target-alpha: Fix compiler warning for gcc-4.3 (and older)
[qemu/kevin.git] / hw / lsi53c895a.c
blob014c85dbda20a7ad7782a37b84c2d587f0ef3143
1 /*
2 * QEMU LSI53C895A SCSI Host Bus Adapter emulation
4 * Copyright (c) 2006 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licenced under the LGPL.
8 */
10 /* ??? Need to check if the {read,write}[wl] routines work properly on
11 big-endian targets. */
13 #include <assert.h>
15 #include "hw.h"
16 #include "pci.h"
17 #include "scsi.h"
18 #include "block_int.h"
20 //#define DEBUG_LSI
21 //#define DEBUG_LSI_REG
23 #ifdef DEBUG_LSI
24 #define DPRINTF(fmt, ...) \
25 do { printf("lsi_scsi: " fmt , ## __VA_ARGS__); } while (0)
26 #define BADF(fmt, ...) \
27 do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__); exit(1);} while (0)
28 #else
29 #define DPRINTF(fmt, ...) do {} while(0)
30 #define BADF(fmt, ...) \
31 do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__);} while (0)
32 #endif
34 #define LSI_MAX_DEVS 7
36 #define LSI_SCNTL0_TRG 0x01
37 #define LSI_SCNTL0_AAP 0x02
38 #define LSI_SCNTL0_EPC 0x08
39 #define LSI_SCNTL0_WATN 0x10
40 #define LSI_SCNTL0_START 0x20
42 #define LSI_SCNTL1_SST 0x01
43 #define LSI_SCNTL1_IARB 0x02
44 #define LSI_SCNTL1_AESP 0x04
45 #define LSI_SCNTL1_RST 0x08
46 #define LSI_SCNTL1_CON 0x10
47 #define LSI_SCNTL1_DHP 0x20
48 #define LSI_SCNTL1_ADB 0x40
49 #define LSI_SCNTL1_EXC 0x80
51 #define LSI_SCNTL2_WSR 0x01
52 #define LSI_SCNTL2_VUE0 0x02
53 #define LSI_SCNTL2_VUE1 0x04
54 #define LSI_SCNTL2_WSS 0x08
55 #define LSI_SCNTL2_SLPHBEN 0x10
56 #define LSI_SCNTL2_SLPMD 0x20
57 #define LSI_SCNTL2_CHM 0x40
58 #define LSI_SCNTL2_SDU 0x80
60 #define LSI_ISTAT0_DIP 0x01
61 #define LSI_ISTAT0_SIP 0x02
62 #define LSI_ISTAT0_INTF 0x04
63 #define LSI_ISTAT0_CON 0x08
64 #define LSI_ISTAT0_SEM 0x10
65 #define LSI_ISTAT0_SIGP 0x20
66 #define LSI_ISTAT0_SRST 0x40
67 #define LSI_ISTAT0_ABRT 0x80
69 #define LSI_ISTAT1_SI 0x01
70 #define LSI_ISTAT1_SRUN 0x02
71 #define LSI_ISTAT1_FLSH 0x04
73 #define LSI_SSTAT0_SDP0 0x01
74 #define LSI_SSTAT0_RST 0x02
75 #define LSI_SSTAT0_WOA 0x04
76 #define LSI_SSTAT0_LOA 0x08
77 #define LSI_SSTAT0_AIP 0x10
78 #define LSI_SSTAT0_OLF 0x20
79 #define LSI_SSTAT0_ORF 0x40
80 #define LSI_SSTAT0_ILF 0x80
82 #define LSI_SIST0_PAR 0x01
83 #define LSI_SIST0_RST 0x02
84 #define LSI_SIST0_UDC 0x04
85 #define LSI_SIST0_SGE 0x08
86 #define LSI_SIST0_RSL 0x10
87 #define LSI_SIST0_SEL 0x20
88 #define LSI_SIST0_CMP 0x40
89 #define LSI_SIST0_MA 0x80
91 #define LSI_SIST1_HTH 0x01
92 #define LSI_SIST1_GEN 0x02
93 #define LSI_SIST1_STO 0x04
94 #define LSI_SIST1_SBMC 0x10
96 #define LSI_SOCL_IO 0x01
97 #define LSI_SOCL_CD 0x02
98 #define LSI_SOCL_MSG 0x04
99 #define LSI_SOCL_ATN 0x08
100 #define LSI_SOCL_SEL 0x10
101 #define LSI_SOCL_BSY 0x20
102 #define LSI_SOCL_ACK 0x40
103 #define LSI_SOCL_REQ 0x80
105 #define LSI_DSTAT_IID 0x01
106 #define LSI_DSTAT_SIR 0x04
107 #define LSI_DSTAT_SSI 0x08
108 #define LSI_DSTAT_ABRT 0x10
109 #define LSI_DSTAT_BF 0x20
110 #define LSI_DSTAT_MDPE 0x40
111 #define LSI_DSTAT_DFE 0x80
113 #define LSI_DCNTL_COM 0x01
114 #define LSI_DCNTL_IRQD 0x02
115 #define LSI_DCNTL_STD 0x04
116 #define LSI_DCNTL_IRQM 0x08
117 #define LSI_DCNTL_SSM 0x10
118 #define LSI_DCNTL_PFEN 0x20
119 #define LSI_DCNTL_PFF 0x40
120 #define LSI_DCNTL_CLSE 0x80
122 #define LSI_DMODE_MAN 0x01
123 #define LSI_DMODE_BOF 0x02
124 #define LSI_DMODE_ERMP 0x04
125 #define LSI_DMODE_ERL 0x08
126 #define LSI_DMODE_DIOM 0x10
127 #define LSI_DMODE_SIOM 0x20
129 #define LSI_CTEST2_DACK 0x01
130 #define LSI_CTEST2_DREQ 0x02
131 #define LSI_CTEST2_TEOP 0x04
132 #define LSI_CTEST2_PCICIE 0x08
133 #define LSI_CTEST2_CM 0x10
134 #define LSI_CTEST2_CIO 0x20
135 #define LSI_CTEST2_SIGP 0x40
136 #define LSI_CTEST2_DDIR 0x80
138 #define LSI_CTEST5_BL2 0x04
139 #define LSI_CTEST5_DDIR 0x08
140 #define LSI_CTEST5_MASR 0x10
141 #define LSI_CTEST5_DFSN 0x20
142 #define LSI_CTEST5_BBCK 0x40
143 #define LSI_CTEST5_ADCK 0x80
145 #define LSI_CCNTL0_DILS 0x01
146 #define LSI_CCNTL0_DISFC 0x10
147 #define LSI_CCNTL0_ENNDJ 0x20
148 #define LSI_CCNTL0_PMJCTL 0x40
149 #define LSI_CCNTL0_ENPMJ 0x80
151 #define LSI_CCNTL1_EN64DBMV 0x01
152 #define LSI_CCNTL1_EN64TIBMV 0x02
153 #define LSI_CCNTL1_64TIMOD 0x04
154 #define LSI_CCNTL1_DDAC 0x08
155 #define LSI_CCNTL1_ZMOD 0x80
157 /* Enable Response to Reselection */
158 #define LSI_SCID_RRE 0x60
160 #define LSI_CCNTL1_40BIT (LSI_CCNTL1_EN64TIBMV|LSI_CCNTL1_64TIMOD)
162 #define PHASE_DO 0
163 #define PHASE_DI 1
164 #define PHASE_CMD 2
165 #define PHASE_ST 3
166 #define PHASE_MO 6
167 #define PHASE_MI 7
168 #define PHASE_MASK 7
170 /* Maximum length of MSG IN data. */
171 #define LSI_MAX_MSGIN_LEN 8
173 /* Flag set if this is a tagged command. */
174 #define LSI_TAG_VALID (1 << 16)
176 typedef struct {
177 uint32_t tag;
178 uint32_t pending;
179 int out;
180 } lsi_queue;
182 typedef struct {
183 PCIDevice dev;
184 int mmio_io_addr;
185 int ram_io_addr;
186 uint32_t script_ram_base;
188 int carry; /* ??? Should this be an a visible register somewhere? */
189 int sense;
190 /* Action to take at the end of a MSG IN phase.
191 0 = COMMAND, 1 = disconnect, 2 = DATA OUT, 3 = DATA IN. */
192 int msg_action;
193 int msg_len;
194 uint8_t msg[LSI_MAX_MSGIN_LEN];
195 /* 0 if SCRIPTS are running or stopped.
196 * 1 if a Wait Reselect instruction has been issued.
197 * 2 if processing DMA from lsi_execute_script.
198 * 3 if a DMA operation is in progress. */
199 int waiting;
200 SCSIBus bus;
201 SCSIDevice *current_dev;
202 int current_lun;
203 /* The tag is a combination of the device ID and the SCSI tag. */
204 uint32_t current_tag;
205 uint32_t current_dma_len;
206 int command_complete;
207 uint8_t *dma_buf;
208 lsi_queue *queue;
209 int queue_len;
210 int active_commands;
212 uint32_t dsa;
213 uint32_t temp;
214 uint32_t dnad;
215 uint32_t dbc;
216 uint8_t istat0;
217 uint8_t istat1;
218 uint8_t dcmd;
219 uint8_t dstat;
220 uint8_t dien;
221 uint8_t sist0;
222 uint8_t sist1;
223 uint8_t sien0;
224 uint8_t sien1;
225 uint8_t mbox0;
226 uint8_t mbox1;
227 uint8_t dfifo;
228 uint8_t ctest2;
229 uint8_t ctest3;
230 uint8_t ctest4;
231 uint8_t ctest5;
232 uint8_t ccntl0;
233 uint8_t ccntl1;
234 uint32_t dsp;
235 uint32_t dsps;
236 uint8_t dmode;
237 uint8_t dcntl;
238 uint8_t scntl0;
239 uint8_t scntl1;
240 uint8_t scntl2;
241 uint8_t scntl3;
242 uint8_t sstat0;
243 uint8_t sstat1;
244 uint8_t scid;
245 uint8_t sxfer;
246 uint8_t socl;
247 uint8_t sdid;
248 uint8_t ssid;
249 uint8_t sfbr;
250 uint8_t stest1;
251 uint8_t stest2;
252 uint8_t stest3;
253 uint8_t sidl;
254 uint8_t stime0;
255 uint8_t respid0;
256 uint8_t respid1;
257 uint32_t mmrs;
258 uint32_t mmws;
259 uint32_t sfs;
260 uint32_t drs;
261 uint32_t sbms;
262 uint32_t dbms;
263 uint32_t dnad64;
264 uint32_t pmjad1;
265 uint32_t pmjad2;
266 uint32_t rbc;
267 uint32_t ua;
268 uint32_t ia;
269 uint32_t sbc;
270 uint32_t csbc;
271 uint32_t scratch[18]; /* SCRATCHA-SCRATCHR */
272 uint8_t sbr;
274 /* Script ram is stored as 32-bit words in host byteorder. */
275 uint32_t script_ram[2048];
276 } LSIState;
278 static inline int lsi_irq_on_rsl(LSIState *s)
280 return (s->sien0 & LSI_SIST0_RSL) && (s->scid & LSI_SCID_RRE);
283 static void lsi_soft_reset(LSIState *s)
285 DPRINTF("Reset\n");
286 s->carry = 0;
288 s->waiting = 0;
289 s->dsa = 0;
290 s->dnad = 0;
291 s->dbc = 0;
292 s->temp = 0;
293 memset(s->scratch, 0, sizeof(s->scratch));
294 s->istat0 = 0;
295 s->istat1 = 0;
296 s->dcmd = 0;
297 s->dstat = 0;
298 s->dien = 0;
299 s->sist0 = 0;
300 s->sist1 = 0;
301 s->sien0 = 0;
302 s->sien1 = 0;
303 s->mbox0 = 0;
304 s->mbox1 = 0;
305 s->dfifo = 0;
306 s->ctest2 = 0;
307 s->ctest3 = 0;
308 s->ctest4 = 0;
309 s->ctest5 = 0;
310 s->ccntl0 = 0;
311 s->ccntl1 = 0;
312 s->dsp = 0;
313 s->dsps = 0;
314 s->dmode = 0;
315 s->dcntl = 0;
316 s->scntl0 = 0xc0;
317 s->scntl1 = 0;
318 s->scntl2 = 0;
319 s->scntl3 = 0;
320 s->sstat0 = 0;
321 s->sstat1 = 0;
322 s->scid = 7;
323 s->sxfer = 0;
324 s->socl = 0;
325 s->stest1 = 0;
326 s->stest2 = 0;
327 s->stest3 = 0;
328 s->sidl = 0;
329 s->stime0 = 0;
330 s->respid0 = 0x80;
331 s->respid1 = 0;
332 s->mmrs = 0;
333 s->mmws = 0;
334 s->sfs = 0;
335 s->drs = 0;
336 s->sbms = 0;
337 s->dbms = 0;
338 s->dnad64 = 0;
339 s->pmjad1 = 0;
340 s->pmjad2 = 0;
341 s->rbc = 0;
342 s->ua = 0;
343 s->ia = 0;
344 s->sbc = 0;
345 s->csbc = 0;
346 s->sbr = 0;
349 static int lsi_dma_40bit(LSIState *s)
351 if ((s->ccntl1 & LSI_CCNTL1_40BIT) == LSI_CCNTL1_40BIT)
352 return 1;
353 return 0;
356 static int lsi_dma_ti64bit(LSIState *s)
358 if ((s->ccntl1 & LSI_CCNTL1_EN64TIBMV) == LSI_CCNTL1_EN64TIBMV)
359 return 1;
360 return 0;
363 static int lsi_dma_64bit(LSIState *s)
365 if ((s->ccntl1 & LSI_CCNTL1_EN64DBMV) == LSI_CCNTL1_EN64DBMV)
366 return 1;
367 return 0;
370 static uint8_t lsi_reg_readb(LSIState *s, int offset);
371 static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val);
372 static void lsi_execute_script(LSIState *s);
373 static void lsi_reselect(LSIState *s, uint32_t tag);
375 static inline uint32_t read_dword(LSIState *s, uint32_t addr)
377 uint32_t buf;
379 /* Optimize reading from SCRIPTS RAM. */
380 if ((addr & 0xffffe000) == s->script_ram_base) {
381 return s->script_ram[(addr & 0x1fff) >> 2];
383 cpu_physical_memory_read(addr, (uint8_t *)&buf, 4);
384 return cpu_to_le32(buf);
387 static void lsi_stop_script(LSIState *s)
389 s->istat1 &= ~LSI_ISTAT1_SRUN;
392 static void lsi_update_irq(LSIState *s)
394 int i;
395 int level;
396 static int last_level;
398 /* It's unclear whether the DIP/SIP bits should be cleared when the
399 Interrupt Status Registers are cleared or when istat0 is read.
400 We currently do the formwer, which seems to work. */
401 level = 0;
402 if (s->dstat) {
403 if (s->dstat & s->dien)
404 level = 1;
405 s->istat0 |= LSI_ISTAT0_DIP;
406 } else {
407 s->istat0 &= ~LSI_ISTAT0_DIP;
410 if (s->sist0 || s->sist1) {
411 if ((s->sist0 & s->sien0) || (s->sist1 & s->sien1))
412 level = 1;
413 s->istat0 |= LSI_ISTAT0_SIP;
414 } else {
415 s->istat0 &= ~LSI_ISTAT0_SIP;
417 if (s->istat0 & LSI_ISTAT0_INTF)
418 level = 1;
420 if (level != last_level) {
421 DPRINTF("Update IRQ level %d dstat %02x sist %02x%02x\n",
422 level, s->dstat, s->sist1, s->sist0);
423 last_level = level;
425 qemu_set_irq(s->dev.irq[0], level);
427 if (!level && lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON)) {
428 DPRINTF("Handled IRQs & disconnected, looking for pending "
429 "processes\n");
430 for (i = 0; i < s->active_commands; i++) {
431 if (s->queue[i].pending) {
432 lsi_reselect(s, s->queue[i].tag);
433 break;
439 /* Stop SCRIPTS execution and raise a SCSI interrupt. */
440 static void lsi_script_scsi_interrupt(LSIState *s, int stat0, int stat1)
442 uint32_t mask0;
443 uint32_t mask1;
445 DPRINTF("SCSI Interrupt 0x%02x%02x prev 0x%02x%02x\n",
446 stat1, stat0, s->sist1, s->sist0);
447 s->sist0 |= stat0;
448 s->sist1 |= stat1;
449 /* Stop processor on fatal or unmasked interrupt. As a special hack
450 we don't stop processing when raising STO. Instead continue
451 execution and stop at the next insn that accesses the SCSI bus. */
452 mask0 = s->sien0 | ~(LSI_SIST0_CMP | LSI_SIST0_SEL | LSI_SIST0_RSL);
453 mask1 = s->sien1 | ~(LSI_SIST1_GEN | LSI_SIST1_HTH);
454 mask1 &= ~LSI_SIST1_STO;
455 if (s->sist0 & mask0 || s->sist1 & mask1) {
456 lsi_stop_script(s);
458 lsi_update_irq(s);
461 /* Stop SCRIPTS execution and raise a DMA interrupt. */
462 static void lsi_script_dma_interrupt(LSIState *s, int stat)
464 DPRINTF("DMA Interrupt 0x%x prev 0x%x\n", stat, s->dstat);
465 s->dstat |= stat;
466 lsi_update_irq(s);
467 lsi_stop_script(s);
470 static inline void lsi_set_phase(LSIState *s, int phase)
472 s->sstat1 = (s->sstat1 & ~PHASE_MASK) | phase;
475 static void lsi_bad_phase(LSIState *s, int out, int new_phase)
477 /* Trigger a phase mismatch. */
478 if (s->ccntl0 & LSI_CCNTL0_ENPMJ) {
479 if ((s->ccntl0 & LSI_CCNTL0_PMJCTL) || out) {
480 s->dsp = s->pmjad1;
481 } else {
482 s->dsp = s->pmjad2;
484 DPRINTF("Data phase mismatch jump to %08x\n", s->dsp);
485 } else {
486 DPRINTF("Phase mismatch interrupt\n");
487 lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
488 lsi_stop_script(s);
490 lsi_set_phase(s, new_phase);
494 /* Resume SCRIPTS execution after a DMA operation. */
495 static void lsi_resume_script(LSIState *s)
497 if (s->waiting != 2) {
498 s->waiting = 0;
499 lsi_execute_script(s);
500 } else {
501 s->waiting = 0;
505 /* Initiate a SCSI layer data transfer. */
506 static void lsi_do_dma(LSIState *s, int out)
508 uint32_t count;
509 target_phys_addr_t addr;
511 if (!s->current_dma_len) {
512 /* Wait until data is available. */
513 DPRINTF("DMA no data available\n");
514 return;
517 count = s->dbc;
518 if (count > s->current_dma_len)
519 count = s->current_dma_len;
521 addr = s->dnad;
522 /* both 40 and Table Indirect 64-bit DMAs store upper bits in dnad64 */
523 if (lsi_dma_40bit(s) || lsi_dma_ti64bit(s))
524 addr |= ((uint64_t)s->dnad64 << 32);
525 else if (s->dbms)
526 addr |= ((uint64_t)s->dbms << 32);
527 else if (s->sbms)
528 addr |= ((uint64_t)s->sbms << 32);
530 DPRINTF("DMA addr=0x" TARGET_FMT_plx " len=%d\n", addr, count);
531 s->csbc += count;
532 s->dnad += count;
533 s->dbc -= count;
535 if (s->dma_buf == NULL) {
536 s->dma_buf = s->current_dev->info->get_buf(s->current_dev,
537 s->current_tag);
540 /* ??? Set SFBR to first data byte. */
541 if (out) {
542 cpu_physical_memory_read(addr, s->dma_buf, count);
543 } else {
544 cpu_physical_memory_write(addr, s->dma_buf, count);
546 s->current_dma_len -= count;
547 if (s->current_dma_len == 0) {
548 s->dma_buf = NULL;
549 if (out) {
550 /* Write the data. */
551 s->current_dev->info->write_data(s->current_dev, s->current_tag);
552 } else {
553 /* Request any remaining data. */
554 s->current_dev->info->read_data(s->current_dev, s->current_tag);
556 } else {
557 s->dma_buf += count;
558 lsi_resume_script(s);
563 /* Add a command to the queue. */
564 static void lsi_queue_command(LSIState *s)
566 lsi_queue *p;
568 DPRINTF("Queueing tag=0x%x\n", s->current_tag);
569 if (s->queue_len == s->active_commands) {
570 s->queue_len++;
571 s->queue = qemu_realloc(s->queue, s->queue_len * sizeof(lsi_queue));
573 p = &s->queue[s->active_commands++];
574 p->tag = s->current_tag;
575 p->pending = 0;
576 p->out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
579 /* Queue a byte for a MSG IN phase. */
580 static void lsi_add_msg_byte(LSIState *s, uint8_t data)
582 if (s->msg_len >= LSI_MAX_MSGIN_LEN) {
583 BADF("MSG IN data too long\n");
584 } else {
585 DPRINTF("MSG IN 0x%02x\n", data);
586 s->msg[s->msg_len++] = data;
590 /* Perform reselection to continue a command. */
591 static void lsi_reselect(LSIState *s, uint32_t tag)
593 lsi_queue *p;
594 int n;
595 int id;
597 p = NULL;
598 for (n = 0; n < s->active_commands; n++) {
599 p = &s->queue[n];
600 if (p->tag == tag)
601 break;
603 if (n == s->active_commands) {
604 BADF("Reselected non-existant command tag=0x%x\n", tag);
605 return;
607 id = (tag >> 8) & 0xf;
608 s->ssid = id | 0x80;
609 /* LSI53C700 Family Compatibility, see LSI53C895A 4-73 */
610 if (!s->dcntl & LSI_DCNTL_COM) {
611 s->sfbr = 1 << (id & 0x7);
613 DPRINTF("Reselected target %d\n", id);
614 s->current_dev = s->bus.devs[id];
615 s->current_tag = tag;
616 s->scntl1 |= LSI_SCNTL1_CON;
617 lsi_set_phase(s, PHASE_MI);
618 s->msg_action = p->out ? 2 : 3;
619 s->current_dma_len = p->pending;
620 s->dma_buf = NULL;
621 lsi_add_msg_byte(s, 0x80);
622 if (s->current_tag & LSI_TAG_VALID) {
623 lsi_add_msg_byte(s, 0x20);
624 lsi_add_msg_byte(s, tag & 0xff);
627 s->active_commands--;
628 if (n != s->active_commands) {
629 s->queue[n] = s->queue[s->active_commands];
632 if (lsi_irq_on_rsl(s)) {
633 lsi_script_scsi_interrupt(s, LSI_SIST0_RSL, 0);
637 /* Record that data is available for a queued command. Returns zero if
638 the device was reselected, nonzero if the IO is deferred. */
639 static int lsi_queue_tag(LSIState *s, uint32_t tag, uint32_t arg)
641 lsi_queue *p;
642 int i;
643 for (i = 0; i < s->active_commands; i++) {
644 p = &s->queue[i];
645 if (p->tag == tag) {
646 if (p->pending) {
647 BADF("Multiple IO pending for tag %d\n", tag);
649 p->pending = arg;
650 /* Reselect if waiting for it, or if reselection triggers an IRQ
651 and the bus is free.
652 Since no interrupt stacking is implemented in the emulation, it
653 is also required that there are no pending interrupts waiting
654 for service from the device driver. */
655 if (s->waiting == 1 ||
656 (lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON) &&
657 !(s->istat0 & (LSI_ISTAT0_SIP | LSI_ISTAT0_DIP)))) {
658 /* Reselect device. */
659 lsi_reselect(s, tag);
660 return 0;
661 } else {
662 DPRINTF("Queueing IO tag=0x%x\n", tag);
663 p->pending = arg;
664 return 1;
668 BADF("IO with unknown tag %d\n", tag);
669 return 1;
672 /* Callback to indicate that the SCSI layer has completed a transfer. */
673 static void lsi_command_complete(SCSIBus *bus, int reason, uint32_t tag,
674 uint32_t arg)
676 LSIState *s = DO_UPCAST(LSIState, dev.qdev, bus->qbus.parent);
677 int out;
679 out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
680 if (reason == SCSI_REASON_DONE) {
681 DPRINTF("Command complete sense=%d\n", (int)arg);
682 s->sense = arg;
683 s->command_complete = 2;
684 if (s->waiting && s->dbc != 0) {
685 /* Raise phase mismatch for short transfers. */
686 lsi_bad_phase(s, out, PHASE_ST);
687 } else {
688 lsi_set_phase(s, PHASE_ST);
690 lsi_resume_script(s);
691 return;
694 if (s->waiting == 1 || tag != s->current_tag ||
695 (lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON))) {
696 if (lsi_queue_tag(s, tag, arg))
697 return;
700 /* host adapter (re)connected */
701 DPRINTF("Data ready tag=0x%x len=%d\n", tag, arg);
702 s->current_dma_len = arg;
703 s->command_complete = 1;
704 if (!s->waiting)
705 return;
706 if (s->waiting == 1 || s->dbc == 0) {
707 lsi_resume_script(s);
708 } else {
709 lsi_do_dma(s, out);
713 static void lsi_do_command(LSIState *s)
715 uint8_t buf[16];
716 int n;
718 DPRINTF("Send command len=%d\n", s->dbc);
719 if (s->dbc > 16)
720 s->dbc = 16;
721 cpu_physical_memory_read(s->dnad, buf, s->dbc);
722 s->sfbr = buf[0];
723 s->command_complete = 0;
724 n = s->current_dev->info->send_command(s->current_dev, s->current_tag, buf,
725 s->current_lun);
726 if (n > 0) {
727 lsi_set_phase(s, PHASE_DI);
728 s->current_dev->info->read_data(s->current_dev, s->current_tag);
729 } else if (n < 0) {
730 lsi_set_phase(s, PHASE_DO);
731 s->current_dev->info->write_data(s->current_dev, s->current_tag);
734 if (!s->command_complete) {
735 if (n) {
736 /* Command did not complete immediately so disconnect. */
737 lsi_add_msg_byte(s, 2); /* SAVE DATA POINTER */
738 lsi_add_msg_byte(s, 4); /* DISCONNECT */
739 /* wait data */
740 lsi_set_phase(s, PHASE_MI);
741 s->msg_action = 1;
742 lsi_queue_command(s);
743 } else {
744 /* wait command complete */
745 lsi_set_phase(s, PHASE_DI);
750 static void lsi_do_status(LSIState *s)
752 uint8_t sense;
753 DPRINTF("Get status len=%d sense=%d\n", s->dbc, s->sense);
754 if (s->dbc != 1)
755 BADF("Bad Status move\n");
756 s->dbc = 1;
757 sense = s->sense;
758 s->sfbr = sense;
759 cpu_physical_memory_write(s->dnad, &sense, 1);
760 lsi_set_phase(s, PHASE_MI);
761 s->msg_action = 1;
762 lsi_add_msg_byte(s, 0); /* COMMAND COMPLETE */
765 static void lsi_disconnect(LSIState *s)
767 s->scntl1 &= ~LSI_SCNTL1_CON;
768 s->sstat1 &= ~PHASE_MASK;
771 static void lsi_do_msgin(LSIState *s)
773 int len;
774 DPRINTF("Message in len=%d/%d\n", s->dbc, s->msg_len);
775 s->sfbr = s->msg[0];
776 len = s->msg_len;
777 if (len > s->dbc)
778 len = s->dbc;
779 cpu_physical_memory_write(s->dnad, s->msg, len);
780 /* Linux drivers rely on the last byte being in the SIDL. */
781 s->sidl = s->msg[len - 1];
782 s->msg_len -= len;
783 if (s->msg_len) {
784 memmove(s->msg, s->msg + len, s->msg_len);
785 } else {
786 /* ??? Check if ATN (not yet implemented) is asserted and maybe
787 switch to PHASE_MO. */
788 switch (s->msg_action) {
789 case 0:
790 lsi_set_phase(s, PHASE_CMD);
791 break;
792 case 1:
793 lsi_disconnect(s);
794 break;
795 case 2:
796 lsi_set_phase(s, PHASE_DO);
797 break;
798 case 3:
799 lsi_set_phase(s, PHASE_DI);
800 break;
801 default:
802 abort();
807 /* Read the next byte during a MSGOUT phase. */
808 static uint8_t lsi_get_msgbyte(LSIState *s)
810 uint8_t data;
811 cpu_physical_memory_read(s->dnad, &data, 1);
812 s->dnad++;
813 s->dbc--;
814 return data;
817 static void lsi_do_msgout(LSIState *s)
819 uint8_t msg;
820 int len;
822 DPRINTF("MSG out len=%d\n", s->dbc);
823 while (s->dbc) {
824 msg = lsi_get_msgbyte(s);
825 s->sfbr = msg;
827 switch (msg) {
828 case 0x04:
829 DPRINTF("MSG: Disconnect\n");
830 lsi_disconnect(s);
831 break;
832 case 0x08:
833 DPRINTF("MSG: No Operation\n");
834 lsi_set_phase(s, PHASE_CMD);
835 break;
836 case 0x01:
837 len = lsi_get_msgbyte(s);
838 msg = lsi_get_msgbyte(s);
839 DPRINTF("Extended message 0x%x (len %d)\n", msg, len);
840 switch (msg) {
841 case 1:
842 DPRINTF("SDTR (ignored)\n");
843 s->dbc -= 2;
844 break;
845 case 3:
846 DPRINTF("WDTR (ignored)\n");
847 s->dbc -= 1;
848 break;
849 default:
850 goto bad;
852 break;
853 case 0x20: /* SIMPLE queue */
854 s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
855 DPRINTF("SIMPLE queue tag=0x%x\n", s->current_tag & 0xff);
856 break;
857 case 0x21: /* HEAD of queue */
858 BADF("HEAD queue not implemented\n");
859 s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
860 break;
861 case 0x22: /* ORDERED queue */
862 BADF("ORDERED queue not implemented\n");
863 s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
864 break;
865 default:
866 if ((msg & 0x80) == 0) {
867 goto bad;
869 s->current_lun = msg & 7;
870 DPRINTF("Select LUN %d\n", s->current_lun);
871 lsi_set_phase(s, PHASE_CMD);
872 break;
875 return;
876 bad:
877 BADF("Unimplemented message 0x%02x\n", msg);
878 lsi_set_phase(s, PHASE_MI);
879 lsi_add_msg_byte(s, 7); /* MESSAGE REJECT */
880 s->msg_action = 0;
883 /* Sign extend a 24-bit value. */
884 static inline int32_t sxt24(int32_t n)
886 return (n << 8) >> 8;
889 #define LSI_BUF_SIZE 4096
890 static void lsi_memcpy(LSIState *s, uint32_t dest, uint32_t src, int count)
892 int n;
893 uint8_t buf[LSI_BUF_SIZE];
895 DPRINTF("memcpy dest 0x%08x src 0x%08x count %d\n", dest, src, count);
896 while (count) {
897 n = (count > LSI_BUF_SIZE) ? LSI_BUF_SIZE : count;
898 cpu_physical_memory_read(src, buf, n);
899 cpu_physical_memory_write(dest, buf, n);
900 src += n;
901 dest += n;
902 count -= n;
906 static void lsi_wait_reselect(LSIState *s)
908 int i;
909 DPRINTF("Wait Reselect\n");
910 if (s->current_dma_len)
911 BADF("Reselect with pending DMA\n");
912 for (i = 0; i < s->active_commands; i++) {
913 if (s->queue[i].pending) {
914 lsi_reselect(s, s->queue[i].tag);
915 break;
918 if (s->current_dma_len == 0) {
919 s->waiting = 1;
923 static void lsi_execute_script(LSIState *s)
925 uint32_t insn;
926 uint32_t addr, addr_high;
927 int opcode;
928 int insn_processed = 0;
930 s->istat1 |= LSI_ISTAT1_SRUN;
931 again:
932 insn_processed++;
933 insn = read_dword(s, s->dsp);
934 if (!insn) {
935 /* If we receive an empty opcode increment the DSP by 4 bytes
936 instead of 8 and execute the next opcode at that location */
937 s->dsp += 4;
938 goto again;
940 addr = read_dword(s, s->dsp + 4);
941 addr_high = 0;
942 DPRINTF("SCRIPTS dsp=%08x opcode %08x arg %08x\n", s->dsp, insn, addr);
943 s->dsps = addr;
944 s->dcmd = insn >> 24;
945 s->dsp += 8;
946 switch (insn >> 30) {
947 case 0: /* Block move. */
948 if (s->sist1 & LSI_SIST1_STO) {
949 DPRINTF("Delayed select timeout\n");
950 lsi_stop_script(s);
951 break;
953 s->dbc = insn & 0xffffff;
954 s->rbc = s->dbc;
955 /* ??? Set ESA. */
956 s->ia = s->dsp - 8;
957 if (insn & (1 << 29)) {
958 /* Indirect addressing. */
959 addr = read_dword(s, addr);
960 } else if (insn & (1 << 28)) {
961 uint32_t buf[2];
962 int32_t offset;
963 /* Table indirect addressing. */
965 /* 32-bit Table indirect */
966 offset = sxt24(addr);
967 cpu_physical_memory_read(s->dsa + offset, (uint8_t *)buf, 8);
968 /* byte count is stored in bits 0:23 only */
969 s->dbc = cpu_to_le32(buf[0]) & 0xffffff;
970 s->rbc = s->dbc;
971 addr = cpu_to_le32(buf[1]);
973 /* 40-bit DMA, upper addr bits [39:32] stored in first DWORD of
974 * table, bits [31:24] */
975 if (lsi_dma_40bit(s))
976 addr_high = cpu_to_le32(buf[0]) >> 24;
977 else if (lsi_dma_ti64bit(s)) {
978 int selector = (cpu_to_le32(buf[0]) >> 24) & 0x1f;
979 switch (selector) {
980 case 0 ... 0x0f:
981 /* offset index into scratch registers since
982 * TI64 mode can use registers C to R */
983 addr_high = s->scratch[2 + selector];
984 break;
985 case 0x10:
986 addr_high = s->mmrs;
987 break;
988 case 0x11:
989 addr_high = s->mmws;
990 break;
991 case 0x12:
992 addr_high = s->sfs;
993 break;
994 case 0x13:
995 addr_high = s->drs;
996 break;
997 case 0x14:
998 addr_high = s->sbms;
999 break;
1000 case 0x15:
1001 addr_high = s->dbms;
1002 break;
1003 default:
1004 BADF("Illegal selector specified (0x%x > 0x15)"
1005 " for 64-bit DMA block move", selector);
1006 break;
1009 } else if (lsi_dma_64bit(s)) {
1010 /* fetch a 3rd dword if 64-bit direct move is enabled and
1011 only if we're not doing table indirect or indirect addressing */
1012 s->dbms = read_dword(s, s->dsp);
1013 s->dsp += 4;
1014 s->ia = s->dsp - 12;
1016 if ((s->sstat1 & PHASE_MASK) != ((insn >> 24) & 7)) {
1017 DPRINTF("Wrong phase got %d expected %d\n",
1018 s->sstat1 & PHASE_MASK, (insn >> 24) & 7);
1019 lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
1020 break;
1022 s->dnad = addr;
1023 s->dnad64 = addr_high;
1024 switch (s->sstat1 & 0x7) {
1025 case PHASE_DO:
1026 s->waiting = 2;
1027 lsi_do_dma(s, 1);
1028 if (s->waiting)
1029 s->waiting = 3;
1030 break;
1031 case PHASE_DI:
1032 s->waiting = 2;
1033 lsi_do_dma(s, 0);
1034 if (s->waiting)
1035 s->waiting = 3;
1036 break;
1037 case PHASE_CMD:
1038 lsi_do_command(s);
1039 break;
1040 case PHASE_ST:
1041 lsi_do_status(s);
1042 break;
1043 case PHASE_MO:
1044 lsi_do_msgout(s);
1045 break;
1046 case PHASE_MI:
1047 lsi_do_msgin(s);
1048 break;
1049 default:
1050 BADF("Unimplemented phase %d\n", s->sstat1 & PHASE_MASK);
1051 exit(1);
1053 s->dfifo = s->dbc & 0xff;
1054 s->ctest5 = (s->ctest5 & 0xfc) | ((s->dbc >> 8) & 3);
1055 s->sbc = s->dbc;
1056 s->rbc -= s->dbc;
1057 s->ua = addr + s->dbc;
1058 break;
1060 case 1: /* IO or Read/Write instruction. */
1061 opcode = (insn >> 27) & 7;
1062 if (opcode < 5) {
1063 uint32_t id;
1065 if (insn & (1 << 25)) {
1066 id = read_dword(s, s->dsa + sxt24(insn));
1067 } else {
1068 id = insn;
1070 id = (id >> 16) & 0xf;
1071 if (insn & (1 << 26)) {
1072 addr = s->dsp + sxt24(addr);
1074 s->dnad = addr;
1075 switch (opcode) {
1076 case 0: /* Select */
1077 s->sdid = id;
1078 if (s->scntl1 & LSI_SCNTL1_CON) {
1079 DPRINTF("Already reselected, jumping to alternative address\n");
1080 s->dsp = s->dnad;
1081 break;
1083 s->sstat0 |= LSI_SSTAT0_WOA;
1084 s->scntl1 &= ~LSI_SCNTL1_IARB;
1085 if (id >= LSI_MAX_DEVS || !s->bus.devs[id]) {
1086 DPRINTF("Selected absent target %d\n", id);
1087 lsi_script_scsi_interrupt(s, 0, LSI_SIST1_STO);
1088 lsi_disconnect(s);
1089 break;
1091 DPRINTF("Selected target %d%s\n",
1092 id, insn & (1 << 3) ? " ATN" : "");
1093 /* ??? Linux drivers compain when this is set. Maybe
1094 it only applies in low-level mode (unimplemented).
1095 lsi_script_scsi_interrupt(s, LSI_SIST0_CMP, 0); */
1096 s->current_dev = s->bus.devs[id];
1097 s->current_tag = id << 8;
1098 s->scntl1 |= LSI_SCNTL1_CON;
1099 if (insn & (1 << 3)) {
1100 s->socl |= LSI_SOCL_ATN;
1102 lsi_set_phase(s, PHASE_MO);
1103 break;
1104 case 1: /* Disconnect */
1105 DPRINTF("Wait Disconnect\n");
1106 s->scntl1 &= ~LSI_SCNTL1_CON;
1107 break;
1108 case 2: /* Wait Reselect */
1109 if (!lsi_irq_on_rsl(s)) {
1110 lsi_wait_reselect(s);
1112 break;
1113 case 3: /* Set */
1114 DPRINTF("Set%s%s%s%s\n",
1115 insn & (1 << 3) ? " ATN" : "",
1116 insn & (1 << 6) ? " ACK" : "",
1117 insn & (1 << 9) ? " TM" : "",
1118 insn & (1 << 10) ? " CC" : "");
1119 if (insn & (1 << 3)) {
1120 s->socl |= LSI_SOCL_ATN;
1121 lsi_set_phase(s, PHASE_MO);
1123 if (insn & (1 << 9)) {
1124 BADF("Target mode not implemented\n");
1125 exit(1);
1127 if (insn & (1 << 10))
1128 s->carry = 1;
1129 break;
1130 case 4: /* Clear */
1131 DPRINTF("Clear%s%s%s%s\n",
1132 insn & (1 << 3) ? " ATN" : "",
1133 insn & (1 << 6) ? " ACK" : "",
1134 insn & (1 << 9) ? " TM" : "",
1135 insn & (1 << 10) ? " CC" : "");
1136 if (insn & (1 << 3)) {
1137 s->socl &= ~LSI_SOCL_ATN;
1139 if (insn & (1 << 10))
1140 s->carry = 0;
1141 break;
1143 } else {
1144 uint8_t op0;
1145 uint8_t op1;
1146 uint8_t data8;
1147 int reg;
1148 int operator;
1149 #ifdef DEBUG_LSI
1150 static const char *opcode_names[3] =
1151 {"Write", "Read", "Read-Modify-Write"};
1152 static const char *operator_names[8] =
1153 {"MOV", "SHL", "OR", "XOR", "AND", "SHR", "ADD", "ADC"};
1154 #endif
1156 reg = ((insn >> 16) & 0x7f) | (insn & 0x80);
1157 data8 = (insn >> 8) & 0xff;
1158 opcode = (insn >> 27) & 7;
1159 operator = (insn >> 24) & 7;
1160 DPRINTF("%s reg 0x%x %s data8=0x%02x sfbr=0x%02x%s\n",
1161 opcode_names[opcode - 5], reg,
1162 operator_names[operator], data8, s->sfbr,
1163 (insn & (1 << 23)) ? " SFBR" : "");
1164 op0 = op1 = 0;
1165 switch (opcode) {
1166 case 5: /* From SFBR */
1167 op0 = s->sfbr;
1168 op1 = data8;
1169 break;
1170 case 6: /* To SFBR */
1171 if (operator)
1172 op0 = lsi_reg_readb(s, reg);
1173 op1 = data8;
1174 break;
1175 case 7: /* Read-modify-write */
1176 if (operator)
1177 op0 = lsi_reg_readb(s, reg);
1178 if (insn & (1 << 23)) {
1179 op1 = s->sfbr;
1180 } else {
1181 op1 = data8;
1183 break;
1186 switch (operator) {
1187 case 0: /* move */
1188 op0 = op1;
1189 break;
1190 case 1: /* Shift left */
1191 op1 = op0 >> 7;
1192 op0 = (op0 << 1) | s->carry;
1193 s->carry = op1;
1194 break;
1195 case 2: /* OR */
1196 op0 |= op1;
1197 break;
1198 case 3: /* XOR */
1199 op0 ^= op1;
1200 break;
1201 case 4: /* AND */
1202 op0 &= op1;
1203 break;
1204 case 5: /* SHR */
1205 op1 = op0 & 1;
1206 op0 = (op0 >> 1) | (s->carry << 7);
1207 s->carry = op1;
1208 break;
1209 case 6: /* ADD */
1210 op0 += op1;
1211 s->carry = op0 < op1;
1212 break;
1213 case 7: /* ADC */
1214 op0 += op1 + s->carry;
1215 if (s->carry)
1216 s->carry = op0 <= op1;
1217 else
1218 s->carry = op0 < op1;
1219 break;
1222 switch (opcode) {
1223 case 5: /* From SFBR */
1224 case 7: /* Read-modify-write */
1225 lsi_reg_writeb(s, reg, op0);
1226 break;
1227 case 6: /* To SFBR */
1228 s->sfbr = op0;
1229 break;
1232 break;
1234 case 2: /* Transfer Control. */
1236 int cond;
1237 int jmp;
1239 if ((insn & 0x002e0000) == 0) {
1240 DPRINTF("NOP\n");
1241 break;
1243 if (s->sist1 & LSI_SIST1_STO) {
1244 DPRINTF("Delayed select timeout\n");
1245 lsi_stop_script(s);
1246 break;
1248 cond = jmp = (insn & (1 << 19)) != 0;
1249 if (cond == jmp && (insn & (1 << 21))) {
1250 DPRINTF("Compare carry %d\n", s->carry == jmp);
1251 cond = s->carry != 0;
1253 if (cond == jmp && (insn & (1 << 17))) {
1254 DPRINTF("Compare phase %d %c= %d\n",
1255 (s->sstat1 & PHASE_MASK),
1256 jmp ? '=' : '!',
1257 ((insn >> 24) & 7));
1258 cond = (s->sstat1 & PHASE_MASK) == ((insn >> 24) & 7);
1260 if (cond == jmp && (insn & (1 << 18))) {
1261 uint8_t mask;
1263 mask = (~insn >> 8) & 0xff;
1264 DPRINTF("Compare data 0x%x & 0x%x %c= 0x%x\n",
1265 s->sfbr, mask, jmp ? '=' : '!', insn & mask);
1266 cond = (s->sfbr & mask) == (insn & mask);
1268 if (cond == jmp) {
1269 if (insn & (1 << 23)) {
1270 /* Relative address. */
1271 addr = s->dsp + sxt24(addr);
1273 switch ((insn >> 27) & 7) {
1274 case 0: /* Jump */
1275 DPRINTF("Jump to 0x%08x\n", addr);
1276 s->dsp = addr;
1277 break;
1278 case 1: /* Call */
1279 DPRINTF("Call 0x%08x\n", addr);
1280 s->temp = s->dsp;
1281 s->dsp = addr;
1282 break;
1283 case 2: /* Return */
1284 DPRINTF("Return to 0x%08x\n", s->temp);
1285 s->dsp = s->temp;
1286 break;
1287 case 3: /* Interrupt */
1288 DPRINTF("Interrupt 0x%08x\n", s->dsps);
1289 if ((insn & (1 << 20)) != 0) {
1290 s->istat0 |= LSI_ISTAT0_INTF;
1291 lsi_update_irq(s);
1292 } else {
1293 lsi_script_dma_interrupt(s, LSI_DSTAT_SIR);
1295 break;
1296 default:
1297 DPRINTF("Illegal transfer control\n");
1298 lsi_script_dma_interrupt(s, LSI_DSTAT_IID);
1299 break;
1301 } else {
1302 DPRINTF("Control condition failed\n");
1305 break;
1307 case 3:
1308 if ((insn & (1 << 29)) == 0) {
1309 /* Memory move. */
1310 uint32_t dest;
1311 /* ??? The docs imply the destination address is loaded into
1312 the TEMP register. However the Linux drivers rely on
1313 the value being presrved. */
1314 dest = read_dword(s, s->dsp);
1315 s->dsp += 4;
1316 lsi_memcpy(s, dest, addr, insn & 0xffffff);
1317 } else {
1318 uint8_t data[7];
1319 int reg;
1320 int n;
1321 int i;
1323 if (insn & (1 << 28)) {
1324 addr = s->dsa + sxt24(addr);
1326 n = (insn & 7);
1327 reg = (insn >> 16) & 0xff;
1328 if (insn & (1 << 24)) {
1329 cpu_physical_memory_read(addr, data, n);
1330 DPRINTF("Load reg 0x%x size %d addr 0x%08x = %08x\n", reg, n,
1331 addr, *(int *)data);
1332 for (i = 0; i < n; i++) {
1333 lsi_reg_writeb(s, reg + i, data[i]);
1335 } else {
1336 DPRINTF("Store reg 0x%x size %d addr 0x%08x\n", reg, n, addr);
1337 for (i = 0; i < n; i++) {
1338 data[i] = lsi_reg_readb(s, reg + i);
1340 cpu_physical_memory_write(addr, data, n);
1344 if (insn_processed > 10000 && !s->waiting) {
1345 /* Some windows drivers make the device spin waiting for a memory
1346 location to change. If we have been executed a lot of code then
1347 assume this is the case and force an unexpected device disconnect.
1348 This is apparently sufficient to beat the drivers into submission.
1350 if (!(s->sien0 & LSI_SIST0_UDC))
1351 fprintf(stderr, "inf. loop with UDC masked\n");
1352 lsi_script_scsi_interrupt(s, LSI_SIST0_UDC, 0);
1353 lsi_disconnect(s);
1354 } else if (s->istat1 & LSI_ISTAT1_SRUN && !s->waiting) {
1355 if (s->dcntl & LSI_DCNTL_SSM) {
1356 lsi_script_dma_interrupt(s, LSI_DSTAT_SSI);
1357 } else {
1358 goto again;
1361 DPRINTF("SCRIPTS execution stopped\n");
1364 static uint8_t lsi_reg_readb(LSIState *s, int offset)
1366 uint8_t tmp;
1367 #define CASE_GET_REG24(name, addr) \
1368 case addr: return s->name & 0xff; \
1369 case addr + 1: return (s->name >> 8) & 0xff; \
1370 case addr + 2: return (s->name >> 16) & 0xff;
1372 #define CASE_GET_REG32(name, addr) \
1373 case addr: return s->name & 0xff; \
1374 case addr + 1: return (s->name >> 8) & 0xff; \
1375 case addr + 2: return (s->name >> 16) & 0xff; \
1376 case addr + 3: return (s->name >> 24) & 0xff;
1378 #ifdef DEBUG_LSI_REG
1379 DPRINTF("Read reg %x\n", offset);
1380 #endif
1381 switch (offset) {
1382 case 0x00: /* SCNTL0 */
1383 return s->scntl0;
1384 case 0x01: /* SCNTL1 */
1385 return s->scntl1;
1386 case 0x02: /* SCNTL2 */
1387 return s->scntl2;
1388 case 0x03: /* SCNTL3 */
1389 return s->scntl3;
1390 case 0x04: /* SCID */
1391 return s->scid;
1392 case 0x05: /* SXFER */
1393 return s->sxfer;
1394 case 0x06: /* SDID */
1395 return s->sdid;
1396 case 0x07: /* GPREG0 */
1397 return 0x7f;
1398 case 0x08: /* Revision ID */
1399 return 0x00;
1400 case 0xa: /* SSID */
1401 return s->ssid;
1402 case 0xb: /* SBCL */
1403 /* ??? This is not correct. However it's (hopefully) only
1404 used for diagnostics, so should be ok. */
1405 return 0;
1406 case 0xc: /* DSTAT */
1407 tmp = s->dstat | 0x80;
1408 if ((s->istat0 & LSI_ISTAT0_INTF) == 0)
1409 s->dstat = 0;
1410 lsi_update_irq(s);
1411 return tmp;
1412 case 0x0d: /* SSTAT0 */
1413 return s->sstat0;
1414 case 0x0e: /* SSTAT1 */
1415 return s->sstat1;
1416 case 0x0f: /* SSTAT2 */
1417 return s->scntl1 & LSI_SCNTL1_CON ? 0 : 2;
1418 CASE_GET_REG32(dsa, 0x10)
1419 case 0x14: /* ISTAT0 */
1420 return s->istat0;
1421 case 0x15: /* ISTAT1 */
1422 return s->istat1;
1423 case 0x16: /* MBOX0 */
1424 return s->mbox0;
1425 case 0x17: /* MBOX1 */
1426 return s->mbox1;
1427 case 0x18: /* CTEST0 */
1428 return 0xff;
1429 case 0x19: /* CTEST1 */
1430 return 0;
1431 case 0x1a: /* CTEST2 */
1432 tmp = s->ctest2 | LSI_CTEST2_DACK | LSI_CTEST2_CM;
1433 if (s->istat0 & LSI_ISTAT0_SIGP) {
1434 s->istat0 &= ~LSI_ISTAT0_SIGP;
1435 tmp |= LSI_CTEST2_SIGP;
1437 return tmp;
1438 case 0x1b: /* CTEST3 */
1439 return s->ctest3;
1440 CASE_GET_REG32(temp, 0x1c)
1441 case 0x20: /* DFIFO */
1442 return 0;
1443 case 0x21: /* CTEST4 */
1444 return s->ctest4;
1445 case 0x22: /* CTEST5 */
1446 return s->ctest5;
1447 case 0x23: /* CTEST6 */
1448 return 0;
1449 CASE_GET_REG24(dbc, 0x24)
1450 case 0x27: /* DCMD */
1451 return s->dcmd;
1452 CASE_GET_REG32(dnad, 0x28)
1453 CASE_GET_REG32(dsp, 0x2c)
1454 CASE_GET_REG32(dsps, 0x30)
1455 CASE_GET_REG32(scratch[0], 0x34)
1456 case 0x38: /* DMODE */
1457 return s->dmode;
1458 case 0x39: /* DIEN */
1459 return s->dien;
1460 case 0x3a: /* SBR */
1461 return s->sbr;
1462 case 0x3b: /* DCNTL */
1463 return s->dcntl;
1464 case 0x40: /* SIEN0 */
1465 return s->sien0;
1466 case 0x41: /* SIEN1 */
1467 return s->sien1;
1468 case 0x42: /* SIST0 */
1469 tmp = s->sist0;
1470 s->sist0 = 0;
1471 lsi_update_irq(s);
1472 return tmp;
1473 case 0x43: /* SIST1 */
1474 tmp = s->sist1;
1475 s->sist1 = 0;
1476 lsi_update_irq(s);
1477 return tmp;
1478 case 0x46: /* MACNTL */
1479 return 0x0f;
1480 case 0x47: /* GPCNTL0 */
1481 return 0x0f;
1482 case 0x48: /* STIME0 */
1483 return s->stime0;
1484 case 0x4a: /* RESPID0 */
1485 return s->respid0;
1486 case 0x4b: /* RESPID1 */
1487 return s->respid1;
1488 case 0x4d: /* STEST1 */
1489 return s->stest1;
1490 case 0x4e: /* STEST2 */
1491 return s->stest2;
1492 case 0x4f: /* STEST3 */
1493 return s->stest3;
1494 case 0x50: /* SIDL */
1495 /* This is needed by the linux drivers. We currently only update it
1496 during the MSG IN phase. */
1497 return s->sidl;
1498 case 0x52: /* STEST4 */
1499 return 0xe0;
1500 case 0x56: /* CCNTL0 */
1501 return s->ccntl0;
1502 case 0x57: /* CCNTL1 */
1503 return s->ccntl1;
1504 case 0x58: /* SBDL */
1505 /* Some drivers peek at the data bus during the MSG IN phase. */
1506 if ((s->sstat1 & PHASE_MASK) == PHASE_MI)
1507 return s->msg[0];
1508 return 0;
1509 case 0x59: /* SBDL high */
1510 return 0;
1511 CASE_GET_REG32(mmrs, 0xa0)
1512 CASE_GET_REG32(mmws, 0xa4)
1513 CASE_GET_REG32(sfs, 0xa8)
1514 CASE_GET_REG32(drs, 0xac)
1515 CASE_GET_REG32(sbms, 0xb0)
1516 CASE_GET_REG32(dbms, 0xb4)
1517 CASE_GET_REG32(dnad64, 0xb8)
1518 CASE_GET_REG32(pmjad1, 0xc0)
1519 CASE_GET_REG32(pmjad2, 0xc4)
1520 CASE_GET_REG32(rbc, 0xc8)
1521 CASE_GET_REG32(ua, 0xcc)
1522 CASE_GET_REG32(ia, 0xd4)
1523 CASE_GET_REG32(sbc, 0xd8)
1524 CASE_GET_REG32(csbc, 0xdc)
1526 if (offset >= 0x5c && offset < 0xa0) {
1527 int n;
1528 int shift;
1529 n = (offset - 0x58) >> 2;
1530 shift = (offset & 3) * 8;
1531 return (s->scratch[n] >> shift) & 0xff;
1533 BADF("readb 0x%x\n", offset);
1534 exit(1);
1535 #undef CASE_GET_REG24
1536 #undef CASE_GET_REG32
1539 static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val)
1541 #define CASE_SET_REG24(name, addr) \
1542 case addr : s->name &= 0xffffff00; s->name |= val; break; \
1543 case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8; break; \
1544 case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break;
1546 #define CASE_SET_REG32(name, addr) \
1547 case addr : s->name &= 0xffffff00; s->name |= val; break; \
1548 case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8; break; \
1549 case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break; \
1550 case addr + 3: s->name &= 0x00ffffff; s->name |= val << 24; break;
1552 #ifdef DEBUG_LSI_REG
1553 DPRINTF("Write reg %x = %02x\n", offset, val);
1554 #endif
1555 switch (offset) {
1556 case 0x00: /* SCNTL0 */
1557 s->scntl0 = val;
1558 if (val & LSI_SCNTL0_START) {
1559 BADF("Start sequence not implemented\n");
1561 break;
1562 case 0x01: /* SCNTL1 */
1563 s->scntl1 = val & ~LSI_SCNTL1_SST;
1564 if (val & LSI_SCNTL1_IARB) {
1565 BADF("Immediate Arbritration not implemented\n");
1567 if (val & LSI_SCNTL1_RST) {
1568 s->sstat0 |= LSI_SSTAT0_RST;
1569 lsi_script_scsi_interrupt(s, LSI_SIST0_RST, 0);
1570 } else {
1571 s->sstat0 &= ~LSI_SSTAT0_RST;
1573 break;
1574 case 0x02: /* SCNTL2 */
1575 val &= ~(LSI_SCNTL2_WSR | LSI_SCNTL2_WSS);
1576 s->scntl2 = val;
1577 break;
1578 case 0x03: /* SCNTL3 */
1579 s->scntl3 = val;
1580 break;
1581 case 0x04: /* SCID */
1582 s->scid = val;
1583 break;
1584 case 0x05: /* SXFER */
1585 s->sxfer = val;
1586 break;
1587 case 0x06: /* SDID */
1588 if ((val & 0xf) != (s->ssid & 0xf))
1589 BADF("Destination ID does not match SSID\n");
1590 s->sdid = val & 0xf;
1591 break;
1592 case 0x07: /* GPREG0 */
1593 break;
1594 case 0x08: /* SFBR */
1595 /* The CPU is not allowed to write to this register. However the
1596 SCRIPTS register move instructions are. */
1597 s->sfbr = val;
1598 break;
1599 case 0x0a: case 0x0b:
1600 /* Openserver writes to these readonly registers on startup */
1601 return;
1602 case 0x0c: case 0x0d: case 0x0e: case 0x0f:
1603 /* Linux writes to these readonly registers on startup. */
1604 return;
1605 CASE_SET_REG32(dsa, 0x10)
1606 case 0x14: /* ISTAT0 */
1607 s->istat0 = (s->istat0 & 0x0f) | (val & 0xf0);
1608 if (val & LSI_ISTAT0_ABRT) {
1609 lsi_script_dma_interrupt(s, LSI_DSTAT_ABRT);
1611 if (val & LSI_ISTAT0_INTF) {
1612 s->istat0 &= ~LSI_ISTAT0_INTF;
1613 lsi_update_irq(s);
1615 if (s->waiting == 1 && val & LSI_ISTAT0_SIGP) {
1616 DPRINTF("Woken by SIGP\n");
1617 s->waiting = 0;
1618 s->dsp = s->dnad;
1619 lsi_execute_script(s);
1621 if (val & LSI_ISTAT0_SRST) {
1622 lsi_soft_reset(s);
1624 break;
1625 case 0x16: /* MBOX0 */
1626 s->mbox0 = val;
1627 break;
1628 case 0x17: /* MBOX1 */
1629 s->mbox1 = val;
1630 break;
1631 case 0x1a: /* CTEST2 */
1632 s->ctest2 = val & LSI_CTEST2_PCICIE;
1633 break;
1634 case 0x1b: /* CTEST3 */
1635 s->ctest3 = val & 0x0f;
1636 break;
1637 CASE_SET_REG32(temp, 0x1c)
1638 case 0x21: /* CTEST4 */
1639 if (val & 7) {
1640 BADF("Unimplemented CTEST4-FBL 0x%x\n", val);
1642 s->ctest4 = val;
1643 break;
1644 case 0x22: /* CTEST5 */
1645 if (val & (LSI_CTEST5_ADCK | LSI_CTEST5_BBCK)) {
1646 BADF("CTEST5 DMA increment not implemented\n");
1648 s->ctest5 = val;
1649 break;
1650 CASE_SET_REG24(dbc, 0x24)
1651 CASE_SET_REG32(dnad, 0x28)
1652 case 0x2c: /* DSP[0:7] */
1653 s->dsp &= 0xffffff00;
1654 s->dsp |= val;
1655 break;
1656 case 0x2d: /* DSP[8:15] */
1657 s->dsp &= 0xffff00ff;
1658 s->dsp |= val << 8;
1659 break;
1660 case 0x2e: /* DSP[16:23] */
1661 s->dsp &= 0xff00ffff;
1662 s->dsp |= val << 16;
1663 break;
1664 case 0x2f: /* DSP[24:31] */
1665 s->dsp &= 0x00ffffff;
1666 s->dsp |= val << 24;
1667 if ((s->dmode & LSI_DMODE_MAN) == 0
1668 && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1669 lsi_execute_script(s);
1670 break;
1671 CASE_SET_REG32(dsps, 0x30)
1672 CASE_SET_REG32(scratch[0], 0x34)
1673 case 0x38: /* DMODE */
1674 if (val & (LSI_DMODE_SIOM | LSI_DMODE_DIOM)) {
1675 BADF("IO mappings not implemented\n");
1677 s->dmode = val;
1678 break;
1679 case 0x39: /* DIEN */
1680 s->dien = val;
1681 lsi_update_irq(s);
1682 break;
1683 case 0x3a: /* SBR */
1684 s->sbr = val;
1685 break;
1686 case 0x3b: /* DCNTL */
1687 s->dcntl = val & ~(LSI_DCNTL_PFF | LSI_DCNTL_STD);
1688 if ((val & LSI_DCNTL_STD) && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1689 lsi_execute_script(s);
1690 break;
1691 case 0x40: /* SIEN0 */
1692 s->sien0 = val;
1693 lsi_update_irq(s);
1694 break;
1695 case 0x41: /* SIEN1 */
1696 s->sien1 = val;
1697 lsi_update_irq(s);
1698 break;
1699 case 0x47: /* GPCNTL0 */
1700 break;
1701 case 0x48: /* STIME0 */
1702 s->stime0 = val;
1703 break;
1704 case 0x49: /* STIME1 */
1705 if (val & 0xf) {
1706 DPRINTF("General purpose timer not implemented\n");
1707 /* ??? Raising the interrupt immediately seems to be sufficient
1708 to keep the FreeBSD driver happy. */
1709 lsi_script_scsi_interrupt(s, 0, LSI_SIST1_GEN);
1711 break;
1712 case 0x4a: /* RESPID0 */
1713 s->respid0 = val;
1714 break;
1715 case 0x4b: /* RESPID1 */
1716 s->respid1 = val;
1717 break;
1718 case 0x4d: /* STEST1 */
1719 s->stest1 = val;
1720 break;
1721 case 0x4e: /* STEST2 */
1722 if (val & 1) {
1723 BADF("Low level mode not implemented\n");
1725 s->stest2 = val;
1726 break;
1727 case 0x4f: /* STEST3 */
1728 if (val & 0x41) {
1729 BADF("SCSI FIFO test mode not implemented\n");
1731 s->stest3 = val;
1732 break;
1733 case 0x56: /* CCNTL0 */
1734 s->ccntl0 = val;
1735 break;
1736 case 0x57: /* CCNTL1 */
1737 s->ccntl1 = val;
1738 break;
1739 CASE_SET_REG32(mmrs, 0xa0)
1740 CASE_SET_REG32(mmws, 0xa4)
1741 CASE_SET_REG32(sfs, 0xa8)
1742 CASE_SET_REG32(drs, 0xac)
1743 CASE_SET_REG32(sbms, 0xb0)
1744 CASE_SET_REG32(dbms, 0xb4)
1745 CASE_SET_REG32(dnad64, 0xb8)
1746 CASE_SET_REG32(pmjad1, 0xc0)
1747 CASE_SET_REG32(pmjad2, 0xc4)
1748 CASE_SET_REG32(rbc, 0xc8)
1749 CASE_SET_REG32(ua, 0xcc)
1750 CASE_SET_REG32(ia, 0xd4)
1751 CASE_SET_REG32(sbc, 0xd8)
1752 CASE_SET_REG32(csbc, 0xdc)
1753 default:
1754 if (offset >= 0x5c && offset < 0xa0) {
1755 int n;
1756 int shift;
1757 n = (offset - 0x58) >> 2;
1758 shift = (offset & 3) * 8;
1759 s->scratch[n] &= ~(0xff << shift);
1760 s->scratch[n] |= (val & 0xff) << shift;
1761 } else {
1762 BADF("Unhandled writeb 0x%x = 0x%x\n", offset, val);
1765 #undef CASE_SET_REG24
1766 #undef CASE_SET_REG32
1769 static void lsi_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1771 LSIState *s = opaque;
1773 lsi_reg_writeb(s, addr & 0xff, val);
1776 static void lsi_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1778 LSIState *s = opaque;
1780 addr &= 0xff;
1781 lsi_reg_writeb(s, addr, val & 0xff);
1782 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1785 static void lsi_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1787 LSIState *s = opaque;
1789 addr &= 0xff;
1790 lsi_reg_writeb(s, addr, val & 0xff);
1791 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1792 lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
1793 lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
1796 static uint32_t lsi_mmio_readb(void *opaque, target_phys_addr_t addr)
1798 LSIState *s = opaque;
1800 return lsi_reg_readb(s, addr & 0xff);
1803 static uint32_t lsi_mmio_readw(void *opaque, target_phys_addr_t addr)
1805 LSIState *s = opaque;
1806 uint32_t val;
1808 addr &= 0xff;
1809 val = lsi_reg_readb(s, addr);
1810 val |= lsi_reg_readb(s, addr + 1) << 8;
1811 return val;
1814 static uint32_t lsi_mmio_readl(void *opaque, target_phys_addr_t addr)
1816 LSIState *s = opaque;
1817 uint32_t val;
1818 addr &= 0xff;
1819 val = lsi_reg_readb(s, addr);
1820 val |= lsi_reg_readb(s, addr + 1) << 8;
1821 val |= lsi_reg_readb(s, addr + 2) << 16;
1822 val |= lsi_reg_readb(s, addr + 3) << 24;
1823 return val;
1826 static CPUReadMemoryFunc * const lsi_mmio_readfn[3] = {
1827 lsi_mmio_readb,
1828 lsi_mmio_readw,
1829 lsi_mmio_readl,
1832 static CPUWriteMemoryFunc * const lsi_mmio_writefn[3] = {
1833 lsi_mmio_writeb,
1834 lsi_mmio_writew,
1835 lsi_mmio_writel,
1838 static void lsi_ram_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1840 LSIState *s = opaque;
1841 uint32_t newval;
1842 int shift;
1844 addr &= 0x1fff;
1845 newval = s->script_ram[addr >> 2];
1846 shift = (addr & 3) * 8;
1847 newval &= ~(0xff << shift);
1848 newval |= val << shift;
1849 s->script_ram[addr >> 2] = newval;
1852 static void lsi_ram_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1854 LSIState *s = opaque;
1855 uint32_t newval;
1857 addr &= 0x1fff;
1858 newval = s->script_ram[addr >> 2];
1859 if (addr & 2) {
1860 newval = (newval & 0xffff) | (val << 16);
1861 } else {
1862 newval = (newval & 0xffff0000) | val;
1864 s->script_ram[addr >> 2] = newval;
1868 static void lsi_ram_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1870 LSIState *s = opaque;
1872 addr &= 0x1fff;
1873 s->script_ram[addr >> 2] = val;
1876 static uint32_t lsi_ram_readb(void *opaque, target_phys_addr_t addr)
1878 LSIState *s = opaque;
1879 uint32_t val;
1881 addr &= 0x1fff;
1882 val = s->script_ram[addr >> 2];
1883 val >>= (addr & 3) * 8;
1884 return val & 0xff;
1887 static uint32_t lsi_ram_readw(void *opaque, target_phys_addr_t addr)
1889 LSIState *s = opaque;
1890 uint32_t val;
1892 addr &= 0x1fff;
1893 val = s->script_ram[addr >> 2];
1894 if (addr & 2)
1895 val >>= 16;
1896 return le16_to_cpu(val);
1899 static uint32_t lsi_ram_readl(void *opaque, target_phys_addr_t addr)
1901 LSIState *s = opaque;
1903 addr &= 0x1fff;
1904 return le32_to_cpu(s->script_ram[addr >> 2]);
1907 static CPUReadMemoryFunc * const lsi_ram_readfn[3] = {
1908 lsi_ram_readb,
1909 lsi_ram_readw,
1910 lsi_ram_readl,
1913 static CPUWriteMemoryFunc * const lsi_ram_writefn[3] = {
1914 lsi_ram_writeb,
1915 lsi_ram_writew,
1916 lsi_ram_writel,
1919 static uint32_t lsi_io_readb(void *opaque, uint32_t addr)
1921 LSIState *s = opaque;
1922 return lsi_reg_readb(s, addr & 0xff);
1925 static uint32_t lsi_io_readw(void *opaque, uint32_t addr)
1927 LSIState *s = opaque;
1928 uint32_t val;
1929 addr &= 0xff;
1930 val = lsi_reg_readb(s, addr);
1931 val |= lsi_reg_readb(s, addr + 1) << 8;
1932 return val;
1935 static uint32_t lsi_io_readl(void *opaque, uint32_t addr)
1937 LSIState *s = opaque;
1938 uint32_t val;
1939 addr &= 0xff;
1940 val = lsi_reg_readb(s, addr);
1941 val |= lsi_reg_readb(s, addr + 1) << 8;
1942 val |= lsi_reg_readb(s, addr + 2) << 16;
1943 val |= lsi_reg_readb(s, addr + 3) << 24;
1944 return val;
1947 static void lsi_io_writeb(void *opaque, uint32_t addr, uint32_t val)
1949 LSIState *s = opaque;
1950 lsi_reg_writeb(s, addr & 0xff, val);
1953 static void lsi_io_writew(void *opaque, uint32_t addr, uint32_t val)
1955 LSIState *s = opaque;
1956 addr &= 0xff;
1957 lsi_reg_writeb(s, addr, val & 0xff);
1958 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1961 static void lsi_io_writel(void *opaque, uint32_t addr, uint32_t val)
1963 LSIState *s = opaque;
1964 addr &= 0xff;
1965 lsi_reg_writeb(s, addr, val & 0xff);
1966 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1967 lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
1968 lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
1971 static void lsi_io_mapfunc(PCIDevice *pci_dev, int region_num,
1972 pcibus_t addr, pcibus_t size, int type)
1974 LSIState *s = DO_UPCAST(LSIState, dev, pci_dev);
1976 DPRINTF("Mapping IO at %08"FMT_PCIBUS"\n", addr);
1978 register_ioport_write(addr, 256, 1, lsi_io_writeb, s);
1979 register_ioport_read(addr, 256, 1, lsi_io_readb, s);
1980 register_ioport_write(addr, 256, 2, lsi_io_writew, s);
1981 register_ioport_read(addr, 256, 2, lsi_io_readw, s);
1982 register_ioport_write(addr, 256, 4, lsi_io_writel, s);
1983 register_ioport_read(addr, 256, 4, lsi_io_readl, s);
1986 static void lsi_ram_mapfunc(PCIDevice *pci_dev, int region_num,
1987 pcibus_t addr, pcibus_t size, int type)
1989 LSIState *s = DO_UPCAST(LSIState, dev, pci_dev);
1991 DPRINTF("Mapping ram at %08"FMT_PCIBUS"\n", addr);
1992 s->script_ram_base = addr;
1993 cpu_register_physical_memory(addr + 0, 0x2000, s->ram_io_addr);
1996 static void lsi_mmio_mapfunc(PCIDevice *pci_dev, int region_num,
1997 pcibus_t addr, pcibus_t size, int type)
1999 LSIState *s = DO_UPCAST(LSIState, dev, pci_dev);
2001 DPRINTF("Mapping registers at %08"FMT_PCIBUS"\n", addr);
2002 cpu_register_physical_memory(addr + 0, 0x400, s->mmio_io_addr);
2005 static void lsi_pre_save(void *opaque)
2007 LSIState *s = opaque;
2009 assert(s->dma_buf == NULL);
2010 assert(s->current_dma_len == 0);
2011 assert(s->active_commands == 0);
2014 static const VMStateDescription vmstate_lsi_scsi = {
2015 .name = "lsiscsi",
2016 .version_id = 0,
2017 .minimum_version_id = 0,
2018 .minimum_version_id_old = 0,
2019 .pre_save = lsi_pre_save,
2020 .fields = (VMStateField []) {
2021 VMSTATE_PCI_DEVICE(dev, LSIState),
2023 VMSTATE_INT32(carry, LSIState),
2024 VMSTATE_INT32(sense, LSIState),
2025 VMSTATE_INT32(msg_action, LSIState),
2026 VMSTATE_INT32(msg_len, LSIState),
2027 VMSTATE_BUFFER(msg, LSIState),
2028 VMSTATE_INT32(waiting, LSIState),
2030 VMSTATE_UINT32(dsa, LSIState),
2031 VMSTATE_UINT32(temp, LSIState),
2032 VMSTATE_UINT32(dnad, LSIState),
2033 VMSTATE_UINT32(dbc, LSIState),
2034 VMSTATE_UINT8(istat0, LSIState),
2035 VMSTATE_UINT8(istat1, LSIState),
2036 VMSTATE_UINT8(dcmd, LSIState),
2037 VMSTATE_UINT8(dstat, LSIState),
2038 VMSTATE_UINT8(dien, LSIState),
2039 VMSTATE_UINT8(sist0, LSIState),
2040 VMSTATE_UINT8(sist1, LSIState),
2041 VMSTATE_UINT8(sien0, LSIState),
2042 VMSTATE_UINT8(sien1, LSIState),
2043 VMSTATE_UINT8(mbox0, LSIState),
2044 VMSTATE_UINT8(mbox1, LSIState),
2045 VMSTATE_UINT8(dfifo, LSIState),
2046 VMSTATE_UINT8(ctest2, LSIState),
2047 VMSTATE_UINT8(ctest3, LSIState),
2048 VMSTATE_UINT8(ctest4, LSIState),
2049 VMSTATE_UINT8(ctest5, LSIState),
2050 VMSTATE_UINT8(ccntl0, LSIState),
2051 VMSTATE_UINT8(ccntl1, LSIState),
2052 VMSTATE_UINT32(dsp, LSIState),
2053 VMSTATE_UINT32(dsps, LSIState),
2054 VMSTATE_UINT8(dmode, LSIState),
2055 VMSTATE_UINT8(dcntl, LSIState),
2056 VMSTATE_UINT8(scntl0, LSIState),
2057 VMSTATE_UINT8(scntl1, LSIState),
2058 VMSTATE_UINT8(scntl2, LSIState),
2059 VMSTATE_UINT8(scntl3, LSIState),
2060 VMSTATE_UINT8(sstat0, LSIState),
2061 VMSTATE_UINT8(sstat1, LSIState),
2062 VMSTATE_UINT8(scid, LSIState),
2063 VMSTATE_UINT8(sxfer, LSIState),
2064 VMSTATE_UINT8(socl, LSIState),
2065 VMSTATE_UINT8(sdid, LSIState),
2066 VMSTATE_UINT8(ssid, LSIState),
2067 VMSTATE_UINT8(sfbr, LSIState),
2068 VMSTATE_UINT8(stest1, LSIState),
2069 VMSTATE_UINT8(stest2, LSIState),
2070 VMSTATE_UINT8(stest3, LSIState),
2071 VMSTATE_UINT8(sidl, LSIState),
2072 VMSTATE_UINT8(stime0, LSIState),
2073 VMSTATE_UINT8(respid0, LSIState),
2074 VMSTATE_UINT8(respid1, LSIState),
2075 VMSTATE_UINT32(mmrs, LSIState),
2076 VMSTATE_UINT32(mmws, LSIState),
2077 VMSTATE_UINT32(sfs, LSIState),
2078 VMSTATE_UINT32(drs, LSIState),
2079 VMSTATE_UINT32(sbms, LSIState),
2080 VMSTATE_UINT32(dbms, LSIState),
2081 VMSTATE_UINT32(dnad64, LSIState),
2082 VMSTATE_UINT32(pmjad1, LSIState),
2083 VMSTATE_UINT32(pmjad2, LSIState),
2084 VMSTATE_UINT32(rbc, LSIState),
2085 VMSTATE_UINT32(ua, LSIState),
2086 VMSTATE_UINT32(ia, LSIState),
2087 VMSTATE_UINT32(sbc, LSIState),
2088 VMSTATE_UINT32(csbc, LSIState),
2089 VMSTATE_BUFFER_UNSAFE(scratch, LSIState, 0, 18 * sizeof(uint32_t)),
2090 VMSTATE_UINT8(sbr, LSIState),
2092 VMSTATE_BUFFER_UNSAFE(script_ram, LSIState, 0, 2048 * sizeof(uint32_t)),
2093 VMSTATE_END_OF_LIST()
2097 static int lsi_scsi_uninit(PCIDevice *d)
2099 LSIState *s = DO_UPCAST(LSIState, dev, d);
2101 cpu_unregister_io_memory(s->mmio_io_addr);
2102 cpu_unregister_io_memory(s->ram_io_addr);
2104 qemu_free(s->queue);
2106 return 0;
2109 static int lsi_scsi_init(PCIDevice *dev)
2111 LSIState *s = DO_UPCAST(LSIState, dev, dev);
2112 uint8_t *pci_conf;
2114 pci_conf = s->dev.config;
2116 /* PCI Vendor ID (word) */
2117 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_LSI_LOGIC);
2118 /* PCI device ID (word) */
2119 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_LSI_53C895A);
2120 /* PCI base class code */
2121 pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_SCSI);
2122 /* PCI subsystem ID */
2123 pci_conf[0x2e] = 0x00;
2124 pci_conf[0x2f] = 0x10;
2125 /* PCI latency timer = 255 */
2126 pci_conf[0x0d] = 0xff;
2127 /* Interrupt pin 1 */
2128 pci_conf[0x3d] = 0x01;
2130 s->mmio_io_addr = cpu_register_io_memory(lsi_mmio_readfn,
2131 lsi_mmio_writefn, s);
2132 s->ram_io_addr = cpu_register_io_memory(lsi_ram_readfn,
2133 lsi_ram_writefn, s);
2135 pci_register_bar((struct PCIDevice *)s, 0, 256,
2136 PCI_BASE_ADDRESS_SPACE_IO, lsi_io_mapfunc);
2137 pci_register_bar((struct PCIDevice *)s, 1, 0x400,
2138 PCI_BASE_ADDRESS_SPACE_MEMORY, lsi_mmio_mapfunc);
2139 pci_register_bar((struct PCIDevice *)s, 2, 0x2000,
2140 PCI_BASE_ADDRESS_SPACE_MEMORY, lsi_ram_mapfunc);
2141 s->queue = qemu_malloc(sizeof(lsi_queue));
2142 s->queue_len = 1;
2143 s->active_commands = 0;
2145 lsi_soft_reset(s);
2147 scsi_bus_new(&s->bus, &dev->qdev, 1, LSI_MAX_DEVS, lsi_command_complete);
2148 if (!dev->qdev.hotplugged) {
2149 scsi_bus_legacy_handle_cmdline(&s->bus);
2151 return 0;
2154 static PCIDeviceInfo lsi_info = {
2155 .qdev.name = "lsi53c895a",
2156 .qdev.alias = "lsi",
2157 .qdev.size = sizeof(LSIState),
2158 .qdev.vmsd = &vmstate_lsi_scsi,
2159 .init = lsi_scsi_init,
2160 .exit = lsi_scsi_uninit,
2163 static void lsi53c895a_register_devices(void)
2165 pci_qdev_register(&lsi_info);
2168 device_init(lsi53c895a_register_devices);