn" case, and so the syndrome ISV and EX
14766 * bits should be zero.
14768 assert(s->base.num_insns == 1);
14769 gen_swstep_exception(s, 0, 0);
14770 s->base.is_jmp = DISAS_NORETURN;
14771 return;
14774 s->pc_curr = s->base.pc_next;
14775 insn = arm_ldl_code(env, &s->base, s->base.pc_next, s->sctlr_b);
14776 s->insn = insn;
14777 s->base.pc_next += 4;
14779 s->fp_access_checked = false;
14780 s->sve_access_checked = false;
14782 if (s->pstate_il) {
14784 * Illegal execution state. This has priority over BTI
14785 * exceptions, but comes after instruction abort exceptions.
14787 gen_exception_insn(s, s->pc_curr, EXCP_UDEF,
14788 syn_illegalstate(), default_exception_el(s));
14789 return;
14792 if (dc_isar_feature(aa64_bti, s)) {
14793 if (s->base.num_insns == 1) {
14795 * At the first insn of the TB, compute s->guarded_page.
14796 * We delayed computing this until successfully reading
14797 * the first insn of the TB, above. This (mostly) ensures
14798 * that the softmmu tlb entry has been populated, and the
14799 * page table GP bit is available.
14801 * Note that we need to compute this even if btype == 0,
14802 * because this value is used for BR instructions later
14803 * where ENV is not available.
14805 s->guarded_page = is_guarded_page(env, s);
14807 /* First insn can have btype set to non-zero. */
14808 tcg_debug_assert(s->btype >= 0);
14811 * Note that the Branch Target Exception has fairly high
14812 * priority -- below debugging exceptions but above most
14813 * everything else. This allows us to handle this now
14814 * instead of waiting until the insn is otherwise decoded.
14816 if (s->btype != 0
14817 && s->guarded_page
14818 && !btype_destination_ok(insn, s->bt, s->btype)) {
14819 gen_exception_insn(s, s->pc_curr, EXCP_UDEF,
14820 syn_btitrap(s->btype),
14821 default_exception_el(s));
14822 return;
14824 } else {
14825 /* Not the first insn: btype must be 0. */
14826 tcg_debug_assert(s->btype == 0);
14830 switch (extract32(insn, 25, 4)) {
14831 case 0x0: case 0x1: case 0x3: /* UNALLOCATED */
14832 unallocated_encoding(s);
14833 break;
14834 case 0x2:
14835 if (!dc_isar_feature(aa64_sve, s) || !disas_sve(s, insn)) {
14836 unallocated_encoding(s);
14838 break;
14839 case 0x8: case 0x9: /* Data processing - immediate */
14840 disas_data_proc_imm(s, insn);
14841 break;
14842 case 0xa: case 0xb: /* Branch, exception generation and system insns */
14843 disas_b_exc_sys(s, insn);
14844 break;
14845 case 0x4:
14846 case 0x6:
14847 case 0xc:
14848 case 0xe: /* Loads and stores */
14849 disas_ldst(s, insn);
14850 break;
14851 case 0x5:
14852 case 0xd: /* Data processing - register */
14853 disas_data_proc_reg(s, insn);
14854 break;
14855 case 0x7:
14856 case 0xf: /* Data processing - SIMD and floating point */
14857 disas_data_proc_simd_fp(s, insn);
14858 break;
14859 default:
14860 assert(FALSE); /* all 15 cases should be handled above */
14861 break;
14864 /* if we allocated any temporaries, free them here */
14865 free_tmp_a64(s);
14868 * After execution of most insns, btype is reset to 0.
14869 * Note that we set btype == -1 when the insn sets btype.
14871 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
14872 reset_btype(s);
14875 translator_loop_temp_check(&s->base);
14878 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
14880 DisasContext *dc = container_of(dcbase, DisasContext, base);
14882 if (unlikely(dc->base.singlestep_enabled || dc->ss_active)) {
14883 /* Note that this means single stepping WFI doesn't halt the CPU.
14884 * For conditional branch insns this is harmless unreachable code as
14885 * gen_goto_tb() has already handled emitting the debug exception
14886 * (and thus a tb-jump is not possible when singlestepping).
14888 switch (dc->base.is_jmp) {
14889 default:
14890 gen_a64_set_pc_im(dc->base.pc_next);
14891 /* fall through */
14892 case DISAS_EXIT:
14893 case DISAS_JUMP:
14894 if (dc->base.singlestep_enabled) {
14895 gen_exception_internal(EXCP_DEBUG);
14896 } else {
14897 gen_step_complete_exception(dc);
14899 break;
14900 case DISAS_NORETURN:
14901 break;
14903 } else {
14904 switch (dc->base.is_jmp) {
14905 case DISAS_NEXT:
14906 case DISAS_TOO_MANY:
14907 gen_goto_tb(dc, 1, dc->base.pc_next);
14908 break;
14909 default:
14910 case DISAS_UPDATE_EXIT:
14911 gen_a64_set_pc_im(dc->base.pc_next);
14912 /* fall through */
14913 case DISAS_EXIT:
14914 tcg_gen_exit_tb(NULL, 0);
14915 break;
14916 case DISAS_UPDATE_NOCHAIN:
14917 gen_a64_set_pc_im(dc->base.pc_next);
14918 /* fall through */
14919 case DISAS_JUMP:
14920 tcg_gen_lookup_and_goto_ptr();
14921 break;
14922 case DISAS_NORETURN:
14923 case DISAS_SWI:
14924 break;
14925 case DISAS_WFE:
14926 gen_a64_set_pc_im(dc->base.pc_next);
14927 gen_helper_wfe(cpu_env);
14928 break;
14929 case DISAS_YIELD:
14930 gen_a64_set_pc_im(dc->base.pc_next);
14931 gen_helper_yield(cpu_env);
14932 break;
14933 case DISAS_WFI:
14935 /* This is a special case because we don't want to just halt the CPU
14936 * if trying to debug across a WFI.
14938 TCGv_i32 tmp = tcg_const_i32(4);
14940 gen_a64_set_pc_im(dc->base.pc_next);
14941 gen_helper_wfi(cpu_env, tmp);
14942 tcg_temp_free_i32(tmp);
14943 /* The helper doesn't necessarily throw an exception, but we
14944 * must go back to the main loop to check for interrupts anyway.
14946 tcg_gen_exit_tb(NULL, 0);
14947 break;
14953 static void aarch64_tr_disas_log(const DisasContextBase *dcbase,
14954 CPUState *cpu)
14956 DisasContext *dc = container_of(dcbase, DisasContext, base);
14958 qemu_log("IN: %s\n", lookup_symbol(dc->base.pc_first));
14959 log_target_disas(cpu, dc->base.pc_first, dc->base.tb->size);
14962 const TranslatorOps aarch64_translator_ops = {
14963 .init_disas_context = aarch64_tr_init_disas_context,
14964 .tb_start = aarch64_tr_tb_start,
14965 .insn_start = aarch64_tr_insn_start,
14966 .translate_insn = aarch64_tr_translate_insn,
14967 .tb_stop = aarch64_tr_tb_stop,
14968 .disas_log = aarch64_tr_disas_log,