migration: Define VMSTATE_INSTANCE_ID_ANY
[qemu/kevin.git] / hw / ppc / spapr.c
blob02cf53fc5b637c5bf980f9c46530d47d7957272d
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/hostmem.h"
33 #include "sysemu/numa.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/reset.h"
36 #include "sysemu/runstate.h"
37 #include "qemu/log.h"
38 #include "hw/fw-path-provider.h"
39 #include "elf.h"
40 #include "net/net.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/cpus.h"
43 #include "sysemu/hw_accel.h"
44 #include "kvm_ppc.h"
45 #include "migration/misc.h"
46 #include "migration/qemu-file-types.h"
47 #include "migration/global_state.h"
48 #include "migration/register.h"
49 #include "mmu-hash64.h"
50 #include "mmu-book3s-v3.h"
51 #include "cpu-models.h"
52 #include "hw/core/cpu.h"
54 #include "hw/boards.h"
55 #include "hw/ppc/ppc.h"
56 #include "hw/loader.h"
58 #include "hw/ppc/fdt.h"
59 #include "hw/ppc/spapr.h"
60 #include "hw/ppc/spapr_vio.h"
61 #include "hw/qdev-properties.h"
62 #include "hw/pci-host/spapr.h"
63 #include "hw/pci/msi.h"
65 #include "hw/pci/pci.h"
66 #include "hw/scsi/scsi.h"
67 #include "hw/virtio/virtio-scsi.h"
68 #include "hw/virtio/vhost-scsi-common.h"
70 #include "exec/address-spaces.h"
71 #include "exec/ram_addr.h"
72 #include "hw/usb.h"
73 #include "qemu/config-file.h"
74 #include "qemu/error-report.h"
75 #include "trace.h"
76 #include "hw/nmi.h"
77 #include "hw/intc/intc.h"
79 #include "hw/ppc/spapr_cpu_core.h"
80 #include "hw/mem/memory-device.h"
81 #include "hw/ppc/spapr_tpm_proxy.h"
83 #include "monitor/monitor.h"
85 #include <libfdt.h>
87 /* SLOF memory layout:
89 * SLOF raw image loaded at 0, copies its romfs right below the flat
90 * device-tree, then position SLOF itself 31M below that
92 * So we set FW_OVERHEAD to 40MB which should account for all of that
93 * and more
95 * We load our kernel at 4M, leaving space for SLOF initial image
97 #define FDT_MAX_SIZE 0x100000
98 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
99 #define FW_MAX_SIZE 0x400000
100 #define FW_FILE_NAME "slof.bin"
101 #define FW_OVERHEAD 0x2800000
102 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
104 #define MIN_RMA_SLOF 128UL
106 #define PHANDLE_INTC 0x00001111
108 /* These two functions implement the VCPU id numbering: one to compute them
109 * all and one to identify thread 0 of a VCORE. Any change to the first one
110 * is likely to have an impact on the second one, so let's keep them close.
112 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
114 MachineState *ms = MACHINE(spapr);
115 unsigned int smp_threads = ms->smp.threads;
117 assert(spapr->vsmt);
118 return
119 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
121 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
122 PowerPCCPU *cpu)
124 assert(spapr->vsmt);
125 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
128 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
130 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
131 * and newer QEMUs don't even have them. In both cases, we don't want
132 * to send anything on the wire.
134 return false;
137 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
138 .name = "icp/server",
139 .version_id = 1,
140 .minimum_version_id = 1,
141 .needed = pre_2_10_vmstate_dummy_icp_needed,
142 .fields = (VMStateField[]) {
143 VMSTATE_UNUSED(4), /* uint32_t xirr */
144 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
145 VMSTATE_UNUSED(1), /* uint8_t mfrr */
146 VMSTATE_END_OF_LIST()
150 static void pre_2_10_vmstate_register_dummy_icp(int i)
152 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
153 (void *)(uintptr_t) i);
156 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
158 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
159 (void *)(uintptr_t) i);
162 int spapr_max_server_number(SpaprMachineState *spapr)
164 MachineState *ms = MACHINE(spapr);
166 assert(spapr->vsmt);
167 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
170 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
171 int smt_threads)
173 int i, ret = 0;
174 uint32_t servers_prop[smt_threads];
175 uint32_t gservers_prop[smt_threads * 2];
176 int index = spapr_get_vcpu_id(cpu);
178 if (cpu->compat_pvr) {
179 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
180 if (ret < 0) {
181 return ret;
185 /* Build interrupt servers and gservers properties */
186 for (i = 0; i < smt_threads; i++) {
187 servers_prop[i] = cpu_to_be32(index + i);
188 /* Hack, direct the group queues back to cpu 0 */
189 gservers_prop[i*2] = cpu_to_be32(index + i);
190 gservers_prop[i*2 + 1] = 0;
192 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
193 servers_prop, sizeof(servers_prop));
194 if (ret < 0) {
195 return ret;
197 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
198 gservers_prop, sizeof(gservers_prop));
200 return ret;
203 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
205 int index = spapr_get_vcpu_id(cpu);
206 uint32_t associativity[] = {cpu_to_be32(0x5),
207 cpu_to_be32(0x0),
208 cpu_to_be32(0x0),
209 cpu_to_be32(0x0),
210 cpu_to_be32(cpu->node_id),
211 cpu_to_be32(index)};
213 /* Advertise NUMA via ibm,associativity */
214 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
215 sizeof(associativity));
218 /* Populate the "ibm,pa-features" property */
219 static void spapr_populate_pa_features(SpaprMachineState *spapr,
220 PowerPCCPU *cpu,
221 void *fdt, int offset)
223 uint8_t pa_features_206[] = { 6, 0,
224 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
225 uint8_t pa_features_207[] = { 24, 0,
226 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
227 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
228 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
229 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
230 uint8_t pa_features_300[] = { 66, 0,
231 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
232 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
233 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
234 /* 6: DS207 */
235 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
236 /* 16: Vector */
237 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
238 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
239 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
240 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
242 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
243 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
244 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
245 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
246 /* 42: PM, 44: PC RA, 46: SC vec'd */
247 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
248 /* 48: SIMD, 50: QP BFP, 52: String */
249 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
250 /* 54: DecFP, 56: DecI, 58: SHA */
251 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
252 /* 60: NM atomic, 62: RNG */
253 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
255 uint8_t *pa_features = NULL;
256 size_t pa_size;
258 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
259 pa_features = pa_features_206;
260 pa_size = sizeof(pa_features_206);
262 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
263 pa_features = pa_features_207;
264 pa_size = sizeof(pa_features_207);
266 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
267 pa_features = pa_features_300;
268 pa_size = sizeof(pa_features_300);
270 if (!pa_features) {
271 return;
274 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
276 * Note: we keep CI large pages off by default because a 64K capable
277 * guest provisioned with large pages might otherwise try to map a qemu
278 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
279 * even if that qemu runs on a 4k host.
280 * We dd this bit back here if we are confident this is not an issue
282 pa_features[3] |= 0x20;
284 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
285 pa_features[24] |= 0x80; /* Transactional memory support */
287 if (spapr->cas_pre_isa3_guest && pa_size > 40) {
288 /* Workaround for broken kernels that attempt (guest) radix
289 * mode when they can't handle it, if they see the radix bit set
290 * in pa-features. So hide it from them. */
291 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
294 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
297 static hwaddr spapr_node0_size(MachineState *machine)
299 if (machine->numa_state->num_nodes) {
300 int i;
301 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
302 if (machine->numa_state->nodes[i].node_mem) {
303 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
304 machine->ram_size);
308 return machine->ram_size;
311 static void add_str(GString *s, const gchar *s1)
313 g_string_append_len(s, s1, strlen(s1) + 1);
316 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
317 hwaddr size)
319 uint32_t associativity[] = {
320 cpu_to_be32(0x4), /* length */
321 cpu_to_be32(0x0), cpu_to_be32(0x0),
322 cpu_to_be32(0x0), cpu_to_be32(nodeid)
324 char mem_name[32];
325 uint64_t mem_reg_property[2];
326 int off;
328 mem_reg_property[0] = cpu_to_be64(start);
329 mem_reg_property[1] = cpu_to_be64(size);
331 sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
332 off = fdt_add_subnode(fdt, 0, mem_name);
333 _FDT(off);
334 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
335 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
336 sizeof(mem_reg_property))));
337 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
338 sizeof(associativity))));
339 return off;
342 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt)
344 MachineState *machine = MACHINE(spapr);
345 hwaddr mem_start, node_size;
346 int i, nb_nodes = machine->numa_state->num_nodes;
347 NodeInfo *nodes = machine->numa_state->nodes;
349 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
350 if (!nodes[i].node_mem) {
351 continue;
353 if (mem_start >= machine->ram_size) {
354 node_size = 0;
355 } else {
356 node_size = nodes[i].node_mem;
357 if (node_size > machine->ram_size - mem_start) {
358 node_size = machine->ram_size - mem_start;
361 if (!mem_start) {
362 /* spapr_machine_init() checks for rma_size <= node0_size
363 * already */
364 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
365 mem_start += spapr->rma_size;
366 node_size -= spapr->rma_size;
368 for ( ; node_size; ) {
369 hwaddr sizetmp = pow2floor(node_size);
371 /* mem_start != 0 here */
372 if (ctzl(mem_start) < ctzl(sizetmp)) {
373 sizetmp = 1ULL << ctzl(mem_start);
376 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
377 node_size -= sizetmp;
378 mem_start += sizetmp;
382 return 0;
385 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
386 SpaprMachineState *spapr)
388 MachineState *ms = MACHINE(spapr);
389 PowerPCCPU *cpu = POWERPC_CPU(cs);
390 CPUPPCState *env = &cpu->env;
391 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
392 int index = spapr_get_vcpu_id(cpu);
393 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
394 0xffffffff, 0xffffffff};
395 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
396 : SPAPR_TIMEBASE_FREQ;
397 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
398 uint32_t page_sizes_prop[64];
399 size_t page_sizes_prop_size;
400 unsigned int smp_threads = ms->smp.threads;
401 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
402 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
403 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
404 SpaprDrc *drc;
405 int drc_index;
406 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
407 int i;
409 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
410 if (drc) {
411 drc_index = spapr_drc_index(drc);
412 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
415 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
416 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
418 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
419 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
420 env->dcache_line_size)));
421 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
422 env->dcache_line_size)));
423 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
424 env->icache_line_size)));
425 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
426 env->icache_line_size)));
428 if (pcc->l1_dcache_size) {
429 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
430 pcc->l1_dcache_size)));
431 } else {
432 warn_report("Unknown L1 dcache size for cpu");
434 if (pcc->l1_icache_size) {
435 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
436 pcc->l1_icache_size)));
437 } else {
438 warn_report("Unknown L1 icache size for cpu");
441 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
442 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
443 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
444 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
445 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
446 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
448 if (env->spr_cb[SPR_PURR].oea_read) {
449 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
451 if (env->spr_cb[SPR_SPURR].oea_read) {
452 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
455 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
456 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
457 segs, sizeof(segs))));
460 /* Advertise VSX (vector extensions) if available
461 * 1 == VMX / Altivec available
462 * 2 == VSX available
464 * Only CPUs for which we create core types in spapr_cpu_core.c
465 * are possible, and all of those have VMX */
466 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
467 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
468 } else {
469 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
472 /* Advertise DFP (Decimal Floating Point) if available
473 * 0 / no property == no DFP
474 * 1 == DFP available */
475 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
476 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
479 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
480 sizeof(page_sizes_prop));
481 if (page_sizes_prop_size) {
482 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
483 page_sizes_prop, page_sizes_prop_size)));
486 spapr_populate_pa_features(spapr, cpu, fdt, offset);
488 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
489 cs->cpu_index / vcpus_per_socket)));
491 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
492 pft_size_prop, sizeof(pft_size_prop))));
494 if (ms->numa_state->num_nodes > 1) {
495 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
498 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
500 if (pcc->radix_page_info) {
501 for (i = 0; i < pcc->radix_page_info->count; i++) {
502 radix_AP_encodings[i] =
503 cpu_to_be32(pcc->radix_page_info->entries[i]);
505 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
506 radix_AP_encodings,
507 pcc->radix_page_info->count *
508 sizeof(radix_AP_encodings[0]))));
512 * We set this property to let the guest know that it can use the large
513 * decrementer and its width in bits.
515 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
516 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
517 pcc->lrg_decr_bits)));
520 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr)
522 CPUState **rev;
523 CPUState *cs;
524 int n_cpus;
525 int cpus_offset;
526 char *nodename;
527 int i;
529 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
530 _FDT(cpus_offset);
531 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
532 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
535 * We walk the CPUs in reverse order to ensure that CPU DT nodes
536 * created by fdt_add_subnode() end up in the right order in FDT
537 * for the guest kernel the enumerate the CPUs correctly.
539 * The CPU list cannot be traversed in reverse order, so we need
540 * to do extra work.
542 n_cpus = 0;
543 rev = NULL;
544 CPU_FOREACH(cs) {
545 rev = g_renew(CPUState *, rev, n_cpus + 1);
546 rev[n_cpus++] = cs;
549 for (i = n_cpus - 1; i >= 0; i--) {
550 CPUState *cs = rev[i];
551 PowerPCCPU *cpu = POWERPC_CPU(cs);
552 int index = spapr_get_vcpu_id(cpu);
553 DeviceClass *dc = DEVICE_GET_CLASS(cs);
554 int offset;
556 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
557 continue;
560 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
561 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
562 g_free(nodename);
563 _FDT(offset);
564 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
567 g_free(rev);
570 static int spapr_rng_populate_dt(void *fdt)
572 int node;
573 int ret;
575 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
576 if (node <= 0) {
577 return -1;
579 ret = fdt_setprop_string(fdt, node, "device_type",
580 "ibm,platform-facilities");
581 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
582 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
584 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
585 if (node <= 0) {
586 return -1;
588 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
590 return ret ? -1 : 0;
593 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
595 MemoryDeviceInfoList *info;
597 for (info = list; info; info = info->next) {
598 MemoryDeviceInfo *value = info->value;
600 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
601 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
603 if (addr >= pcdimm_info->addr &&
604 addr < (pcdimm_info->addr + pcdimm_info->size)) {
605 return pcdimm_info->node;
610 return -1;
613 struct sPAPRDrconfCellV2 {
614 uint32_t seq_lmbs;
615 uint64_t base_addr;
616 uint32_t drc_index;
617 uint32_t aa_index;
618 uint32_t flags;
619 } QEMU_PACKED;
621 typedef struct DrconfCellQueue {
622 struct sPAPRDrconfCellV2 cell;
623 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
624 } DrconfCellQueue;
626 static DrconfCellQueue *
627 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
628 uint32_t drc_index, uint32_t aa_index,
629 uint32_t flags)
631 DrconfCellQueue *elem;
633 elem = g_malloc0(sizeof(*elem));
634 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
635 elem->cell.base_addr = cpu_to_be64(base_addr);
636 elem->cell.drc_index = cpu_to_be32(drc_index);
637 elem->cell.aa_index = cpu_to_be32(aa_index);
638 elem->cell.flags = cpu_to_be32(flags);
640 return elem;
643 /* ibm,dynamic-memory-v2 */
644 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt,
645 int offset, MemoryDeviceInfoList *dimms)
647 MachineState *machine = MACHINE(spapr);
648 uint8_t *int_buf, *cur_index;
649 int ret;
650 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
651 uint64_t addr, cur_addr, size;
652 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
653 uint64_t mem_end = machine->device_memory->base +
654 memory_region_size(&machine->device_memory->mr);
655 uint32_t node, buf_len, nr_entries = 0;
656 SpaprDrc *drc;
657 DrconfCellQueue *elem, *next;
658 MemoryDeviceInfoList *info;
659 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
660 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
662 /* Entry to cover RAM and the gap area */
663 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
664 SPAPR_LMB_FLAGS_RESERVED |
665 SPAPR_LMB_FLAGS_DRC_INVALID);
666 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
667 nr_entries++;
669 cur_addr = machine->device_memory->base;
670 for (info = dimms; info; info = info->next) {
671 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
673 addr = di->addr;
674 size = di->size;
675 node = di->node;
677 /* Entry for hot-pluggable area */
678 if (cur_addr < addr) {
679 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
680 g_assert(drc);
681 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
682 cur_addr, spapr_drc_index(drc), -1, 0);
683 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
684 nr_entries++;
687 /* Entry for DIMM */
688 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
689 g_assert(drc);
690 elem = spapr_get_drconf_cell(size / lmb_size, addr,
691 spapr_drc_index(drc), node,
692 SPAPR_LMB_FLAGS_ASSIGNED);
693 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
694 nr_entries++;
695 cur_addr = addr + size;
698 /* Entry for remaining hotpluggable area */
699 if (cur_addr < mem_end) {
700 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
701 g_assert(drc);
702 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
703 cur_addr, spapr_drc_index(drc), -1, 0);
704 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
705 nr_entries++;
708 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
709 int_buf = cur_index = g_malloc0(buf_len);
710 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
711 cur_index += sizeof(nr_entries);
713 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
714 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
715 cur_index += sizeof(elem->cell);
716 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
717 g_free(elem);
720 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
721 g_free(int_buf);
722 if (ret < 0) {
723 return -1;
725 return 0;
728 /* ibm,dynamic-memory */
729 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt,
730 int offset, MemoryDeviceInfoList *dimms)
732 MachineState *machine = MACHINE(spapr);
733 int i, ret;
734 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
735 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
736 uint32_t nr_lmbs = (machine->device_memory->base +
737 memory_region_size(&machine->device_memory->mr)) /
738 lmb_size;
739 uint32_t *int_buf, *cur_index, buf_len;
742 * Allocate enough buffer size to fit in ibm,dynamic-memory
744 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
745 cur_index = int_buf = g_malloc0(buf_len);
746 int_buf[0] = cpu_to_be32(nr_lmbs);
747 cur_index++;
748 for (i = 0; i < nr_lmbs; i++) {
749 uint64_t addr = i * lmb_size;
750 uint32_t *dynamic_memory = cur_index;
752 if (i >= device_lmb_start) {
753 SpaprDrc *drc;
755 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
756 g_assert(drc);
758 dynamic_memory[0] = cpu_to_be32(addr >> 32);
759 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
760 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
761 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
762 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
763 if (memory_region_present(get_system_memory(), addr)) {
764 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
765 } else {
766 dynamic_memory[5] = cpu_to_be32(0);
768 } else {
770 * LMB information for RMA, boot time RAM and gap b/n RAM and
771 * device memory region -- all these are marked as reserved
772 * and as having no valid DRC.
774 dynamic_memory[0] = cpu_to_be32(addr >> 32);
775 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
776 dynamic_memory[2] = cpu_to_be32(0);
777 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
778 dynamic_memory[4] = cpu_to_be32(-1);
779 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
780 SPAPR_LMB_FLAGS_DRC_INVALID);
783 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
785 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
786 g_free(int_buf);
787 if (ret < 0) {
788 return -1;
790 return 0;
794 * Adds ibm,dynamic-reconfiguration-memory node.
795 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
796 * of this device tree node.
798 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt)
800 MachineState *machine = MACHINE(spapr);
801 int nb_numa_nodes = machine->numa_state->num_nodes;
802 int ret, i, offset;
803 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
804 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
805 uint32_t *int_buf, *cur_index, buf_len;
806 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
807 MemoryDeviceInfoList *dimms = NULL;
810 * Don't create the node if there is no device memory
812 if (machine->ram_size == machine->maxram_size) {
813 return 0;
816 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
818 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
819 sizeof(prop_lmb_size));
820 if (ret < 0) {
821 return ret;
824 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
825 if (ret < 0) {
826 return ret;
829 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
830 if (ret < 0) {
831 return ret;
834 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
835 dimms = qmp_memory_device_list();
836 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
837 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
838 } else {
839 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
841 qapi_free_MemoryDeviceInfoList(dimms);
843 if (ret < 0) {
844 return ret;
847 /* ibm,associativity-lookup-arrays */
848 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
849 cur_index = int_buf = g_malloc0(buf_len);
850 int_buf[0] = cpu_to_be32(nr_nodes);
851 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
852 cur_index += 2;
853 for (i = 0; i < nr_nodes; i++) {
854 uint32_t associativity[] = {
855 cpu_to_be32(0x0),
856 cpu_to_be32(0x0),
857 cpu_to_be32(0x0),
858 cpu_to_be32(i)
860 memcpy(cur_index, associativity, sizeof(associativity));
861 cur_index += 4;
863 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
864 (cur_index - int_buf) * sizeof(uint32_t));
865 g_free(int_buf);
867 return ret;
870 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt,
871 SpaprOptionVector *ov5_updates)
873 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
874 int ret = 0, offset;
876 /* Generate ibm,dynamic-reconfiguration-memory node if required */
877 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
878 g_assert(smc->dr_lmb_enabled);
879 ret = spapr_populate_drconf_memory(spapr, fdt);
880 if (ret) {
881 return ret;
885 offset = fdt_path_offset(fdt, "/chosen");
886 if (offset < 0) {
887 offset = fdt_add_subnode(fdt, 0, "chosen");
888 if (offset < 0) {
889 return offset;
892 return spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
893 "ibm,architecture-vec-5");
896 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
898 MachineState *ms = MACHINE(spapr);
899 int rtas;
900 GString *hypertas = g_string_sized_new(256);
901 GString *qemu_hypertas = g_string_sized_new(256);
902 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
903 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
904 memory_region_size(&MACHINE(spapr)->device_memory->mr);
905 uint32_t lrdr_capacity[] = {
906 cpu_to_be32(max_device_addr >> 32),
907 cpu_to_be32(max_device_addr & 0xffffffff),
908 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
909 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
911 uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0);
912 uint32_t maxdomains[] = {
913 cpu_to_be32(4),
914 maxdomain,
915 maxdomain,
916 maxdomain,
917 cpu_to_be32(spapr->gpu_numa_id),
920 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
922 /* hypertas */
923 add_str(hypertas, "hcall-pft");
924 add_str(hypertas, "hcall-term");
925 add_str(hypertas, "hcall-dabr");
926 add_str(hypertas, "hcall-interrupt");
927 add_str(hypertas, "hcall-tce");
928 add_str(hypertas, "hcall-vio");
929 add_str(hypertas, "hcall-splpar");
930 add_str(hypertas, "hcall-join");
931 add_str(hypertas, "hcall-bulk");
932 add_str(hypertas, "hcall-set-mode");
933 add_str(hypertas, "hcall-sprg0");
934 add_str(hypertas, "hcall-copy");
935 add_str(hypertas, "hcall-debug");
936 add_str(hypertas, "hcall-vphn");
937 add_str(qemu_hypertas, "hcall-memop1");
939 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
940 add_str(hypertas, "hcall-multi-tce");
943 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
944 add_str(hypertas, "hcall-hpt-resize");
947 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
948 hypertas->str, hypertas->len));
949 g_string_free(hypertas, TRUE);
950 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
951 qemu_hypertas->str, qemu_hypertas->len));
952 g_string_free(qemu_hypertas, TRUE);
954 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
955 refpoints, sizeof(refpoints)));
957 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
958 maxdomains, sizeof(maxdomains)));
960 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
961 RTAS_ERROR_LOG_MAX));
962 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
963 RTAS_EVENT_SCAN_RATE));
965 g_assert(msi_nonbroken);
966 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
969 * According to PAPR, rtas ibm,os-term does not guarantee a return
970 * back to the guest cpu.
972 * While an additional ibm,extended-os-term property indicates
973 * that rtas call return will always occur. Set this property.
975 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
977 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
978 lrdr_capacity, sizeof(lrdr_capacity)));
980 spapr_dt_rtas_tokens(fdt, rtas);
984 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
985 * and the XIVE features that the guest may request and thus the valid
986 * values for bytes 23..26 of option vector 5:
988 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
989 int chosen)
991 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
993 char val[2 * 4] = {
994 23, 0x00, /* XICS / XIVE mode */
995 24, 0x00, /* Hash/Radix, filled in below. */
996 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
997 26, 0x40, /* Radix options: GTSE == yes. */
1000 if (spapr->irq->xics && spapr->irq->xive) {
1001 val[1] = SPAPR_OV5_XIVE_BOTH;
1002 } else if (spapr->irq->xive) {
1003 val[1] = SPAPR_OV5_XIVE_EXPLOIT;
1004 } else {
1005 assert(spapr->irq->xics);
1006 val[1] = SPAPR_OV5_XIVE_LEGACY;
1009 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1010 first_ppc_cpu->compat_pvr)) {
1012 * If we're in a pre POWER9 compat mode then the guest should
1013 * do hash and use the legacy interrupt mode
1015 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
1016 val[3] = 0x00; /* Hash */
1017 } else if (kvm_enabled()) {
1018 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1019 val[3] = 0x80; /* OV5_MMU_BOTH */
1020 } else if (kvmppc_has_cap_mmu_radix()) {
1021 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1022 } else {
1023 val[3] = 0x00; /* Hash */
1025 } else {
1026 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1027 val[3] = 0xC0;
1029 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1030 val, sizeof(val)));
1033 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt)
1035 MachineState *machine = MACHINE(spapr);
1036 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1037 int chosen;
1038 const char *boot_device = machine->boot_order;
1039 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1040 size_t cb = 0;
1041 char *bootlist = get_boot_devices_list(&cb);
1043 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1045 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1046 _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1047 machine->kernel_cmdline));
1049 if (spapr->initrd_size) {
1050 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1051 spapr->initrd_base));
1052 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1053 spapr->initrd_base + spapr->initrd_size));
1056 if (spapr->kernel_size) {
1057 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1058 cpu_to_be64(spapr->kernel_size) };
1060 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1061 &kprop, sizeof(kprop)));
1062 if (spapr->kernel_le) {
1063 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1066 if (boot_menu) {
1067 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1069 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1070 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1071 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1073 if (cb && bootlist) {
1074 int i;
1076 for (i = 0; i < cb; i++) {
1077 if (bootlist[i] == '\n') {
1078 bootlist[i] = ' ';
1081 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1084 if (boot_device && strlen(boot_device)) {
1085 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1088 if (!spapr->has_graphics && stdout_path) {
1090 * "linux,stdout-path" and "stdout" properties are deprecated by linux
1091 * kernel. New platforms should only use the "stdout-path" property. Set
1092 * the new property and continue using older property to remain
1093 * compatible with the existing firmware.
1095 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1096 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1099 /* We can deal with BAR reallocation just fine, advertise it to the guest */
1100 if (smc->linux_pci_probe) {
1101 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1104 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1106 g_free(stdout_path);
1107 g_free(bootlist);
1110 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1112 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1113 * KVM to work under pHyp with some guest co-operation */
1114 int hypervisor;
1115 uint8_t hypercall[16];
1117 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1118 /* indicate KVM hypercall interface */
1119 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1120 if (kvmppc_has_cap_fixup_hcalls()) {
1122 * Older KVM versions with older guest kernels were broken
1123 * with the magic page, don't allow the guest to map it.
1125 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1126 sizeof(hypercall))) {
1127 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1128 hypercall, sizeof(hypercall)));
1133 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1135 MachineState *machine = MACHINE(spapr);
1136 MachineClass *mc = MACHINE_GET_CLASS(machine);
1137 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1138 int ret;
1139 void *fdt;
1140 SpaprPhbState *phb;
1141 char *buf;
1143 fdt = g_malloc0(space);
1144 _FDT((fdt_create_empty_tree(fdt, space)));
1146 /* Root node */
1147 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1148 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1149 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1151 /* Guest UUID & Name*/
1152 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1153 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1154 if (qemu_uuid_set) {
1155 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1157 g_free(buf);
1159 if (qemu_get_vm_name()) {
1160 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1161 qemu_get_vm_name()));
1164 /* Host Model & Serial Number */
1165 if (spapr->host_model) {
1166 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1167 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1168 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1169 g_free(buf);
1172 if (spapr->host_serial) {
1173 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1174 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1175 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1176 g_free(buf);
1179 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1180 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1182 /* /interrupt controller */
1183 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1185 ret = spapr_populate_memory(spapr, fdt);
1186 if (ret < 0) {
1187 error_report("couldn't setup memory nodes in fdt");
1188 exit(1);
1191 /* /vdevice */
1192 spapr_dt_vdevice(spapr->vio_bus, fdt);
1194 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1195 ret = spapr_rng_populate_dt(fdt);
1196 if (ret < 0) {
1197 error_report("could not set up rng device in the fdt");
1198 exit(1);
1202 QLIST_FOREACH(phb, &spapr->phbs, list) {
1203 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1204 if (ret < 0) {
1205 error_report("couldn't setup PCI devices in fdt");
1206 exit(1);
1210 /* cpus */
1211 spapr_populate_cpus_dt_node(fdt, spapr);
1213 if (smc->dr_lmb_enabled) {
1214 _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1217 if (mc->has_hotpluggable_cpus) {
1218 int offset = fdt_path_offset(fdt, "/cpus");
1219 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1220 if (ret < 0) {
1221 error_report("Couldn't set up CPU DR device tree properties");
1222 exit(1);
1226 /* /event-sources */
1227 spapr_dt_events(spapr, fdt);
1229 /* /rtas */
1230 spapr_dt_rtas(spapr, fdt);
1232 /* /chosen */
1233 if (reset) {
1234 spapr_dt_chosen(spapr, fdt);
1237 /* /hypervisor */
1238 if (kvm_enabled()) {
1239 spapr_dt_hypervisor(spapr, fdt);
1242 /* Build memory reserve map */
1243 if (reset) {
1244 if (spapr->kernel_size) {
1245 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1247 if (spapr->initrd_size) {
1248 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1249 spapr->initrd_size)));
1253 /* ibm,client-architecture-support updates */
1254 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1255 if (ret < 0) {
1256 error_report("couldn't setup CAS properties fdt");
1257 exit(1);
1260 if (smc->dr_phb_enabled) {
1261 ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1262 if (ret < 0) {
1263 error_report("Couldn't set up PHB DR device tree properties");
1264 exit(1);
1268 return fdt;
1271 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1273 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1276 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1277 PowerPCCPU *cpu)
1279 CPUPPCState *env = &cpu->env;
1281 /* The TCG path should also be holding the BQL at this point */
1282 g_assert(qemu_mutex_iothread_locked());
1284 if (msr_pr) {
1285 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1286 env->gpr[3] = H_PRIVILEGE;
1287 } else {
1288 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1292 struct LPCRSyncState {
1293 target_ulong value;
1294 target_ulong mask;
1297 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1299 struct LPCRSyncState *s = arg.host_ptr;
1300 PowerPCCPU *cpu = POWERPC_CPU(cs);
1301 CPUPPCState *env = &cpu->env;
1302 target_ulong lpcr;
1304 cpu_synchronize_state(cs);
1305 lpcr = env->spr[SPR_LPCR];
1306 lpcr &= ~s->mask;
1307 lpcr |= s->value;
1308 ppc_store_lpcr(cpu, lpcr);
1311 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1313 CPUState *cs;
1314 struct LPCRSyncState s = {
1315 .value = value,
1316 .mask = mask
1318 CPU_FOREACH(cs) {
1319 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1323 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1325 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1327 /* Copy PATE1:GR into PATE0:HR */
1328 entry->dw0 = spapr->patb_entry & PATE0_HR;
1329 entry->dw1 = spapr->patb_entry;
1332 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1333 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1334 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1335 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1336 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1339 * Get the fd to access the kernel htab, re-opening it if necessary
1341 static int get_htab_fd(SpaprMachineState *spapr)
1343 Error *local_err = NULL;
1345 if (spapr->htab_fd >= 0) {
1346 return spapr->htab_fd;
1349 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1350 if (spapr->htab_fd < 0) {
1351 error_report_err(local_err);
1354 return spapr->htab_fd;
1357 void close_htab_fd(SpaprMachineState *spapr)
1359 if (spapr->htab_fd >= 0) {
1360 close(spapr->htab_fd);
1362 spapr->htab_fd = -1;
1365 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1367 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1369 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1372 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1374 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1376 assert(kvm_enabled());
1378 if (!spapr->htab) {
1379 return 0;
1382 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1385 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1386 hwaddr ptex, int n)
1388 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1389 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1391 if (!spapr->htab) {
1393 * HTAB is controlled by KVM. Fetch into temporary buffer
1395 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1396 kvmppc_read_hptes(hptes, ptex, n);
1397 return hptes;
1401 * HTAB is controlled by QEMU. Just point to the internally
1402 * accessible PTEG.
1404 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1407 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1408 const ppc_hash_pte64_t *hptes,
1409 hwaddr ptex, int n)
1411 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1413 if (!spapr->htab) {
1414 g_free((void *)hptes);
1417 /* Nothing to do for qemu managed HPT */
1420 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1421 uint64_t pte0, uint64_t pte1)
1423 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1424 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1426 if (!spapr->htab) {
1427 kvmppc_write_hpte(ptex, pte0, pte1);
1428 } else {
1429 if (pte0 & HPTE64_V_VALID) {
1430 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1432 * When setting valid, we write PTE1 first. This ensures
1433 * proper synchronization with the reading code in
1434 * ppc_hash64_pteg_search()
1436 smp_wmb();
1437 stq_p(spapr->htab + offset, pte0);
1438 } else {
1439 stq_p(spapr->htab + offset, pte0);
1441 * When clearing it we set PTE0 first. This ensures proper
1442 * synchronization with the reading code in
1443 * ppc_hash64_pteg_search()
1445 smp_wmb();
1446 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1451 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1452 uint64_t pte1)
1454 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1455 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1457 if (!spapr->htab) {
1458 /* There should always be a hash table when this is called */
1459 error_report("spapr_hpte_set_c called with no hash table !");
1460 return;
1463 /* The HW performs a non-atomic byte update */
1464 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1467 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1468 uint64_t pte1)
1470 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1471 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1473 if (!spapr->htab) {
1474 /* There should always be a hash table when this is called */
1475 error_report("spapr_hpte_set_r called with no hash table !");
1476 return;
1479 /* The HW performs a non-atomic byte update */
1480 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1483 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1485 int shift;
1487 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1488 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1489 * that's much more than is needed for Linux guests */
1490 shift = ctz64(pow2ceil(ramsize)) - 7;
1491 shift = MAX(shift, 18); /* Minimum architected size */
1492 shift = MIN(shift, 46); /* Maximum architected size */
1493 return shift;
1496 void spapr_free_hpt(SpaprMachineState *spapr)
1498 g_free(spapr->htab);
1499 spapr->htab = NULL;
1500 spapr->htab_shift = 0;
1501 close_htab_fd(spapr);
1504 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1505 Error **errp)
1507 long rc;
1509 /* Clean up any HPT info from a previous boot */
1510 spapr_free_hpt(spapr);
1512 rc = kvmppc_reset_htab(shift);
1513 if (rc < 0) {
1514 /* kernel-side HPT needed, but couldn't allocate one */
1515 error_setg_errno(errp, errno,
1516 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1517 shift);
1518 /* This is almost certainly fatal, but if the caller really
1519 * wants to carry on with shift == 0, it's welcome to try */
1520 } else if (rc > 0) {
1521 /* kernel-side HPT allocated */
1522 if (rc != shift) {
1523 error_setg(errp,
1524 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1525 shift, rc);
1528 spapr->htab_shift = shift;
1529 spapr->htab = NULL;
1530 } else {
1531 /* kernel-side HPT not needed, allocate in userspace instead */
1532 size_t size = 1ULL << shift;
1533 int i;
1535 spapr->htab = qemu_memalign(size, size);
1536 if (!spapr->htab) {
1537 error_setg_errno(errp, errno,
1538 "Could not allocate HPT of order %d", shift);
1539 return;
1542 memset(spapr->htab, 0, size);
1543 spapr->htab_shift = shift;
1545 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1546 DIRTY_HPTE(HPTE(spapr->htab, i));
1549 /* We're setting up a hash table, so that means we're not radix */
1550 spapr->patb_entry = 0;
1551 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1554 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr)
1556 int hpt_shift;
1558 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1559 || (spapr->cas_reboot
1560 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1561 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1562 } else {
1563 uint64_t current_ram_size;
1565 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1566 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1568 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1570 if (spapr->vrma_adjust) {
1571 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1572 spapr->htab_shift);
1576 static int spapr_reset_drcs(Object *child, void *opaque)
1578 SpaprDrc *drc =
1579 (SpaprDrc *) object_dynamic_cast(child,
1580 TYPE_SPAPR_DR_CONNECTOR);
1582 if (drc) {
1583 spapr_drc_reset(drc);
1586 return 0;
1589 static void spapr_machine_reset(MachineState *machine)
1591 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1592 PowerPCCPU *first_ppc_cpu;
1593 hwaddr fdt_addr;
1594 void *fdt;
1595 int rc;
1597 kvmppc_svm_off(&error_fatal);
1598 spapr_caps_apply(spapr);
1600 first_ppc_cpu = POWERPC_CPU(first_cpu);
1601 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1602 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1603 spapr->max_compat_pvr)) {
1605 * If using KVM with radix mode available, VCPUs can be started
1606 * without a HPT because KVM will start them in radix mode.
1607 * Set the GR bit in PATE so that we know there is no HPT.
1609 spapr->patb_entry = PATE1_GR;
1610 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1611 } else {
1612 spapr_setup_hpt_and_vrma(spapr);
1615 qemu_devices_reset();
1618 * If this reset wasn't generated by CAS, we should reset our
1619 * negotiated options and start from scratch
1621 if (!spapr->cas_reboot) {
1622 spapr_ovec_cleanup(spapr->ov5_cas);
1623 spapr->ov5_cas = spapr_ovec_new();
1625 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1629 * This is fixing some of the default configuration of the XIVE
1630 * devices. To be called after the reset of the machine devices.
1632 spapr_irq_reset(spapr, &error_fatal);
1635 * There is no CAS under qtest. Simulate one to please the code that
1636 * depends on spapr->ov5_cas. This is especially needed to test device
1637 * unplug, so we do that before resetting the DRCs.
1639 if (qtest_enabled()) {
1640 spapr_ovec_cleanup(spapr->ov5_cas);
1641 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1644 /* DRC reset may cause a device to be unplugged. This will cause troubles
1645 * if this device is used by another device (eg, a running vhost backend
1646 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1647 * situations, we reset DRCs after all devices have been reset.
1649 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1651 spapr_clear_pending_events(spapr);
1654 * We place the device tree and RTAS just below either the top of the RMA,
1655 * or just below 2GB, whichever is lower, so that it can be
1656 * processed with 32-bit real mode code if necessary
1658 fdt_addr = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FDT_MAX_SIZE;
1660 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1662 rc = fdt_pack(fdt);
1664 /* Should only fail if we've built a corrupted tree */
1665 assert(rc == 0);
1667 /* Load the fdt */
1668 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1669 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1670 g_free(spapr->fdt_blob);
1671 spapr->fdt_size = fdt_totalsize(fdt);
1672 spapr->fdt_initial_size = spapr->fdt_size;
1673 spapr->fdt_blob = fdt;
1675 /* Set up the entry state */
1676 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1677 first_ppc_cpu->env.gpr[5] = 0;
1679 spapr->cas_reboot = false;
1682 static void spapr_create_nvram(SpaprMachineState *spapr)
1684 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1685 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1687 if (dinfo) {
1688 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1689 &error_fatal);
1692 qdev_init_nofail(dev);
1694 spapr->nvram = (struct SpaprNvram *)dev;
1697 static void spapr_rtc_create(SpaprMachineState *spapr)
1699 object_initialize_child(OBJECT(spapr), "rtc",
1700 &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1701 &error_fatal, NULL);
1702 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1703 &error_fatal);
1704 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1705 "date", &error_fatal);
1708 /* Returns whether we want to use VGA or not */
1709 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1711 switch (vga_interface_type) {
1712 case VGA_NONE:
1713 return false;
1714 case VGA_DEVICE:
1715 return true;
1716 case VGA_STD:
1717 case VGA_VIRTIO:
1718 case VGA_CIRRUS:
1719 return pci_vga_init(pci_bus) != NULL;
1720 default:
1721 error_setg(errp,
1722 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1723 return false;
1727 static int spapr_pre_load(void *opaque)
1729 int rc;
1731 rc = spapr_caps_pre_load(opaque);
1732 if (rc) {
1733 return rc;
1736 return 0;
1739 static int spapr_post_load(void *opaque, int version_id)
1741 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1742 int err = 0;
1744 err = spapr_caps_post_migration(spapr);
1745 if (err) {
1746 return err;
1750 * In earlier versions, there was no separate qdev for the PAPR
1751 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1752 * So when migrating from those versions, poke the incoming offset
1753 * value into the RTC device
1755 if (version_id < 3) {
1756 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1757 if (err) {
1758 return err;
1762 if (kvm_enabled() && spapr->patb_entry) {
1763 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1764 bool radix = !!(spapr->patb_entry & PATE1_GR);
1765 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1768 * Update LPCR:HR and UPRT as they may not be set properly in
1769 * the stream
1771 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1772 LPCR_HR | LPCR_UPRT);
1774 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1775 if (err) {
1776 error_report("Process table config unsupported by the host");
1777 return -EINVAL;
1781 err = spapr_irq_post_load(spapr, version_id);
1782 if (err) {
1783 return err;
1786 return err;
1789 static int spapr_pre_save(void *opaque)
1791 int rc;
1793 rc = spapr_caps_pre_save(opaque);
1794 if (rc) {
1795 return rc;
1798 return 0;
1801 static bool version_before_3(void *opaque, int version_id)
1803 return version_id < 3;
1806 static bool spapr_pending_events_needed(void *opaque)
1808 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1809 return !QTAILQ_EMPTY(&spapr->pending_events);
1812 static const VMStateDescription vmstate_spapr_event_entry = {
1813 .name = "spapr_event_log_entry",
1814 .version_id = 1,
1815 .minimum_version_id = 1,
1816 .fields = (VMStateField[]) {
1817 VMSTATE_UINT32(summary, SpaprEventLogEntry),
1818 VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1819 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1820 NULL, extended_length),
1821 VMSTATE_END_OF_LIST()
1825 static const VMStateDescription vmstate_spapr_pending_events = {
1826 .name = "spapr_pending_events",
1827 .version_id = 1,
1828 .minimum_version_id = 1,
1829 .needed = spapr_pending_events_needed,
1830 .fields = (VMStateField[]) {
1831 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1832 vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1833 VMSTATE_END_OF_LIST()
1837 static bool spapr_ov5_cas_needed(void *opaque)
1839 SpaprMachineState *spapr = opaque;
1840 SpaprOptionVector *ov5_mask = spapr_ovec_new();
1841 bool cas_needed;
1843 /* Prior to the introduction of SpaprOptionVector, we had two option
1844 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1845 * Both of these options encode machine topology into the device-tree
1846 * in such a way that the now-booted OS should still be able to interact
1847 * appropriately with QEMU regardless of what options were actually
1848 * negotiatied on the source side.
1850 * As such, we can avoid migrating the CAS-negotiated options if these
1851 * are the only options available on the current machine/platform.
1852 * Since these are the only options available for pseries-2.7 and
1853 * earlier, this allows us to maintain old->new/new->old migration
1854 * compatibility.
1856 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1857 * via default pseries-2.8 machines and explicit command-line parameters.
1858 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1859 * of the actual CAS-negotiated values to continue working properly. For
1860 * example, availability of memory unplug depends on knowing whether
1861 * OV5_HP_EVT was negotiated via CAS.
1863 * Thus, for any cases where the set of available CAS-negotiatable
1864 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1865 * include the CAS-negotiated options in the migration stream, unless
1866 * if they affect boot time behaviour only.
1868 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1869 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1870 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1872 /* We need extra information if we have any bits outside the mask
1873 * defined above */
1874 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1876 spapr_ovec_cleanup(ov5_mask);
1878 return cas_needed;
1881 static const VMStateDescription vmstate_spapr_ov5_cas = {
1882 .name = "spapr_option_vector_ov5_cas",
1883 .version_id = 1,
1884 .minimum_version_id = 1,
1885 .needed = spapr_ov5_cas_needed,
1886 .fields = (VMStateField[]) {
1887 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1888 vmstate_spapr_ovec, SpaprOptionVector),
1889 VMSTATE_END_OF_LIST()
1893 static bool spapr_patb_entry_needed(void *opaque)
1895 SpaprMachineState *spapr = opaque;
1897 return !!spapr->patb_entry;
1900 static const VMStateDescription vmstate_spapr_patb_entry = {
1901 .name = "spapr_patb_entry",
1902 .version_id = 1,
1903 .minimum_version_id = 1,
1904 .needed = spapr_patb_entry_needed,
1905 .fields = (VMStateField[]) {
1906 VMSTATE_UINT64(patb_entry, SpaprMachineState),
1907 VMSTATE_END_OF_LIST()
1911 static bool spapr_irq_map_needed(void *opaque)
1913 SpaprMachineState *spapr = opaque;
1915 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1918 static const VMStateDescription vmstate_spapr_irq_map = {
1919 .name = "spapr_irq_map",
1920 .version_id = 1,
1921 .minimum_version_id = 1,
1922 .needed = spapr_irq_map_needed,
1923 .fields = (VMStateField[]) {
1924 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1925 VMSTATE_END_OF_LIST()
1929 static bool spapr_dtb_needed(void *opaque)
1931 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1933 return smc->update_dt_enabled;
1936 static int spapr_dtb_pre_load(void *opaque)
1938 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1940 g_free(spapr->fdt_blob);
1941 spapr->fdt_blob = NULL;
1942 spapr->fdt_size = 0;
1944 return 0;
1947 static const VMStateDescription vmstate_spapr_dtb = {
1948 .name = "spapr_dtb",
1949 .version_id = 1,
1950 .minimum_version_id = 1,
1951 .needed = spapr_dtb_needed,
1952 .pre_load = spapr_dtb_pre_load,
1953 .fields = (VMStateField[]) {
1954 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
1955 VMSTATE_UINT32(fdt_size, SpaprMachineState),
1956 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
1957 fdt_size),
1958 VMSTATE_END_OF_LIST()
1962 static const VMStateDescription vmstate_spapr = {
1963 .name = "spapr",
1964 .version_id = 3,
1965 .minimum_version_id = 1,
1966 .pre_load = spapr_pre_load,
1967 .post_load = spapr_post_load,
1968 .pre_save = spapr_pre_save,
1969 .fields = (VMStateField[]) {
1970 /* used to be @next_irq */
1971 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1973 /* RTC offset */
1974 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
1976 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
1977 VMSTATE_END_OF_LIST()
1979 .subsections = (const VMStateDescription*[]) {
1980 &vmstate_spapr_ov5_cas,
1981 &vmstate_spapr_patb_entry,
1982 &vmstate_spapr_pending_events,
1983 &vmstate_spapr_cap_htm,
1984 &vmstate_spapr_cap_vsx,
1985 &vmstate_spapr_cap_dfp,
1986 &vmstate_spapr_cap_cfpc,
1987 &vmstate_spapr_cap_sbbc,
1988 &vmstate_spapr_cap_ibs,
1989 &vmstate_spapr_cap_hpt_maxpagesize,
1990 &vmstate_spapr_irq_map,
1991 &vmstate_spapr_cap_nested_kvm_hv,
1992 &vmstate_spapr_dtb,
1993 &vmstate_spapr_cap_large_decr,
1994 &vmstate_spapr_cap_ccf_assist,
1995 NULL
1999 static int htab_save_setup(QEMUFile *f, void *opaque)
2001 SpaprMachineState *spapr = opaque;
2003 /* "Iteration" header */
2004 if (!spapr->htab_shift) {
2005 qemu_put_be32(f, -1);
2006 } else {
2007 qemu_put_be32(f, spapr->htab_shift);
2010 if (spapr->htab) {
2011 spapr->htab_save_index = 0;
2012 spapr->htab_first_pass = true;
2013 } else {
2014 if (spapr->htab_shift) {
2015 assert(kvm_enabled());
2020 return 0;
2023 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2024 int chunkstart, int n_valid, int n_invalid)
2026 qemu_put_be32(f, chunkstart);
2027 qemu_put_be16(f, n_valid);
2028 qemu_put_be16(f, n_invalid);
2029 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2030 HASH_PTE_SIZE_64 * n_valid);
2033 static void htab_save_end_marker(QEMUFile *f)
2035 qemu_put_be32(f, 0);
2036 qemu_put_be16(f, 0);
2037 qemu_put_be16(f, 0);
2040 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2041 int64_t max_ns)
2043 bool has_timeout = max_ns != -1;
2044 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2045 int index = spapr->htab_save_index;
2046 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2048 assert(spapr->htab_first_pass);
2050 do {
2051 int chunkstart;
2053 /* Consume invalid HPTEs */
2054 while ((index < htabslots)
2055 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2056 CLEAN_HPTE(HPTE(spapr->htab, index));
2057 index++;
2060 /* Consume valid HPTEs */
2061 chunkstart = index;
2062 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2063 && HPTE_VALID(HPTE(spapr->htab, index))) {
2064 CLEAN_HPTE(HPTE(spapr->htab, index));
2065 index++;
2068 if (index > chunkstart) {
2069 int n_valid = index - chunkstart;
2071 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2073 if (has_timeout &&
2074 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2075 break;
2078 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2080 if (index >= htabslots) {
2081 assert(index == htabslots);
2082 index = 0;
2083 spapr->htab_first_pass = false;
2085 spapr->htab_save_index = index;
2088 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2089 int64_t max_ns)
2091 bool final = max_ns < 0;
2092 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2093 int examined = 0, sent = 0;
2094 int index = spapr->htab_save_index;
2095 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2097 assert(!spapr->htab_first_pass);
2099 do {
2100 int chunkstart, invalidstart;
2102 /* Consume non-dirty HPTEs */
2103 while ((index < htabslots)
2104 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2105 index++;
2106 examined++;
2109 chunkstart = index;
2110 /* Consume valid dirty HPTEs */
2111 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2112 && HPTE_DIRTY(HPTE(spapr->htab, index))
2113 && HPTE_VALID(HPTE(spapr->htab, index))) {
2114 CLEAN_HPTE(HPTE(spapr->htab, index));
2115 index++;
2116 examined++;
2119 invalidstart = index;
2120 /* Consume invalid dirty HPTEs */
2121 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2122 && HPTE_DIRTY(HPTE(spapr->htab, index))
2123 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2124 CLEAN_HPTE(HPTE(spapr->htab, index));
2125 index++;
2126 examined++;
2129 if (index > chunkstart) {
2130 int n_valid = invalidstart - chunkstart;
2131 int n_invalid = index - invalidstart;
2133 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2134 sent += index - chunkstart;
2136 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2137 break;
2141 if (examined >= htabslots) {
2142 break;
2145 if (index >= htabslots) {
2146 assert(index == htabslots);
2147 index = 0;
2149 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2151 if (index >= htabslots) {
2152 assert(index == htabslots);
2153 index = 0;
2156 spapr->htab_save_index = index;
2158 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2161 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2162 #define MAX_KVM_BUF_SIZE 2048
2164 static int htab_save_iterate(QEMUFile *f, void *opaque)
2166 SpaprMachineState *spapr = opaque;
2167 int fd;
2168 int rc = 0;
2170 /* Iteration header */
2171 if (!spapr->htab_shift) {
2172 qemu_put_be32(f, -1);
2173 return 1;
2174 } else {
2175 qemu_put_be32(f, 0);
2178 if (!spapr->htab) {
2179 assert(kvm_enabled());
2181 fd = get_htab_fd(spapr);
2182 if (fd < 0) {
2183 return fd;
2186 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2187 if (rc < 0) {
2188 return rc;
2190 } else if (spapr->htab_first_pass) {
2191 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2192 } else {
2193 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2196 htab_save_end_marker(f);
2198 return rc;
2201 static int htab_save_complete(QEMUFile *f, void *opaque)
2203 SpaprMachineState *spapr = opaque;
2204 int fd;
2206 /* Iteration header */
2207 if (!spapr->htab_shift) {
2208 qemu_put_be32(f, -1);
2209 return 0;
2210 } else {
2211 qemu_put_be32(f, 0);
2214 if (!spapr->htab) {
2215 int rc;
2217 assert(kvm_enabled());
2219 fd = get_htab_fd(spapr);
2220 if (fd < 0) {
2221 return fd;
2224 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2225 if (rc < 0) {
2226 return rc;
2228 } else {
2229 if (spapr->htab_first_pass) {
2230 htab_save_first_pass(f, spapr, -1);
2232 htab_save_later_pass(f, spapr, -1);
2235 /* End marker */
2236 htab_save_end_marker(f);
2238 return 0;
2241 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2243 SpaprMachineState *spapr = opaque;
2244 uint32_t section_hdr;
2245 int fd = -1;
2246 Error *local_err = NULL;
2248 if (version_id < 1 || version_id > 1) {
2249 error_report("htab_load() bad version");
2250 return -EINVAL;
2253 section_hdr = qemu_get_be32(f);
2255 if (section_hdr == -1) {
2256 spapr_free_hpt(spapr);
2257 return 0;
2260 if (section_hdr) {
2261 /* First section gives the htab size */
2262 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2263 if (local_err) {
2264 error_report_err(local_err);
2265 return -EINVAL;
2267 return 0;
2270 if (!spapr->htab) {
2271 assert(kvm_enabled());
2273 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2274 if (fd < 0) {
2275 error_report_err(local_err);
2276 return fd;
2280 while (true) {
2281 uint32_t index;
2282 uint16_t n_valid, n_invalid;
2284 index = qemu_get_be32(f);
2285 n_valid = qemu_get_be16(f);
2286 n_invalid = qemu_get_be16(f);
2288 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2289 /* End of Stream */
2290 break;
2293 if ((index + n_valid + n_invalid) >
2294 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2295 /* Bad index in stream */
2296 error_report(
2297 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2298 index, n_valid, n_invalid, spapr->htab_shift);
2299 return -EINVAL;
2302 if (spapr->htab) {
2303 if (n_valid) {
2304 qemu_get_buffer(f, HPTE(spapr->htab, index),
2305 HASH_PTE_SIZE_64 * n_valid);
2307 if (n_invalid) {
2308 memset(HPTE(spapr->htab, index + n_valid), 0,
2309 HASH_PTE_SIZE_64 * n_invalid);
2311 } else {
2312 int rc;
2314 assert(fd >= 0);
2316 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2317 if (rc < 0) {
2318 return rc;
2323 if (!spapr->htab) {
2324 assert(fd >= 0);
2325 close(fd);
2328 return 0;
2331 static void htab_save_cleanup(void *opaque)
2333 SpaprMachineState *spapr = opaque;
2335 close_htab_fd(spapr);
2338 static SaveVMHandlers savevm_htab_handlers = {
2339 .save_setup = htab_save_setup,
2340 .save_live_iterate = htab_save_iterate,
2341 .save_live_complete_precopy = htab_save_complete,
2342 .save_cleanup = htab_save_cleanup,
2343 .load_state = htab_load,
2346 static void spapr_boot_set(void *opaque, const char *boot_device,
2347 Error **errp)
2349 MachineState *machine = MACHINE(opaque);
2350 machine->boot_order = g_strdup(boot_device);
2353 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2355 MachineState *machine = MACHINE(spapr);
2356 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2357 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2358 int i;
2360 for (i = 0; i < nr_lmbs; i++) {
2361 uint64_t addr;
2363 addr = i * lmb_size + machine->device_memory->base;
2364 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2365 addr / lmb_size);
2370 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2371 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2372 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2374 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2376 int i;
2378 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2379 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2380 " is not aligned to %" PRIu64 " MiB",
2381 machine->ram_size,
2382 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2383 return;
2386 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2387 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2388 " is not aligned to %" PRIu64 " MiB",
2389 machine->ram_size,
2390 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2391 return;
2394 for (i = 0; i < machine->numa_state->num_nodes; i++) {
2395 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2396 error_setg(errp,
2397 "Node %d memory size 0x%" PRIx64
2398 " is not aligned to %" PRIu64 " MiB",
2399 i, machine->numa_state->nodes[i].node_mem,
2400 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2401 return;
2406 /* find cpu slot in machine->possible_cpus by core_id */
2407 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2409 int index = id / ms->smp.threads;
2411 if (index >= ms->possible_cpus->len) {
2412 return NULL;
2414 if (idx) {
2415 *idx = index;
2417 return &ms->possible_cpus->cpus[index];
2420 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2422 MachineState *ms = MACHINE(spapr);
2423 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2424 Error *local_err = NULL;
2425 bool vsmt_user = !!spapr->vsmt;
2426 int kvm_smt = kvmppc_smt_threads();
2427 int ret;
2428 unsigned int smp_threads = ms->smp.threads;
2430 if (!kvm_enabled() && (smp_threads > 1)) {
2431 error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2432 "on a pseries machine");
2433 goto out;
2435 if (!is_power_of_2(smp_threads)) {
2436 error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2437 "machine because it must be a power of 2", smp_threads);
2438 goto out;
2441 /* Detemine the VSMT mode to use: */
2442 if (vsmt_user) {
2443 if (spapr->vsmt < smp_threads) {
2444 error_setg(&local_err, "Cannot support VSMT mode %d"
2445 " because it must be >= threads/core (%d)",
2446 spapr->vsmt, smp_threads);
2447 goto out;
2449 /* In this case, spapr->vsmt has been set by the command line */
2450 } else if (!smc->smp_threads_vsmt) {
2452 * Default VSMT value is tricky, because we need it to be as
2453 * consistent as possible (for migration), but this requires
2454 * changing it for at least some existing cases. We pick 8 as
2455 * the value that we'd get with KVM on POWER8, the
2456 * overwhelmingly common case in production systems.
2458 spapr->vsmt = MAX(8, smp_threads);
2459 } else {
2460 spapr->vsmt = smp_threads;
2463 /* KVM: If necessary, set the SMT mode: */
2464 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2465 ret = kvmppc_set_smt_threads(spapr->vsmt);
2466 if (ret) {
2467 /* Looks like KVM isn't able to change VSMT mode */
2468 error_setg(&local_err,
2469 "Failed to set KVM's VSMT mode to %d (errno %d)",
2470 spapr->vsmt, ret);
2471 /* We can live with that if the default one is big enough
2472 * for the number of threads, and a submultiple of the one
2473 * we want. In this case we'll waste some vcpu ids, but
2474 * behaviour will be correct */
2475 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2476 warn_report_err(local_err);
2477 local_err = NULL;
2478 goto out;
2479 } else {
2480 if (!vsmt_user) {
2481 error_append_hint(&local_err,
2482 "On PPC, a VM with %d threads/core"
2483 " on a host with %d threads/core"
2484 " requires the use of VSMT mode %d.\n",
2485 smp_threads, kvm_smt, spapr->vsmt);
2487 kvmppc_error_append_smt_possible_hint(&local_err);
2488 goto out;
2492 /* else TCG: nothing to do currently */
2493 out:
2494 error_propagate(errp, local_err);
2497 static void spapr_init_cpus(SpaprMachineState *spapr)
2499 MachineState *machine = MACHINE(spapr);
2500 MachineClass *mc = MACHINE_GET_CLASS(machine);
2501 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2502 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2503 const CPUArchIdList *possible_cpus;
2504 unsigned int smp_cpus = machine->smp.cpus;
2505 unsigned int smp_threads = machine->smp.threads;
2506 unsigned int max_cpus = machine->smp.max_cpus;
2507 int boot_cores_nr = smp_cpus / smp_threads;
2508 int i;
2510 possible_cpus = mc->possible_cpu_arch_ids(machine);
2511 if (mc->has_hotpluggable_cpus) {
2512 if (smp_cpus % smp_threads) {
2513 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2514 smp_cpus, smp_threads);
2515 exit(1);
2517 if (max_cpus % smp_threads) {
2518 error_report("max_cpus (%u) must be multiple of threads (%u)",
2519 max_cpus, smp_threads);
2520 exit(1);
2522 } else {
2523 if (max_cpus != smp_cpus) {
2524 error_report("This machine version does not support CPU hotplug");
2525 exit(1);
2527 boot_cores_nr = possible_cpus->len;
2530 if (smc->pre_2_10_has_unused_icps) {
2531 int i;
2533 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2534 /* Dummy entries get deregistered when real ICPState objects
2535 * are registered during CPU core hotplug.
2537 pre_2_10_vmstate_register_dummy_icp(i);
2541 for (i = 0; i < possible_cpus->len; i++) {
2542 int core_id = i * smp_threads;
2544 if (mc->has_hotpluggable_cpus) {
2545 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2546 spapr_vcpu_id(spapr, core_id));
2549 if (i < boot_cores_nr) {
2550 Object *core = object_new(type);
2551 int nr_threads = smp_threads;
2553 /* Handle the partially filled core for older machine types */
2554 if ((i + 1) * smp_threads >= smp_cpus) {
2555 nr_threads = smp_cpus - i * smp_threads;
2558 object_property_set_int(core, nr_threads, "nr-threads",
2559 &error_fatal);
2560 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2561 &error_fatal);
2562 object_property_set_bool(core, true, "realized", &error_fatal);
2564 object_unref(core);
2569 static PCIHostState *spapr_create_default_phb(void)
2571 DeviceState *dev;
2573 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2574 qdev_prop_set_uint32(dev, "index", 0);
2575 qdev_init_nofail(dev);
2577 return PCI_HOST_BRIDGE(dev);
2580 /* pSeries LPAR / sPAPR hardware init */
2581 static void spapr_machine_init(MachineState *machine)
2583 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2584 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2585 const char *kernel_filename = machine->kernel_filename;
2586 const char *initrd_filename = machine->initrd_filename;
2587 PCIHostState *phb;
2588 int i;
2589 MemoryRegion *sysmem = get_system_memory();
2590 MemoryRegion *ram = g_new(MemoryRegion, 1);
2591 hwaddr node0_size = spapr_node0_size(machine);
2592 long load_limit, fw_size;
2593 char *filename;
2594 Error *resize_hpt_err = NULL;
2596 msi_nonbroken = true;
2598 QLIST_INIT(&spapr->phbs);
2599 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2601 /* Determine capabilities to run with */
2602 spapr_caps_init(spapr);
2604 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2605 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2607 * If the user explicitly requested a mode we should either
2608 * supply it, or fail completely (which we do below). But if
2609 * it's not set explicitly, we reset our mode to something
2610 * that works
2612 if (resize_hpt_err) {
2613 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2614 error_free(resize_hpt_err);
2615 resize_hpt_err = NULL;
2616 } else {
2617 spapr->resize_hpt = smc->resize_hpt_default;
2621 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2623 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2625 * User requested HPT resize, but this host can't supply it. Bail out
2627 error_report_err(resize_hpt_err);
2628 exit(1);
2631 spapr->rma_size = node0_size;
2633 /* With KVM, we don't actually know whether KVM supports an
2634 * unbounded RMA (PR KVM) or is limited by the hash table size
2635 * (HV KVM using VRMA), so we always assume the latter
2637 * In that case, we also limit the initial allocations for RTAS
2638 * etc... to 256M since we have no way to know what the VRMA size
2639 * is going to be as it depends on the size of the hash table
2640 * which isn't determined yet.
2642 if (kvm_enabled()) {
2643 spapr->vrma_adjust = 1;
2644 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2647 /* Actually we don't support unbounded RMA anymore since we added
2648 * proper emulation of HV mode. The max we can get is 16G which
2649 * also happens to be what we configure for PAPR mode so make sure
2650 * we don't do anything bigger than that
2652 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2654 if (spapr->rma_size > node0_size) {
2655 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2656 spapr->rma_size);
2657 exit(1);
2660 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2661 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2664 * VSMT must be set in order to be able to compute VCPU ids, ie to
2665 * call spapr_max_server_number() or spapr_vcpu_id().
2667 spapr_set_vsmt_mode(spapr, &error_fatal);
2669 /* Set up Interrupt Controller before we create the VCPUs */
2670 spapr_irq_init(spapr, &error_fatal);
2672 /* Set up containers for ibm,client-architecture-support negotiated options
2674 spapr->ov5 = spapr_ovec_new();
2675 spapr->ov5_cas = spapr_ovec_new();
2677 if (smc->dr_lmb_enabled) {
2678 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2679 spapr_validate_node_memory(machine, &error_fatal);
2682 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2684 /* advertise support for dedicated HP event source to guests */
2685 if (spapr->use_hotplug_event_source) {
2686 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2689 /* advertise support for HPT resizing */
2690 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2691 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2694 /* advertise support for ibm,dyamic-memory-v2 */
2695 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2697 /* advertise XIVE on POWER9 machines */
2698 if (spapr->irq->xive) {
2699 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2702 /* init CPUs */
2703 spapr_init_cpus(spapr);
2706 * check we don't have a memory-less/cpu-less NUMA node
2707 * Firmware relies on the existing memory/cpu topology to provide the
2708 * NUMA topology to the kernel.
2709 * And the linux kernel needs to know the NUMA topology at start
2710 * to be able to hotplug CPUs later.
2712 if (machine->numa_state->num_nodes) {
2713 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
2714 /* check for memory-less node */
2715 if (machine->numa_state->nodes[i].node_mem == 0) {
2716 CPUState *cs;
2717 int found = 0;
2718 /* check for cpu-less node */
2719 CPU_FOREACH(cs) {
2720 PowerPCCPU *cpu = POWERPC_CPU(cs);
2721 if (cpu->node_id == i) {
2722 found = 1;
2723 break;
2726 /* memory-less and cpu-less node */
2727 if (!found) {
2728 error_report(
2729 "Memory-less/cpu-less nodes are not supported (node %d)",
2731 exit(1);
2739 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
2740 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
2741 * called from vPHB reset handler so we initialize the counter here.
2742 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
2743 * must be equally distant from any other node.
2744 * The final value of spapr->gpu_numa_id is going to be written to
2745 * max-associativity-domains in spapr_build_fdt().
2747 spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes);
2749 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2750 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2751 spapr->max_compat_pvr)) {
2752 /* KVM and TCG always allow GTSE with radix... */
2753 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2755 /* ... but not with hash (currently). */
2757 if (kvm_enabled()) {
2758 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2759 kvmppc_enable_logical_ci_hcalls();
2760 kvmppc_enable_set_mode_hcall();
2762 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2763 kvmppc_enable_clear_ref_mod_hcalls();
2765 /* Enable H_PAGE_INIT */
2766 kvmppc_enable_h_page_init();
2769 /* allocate RAM */
2770 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2771 machine->ram_size);
2772 memory_region_add_subregion(sysmem, 0, ram);
2774 /* always allocate the device memory information */
2775 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2777 /* initialize hotplug memory address space */
2778 if (machine->ram_size < machine->maxram_size) {
2779 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2781 * Limit the number of hotpluggable memory slots to half the number
2782 * slots that KVM supports, leaving the other half for PCI and other
2783 * devices. However ensure that number of slots doesn't drop below 32.
2785 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2786 SPAPR_MAX_RAM_SLOTS;
2788 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2789 max_memslots = SPAPR_MAX_RAM_SLOTS;
2791 if (machine->ram_slots > max_memslots) {
2792 error_report("Specified number of memory slots %"
2793 PRIu64" exceeds max supported %d",
2794 machine->ram_slots, max_memslots);
2795 exit(1);
2798 machine->device_memory->base = ROUND_UP(machine->ram_size,
2799 SPAPR_DEVICE_MEM_ALIGN);
2800 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2801 "device-memory", device_mem_size);
2802 memory_region_add_subregion(sysmem, machine->device_memory->base,
2803 &machine->device_memory->mr);
2806 if (smc->dr_lmb_enabled) {
2807 spapr_create_lmb_dr_connectors(spapr);
2810 /* Set up RTAS event infrastructure */
2811 spapr_events_init(spapr);
2813 /* Set up the RTC RTAS interfaces */
2814 spapr_rtc_create(spapr);
2816 /* Set up VIO bus */
2817 spapr->vio_bus = spapr_vio_bus_init();
2819 for (i = 0; i < serial_max_hds(); i++) {
2820 if (serial_hd(i)) {
2821 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2825 /* We always have at least the nvram device on VIO */
2826 spapr_create_nvram(spapr);
2829 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2830 * connectors (described in root DT node's "ibm,drc-types" property)
2831 * are pre-initialized here. additional child connectors (such as
2832 * connectors for a PHBs PCI slots) are added as needed during their
2833 * parent's realization.
2835 if (smc->dr_phb_enabled) {
2836 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2837 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2841 /* Set up PCI */
2842 spapr_pci_rtas_init();
2844 phb = spapr_create_default_phb();
2846 for (i = 0; i < nb_nics; i++) {
2847 NICInfo *nd = &nd_table[i];
2849 if (!nd->model) {
2850 nd->model = g_strdup("spapr-vlan");
2853 if (g_str_equal(nd->model, "spapr-vlan") ||
2854 g_str_equal(nd->model, "ibmveth")) {
2855 spapr_vlan_create(spapr->vio_bus, nd);
2856 } else {
2857 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2861 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2862 spapr_vscsi_create(spapr->vio_bus);
2865 /* Graphics */
2866 if (spapr_vga_init(phb->bus, &error_fatal)) {
2867 spapr->has_graphics = true;
2868 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2871 if (machine->usb) {
2872 if (smc->use_ohci_by_default) {
2873 pci_create_simple(phb->bus, -1, "pci-ohci");
2874 } else {
2875 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2878 if (spapr->has_graphics) {
2879 USBBus *usb_bus = usb_bus_find(-1);
2881 usb_create_simple(usb_bus, "usb-kbd");
2882 usb_create_simple(usb_bus, "usb-mouse");
2886 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
2887 error_report(
2888 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2889 MIN_RMA_SLOF);
2890 exit(1);
2893 if (kernel_filename) {
2894 uint64_t lowaddr = 0;
2896 spapr->kernel_size = load_elf(kernel_filename, NULL,
2897 translate_kernel_address, NULL,
2898 NULL, &lowaddr, NULL, 1,
2899 PPC_ELF_MACHINE, 0, 0);
2900 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2901 spapr->kernel_size = load_elf(kernel_filename, NULL,
2902 translate_kernel_address, NULL, NULL,
2903 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2904 0, 0);
2905 spapr->kernel_le = spapr->kernel_size > 0;
2907 if (spapr->kernel_size < 0) {
2908 error_report("error loading %s: %s", kernel_filename,
2909 load_elf_strerror(spapr->kernel_size));
2910 exit(1);
2913 /* load initrd */
2914 if (initrd_filename) {
2915 /* Try to locate the initrd in the gap between the kernel
2916 * and the firmware. Add a bit of space just in case
2918 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2919 + 0x1ffff) & ~0xffff;
2920 spapr->initrd_size = load_image_targphys(initrd_filename,
2921 spapr->initrd_base,
2922 load_limit
2923 - spapr->initrd_base);
2924 if (spapr->initrd_size < 0) {
2925 error_report("could not load initial ram disk '%s'",
2926 initrd_filename);
2927 exit(1);
2932 if (bios_name == NULL) {
2933 bios_name = FW_FILE_NAME;
2935 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2936 if (!filename) {
2937 error_report("Could not find LPAR firmware '%s'", bios_name);
2938 exit(1);
2940 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2941 if (fw_size <= 0) {
2942 error_report("Could not load LPAR firmware '%s'", filename);
2943 exit(1);
2945 g_free(filename);
2947 /* FIXME: Should register things through the MachineState's qdev
2948 * interface, this is a legacy from the sPAPREnvironment structure
2949 * which predated MachineState but had a similar function */
2950 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2951 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
2952 &savevm_htab_handlers, spapr);
2954 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine),
2955 &error_fatal);
2957 qemu_register_boot_set(spapr_boot_set, spapr);
2960 * Nothing needs to be done to resume a suspended guest because
2961 * suspending does not change the machine state, so no need for
2962 * a ->wakeup method.
2964 qemu_register_wakeup_support();
2966 if (kvm_enabled()) {
2967 /* to stop and start vmclock */
2968 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2969 &spapr->tb);
2971 kvmppc_spapr_enable_inkernel_multitce();
2975 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
2977 if (!vm_type) {
2978 return 0;
2981 if (!strcmp(vm_type, "HV")) {
2982 return 1;
2985 if (!strcmp(vm_type, "PR")) {
2986 return 2;
2989 error_report("Unknown kvm-type specified '%s'", vm_type);
2990 exit(1);
2994 * Implementation of an interface to adjust firmware path
2995 * for the bootindex property handling.
2997 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2998 DeviceState *dev)
3000 #define CAST(type, obj, name) \
3001 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3002 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3003 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3004 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3006 if (d) {
3007 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3008 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3009 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3011 if (spapr) {
3013 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3014 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3015 * 0x8000 | (target << 8) | (bus << 5) | lun
3016 * (see the "Logical unit addressing format" table in SAM5)
3018 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3019 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3020 (uint64_t)id << 48);
3021 } else if (virtio) {
3023 * We use SRP luns of the form 01000000 | (target << 8) | lun
3024 * in the top 32 bits of the 64-bit LUN
3025 * Note: the quote above is from SLOF and it is wrong,
3026 * the actual binding is:
3027 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3029 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3030 if (d->lun >= 256) {
3031 /* Use the LUN "flat space addressing method" */
3032 id |= 0x4000;
3034 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3035 (uint64_t)id << 32);
3036 } else if (usb) {
3038 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3039 * in the top 32 bits of the 64-bit LUN
3041 unsigned usb_port = atoi(usb->port->path);
3042 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3043 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3044 (uint64_t)id << 32);
3049 * SLOF probes the USB devices, and if it recognizes that the device is a
3050 * storage device, it changes its name to "storage" instead of "usb-host",
3051 * and additionally adds a child node for the SCSI LUN, so the correct
3052 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3054 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3055 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3056 if (usb_host_dev_is_scsi_storage(usbdev)) {
3057 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3061 if (phb) {
3062 /* Replace "pci" with "pci@800000020000000" */
3063 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3066 if (vsc) {
3067 /* Same logic as virtio above */
3068 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3069 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3072 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3073 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3074 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3075 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3078 return NULL;
3081 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3083 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3085 return g_strdup(spapr->kvm_type);
3088 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3090 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3092 g_free(spapr->kvm_type);
3093 spapr->kvm_type = g_strdup(value);
3096 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3098 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3100 return spapr->use_hotplug_event_source;
3103 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3104 Error **errp)
3106 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3108 spapr->use_hotplug_event_source = value;
3111 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3113 return true;
3116 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3118 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3120 switch (spapr->resize_hpt) {
3121 case SPAPR_RESIZE_HPT_DEFAULT:
3122 return g_strdup("default");
3123 case SPAPR_RESIZE_HPT_DISABLED:
3124 return g_strdup("disabled");
3125 case SPAPR_RESIZE_HPT_ENABLED:
3126 return g_strdup("enabled");
3127 case SPAPR_RESIZE_HPT_REQUIRED:
3128 return g_strdup("required");
3130 g_assert_not_reached();
3133 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3135 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3137 if (strcmp(value, "default") == 0) {
3138 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3139 } else if (strcmp(value, "disabled") == 0) {
3140 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3141 } else if (strcmp(value, "enabled") == 0) {
3142 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3143 } else if (strcmp(value, "required") == 0) {
3144 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3145 } else {
3146 error_setg(errp, "Bad value for \"resize-hpt\" property");
3150 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3151 void *opaque, Error **errp)
3153 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3156 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3157 void *opaque, Error **errp)
3159 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3162 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3164 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3166 if (spapr->irq == &spapr_irq_xics_legacy) {
3167 return g_strdup("legacy");
3168 } else if (spapr->irq == &spapr_irq_xics) {
3169 return g_strdup("xics");
3170 } else if (spapr->irq == &spapr_irq_xive) {
3171 return g_strdup("xive");
3172 } else if (spapr->irq == &spapr_irq_dual) {
3173 return g_strdup("dual");
3175 g_assert_not_reached();
3178 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3180 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3182 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3183 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3184 return;
3187 /* The legacy IRQ backend can not be set */
3188 if (strcmp(value, "xics") == 0) {
3189 spapr->irq = &spapr_irq_xics;
3190 } else if (strcmp(value, "xive") == 0) {
3191 spapr->irq = &spapr_irq_xive;
3192 } else if (strcmp(value, "dual") == 0) {
3193 spapr->irq = &spapr_irq_dual;
3194 } else {
3195 error_setg(errp, "Bad value for \"ic-mode\" property");
3199 static char *spapr_get_host_model(Object *obj, Error **errp)
3201 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3203 return g_strdup(spapr->host_model);
3206 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3208 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3210 g_free(spapr->host_model);
3211 spapr->host_model = g_strdup(value);
3214 static char *spapr_get_host_serial(Object *obj, Error **errp)
3216 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3218 return g_strdup(spapr->host_serial);
3221 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3223 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3225 g_free(spapr->host_serial);
3226 spapr->host_serial = g_strdup(value);
3229 static void spapr_instance_init(Object *obj)
3231 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3232 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3234 spapr->htab_fd = -1;
3235 spapr->use_hotplug_event_source = true;
3236 object_property_add_str(obj, "kvm-type",
3237 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3238 object_property_set_description(obj, "kvm-type",
3239 "Specifies the KVM virtualization mode (HV, PR)",
3240 NULL);
3241 object_property_add_bool(obj, "modern-hotplug-events",
3242 spapr_get_modern_hotplug_events,
3243 spapr_set_modern_hotplug_events,
3244 NULL);
3245 object_property_set_description(obj, "modern-hotplug-events",
3246 "Use dedicated hotplug event mechanism in"
3247 " place of standard EPOW events when possible"
3248 " (required for memory hot-unplug support)",
3249 NULL);
3250 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3251 "Maximum permitted CPU compatibility mode",
3252 &error_fatal);
3254 object_property_add_str(obj, "resize-hpt",
3255 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3256 object_property_set_description(obj, "resize-hpt",
3257 "Resizing of the Hash Page Table (enabled, disabled, required)",
3258 NULL);
3259 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3260 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3261 object_property_set_description(obj, "vsmt",
3262 "Virtual SMT: KVM behaves as if this were"
3263 " the host's SMT mode", &error_abort);
3264 object_property_add_bool(obj, "vfio-no-msix-emulation",
3265 spapr_get_msix_emulation, NULL, NULL);
3267 /* The machine class defines the default interrupt controller mode */
3268 spapr->irq = smc->irq;
3269 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3270 spapr_set_ic_mode, NULL);
3271 object_property_set_description(obj, "ic-mode",
3272 "Specifies the interrupt controller mode (xics, xive, dual)",
3273 NULL);
3275 object_property_add_str(obj, "host-model",
3276 spapr_get_host_model, spapr_set_host_model,
3277 &error_abort);
3278 object_property_set_description(obj, "host-model",
3279 "Host model to advertise in guest device tree", &error_abort);
3280 object_property_add_str(obj, "host-serial",
3281 spapr_get_host_serial, spapr_set_host_serial,
3282 &error_abort);
3283 object_property_set_description(obj, "host-serial",
3284 "Host serial number to advertise in guest device tree", &error_abort);
3287 static void spapr_machine_finalizefn(Object *obj)
3289 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3291 g_free(spapr->kvm_type);
3294 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3296 cpu_synchronize_state(cs);
3297 ppc_cpu_do_system_reset(cs);
3300 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3302 CPUState *cs;
3304 CPU_FOREACH(cs) {
3305 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3309 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3310 void *fdt, int *fdt_start_offset, Error **errp)
3312 uint64_t addr;
3313 uint32_t node;
3315 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3316 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3317 &error_abort);
3318 *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr,
3319 SPAPR_MEMORY_BLOCK_SIZE);
3320 return 0;
3323 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3324 bool dedicated_hp_event_source, Error **errp)
3326 SpaprDrc *drc;
3327 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3328 int i;
3329 uint64_t addr = addr_start;
3330 bool hotplugged = spapr_drc_hotplugged(dev);
3331 Error *local_err = NULL;
3333 for (i = 0; i < nr_lmbs; i++) {
3334 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3335 addr / SPAPR_MEMORY_BLOCK_SIZE);
3336 g_assert(drc);
3338 spapr_drc_attach(drc, dev, &local_err);
3339 if (local_err) {
3340 while (addr > addr_start) {
3341 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3342 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3343 addr / SPAPR_MEMORY_BLOCK_SIZE);
3344 spapr_drc_detach(drc);
3346 error_propagate(errp, local_err);
3347 return;
3349 if (!hotplugged) {
3350 spapr_drc_reset(drc);
3352 addr += SPAPR_MEMORY_BLOCK_SIZE;
3354 /* send hotplug notification to the
3355 * guest only in case of hotplugged memory
3357 if (hotplugged) {
3358 if (dedicated_hp_event_source) {
3359 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3360 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3361 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3362 nr_lmbs,
3363 spapr_drc_index(drc));
3364 } else {
3365 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3366 nr_lmbs);
3371 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3372 Error **errp)
3374 Error *local_err = NULL;
3375 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3376 PCDIMMDevice *dimm = PC_DIMM(dev);
3377 uint64_t size, addr;
3379 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3381 pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3382 if (local_err) {
3383 goto out;
3386 addr = object_property_get_uint(OBJECT(dimm),
3387 PC_DIMM_ADDR_PROP, &local_err);
3388 if (local_err) {
3389 goto out_unplug;
3392 spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3393 &local_err);
3394 if (local_err) {
3395 goto out_unplug;
3398 return;
3400 out_unplug:
3401 pc_dimm_unplug(dimm, MACHINE(ms));
3402 out:
3403 error_propagate(errp, local_err);
3406 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3407 Error **errp)
3409 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3410 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3411 PCDIMMDevice *dimm = PC_DIMM(dev);
3412 Error *local_err = NULL;
3413 uint64_t size;
3414 Object *memdev;
3415 hwaddr pagesize;
3417 if (!smc->dr_lmb_enabled) {
3418 error_setg(errp, "Memory hotplug not supported for this machine");
3419 return;
3422 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3423 if (local_err) {
3424 error_propagate(errp, local_err);
3425 return;
3428 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3429 error_setg(errp, "Hotplugged memory size must be a multiple of "
3430 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3431 return;
3434 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3435 &error_abort);
3436 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3437 spapr_check_pagesize(spapr, pagesize, &local_err);
3438 if (local_err) {
3439 error_propagate(errp, local_err);
3440 return;
3443 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3446 struct SpaprDimmState {
3447 PCDIMMDevice *dimm;
3448 uint32_t nr_lmbs;
3449 QTAILQ_ENTRY(SpaprDimmState) next;
3452 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3453 PCDIMMDevice *dimm)
3455 SpaprDimmState *dimm_state = NULL;
3457 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3458 if (dimm_state->dimm == dimm) {
3459 break;
3462 return dimm_state;
3465 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3466 uint32_t nr_lmbs,
3467 PCDIMMDevice *dimm)
3469 SpaprDimmState *ds = NULL;
3472 * If this request is for a DIMM whose removal had failed earlier
3473 * (due to guest's refusal to remove the LMBs), we would have this
3474 * dimm already in the pending_dimm_unplugs list. In that
3475 * case don't add again.
3477 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3478 if (!ds) {
3479 ds = g_malloc0(sizeof(SpaprDimmState));
3480 ds->nr_lmbs = nr_lmbs;
3481 ds->dimm = dimm;
3482 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3484 return ds;
3487 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3488 SpaprDimmState *dimm_state)
3490 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3491 g_free(dimm_state);
3494 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3495 PCDIMMDevice *dimm)
3497 SpaprDrc *drc;
3498 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3499 &error_abort);
3500 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3501 uint32_t avail_lmbs = 0;
3502 uint64_t addr_start, addr;
3503 int i;
3505 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3506 &error_abort);
3508 addr = addr_start;
3509 for (i = 0; i < nr_lmbs; i++) {
3510 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3511 addr / SPAPR_MEMORY_BLOCK_SIZE);
3512 g_assert(drc);
3513 if (drc->dev) {
3514 avail_lmbs++;
3516 addr += SPAPR_MEMORY_BLOCK_SIZE;
3519 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3522 /* Callback to be called during DRC release. */
3523 void spapr_lmb_release(DeviceState *dev)
3525 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3526 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3527 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3529 /* This information will get lost if a migration occurs
3530 * during the unplug process. In this case recover it. */
3531 if (ds == NULL) {
3532 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3533 g_assert(ds);
3534 /* The DRC being examined by the caller at least must be counted */
3535 g_assert(ds->nr_lmbs);
3538 if (--ds->nr_lmbs) {
3539 return;
3543 * Now that all the LMBs have been removed by the guest, call the
3544 * unplug handler chain. This can never fail.
3546 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3547 object_unparent(OBJECT(dev));
3550 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3552 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3553 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3555 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3556 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3557 spapr_pending_dimm_unplugs_remove(spapr, ds);
3560 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3561 DeviceState *dev, Error **errp)
3563 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3564 Error *local_err = NULL;
3565 PCDIMMDevice *dimm = PC_DIMM(dev);
3566 uint32_t nr_lmbs;
3567 uint64_t size, addr_start, addr;
3568 int i;
3569 SpaprDrc *drc;
3571 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3572 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3574 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3575 &local_err);
3576 if (local_err) {
3577 goto out;
3581 * An existing pending dimm state for this DIMM means that there is an
3582 * unplug operation in progress, waiting for the spapr_lmb_release
3583 * callback to complete the job (BQL can't cover that far). In this case,
3584 * bail out to avoid detaching DRCs that were already released.
3586 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3587 error_setg(&local_err,
3588 "Memory unplug already in progress for device %s",
3589 dev->id);
3590 goto out;
3593 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3595 addr = addr_start;
3596 for (i = 0; i < nr_lmbs; i++) {
3597 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3598 addr / SPAPR_MEMORY_BLOCK_SIZE);
3599 g_assert(drc);
3601 spapr_drc_detach(drc);
3602 addr += SPAPR_MEMORY_BLOCK_SIZE;
3605 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3606 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3607 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3608 nr_lmbs, spapr_drc_index(drc));
3609 out:
3610 error_propagate(errp, local_err);
3613 /* Callback to be called during DRC release. */
3614 void spapr_core_release(DeviceState *dev)
3616 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3618 /* Call the unplug handler chain. This can never fail. */
3619 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3620 object_unparent(OBJECT(dev));
3623 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3625 MachineState *ms = MACHINE(hotplug_dev);
3626 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3627 CPUCore *cc = CPU_CORE(dev);
3628 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3630 if (smc->pre_2_10_has_unused_icps) {
3631 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3632 int i;
3634 for (i = 0; i < cc->nr_threads; i++) {
3635 CPUState *cs = CPU(sc->threads[i]);
3637 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3641 assert(core_slot);
3642 core_slot->cpu = NULL;
3643 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3646 static
3647 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3648 Error **errp)
3650 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3651 int index;
3652 SpaprDrc *drc;
3653 CPUCore *cc = CPU_CORE(dev);
3655 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3656 error_setg(errp, "Unable to find CPU core with core-id: %d",
3657 cc->core_id);
3658 return;
3660 if (index == 0) {
3661 error_setg(errp, "Boot CPU core may not be unplugged");
3662 return;
3665 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3666 spapr_vcpu_id(spapr, cc->core_id));
3667 g_assert(drc);
3669 if (!spapr_drc_unplug_requested(drc)) {
3670 spapr_drc_detach(drc);
3671 spapr_hotplug_req_remove_by_index(drc);
3675 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3676 void *fdt, int *fdt_start_offset, Error **errp)
3678 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3679 CPUState *cs = CPU(core->threads[0]);
3680 PowerPCCPU *cpu = POWERPC_CPU(cs);
3681 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3682 int id = spapr_get_vcpu_id(cpu);
3683 char *nodename;
3684 int offset;
3686 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3687 offset = fdt_add_subnode(fdt, 0, nodename);
3688 g_free(nodename);
3690 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3692 *fdt_start_offset = offset;
3693 return 0;
3696 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3697 Error **errp)
3699 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3700 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3701 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3702 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3703 CPUCore *cc = CPU_CORE(dev);
3704 CPUState *cs;
3705 SpaprDrc *drc;
3706 Error *local_err = NULL;
3707 CPUArchId *core_slot;
3708 int index;
3709 bool hotplugged = spapr_drc_hotplugged(dev);
3710 int i;
3712 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3713 if (!core_slot) {
3714 error_setg(errp, "Unable to find CPU core with core-id: %d",
3715 cc->core_id);
3716 return;
3718 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3719 spapr_vcpu_id(spapr, cc->core_id));
3721 g_assert(drc || !mc->has_hotpluggable_cpus);
3723 if (drc) {
3724 spapr_drc_attach(drc, dev, &local_err);
3725 if (local_err) {
3726 error_propagate(errp, local_err);
3727 return;
3730 if (hotplugged) {
3732 * Send hotplug notification interrupt to the guest only
3733 * in case of hotplugged CPUs.
3735 spapr_hotplug_req_add_by_index(drc);
3736 } else {
3737 spapr_drc_reset(drc);
3741 core_slot->cpu = OBJECT(dev);
3743 if (smc->pre_2_10_has_unused_icps) {
3744 for (i = 0; i < cc->nr_threads; i++) {
3745 cs = CPU(core->threads[i]);
3746 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3751 * Set compatibility mode to match the boot CPU, which was either set
3752 * by the machine reset code or by CAS.
3754 if (hotplugged) {
3755 for (i = 0; i < cc->nr_threads; i++) {
3756 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3757 &local_err);
3758 if (local_err) {
3759 error_propagate(errp, local_err);
3760 return;
3766 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3767 Error **errp)
3769 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3770 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3771 Error *local_err = NULL;
3772 CPUCore *cc = CPU_CORE(dev);
3773 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3774 const char *type = object_get_typename(OBJECT(dev));
3775 CPUArchId *core_slot;
3776 int index;
3777 unsigned int smp_threads = machine->smp.threads;
3779 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3780 error_setg(&local_err, "CPU hotplug not supported for this machine");
3781 goto out;
3784 if (strcmp(base_core_type, type)) {
3785 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3786 goto out;
3789 if (cc->core_id % smp_threads) {
3790 error_setg(&local_err, "invalid core id %d", cc->core_id);
3791 goto out;
3795 * In general we should have homogeneous threads-per-core, but old
3796 * (pre hotplug support) machine types allow the last core to have
3797 * reduced threads as a compatibility hack for when we allowed
3798 * total vcpus not a multiple of threads-per-core.
3800 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3801 error_setg(&local_err, "invalid nr-threads %d, must be %d",
3802 cc->nr_threads, smp_threads);
3803 goto out;
3806 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3807 if (!core_slot) {
3808 error_setg(&local_err, "core id %d out of range", cc->core_id);
3809 goto out;
3812 if (core_slot->cpu) {
3813 error_setg(&local_err, "core %d already populated", cc->core_id);
3814 goto out;
3817 numa_cpu_pre_plug(core_slot, dev, &local_err);
3819 out:
3820 error_propagate(errp, local_err);
3823 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3824 void *fdt, int *fdt_start_offset, Error **errp)
3826 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3827 int intc_phandle;
3829 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3830 if (intc_phandle <= 0) {
3831 return -1;
3834 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
3835 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3836 return -1;
3839 /* generally SLOF creates these, for hotplug it's up to QEMU */
3840 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3842 return 0;
3845 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3846 Error **errp)
3848 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3849 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3850 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3851 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3853 if (dev->hotplugged && !smc->dr_phb_enabled) {
3854 error_setg(errp, "PHB hotplug not supported for this machine");
3855 return;
3858 if (sphb->index == (uint32_t)-1) {
3859 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3860 return;
3864 * This will check that sphb->index doesn't exceed the maximum number of
3865 * PHBs for the current machine type.
3867 smc->phb_placement(spapr, sphb->index,
3868 &sphb->buid, &sphb->io_win_addr,
3869 &sphb->mem_win_addr, &sphb->mem64_win_addr,
3870 windows_supported, sphb->dma_liobn,
3871 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3872 errp);
3875 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3876 Error **errp)
3878 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3879 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3880 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3881 SpaprDrc *drc;
3882 bool hotplugged = spapr_drc_hotplugged(dev);
3883 Error *local_err = NULL;
3885 if (!smc->dr_phb_enabled) {
3886 return;
3889 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3890 /* hotplug hooks should check it's enabled before getting this far */
3891 assert(drc);
3893 spapr_drc_attach(drc, DEVICE(dev), &local_err);
3894 if (local_err) {
3895 error_propagate(errp, local_err);
3896 return;
3899 if (hotplugged) {
3900 spapr_hotplug_req_add_by_index(drc);
3901 } else {
3902 spapr_drc_reset(drc);
3906 void spapr_phb_release(DeviceState *dev)
3908 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3910 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3911 object_unparent(OBJECT(dev));
3914 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3916 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3919 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
3920 DeviceState *dev, Error **errp)
3922 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3923 SpaprDrc *drc;
3925 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3926 assert(drc);
3928 if (!spapr_drc_unplug_requested(drc)) {
3929 spapr_drc_detach(drc);
3930 spapr_hotplug_req_remove_by_index(drc);
3934 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3935 Error **errp)
3937 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3938 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
3940 if (spapr->tpm_proxy != NULL) {
3941 error_setg(errp, "Only one TPM proxy can be specified for this machine");
3942 return;
3945 spapr->tpm_proxy = tpm_proxy;
3948 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3950 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3952 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3953 object_unparent(OBJECT(dev));
3954 spapr->tpm_proxy = NULL;
3957 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3958 DeviceState *dev, Error **errp)
3960 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3961 spapr_memory_plug(hotplug_dev, dev, errp);
3962 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3963 spapr_core_plug(hotplug_dev, dev, errp);
3964 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
3965 spapr_phb_plug(hotplug_dev, dev, errp);
3966 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
3967 spapr_tpm_proxy_plug(hotplug_dev, dev, errp);
3971 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
3972 DeviceState *dev, Error **errp)
3974 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3975 spapr_memory_unplug(hotplug_dev, dev);
3976 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3977 spapr_core_unplug(hotplug_dev, dev);
3978 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
3979 spapr_phb_unplug(hotplug_dev, dev);
3980 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
3981 spapr_tpm_proxy_unplug(hotplug_dev, dev);
3985 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3986 DeviceState *dev, Error **errp)
3988 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
3989 MachineClass *mc = MACHINE_GET_CLASS(sms);
3990 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3992 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3993 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3994 spapr_memory_unplug_request(hotplug_dev, dev, errp);
3995 } else {
3996 /* NOTE: this means there is a window after guest reset, prior to
3997 * CAS negotiation, where unplug requests will fail due to the
3998 * capability not being detected yet. This is a bit different than
3999 * the case with PCI unplug, where the events will be queued and
4000 * eventually handled by the guest after boot
4002 error_setg(errp, "Memory hot unplug not supported for this guest");
4004 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4005 if (!mc->has_hotpluggable_cpus) {
4006 error_setg(errp, "CPU hot unplug not supported on this machine");
4007 return;
4009 spapr_core_unplug_request(hotplug_dev, dev, errp);
4010 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4011 if (!smc->dr_phb_enabled) {
4012 error_setg(errp, "PHB hot unplug not supported on this machine");
4013 return;
4015 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4016 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4017 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4021 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4022 DeviceState *dev, Error **errp)
4024 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4025 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4026 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4027 spapr_core_pre_plug(hotplug_dev, dev, errp);
4028 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4029 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4033 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4034 DeviceState *dev)
4036 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4037 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4038 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4039 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4040 return HOTPLUG_HANDLER(machine);
4042 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4043 PCIDevice *pcidev = PCI_DEVICE(dev);
4044 PCIBus *root = pci_device_root_bus(pcidev);
4045 SpaprPhbState *phb =
4046 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4047 TYPE_SPAPR_PCI_HOST_BRIDGE);
4049 if (phb) {
4050 return HOTPLUG_HANDLER(phb);
4053 return NULL;
4056 static CpuInstanceProperties
4057 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4059 CPUArchId *core_slot;
4060 MachineClass *mc = MACHINE_GET_CLASS(machine);
4062 /* make sure possible_cpu are intialized */
4063 mc->possible_cpu_arch_ids(machine);
4064 /* get CPU core slot containing thread that matches cpu_index */
4065 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4066 assert(core_slot);
4067 return core_slot->props;
4070 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4072 return idx / ms->smp.cores % ms->numa_state->num_nodes;
4075 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4077 int i;
4078 unsigned int smp_threads = machine->smp.threads;
4079 unsigned int smp_cpus = machine->smp.cpus;
4080 const char *core_type;
4081 int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4082 MachineClass *mc = MACHINE_GET_CLASS(machine);
4084 if (!mc->has_hotpluggable_cpus) {
4085 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4087 if (machine->possible_cpus) {
4088 assert(machine->possible_cpus->len == spapr_max_cores);
4089 return machine->possible_cpus;
4092 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4093 if (!core_type) {
4094 error_report("Unable to find sPAPR CPU Core definition");
4095 exit(1);
4098 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4099 sizeof(CPUArchId) * spapr_max_cores);
4100 machine->possible_cpus->len = spapr_max_cores;
4101 for (i = 0; i < machine->possible_cpus->len; i++) {
4102 int core_id = i * smp_threads;
4104 machine->possible_cpus->cpus[i].type = core_type;
4105 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4106 machine->possible_cpus->cpus[i].arch_id = core_id;
4107 machine->possible_cpus->cpus[i].props.has_core_id = true;
4108 machine->possible_cpus->cpus[i].props.core_id = core_id;
4110 return machine->possible_cpus;
4113 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4114 uint64_t *buid, hwaddr *pio,
4115 hwaddr *mmio32, hwaddr *mmio64,
4116 unsigned n_dma, uint32_t *liobns,
4117 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4120 * New-style PHB window placement.
4122 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4123 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4124 * windows.
4126 * Some guest kernels can't work with MMIO windows above 1<<46
4127 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4129 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4130 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4131 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4132 * 1TiB 64-bit MMIO windows for each PHB.
4134 const uint64_t base_buid = 0x800000020000000ULL;
4135 int i;
4137 /* Sanity check natural alignments */
4138 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4139 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4140 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4141 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4142 /* Sanity check bounds */
4143 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4144 SPAPR_PCI_MEM32_WIN_SIZE);
4145 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4146 SPAPR_PCI_MEM64_WIN_SIZE);
4148 if (index >= SPAPR_MAX_PHBS) {
4149 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4150 SPAPR_MAX_PHBS - 1);
4151 return;
4154 *buid = base_buid + index;
4155 for (i = 0; i < n_dma; ++i) {
4156 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4159 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4160 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4161 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4163 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4164 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4167 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4169 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4171 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4174 static void spapr_ics_resend(XICSFabric *dev)
4176 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4178 ics_resend(spapr->ics);
4181 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4183 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4185 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4188 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4189 Monitor *mon)
4191 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4193 spapr_irq_print_info(spapr, mon);
4194 monitor_printf(mon, "irqchip: %s\n",
4195 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4199 * This is a XIVE only operation
4201 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4202 uint8_t nvt_blk, uint32_t nvt_idx,
4203 bool cam_ignore, uint8_t priority,
4204 uint32_t logic_serv, XiveTCTXMatch *match)
4206 SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4207 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4208 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4209 int count;
4211 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4212 priority, logic_serv, match);
4213 if (count < 0) {
4214 return count;
4218 * When we implement the save and restore of the thread interrupt
4219 * contexts in the enter/exit CPU handlers of the machine and the
4220 * escalations in QEMU, we should be able to handle non dispatched
4221 * vCPUs.
4223 * Until this is done, the sPAPR machine should find at least one
4224 * matching context always.
4226 if (count == 0) {
4227 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4228 nvt_blk, nvt_idx);
4231 return count;
4234 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4236 return cpu->vcpu_id;
4239 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4241 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4242 MachineState *ms = MACHINE(spapr);
4243 int vcpu_id;
4245 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4247 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4248 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4249 error_append_hint(errp, "Adjust the number of cpus to %d "
4250 "or try to raise the number of threads per core\n",
4251 vcpu_id * ms->smp.threads / spapr->vsmt);
4252 return;
4255 cpu->vcpu_id = vcpu_id;
4258 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4260 CPUState *cs;
4262 CPU_FOREACH(cs) {
4263 PowerPCCPU *cpu = POWERPC_CPU(cs);
4265 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4266 return cpu;
4270 return NULL;
4273 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4275 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4277 /* These are only called by TCG, KVM maintains dispatch state */
4279 spapr_cpu->prod = false;
4280 if (spapr_cpu->vpa_addr) {
4281 CPUState *cs = CPU(cpu);
4282 uint32_t dispatch;
4284 dispatch = ldl_be_phys(cs->as,
4285 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4286 dispatch++;
4287 if ((dispatch & 1) != 0) {
4288 qemu_log_mask(LOG_GUEST_ERROR,
4289 "VPA: incorrect dispatch counter value for "
4290 "dispatched partition %u, correcting.\n", dispatch);
4291 dispatch++;
4293 stl_be_phys(cs->as,
4294 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4298 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4300 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4302 if (spapr_cpu->vpa_addr) {
4303 CPUState *cs = CPU(cpu);
4304 uint32_t dispatch;
4306 dispatch = ldl_be_phys(cs->as,
4307 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4308 dispatch++;
4309 if ((dispatch & 1) != 1) {
4310 qemu_log_mask(LOG_GUEST_ERROR,
4311 "VPA: incorrect dispatch counter value for "
4312 "preempted partition %u, correcting.\n", dispatch);
4313 dispatch++;
4315 stl_be_phys(cs->as,
4316 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4320 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4322 MachineClass *mc = MACHINE_CLASS(oc);
4323 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4324 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4325 NMIClass *nc = NMI_CLASS(oc);
4326 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4327 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4328 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4329 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4330 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4332 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4333 mc->ignore_boot_device_suffixes = true;
4336 * We set up the default / latest behaviour here. The class_init
4337 * functions for the specific versioned machine types can override
4338 * these details for backwards compatibility
4340 mc->init = spapr_machine_init;
4341 mc->reset = spapr_machine_reset;
4342 mc->block_default_type = IF_SCSI;
4343 mc->max_cpus = 1024;
4344 mc->no_parallel = 1;
4345 mc->default_boot_order = "";
4346 mc->default_ram_size = 512 * MiB;
4347 mc->default_display = "std";
4348 mc->kvm_type = spapr_kvm_type;
4349 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4350 mc->pci_allow_0_address = true;
4351 assert(!mc->get_hotplug_handler);
4352 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4353 hc->pre_plug = spapr_machine_device_pre_plug;
4354 hc->plug = spapr_machine_device_plug;
4355 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4356 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4357 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4358 hc->unplug_request = spapr_machine_device_unplug_request;
4359 hc->unplug = spapr_machine_device_unplug;
4361 smc->dr_lmb_enabled = true;
4362 smc->update_dt_enabled = true;
4363 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4364 mc->has_hotpluggable_cpus = true;
4365 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4366 fwc->get_dev_path = spapr_get_fw_dev_path;
4367 nc->nmi_monitor_handler = spapr_nmi;
4368 smc->phb_placement = spapr_phb_placement;
4369 vhc->hypercall = emulate_spapr_hypercall;
4370 vhc->hpt_mask = spapr_hpt_mask;
4371 vhc->map_hptes = spapr_map_hptes;
4372 vhc->unmap_hptes = spapr_unmap_hptes;
4373 vhc->hpte_set_c = spapr_hpte_set_c;
4374 vhc->hpte_set_r = spapr_hpte_set_r;
4375 vhc->get_pate = spapr_get_pate;
4376 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4377 vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4378 vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4379 xic->ics_get = spapr_ics_get;
4380 xic->ics_resend = spapr_ics_resend;
4381 xic->icp_get = spapr_icp_get;
4382 ispc->print_info = spapr_pic_print_info;
4383 /* Force NUMA node memory size to be a multiple of
4384 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4385 * in which LMBs are represented and hot-added
4387 mc->numa_mem_align_shift = 28;
4388 mc->numa_mem_supported = true;
4389 mc->auto_enable_numa = true;
4391 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4392 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4393 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4394 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4395 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4396 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4397 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4398 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4399 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4400 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4401 spapr_caps_add_properties(smc, &error_abort);
4402 smc->irq = &spapr_irq_dual;
4403 smc->dr_phb_enabled = true;
4404 smc->linux_pci_probe = true;
4405 smc->smp_threads_vsmt = true;
4406 smc->nr_xirqs = SPAPR_NR_XIRQS;
4407 xfc->match_nvt = spapr_match_nvt;
4410 static const TypeInfo spapr_machine_info = {
4411 .name = TYPE_SPAPR_MACHINE,
4412 .parent = TYPE_MACHINE,
4413 .abstract = true,
4414 .instance_size = sizeof(SpaprMachineState),
4415 .instance_init = spapr_instance_init,
4416 .instance_finalize = spapr_machine_finalizefn,
4417 .class_size = sizeof(SpaprMachineClass),
4418 .class_init = spapr_machine_class_init,
4419 .interfaces = (InterfaceInfo[]) {
4420 { TYPE_FW_PATH_PROVIDER },
4421 { TYPE_NMI },
4422 { TYPE_HOTPLUG_HANDLER },
4423 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4424 { TYPE_XICS_FABRIC },
4425 { TYPE_INTERRUPT_STATS_PROVIDER },
4426 { TYPE_XIVE_FABRIC },
4431 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4432 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4433 void *data) \
4435 MachineClass *mc = MACHINE_CLASS(oc); \
4436 spapr_machine_##suffix##_class_options(mc); \
4437 if (latest) { \
4438 mc->alias = "pseries"; \
4439 mc->is_default = 1; \
4442 static const TypeInfo spapr_machine_##suffix##_info = { \
4443 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4444 .parent = TYPE_SPAPR_MACHINE, \
4445 .class_init = spapr_machine_##suffix##_class_init, \
4446 }; \
4447 static void spapr_machine_register_##suffix(void) \
4449 type_register(&spapr_machine_##suffix##_info); \
4451 type_init(spapr_machine_register_##suffix)
4454 * pseries-5.0
4456 static void spapr_machine_5_0_class_options(MachineClass *mc)
4458 /* Defaults for the latest behaviour inherited from the base class */
4461 DEFINE_SPAPR_MACHINE(5_0, "5.0", true);
4464 * pseries-4.2
4466 static void spapr_machine_4_2_class_options(MachineClass *mc)
4468 spapr_machine_5_0_class_options(mc);
4469 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4472 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4475 * pseries-4.1
4477 static void spapr_machine_4_1_class_options(MachineClass *mc)
4479 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4480 static GlobalProperty compat[] = {
4481 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4482 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4485 spapr_machine_4_2_class_options(mc);
4486 smc->linux_pci_probe = false;
4487 smc->smp_threads_vsmt = false;
4488 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4489 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4492 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4495 * pseries-4.0
4497 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4498 uint64_t *buid, hwaddr *pio,
4499 hwaddr *mmio32, hwaddr *mmio64,
4500 unsigned n_dma, uint32_t *liobns,
4501 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4503 spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4504 nv2gpa, nv2atsd, errp);
4505 *nv2gpa = 0;
4506 *nv2atsd = 0;
4509 static void spapr_machine_4_0_class_options(MachineClass *mc)
4511 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4513 spapr_machine_4_1_class_options(mc);
4514 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4515 smc->phb_placement = phb_placement_4_0;
4516 smc->irq = &spapr_irq_xics;
4517 smc->pre_4_1_migration = true;
4520 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4523 * pseries-3.1
4525 static void spapr_machine_3_1_class_options(MachineClass *mc)
4527 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4529 spapr_machine_4_0_class_options(mc);
4530 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4532 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4533 smc->update_dt_enabled = false;
4534 smc->dr_phb_enabled = false;
4535 smc->broken_host_serial_model = true;
4536 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4537 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4538 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4539 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4542 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4545 * pseries-3.0
4548 static void spapr_machine_3_0_class_options(MachineClass *mc)
4550 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4552 spapr_machine_3_1_class_options(mc);
4553 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4555 smc->legacy_irq_allocation = true;
4556 smc->nr_xirqs = 0x400;
4557 smc->irq = &spapr_irq_xics_legacy;
4560 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4563 * pseries-2.12
4565 static void spapr_machine_2_12_class_options(MachineClass *mc)
4567 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4568 static GlobalProperty compat[] = {
4569 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4570 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4573 spapr_machine_3_0_class_options(mc);
4574 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4575 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4577 /* We depend on kvm_enabled() to choose a default value for the
4578 * hpt-max-page-size capability. Of course we can't do it here
4579 * because this is too early and the HW accelerator isn't initialzed
4580 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4582 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4585 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4587 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4589 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4591 spapr_machine_2_12_class_options(mc);
4592 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4593 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4594 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4597 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4600 * pseries-2.11
4603 static void spapr_machine_2_11_class_options(MachineClass *mc)
4605 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4607 spapr_machine_2_12_class_options(mc);
4608 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4609 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4612 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4615 * pseries-2.10
4618 static void spapr_machine_2_10_class_options(MachineClass *mc)
4620 spapr_machine_2_11_class_options(mc);
4621 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4624 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4627 * pseries-2.9
4630 static void spapr_machine_2_9_class_options(MachineClass *mc)
4632 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4633 static GlobalProperty compat[] = {
4634 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4637 spapr_machine_2_10_class_options(mc);
4638 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4639 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4640 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4641 smc->pre_2_10_has_unused_icps = true;
4642 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4645 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4648 * pseries-2.8
4651 static void spapr_machine_2_8_class_options(MachineClass *mc)
4653 static GlobalProperty compat[] = {
4654 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4657 spapr_machine_2_9_class_options(mc);
4658 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4659 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4660 mc->numa_mem_align_shift = 23;
4663 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4666 * pseries-2.7
4669 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4670 uint64_t *buid, hwaddr *pio,
4671 hwaddr *mmio32, hwaddr *mmio64,
4672 unsigned n_dma, uint32_t *liobns,
4673 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4675 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4676 const uint64_t base_buid = 0x800000020000000ULL;
4677 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4678 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4679 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4680 const uint32_t max_index = 255;
4681 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4683 uint64_t ram_top = MACHINE(spapr)->ram_size;
4684 hwaddr phb0_base, phb_base;
4685 int i;
4687 /* Do we have device memory? */
4688 if (MACHINE(spapr)->maxram_size > ram_top) {
4689 /* Can't just use maxram_size, because there may be an
4690 * alignment gap between normal and device memory regions
4692 ram_top = MACHINE(spapr)->device_memory->base +
4693 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4696 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4698 if (index > max_index) {
4699 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4700 max_index);
4701 return;
4704 *buid = base_buid + index;
4705 for (i = 0; i < n_dma; ++i) {
4706 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4709 phb_base = phb0_base + index * phb_spacing;
4710 *pio = phb_base + pio_offset;
4711 *mmio32 = phb_base + mmio_offset;
4713 * We don't set the 64-bit MMIO window, relying on the PHB's
4714 * fallback behaviour of automatically splitting a large "32-bit"
4715 * window into contiguous 32-bit and 64-bit windows
4718 *nv2gpa = 0;
4719 *nv2atsd = 0;
4722 static void spapr_machine_2_7_class_options(MachineClass *mc)
4724 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4725 static GlobalProperty compat[] = {
4726 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4727 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4728 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4729 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4732 spapr_machine_2_8_class_options(mc);
4733 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4734 mc->default_machine_opts = "modern-hotplug-events=off";
4735 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4736 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4737 smc->phb_placement = phb_placement_2_7;
4740 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4743 * pseries-2.6
4746 static void spapr_machine_2_6_class_options(MachineClass *mc)
4748 static GlobalProperty compat[] = {
4749 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4752 spapr_machine_2_7_class_options(mc);
4753 mc->has_hotpluggable_cpus = false;
4754 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4755 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4758 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4761 * pseries-2.5
4764 static void spapr_machine_2_5_class_options(MachineClass *mc)
4766 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4767 static GlobalProperty compat[] = {
4768 { "spapr-vlan", "use-rx-buffer-pools", "off" },
4771 spapr_machine_2_6_class_options(mc);
4772 smc->use_ohci_by_default = true;
4773 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4774 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4777 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4780 * pseries-2.4
4783 static void spapr_machine_2_4_class_options(MachineClass *mc)
4785 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4787 spapr_machine_2_5_class_options(mc);
4788 smc->dr_lmb_enabled = false;
4789 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4792 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4795 * pseries-2.3
4798 static void spapr_machine_2_3_class_options(MachineClass *mc)
4800 static GlobalProperty compat[] = {
4801 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4803 spapr_machine_2_4_class_options(mc);
4804 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4805 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4807 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4810 * pseries-2.2
4813 static void spapr_machine_2_2_class_options(MachineClass *mc)
4815 static GlobalProperty compat[] = {
4816 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4819 spapr_machine_2_3_class_options(mc);
4820 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4821 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4822 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4824 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4827 * pseries-2.1
4830 static void spapr_machine_2_1_class_options(MachineClass *mc)
4832 spapr_machine_2_2_class_options(mc);
4833 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4835 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4837 static void spapr_machine_register_types(void)
4839 type_register_static(&spapr_machine_info);
4842 type_init(spapr_machine_register_types)