migration: Define VMSTATE_INSTANCE_ID_ANY
[qemu/kevin.git] / migration / ram.c
blobd0940387d1a3a66d53cbab9ff6d74361508c2067
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
29 #include "qemu/osdep.h"
30 #include "cpu.h"
31 #include <zlib.h>
32 #include "qemu/cutils.h"
33 #include "qemu/bitops.h"
34 #include "qemu/bitmap.h"
35 #include "qemu/main-loop.h"
36 #include "xbzrle.h"
37 #include "ram.h"
38 #include "migration.h"
39 #include "socket.h"
40 #include "migration/register.h"
41 #include "migration/misc.h"
42 #include "qemu-file.h"
43 #include "postcopy-ram.h"
44 #include "page_cache.h"
45 #include "qemu/error-report.h"
46 #include "qapi/error.h"
47 #include "qapi/qapi-events-migration.h"
48 #include "qapi/qmp/qerror.h"
49 #include "trace.h"
50 #include "exec/ram_addr.h"
51 #include "exec/target_page.h"
52 #include "qemu/rcu_queue.h"
53 #include "migration/colo.h"
54 #include "block.h"
55 #include "sysemu/sysemu.h"
56 #include "qemu/uuid.h"
57 #include "savevm.h"
58 #include "qemu/iov.h"
60 /***********************************************************/
61 /* ram save/restore */
63 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
64 * worked for pages that where filled with the same char. We switched
65 * it to only search for the zero value. And to avoid confusion with
66 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
69 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
70 #define RAM_SAVE_FLAG_ZERO 0x02
71 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
72 #define RAM_SAVE_FLAG_PAGE 0x08
73 #define RAM_SAVE_FLAG_EOS 0x10
74 #define RAM_SAVE_FLAG_CONTINUE 0x20
75 #define RAM_SAVE_FLAG_XBZRLE 0x40
76 /* 0x80 is reserved in migration.h start with 0x100 next */
77 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
79 static inline bool is_zero_range(uint8_t *p, uint64_t size)
81 return buffer_is_zero(p, size);
84 XBZRLECacheStats xbzrle_counters;
86 /* struct contains XBZRLE cache and a static page
87 used by the compression */
88 static struct {
89 /* buffer used for XBZRLE encoding */
90 uint8_t *encoded_buf;
91 /* buffer for storing page content */
92 uint8_t *current_buf;
93 /* Cache for XBZRLE, Protected by lock. */
94 PageCache *cache;
95 QemuMutex lock;
96 /* it will store a page full of zeros */
97 uint8_t *zero_target_page;
98 /* buffer used for XBZRLE decoding */
99 uint8_t *decoded_buf;
100 } XBZRLE;
102 static void XBZRLE_cache_lock(void)
104 if (migrate_use_xbzrle())
105 qemu_mutex_lock(&XBZRLE.lock);
108 static void XBZRLE_cache_unlock(void)
110 if (migrate_use_xbzrle())
111 qemu_mutex_unlock(&XBZRLE.lock);
115 * xbzrle_cache_resize: resize the xbzrle cache
117 * This function is called from qmp_migrate_set_cache_size in main
118 * thread, possibly while a migration is in progress. A running
119 * migration may be using the cache and might finish during this call,
120 * hence changes to the cache are protected by XBZRLE.lock().
122 * Returns 0 for success or -1 for error
124 * @new_size: new cache size
125 * @errp: set *errp if the check failed, with reason
127 int xbzrle_cache_resize(int64_t new_size, Error **errp)
129 PageCache *new_cache;
130 int64_t ret = 0;
132 /* Check for truncation */
133 if (new_size != (size_t)new_size) {
134 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
135 "exceeding address space");
136 return -1;
139 if (new_size == migrate_xbzrle_cache_size()) {
140 /* nothing to do */
141 return 0;
144 XBZRLE_cache_lock();
146 if (XBZRLE.cache != NULL) {
147 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
148 if (!new_cache) {
149 ret = -1;
150 goto out;
153 cache_fini(XBZRLE.cache);
154 XBZRLE.cache = new_cache;
156 out:
157 XBZRLE_cache_unlock();
158 return ret;
161 static bool ramblock_is_ignored(RAMBlock *block)
163 return !qemu_ram_is_migratable(block) ||
164 (migrate_ignore_shared() && qemu_ram_is_shared(block));
167 /* Should be holding either ram_list.mutex, or the RCU lock. */
168 #define RAMBLOCK_FOREACH_NOT_IGNORED(block) \
169 INTERNAL_RAMBLOCK_FOREACH(block) \
170 if (ramblock_is_ignored(block)) {} else
172 #define RAMBLOCK_FOREACH_MIGRATABLE(block) \
173 INTERNAL_RAMBLOCK_FOREACH(block) \
174 if (!qemu_ram_is_migratable(block)) {} else
176 #undef RAMBLOCK_FOREACH
178 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
180 RAMBlock *block;
181 int ret = 0;
183 RCU_READ_LOCK_GUARD();
185 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
186 ret = func(block, opaque);
187 if (ret) {
188 break;
191 return ret;
194 static void ramblock_recv_map_init(void)
196 RAMBlock *rb;
198 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
199 assert(!rb->receivedmap);
200 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
204 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
206 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
207 rb->receivedmap);
210 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
212 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
215 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
217 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
220 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
221 size_t nr)
223 bitmap_set_atomic(rb->receivedmap,
224 ramblock_recv_bitmap_offset(host_addr, rb),
225 nr);
228 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
231 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
233 * Returns >0 if success with sent bytes, or <0 if error.
235 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
236 const char *block_name)
238 RAMBlock *block = qemu_ram_block_by_name(block_name);
239 unsigned long *le_bitmap, nbits;
240 uint64_t size;
242 if (!block) {
243 error_report("%s: invalid block name: %s", __func__, block_name);
244 return -1;
247 nbits = block->used_length >> TARGET_PAGE_BITS;
250 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
251 * machines we may need 4 more bytes for padding (see below
252 * comment). So extend it a bit before hand.
254 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
257 * Always use little endian when sending the bitmap. This is
258 * required that when source and destination VMs are not using the
259 * same endianess. (Note: big endian won't work.)
261 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
263 /* Size of the bitmap, in bytes */
264 size = DIV_ROUND_UP(nbits, 8);
267 * size is always aligned to 8 bytes for 64bit machines, but it
268 * may not be true for 32bit machines. We need this padding to
269 * make sure the migration can survive even between 32bit and
270 * 64bit machines.
272 size = ROUND_UP(size, 8);
274 qemu_put_be64(file, size);
275 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
277 * Mark as an end, in case the middle part is screwed up due to
278 * some "misterious" reason.
280 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
281 qemu_fflush(file);
283 g_free(le_bitmap);
285 if (qemu_file_get_error(file)) {
286 return qemu_file_get_error(file);
289 return size + sizeof(size);
293 * An outstanding page request, on the source, having been received
294 * and queued
296 struct RAMSrcPageRequest {
297 RAMBlock *rb;
298 hwaddr offset;
299 hwaddr len;
301 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
304 /* State of RAM for migration */
305 struct RAMState {
306 /* QEMUFile used for this migration */
307 QEMUFile *f;
308 /* Last block that we have visited searching for dirty pages */
309 RAMBlock *last_seen_block;
310 /* Last block from where we have sent data */
311 RAMBlock *last_sent_block;
312 /* Last dirty target page we have sent */
313 ram_addr_t last_page;
314 /* last ram version we have seen */
315 uint32_t last_version;
316 /* We are in the first round */
317 bool ram_bulk_stage;
318 /* The free page optimization is enabled */
319 bool fpo_enabled;
320 /* How many times we have dirty too many pages */
321 int dirty_rate_high_cnt;
322 /* these variables are used for bitmap sync */
323 /* last time we did a full bitmap_sync */
324 int64_t time_last_bitmap_sync;
325 /* bytes transferred at start_time */
326 uint64_t bytes_xfer_prev;
327 /* number of dirty pages since start_time */
328 uint64_t num_dirty_pages_period;
329 /* xbzrle misses since the beginning of the period */
330 uint64_t xbzrle_cache_miss_prev;
332 /* compression statistics since the beginning of the period */
333 /* amount of count that no free thread to compress data */
334 uint64_t compress_thread_busy_prev;
335 /* amount bytes after compression */
336 uint64_t compressed_size_prev;
337 /* amount of compressed pages */
338 uint64_t compress_pages_prev;
340 /* total handled target pages at the beginning of period */
341 uint64_t target_page_count_prev;
342 /* total handled target pages since start */
343 uint64_t target_page_count;
344 /* number of dirty bits in the bitmap */
345 uint64_t migration_dirty_pages;
346 /* Protects modification of the bitmap and migration dirty pages */
347 QemuMutex bitmap_mutex;
348 /* The RAMBlock used in the last src_page_requests */
349 RAMBlock *last_req_rb;
350 /* Queue of outstanding page requests from the destination */
351 QemuMutex src_page_req_mutex;
352 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
354 typedef struct RAMState RAMState;
356 static RAMState *ram_state;
358 static NotifierWithReturnList precopy_notifier_list;
360 void precopy_infrastructure_init(void)
362 notifier_with_return_list_init(&precopy_notifier_list);
365 void precopy_add_notifier(NotifierWithReturn *n)
367 notifier_with_return_list_add(&precopy_notifier_list, n);
370 void precopy_remove_notifier(NotifierWithReturn *n)
372 notifier_with_return_remove(n);
375 int precopy_notify(PrecopyNotifyReason reason, Error **errp)
377 PrecopyNotifyData pnd;
378 pnd.reason = reason;
379 pnd.errp = errp;
381 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd);
384 void precopy_enable_free_page_optimization(void)
386 if (!ram_state) {
387 return;
390 ram_state->fpo_enabled = true;
393 uint64_t ram_bytes_remaining(void)
395 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
399 MigrationStats ram_counters;
401 /* used by the search for pages to send */
402 struct PageSearchStatus {
403 /* Current block being searched */
404 RAMBlock *block;
405 /* Current page to search from */
406 unsigned long page;
407 /* Set once we wrap around */
408 bool complete_round;
410 typedef struct PageSearchStatus PageSearchStatus;
412 CompressionStats compression_counters;
414 struct CompressParam {
415 bool done;
416 bool quit;
417 bool zero_page;
418 QEMUFile *file;
419 QemuMutex mutex;
420 QemuCond cond;
421 RAMBlock *block;
422 ram_addr_t offset;
424 /* internally used fields */
425 z_stream stream;
426 uint8_t *originbuf;
428 typedef struct CompressParam CompressParam;
430 struct DecompressParam {
431 bool done;
432 bool quit;
433 QemuMutex mutex;
434 QemuCond cond;
435 void *des;
436 uint8_t *compbuf;
437 int len;
438 z_stream stream;
440 typedef struct DecompressParam DecompressParam;
442 static CompressParam *comp_param;
443 static QemuThread *compress_threads;
444 /* comp_done_cond is used to wake up the migration thread when
445 * one of the compression threads has finished the compression.
446 * comp_done_lock is used to co-work with comp_done_cond.
448 static QemuMutex comp_done_lock;
449 static QemuCond comp_done_cond;
450 /* The empty QEMUFileOps will be used by file in CompressParam */
451 static const QEMUFileOps empty_ops = { };
453 static QEMUFile *decomp_file;
454 static DecompressParam *decomp_param;
455 static QemuThread *decompress_threads;
456 static QemuMutex decomp_done_lock;
457 static QemuCond decomp_done_cond;
459 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
460 ram_addr_t offset, uint8_t *source_buf);
462 static void *do_data_compress(void *opaque)
464 CompressParam *param = opaque;
465 RAMBlock *block;
466 ram_addr_t offset;
467 bool zero_page;
469 qemu_mutex_lock(&param->mutex);
470 while (!param->quit) {
471 if (param->block) {
472 block = param->block;
473 offset = param->offset;
474 param->block = NULL;
475 qemu_mutex_unlock(&param->mutex);
477 zero_page = do_compress_ram_page(param->file, &param->stream,
478 block, offset, param->originbuf);
480 qemu_mutex_lock(&comp_done_lock);
481 param->done = true;
482 param->zero_page = zero_page;
483 qemu_cond_signal(&comp_done_cond);
484 qemu_mutex_unlock(&comp_done_lock);
486 qemu_mutex_lock(&param->mutex);
487 } else {
488 qemu_cond_wait(&param->cond, &param->mutex);
491 qemu_mutex_unlock(&param->mutex);
493 return NULL;
496 static void compress_threads_save_cleanup(void)
498 int i, thread_count;
500 if (!migrate_use_compression() || !comp_param) {
501 return;
504 thread_count = migrate_compress_threads();
505 for (i = 0; i < thread_count; i++) {
507 * we use it as a indicator which shows if the thread is
508 * properly init'd or not
510 if (!comp_param[i].file) {
511 break;
514 qemu_mutex_lock(&comp_param[i].mutex);
515 comp_param[i].quit = true;
516 qemu_cond_signal(&comp_param[i].cond);
517 qemu_mutex_unlock(&comp_param[i].mutex);
519 qemu_thread_join(compress_threads + i);
520 qemu_mutex_destroy(&comp_param[i].mutex);
521 qemu_cond_destroy(&comp_param[i].cond);
522 deflateEnd(&comp_param[i].stream);
523 g_free(comp_param[i].originbuf);
524 qemu_fclose(comp_param[i].file);
525 comp_param[i].file = NULL;
527 qemu_mutex_destroy(&comp_done_lock);
528 qemu_cond_destroy(&comp_done_cond);
529 g_free(compress_threads);
530 g_free(comp_param);
531 compress_threads = NULL;
532 comp_param = NULL;
535 static int compress_threads_save_setup(void)
537 int i, thread_count;
539 if (!migrate_use_compression()) {
540 return 0;
542 thread_count = migrate_compress_threads();
543 compress_threads = g_new0(QemuThread, thread_count);
544 comp_param = g_new0(CompressParam, thread_count);
545 qemu_cond_init(&comp_done_cond);
546 qemu_mutex_init(&comp_done_lock);
547 for (i = 0; i < thread_count; i++) {
548 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE);
549 if (!comp_param[i].originbuf) {
550 goto exit;
553 if (deflateInit(&comp_param[i].stream,
554 migrate_compress_level()) != Z_OK) {
555 g_free(comp_param[i].originbuf);
556 goto exit;
559 /* comp_param[i].file is just used as a dummy buffer to save data,
560 * set its ops to empty.
562 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
563 comp_param[i].done = true;
564 comp_param[i].quit = false;
565 qemu_mutex_init(&comp_param[i].mutex);
566 qemu_cond_init(&comp_param[i].cond);
567 qemu_thread_create(compress_threads + i, "compress",
568 do_data_compress, comp_param + i,
569 QEMU_THREAD_JOINABLE);
571 return 0;
573 exit:
574 compress_threads_save_cleanup();
575 return -1;
578 /* Multiple fd's */
580 #define MULTIFD_MAGIC 0x11223344U
581 #define MULTIFD_VERSION 1
583 #define MULTIFD_FLAG_SYNC (1 << 0)
585 /* This value needs to be a multiple of qemu_target_page_size() */
586 #define MULTIFD_PACKET_SIZE (512 * 1024)
588 typedef struct {
589 uint32_t magic;
590 uint32_t version;
591 unsigned char uuid[16]; /* QemuUUID */
592 uint8_t id;
593 uint8_t unused1[7]; /* Reserved for future use */
594 uint64_t unused2[4]; /* Reserved for future use */
595 } __attribute__((packed)) MultiFDInit_t;
597 typedef struct {
598 uint32_t magic;
599 uint32_t version;
600 uint32_t flags;
601 /* maximum number of allocated pages */
602 uint32_t pages_alloc;
603 uint32_t pages_used;
604 /* size of the next packet that contains pages */
605 uint32_t next_packet_size;
606 uint64_t packet_num;
607 uint64_t unused[4]; /* Reserved for future use */
608 char ramblock[256];
609 uint64_t offset[];
610 } __attribute__((packed)) MultiFDPacket_t;
612 typedef struct {
613 /* number of used pages */
614 uint32_t used;
615 /* number of allocated pages */
616 uint32_t allocated;
617 /* global number of generated multifd packets */
618 uint64_t packet_num;
619 /* offset of each page */
620 ram_addr_t *offset;
621 /* pointer to each page */
622 struct iovec *iov;
623 RAMBlock *block;
624 } MultiFDPages_t;
626 typedef struct {
627 /* this fields are not changed once the thread is created */
628 /* channel number */
629 uint8_t id;
630 /* channel thread name */
631 char *name;
632 /* channel thread id */
633 QemuThread thread;
634 /* communication channel */
635 QIOChannel *c;
636 /* sem where to wait for more work */
637 QemuSemaphore sem;
638 /* this mutex protects the following parameters */
639 QemuMutex mutex;
640 /* is this channel thread running */
641 bool running;
642 /* should this thread finish */
643 bool quit;
644 /* thread has work to do */
645 int pending_job;
646 /* array of pages to sent */
647 MultiFDPages_t *pages;
648 /* packet allocated len */
649 uint32_t packet_len;
650 /* pointer to the packet */
651 MultiFDPacket_t *packet;
652 /* multifd flags for each packet */
653 uint32_t flags;
654 /* size of the next packet that contains pages */
655 uint32_t next_packet_size;
656 /* global number of generated multifd packets */
657 uint64_t packet_num;
658 /* thread local variables */
659 /* packets sent through this channel */
660 uint64_t num_packets;
661 /* pages sent through this channel */
662 uint64_t num_pages;
663 /* syncs main thread and channels */
664 QemuSemaphore sem_sync;
665 } MultiFDSendParams;
667 typedef struct {
668 /* this fields are not changed once the thread is created */
669 /* channel number */
670 uint8_t id;
671 /* channel thread name */
672 char *name;
673 /* channel thread id */
674 QemuThread thread;
675 /* communication channel */
676 QIOChannel *c;
677 /* this mutex protects the following parameters */
678 QemuMutex mutex;
679 /* is this channel thread running */
680 bool running;
681 /* should this thread finish */
682 bool quit;
683 /* array of pages to receive */
684 MultiFDPages_t *pages;
685 /* packet allocated len */
686 uint32_t packet_len;
687 /* pointer to the packet */
688 MultiFDPacket_t *packet;
689 /* multifd flags for each packet */
690 uint32_t flags;
691 /* global number of generated multifd packets */
692 uint64_t packet_num;
693 /* thread local variables */
694 /* size of the next packet that contains pages */
695 uint32_t next_packet_size;
696 /* packets sent through this channel */
697 uint64_t num_packets;
698 /* pages sent through this channel */
699 uint64_t num_pages;
700 /* syncs main thread and channels */
701 QemuSemaphore sem_sync;
702 } MultiFDRecvParams;
704 static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp)
706 MultiFDInit_t msg = {};
707 int ret;
709 msg.magic = cpu_to_be32(MULTIFD_MAGIC);
710 msg.version = cpu_to_be32(MULTIFD_VERSION);
711 msg.id = p->id;
712 memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid));
714 ret = qio_channel_write_all(p->c, (char *)&msg, sizeof(msg), errp);
715 if (ret != 0) {
716 return -1;
718 return 0;
721 static int multifd_recv_initial_packet(QIOChannel *c, Error **errp)
723 MultiFDInit_t msg;
724 int ret;
726 ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp);
727 if (ret != 0) {
728 return -1;
731 msg.magic = be32_to_cpu(msg.magic);
732 msg.version = be32_to_cpu(msg.version);
734 if (msg.magic != MULTIFD_MAGIC) {
735 error_setg(errp, "multifd: received packet magic %x "
736 "expected %x", msg.magic, MULTIFD_MAGIC);
737 return -1;
740 if (msg.version != MULTIFD_VERSION) {
741 error_setg(errp, "multifd: received packet version %d "
742 "expected %d", msg.version, MULTIFD_VERSION);
743 return -1;
746 if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) {
747 char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid);
748 char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid);
750 error_setg(errp, "multifd: received uuid '%s' and expected "
751 "uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id);
752 g_free(uuid);
753 g_free(msg_uuid);
754 return -1;
757 if (msg.id > migrate_multifd_channels()) {
758 error_setg(errp, "multifd: received channel version %d "
759 "expected %d", msg.version, MULTIFD_VERSION);
760 return -1;
763 return msg.id;
766 static MultiFDPages_t *multifd_pages_init(size_t size)
768 MultiFDPages_t *pages = g_new0(MultiFDPages_t, 1);
770 pages->allocated = size;
771 pages->iov = g_new0(struct iovec, size);
772 pages->offset = g_new0(ram_addr_t, size);
774 return pages;
777 static void multifd_pages_clear(MultiFDPages_t *pages)
779 pages->used = 0;
780 pages->allocated = 0;
781 pages->packet_num = 0;
782 pages->block = NULL;
783 g_free(pages->iov);
784 pages->iov = NULL;
785 g_free(pages->offset);
786 pages->offset = NULL;
787 g_free(pages);
790 static void multifd_send_fill_packet(MultiFDSendParams *p)
792 MultiFDPacket_t *packet = p->packet;
793 int i;
795 packet->flags = cpu_to_be32(p->flags);
796 packet->pages_alloc = cpu_to_be32(p->pages->allocated);
797 packet->pages_used = cpu_to_be32(p->pages->used);
798 packet->next_packet_size = cpu_to_be32(p->next_packet_size);
799 packet->packet_num = cpu_to_be64(p->packet_num);
801 if (p->pages->block) {
802 strncpy(packet->ramblock, p->pages->block->idstr, 256);
805 for (i = 0; i < p->pages->used; i++) {
806 packet->offset[i] = cpu_to_be64(p->pages->offset[i]);
810 static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp)
812 MultiFDPacket_t *packet = p->packet;
813 uint32_t pages_max = MULTIFD_PACKET_SIZE / qemu_target_page_size();
814 RAMBlock *block;
815 int i;
817 packet->magic = be32_to_cpu(packet->magic);
818 if (packet->magic != MULTIFD_MAGIC) {
819 error_setg(errp, "multifd: received packet "
820 "magic %x and expected magic %x",
821 packet->magic, MULTIFD_MAGIC);
822 return -1;
825 packet->version = be32_to_cpu(packet->version);
826 if (packet->version != MULTIFD_VERSION) {
827 error_setg(errp, "multifd: received packet "
828 "version %d and expected version %d",
829 packet->version, MULTIFD_VERSION);
830 return -1;
833 p->flags = be32_to_cpu(packet->flags);
835 packet->pages_alloc = be32_to_cpu(packet->pages_alloc);
837 * If we received a packet that is 100 times bigger than expected
838 * just stop migration. It is a magic number.
840 if (packet->pages_alloc > pages_max * 100) {
841 error_setg(errp, "multifd: received packet "
842 "with size %d and expected a maximum size of %d",
843 packet->pages_alloc, pages_max * 100) ;
844 return -1;
847 * We received a packet that is bigger than expected but inside
848 * reasonable limits (see previous comment). Just reallocate.
850 if (packet->pages_alloc > p->pages->allocated) {
851 multifd_pages_clear(p->pages);
852 p->pages = multifd_pages_init(packet->pages_alloc);
855 p->pages->used = be32_to_cpu(packet->pages_used);
856 if (p->pages->used > packet->pages_alloc) {
857 error_setg(errp, "multifd: received packet "
858 "with %d pages and expected maximum pages are %d",
859 p->pages->used, packet->pages_alloc) ;
860 return -1;
863 p->next_packet_size = be32_to_cpu(packet->next_packet_size);
864 p->packet_num = be64_to_cpu(packet->packet_num);
866 if (p->pages->used == 0) {
867 return 0;
870 /* make sure that ramblock is 0 terminated */
871 packet->ramblock[255] = 0;
872 block = qemu_ram_block_by_name(packet->ramblock);
873 if (!block) {
874 error_setg(errp, "multifd: unknown ram block %s",
875 packet->ramblock);
876 return -1;
879 for (i = 0; i < p->pages->used; i++) {
880 ram_addr_t offset = be64_to_cpu(packet->offset[i]);
882 if (offset > (block->used_length - TARGET_PAGE_SIZE)) {
883 error_setg(errp, "multifd: offset too long " RAM_ADDR_FMT
884 " (max " RAM_ADDR_FMT ")",
885 offset, block->max_length);
886 return -1;
888 p->pages->iov[i].iov_base = block->host + offset;
889 p->pages->iov[i].iov_len = TARGET_PAGE_SIZE;
892 return 0;
895 struct {
896 MultiFDSendParams *params;
897 /* array of pages to sent */
898 MultiFDPages_t *pages;
899 /* global number of generated multifd packets */
900 uint64_t packet_num;
901 /* send channels ready */
902 QemuSemaphore channels_ready;
904 * Have we already run terminate threads. There is a race when it
905 * happens that we got one error while we are exiting.
906 * We will use atomic operations. Only valid values are 0 and 1.
908 int exiting;
909 } *multifd_send_state;
912 * How we use multifd_send_state->pages and channel->pages?
914 * We create a pages for each channel, and a main one. Each time that
915 * we need to send a batch of pages we interchange the ones between
916 * multifd_send_state and the channel that is sending it. There are
917 * two reasons for that:
918 * - to not have to do so many mallocs during migration
919 * - to make easier to know what to free at the end of migration
921 * This way we always know who is the owner of each "pages" struct,
922 * and we don't need any locking. It belongs to the migration thread
923 * or to the channel thread. Switching is safe because the migration
924 * thread is using the channel mutex when changing it, and the channel
925 * have to had finish with its own, otherwise pending_job can't be
926 * false.
929 static int multifd_send_pages(RAMState *rs)
931 int i;
932 static int next_channel;
933 MultiFDSendParams *p = NULL; /* make happy gcc */
934 MultiFDPages_t *pages = multifd_send_state->pages;
935 uint64_t transferred;
937 if (atomic_read(&multifd_send_state->exiting)) {
938 return -1;
941 qemu_sem_wait(&multifd_send_state->channels_ready);
942 for (i = next_channel;; i = (i + 1) % migrate_multifd_channels()) {
943 p = &multifd_send_state->params[i];
945 qemu_mutex_lock(&p->mutex);
946 if (p->quit) {
947 error_report("%s: channel %d has already quit!", __func__, i);
948 qemu_mutex_unlock(&p->mutex);
949 return -1;
951 if (!p->pending_job) {
952 p->pending_job++;
953 next_channel = (i + 1) % migrate_multifd_channels();
954 break;
956 qemu_mutex_unlock(&p->mutex);
958 assert(!p->pages->used);
959 assert(!p->pages->block);
961 p->packet_num = multifd_send_state->packet_num++;
962 multifd_send_state->pages = p->pages;
963 p->pages = pages;
964 transferred = ((uint64_t) pages->used) * TARGET_PAGE_SIZE + p->packet_len;
965 qemu_file_update_transfer(rs->f, transferred);
966 ram_counters.multifd_bytes += transferred;
967 ram_counters.transferred += transferred;;
968 qemu_mutex_unlock(&p->mutex);
969 qemu_sem_post(&p->sem);
971 return 1;
974 static int multifd_queue_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
976 MultiFDPages_t *pages = multifd_send_state->pages;
978 if (!pages->block) {
979 pages->block = block;
982 if (pages->block == block) {
983 pages->offset[pages->used] = offset;
984 pages->iov[pages->used].iov_base = block->host + offset;
985 pages->iov[pages->used].iov_len = TARGET_PAGE_SIZE;
986 pages->used++;
988 if (pages->used < pages->allocated) {
989 return 1;
993 if (multifd_send_pages(rs) < 0) {
994 return -1;
997 if (pages->block != block) {
998 return multifd_queue_page(rs, block, offset);
1001 return 1;
1004 static void multifd_send_terminate_threads(Error *err)
1006 int i;
1008 trace_multifd_send_terminate_threads(err != NULL);
1010 if (err) {
1011 MigrationState *s = migrate_get_current();
1012 migrate_set_error(s, err);
1013 if (s->state == MIGRATION_STATUS_SETUP ||
1014 s->state == MIGRATION_STATUS_PRE_SWITCHOVER ||
1015 s->state == MIGRATION_STATUS_DEVICE ||
1016 s->state == MIGRATION_STATUS_ACTIVE) {
1017 migrate_set_state(&s->state, s->state,
1018 MIGRATION_STATUS_FAILED);
1023 * We don't want to exit each threads twice. Depending on where
1024 * we get the error, or if there are two independent errors in two
1025 * threads at the same time, we can end calling this function
1026 * twice.
1028 if (atomic_xchg(&multifd_send_state->exiting, 1)) {
1029 return;
1032 for (i = 0; i < migrate_multifd_channels(); i++) {
1033 MultiFDSendParams *p = &multifd_send_state->params[i];
1035 qemu_mutex_lock(&p->mutex);
1036 p->quit = true;
1037 qemu_sem_post(&p->sem);
1038 qemu_mutex_unlock(&p->mutex);
1042 void multifd_save_cleanup(void)
1044 int i;
1046 if (!migrate_use_multifd()) {
1047 return;
1049 multifd_send_terminate_threads(NULL);
1050 for (i = 0; i < migrate_multifd_channels(); i++) {
1051 MultiFDSendParams *p = &multifd_send_state->params[i];
1053 if (p->running) {
1054 qemu_thread_join(&p->thread);
1057 for (i = 0; i < migrate_multifd_channels(); i++) {
1058 MultiFDSendParams *p = &multifd_send_state->params[i];
1060 socket_send_channel_destroy(p->c);
1061 p->c = NULL;
1062 qemu_mutex_destroy(&p->mutex);
1063 qemu_sem_destroy(&p->sem);
1064 qemu_sem_destroy(&p->sem_sync);
1065 g_free(p->name);
1066 p->name = NULL;
1067 multifd_pages_clear(p->pages);
1068 p->pages = NULL;
1069 p->packet_len = 0;
1070 g_free(p->packet);
1071 p->packet = NULL;
1073 qemu_sem_destroy(&multifd_send_state->channels_ready);
1074 g_free(multifd_send_state->params);
1075 multifd_send_state->params = NULL;
1076 multifd_pages_clear(multifd_send_state->pages);
1077 multifd_send_state->pages = NULL;
1078 g_free(multifd_send_state);
1079 multifd_send_state = NULL;
1082 static void multifd_send_sync_main(RAMState *rs)
1084 int i;
1086 if (!migrate_use_multifd()) {
1087 return;
1089 if (multifd_send_state->pages->used) {
1090 if (multifd_send_pages(rs) < 0) {
1091 error_report("%s: multifd_send_pages fail", __func__);
1092 return;
1095 for (i = 0; i < migrate_multifd_channels(); i++) {
1096 MultiFDSendParams *p = &multifd_send_state->params[i];
1098 trace_multifd_send_sync_main_signal(p->id);
1100 qemu_mutex_lock(&p->mutex);
1102 if (p->quit) {
1103 error_report("%s: channel %d has already quit", __func__, i);
1104 qemu_mutex_unlock(&p->mutex);
1105 return;
1108 p->packet_num = multifd_send_state->packet_num++;
1109 p->flags |= MULTIFD_FLAG_SYNC;
1110 p->pending_job++;
1111 qemu_file_update_transfer(rs->f, p->packet_len);
1112 ram_counters.multifd_bytes += p->packet_len;
1113 ram_counters.transferred += p->packet_len;
1114 qemu_mutex_unlock(&p->mutex);
1115 qemu_sem_post(&p->sem);
1117 for (i = 0; i < migrate_multifd_channels(); i++) {
1118 MultiFDSendParams *p = &multifd_send_state->params[i];
1120 trace_multifd_send_sync_main_wait(p->id);
1121 qemu_sem_wait(&p->sem_sync);
1123 trace_multifd_send_sync_main(multifd_send_state->packet_num);
1126 static void *multifd_send_thread(void *opaque)
1128 MultiFDSendParams *p = opaque;
1129 Error *local_err = NULL;
1130 int ret = 0;
1131 uint32_t flags = 0;
1133 trace_multifd_send_thread_start(p->id);
1134 rcu_register_thread();
1136 if (multifd_send_initial_packet(p, &local_err) < 0) {
1137 ret = -1;
1138 goto out;
1140 /* initial packet */
1141 p->num_packets = 1;
1143 while (true) {
1144 qemu_sem_wait(&p->sem);
1146 if (atomic_read(&multifd_send_state->exiting)) {
1147 break;
1149 qemu_mutex_lock(&p->mutex);
1151 if (p->pending_job) {
1152 uint32_t used = p->pages->used;
1153 uint64_t packet_num = p->packet_num;
1154 flags = p->flags;
1156 p->next_packet_size = used * qemu_target_page_size();
1157 multifd_send_fill_packet(p);
1158 p->flags = 0;
1159 p->num_packets++;
1160 p->num_pages += used;
1161 p->pages->used = 0;
1162 p->pages->block = NULL;
1163 qemu_mutex_unlock(&p->mutex);
1165 trace_multifd_send(p->id, packet_num, used, flags,
1166 p->next_packet_size);
1168 ret = qio_channel_write_all(p->c, (void *)p->packet,
1169 p->packet_len, &local_err);
1170 if (ret != 0) {
1171 break;
1174 if (used) {
1175 ret = qio_channel_writev_all(p->c, p->pages->iov,
1176 used, &local_err);
1177 if (ret != 0) {
1178 break;
1182 qemu_mutex_lock(&p->mutex);
1183 p->pending_job--;
1184 qemu_mutex_unlock(&p->mutex);
1186 if (flags & MULTIFD_FLAG_SYNC) {
1187 qemu_sem_post(&p->sem_sync);
1189 qemu_sem_post(&multifd_send_state->channels_ready);
1190 } else if (p->quit) {
1191 qemu_mutex_unlock(&p->mutex);
1192 break;
1193 } else {
1194 qemu_mutex_unlock(&p->mutex);
1195 /* sometimes there are spurious wakeups */
1199 out:
1200 if (local_err) {
1201 trace_multifd_send_error(p->id);
1202 multifd_send_terminate_threads(local_err);
1206 * Error happen, I will exit, but I can't just leave, tell
1207 * who pay attention to me.
1209 if (ret != 0) {
1210 qemu_sem_post(&p->sem_sync);
1211 qemu_sem_post(&multifd_send_state->channels_ready);
1214 qemu_mutex_lock(&p->mutex);
1215 p->running = false;
1216 qemu_mutex_unlock(&p->mutex);
1218 rcu_unregister_thread();
1219 trace_multifd_send_thread_end(p->id, p->num_packets, p->num_pages);
1221 return NULL;
1224 static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque)
1226 MultiFDSendParams *p = opaque;
1227 QIOChannel *sioc = QIO_CHANNEL(qio_task_get_source(task));
1228 Error *local_err = NULL;
1230 trace_multifd_new_send_channel_async(p->id);
1231 if (qio_task_propagate_error(task, &local_err)) {
1232 migrate_set_error(migrate_get_current(), local_err);
1233 multifd_save_cleanup();
1234 } else {
1235 p->c = QIO_CHANNEL(sioc);
1236 qio_channel_set_delay(p->c, false);
1237 p->running = true;
1238 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p,
1239 QEMU_THREAD_JOINABLE);
1243 int multifd_save_setup(void)
1245 int thread_count;
1246 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
1247 uint8_t i;
1249 if (!migrate_use_multifd()) {
1250 return 0;
1252 thread_count = migrate_multifd_channels();
1253 multifd_send_state = g_malloc0(sizeof(*multifd_send_state));
1254 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count);
1255 multifd_send_state->pages = multifd_pages_init(page_count);
1256 qemu_sem_init(&multifd_send_state->channels_ready, 0);
1257 atomic_set(&multifd_send_state->exiting, 0);
1259 for (i = 0; i < thread_count; i++) {
1260 MultiFDSendParams *p = &multifd_send_state->params[i];
1262 qemu_mutex_init(&p->mutex);
1263 qemu_sem_init(&p->sem, 0);
1264 qemu_sem_init(&p->sem_sync, 0);
1265 p->quit = false;
1266 p->pending_job = 0;
1267 p->id = i;
1268 p->pages = multifd_pages_init(page_count);
1269 p->packet_len = sizeof(MultiFDPacket_t)
1270 + sizeof(ram_addr_t) * page_count;
1271 p->packet = g_malloc0(p->packet_len);
1272 p->packet->magic = cpu_to_be32(MULTIFD_MAGIC);
1273 p->packet->version = cpu_to_be32(MULTIFD_VERSION);
1274 p->name = g_strdup_printf("multifdsend_%d", i);
1275 socket_send_channel_create(multifd_new_send_channel_async, p);
1277 return 0;
1280 struct {
1281 MultiFDRecvParams *params;
1282 /* number of created threads */
1283 int count;
1284 /* syncs main thread and channels */
1285 QemuSemaphore sem_sync;
1286 /* global number of generated multifd packets */
1287 uint64_t packet_num;
1288 } *multifd_recv_state;
1290 static void multifd_recv_terminate_threads(Error *err)
1292 int i;
1294 trace_multifd_recv_terminate_threads(err != NULL);
1296 if (err) {
1297 MigrationState *s = migrate_get_current();
1298 migrate_set_error(s, err);
1299 if (s->state == MIGRATION_STATUS_SETUP ||
1300 s->state == MIGRATION_STATUS_ACTIVE) {
1301 migrate_set_state(&s->state, s->state,
1302 MIGRATION_STATUS_FAILED);
1306 for (i = 0; i < migrate_multifd_channels(); i++) {
1307 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1309 qemu_mutex_lock(&p->mutex);
1310 p->quit = true;
1311 /* We could arrive here for two reasons:
1312 - normal quit, i.e. everything went fine, just finished
1313 - error quit: We close the channels so the channel threads
1314 finish the qio_channel_read_all_eof() */
1315 if (p->c) {
1316 qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL);
1318 qemu_mutex_unlock(&p->mutex);
1322 int multifd_load_cleanup(Error **errp)
1324 int i;
1325 int ret = 0;
1327 if (!migrate_use_multifd()) {
1328 return 0;
1330 multifd_recv_terminate_threads(NULL);
1331 for (i = 0; i < migrate_multifd_channels(); i++) {
1332 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1334 if (p->running) {
1335 p->quit = true;
1337 * multifd_recv_thread may hung at MULTIFD_FLAG_SYNC handle code,
1338 * however try to wakeup it without harm in cleanup phase.
1340 qemu_sem_post(&p->sem_sync);
1341 qemu_thread_join(&p->thread);
1344 for (i = 0; i < migrate_multifd_channels(); i++) {
1345 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1347 object_unref(OBJECT(p->c));
1348 p->c = NULL;
1349 qemu_mutex_destroy(&p->mutex);
1350 qemu_sem_destroy(&p->sem_sync);
1351 g_free(p->name);
1352 p->name = NULL;
1353 multifd_pages_clear(p->pages);
1354 p->pages = NULL;
1355 p->packet_len = 0;
1356 g_free(p->packet);
1357 p->packet = NULL;
1359 qemu_sem_destroy(&multifd_recv_state->sem_sync);
1360 g_free(multifd_recv_state->params);
1361 multifd_recv_state->params = NULL;
1362 g_free(multifd_recv_state);
1363 multifd_recv_state = NULL;
1365 return ret;
1368 static void multifd_recv_sync_main(void)
1370 int i;
1372 if (!migrate_use_multifd()) {
1373 return;
1375 for (i = 0; i < migrate_multifd_channels(); i++) {
1376 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1378 trace_multifd_recv_sync_main_wait(p->id);
1379 qemu_sem_wait(&multifd_recv_state->sem_sync);
1381 for (i = 0; i < migrate_multifd_channels(); i++) {
1382 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1384 qemu_mutex_lock(&p->mutex);
1385 if (multifd_recv_state->packet_num < p->packet_num) {
1386 multifd_recv_state->packet_num = p->packet_num;
1388 qemu_mutex_unlock(&p->mutex);
1389 trace_multifd_recv_sync_main_signal(p->id);
1390 qemu_sem_post(&p->sem_sync);
1392 trace_multifd_recv_sync_main(multifd_recv_state->packet_num);
1395 static void *multifd_recv_thread(void *opaque)
1397 MultiFDRecvParams *p = opaque;
1398 Error *local_err = NULL;
1399 int ret;
1401 trace_multifd_recv_thread_start(p->id);
1402 rcu_register_thread();
1404 while (true) {
1405 uint32_t used;
1406 uint32_t flags;
1408 if (p->quit) {
1409 break;
1412 ret = qio_channel_read_all_eof(p->c, (void *)p->packet,
1413 p->packet_len, &local_err);
1414 if (ret == 0) { /* EOF */
1415 break;
1417 if (ret == -1) { /* Error */
1418 break;
1421 qemu_mutex_lock(&p->mutex);
1422 ret = multifd_recv_unfill_packet(p, &local_err);
1423 if (ret) {
1424 qemu_mutex_unlock(&p->mutex);
1425 break;
1428 used = p->pages->used;
1429 flags = p->flags;
1430 trace_multifd_recv(p->id, p->packet_num, used, flags,
1431 p->next_packet_size);
1432 p->num_packets++;
1433 p->num_pages += used;
1434 qemu_mutex_unlock(&p->mutex);
1436 if (used) {
1437 ret = qio_channel_readv_all(p->c, p->pages->iov,
1438 used, &local_err);
1439 if (ret != 0) {
1440 break;
1444 if (flags & MULTIFD_FLAG_SYNC) {
1445 qemu_sem_post(&multifd_recv_state->sem_sync);
1446 qemu_sem_wait(&p->sem_sync);
1450 if (local_err) {
1451 multifd_recv_terminate_threads(local_err);
1453 qemu_mutex_lock(&p->mutex);
1454 p->running = false;
1455 qemu_mutex_unlock(&p->mutex);
1457 rcu_unregister_thread();
1458 trace_multifd_recv_thread_end(p->id, p->num_packets, p->num_pages);
1460 return NULL;
1463 int multifd_load_setup(void)
1465 int thread_count;
1466 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
1467 uint8_t i;
1469 if (!migrate_use_multifd()) {
1470 return 0;
1472 thread_count = migrate_multifd_channels();
1473 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state));
1474 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count);
1475 atomic_set(&multifd_recv_state->count, 0);
1476 qemu_sem_init(&multifd_recv_state->sem_sync, 0);
1478 for (i = 0; i < thread_count; i++) {
1479 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1481 qemu_mutex_init(&p->mutex);
1482 qemu_sem_init(&p->sem_sync, 0);
1483 p->quit = false;
1484 p->id = i;
1485 p->pages = multifd_pages_init(page_count);
1486 p->packet_len = sizeof(MultiFDPacket_t)
1487 + sizeof(ram_addr_t) * page_count;
1488 p->packet = g_malloc0(p->packet_len);
1489 p->name = g_strdup_printf("multifdrecv_%d", i);
1491 return 0;
1494 bool multifd_recv_all_channels_created(void)
1496 int thread_count = migrate_multifd_channels();
1498 if (!migrate_use_multifd()) {
1499 return true;
1502 return thread_count == atomic_read(&multifd_recv_state->count);
1506 * Try to receive all multifd channels to get ready for the migration.
1507 * - Return true and do not set @errp when correctly receving all channels;
1508 * - Return false and do not set @errp when correctly receiving the current one;
1509 * - Return false and set @errp when failing to receive the current channel.
1511 bool multifd_recv_new_channel(QIOChannel *ioc, Error **errp)
1513 MultiFDRecvParams *p;
1514 Error *local_err = NULL;
1515 int id;
1517 id = multifd_recv_initial_packet(ioc, &local_err);
1518 if (id < 0) {
1519 multifd_recv_terminate_threads(local_err);
1520 error_propagate_prepend(errp, local_err,
1521 "failed to receive packet"
1522 " via multifd channel %d: ",
1523 atomic_read(&multifd_recv_state->count));
1524 return false;
1526 trace_multifd_recv_new_channel(id);
1528 p = &multifd_recv_state->params[id];
1529 if (p->c != NULL) {
1530 error_setg(&local_err, "multifd: received id '%d' already setup'",
1531 id);
1532 multifd_recv_terminate_threads(local_err);
1533 error_propagate(errp, local_err);
1534 return false;
1536 p->c = ioc;
1537 object_ref(OBJECT(ioc));
1538 /* initial packet */
1539 p->num_packets = 1;
1541 p->running = true;
1542 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p,
1543 QEMU_THREAD_JOINABLE);
1544 atomic_inc(&multifd_recv_state->count);
1545 return atomic_read(&multifd_recv_state->count) ==
1546 migrate_multifd_channels();
1550 * save_page_header: write page header to wire
1552 * If this is the 1st block, it also writes the block identification
1554 * Returns the number of bytes written
1556 * @f: QEMUFile where to send the data
1557 * @block: block that contains the page we want to send
1558 * @offset: offset inside the block for the page
1559 * in the lower bits, it contains flags
1561 static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block,
1562 ram_addr_t offset)
1564 size_t size, len;
1566 if (block == rs->last_sent_block) {
1567 offset |= RAM_SAVE_FLAG_CONTINUE;
1569 qemu_put_be64(f, offset);
1570 size = 8;
1572 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
1573 len = strlen(block->idstr);
1574 qemu_put_byte(f, len);
1575 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
1576 size += 1 + len;
1577 rs->last_sent_block = block;
1579 return size;
1583 * mig_throttle_guest_down: throotle down the guest
1585 * Reduce amount of guest cpu execution to hopefully slow down memory
1586 * writes. If guest dirty memory rate is reduced below the rate at
1587 * which we can transfer pages to the destination then we should be
1588 * able to complete migration. Some workloads dirty memory way too
1589 * fast and will not effectively converge, even with auto-converge.
1591 static void mig_throttle_guest_down(void)
1593 MigrationState *s = migrate_get_current();
1594 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
1595 uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
1596 int pct_max = s->parameters.max_cpu_throttle;
1598 /* We have not started throttling yet. Let's start it. */
1599 if (!cpu_throttle_active()) {
1600 cpu_throttle_set(pct_initial);
1601 } else {
1602 /* Throttling already on, just increase the rate */
1603 cpu_throttle_set(MIN(cpu_throttle_get_percentage() + pct_icrement,
1604 pct_max));
1609 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
1611 * @rs: current RAM state
1612 * @current_addr: address for the zero page
1614 * Update the xbzrle cache to reflect a page that's been sent as all 0.
1615 * The important thing is that a stale (not-yet-0'd) page be replaced
1616 * by the new data.
1617 * As a bonus, if the page wasn't in the cache it gets added so that
1618 * when a small write is made into the 0'd page it gets XBZRLE sent.
1620 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
1622 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
1623 return;
1626 /* We don't care if this fails to allocate a new cache page
1627 * as long as it updated an old one */
1628 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
1629 ram_counters.dirty_sync_count);
1632 #define ENCODING_FLAG_XBZRLE 0x1
1635 * save_xbzrle_page: compress and send current page
1637 * Returns: 1 means that we wrote the page
1638 * 0 means that page is identical to the one already sent
1639 * -1 means that xbzrle would be longer than normal
1641 * @rs: current RAM state
1642 * @current_data: pointer to the address of the page contents
1643 * @current_addr: addr of the page
1644 * @block: block that contains the page we want to send
1645 * @offset: offset inside the block for the page
1646 * @last_stage: if we are at the completion stage
1648 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
1649 ram_addr_t current_addr, RAMBlock *block,
1650 ram_addr_t offset, bool last_stage)
1652 int encoded_len = 0, bytes_xbzrle;
1653 uint8_t *prev_cached_page;
1655 if (!cache_is_cached(XBZRLE.cache, current_addr,
1656 ram_counters.dirty_sync_count)) {
1657 xbzrle_counters.cache_miss++;
1658 if (!last_stage) {
1659 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
1660 ram_counters.dirty_sync_count) == -1) {
1661 return -1;
1662 } else {
1663 /* update *current_data when the page has been
1664 inserted into cache */
1665 *current_data = get_cached_data(XBZRLE.cache, current_addr);
1668 return -1;
1671 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
1673 /* save current buffer into memory */
1674 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
1676 /* XBZRLE encoding (if there is no overflow) */
1677 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
1678 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
1679 TARGET_PAGE_SIZE);
1682 * Update the cache contents, so that it corresponds to the data
1683 * sent, in all cases except where we skip the page.
1685 if (!last_stage && encoded_len != 0) {
1686 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
1688 * In the case where we couldn't compress, ensure that the caller
1689 * sends the data from the cache, since the guest might have
1690 * changed the RAM since we copied it.
1692 *current_data = prev_cached_page;
1695 if (encoded_len == 0) {
1696 trace_save_xbzrle_page_skipping();
1697 return 0;
1698 } else if (encoded_len == -1) {
1699 trace_save_xbzrle_page_overflow();
1700 xbzrle_counters.overflow++;
1701 return -1;
1704 /* Send XBZRLE based compressed page */
1705 bytes_xbzrle = save_page_header(rs, rs->f, block,
1706 offset | RAM_SAVE_FLAG_XBZRLE);
1707 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
1708 qemu_put_be16(rs->f, encoded_len);
1709 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
1710 bytes_xbzrle += encoded_len + 1 + 2;
1711 xbzrle_counters.pages++;
1712 xbzrle_counters.bytes += bytes_xbzrle;
1713 ram_counters.transferred += bytes_xbzrle;
1715 return 1;
1719 * migration_bitmap_find_dirty: find the next dirty page from start
1721 * Returns the page offset within memory region of the start of a dirty page
1723 * @rs: current RAM state
1724 * @rb: RAMBlock where to search for dirty pages
1725 * @start: page where we start the search
1727 static inline
1728 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
1729 unsigned long start)
1731 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
1732 unsigned long *bitmap = rb->bmap;
1733 unsigned long next;
1735 if (ramblock_is_ignored(rb)) {
1736 return size;
1740 * When the free page optimization is enabled, we need to check the bitmap
1741 * to send the non-free pages rather than all the pages in the bulk stage.
1743 if (!rs->fpo_enabled && rs->ram_bulk_stage && start > 0) {
1744 next = start + 1;
1745 } else {
1746 next = find_next_bit(bitmap, size, start);
1749 return next;
1752 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
1753 RAMBlock *rb,
1754 unsigned long page)
1756 bool ret;
1758 qemu_mutex_lock(&rs->bitmap_mutex);
1761 * Clear dirty bitmap if needed. This _must_ be called before we
1762 * send any of the page in the chunk because we need to make sure
1763 * we can capture further page content changes when we sync dirty
1764 * log the next time. So as long as we are going to send any of
1765 * the page in the chunk we clear the remote dirty bitmap for all.
1766 * Clearing it earlier won't be a problem, but too late will.
1768 if (rb->clear_bmap && clear_bmap_test_and_clear(rb, page)) {
1769 uint8_t shift = rb->clear_bmap_shift;
1770 hwaddr size = 1ULL << (TARGET_PAGE_BITS + shift);
1771 hwaddr start = (((ram_addr_t)page) << TARGET_PAGE_BITS) & (-size);
1774 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
1775 * can make things easier sometimes since then start address
1776 * of the small chunk will always be 64 pages aligned so the
1777 * bitmap will always be aligned to unsigned long. We should
1778 * even be able to remove this restriction but I'm simply
1779 * keeping it.
1781 assert(shift >= 6);
1782 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
1783 memory_region_clear_dirty_bitmap(rb->mr, start, size);
1786 ret = test_and_clear_bit(page, rb->bmap);
1788 if (ret) {
1789 rs->migration_dirty_pages--;
1791 qemu_mutex_unlock(&rs->bitmap_mutex);
1793 return ret;
1796 /* Called with RCU critical section */
1797 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb)
1799 rs->migration_dirty_pages +=
1800 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length,
1801 &rs->num_dirty_pages_period);
1805 * ram_pagesize_summary: calculate all the pagesizes of a VM
1807 * Returns a summary bitmap of the page sizes of all RAMBlocks
1809 * For VMs with just normal pages this is equivalent to the host page
1810 * size. If it's got some huge pages then it's the OR of all the
1811 * different page sizes.
1813 uint64_t ram_pagesize_summary(void)
1815 RAMBlock *block;
1816 uint64_t summary = 0;
1818 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1819 summary |= block->page_size;
1822 return summary;
1825 uint64_t ram_get_total_transferred_pages(void)
1827 return ram_counters.normal + ram_counters.duplicate +
1828 compression_counters.pages + xbzrle_counters.pages;
1831 static void migration_update_rates(RAMState *rs, int64_t end_time)
1833 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
1834 double compressed_size;
1836 /* calculate period counters */
1837 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000
1838 / (end_time - rs->time_last_bitmap_sync);
1840 if (!page_count) {
1841 return;
1844 if (migrate_use_xbzrle()) {
1845 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
1846 rs->xbzrle_cache_miss_prev) / page_count;
1847 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
1850 if (migrate_use_compression()) {
1851 compression_counters.busy_rate = (double)(compression_counters.busy -
1852 rs->compress_thread_busy_prev) / page_count;
1853 rs->compress_thread_busy_prev = compression_counters.busy;
1855 compressed_size = compression_counters.compressed_size -
1856 rs->compressed_size_prev;
1857 if (compressed_size) {
1858 double uncompressed_size = (compression_counters.pages -
1859 rs->compress_pages_prev) * TARGET_PAGE_SIZE;
1861 /* Compression-Ratio = Uncompressed-size / Compressed-size */
1862 compression_counters.compression_rate =
1863 uncompressed_size / compressed_size;
1865 rs->compress_pages_prev = compression_counters.pages;
1866 rs->compressed_size_prev = compression_counters.compressed_size;
1871 static void migration_bitmap_sync(RAMState *rs)
1873 RAMBlock *block;
1874 int64_t end_time;
1875 uint64_t bytes_xfer_now;
1877 ram_counters.dirty_sync_count++;
1879 if (!rs->time_last_bitmap_sync) {
1880 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1883 trace_migration_bitmap_sync_start();
1884 memory_global_dirty_log_sync();
1886 qemu_mutex_lock(&rs->bitmap_mutex);
1887 WITH_RCU_READ_LOCK_GUARD() {
1888 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1889 ramblock_sync_dirty_bitmap(rs, block);
1891 ram_counters.remaining = ram_bytes_remaining();
1893 qemu_mutex_unlock(&rs->bitmap_mutex);
1895 memory_global_after_dirty_log_sync();
1896 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1898 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1900 /* more than 1 second = 1000 millisecons */
1901 if (end_time > rs->time_last_bitmap_sync + 1000) {
1902 bytes_xfer_now = ram_counters.transferred;
1904 /* During block migration the auto-converge logic incorrectly detects
1905 * that ram migration makes no progress. Avoid this by disabling the
1906 * throttling logic during the bulk phase of block migration. */
1907 if (migrate_auto_converge() && !blk_mig_bulk_active()) {
1908 /* The following detection logic can be refined later. For now:
1909 Check to see if the dirtied bytes is 50% more than the approx.
1910 amount of bytes that just got transferred since the last time we
1911 were in this routine. If that happens twice, start or increase
1912 throttling */
1914 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE >
1915 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) &&
1916 (++rs->dirty_rate_high_cnt >= 2)) {
1917 trace_migration_throttle();
1918 rs->dirty_rate_high_cnt = 0;
1919 mig_throttle_guest_down();
1923 migration_update_rates(rs, end_time);
1925 rs->target_page_count_prev = rs->target_page_count;
1927 /* reset period counters */
1928 rs->time_last_bitmap_sync = end_time;
1929 rs->num_dirty_pages_period = 0;
1930 rs->bytes_xfer_prev = bytes_xfer_now;
1932 if (migrate_use_events()) {
1933 qapi_event_send_migration_pass(ram_counters.dirty_sync_count);
1937 static void migration_bitmap_sync_precopy(RAMState *rs)
1939 Error *local_err = NULL;
1942 * The current notifier usage is just an optimization to migration, so we
1943 * don't stop the normal migration process in the error case.
1945 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1946 error_report_err(local_err);
1949 migration_bitmap_sync(rs);
1951 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1952 error_report_err(local_err);
1957 * save_zero_page_to_file: send the zero page to the file
1959 * Returns the size of data written to the file, 0 means the page is not
1960 * a zero page
1962 * @rs: current RAM state
1963 * @file: the file where the data is saved
1964 * @block: block that contains the page we want to send
1965 * @offset: offset inside the block for the page
1967 static int save_zero_page_to_file(RAMState *rs, QEMUFile *file,
1968 RAMBlock *block, ram_addr_t offset)
1970 uint8_t *p = block->host + offset;
1971 int len = 0;
1973 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
1974 len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO);
1975 qemu_put_byte(file, 0);
1976 len += 1;
1978 return len;
1982 * save_zero_page: send the zero page to the stream
1984 * Returns the number of pages written.
1986 * @rs: current RAM state
1987 * @block: block that contains the page we want to send
1988 * @offset: offset inside the block for the page
1990 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
1992 int len = save_zero_page_to_file(rs, rs->f, block, offset);
1994 if (len) {
1995 ram_counters.duplicate++;
1996 ram_counters.transferred += len;
1997 return 1;
1999 return -1;
2002 static void ram_release_pages(const char *rbname, uint64_t offset, int pages)
2004 if (!migrate_release_ram() || !migration_in_postcopy()) {
2005 return;
2008 ram_discard_range(rbname, offset, ((ram_addr_t)pages) << TARGET_PAGE_BITS);
2012 * @pages: the number of pages written by the control path,
2013 * < 0 - error
2014 * > 0 - number of pages written
2016 * Return true if the pages has been saved, otherwise false is returned.
2018 static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
2019 int *pages)
2021 uint64_t bytes_xmit = 0;
2022 int ret;
2024 *pages = -1;
2025 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE,
2026 &bytes_xmit);
2027 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
2028 return false;
2031 if (bytes_xmit) {
2032 ram_counters.transferred += bytes_xmit;
2033 *pages = 1;
2036 if (ret == RAM_SAVE_CONTROL_DELAYED) {
2037 return true;
2040 if (bytes_xmit > 0) {
2041 ram_counters.normal++;
2042 } else if (bytes_xmit == 0) {
2043 ram_counters.duplicate++;
2046 return true;
2050 * directly send the page to the stream
2052 * Returns the number of pages written.
2054 * @rs: current RAM state
2055 * @block: block that contains the page we want to send
2056 * @offset: offset inside the block for the page
2057 * @buf: the page to be sent
2058 * @async: send to page asyncly
2060 static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
2061 uint8_t *buf, bool async)
2063 ram_counters.transferred += save_page_header(rs, rs->f, block,
2064 offset | RAM_SAVE_FLAG_PAGE);
2065 if (async) {
2066 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE,
2067 migrate_release_ram() &
2068 migration_in_postcopy());
2069 } else {
2070 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE);
2072 ram_counters.transferred += TARGET_PAGE_SIZE;
2073 ram_counters.normal++;
2074 return 1;
2078 * ram_save_page: send the given page to the stream
2080 * Returns the number of pages written.
2081 * < 0 - error
2082 * >=0 - Number of pages written - this might legally be 0
2083 * if xbzrle noticed the page was the same.
2085 * @rs: current RAM state
2086 * @block: block that contains the page we want to send
2087 * @offset: offset inside the block for the page
2088 * @last_stage: if we are at the completion stage
2090 static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage)
2092 int pages = -1;
2093 uint8_t *p;
2094 bool send_async = true;
2095 RAMBlock *block = pss->block;
2096 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2097 ram_addr_t current_addr = block->offset + offset;
2099 p = block->host + offset;
2100 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
2102 XBZRLE_cache_lock();
2103 if (!rs->ram_bulk_stage && !migration_in_postcopy() &&
2104 migrate_use_xbzrle()) {
2105 pages = save_xbzrle_page(rs, &p, current_addr, block,
2106 offset, last_stage);
2107 if (!last_stage) {
2108 /* Can't send this cached data async, since the cache page
2109 * might get updated before it gets to the wire
2111 send_async = false;
2115 /* XBZRLE overflow or normal page */
2116 if (pages == -1) {
2117 pages = save_normal_page(rs, block, offset, p, send_async);
2120 XBZRLE_cache_unlock();
2122 return pages;
2125 static int ram_save_multifd_page(RAMState *rs, RAMBlock *block,
2126 ram_addr_t offset)
2128 if (multifd_queue_page(rs, block, offset) < 0) {
2129 return -1;
2131 ram_counters.normal++;
2133 return 1;
2136 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
2137 ram_addr_t offset, uint8_t *source_buf)
2139 RAMState *rs = ram_state;
2140 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
2141 bool zero_page = false;
2142 int ret;
2144 if (save_zero_page_to_file(rs, f, block, offset)) {
2145 zero_page = true;
2146 goto exit;
2149 save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
2152 * copy it to a internal buffer to avoid it being modified by VM
2153 * so that we can catch up the error during compression and
2154 * decompression
2156 memcpy(source_buf, p, TARGET_PAGE_SIZE);
2157 ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE);
2158 if (ret < 0) {
2159 qemu_file_set_error(migrate_get_current()->to_dst_file, ret);
2160 error_report("compressed data failed!");
2161 return false;
2164 exit:
2165 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1);
2166 return zero_page;
2169 static void
2170 update_compress_thread_counts(const CompressParam *param, int bytes_xmit)
2172 ram_counters.transferred += bytes_xmit;
2174 if (param->zero_page) {
2175 ram_counters.duplicate++;
2176 return;
2179 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */
2180 compression_counters.compressed_size += bytes_xmit - 8;
2181 compression_counters.pages++;
2184 static bool save_page_use_compression(RAMState *rs);
2186 static void flush_compressed_data(RAMState *rs)
2188 int idx, len, thread_count;
2190 if (!save_page_use_compression(rs)) {
2191 return;
2193 thread_count = migrate_compress_threads();
2195 qemu_mutex_lock(&comp_done_lock);
2196 for (idx = 0; idx < thread_count; idx++) {
2197 while (!comp_param[idx].done) {
2198 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
2201 qemu_mutex_unlock(&comp_done_lock);
2203 for (idx = 0; idx < thread_count; idx++) {
2204 qemu_mutex_lock(&comp_param[idx].mutex);
2205 if (!comp_param[idx].quit) {
2206 len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
2208 * it's safe to fetch zero_page without holding comp_done_lock
2209 * as there is no further request submitted to the thread,
2210 * i.e, the thread should be waiting for a request at this point.
2212 update_compress_thread_counts(&comp_param[idx], len);
2214 qemu_mutex_unlock(&comp_param[idx].mutex);
2218 static inline void set_compress_params(CompressParam *param, RAMBlock *block,
2219 ram_addr_t offset)
2221 param->block = block;
2222 param->offset = offset;
2225 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
2226 ram_addr_t offset)
2228 int idx, thread_count, bytes_xmit = -1, pages = -1;
2229 bool wait = migrate_compress_wait_thread();
2231 thread_count = migrate_compress_threads();
2232 qemu_mutex_lock(&comp_done_lock);
2233 retry:
2234 for (idx = 0; idx < thread_count; idx++) {
2235 if (comp_param[idx].done) {
2236 comp_param[idx].done = false;
2237 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
2238 qemu_mutex_lock(&comp_param[idx].mutex);
2239 set_compress_params(&comp_param[idx], block, offset);
2240 qemu_cond_signal(&comp_param[idx].cond);
2241 qemu_mutex_unlock(&comp_param[idx].mutex);
2242 pages = 1;
2243 update_compress_thread_counts(&comp_param[idx], bytes_xmit);
2244 break;
2249 * wait for the free thread if the user specifies 'compress-wait-thread',
2250 * otherwise we will post the page out in the main thread as normal page.
2252 if (pages < 0 && wait) {
2253 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
2254 goto retry;
2256 qemu_mutex_unlock(&comp_done_lock);
2258 return pages;
2262 * find_dirty_block: find the next dirty page and update any state
2263 * associated with the search process.
2265 * Returns true if a page is found
2267 * @rs: current RAM state
2268 * @pss: data about the state of the current dirty page scan
2269 * @again: set to false if the search has scanned the whole of RAM
2271 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
2273 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
2274 if (pss->complete_round && pss->block == rs->last_seen_block &&
2275 pss->page >= rs->last_page) {
2277 * We've been once around the RAM and haven't found anything.
2278 * Give up.
2280 *again = false;
2281 return false;
2283 if ((((ram_addr_t)pss->page) << TARGET_PAGE_BITS)
2284 >= pss->block->used_length) {
2285 /* Didn't find anything in this RAM Block */
2286 pss->page = 0;
2287 pss->block = QLIST_NEXT_RCU(pss->block, next);
2288 if (!pss->block) {
2290 * If memory migration starts over, we will meet a dirtied page
2291 * which may still exists in compression threads's ring, so we
2292 * should flush the compressed data to make sure the new page
2293 * is not overwritten by the old one in the destination.
2295 * Also If xbzrle is on, stop using the data compression at this
2296 * point. In theory, xbzrle can do better than compression.
2298 flush_compressed_data(rs);
2300 /* Hit the end of the list */
2301 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
2302 /* Flag that we've looped */
2303 pss->complete_round = true;
2304 rs->ram_bulk_stage = false;
2306 /* Didn't find anything this time, but try again on the new block */
2307 *again = true;
2308 return false;
2309 } else {
2310 /* Can go around again, but... */
2311 *again = true;
2312 /* We've found something so probably don't need to */
2313 return true;
2318 * unqueue_page: gets a page of the queue
2320 * Helper for 'get_queued_page' - gets a page off the queue
2322 * Returns the block of the page (or NULL if none available)
2324 * @rs: current RAM state
2325 * @offset: used to return the offset within the RAMBlock
2327 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
2329 RAMBlock *block = NULL;
2331 if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) {
2332 return NULL;
2335 qemu_mutex_lock(&rs->src_page_req_mutex);
2336 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
2337 struct RAMSrcPageRequest *entry =
2338 QSIMPLEQ_FIRST(&rs->src_page_requests);
2339 block = entry->rb;
2340 *offset = entry->offset;
2342 if (entry->len > TARGET_PAGE_SIZE) {
2343 entry->len -= TARGET_PAGE_SIZE;
2344 entry->offset += TARGET_PAGE_SIZE;
2345 } else {
2346 memory_region_unref(block->mr);
2347 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
2348 g_free(entry);
2349 migration_consume_urgent_request();
2352 qemu_mutex_unlock(&rs->src_page_req_mutex);
2354 return block;
2358 * get_queued_page: unqueue a page from the postcopy requests
2360 * Skips pages that are already sent (!dirty)
2362 * Returns true if a queued page is found
2364 * @rs: current RAM state
2365 * @pss: data about the state of the current dirty page scan
2367 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
2369 RAMBlock *block;
2370 ram_addr_t offset;
2371 bool dirty;
2373 do {
2374 block = unqueue_page(rs, &offset);
2376 * We're sending this page, and since it's postcopy nothing else
2377 * will dirty it, and we must make sure it doesn't get sent again
2378 * even if this queue request was received after the background
2379 * search already sent it.
2381 if (block) {
2382 unsigned long page;
2384 page = offset >> TARGET_PAGE_BITS;
2385 dirty = test_bit(page, block->bmap);
2386 if (!dirty) {
2387 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
2388 page);
2389 } else {
2390 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
2394 } while (block && !dirty);
2396 if (block) {
2398 * As soon as we start servicing pages out of order, then we have
2399 * to kill the bulk stage, since the bulk stage assumes
2400 * in (migration_bitmap_find_and_reset_dirty) that every page is
2401 * dirty, that's no longer true.
2403 rs->ram_bulk_stage = false;
2406 * We want the background search to continue from the queued page
2407 * since the guest is likely to want other pages near to the page
2408 * it just requested.
2410 pss->block = block;
2411 pss->page = offset >> TARGET_PAGE_BITS;
2414 * This unqueued page would break the "one round" check, even is
2415 * really rare.
2417 pss->complete_round = false;
2420 return !!block;
2424 * migration_page_queue_free: drop any remaining pages in the ram
2425 * request queue
2427 * It should be empty at the end anyway, but in error cases there may
2428 * be some left. in case that there is any page left, we drop it.
2431 static void migration_page_queue_free(RAMState *rs)
2433 struct RAMSrcPageRequest *mspr, *next_mspr;
2434 /* This queue generally should be empty - but in the case of a failed
2435 * migration might have some droppings in.
2437 RCU_READ_LOCK_GUARD();
2438 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
2439 memory_region_unref(mspr->rb->mr);
2440 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
2441 g_free(mspr);
2446 * ram_save_queue_pages: queue the page for transmission
2448 * A request from postcopy destination for example.
2450 * Returns zero on success or negative on error
2452 * @rbname: Name of the RAMBLock of the request. NULL means the
2453 * same that last one.
2454 * @start: starting address from the start of the RAMBlock
2455 * @len: length (in bytes) to send
2457 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
2459 RAMBlock *ramblock;
2460 RAMState *rs = ram_state;
2462 ram_counters.postcopy_requests++;
2463 RCU_READ_LOCK_GUARD();
2465 if (!rbname) {
2466 /* Reuse last RAMBlock */
2467 ramblock = rs->last_req_rb;
2469 if (!ramblock) {
2471 * Shouldn't happen, we can't reuse the last RAMBlock if
2472 * it's the 1st request.
2474 error_report("ram_save_queue_pages no previous block");
2475 return -1;
2477 } else {
2478 ramblock = qemu_ram_block_by_name(rbname);
2480 if (!ramblock) {
2481 /* We shouldn't be asked for a non-existent RAMBlock */
2482 error_report("ram_save_queue_pages no block '%s'", rbname);
2483 return -1;
2485 rs->last_req_rb = ramblock;
2487 trace_ram_save_queue_pages(ramblock->idstr, start, len);
2488 if (start+len > ramblock->used_length) {
2489 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
2490 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
2491 __func__, start, len, ramblock->used_length);
2492 return -1;
2495 struct RAMSrcPageRequest *new_entry =
2496 g_malloc0(sizeof(struct RAMSrcPageRequest));
2497 new_entry->rb = ramblock;
2498 new_entry->offset = start;
2499 new_entry->len = len;
2501 memory_region_ref(ramblock->mr);
2502 qemu_mutex_lock(&rs->src_page_req_mutex);
2503 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
2504 migration_make_urgent_request();
2505 qemu_mutex_unlock(&rs->src_page_req_mutex);
2507 return 0;
2510 static bool save_page_use_compression(RAMState *rs)
2512 if (!migrate_use_compression()) {
2513 return false;
2517 * If xbzrle is on, stop using the data compression after first
2518 * round of migration even if compression is enabled. In theory,
2519 * xbzrle can do better than compression.
2521 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
2522 return true;
2525 return false;
2529 * try to compress the page before posting it out, return true if the page
2530 * has been properly handled by compression, otherwise needs other
2531 * paths to handle it
2533 static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
2535 if (!save_page_use_compression(rs)) {
2536 return false;
2540 * When starting the process of a new block, the first page of
2541 * the block should be sent out before other pages in the same
2542 * block, and all the pages in last block should have been sent
2543 * out, keeping this order is important, because the 'cont' flag
2544 * is used to avoid resending the block name.
2546 * We post the fist page as normal page as compression will take
2547 * much CPU resource.
2549 if (block != rs->last_sent_block) {
2550 flush_compressed_data(rs);
2551 return false;
2554 if (compress_page_with_multi_thread(rs, block, offset) > 0) {
2555 return true;
2558 compression_counters.busy++;
2559 return false;
2563 * ram_save_target_page: save one target page
2565 * Returns the number of pages written
2567 * @rs: current RAM state
2568 * @pss: data about the page we want to send
2569 * @last_stage: if we are at the completion stage
2571 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss,
2572 bool last_stage)
2574 RAMBlock *block = pss->block;
2575 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2576 int res;
2578 if (control_save_page(rs, block, offset, &res)) {
2579 return res;
2582 if (save_compress_page(rs, block, offset)) {
2583 return 1;
2586 res = save_zero_page(rs, block, offset);
2587 if (res > 0) {
2588 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
2589 * page would be stale
2591 if (!save_page_use_compression(rs)) {
2592 XBZRLE_cache_lock();
2593 xbzrle_cache_zero_page(rs, block->offset + offset);
2594 XBZRLE_cache_unlock();
2596 ram_release_pages(block->idstr, offset, res);
2597 return res;
2601 * Do not use multifd for:
2602 * 1. Compression as the first page in the new block should be posted out
2603 * before sending the compressed page
2604 * 2. In postcopy as one whole host page should be placed
2606 if (!save_page_use_compression(rs) && migrate_use_multifd()
2607 && !migration_in_postcopy()) {
2608 return ram_save_multifd_page(rs, block, offset);
2611 return ram_save_page(rs, pss, last_stage);
2615 * ram_save_host_page: save a whole host page
2617 * Starting at *offset send pages up to the end of the current host
2618 * page. It's valid for the initial offset to point into the middle of
2619 * a host page in which case the remainder of the hostpage is sent.
2620 * Only dirty target pages are sent. Note that the host page size may
2621 * be a huge page for this block.
2622 * The saving stops at the boundary of the used_length of the block
2623 * if the RAMBlock isn't a multiple of the host page size.
2625 * Returns the number of pages written or negative on error
2627 * @rs: current RAM state
2628 * @ms: current migration state
2629 * @pss: data about the page we want to send
2630 * @last_stage: if we are at the completion stage
2632 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss,
2633 bool last_stage)
2635 int tmppages, pages = 0;
2636 size_t pagesize_bits =
2637 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2639 if (ramblock_is_ignored(pss->block)) {
2640 error_report("block %s should not be migrated !", pss->block->idstr);
2641 return 0;
2644 do {
2645 /* Check the pages is dirty and if it is send it */
2646 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
2647 pss->page++;
2648 continue;
2651 tmppages = ram_save_target_page(rs, pss, last_stage);
2652 if (tmppages < 0) {
2653 return tmppages;
2656 pages += tmppages;
2657 pss->page++;
2658 /* Allow rate limiting to happen in the middle of huge pages */
2659 migration_rate_limit();
2660 } while ((pss->page & (pagesize_bits - 1)) &&
2661 offset_in_ramblock(pss->block,
2662 ((ram_addr_t)pss->page) << TARGET_PAGE_BITS));
2664 /* The offset we leave with is the last one we looked at */
2665 pss->page--;
2666 return pages;
2670 * ram_find_and_save_block: finds a dirty page and sends it to f
2672 * Called within an RCU critical section.
2674 * Returns the number of pages written where zero means no dirty pages,
2675 * or negative on error
2677 * @rs: current RAM state
2678 * @last_stage: if we are at the completion stage
2680 * On systems where host-page-size > target-page-size it will send all the
2681 * pages in a host page that are dirty.
2684 static int ram_find_and_save_block(RAMState *rs, bool last_stage)
2686 PageSearchStatus pss;
2687 int pages = 0;
2688 bool again, found;
2690 /* No dirty page as there is zero RAM */
2691 if (!ram_bytes_total()) {
2692 return pages;
2695 pss.block = rs->last_seen_block;
2696 pss.page = rs->last_page;
2697 pss.complete_round = false;
2699 if (!pss.block) {
2700 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
2703 do {
2704 again = true;
2705 found = get_queued_page(rs, &pss);
2707 if (!found) {
2708 /* priority queue empty, so just search for something dirty */
2709 found = find_dirty_block(rs, &pss, &again);
2712 if (found) {
2713 pages = ram_save_host_page(rs, &pss, last_stage);
2715 } while (!pages && again);
2717 rs->last_seen_block = pss.block;
2718 rs->last_page = pss.page;
2720 return pages;
2723 void acct_update_position(QEMUFile *f, size_t size, bool zero)
2725 uint64_t pages = size / TARGET_PAGE_SIZE;
2727 if (zero) {
2728 ram_counters.duplicate += pages;
2729 } else {
2730 ram_counters.normal += pages;
2731 ram_counters.transferred += size;
2732 qemu_update_position(f, size);
2736 static uint64_t ram_bytes_total_common(bool count_ignored)
2738 RAMBlock *block;
2739 uint64_t total = 0;
2741 RCU_READ_LOCK_GUARD();
2743 if (count_ignored) {
2744 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2745 total += block->used_length;
2747 } else {
2748 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2749 total += block->used_length;
2752 return total;
2755 uint64_t ram_bytes_total(void)
2757 return ram_bytes_total_common(false);
2760 static void xbzrle_load_setup(void)
2762 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2765 static void xbzrle_load_cleanup(void)
2767 g_free(XBZRLE.decoded_buf);
2768 XBZRLE.decoded_buf = NULL;
2771 static void ram_state_cleanup(RAMState **rsp)
2773 if (*rsp) {
2774 migration_page_queue_free(*rsp);
2775 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2776 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2777 g_free(*rsp);
2778 *rsp = NULL;
2782 static void xbzrle_cleanup(void)
2784 XBZRLE_cache_lock();
2785 if (XBZRLE.cache) {
2786 cache_fini(XBZRLE.cache);
2787 g_free(XBZRLE.encoded_buf);
2788 g_free(XBZRLE.current_buf);
2789 g_free(XBZRLE.zero_target_page);
2790 XBZRLE.cache = NULL;
2791 XBZRLE.encoded_buf = NULL;
2792 XBZRLE.current_buf = NULL;
2793 XBZRLE.zero_target_page = NULL;
2795 XBZRLE_cache_unlock();
2798 static void ram_save_cleanup(void *opaque)
2800 RAMState **rsp = opaque;
2801 RAMBlock *block;
2803 /* caller have hold iothread lock or is in a bh, so there is
2804 * no writing race against the migration bitmap
2806 memory_global_dirty_log_stop();
2808 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2809 g_free(block->clear_bmap);
2810 block->clear_bmap = NULL;
2811 g_free(block->bmap);
2812 block->bmap = NULL;
2815 xbzrle_cleanup();
2816 compress_threads_save_cleanup();
2817 ram_state_cleanup(rsp);
2820 static void ram_state_reset(RAMState *rs)
2822 rs->last_seen_block = NULL;
2823 rs->last_sent_block = NULL;
2824 rs->last_page = 0;
2825 rs->last_version = ram_list.version;
2826 rs->ram_bulk_stage = true;
2827 rs->fpo_enabled = false;
2830 #define MAX_WAIT 50 /* ms, half buffered_file limit */
2833 * 'expected' is the value you expect the bitmap mostly to be full
2834 * of; it won't bother printing lines that are all this value.
2835 * If 'todump' is null the migration bitmap is dumped.
2837 void ram_debug_dump_bitmap(unsigned long *todump, bool expected,
2838 unsigned long pages)
2840 int64_t cur;
2841 int64_t linelen = 128;
2842 char linebuf[129];
2844 for (cur = 0; cur < pages; cur += linelen) {
2845 int64_t curb;
2846 bool found = false;
2848 * Last line; catch the case where the line length
2849 * is longer than remaining ram
2851 if (cur + linelen > pages) {
2852 linelen = pages - cur;
2854 for (curb = 0; curb < linelen; curb++) {
2855 bool thisbit = test_bit(cur + curb, todump);
2856 linebuf[curb] = thisbit ? '1' : '.';
2857 found = found || (thisbit != expected);
2859 if (found) {
2860 linebuf[curb] = '\0';
2861 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
2866 /* **** functions for postcopy ***** */
2868 void ram_postcopy_migrated_memory_release(MigrationState *ms)
2870 struct RAMBlock *block;
2872 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2873 unsigned long *bitmap = block->bmap;
2874 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2875 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2877 while (run_start < range) {
2878 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2879 ram_discard_range(block->idstr,
2880 ((ram_addr_t)run_start) << TARGET_PAGE_BITS,
2881 ((ram_addr_t)(run_end - run_start))
2882 << TARGET_PAGE_BITS);
2883 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2889 * postcopy_send_discard_bm_ram: discard a RAMBlock
2891 * Returns zero on success
2893 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2895 * @ms: current migration state
2896 * @block: RAMBlock to discard
2898 static int postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block)
2900 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2901 unsigned long current;
2902 unsigned long *bitmap = block->bmap;
2904 for (current = 0; current < end; ) {
2905 unsigned long one = find_next_bit(bitmap, end, current);
2906 unsigned long zero, discard_length;
2908 if (one >= end) {
2909 break;
2912 zero = find_next_zero_bit(bitmap, end, one + 1);
2914 if (zero >= end) {
2915 discard_length = end - one;
2916 } else {
2917 discard_length = zero - one;
2919 postcopy_discard_send_range(ms, one, discard_length);
2920 current = one + discard_length;
2923 return 0;
2927 * postcopy_each_ram_send_discard: discard all RAMBlocks
2929 * Returns 0 for success or negative for error
2931 * Utility for the outgoing postcopy code.
2932 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2933 * passing it bitmap indexes and name.
2934 * (qemu_ram_foreach_block ends up passing unscaled lengths
2935 * which would mean postcopy code would have to deal with target page)
2937 * @ms: current migration state
2939 static int postcopy_each_ram_send_discard(MigrationState *ms)
2941 struct RAMBlock *block;
2942 int ret;
2944 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2945 postcopy_discard_send_init(ms, block->idstr);
2948 * Postcopy sends chunks of bitmap over the wire, but it
2949 * just needs indexes at this point, avoids it having
2950 * target page specific code.
2952 ret = postcopy_send_discard_bm_ram(ms, block);
2953 postcopy_discard_send_finish(ms);
2954 if (ret) {
2955 return ret;
2959 return 0;
2963 * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages
2965 * Helper for postcopy_chunk_hostpages; it's called twice to
2966 * canonicalize the two bitmaps, that are similar, but one is
2967 * inverted.
2969 * Postcopy requires that all target pages in a hostpage are dirty or
2970 * clean, not a mix. This function canonicalizes the bitmaps.
2972 * @ms: current migration state
2973 * @block: block that contains the page we want to canonicalize
2975 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block)
2977 RAMState *rs = ram_state;
2978 unsigned long *bitmap = block->bmap;
2979 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2980 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2981 unsigned long run_start;
2983 if (block->page_size == TARGET_PAGE_SIZE) {
2984 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2985 return;
2988 /* Find a dirty page */
2989 run_start = find_next_bit(bitmap, pages, 0);
2991 while (run_start < pages) {
2994 * If the start of this run of pages is in the middle of a host
2995 * page, then we need to fixup this host page.
2997 if (QEMU_IS_ALIGNED(run_start, host_ratio)) {
2998 /* Find the end of this run */
2999 run_start = find_next_zero_bit(bitmap, pages, run_start + 1);
3001 * If the end isn't at the start of a host page, then the
3002 * run doesn't finish at the end of a host page
3003 * and we need to discard.
3007 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) {
3008 unsigned long page;
3009 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start,
3010 host_ratio);
3011 run_start = QEMU_ALIGN_UP(run_start, host_ratio);
3013 /* Clean up the bitmap */
3014 for (page = fixup_start_addr;
3015 page < fixup_start_addr + host_ratio; page++) {
3017 * Remark them as dirty, updating the count for any pages
3018 * that weren't previously dirty.
3020 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
3024 /* Find the next dirty page for the next iteration */
3025 run_start = find_next_bit(bitmap, pages, run_start);
3030 * postcopy_chunk_hostpages: discard any partially sent host page
3032 * Utility for the outgoing postcopy code.
3034 * Discard any partially sent host-page size chunks, mark any partially
3035 * dirty host-page size chunks as all dirty. In this case the host-page
3036 * is the host-page for the particular RAMBlock, i.e. it might be a huge page
3038 * Returns zero on success
3040 * @ms: current migration state
3041 * @block: block we want to work with
3043 static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block)
3045 postcopy_discard_send_init(ms, block->idstr);
3048 * Ensure that all partially dirty host pages are made fully dirty.
3050 postcopy_chunk_hostpages_pass(ms, block);
3052 postcopy_discard_send_finish(ms);
3053 return 0;
3057 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
3059 * Returns zero on success
3061 * Transmit the set of pages to be discarded after precopy to the target
3062 * these are pages that:
3063 * a) Have been previously transmitted but are now dirty again
3064 * b) Pages that have never been transmitted, this ensures that
3065 * any pages on the destination that have been mapped by background
3066 * tasks get discarded (transparent huge pages is the specific concern)
3067 * Hopefully this is pretty sparse
3069 * @ms: current migration state
3071 int ram_postcopy_send_discard_bitmap(MigrationState *ms)
3073 RAMState *rs = ram_state;
3074 RAMBlock *block;
3075 int ret;
3077 RCU_READ_LOCK_GUARD();
3079 /* This should be our last sync, the src is now paused */
3080 migration_bitmap_sync(rs);
3082 /* Easiest way to make sure we don't resume in the middle of a host-page */
3083 rs->last_seen_block = NULL;
3084 rs->last_sent_block = NULL;
3085 rs->last_page = 0;
3087 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3088 /* Deal with TPS != HPS and huge pages */
3089 ret = postcopy_chunk_hostpages(ms, block);
3090 if (ret) {
3091 return ret;
3094 #ifdef DEBUG_POSTCOPY
3095 ram_debug_dump_bitmap(block->bmap, true,
3096 block->used_length >> TARGET_PAGE_BITS);
3097 #endif
3099 trace_ram_postcopy_send_discard_bitmap();
3101 ret = postcopy_each_ram_send_discard(ms);
3103 return ret;
3107 * ram_discard_range: discard dirtied pages at the beginning of postcopy
3109 * Returns zero on success
3111 * @rbname: name of the RAMBlock of the request. NULL means the
3112 * same that last one.
3113 * @start: RAMBlock starting page
3114 * @length: RAMBlock size
3116 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
3118 trace_ram_discard_range(rbname, start, length);
3120 RCU_READ_LOCK_GUARD();
3121 RAMBlock *rb = qemu_ram_block_by_name(rbname);
3123 if (!rb) {
3124 error_report("ram_discard_range: Failed to find block '%s'", rbname);
3125 return -1;
3129 * On source VM, we don't need to update the received bitmap since
3130 * we don't even have one.
3132 if (rb->receivedmap) {
3133 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
3134 length >> qemu_target_page_bits());
3137 return ram_block_discard_range(rb, start, length);
3141 * For every allocation, we will try not to crash the VM if the
3142 * allocation failed.
3144 static int xbzrle_init(void)
3146 Error *local_err = NULL;
3148 if (!migrate_use_xbzrle()) {
3149 return 0;
3152 XBZRLE_cache_lock();
3154 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
3155 if (!XBZRLE.zero_target_page) {
3156 error_report("%s: Error allocating zero page", __func__);
3157 goto err_out;
3160 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
3161 TARGET_PAGE_SIZE, &local_err);
3162 if (!XBZRLE.cache) {
3163 error_report_err(local_err);
3164 goto free_zero_page;
3167 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
3168 if (!XBZRLE.encoded_buf) {
3169 error_report("%s: Error allocating encoded_buf", __func__);
3170 goto free_cache;
3173 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
3174 if (!XBZRLE.current_buf) {
3175 error_report("%s: Error allocating current_buf", __func__);
3176 goto free_encoded_buf;
3179 /* We are all good */
3180 XBZRLE_cache_unlock();
3181 return 0;
3183 free_encoded_buf:
3184 g_free(XBZRLE.encoded_buf);
3185 XBZRLE.encoded_buf = NULL;
3186 free_cache:
3187 cache_fini(XBZRLE.cache);
3188 XBZRLE.cache = NULL;
3189 free_zero_page:
3190 g_free(XBZRLE.zero_target_page);
3191 XBZRLE.zero_target_page = NULL;
3192 err_out:
3193 XBZRLE_cache_unlock();
3194 return -ENOMEM;
3197 static int ram_state_init(RAMState **rsp)
3199 *rsp = g_try_new0(RAMState, 1);
3201 if (!*rsp) {
3202 error_report("%s: Init ramstate fail", __func__);
3203 return -1;
3206 qemu_mutex_init(&(*rsp)->bitmap_mutex);
3207 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
3208 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
3211 * Count the total number of pages used by ram blocks not including any
3212 * gaps due to alignment or unplugs.
3213 * This must match with the initial values of dirty bitmap.
3215 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
3216 ram_state_reset(*rsp);
3218 return 0;
3221 static void ram_list_init_bitmaps(void)
3223 MigrationState *ms = migrate_get_current();
3224 RAMBlock *block;
3225 unsigned long pages;
3226 uint8_t shift;
3228 /* Skip setting bitmap if there is no RAM */
3229 if (ram_bytes_total()) {
3230 shift = ms->clear_bitmap_shift;
3231 if (shift > CLEAR_BITMAP_SHIFT_MAX) {
3232 error_report("clear_bitmap_shift (%u) too big, using "
3233 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
3234 shift = CLEAR_BITMAP_SHIFT_MAX;
3235 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
3236 error_report("clear_bitmap_shift (%u) too small, using "
3237 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
3238 shift = CLEAR_BITMAP_SHIFT_MIN;
3241 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3242 pages = block->max_length >> TARGET_PAGE_BITS;
3244 * The initial dirty bitmap for migration must be set with all
3245 * ones to make sure we'll migrate every guest RAM page to
3246 * destination.
3247 * Here we set RAMBlock.bmap all to 1 because when rebegin a
3248 * new migration after a failed migration, ram_list.
3249 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
3250 * guest memory.
3252 block->bmap = bitmap_new(pages);
3253 bitmap_set(block->bmap, 0, pages);
3254 block->clear_bmap_shift = shift;
3255 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
3260 static void ram_init_bitmaps(RAMState *rs)
3262 /* For memory_global_dirty_log_start below. */
3263 qemu_mutex_lock_iothread();
3264 qemu_mutex_lock_ramlist();
3266 WITH_RCU_READ_LOCK_GUARD() {
3267 ram_list_init_bitmaps();
3268 memory_global_dirty_log_start();
3269 migration_bitmap_sync_precopy(rs);
3271 qemu_mutex_unlock_ramlist();
3272 qemu_mutex_unlock_iothread();
3275 static int ram_init_all(RAMState **rsp)
3277 if (ram_state_init(rsp)) {
3278 return -1;
3281 if (xbzrle_init()) {
3282 ram_state_cleanup(rsp);
3283 return -1;
3286 ram_init_bitmaps(*rsp);
3288 return 0;
3291 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
3293 RAMBlock *block;
3294 uint64_t pages = 0;
3297 * Postcopy is not using xbzrle/compression, so no need for that.
3298 * Also, since source are already halted, we don't need to care
3299 * about dirty page logging as well.
3302 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3303 pages += bitmap_count_one(block->bmap,
3304 block->used_length >> TARGET_PAGE_BITS);
3307 /* This may not be aligned with current bitmaps. Recalculate. */
3308 rs->migration_dirty_pages = pages;
3310 rs->last_seen_block = NULL;
3311 rs->last_sent_block = NULL;
3312 rs->last_page = 0;
3313 rs->last_version = ram_list.version;
3315 * Disable the bulk stage, otherwise we'll resend the whole RAM no
3316 * matter what we have sent.
3318 rs->ram_bulk_stage = false;
3320 /* Update RAMState cache of output QEMUFile */
3321 rs->f = out;
3323 trace_ram_state_resume_prepare(pages);
3327 * This function clears bits of the free pages reported by the caller from the
3328 * migration dirty bitmap. @addr is the host address corresponding to the
3329 * start of the continuous guest free pages, and @len is the total bytes of
3330 * those pages.
3332 void qemu_guest_free_page_hint(void *addr, size_t len)
3334 RAMBlock *block;
3335 ram_addr_t offset;
3336 size_t used_len, start, npages;
3337 MigrationState *s = migrate_get_current();
3339 /* This function is currently expected to be used during live migration */
3340 if (!migration_is_setup_or_active(s->state)) {
3341 return;
3344 for (; len > 0; len -= used_len, addr += used_len) {
3345 block = qemu_ram_block_from_host(addr, false, &offset);
3346 if (unlikely(!block || offset >= block->used_length)) {
3348 * The implementation might not support RAMBlock resize during
3349 * live migration, but it could happen in theory with future
3350 * updates. So we add a check here to capture that case.
3352 error_report_once("%s unexpected error", __func__);
3353 return;
3356 if (len <= block->used_length - offset) {
3357 used_len = len;
3358 } else {
3359 used_len = block->used_length - offset;
3362 start = offset >> TARGET_PAGE_BITS;
3363 npages = used_len >> TARGET_PAGE_BITS;
3365 qemu_mutex_lock(&ram_state->bitmap_mutex);
3366 ram_state->migration_dirty_pages -=
3367 bitmap_count_one_with_offset(block->bmap, start, npages);
3368 bitmap_clear(block->bmap, start, npages);
3369 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3374 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
3375 * long-running RCU critical section. When rcu-reclaims in the code
3376 * start to become numerous it will be necessary to reduce the
3377 * granularity of these critical sections.
3381 * ram_save_setup: Setup RAM for migration
3383 * Returns zero to indicate success and negative for error
3385 * @f: QEMUFile where to send the data
3386 * @opaque: RAMState pointer
3388 static int ram_save_setup(QEMUFile *f, void *opaque)
3390 RAMState **rsp = opaque;
3391 RAMBlock *block;
3393 if (compress_threads_save_setup()) {
3394 return -1;
3397 /* migration has already setup the bitmap, reuse it. */
3398 if (!migration_in_colo_state()) {
3399 if (ram_init_all(rsp) != 0) {
3400 compress_threads_save_cleanup();
3401 return -1;
3404 (*rsp)->f = f;
3406 WITH_RCU_READ_LOCK_GUARD() {
3407 qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE);
3409 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3410 qemu_put_byte(f, strlen(block->idstr));
3411 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3412 qemu_put_be64(f, block->used_length);
3413 if (migrate_postcopy_ram() && block->page_size !=
3414 qemu_host_page_size) {
3415 qemu_put_be64(f, block->page_size);
3417 if (migrate_ignore_shared()) {
3418 qemu_put_be64(f, block->mr->addr);
3423 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
3424 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
3426 multifd_send_sync_main(*rsp);
3427 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3428 qemu_fflush(f);
3430 return 0;
3434 * ram_save_iterate: iterative stage for migration
3436 * Returns zero to indicate success and negative for error
3438 * @f: QEMUFile where to send the data
3439 * @opaque: RAMState pointer
3441 static int ram_save_iterate(QEMUFile *f, void *opaque)
3443 RAMState **temp = opaque;
3444 RAMState *rs = *temp;
3445 int ret;
3446 int i;
3447 int64_t t0;
3448 int done = 0;
3450 if (blk_mig_bulk_active()) {
3451 /* Avoid transferring ram during bulk phase of block migration as
3452 * the bulk phase will usually take a long time and transferring
3453 * ram updates during that time is pointless. */
3454 goto out;
3457 WITH_RCU_READ_LOCK_GUARD() {
3458 if (ram_list.version != rs->last_version) {
3459 ram_state_reset(rs);
3462 /* Read version before ram_list.blocks */
3463 smp_rmb();
3465 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
3467 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3468 i = 0;
3469 while ((ret = qemu_file_rate_limit(f)) == 0 ||
3470 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
3471 int pages;
3473 if (qemu_file_get_error(f)) {
3474 break;
3477 pages = ram_find_and_save_block(rs, false);
3478 /* no more pages to sent */
3479 if (pages == 0) {
3480 done = 1;
3481 break;
3484 if (pages < 0) {
3485 qemu_file_set_error(f, pages);
3486 break;
3489 rs->target_page_count += pages;
3492 * During postcopy, it is necessary to make sure one whole host
3493 * page is sent in one chunk.
3495 if (migrate_postcopy_ram()) {
3496 flush_compressed_data(rs);
3500 * we want to check in the 1st loop, just in case it was the 1st
3501 * time and we had to sync the dirty bitmap.
3502 * qemu_clock_get_ns() is a bit expensive, so we only check each
3503 * some iterations
3505 if ((i & 63) == 0) {
3506 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) /
3507 1000000;
3508 if (t1 > MAX_WAIT) {
3509 trace_ram_save_iterate_big_wait(t1, i);
3510 break;
3513 i++;
3518 * Must occur before EOS (or any QEMUFile operation)
3519 * because of RDMA protocol.
3521 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
3523 out:
3524 multifd_send_sync_main(rs);
3525 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3526 qemu_fflush(f);
3527 ram_counters.transferred += 8;
3529 ret = qemu_file_get_error(f);
3530 if (ret < 0) {
3531 return ret;
3534 return done;
3538 * ram_save_complete: function called to send the remaining amount of ram
3540 * Returns zero to indicate success or negative on error
3542 * Called with iothread lock
3544 * @f: QEMUFile where to send the data
3545 * @opaque: RAMState pointer
3547 static int ram_save_complete(QEMUFile *f, void *opaque)
3549 RAMState **temp = opaque;
3550 RAMState *rs = *temp;
3551 int ret = 0;
3553 WITH_RCU_READ_LOCK_GUARD() {
3554 if (!migration_in_postcopy()) {
3555 migration_bitmap_sync_precopy(rs);
3558 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
3560 /* try transferring iterative blocks of memory */
3562 /* flush all remaining blocks regardless of rate limiting */
3563 while (true) {
3564 int pages;
3566 pages = ram_find_and_save_block(rs, !migration_in_colo_state());
3567 /* no more blocks to sent */
3568 if (pages == 0) {
3569 break;
3571 if (pages < 0) {
3572 ret = pages;
3573 break;
3577 flush_compressed_data(rs);
3578 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
3581 multifd_send_sync_main(rs);
3582 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3583 qemu_fflush(f);
3585 return ret;
3588 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
3589 uint64_t *res_precopy_only,
3590 uint64_t *res_compatible,
3591 uint64_t *res_postcopy_only)
3593 RAMState **temp = opaque;
3594 RAMState *rs = *temp;
3595 uint64_t remaining_size;
3597 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3599 if (!migration_in_postcopy() &&
3600 remaining_size < max_size) {
3601 qemu_mutex_lock_iothread();
3602 WITH_RCU_READ_LOCK_GUARD() {
3603 migration_bitmap_sync_precopy(rs);
3605 qemu_mutex_unlock_iothread();
3606 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3609 if (migrate_postcopy_ram()) {
3610 /* We can do postcopy, and all the data is postcopiable */
3611 *res_compatible += remaining_size;
3612 } else {
3613 *res_precopy_only += remaining_size;
3617 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3619 unsigned int xh_len;
3620 int xh_flags;
3621 uint8_t *loaded_data;
3623 /* extract RLE header */
3624 xh_flags = qemu_get_byte(f);
3625 xh_len = qemu_get_be16(f);
3627 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3628 error_report("Failed to load XBZRLE page - wrong compression!");
3629 return -1;
3632 if (xh_len > TARGET_PAGE_SIZE) {
3633 error_report("Failed to load XBZRLE page - len overflow!");
3634 return -1;
3636 loaded_data = XBZRLE.decoded_buf;
3637 /* load data and decode */
3638 /* it can change loaded_data to point to an internal buffer */
3639 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3641 /* decode RLE */
3642 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3643 TARGET_PAGE_SIZE) == -1) {
3644 error_report("Failed to load XBZRLE page - decode error!");
3645 return -1;
3648 return 0;
3652 * ram_block_from_stream: read a RAMBlock id from the migration stream
3654 * Must be called from within a rcu critical section.
3656 * Returns a pointer from within the RCU-protected ram_list.
3658 * @f: QEMUFile where to read the data from
3659 * @flags: Page flags (mostly to see if it's a continuation of previous block)
3661 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags)
3663 static RAMBlock *block = NULL;
3664 char id[256];
3665 uint8_t len;
3667 if (flags & RAM_SAVE_FLAG_CONTINUE) {
3668 if (!block) {
3669 error_report("Ack, bad migration stream!");
3670 return NULL;
3672 return block;
3675 len = qemu_get_byte(f);
3676 qemu_get_buffer(f, (uint8_t *)id, len);
3677 id[len] = 0;
3679 block = qemu_ram_block_by_name(id);
3680 if (!block) {
3681 error_report("Can't find block %s", id);
3682 return NULL;
3685 if (ramblock_is_ignored(block)) {
3686 error_report("block %s should not be migrated !", id);
3687 return NULL;
3690 return block;
3693 static inline void *host_from_ram_block_offset(RAMBlock *block,
3694 ram_addr_t offset)
3696 if (!offset_in_ramblock(block, offset)) {
3697 return NULL;
3700 return block->host + offset;
3703 static inline void *colo_cache_from_block_offset(RAMBlock *block,
3704 ram_addr_t offset)
3706 if (!offset_in_ramblock(block, offset)) {
3707 return NULL;
3709 if (!block->colo_cache) {
3710 error_report("%s: colo_cache is NULL in block :%s",
3711 __func__, block->idstr);
3712 return NULL;
3716 * During colo checkpoint, we need bitmap of these migrated pages.
3717 * It help us to decide which pages in ram cache should be flushed
3718 * into VM's RAM later.
3720 if (!test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) {
3721 ram_state->migration_dirty_pages++;
3723 return block->colo_cache + offset;
3727 * ram_handle_compressed: handle the zero page case
3729 * If a page (or a whole RDMA chunk) has been
3730 * determined to be zero, then zap it.
3732 * @host: host address for the zero page
3733 * @ch: what the page is filled from. We only support zero
3734 * @size: size of the zero page
3736 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
3738 if (ch != 0 || !is_zero_range(host, size)) {
3739 memset(host, ch, size);
3743 /* return the size after decompression, or negative value on error */
3744 static int
3745 qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
3746 const uint8_t *source, size_t source_len)
3748 int err;
3750 err = inflateReset(stream);
3751 if (err != Z_OK) {
3752 return -1;
3755 stream->avail_in = source_len;
3756 stream->next_in = (uint8_t *)source;
3757 stream->avail_out = dest_len;
3758 stream->next_out = dest;
3760 err = inflate(stream, Z_NO_FLUSH);
3761 if (err != Z_STREAM_END) {
3762 return -1;
3765 return stream->total_out;
3768 static void *do_data_decompress(void *opaque)
3770 DecompressParam *param = opaque;
3771 unsigned long pagesize;
3772 uint8_t *des;
3773 int len, ret;
3775 qemu_mutex_lock(&param->mutex);
3776 while (!param->quit) {
3777 if (param->des) {
3778 des = param->des;
3779 len = param->len;
3780 param->des = 0;
3781 qemu_mutex_unlock(&param->mutex);
3783 pagesize = TARGET_PAGE_SIZE;
3785 ret = qemu_uncompress_data(&param->stream, des, pagesize,
3786 param->compbuf, len);
3787 if (ret < 0 && migrate_get_current()->decompress_error_check) {
3788 error_report("decompress data failed");
3789 qemu_file_set_error(decomp_file, ret);
3792 qemu_mutex_lock(&decomp_done_lock);
3793 param->done = true;
3794 qemu_cond_signal(&decomp_done_cond);
3795 qemu_mutex_unlock(&decomp_done_lock);
3797 qemu_mutex_lock(&param->mutex);
3798 } else {
3799 qemu_cond_wait(&param->cond, &param->mutex);
3802 qemu_mutex_unlock(&param->mutex);
3804 return NULL;
3807 static int wait_for_decompress_done(void)
3809 int idx, thread_count;
3811 if (!migrate_use_compression()) {
3812 return 0;
3815 thread_count = migrate_decompress_threads();
3816 qemu_mutex_lock(&decomp_done_lock);
3817 for (idx = 0; idx < thread_count; idx++) {
3818 while (!decomp_param[idx].done) {
3819 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3822 qemu_mutex_unlock(&decomp_done_lock);
3823 return qemu_file_get_error(decomp_file);
3826 static void compress_threads_load_cleanup(void)
3828 int i, thread_count;
3830 if (!migrate_use_compression()) {
3831 return;
3833 thread_count = migrate_decompress_threads();
3834 for (i = 0; i < thread_count; i++) {
3836 * we use it as a indicator which shows if the thread is
3837 * properly init'd or not
3839 if (!decomp_param[i].compbuf) {
3840 break;
3843 qemu_mutex_lock(&decomp_param[i].mutex);
3844 decomp_param[i].quit = true;
3845 qemu_cond_signal(&decomp_param[i].cond);
3846 qemu_mutex_unlock(&decomp_param[i].mutex);
3848 for (i = 0; i < thread_count; i++) {
3849 if (!decomp_param[i].compbuf) {
3850 break;
3853 qemu_thread_join(decompress_threads + i);
3854 qemu_mutex_destroy(&decomp_param[i].mutex);
3855 qemu_cond_destroy(&decomp_param[i].cond);
3856 inflateEnd(&decomp_param[i].stream);
3857 g_free(decomp_param[i].compbuf);
3858 decomp_param[i].compbuf = NULL;
3860 g_free(decompress_threads);
3861 g_free(decomp_param);
3862 decompress_threads = NULL;
3863 decomp_param = NULL;
3864 decomp_file = NULL;
3867 static int compress_threads_load_setup(QEMUFile *f)
3869 int i, thread_count;
3871 if (!migrate_use_compression()) {
3872 return 0;
3875 thread_count = migrate_decompress_threads();
3876 decompress_threads = g_new0(QemuThread, thread_count);
3877 decomp_param = g_new0(DecompressParam, thread_count);
3878 qemu_mutex_init(&decomp_done_lock);
3879 qemu_cond_init(&decomp_done_cond);
3880 decomp_file = f;
3881 for (i = 0; i < thread_count; i++) {
3882 if (inflateInit(&decomp_param[i].stream) != Z_OK) {
3883 goto exit;
3886 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
3887 qemu_mutex_init(&decomp_param[i].mutex);
3888 qemu_cond_init(&decomp_param[i].cond);
3889 decomp_param[i].done = true;
3890 decomp_param[i].quit = false;
3891 qemu_thread_create(decompress_threads + i, "decompress",
3892 do_data_decompress, decomp_param + i,
3893 QEMU_THREAD_JOINABLE);
3895 return 0;
3896 exit:
3897 compress_threads_load_cleanup();
3898 return -1;
3901 static void decompress_data_with_multi_threads(QEMUFile *f,
3902 void *host, int len)
3904 int idx, thread_count;
3906 thread_count = migrate_decompress_threads();
3907 qemu_mutex_lock(&decomp_done_lock);
3908 while (true) {
3909 for (idx = 0; idx < thread_count; idx++) {
3910 if (decomp_param[idx].done) {
3911 decomp_param[idx].done = false;
3912 qemu_mutex_lock(&decomp_param[idx].mutex);
3913 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
3914 decomp_param[idx].des = host;
3915 decomp_param[idx].len = len;
3916 qemu_cond_signal(&decomp_param[idx].cond);
3917 qemu_mutex_unlock(&decomp_param[idx].mutex);
3918 break;
3921 if (idx < thread_count) {
3922 break;
3923 } else {
3924 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3927 qemu_mutex_unlock(&decomp_done_lock);
3931 * colo cache: this is for secondary VM, we cache the whole
3932 * memory of the secondary VM, it is need to hold the global lock
3933 * to call this helper.
3935 int colo_init_ram_cache(void)
3937 RAMBlock *block;
3939 WITH_RCU_READ_LOCK_GUARD() {
3940 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3941 block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3942 NULL,
3943 false);
3944 if (!block->colo_cache) {
3945 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3946 "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3947 block->used_length);
3948 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3949 if (block->colo_cache) {
3950 qemu_anon_ram_free(block->colo_cache, block->used_length);
3951 block->colo_cache = NULL;
3954 return -errno;
3956 memcpy(block->colo_cache, block->host, block->used_length);
3961 * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3962 * with to decide which page in cache should be flushed into SVM's RAM. Here
3963 * we use the same name 'ram_bitmap' as for migration.
3965 if (ram_bytes_total()) {
3966 RAMBlock *block;
3968 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3969 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3971 block->bmap = bitmap_new(pages);
3972 bitmap_set(block->bmap, 0, pages);
3975 ram_state = g_new0(RAMState, 1);
3976 ram_state->migration_dirty_pages = 0;
3977 qemu_mutex_init(&ram_state->bitmap_mutex);
3978 memory_global_dirty_log_start();
3980 return 0;
3983 /* It is need to hold the global lock to call this helper */
3984 void colo_release_ram_cache(void)
3986 RAMBlock *block;
3988 memory_global_dirty_log_stop();
3989 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3990 g_free(block->bmap);
3991 block->bmap = NULL;
3994 WITH_RCU_READ_LOCK_GUARD() {
3995 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3996 if (block->colo_cache) {
3997 qemu_anon_ram_free(block->colo_cache, block->used_length);
3998 block->colo_cache = NULL;
4002 qemu_mutex_destroy(&ram_state->bitmap_mutex);
4003 g_free(ram_state);
4004 ram_state = NULL;
4008 * ram_load_setup: Setup RAM for migration incoming side
4010 * Returns zero to indicate success and negative for error
4012 * @f: QEMUFile where to receive the data
4013 * @opaque: RAMState pointer
4015 static int ram_load_setup(QEMUFile *f, void *opaque)
4017 if (compress_threads_load_setup(f)) {
4018 return -1;
4021 xbzrle_load_setup();
4022 ramblock_recv_map_init();
4024 return 0;
4027 static int ram_load_cleanup(void *opaque)
4029 RAMBlock *rb;
4031 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4032 qemu_ram_block_writeback(rb);
4035 xbzrle_load_cleanup();
4036 compress_threads_load_cleanup();
4038 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4039 g_free(rb->receivedmap);
4040 rb->receivedmap = NULL;
4043 return 0;
4047 * ram_postcopy_incoming_init: allocate postcopy data structures
4049 * Returns 0 for success and negative if there was one error
4051 * @mis: current migration incoming state
4053 * Allocate data structures etc needed by incoming migration with
4054 * postcopy-ram. postcopy-ram's similarly names
4055 * postcopy_ram_incoming_init does the work.
4057 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
4059 return postcopy_ram_incoming_init(mis);
4063 * ram_load_postcopy: load a page in postcopy case
4065 * Returns 0 for success or -errno in case of error
4067 * Called in postcopy mode by ram_load().
4068 * rcu_read_lock is taken prior to this being called.
4070 * @f: QEMUFile where to send the data
4072 static int ram_load_postcopy(QEMUFile *f)
4074 int flags = 0, ret = 0;
4075 bool place_needed = false;
4076 bool matches_target_page_size = false;
4077 MigrationIncomingState *mis = migration_incoming_get_current();
4078 /* Temporary page that is later 'placed' */
4079 void *postcopy_host_page = mis->postcopy_tmp_page;
4080 void *this_host = NULL;
4081 bool all_zero = false;
4082 int target_pages = 0;
4084 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4085 ram_addr_t addr;
4086 void *host = NULL;
4087 void *page_buffer = NULL;
4088 void *place_source = NULL;
4089 RAMBlock *block = NULL;
4090 uint8_t ch;
4091 int len;
4093 addr = qemu_get_be64(f);
4096 * If qemu file error, we should stop here, and then "addr"
4097 * may be invalid
4099 ret = qemu_file_get_error(f);
4100 if (ret) {
4101 break;
4104 flags = addr & ~TARGET_PAGE_MASK;
4105 addr &= TARGET_PAGE_MASK;
4107 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
4108 place_needed = false;
4109 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
4110 RAM_SAVE_FLAG_COMPRESS_PAGE)) {
4111 block = ram_block_from_stream(f, flags);
4113 host = host_from_ram_block_offset(block, addr);
4114 if (!host) {
4115 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4116 ret = -EINVAL;
4117 break;
4119 target_pages++;
4120 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
4122 * Postcopy requires that we place whole host pages atomically;
4123 * these may be huge pages for RAMBlocks that are backed by
4124 * hugetlbfs.
4125 * To make it atomic, the data is read into a temporary page
4126 * that's moved into place later.
4127 * The migration protocol uses, possibly smaller, target-pages
4128 * however the source ensures it always sends all the components
4129 * of a host page in one chunk.
4131 page_buffer = postcopy_host_page +
4132 ((uintptr_t)host & (block->page_size - 1));
4133 /* If all TP are zero then we can optimise the place */
4134 if (target_pages == 1) {
4135 all_zero = true;
4136 this_host = (void *)QEMU_ALIGN_DOWN((uintptr_t)host,
4137 block->page_size);
4138 } else {
4139 /* not the 1st TP within the HP */
4140 if (QEMU_ALIGN_DOWN((uintptr_t)host, block->page_size) !=
4141 (uintptr_t)this_host) {
4142 error_report("Non-same host page %p/%p",
4143 host, this_host);
4144 ret = -EINVAL;
4145 break;
4150 * If it's the last part of a host page then we place the host
4151 * page
4153 if (target_pages == (block->page_size / TARGET_PAGE_SIZE)) {
4154 place_needed = true;
4155 target_pages = 0;
4157 place_source = postcopy_host_page;
4160 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4161 case RAM_SAVE_FLAG_ZERO:
4162 ch = qemu_get_byte(f);
4164 * Can skip to set page_buffer when
4165 * this is a zero page and (block->page_size == TARGET_PAGE_SIZE).
4167 if (ch || !matches_target_page_size) {
4168 memset(page_buffer, ch, TARGET_PAGE_SIZE);
4170 if (ch) {
4171 all_zero = false;
4173 break;
4175 case RAM_SAVE_FLAG_PAGE:
4176 all_zero = false;
4177 if (!matches_target_page_size) {
4178 /* For huge pages, we always use temporary buffer */
4179 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
4180 } else {
4182 * For small pages that matches target page size, we
4183 * avoid the qemu_file copy. Instead we directly use
4184 * the buffer of QEMUFile to place the page. Note: we
4185 * cannot do any QEMUFile operation before using that
4186 * buffer to make sure the buffer is valid when
4187 * placing the page.
4189 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
4190 TARGET_PAGE_SIZE);
4192 break;
4193 case RAM_SAVE_FLAG_COMPRESS_PAGE:
4194 all_zero = false;
4195 len = qemu_get_be32(f);
4196 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4197 error_report("Invalid compressed data length: %d", len);
4198 ret = -EINVAL;
4199 break;
4201 decompress_data_with_multi_threads(f, page_buffer, len);
4202 break;
4204 case RAM_SAVE_FLAG_EOS:
4205 /* normal exit */
4206 multifd_recv_sync_main();
4207 break;
4208 default:
4209 error_report("Unknown combination of migration flags: %#x"
4210 " (postcopy mode)", flags);
4211 ret = -EINVAL;
4212 break;
4215 /* Got the whole host page, wait for decompress before placing. */
4216 if (place_needed) {
4217 ret |= wait_for_decompress_done();
4220 /* Detect for any possible file errors */
4221 if (!ret && qemu_file_get_error(f)) {
4222 ret = qemu_file_get_error(f);
4225 if (!ret && place_needed) {
4226 /* This gets called at the last target page in the host page */
4227 void *place_dest = (void *)QEMU_ALIGN_DOWN((uintptr_t)host,
4228 block->page_size);
4230 if (all_zero) {
4231 ret = postcopy_place_page_zero(mis, place_dest,
4232 block);
4233 } else {
4234 ret = postcopy_place_page(mis, place_dest,
4235 place_source, block);
4240 return ret;
4243 static bool postcopy_is_advised(void)
4245 PostcopyState ps = postcopy_state_get();
4246 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END;
4249 static bool postcopy_is_running(void)
4251 PostcopyState ps = postcopy_state_get();
4252 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
4256 * Flush content of RAM cache into SVM's memory.
4257 * Only flush the pages that be dirtied by PVM or SVM or both.
4259 static void colo_flush_ram_cache(void)
4261 RAMBlock *block = NULL;
4262 void *dst_host;
4263 void *src_host;
4264 unsigned long offset = 0;
4266 memory_global_dirty_log_sync();
4267 WITH_RCU_READ_LOCK_GUARD() {
4268 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4269 ramblock_sync_dirty_bitmap(ram_state, block);
4273 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
4274 WITH_RCU_READ_LOCK_GUARD() {
4275 block = QLIST_FIRST_RCU(&ram_list.blocks);
4277 while (block) {
4278 offset = migration_bitmap_find_dirty(ram_state, block, offset);
4280 if (((ram_addr_t)offset) << TARGET_PAGE_BITS
4281 >= block->used_length) {
4282 offset = 0;
4283 block = QLIST_NEXT_RCU(block, next);
4284 } else {
4285 migration_bitmap_clear_dirty(ram_state, block, offset);
4286 dst_host = block->host
4287 + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
4288 src_host = block->colo_cache
4289 + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
4290 memcpy(dst_host, src_host, TARGET_PAGE_SIZE);
4294 trace_colo_flush_ram_cache_end();
4298 * ram_load_precopy: load pages in precopy case
4300 * Returns 0 for success or -errno in case of error
4302 * Called in precopy mode by ram_load().
4303 * rcu_read_lock is taken prior to this being called.
4305 * @f: QEMUFile where to send the data
4307 static int ram_load_precopy(QEMUFile *f)
4309 int flags = 0, ret = 0, invalid_flags = 0, len = 0, i = 0;
4310 /* ADVISE is earlier, it shows the source has the postcopy capability on */
4311 bool postcopy_advised = postcopy_is_advised();
4312 if (!migrate_use_compression()) {
4313 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
4316 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4317 ram_addr_t addr, total_ram_bytes;
4318 void *host = NULL;
4319 uint8_t ch;
4322 * Yield periodically to let main loop run, but an iteration of
4323 * the main loop is expensive, so do it each some iterations
4325 if ((i & 32767) == 0 && qemu_in_coroutine()) {
4326 aio_co_schedule(qemu_get_current_aio_context(),
4327 qemu_coroutine_self());
4328 qemu_coroutine_yield();
4330 i++;
4332 addr = qemu_get_be64(f);
4333 flags = addr & ~TARGET_PAGE_MASK;
4334 addr &= TARGET_PAGE_MASK;
4336 if (flags & invalid_flags) {
4337 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
4338 error_report("Received an unexpected compressed page");
4341 ret = -EINVAL;
4342 break;
4345 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
4346 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
4347 RAMBlock *block = ram_block_from_stream(f, flags);
4350 * After going into COLO, we should load the Page into colo_cache.
4352 if (migration_incoming_in_colo_state()) {
4353 host = colo_cache_from_block_offset(block, addr);
4354 } else {
4355 host = host_from_ram_block_offset(block, addr);
4357 if (!host) {
4358 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4359 ret = -EINVAL;
4360 break;
4363 if (!migration_incoming_in_colo_state()) {
4364 ramblock_recv_bitmap_set(block, host);
4367 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
4370 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4371 case RAM_SAVE_FLAG_MEM_SIZE:
4372 /* Synchronize RAM block list */
4373 total_ram_bytes = addr;
4374 while (!ret && total_ram_bytes) {
4375 RAMBlock *block;
4376 char id[256];
4377 ram_addr_t length;
4379 len = qemu_get_byte(f);
4380 qemu_get_buffer(f, (uint8_t *)id, len);
4381 id[len] = 0;
4382 length = qemu_get_be64(f);
4384 block = qemu_ram_block_by_name(id);
4385 if (block && !qemu_ram_is_migratable(block)) {
4386 error_report("block %s should not be migrated !", id);
4387 ret = -EINVAL;
4388 } else if (block) {
4389 if (length != block->used_length) {
4390 Error *local_err = NULL;
4392 ret = qemu_ram_resize(block, length,
4393 &local_err);
4394 if (local_err) {
4395 error_report_err(local_err);
4398 /* For postcopy we need to check hugepage sizes match */
4399 if (postcopy_advised &&
4400 block->page_size != qemu_host_page_size) {
4401 uint64_t remote_page_size = qemu_get_be64(f);
4402 if (remote_page_size != block->page_size) {
4403 error_report("Mismatched RAM page size %s "
4404 "(local) %zd != %" PRId64,
4405 id, block->page_size,
4406 remote_page_size);
4407 ret = -EINVAL;
4410 if (migrate_ignore_shared()) {
4411 hwaddr addr = qemu_get_be64(f);
4412 if (ramblock_is_ignored(block) &&
4413 block->mr->addr != addr) {
4414 error_report("Mismatched GPAs for block %s "
4415 "%" PRId64 "!= %" PRId64,
4416 id, (uint64_t)addr,
4417 (uint64_t)block->mr->addr);
4418 ret = -EINVAL;
4421 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
4422 block->idstr);
4423 } else {
4424 error_report("Unknown ramblock \"%s\", cannot "
4425 "accept migration", id);
4426 ret = -EINVAL;
4429 total_ram_bytes -= length;
4431 break;
4433 case RAM_SAVE_FLAG_ZERO:
4434 ch = qemu_get_byte(f);
4435 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
4436 break;
4438 case RAM_SAVE_FLAG_PAGE:
4439 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4440 break;
4442 case RAM_SAVE_FLAG_COMPRESS_PAGE:
4443 len = qemu_get_be32(f);
4444 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4445 error_report("Invalid compressed data length: %d", len);
4446 ret = -EINVAL;
4447 break;
4449 decompress_data_with_multi_threads(f, host, len);
4450 break;
4452 case RAM_SAVE_FLAG_XBZRLE:
4453 if (load_xbzrle(f, addr, host) < 0) {
4454 error_report("Failed to decompress XBZRLE page at "
4455 RAM_ADDR_FMT, addr);
4456 ret = -EINVAL;
4457 break;
4459 break;
4460 case RAM_SAVE_FLAG_EOS:
4461 /* normal exit */
4462 multifd_recv_sync_main();
4463 break;
4464 default:
4465 if (flags & RAM_SAVE_FLAG_HOOK) {
4466 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
4467 } else {
4468 error_report("Unknown combination of migration flags: %#x",
4469 flags);
4470 ret = -EINVAL;
4473 if (!ret) {
4474 ret = qemu_file_get_error(f);
4478 ret |= wait_for_decompress_done();
4479 return ret;
4482 static int ram_load(QEMUFile *f, void *opaque, int version_id)
4484 int ret = 0;
4485 static uint64_t seq_iter;
4487 * If system is running in postcopy mode, page inserts to host memory must
4488 * be atomic
4490 bool postcopy_running = postcopy_is_running();
4492 seq_iter++;
4494 if (version_id != 4) {
4495 return -EINVAL;
4499 * This RCU critical section can be very long running.
4500 * When RCU reclaims in the code start to become numerous,
4501 * it will be necessary to reduce the granularity of this
4502 * critical section.
4504 WITH_RCU_READ_LOCK_GUARD() {
4505 if (postcopy_running) {
4506 ret = ram_load_postcopy(f);
4507 } else {
4508 ret = ram_load_precopy(f);
4511 trace_ram_load_complete(ret, seq_iter);
4513 if (!ret && migration_incoming_in_colo_state()) {
4514 colo_flush_ram_cache();
4516 return ret;
4519 static bool ram_has_postcopy(void *opaque)
4521 RAMBlock *rb;
4522 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4523 if (ramblock_is_pmem(rb)) {
4524 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4525 "is not supported now!", rb->idstr, rb->host);
4526 return false;
4530 return migrate_postcopy_ram();
4533 /* Sync all the dirty bitmap with destination VM. */
4534 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4536 RAMBlock *block;
4537 QEMUFile *file = s->to_dst_file;
4538 int ramblock_count = 0;
4540 trace_ram_dirty_bitmap_sync_start();
4542 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4543 qemu_savevm_send_recv_bitmap(file, block->idstr);
4544 trace_ram_dirty_bitmap_request(block->idstr);
4545 ramblock_count++;
4548 trace_ram_dirty_bitmap_sync_wait();
4550 /* Wait until all the ramblocks' dirty bitmap synced */
4551 while (ramblock_count--) {
4552 qemu_sem_wait(&s->rp_state.rp_sem);
4555 trace_ram_dirty_bitmap_sync_complete();
4557 return 0;
4560 static void ram_dirty_bitmap_reload_notify(MigrationState *s)
4562 qemu_sem_post(&s->rp_state.rp_sem);
4566 * Read the received bitmap, revert it as the initial dirty bitmap.
4567 * This is only used when the postcopy migration is paused but wants
4568 * to resume from a middle point.
4570 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
4572 int ret = -EINVAL;
4573 QEMUFile *file = s->rp_state.from_dst_file;
4574 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS;
4575 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
4576 uint64_t size, end_mark;
4578 trace_ram_dirty_bitmap_reload_begin(block->idstr);
4580 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4581 error_report("%s: incorrect state %s", __func__,
4582 MigrationStatus_str(s->state));
4583 return -EINVAL;
4587 * Note: see comments in ramblock_recv_bitmap_send() on why we
4588 * need the endianess convertion, and the paddings.
4590 local_size = ROUND_UP(local_size, 8);
4592 /* Add paddings */
4593 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4595 size = qemu_get_be64(file);
4597 /* The size of the bitmap should match with our ramblock */
4598 if (size != local_size) {
4599 error_report("%s: ramblock '%s' bitmap size mismatch "
4600 "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
4601 block->idstr, size, local_size);
4602 ret = -EINVAL;
4603 goto out;
4606 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4607 end_mark = qemu_get_be64(file);
4609 ret = qemu_file_get_error(file);
4610 if (ret || size != local_size) {
4611 error_report("%s: read bitmap failed for ramblock '%s': %d"
4612 " (size 0x%"PRIx64", got: 0x%"PRIx64")",
4613 __func__, block->idstr, ret, local_size, size);
4614 ret = -EIO;
4615 goto out;
4618 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4619 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64,
4620 __func__, block->idstr, end_mark);
4621 ret = -EINVAL;
4622 goto out;
4626 * Endianess convertion. We are during postcopy (though paused).
4627 * The dirty bitmap won't change. We can directly modify it.
4629 bitmap_from_le(block->bmap, le_bitmap, nbits);
4632 * What we received is "received bitmap". Revert it as the initial
4633 * dirty bitmap for this ramblock.
4635 bitmap_complement(block->bmap, block->bmap, nbits);
4637 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4640 * We succeeded to sync bitmap for current ramblock. If this is
4641 * the last one to sync, we need to notify the main send thread.
4643 ram_dirty_bitmap_reload_notify(s);
4645 ret = 0;
4646 out:
4647 g_free(le_bitmap);
4648 return ret;
4651 static int ram_resume_prepare(MigrationState *s, void *opaque)
4653 RAMState *rs = *(RAMState **)opaque;
4654 int ret;
4656 ret = ram_dirty_bitmap_sync_all(s, rs);
4657 if (ret) {
4658 return ret;
4661 ram_state_resume_prepare(rs, s->to_dst_file);
4663 return 0;
4666 static SaveVMHandlers savevm_ram_handlers = {
4667 .save_setup = ram_save_setup,
4668 .save_live_iterate = ram_save_iterate,
4669 .save_live_complete_postcopy = ram_save_complete,
4670 .save_live_complete_precopy = ram_save_complete,
4671 .has_postcopy = ram_has_postcopy,
4672 .save_live_pending = ram_save_pending,
4673 .load_state = ram_load,
4674 .save_cleanup = ram_save_cleanup,
4675 .load_setup = ram_load_setup,
4676 .load_cleanup = ram_load_cleanup,
4677 .resume_prepare = ram_resume_prepare,
4680 void ram_mig_init(void)
4682 qemu_mutex_init(&XBZRLE.lock);
4683 register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state);