target/arm: Implement ID_PFR2
[qemu/kevin.git] / target / arm / helper.c
blob417777d4bed557b70c777de544e31881bacadf9a
1 /*
2 * ARM generic helpers.
4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "target/arm/idau.h"
12 #include "trace.h"
13 #include "cpu.h"
14 #include "internals.h"
15 #include "exec/gdbstub.h"
16 #include "exec/helper-proto.h"
17 #include "qemu/host-utils.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/bitops.h"
20 #include "qemu/crc32c.h"
21 #include "qemu/qemu-print.h"
22 #include "exec/exec-all.h"
23 #include <zlib.h> /* For crc32 */
24 #include "hw/irq.h"
25 #include "hw/semihosting/semihost.h"
26 #include "sysemu/cpus.h"
27 #include "sysemu/cpu-timers.h"
28 #include "sysemu/kvm.h"
29 #include "sysemu/tcg.h"
30 #include "qemu/range.h"
31 #include "qapi/qapi-commands-machine-target.h"
32 #include "qapi/error.h"
33 #include "qemu/guest-random.h"
34 #ifdef CONFIG_TCG
35 #include "arm_ldst.h"
36 #include "exec/cpu_ldst.h"
37 #include "hw/semihosting/common-semi.h"
38 #endif
40 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
42 #ifndef CONFIG_USER_ONLY
44 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
45 MMUAccessType access_type, ARMMMUIdx mmu_idx,
46 bool s1_is_el0,
47 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
48 target_ulong *page_size_ptr,
49 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
50 __attribute__((nonnull));
51 #endif
53 static void switch_mode(CPUARMState *env, int mode);
54 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
56 static int vfp_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
58 ARMCPU *cpu = env_archcpu(env);
59 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
61 /* VFP data registers are always little-endian. */
62 if (reg < nregs) {
63 return gdb_get_reg64(buf, *aa32_vfp_dreg(env, reg));
65 if (arm_feature(env, ARM_FEATURE_NEON)) {
66 /* Aliases for Q regs. */
67 nregs += 16;
68 if (reg < nregs) {
69 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
70 return gdb_get_reg128(buf, q[0], q[1]);
73 switch (reg - nregs) {
74 case 0: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPSID]); break;
75 case 1: return gdb_get_reg32(buf, vfp_get_fpscr(env)); break;
76 case 2: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPEXC]); break;
78 return 0;
81 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
83 ARMCPU *cpu = env_archcpu(env);
84 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
86 if (reg < nregs) {
87 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
88 return 8;
90 if (arm_feature(env, ARM_FEATURE_NEON)) {
91 nregs += 16;
92 if (reg < nregs) {
93 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
94 q[0] = ldq_le_p(buf);
95 q[1] = ldq_le_p(buf + 8);
96 return 16;
99 switch (reg - nregs) {
100 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
101 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4;
102 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
104 return 0;
107 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
109 switch (reg) {
110 case 0 ... 31:
112 /* 128 bit FP register - quads are in LE order */
113 uint64_t *q = aa64_vfp_qreg(env, reg);
114 return gdb_get_reg128(buf, q[1], q[0]);
116 case 32:
117 /* FPSR */
118 return gdb_get_reg32(buf, vfp_get_fpsr(env));
119 case 33:
120 /* FPCR */
121 return gdb_get_reg32(buf,vfp_get_fpcr(env));
122 default:
123 return 0;
127 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
129 switch (reg) {
130 case 0 ... 31:
131 /* 128 bit FP register */
133 uint64_t *q = aa64_vfp_qreg(env, reg);
134 q[0] = ldq_le_p(buf);
135 q[1] = ldq_le_p(buf + 8);
136 return 16;
138 case 32:
139 /* FPSR */
140 vfp_set_fpsr(env, ldl_p(buf));
141 return 4;
142 case 33:
143 /* FPCR */
144 vfp_set_fpcr(env, ldl_p(buf));
145 return 4;
146 default:
147 return 0;
151 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
153 assert(ri->fieldoffset);
154 if (cpreg_field_is_64bit(ri)) {
155 return CPREG_FIELD64(env, ri);
156 } else {
157 return CPREG_FIELD32(env, ri);
161 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
162 uint64_t value)
164 assert(ri->fieldoffset);
165 if (cpreg_field_is_64bit(ri)) {
166 CPREG_FIELD64(env, ri) = value;
167 } else {
168 CPREG_FIELD32(env, ri) = value;
172 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
174 return (char *)env + ri->fieldoffset;
177 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
179 /* Raw read of a coprocessor register (as needed for migration, etc). */
180 if (ri->type & ARM_CP_CONST) {
181 return ri->resetvalue;
182 } else if (ri->raw_readfn) {
183 return ri->raw_readfn(env, ri);
184 } else if (ri->readfn) {
185 return ri->readfn(env, ri);
186 } else {
187 return raw_read(env, ri);
191 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
192 uint64_t v)
194 /* Raw write of a coprocessor register (as needed for migration, etc).
195 * Note that constant registers are treated as write-ignored; the
196 * caller should check for success by whether a readback gives the
197 * value written.
199 if (ri->type & ARM_CP_CONST) {
200 return;
201 } else if (ri->raw_writefn) {
202 ri->raw_writefn(env, ri, v);
203 } else if (ri->writefn) {
204 ri->writefn(env, ri, v);
205 } else {
206 raw_write(env, ri, v);
211 * arm_get/set_gdb_*: get/set a gdb register
212 * @env: the CPU state
213 * @buf: a buffer to copy to/from
214 * @reg: register number (offset from start of group)
216 * We return the number of bytes copied
219 static int arm_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg)
221 ARMCPU *cpu = env_archcpu(env);
222 const ARMCPRegInfo *ri;
223 uint32_t key;
225 key = cpu->dyn_sysreg_xml.data.cpregs.keys[reg];
226 ri = get_arm_cp_reginfo(cpu->cp_regs, key);
227 if (ri) {
228 if (cpreg_field_is_64bit(ri)) {
229 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
230 } else {
231 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
234 return 0;
237 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
239 return 0;
242 #ifdef TARGET_AARCH64
243 static int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg)
245 ARMCPU *cpu = env_archcpu(env);
247 switch (reg) {
248 /* The first 32 registers are the zregs */
249 case 0 ... 31:
251 int vq, len = 0;
252 for (vq = 0; vq < cpu->sve_max_vq; vq++) {
253 len += gdb_get_reg128(buf,
254 env->vfp.zregs[reg].d[vq * 2 + 1],
255 env->vfp.zregs[reg].d[vq * 2]);
257 return len;
259 case 32:
260 return gdb_get_reg32(buf, vfp_get_fpsr(env));
261 case 33:
262 return gdb_get_reg32(buf, vfp_get_fpcr(env));
263 /* then 16 predicates and the ffr */
264 case 34 ... 50:
266 int preg = reg - 34;
267 int vq, len = 0;
268 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
269 len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]);
271 return len;
273 case 51:
276 * We report in Vector Granules (VG) which is 64bit in a Z reg
277 * while the ZCR works in Vector Quads (VQ) which is 128bit chunks.
279 int vq = sve_zcr_len_for_el(env, arm_current_el(env)) + 1;
280 return gdb_get_reg64(buf, vq * 2);
282 default:
283 /* gdbstub asked for something out our range */
284 qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg);
285 break;
288 return 0;
291 static int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg)
293 ARMCPU *cpu = env_archcpu(env);
295 /* The first 32 registers are the zregs */
296 switch (reg) {
297 /* The first 32 registers are the zregs */
298 case 0 ... 31:
300 int vq, len = 0;
301 uint64_t *p = (uint64_t *) buf;
302 for (vq = 0; vq < cpu->sve_max_vq; vq++) {
303 env->vfp.zregs[reg].d[vq * 2 + 1] = *p++;
304 env->vfp.zregs[reg].d[vq * 2] = *p++;
305 len += 16;
307 return len;
309 case 32:
310 vfp_set_fpsr(env, *(uint32_t *)buf);
311 return 4;
312 case 33:
313 vfp_set_fpcr(env, *(uint32_t *)buf);
314 return 4;
315 case 34 ... 50:
317 int preg = reg - 34;
318 int vq, len = 0;
319 uint64_t *p = (uint64_t *) buf;
320 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
321 env->vfp.pregs[preg].p[vq / 4] = *p++;
322 len += 8;
324 return len;
326 case 51:
327 /* cannot set vg via gdbstub */
328 return 0;
329 default:
330 /* gdbstub asked for something out our range */
331 break;
334 return 0;
336 #endif /* TARGET_AARCH64 */
338 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
340 /* Return true if the regdef would cause an assertion if you called
341 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
342 * program bug for it not to have the NO_RAW flag).
343 * NB that returning false here doesn't necessarily mean that calling
344 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
345 * read/write access functions which are safe for raw use" from "has
346 * read/write access functions which have side effects but has forgotten
347 * to provide raw access functions".
348 * The tests here line up with the conditions in read/write_raw_cp_reg()
349 * and assertions in raw_read()/raw_write().
351 if ((ri->type & ARM_CP_CONST) ||
352 ri->fieldoffset ||
353 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
354 return false;
356 return true;
359 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
361 /* Write the coprocessor state from cpu->env to the (index,value) list. */
362 int i;
363 bool ok = true;
365 for (i = 0; i < cpu->cpreg_array_len; i++) {
366 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
367 const ARMCPRegInfo *ri;
368 uint64_t newval;
370 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
371 if (!ri) {
372 ok = false;
373 continue;
375 if (ri->type & ARM_CP_NO_RAW) {
376 continue;
379 newval = read_raw_cp_reg(&cpu->env, ri);
380 if (kvm_sync) {
382 * Only sync if the previous list->cpustate sync succeeded.
383 * Rather than tracking the success/failure state for every
384 * item in the list, we just recheck "does the raw write we must
385 * have made in write_list_to_cpustate() read back OK" here.
387 uint64_t oldval = cpu->cpreg_values[i];
389 if (oldval == newval) {
390 continue;
393 write_raw_cp_reg(&cpu->env, ri, oldval);
394 if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
395 continue;
398 write_raw_cp_reg(&cpu->env, ri, newval);
400 cpu->cpreg_values[i] = newval;
402 return ok;
405 bool write_list_to_cpustate(ARMCPU *cpu)
407 int i;
408 bool ok = true;
410 for (i = 0; i < cpu->cpreg_array_len; i++) {
411 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
412 uint64_t v = cpu->cpreg_values[i];
413 const ARMCPRegInfo *ri;
415 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
416 if (!ri) {
417 ok = false;
418 continue;
420 if (ri->type & ARM_CP_NO_RAW) {
421 continue;
423 /* Write value and confirm it reads back as written
424 * (to catch read-only registers and partially read-only
425 * registers where the incoming migration value doesn't match)
427 write_raw_cp_reg(&cpu->env, ri, v);
428 if (read_raw_cp_reg(&cpu->env, ri) != v) {
429 ok = false;
432 return ok;
435 static void add_cpreg_to_list(gpointer key, gpointer opaque)
437 ARMCPU *cpu = opaque;
438 uint64_t regidx;
439 const ARMCPRegInfo *ri;
441 regidx = *(uint32_t *)key;
442 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
444 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
445 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
446 /* The value array need not be initialized at this point */
447 cpu->cpreg_array_len++;
451 static void count_cpreg(gpointer key, gpointer opaque)
453 ARMCPU *cpu = opaque;
454 uint64_t regidx;
455 const ARMCPRegInfo *ri;
457 regidx = *(uint32_t *)key;
458 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
460 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
461 cpu->cpreg_array_len++;
465 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
467 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
468 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
470 if (aidx > bidx) {
471 return 1;
473 if (aidx < bidx) {
474 return -1;
476 return 0;
479 void init_cpreg_list(ARMCPU *cpu)
481 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
482 * Note that we require cpreg_tuples[] to be sorted by key ID.
484 GList *keys;
485 int arraylen;
487 keys = g_hash_table_get_keys(cpu->cp_regs);
488 keys = g_list_sort(keys, cpreg_key_compare);
490 cpu->cpreg_array_len = 0;
492 g_list_foreach(keys, count_cpreg, cpu);
494 arraylen = cpu->cpreg_array_len;
495 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
496 cpu->cpreg_values = g_new(uint64_t, arraylen);
497 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
498 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
499 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
500 cpu->cpreg_array_len = 0;
502 g_list_foreach(keys, add_cpreg_to_list, cpu);
504 assert(cpu->cpreg_array_len == arraylen);
506 g_list_free(keys);
510 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
512 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
513 const ARMCPRegInfo *ri,
514 bool isread)
516 if (!is_a64(env) && arm_current_el(env) == 3 &&
517 arm_is_secure_below_el3(env)) {
518 return CP_ACCESS_TRAP_UNCATEGORIZED;
520 return CP_ACCESS_OK;
523 /* Some secure-only AArch32 registers trap to EL3 if used from
524 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
525 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
526 * We assume that the .access field is set to PL1_RW.
528 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
529 const ARMCPRegInfo *ri,
530 bool isread)
532 if (arm_current_el(env) == 3) {
533 return CP_ACCESS_OK;
535 if (arm_is_secure_below_el3(env)) {
536 if (env->cp15.scr_el3 & SCR_EEL2) {
537 return CP_ACCESS_TRAP_EL2;
539 return CP_ACCESS_TRAP_EL3;
541 /* This will be EL1 NS and EL2 NS, which just UNDEF */
542 return CP_ACCESS_TRAP_UNCATEGORIZED;
545 static uint64_t arm_mdcr_el2_eff(CPUARMState *env)
547 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
550 /* Check for traps to "powerdown debug" registers, which are controlled
551 * by MDCR.TDOSA
553 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
554 bool isread)
556 int el = arm_current_el(env);
557 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
558 bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) ||
559 (arm_hcr_el2_eff(env) & HCR_TGE);
561 if (el < 2 && mdcr_el2_tdosa) {
562 return CP_ACCESS_TRAP_EL2;
564 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
565 return CP_ACCESS_TRAP_EL3;
567 return CP_ACCESS_OK;
570 /* Check for traps to "debug ROM" registers, which are controlled
571 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
573 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
574 bool isread)
576 int el = arm_current_el(env);
577 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
578 bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) ||
579 (arm_hcr_el2_eff(env) & HCR_TGE);
581 if (el < 2 && mdcr_el2_tdra) {
582 return CP_ACCESS_TRAP_EL2;
584 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
585 return CP_ACCESS_TRAP_EL3;
587 return CP_ACCESS_OK;
590 /* Check for traps to general debug registers, which are controlled
591 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
593 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
594 bool isread)
596 int el = arm_current_el(env);
597 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
598 bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) ||
599 (arm_hcr_el2_eff(env) & HCR_TGE);
601 if (el < 2 && mdcr_el2_tda) {
602 return CP_ACCESS_TRAP_EL2;
604 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
605 return CP_ACCESS_TRAP_EL3;
607 return CP_ACCESS_OK;
610 /* Check for traps to performance monitor registers, which are controlled
611 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
613 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
614 bool isread)
616 int el = arm_current_el(env);
617 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
619 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
620 return CP_ACCESS_TRAP_EL2;
622 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
623 return CP_ACCESS_TRAP_EL3;
625 return CP_ACCESS_OK;
628 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */
629 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
630 bool isread)
632 if (arm_current_el(env) == 1) {
633 uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
634 if (arm_hcr_el2_eff(env) & trap) {
635 return CP_ACCESS_TRAP_EL2;
638 return CP_ACCESS_OK;
641 /* Check for traps from EL1 due to HCR_EL2.TSW. */
642 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
643 bool isread)
645 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
646 return CP_ACCESS_TRAP_EL2;
648 return CP_ACCESS_OK;
651 /* Check for traps from EL1 due to HCR_EL2.TACR. */
652 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
653 bool isread)
655 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
656 return CP_ACCESS_TRAP_EL2;
658 return CP_ACCESS_OK;
661 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
662 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
663 bool isread)
665 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
666 return CP_ACCESS_TRAP_EL2;
668 return CP_ACCESS_OK;
671 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
673 ARMCPU *cpu = env_archcpu(env);
675 raw_write(env, ri, value);
676 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
679 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
681 ARMCPU *cpu = env_archcpu(env);
683 if (raw_read(env, ri) != value) {
684 /* Unlike real hardware the qemu TLB uses virtual addresses,
685 * not modified virtual addresses, so this causes a TLB flush.
687 tlb_flush(CPU(cpu));
688 raw_write(env, ri, value);
692 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
693 uint64_t value)
695 ARMCPU *cpu = env_archcpu(env);
697 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
698 && !extended_addresses_enabled(env)) {
699 /* For VMSA (when not using the LPAE long descriptor page table
700 * format) this register includes the ASID, so do a TLB flush.
701 * For PMSA it is purely a process ID and no action is needed.
703 tlb_flush(CPU(cpu));
705 raw_write(env, ri, value);
708 /* IS variants of TLB operations must affect all cores */
709 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
710 uint64_t value)
712 CPUState *cs = env_cpu(env);
714 tlb_flush_all_cpus_synced(cs);
717 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
718 uint64_t value)
720 CPUState *cs = env_cpu(env);
722 tlb_flush_all_cpus_synced(cs);
725 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
726 uint64_t value)
728 CPUState *cs = env_cpu(env);
730 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
733 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
734 uint64_t value)
736 CPUState *cs = env_cpu(env);
738 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
742 * Non-IS variants of TLB operations are upgraded to
743 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
744 * force broadcast of these operations.
746 static bool tlb_force_broadcast(CPUARMState *env)
748 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
751 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
752 uint64_t value)
754 /* Invalidate all (TLBIALL) */
755 CPUState *cs = env_cpu(env);
757 if (tlb_force_broadcast(env)) {
758 tlb_flush_all_cpus_synced(cs);
759 } else {
760 tlb_flush(cs);
764 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
765 uint64_t value)
767 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
768 CPUState *cs = env_cpu(env);
770 value &= TARGET_PAGE_MASK;
771 if (tlb_force_broadcast(env)) {
772 tlb_flush_page_all_cpus_synced(cs, value);
773 } else {
774 tlb_flush_page(cs, value);
778 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
779 uint64_t value)
781 /* Invalidate by ASID (TLBIASID) */
782 CPUState *cs = env_cpu(env);
784 if (tlb_force_broadcast(env)) {
785 tlb_flush_all_cpus_synced(cs);
786 } else {
787 tlb_flush(cs);
791 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
792 uint64_t value)
794 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
795 CPUState *cs = env_cpu(env);
797 value &= TARGET_PAGE_MASK;
798 if (tlb_force_broadcast(env)) {
799 tlb_flush_page_all_cpus_synced(cs, value);
800 } else {
801 tlb_flush_page(cs, value);
805 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
806 uint64_t value)
808 CPUState *cs = env_cpu(env);
810 tlb_flush_by_mmuidx(cs,
811 ARMMMUIdxBit_E10_1 |
812 ARMMMUIdxBit_E10_1_PAN |
813 ARMMMUIdxBit_E10_0);
816 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
817 uint64_t value)
819 CPUState *cs = env_cpu(env);
821 tlb_flush_by_mmuidx_all_cpus_synced(cs,
822 ARMMMUIdxBit_E10_1 |
823 ARMMMUIdxBit_E10_1_PAN |
824 ARMMMUIdxBit_E10_0);
828 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
829 uint64_t value)
831 CPUState *cs = env_cpu(env);
833 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
836 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
837 uint64_t value)
839 CPUState *cs = env_cpu(env);
841 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
844 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
845 uint64_t value)
847 CPUState *cs = env_cpu(env);
848 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
850 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
853 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
854 uint64_t value)
856 CPUState *cs = env_cpu(env);
857 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
859 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
860 ARMMMUIdxBit_E2);
863 static const ARMCPRegInfo cp_reginfo[] = {
864 /* Define the secure and non-secure FCSE identifier CP registers
865 * separately because there is no secure bank in V8 (no _EL3). This allows
866 * the secure register to be properly reset and migrated. There is also no
867 * v8 EL1 version of the register so the non-secure instance stands alone.
869 { .name = "FCSEIDR",
870 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
871 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
872 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
873 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
874 { .name = "FCSEIDR_S",
875 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
876 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
877 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
878 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
879 /* Define the secure and non-secure context identifier CP registers
880 * separately because there is no secure bank in V8 (no _EL3). This allows
881 * the secure register to be properly reset and migrated. In the
882 * non-secure case, the 32-bit register will have reset and migration
883 * disabled during registration as it is handled by the 64-bit instance.
885 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
886 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
887 .access = PL1_RW, .accessfn = access_tvm_trvm,
888 .secure = ARM_CP_SECSTATE_NS,
889 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
890 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
891 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
892 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
893 .access = PL1_RW, .accessfn = access_tvm_trvm,
894 .secure = ARM_CP_SECSTATE_S,
895 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
896 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
897 REGINFO_SENTINEL
900 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
901 /* NB: Some of these registers exist in v8 but with more precise
902 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
904 /* MMU Domain access control / MPU write buffer control */
905 { .name = "DACR",
906 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
907 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
908 .writefn = dacr_write, .raw_writefn = raw_write,
909 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
910 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
911 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
912 * For v6 and v5, these mappings are overly broad.
914 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
915 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
916 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
917 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
918 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
919 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
920 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
921 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
922 /* Cache maintenance ops; some of this space may be overridden later. */
923 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
924 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
925 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
926 REGINFO_SENTINEL
929 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
930 /* Not all pre-v6 cores implemented this WFI, so this is slightly
931 * over-broad.
933 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
934 .access = PL1_W, .type = ARM_CP_WFI },
935 REGINFO_SENTINEL
938 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
939 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
940 * is UNPREDICTABLE; we choose to NOP as most implementations do).
942 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
943 .access = PL1_W, .type = ARM_CP_WFI },
944 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
945 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
946 * OMAPCP will override this space.
948 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
949 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
950 .resetvalue = 0 },
951 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
952 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
953 .resetvalue = 0 },
954 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
955 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
956 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
957 .resetvalue = 0 },
958 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
959 * implementing it as RAZ means the "debug architecture version" bits
960 * will read as a reserved value, which should cause Linux to not try
961 * to use the debug hardware.
963 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
964 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
965 /* MMU TLB control. Note that the wildcarding means we cover not just
966 * the unified TLB ops but also the dside/iside/inner-shareable variants.
968 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
969 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
970 .type = ARM_CP_NO_RAW },
971 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
972 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
973 .type = ARM_CP_NO_RAW },
974 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
975 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
976 .type = ARM_CP_NO_RAW },
977 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
978 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
979 .type = ARM_CP_NO_RAW },
980 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
981 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
982 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
983 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
984 REGINFO_SENTINEL
987 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
988 uint64_t value)
990 uint32_t mask = 0;
992 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
993 if (!arm_feature(env, ARM_FEATURE_V8)) {
994 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
995 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
996 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
998 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
999 /* VFP coprocessor: cp10 & cp11 [23:20] */
1000 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
1002 if (!arm_feature(env, ARM_FEATURE_NEON)) {
1003 /* ASEDIS [31] bit is RAO/WI */
1004 value |= (1 << 31);
1007 /* VFPv3 and upwards with NEON implement 32 double precision
1008 * registers (D0-D31).
1010 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
1011 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
1012 value |= (1 << 30);
1015 value &= mask;
1019 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
1020 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
1022 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
1023 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
1024 value &= ~(0xf << 20);
1025 value |= env->cp15.cpacr_el1 & (0xf << 20);
1028 env->cp15.cpacr_el1 = value;
1031 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1034 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
1035 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
1037 uint64_t value = env->cp15.cpacr_el1;
1039 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
1040 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
1041 value &= ~(0xf << 20);
1043 return value;
1047 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1049 /* Call cpacr_write() so that we reset with the correct RAO bits set
1050 * for our CPU features.
1052 cpacr_write(env, ri, 0);
1055 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1056 bool isread)
1058 if (arm_feature(env, ARM_FEATURE_V8)) {
1059 /* Check if CPACR accesses are to be trapped to EL2 */
1060 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
1061 (env->cp15.cptr_el[2] & CPTR_TCPAC)) {
1062 return CP_ACCESS_TRAP_EL2;
1063 /* Check if CPACR accesses are to be trapped to EL3 */
1064 } else if (arm_current_el(env) < 3 &&
1065 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
1066 return CP_ACCESS_TRAP_EL3;
1070 return CP_ACCESS_OK;
1073 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1074 bool isread)
1076 /* Check if CPTR accesses are set to trap to EL3 */
1077 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
1078 return CP_ACCESS_TRAP_EL3;
1081 return CP_ACCESS_OK;
1084 static const ARMCPRegInfo v6_cp_reginfo[] = {
1085 /* prefetch by MVA in v6, NOP in v7 */
1086 { .name = "MVA_prefetch",
1087 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
1088 .access = PL1_W, .type = ARM_CP_NOP },
1089 /* We need to break the TB after ISB to execute self-modifying code
1090 * correctly and also to take any pending interrupts immediately.
1091 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
1093 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
1094 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
1095 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
1096 .access = PL0_W, .type = ARM_CP_NOP },
1097 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
1098 .access = PL0_W, .type = ARM_CP_NOP },
1099 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
1100 .access = PL1_RW, .accessfn = access_tvm_trvm,
1101 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
1102 offsetof(CPUARMState, cp15.ifar_ns) },
1103 .resetvalue = 0, },
1104 /* Watchpoint Fault Address Register : should actually only be present
1105 * for 1136, 1176, 11MPCore.
1107 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1108 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
1109 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
1110 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
1111 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
1112 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
1113 REGINFO_SENTINEL
1116 /* Definitions for the PMU registers */
1117 #define PMCRN_MASK 0xf800
1118 #define PMCRN_SHIFT 11
1119 #define PMCRLC 0x40
1120 #define PMCRDP 0x20
1121 #define PMCRX 0x10
1122 #define PMCRD 0x8
1123 #define PMCRC 0x4
1124 #define PMCRP 0x2
1125 #define PMCRE 0x1
1127 * Mask of PMCR bits writeable by guest (not including WO bits like C, P,
1128 * which can be written as 1 to trigger behaviour but which stay RAZ).
1130 #define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1132 #define PMXEVTYPER_P 0x80000000
1133 #define PMXEVTYPER_U 0x40000000
1134 #define PMXEVTYPER_NSK 0x20000000
1135 #define PMXEVTYPER_NSU 0x10000000
1136 #define PMXEVTYPER_NSH 0x08000000
1137 #define PMXEVTYPER_M 0x04000000
1138 #define PMXEVTYPER_MT 0x02000000
1139 #define PMXEVTYPER_EVTCOUNT 0x0000ffff
1140 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1141 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1142 PMXEVTYPER_M | PMXEVTYPER_MT | \
1143 PMXEVTYPER_EVTCOUNT)
1145 #define PMCCFILTR 0xf8000000
1146 #define PMCCFILTR_M PMXEVTYPER_M
1147 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M)
1149 static inline uint32_t pmu_num_counters(CPUARMState *env)
1151 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1154 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1155 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1157 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1160 typedef struct pm_event {
1161 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
1162 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1163 bool (*supported)(CPUARMState *);
1165 * Retrieve the current count of the underlying event. The programmed
1166 * counters hold a difference from the return value from this function
1168 uint64_t (*get_count)(CPUARMState *);
1170 * Return how many nanoseconds it will take (at a minimum) for count events
1171 * to occur. A negative value indicates the counter will never overflow, or
1172 * that the counter has otherwise arranged for the overflow bit to be set
1173 * and the PMU interrupt to be raised on overflow.
1175 int64_t (*ns_per_count)(uint64_t);
1176 } pm_event;
1178 static bool event_always_supported(CPUARMState *env)
1180 return true;
1183 static uint64_t swinc_get_count(CPUARMState *env)
1186 * SW_INCR events are written directly to the pmevcntr's by writes to
1187 * PMSWINC, so there is no underlying count maintained by the PMU itself
1189 return 0;
1192 static int64_t swinc_ns_per(uint64_t ignored)
1194 return -1;
1198 * Return the underlying cycle count for the PMU cycle counters. If we're in
1199 * usermode, simply return 0.
1201 static uint64_t cycles_get_count(CPUARMState *env)
1203 #ifndef CONFIG_USER_ONLY
1204 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1205 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1206 #else
1207 return cpu_get_host_ticks();
1208 #endif
1211 #ifndef CONFIG_USER_ONLY
1212 static int64_t cycles_ns_per(uint64_t cycles)
1214 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
1217 static bool instructions_supported(CPUARMState *env)
1219 return icount_enabled() == 1; /* Precise instruction counting */
1222 static uint64_t instructions_get_count(CPUARMState *env)
1224 return (uint64_t)icount_get_raw();
1227 static int64_t instructions_ns_per(uint64_t icount)
1229 return icount_to_ns((int64_t)icount);
1231 #endif
1233 static bool pmu_8_1_events_supported(CPUARMState *env)
1235 /* For events which are supported in any v8.1 PMU */
1236 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env));
1239 static bool pmu_8_4_events_supported(CPUARMState *env)
1241 /* For events which are supported in any v8.1 PMU */
1242 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env));
1245 static uint64_t zero_event_get_count(CPUARMState *env)
1247 /* For events which on QEMU never fire, so their count is always zero */
1248 return 0;
1251 static int64_t zero_event_ns_per(uint64_t cycles)
1253 /* An event which never fires can never overflow */
1254 return -1;
1257 static const pm_event pm_events[] = {
1258 { .number = 0x000, /* SW_INCR */
1259 .supported = event_always_supported,
1260 .get_count = swinc_get_count,
1261 .ns_per_count = swinc_ns_per,
1263 #ifndef CONFIG_USER_ONLY
1264 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1265 .supported = instructions_supported,
1266 .get_count = instructions_get_count,
1267 .ns_per_count = instructions_ns_per,
1269 { .number = 0x011, /* CPU_CYCLES, Cycle */
1270 .supported = event_always_supported,
1271 .get_count = cycles_get_count,
1272 .ns_per_count = cycles_ns_per,
1274 #endif
1275 { .number = 0x023, /* STALL_FRONTEND */
1276 .supported = pmu_8_1_events_supported,
1277 .get_count = zero_event_get_count,
1278 .ns_per_count = zero_event_ns_per,
1280 { .number = 0x024, /* STALL_BACKEND */
1281 .supported = pmu_8_1_events_supported,
1282 .get_count = zero_event_get_count,
1283 .ns_per_count = zero_event_ns_per,
1285 { .number = 0x03c, /* STALL */
1286 .supported = pmu_8_4_events_supported,
1287 .get_count = zero_event_get_count,
1288 .ns_per_count = zero_event_ns_per,
1293 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1294 * events (i.e. the statistical profiling extension), this implementation
1295 * should first be updated to something sparse instead of the current
1296 * supported_event_map[] array.
1298 #define MAX_EVENT_ID 0x3c
1299 #define UNSUPPORTED_EVENT UINT16_MAX
1300 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1303 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1304 * of ARM event numbers to indices in our pm_events array.
1306 * Note: Events in the 0x40XX range are not currently supported.
1308 void pmu_init(ARMCPU *cpu)
1310 unsigned int i;
1313 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1314 * events to them
1316 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1317 supported_event_map[i] = UNSUPPORTED_EVENT;
1319 cpu->pmceid0 = 0;
1320 cpu->pmceid1 = 0;
1322 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1323 const pm_event *cnt = &pm_events[i];
1324 assert(cnt->number <= MAX_EVENT_ID);
1325 /* We do not currently support events in the 0x40xx range */
1326 assert(cnt->number <= 0x3f);
1328 if (cnt->supported(&cpu->env)) {
1329 supported_event_map[cnt->number] = i;
1330 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1331 if (cnt->number & 0x20) {
1332 cpu->pmceid1 |= event_mask;
1333 } else {
1334 cpu->pmceid0 |= event_mask;
1341 * Check at runtime whether a PMU event is supported for the current machine
1343 static bool event_supported(uint16_t number)
1345 if (number > MAX_EVENT_ID) {
1346 return false;
1348 return supported_event_map[number] != UNSUPPORTED_EVENT;
1351 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1352 bool isread)
1354 /* Performance monitor registers user accessibility is controlled
1355 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1356 * trapping to EL2 or EL3 for other accesses.
1358 int el = arm_current_el(env);
1359 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1361 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1362 return CP_ACCESS_TRAP;
1364 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1365 return CP_ACCESS_TRAP_EL2;
1367 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1368 return CP_ACCESS_TRAP_EL3;
1371 return CP_ACCESS_OK;
1374 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1375 const ARMCPRegInfo *ri,
1376 bool isread)
1378 /* ER: event counter read trap control */
1379 if (arm_feature(env, ARM_FEATURE_V8)
1380 && arm_current_el(env) == 0
1381 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1382 && isread) {
1383 return CP_ACCESS_OK;
1386 return pmreg_access(env, ri, isread);
1389 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1390 const ARMCPRegInfo *ri,
1391 bool isread)
1393 /* SW: software increment write trap control */
1394 if (arm_feature(env, ARM_FEATURE_V8)
1395 && arm_current_el(env) == 0
1396 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1397 && !isread) {
1398 return CP_ACCESS_OK;
1401 return pmreg_access(env, ri, isread);
1404 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1405 const ARMCPRegInfo *ri,
1406 bool isread)
1408 /* ER: event counter read trap control */
1409 if (arm_feature(env, ARM_FEATURE_V8)
1410 && arm_current_el(env) == 0
1411 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1412 return CP_ACCESS_OK;
1415 return pmreg_access(env, ri, isread);
1418 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1419 const ARMCPRegInfo *ri,
1420 bool isread)
1422 /* CR: cycle counter read trap control */
1423 if (arm_feature(env, ARM_FEATURE_V8)
1424 && arm_current_el(env) == 0
1425 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1426 && isread) {
1427 return CP_ACCESS_OK;
1430 return pmreg_access(env, ri, isread);
1433 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1434 * the current EL, security state, and register configuration.
1436 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1438 uint64_t filter;
1439 bool e, p, u, nsk, nsu, nsh, m;
1440 bool enabled, prohibited, filtered;
1441 bool secure = arm_is_secure(env);
1442 int el = arm_current_el(env);
1443 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1444 uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1446 if (!arm_feature(env, ARM_FEATURE_PMU)) {
1447 return false;
1450 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1451 (counter < hpmn || counter == 31)) {
1452 e = env->cp15.c9_pmcr & PMCRE;
1453 } else {
1454 e = mdcr_el2 & MDCR_HPME;
1456 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1458 if (!secure) {
1459 if (el == 2 && (counter < hpmn || counter == 31)) {
1460 prohibited = mdcr_el2 & MDCR_HPMD;
1461 } else {
1462 prohibited = false;
1464 } else {
1465 prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1466 !(env->cp15.mdcr_el3 & MDCR_SPME);
1469 if (prohibited && counter == 31) {
1470 prohibited = env->cp15.c9_pmcr & PMCRDP;
1473 if (counter == 31) {
1474 filter = env->cp15.pmccfiltr_el0;
1475 } else {
1476 filter = env->cp15.c14_pmevtyper[counter];
1479 p = filter & PMXEVTYPER_P;
1480 u = filter & PMXEVTYPER_U;
1481 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1482 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1483 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1484 m = arm_el_is_aa64(env, 1) &&
1485 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1487 if (el == 0) {
1488 filtered = secure ? u : u != nsu;
1489 } else if (el == 1) {
1490 filtered = secure ? p : p != nsk;
1491 } else if (el == 2) {
1492 filtered = !nsh;
1493 } else { /* EL3 */
1494 filtered = m != p;
1497 if (counter != 31) {
1499 * If not checking PMCCNTR, ensure the counter is setup to an event we
1500 * support
1502 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1503 if (!event_supported(event)) {
1504 return false;
1508 return enabled && !prohibited && !filtered;
1511 static void pmu_update_irq(CPUARMState *env)
1513 ARMCPU *cpu = env_archcpu(env);
1514 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1515 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1519 * Ensure c15_ccnt is the guest-visible count so that operations such as
1520 * enabling/disabling the counter or filtering, modifying the count itself,
1521 * etc. can be done logically. This is essentially a no-op if the counter is
1522 * not enabled at the time of the call.
1524 static void pmccntr_op_start(CPUARMState *env)
1526 uint64_t cycles = cycles_get_count(env);
1528 if (pmu_counter_enabled(env, 31)) {
1529 uint64_t eff_cycles = cycles;
1530 if (env->cp15.c9_pmcr & PMCRD) {
1531 /* Increment once every 64 processor clock cycles */
1532 eff_cycles /= 64;
1535 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1537 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1538 1ull << 63 : 1ull << 31;
1539 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1540 env->cp15.c9_pmovsr |= (1 << 31);
1541 pmu_update_irq(env);
1544 env->cp15.c15_ccnt = new_pmccntr;
1546 env->cp15.c15_ccnt_delta = cycles;
1550 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1551 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1552 * pmccntr_op_start.
1554 static void pmccntr_op_finish(CPUARMState *env)
1556 if (pmu_counter_enabled(env, 31)) {
1557 #ifndef CONFIG_USER_ONLY
1558 /* Calculate when the counter will next overflow */
1559 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1560 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1561 remaining_cycles = (uint32_t)remaining_cycles;
1563 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1565 if (overflow_in > 0) {
1566 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1567 overflow_in;
1568 ARMCPU *cpu = env_archcpu(env);
1569 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1571 #endif
1573 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1574 if (env->cp15.c9_pmcr & PMCRD) {
1575 /* Increment once every 64 processor clock cycles */
1576 prev_cycles /= 64;
1578 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1582 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1585 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1586 uint64_t count = 0;
1587 if (event_supported(event)) {
1588 uint16_t event_idx = supported_event_map[event];
1589 count = pm_events[event_idx].get_count(env);
1592 if (pmu_counter_enabled(env, counter)) {
1593 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1595 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1596 env->cp15.c9_pmovsr |= (1 << counter);
1597 pmu_update_irq(env);
1599 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1601 env->cp15.c14_pmevcntr_delta[counter] = count;
1604 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1606 if (pmu_counter_enabled(env, counter)) {
1607 #ifndef CONFIG_USER_ONLY
1608 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1609 uint16_t event_idx = supported_event_map[event];
1610 uint64_t delta = UINT32_MAX -
1611 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1612 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1614 if (overflow_in > 0) {
1615 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1616 overflow_in;
1617 ARMCPU *cpu = env_archcpu(env);
1618 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1620 #endif
1622 env->cp15.c14_pmevcntr_delta[counter] -=
1623 env->cp15.c14_pmevcntr[counter];
1627 void pmu_op_start(CPUARMState *env)
1629 unsigned int i;
1630 pmccntr_op_start(env);
1631 for (i = 0; i < pmu_num_counters(env); i++) {
1632 pmevcntr_op_start(env, i);
1636 void pmu_op_finish(CPUARMState *env)
1638 unsigned int i;
1639 pmccntr_op_finish(env);
1640 for (i = 0; i < pmu_num_counters(env); i++) {
1641 pmevcntr_op_finish(env, i);
1645 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1647 pmu_op_start(&cpu->env);
1650 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1652 pmu_op_finish(&cpu->env);
1655 void arm_pmu_timer_cb(void *opaque)
1657 ARMCPU *cpu = opaque;
1660 * Update all the counter values based on the current underlying counts,
1661 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1662 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1663 * counter may expire.
1665 pmu_op_start(&cpu->env);
1666 pmu_op_finish(&cpu->env);
1669 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1670 uint64_t value)
1672 pmu_op_start(env);
1674 if (value & PMCRC) {
1675 /* The counter has been reset */
1676 env->cp15.c15_ccnt = 0;
1679 if (value & PMCRP) {
1680 unsigned int i;
1681 for (i = 0; i < pmu_num_counters(env); i++) {
1682 env->cp15.c14_pmevcntr[i] = 0;
1686 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK;
1687 env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK);
1689 pmu_op_finish(env);
1692 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1693 uint64_t value)
1695 unsigned int i;
1696 for (i = 0; i < pmu_num_counters(env); i++) {
1697 /* Increment a counter's count iff: */
1698 if ((value & (1 << i)) && /* counter's bit is set */
1699 /* counter is enabled and not filtered */
1700 pmu_counter_enabled(env, i) &&
1701 /* counter is SW_INCR */
1702 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1703 pmevcntr_op_start(env, i);
1706 * Detect if this write causes an overflow since we can't predict
1707 * PMSWINC overflows like we can for other events
1709 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1711 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1712 env->cp15.c9_pmovsr |= (1 << i);
1713 pmu_update_irq(env);
1716 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1718 pmevcntr_op_finish(env, i);
1723 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1725 uint64_t ret;
1726 pmccntr_op_start(env);
1727 ret = env->cp15.c15_ccnt;
1728 pmccntr_op_finish(env);
1729 return ret;
1732 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1733 uint64_t value)
1735 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1736 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1737 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1738 * accessed.
1740 env->cp15.c9_pmselr = value & 0x1f;
1743 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1744 uint64_t value)
1746 pmccntr_op_start(env);
1747 env->cp15.c15_ccnt = value;
1748 pmccntr_op_finish(env);
1751 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1752 uint64_t value)
1754 uint64_t cur_val = pmccntr_read(env, NULL);
1756 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1759 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1760 uint64_t value)
1762 pmccntr_op_start(env);
1763 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1764 pmccntr_op_finish(env);
1767 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1768 uint64_t value)
1770 pmccntr_op_start(env);
1771 /* M is not accessible from AArch32 */
1772 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1773 (value & PMCCFILTR);
1774 pmccntr_op_finish(env);
1777 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1779 /* M is not visible in AArch32 */
1780 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1783 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1784 uint64_t value)
1786 value &= pmu_counter_mask(env);
1787 env->cp15.c9_pmcnten |= value;
1790 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1791 uint64_t value)
1793 value &= pmu_counter_mask(env);
1794 env->cp15.c9_pmcnten &= ~value;
1797 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1798 uint64_t value)
1800 value &= pmu_counter_mask(env);
1801 env->cp15.c9_pmovsr &= ~value;
1802 pmu_update_irq(env);
1805 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1806 uint64_t value)
1808 value &= pmu_counter_mask(env);
1809 env->cp15.c9_pmovsr |= value;
1810 pmu_update_irq(env);
1813 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1814 uint64_t value, const uint8_t counter)
1816 if (counter == 31) {
1817 pmccfiltr_write(env, ri, value);
1818 } else if (counter < pmu_num_counters(env)) {
1819 pmevcntr_op_start(env, counter);
1822 * If this counter's event type is changing, store the current
1823 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1824 * pmevcntr_op_finish has the correct baseline when it converts back to
1825 * a delta.
1827 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1828 PMXEVTYPER_EVTCOUNT;
1829 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1830 if (old_event != new_event) {
1831 uint64_t count = 0;
1832 if (event_supported(new_event)) {
1833 uint16_t event_idx = supported_event_map[new_event];
1834 count = pm_events[event_idx].get_count(env);
1836 env->cp15.c14_pmevcntr_delta[counter] = count;
1839 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1840 pmevcntr_op_finish(env, counter);
1842 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1843 * PMSELR value is equal to or greater than the number of implemented
1844 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1848 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1849 const uint8_t counter)
1851 if (counter == 31) {
1852 return env->cp15.pmccfiltr_el0;
1853 } else if (counter < pmu_num_counters(env)) {
1854 return env->cp15.c14_pmevtyper[counter];
1855 } else {
1857 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1858 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1860 return 0;
1864 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1865 uint64_t value)
1867 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1868 pmevtyper_write(env, ri, value, counter);
1871 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1872 uint64_t value)
1874 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1875 env->cp15.c14_pmevtyper[counter] = value;
1878 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1879 * pmu_op_finish calls when loading saved state for a migration. Because
1880 * we're potentially updating the type of event here, the value written to
1881 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1882 * different counter type. Therefore, we need to set this value to the
1883 * current count for the counter type we're writing so that pmu_op_finish
1884 * has the correct count for its calculation.
1886 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1887 if (event_supported(event)) {
1888 uint16_t event_idx = supported_event_map[event];
1889 env->cp15.c14_pmevcntr_delta[counter] =
1890 pm_events[event_idx].get_count(env);
1894 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1896 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1897 return pmevtyper_read(env, ri, counter);
1900 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1901 uint64_t value)
1903 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1906 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1908 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1911 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1912 uint64_t value, uint8_t counter)
1914 if (counter < pmu_num_counters(env)) {
1915 pmevcntr_op_start(env, counter);
1916 env->cp15.c14_pmevcntr[counter] = value;
1917 pmevcntr_op_finish(env, counter);
1920 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1921 * are CONSTRAINED UNPREDICTABLE.
1925 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1926 uint8_t counter)
1928 if (counter < pmu_num_counters(env)) {
1929 uint64_t ret;
1930 pmevcntr_op_start(env, counter);
1931 ret = env->cp15.c14_pmevcntr[counter];
1932 pmevcntr_op_finish(env, counter);
1933 return ret;
1934 } else {
1935 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1936 * are CONSTRAINED UNPREDICTABLE. */
1937 return 0;
1941 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1942 uint64_t value)
1944 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1945 pmevcntr_write(env, ri, value, counter);
1948 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1950 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1951 return pmevcntr_read(env, ri, counter);
1954 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1955 uint64_t value)
1957 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1958 assert(counter < pmu_num_counters(env));
1959 env->cp15.c14_pmevcntr[counter] = value;
1960 pmevcntr_write(env, ri, value, counter);
1963 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1965 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1966 assert(counter < pmu_num_counters(env));
1967 return env->cp15.c14_pmevcntr[counter];
1970 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1971 uint64_t value)
1973 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1976 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1978 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1981 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1982 uint64_t value)
1984 if (arm_feature(env, ARM_FEATURE_V8)) {
1985 env->cp15.c9_pmuserenr = value & 0xf;
1986 } else {
1987 env->cp15.c9_pmuserenr = value & 1;
1991 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1992 uint64_t value)
1994 /* We have no event counters so only the C bit can be changed */
1995 value &= pmu_counter_mask(env);
1996 env->cp15.c9_pminten |= value;
1997 pmu_update_irq(env);
2000 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2001 uint64_t value)
2003 value &= pmu_counter_mask(env);
2004 env->cp15.c9_pminten &= ~value;
2005 pmu_update_irq(env);
2008 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2009 uint64_t value)
2011 /* Note that even though the AArch64 view of this register has bits
2012 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
2013 * architectural requirements for bits which are RES0 only in some
2014 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
2015 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
2017 raw_write(env, ri, value & ~0x1FULL);
2020 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2022 /* Begin with base v8.0 state. */
2023 uint32_t valid_mask = 0x3fff;
2024 ARMCPU *cpu = env_archcpu(env);
2026 if (ri->state == ARM_CP_STATE_AA64) {
2027 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */
2028 valid_mask &= ~SCR_NET;
2030 if (cpu_isar_feature(aa64_lor, cpu)) {
2031 valid_mask |= SCR_TLOR;
2033 if (cpu_isar_feature(aa64_pauth, cpu)) {
2034 valid_mask |= SCR_API | SCR_APK;
2036 if (cpu_isar_feature(aa64_sel2, cpu)) {
2037 valid_mask |= SCR_EEL2;
2039 if (cpu_isar_feature(aa64_mte, cpu)) {
2040 valid_mask |= SCR_ATA;
2042 } else {
2043 valid_mask &= ~(SCR_RW | SCR_ST);
2046 if (!arm_feature(env, ARM_FEATURE_EL2)) {
2047 valid_mask &= ~SCR_HCE;
2049 /* On ARMv7, SMD (or SCD as it is called in v7) is only
2050 * supported if EL2 exists. The bit is UNK/SBZP when
2051 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
2052 * when EL2 is unavailable.
2053 * On ARMv8, this bit is always available.
2055 if (arm_feature(env, ARM_FEATURE_V7) &&
2056 !arm_feature(env, ARM_FEATURE_V8)) {
2057 valid_mask &= ~SCR_SMD;
2061 /* Clear all-context RES0 bits. */
2062 value &= valid_mask;
2063 raw_write(env, ri, value);
2066 static CPAccessResult access_aa64_tid2(CPUARMState *env,
2067 const ARMCPRegInfo *ri,
2068 bool isread)
2070 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) {
2071 return CP_ACCESS_TRAP_EL2;
2074 return CP_ACCESS_OK;
2077 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2079 ARMCPU *cpu = env_archcpu(env);
2081 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
2082 * bank
2084 uint32_t index = A32_BANKED_REG_GET(env, csselr,
2085 ri->secure & ARM_CP_SECSTATE_S);
2087 return cpu->ccsidr[index];
2090 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2091 uint64_t value)
2093 raw_write(env, ri, value & 0xf);
2096 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2098 CPUState *cs = env_cpu(env);
2099 bool el1 = arm_current_el(env) == 1;
2100 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
2101 uint64_t ret = 0;
2103 if (hcr_el2 & HCR_IMO) {
2104 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
2105 ret |= CPSR_I;
2107 } else {
2108 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
2109 ret |= CPSR_I;
2113 if (hcr_el2 & HCR_FMO) {
2114 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
2115 ret |= CPSR_F;
2117 } else {
2118 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
2119 ret |= CPSR_F;
2123 /* External aborts are not possible in QEMU so A bit is always clear */
2124 return ret;
2127 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2128 bool isread)
2130 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2131 return CP_ACCESS_TRAP_EL2;
2134 return CP_ACCESS_OK;
2137 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2138 bool isread)
2140 if (arm_feature(env, ARM_FEATURE_V8)) {
2141 return access_aa64_tid1(env, ri, isread);
2144 return CP_ACCESS_OK;
2147 static const ARMCPRegInfo v7_cp_reginfo[] = {
2148 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2149 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2150 .access = PL1_W, .type = ARM_CP_NOP },
2151 /* Performance monitors are implementation defined in v7,
2152 * but with an ARM recommended set of registers, which we
2153 * follow.
2155 * Performance registers fall into three categories:
2156 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2157 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2158 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2159 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2160 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2162 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2163 .access = PL0_RW, .type = ARM_CP_ALIAS,
2164 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2165 .writefn = pmcntenset_write,
2166 .accessfn = pmreg_access,
2167 .raw_writefn = raw_write },
2168 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
2169 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2170 .access = PL0_RW, .accessfn = pmreg_access,
2171 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2172 .writefn = pmcntenset_write, .raw_writefn = raw_write },
2173 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2174 .access = PL0_RW,
2175 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2176 .accessfn = pmreg_access,
2177 .writefn = pmcntenclr_write,
2178 .type = ARM_CP_ALIAS },
2179 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2180 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2181 .access = PL0_RW, .accessfn = pmreg_access,
2182 .type = ARM_CP_ALIAS,
2183 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2184 .writefn = pmcntenclr_write },
2185 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2186 .access = PL0_RW, .type = ARM_CP_IO,
2187 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2188 .accessfn = pmreg_access,
2189 .writefn = pmovsr_write,
2190 .raw_writefn = raw_write },
2191 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2192 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2193 .access = PL0_RW, .accessfn = pmreg_access,
2194 .type = ARM_CP_ALIAS | ARM_CP_IO,
2195 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2196 .writefn = pmovsr_write,
2197 .raw_writefn = raw_write },
2198 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2199 .access = PL0_W, .accessfn = pmreg_access_swinc,
2200 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2201 .writefn = pmswinc_write },
2202 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2203 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2204 .access = PL0_W, .accessfn = pmreg_access_swinc,
2205 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2206 .writefn = pmswinc_write },
2207 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2208 .access = PL0_RW, .type = ARM_CP_ALIAS,
2209 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2210 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2211 .raw_writefn = raw_write},
2212 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2213 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2214 .access = PL0_RW, .accessfn = pmreg_access_selr,
2215 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2216 .writefn = pmselr_write, .raw_writefn = raw_write, },
2217 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2218 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2219 .readfn = pmccntr_read, .writefn = pmccntr_write32,
2220 .accessfn = pmreg_access_ccntr },
2221 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2222 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2223 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2224 .type = ARM_CP_IO,
2225 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2226 .readfn = pmccntr_read, .writefn = pmccntr_write,
2227 .raw_readfn = raw_read, .raw_writefn = raw_write, },
2228 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2229 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2230 .access = PL0_RW, .accessfn = pmreg_access,
2231 .type = ARM_CP_ALIAS | ARM_CP_IO,
2232 .resetvalue = 0, },
2233 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2234 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2235 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2236 .access = PL0_RW, .accessfn = pmreg_access,
2237 .type = ARM_CP_IO,
2238 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2239 .resetvalue = 0, },
2240 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2241 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2242 .accessfn = pmreg_access,
2243 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2244 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2245 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2246 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2247 .accessfn = pmreg_access,
2248 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2249 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2250 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2251 .accessfn = pmreg_access_xevcntr,
2252 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2253 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2254 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2255 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2256 .accessfn = pmreg_access_xevcntr,
2257 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2258 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2259 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2260 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2261 .resetvalue = 0,
2262 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2263 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2264 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2265 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2266 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2267 .resetvalue = 0,
2268 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2269 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2270 .access = PL1_RW, .accessfn = access_tpm,
2271 .type = ARM_CP_ALIAS | ARM_CP_IO,
2272 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2273 .resetvalue = 0,
2274 .writefn = pmintenset_write, .raw_writefn = raw_write },
2275 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2276 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2277 .access = PL1_RW, .accessfn = access_tpm,
2278 .type = ARM_CP_IO,
2279 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2280 .writefn = pmintenset_write, .raw_writefn = raw_write,
2281 .resetvalue = 0x0 },
2282 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2283 .access = PL1_RW, .accessfn = access_tpm,
2284 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2285 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2286 .writefn = pmintenclr_write, },
2287 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2288 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2289 .access = PL1_RW, .accessfn = access_tpm,
2290 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2291 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2292 .writefn = pmintenclr_write },
2293 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2294 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2295 .access = PL1_R,
2296 .accessfn = access_aa64_tid2,
2297 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2298 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2299 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2300 .access = PL1_RW,
2301 .accessfn = access_aa64_tid2,
2302 .writefn = csselr_write, .resetvalue = 0,
2303 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2304 offsetof(CPUARMState, cp15.csselr_ns) } },
2305 /* Auxiliary ID register: this actually has an IMPDEF value but for now
2306 * just RAZ for all cores:
2308 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2309 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2310 .access = PL1_R, .type = ARM_CP_CONST,
2311 .accessfn = access_aa64_tid1,
2312 .resetvalue = 0 },
2313 /* Auxiliary fault status registers: these also are IMPDEF, and we
2314 * choose to RAZ/WI for all cores.
2316 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2317 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2318 .access = PL1_RW, .accessfn = access_tvm_trvm,
2319 .type = ARM_CP_CONST, .resetvalue = 0 },
2320 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2321 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2322 .access = PL1_RW, .accessfn = access_tvm_trvm,
2323 .type = ARM_CP_CONST, .resetvalue = 0 },
2324 /* MAIR can just read-as-written because we don't implement caches
2325 * and so don't need to care about memory attributes.
2327 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2328 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2329 .access = PL1_RW, .accessfn = access_tvm_trvm,
2330 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2331 .resetvalue = 0 },
2332 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2333 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2334 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2335 .resetvalue = 0 },
2336 /* For non-long-descriptor page tables these are PRRR and NMRR;
2337 * regardless they still act as reads-as-written for QEMU.
2339 /* MAIR0/1 are defined separately from their 64-bit counterpart which
2340 * allows them to assign the correct fieldoffset based on the endianness
2341 * handled in the field definitions.
2343 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2344 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2345 .access = PL1_RW, .accessfn = access_tvm_trvm,
2346 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2347 offsetof(CPUARMState, cp15.mair0_ns) },
2348 .resetfn = arm_cp_reset_ignore },
2349 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2350 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2351 .access = PL1_RW, .accessfn = access_tvm_trvm,
2352 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2353 offsetof(CPUARMState, cp15.mair1_ns) },
2354 .resetfn = arm_cp_reset_ignore },
2355 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2356 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2357 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2358 /* 32 bit ITLB invalidates */
2359 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2360 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2361 .writefn = tlbiall_write },
2362 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2363 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2364 .writefn = tlbimva_write },
2365 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2366 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2367 .writefn = tlbiasid_write },
2368 /* 32 bit DTLB invalidates */
2369 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2370 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2371 .writefn = tlbiall_write },
2372 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2373 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2374 .writefn = tlbimva_write },
2375 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2376 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2377 .writefn = tlbiasid_write },
2378 /* 32 bit TLB invalidates */
2379 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2380 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2381 .writefn = tlbiall_write },
2382 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2383 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2384 .writefn = tlbimva_write },
2385 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2386 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2387 .writefn = tlbiasid_write },
2388 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2389 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2390 .writefn = tlbimvaa_write },
2391 REGINFO_SENTINEL
2394 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2395 /* 32 bit TLB invalidates, Inner Shareable */
2396 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2397 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2398 .writefn = tlbiall_is_write },
2399 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2400 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2401 .writefn = tlbimva_is_write },
2402 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2403 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2404 .writefn = tlbiasid_is_write },
2405 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2406 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2407 .writefn = tlbimvaa_is_write },
2408 REGINFO_SENTINEL
2411 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2412 /* PMOVSSET is not implemented in v7 before v7ve */
2413 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2414 .access = PL0_RW, .accessfn = pmreg_access,
2415 .type = ARM_CP_ALIAS | ARM_CP_IO,
2416 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2417 .writefn = pmovsset_write,
2418 .raw_writefn = raw_write },
2419 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2420 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2421 .access = PL0_RW, .accessfn = pmreg_access,
2422 .type = ARM_CP_ALIAS | ARM_CP_IO,
2423 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2424 .writefn = pmovsset_write,
2425 .raw_writefn = raw_write },
2426 REGINFO_SENTINEL
2429 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2430 uint64_t value)
2432 value &= 1;
2433 env->teecr = value;
2436 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2437 bool isread)
2439 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2440 return CP_ACCESS_TRAP;
2442 return CP_ACCESS_OK;
2445 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2446 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2447 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2448 .resetvalue = 0,
2449 .writefn = teecr_write },
2450 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2451 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2452 .accessfn = teehbr_access, .resetvalue = 0 },
2453 REGINFO_SENTINEL
2456 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2457 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2458 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2459 .access = PL0_RW,
2460 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2461 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2462 .access = PL0_RW,
2463 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2464 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2465 .resetfn = arm_cp_reset_ignore },
2466 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2467 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2468 .access = PL0_R|PL1_W,
2469 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2470 .resetvalue = 0},
2471 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2472 .access = PL0_R|PL1_W,
2473 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2474 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2475 .resetfn = arm_cp_reset_ignore },
2476 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2477 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2478 .access = PL1_RW,
2479 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2480 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2481 .access = PL1_RW,
2482 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2483 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2484 .resetvalue = 0 },
2485 REGINFO_SENTINEL
2488 #ifndef CONFIG_USER_ONLY
2490 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2491 bool isread)
2493 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2494 * Writable only at the highest implemented exception level.
2496 int el = arm_current_el(env);
2497 uint64_t hcr;
2498 uint32_t cntkctl;
2500 switch (el) {
2501 case 0:
2502 hcr = arm_hcr_el2_eff(env);
2503 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2504 cntkctl = env->cp15.cnthctl_el2;
2505 } else {
2506 cntkctl = env->cp15.c14_cntkctl;
2508 if (!extract32(cntkctl, 0, 2)) {
2509 return CP_ACCESS_TRAP;
2511 break;
2512 case 1:
2513 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2514 arm_is_secure_below_el3(env)) {
2515 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2516 return CP_ACCESS_TRAP_UNCATEGORIZED;
2518 break;
2519 case 2:
2520 case 3:
2521 break;
2524 if (!isread && el < arm_highest_el(env)) {
2525 return CP_ACCESS_TRAP_UNCATEGORIZED;
2528 return CP_ACCESS_OK;
2531 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2532 bool isread)
2534 unsigned int cur_el = arm_current_el(env);
2535 bool has_el2 = arm_is_el2_enabled(env);
2536 uint64_t hcr = arm_hcr_el2_eff(env);
2538 switch (cur_el) {
2539 case 0:
2540 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2541 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2542 return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2543 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2546 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2547 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2548 return CP_ACCESS_TRAP;
2551 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2552 if (hcr & HCR_E2H) {
2553 if (timeridx == GTIMER_PHYS &&
2554 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2555 return CP_ACCESS_TRAP_EL2;
2557 } else {
2558 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2559 if (has_el2 && timeridx == GTIMER_PHYS &&
2560 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2561 return CP_ACCESS_TRAP_EL2;
2564 break;
2566 case 1:
2567 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2568 if (has_el2 && timeridx == GTIMER_PHYS &&
2569 (hcr & HCR_E2H
2570 ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2571 : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2572 return CP_ACCESS_TRAP_EL2;
2574 break;
2576 return CP_ACCESS_OK;
2579 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2580 bool isread)
2582 unsigned int cur_el = arm_current_el(env);
2583 bool has_el2 = arm_is_el2_enabled(env);
2584 uint64_t hcr = arm_hcr_el2_eff(env);
2586 switch (cur_el) {
2587 case 0:
2588 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2589 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2590 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2591 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2595 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2596 * EL0 if EL0[PV]TEN is zero.
2598 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2599 return CP_ACCESS_TRAP;
2601 /* fall through */
2603 case 1:
2604 if (has_el2 && timeridx == GTIMER_PHYS) {
2605 if (hcr & HCR_E2H) {
2606 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2607 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2608 return CP_ACCESS_TRAP_EL2;
2610 } else {
2611 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2612 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2613 return CP_ACCESS_TRAP_EL2;
2617 break;
2619 return CP_ACCESS_OK;
2622 static CPAccessResult gt_pct_access(CPUARMState *env,
2623 const ARMCPRegInfo *ri,
2624 bool isread)
2626 return gt_counter_access(env, GTIMER_PHYS, isread);
2629 static CPAccessResult gt_vct_access(CPUARMState *env,
2630 const ARMCPRegInfo *ri,
2631 bool isread)
2633 return gt_counter_access(env, GTIMER_VIRT, isread);
2636 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2637 bool isread)
2639 return gt_timer_access(env, GTIMER_PHYS, isread);
2642 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2643 bool isread)
2645 return gt_timer_access(env, GTIMER_VIRT, isread);
2648 static CPAccessResult gt_stimer_access(CPUARMState *env,
2649 const ARMCPRegInfo *ri,
2650 bool isread)
2652 /* The AArch64 register view of the secure physical timer is
2653 * always accessible from EL3, and configurably accessible from
2654 * Secure EL1.
2656 switch (arm_current_el(env)) {
2657 case 1:
2658 if (!arm_is_secure(env)) {
2659 return CP_ACCESS_TRAP;
2661 if (!(env->cp15.scr_el3 & SCR_ST)) {
2662 return CP_ACCESS_TRAP_EL3;
2664 return CP_ACCESS_OK;
2665 case 0:
2666 case 2:
2667 return CP_ACCESS_TRAP;
2668 case 3:
2669 return CP_ACCESS_OK;
2670 default:
2671 g_assert_not_reached();
2675 static uint64_t gt_get_countervalue(CPUARMState *env)
2677 ARMCPU *cpu = env_archcpu(env);
2679 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2682 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2684 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2686 if (gt->ctl & 1) {
2687 /* Timer enabled: calculate and set current ISTATUS, irq, and
2688 * reset timer to when ISTATUS next has to change
2690 uint64_t offset = timeridx == GTIMER_VIRT ?
2691 cpu->env.cp15.cntvoff_el2 : 0;
2692 uint64_t count = gt_get_countervalue(&cpu->env);
2693 /* Note that this must be unsigned 64 bit arithmetic: */
2694 int istatus = count - offset >= gt->cval;
2695 uint64_t nexttick;
2696 int irqstate;
2698 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2700 irqstate = (istatus && !(gt->ctl & 2));
2701 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2703 if (istatus) {
2704 /* Next transition is when count rolls back over to zero */
2705 nexttick = UINT64_MAX;
2706 } else {
2707 /* Next transition is when we hit cval */
2708 nexttick = gt->cval + offset;
2710 /* Note that the desired next expiry time might be beyond the
2711 * signed-64-bit range of a QEMUTimer -- in this case we just
2712 * set the timer for as far in the future as possible. When the
2713 * timer expires we will reset the timer for any remaining period.
2715 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2716 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2717 } else {
2718 timer_mod(cpu->gt_timer[timeridx], nexttick);
2720 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2721 } else {
2722 /* Timer disabled: ISTATUS and timer output always clear */
2723 gt->ctl &= ~4;
2724 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2725 timer_del(cpu->gt_timer[timeridx]);
2726 trace_arm_gt_recalc_disabled(timeridx);
2730 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2731 int timeridx)
2733 ARMCPU *cpu = env_archcpu(env);
2735 timer_del(cpu->gt_timer[timeridx]);
2738 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2740 return gt_get_countervalue(env);
2743 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2745 uint64_t hcr;
2747 switch (arm_current_el(env)) {
2748 case 2:
2749 hcr = arm_hcr_el2_eff(env);
2750 if (hcr & HCR_E2H) {
2751 return 0;
2753 break;
2754 case 0:
2755 hcr = arm_hcr_el2_eff(env);
2756 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2757 return 0;
2759 break;
2762 return env->cp15.cntvoff_el2;
2765 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2767 return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2770 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2771 int timeridx,
2772 uint64_t value)
2774 trace_arm_gt_cval_write(timeridx, value);
2775 env->cp15.c14_timer[timeridx].cval = value;
2776 gt_recalc_timer(env_archcpu(env), timeridx);
2779 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2780 int timeridx)
2782 uint64_t offset = 0;
2784 switch (timeridx) {
2785 case GTIMER_VIRT:
2786 case GTIMER_HYPVIRT:
2787 offset = gt_virt_cnt_offset(env);
2788 break;
2791 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2792 (gt_get_countervalue(env) - offset));
2795 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2796 int timeridx,
2797 uint64_t value)
2799 uint64_t offset = 0;
2801 switch (timeridx) {
2802 case GTIMER_VIRT:
2803 case GTIMER_HYPVIRT:
2804 offset = gt_virt_cnt_offset(env);
2805 break;
2808 trace_arm_gt_tval_write(timeridx, value);
2809 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2810 sextract64(value, 0, 32);
2811 gt_recalc_timer(env_archcpu(env), timeridx);
2814 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2815 int timeridx,
2816 uint64_t value)
2818 ARMCPU *cpu = env_archcpu(env);
2819 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2821 trace_arm_gt_ctl_write(timeridx, value);
2822 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2823 if ((oldval ^ value) & 1) {
2824 /* Enable toggled */
2825 gt_recalc_timer(cpu, timeridx);
2826 } else if ((oldval ^ value) & 2) {
2827 /* IMASK toggled: don't need to recalculate,
2828 * just set the interrupt line based on ISTATUS
2830 int irqstate = (oldval & 4) && !(value & 2);
2832 trace_arm_gt_imask_toggle(timeridx, irqstate);
2833 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2837 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2839 gt_timer_reset(env, ri, GTIMER_PHYS);
2842 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2843 uint64_t value)
2845 gt_cval_write(env, ri, GTIMER_PHYS, value);
2848 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2850 return gt_tval_read(env, ri, GTIMER_PHYS);
2853 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2854 uint64_t value)
2856 gt_tval_write(env, ri, GTIMER_PHYS, value);
2859 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2860 uint64_t value)
2862 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2865 static int gt_phys_redir_timeridx(CPUARMState *env)
2867 switch (arm_mmu_idx(env)) {
2868 case ARMMMUIdx_E20_0:
2869 case ARMMMUIdx_E20_2:
2870 case ARMMMUIdx_E20_2_PAN:
2871 case ARMMMUIdx_SE20_0:
2872 case ARMMMUIdx_SE20_2:
2873 case ARMMMUIdx_SE20_2_PAN:
2874 return GTIMER_HYP;
2875 default:
2876 return GTIMER_PHYS;
2880 static int gt_virt_redir_timeridx(CPUARMState *env)
2882 switch (arm_mmu_idx(env)) {
2883 case ARMMMUIdx_E20_0:
2884 case ARMMMUIdx_E20_2:
2885 case ARMMMUIdx_E20_2_PAN:
2886 case ARMMMUIdx_SE20_0:
2887 case ARMMMUIdx_SE20_2:
2888 case ARMMMUIdx_SE20_2_PAN:
2889 return GTIMER_HYPVIRT;
2890 default:
2891 return GTIMER_VIRT;
2895 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2896 const ARMCPRegInfo *ri)
2898 int timeridx = gt_phys_redir_timeridx(env);
2899 return env->cp15.c14_timer[timeridx].cval;
2902 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2903 uint64_t value)
2905 int timeridx = gt_phys_redir_timeridx(env);
2906 gt_cval_write(env, ri, timeridx, value);
2909 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2910 const ARMCPRegInfo *ri)
2912 int timeridx = gt_phys_redir_timeridx(env);
2913 return gt_tval_read(env, ri, timeridx);
2916 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2917 uint64_t value)
2919 int timeridx = gt_phys_redir_timeridx(env);
2920 gt_tval_write(env, ri, timeridx, value);
2923 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2924 const ARMCPRegInfo *ri)
2926 int timeridx = gt_phys_redir_timeridx(env);
2927 return env->cp15.c14_timer[timeridx].ctl;
2930 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2931 uint64_t value)
2933 int timeridx = gt_phys_redir_timeridx(env);
2934 gt_ctl_write(env, ri, timeridx, value);
2937 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2939 gt_timer_reset(env, ri, GTIMER_VIRT);
2942 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2943 uint64_t value)
2945 gt_cval_write(env, ri, GTIMER_VIRT, value);
2948 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2950 return gt_tval_read(env, ri, GTIMER_VIRT);
2953 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2954 uint64_t value)
2956 gt_tval_write(env, ri, GTIMER_VIRT, value);
2959 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2960 uint64_t value)
2962 gt_ctl_write(env, ri, GTIMER_VIRT, value);
2965 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2966 uint64_t value)
2968 ARMCPU *cpu = env_archcpu(env);
2970 trace_arm_gt_cntvoff_write(value);
2971 raw_write(env, ri, value);
2972 gt_recalc_timer(cpu, GTIMER_VIRT);
2975 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2976 const ARMCPRegInfo *ri)
2978 int timeridx = gt_virt_redir_timeridx(env);
2979 return env->cp15.c14_timer[timeridx].cval;
2982 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2983 uint64_t value)
2985 int timeridx = gt_virt_redir_timeridx(env);
2986 gt_cval_write(env, ri, timeridx, value);
2989 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2990 const ARMCPRegInfo *ri)
2992 int timeridx = gt_virt_redir_timeridx(env);
2993 return gt_tval_read(env, ri, timeridx);
2996 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2997 uint64_t value)
2999 int timeridx = gt_virt_redir_timeridx(env);
3000 gt_tval_write(env, ri, timeridx, value);
3003 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
3004 const ARMCPRegInfo *ri)
3006 int timeridx = gt_virt_redir_timeridx(env);
3007 return env->cp15.c14_timer[timeridx].ctl;
3010 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3011 uint64_t value)
3013 int timeridx = gt_virt_redir_timeridx(env);
3014 gt_ctl_write(env, ri, timeridx, value);
3017 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3019 gt_timer_reset(env, ri, GTIMER_HYP);
3022 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3023 uint64_t value)
3025 gt_cval_write(env, ri, GTIMER_HYP, value);
3028 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3030 return gt_tval_read(env, ri, GTIMER_HYP);
3033 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3034 uint64_t value)
3036 gt_tval_write(env, ri, GTIMER_HYP, value);
3039 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3040 uint64_t value)
3042 gt_ctl_write(env, ri, GTIMER_HYP, value);
3045 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3047 gt_timer_reset(env, ri, GTIMER_SEC);
3050 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3051 uint64_t value)
3053 gt_cval_write(env, ri, GTIMER_SEC, value);
3056 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3058 return gt_tval_read(env, ri, GTIMER_SEC);
3061 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3062 uint64_t value)
3064 gt_tval_write(env, ri, GTIMER_SEC, value);
3067 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3068 uint64_t value)
3070 gt_ctl_write(env, ri, GTIMER_SEC, value);
3073 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3075 gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3078 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3079 uint64_t value)
3081 gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3084 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3086 return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3089 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3090 uint64_t value)
3092 gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3095 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3096 uint64_t value)
3098 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3101 void arm_gt_ptimer_cb(void *opaque)
3103 ARMCPU *cpu = opaque;
3105 gt_recalc_timer(cpu, GTIMER_PHYS);
3108 void arm_gt_vtimer_cb(void *opaque)
3110 ARMCPU *cpu = opaque;
3112 gt_recalc_timer(cpu, GTIMER_VIRT);
3115 void arm_gt_htimer_cb(void *opaque)
3117 ARMCPU *cpu = opaque;
3119 gt_recalc_timer(cpu, GTIMER_HYP);
3122 void arm_gt_stimer_cb(void *opaque)
3124 ARMCPU *cpu = opaque;
3126 gt_recalc_timer(cpu, GTIMER_SEC);
3129 void arm_gt_hvtimer_cb(void *opaque)
3131 ARMCPU *cpu = opaque;
3133 gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3136 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3138 ARMCPU *cpu = env_archcpu(env);
3140 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3143 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3144 /* Note that CNTFRQ is purely reads-as-written for the benefit
3145 * of software; writing it doesn't actually change the timer frequency.
3146 * Our reset value matches the fixed frequency we implement the timer at.
3148 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3149 .type = ARM_CP_ALIAS,
3150 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3151 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3153 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3154 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3155 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3156 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3157 .resetfn = arm_gt_cntfrq_reset,
3159 /* overall control: mostly access permissions */
3160 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3161 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3162 .access = PL1_RW,
3163 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3164 .resetvalue = 0,
3166 /* per-timer control */
3167 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3168 .secure = ARM_CP_SECSTATE_NS,
3169 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3170 .accessfn = gt_ptimer_access,
3171 .fieldoffset = offsetoflow32(CPUARMState,
3172 cp15.c14_timer[GTIMER_PHYS].ctl),
3173 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3174 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3176 { .name = "CNTP_CTL_S",
3177 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3178 .secure = ARM_CP_SECSTATE_S,
3179 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3180 .accessfn = gt_ptimer_access,
3181 .fieldoffset = offsetoflow32(CPUARMState,
3182 cp15.c14_timer[GTIMER_SEC].ctl),
3183 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3185 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3186 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3187 .type = ARM_CP_IO, .access = PL0_RW,
3188 .accessfn = gt_ptimer_access,
3189 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3190 .resetvalue = 0,
3191 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3192 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3194 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3195 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3196 .accessfn = gt_vtimer_access,
3197 .fieldoffset = offsetoflow32(CPUARMState,
3198 cp15.c14_timer[GTIMER_VIRT].ctl),
3199 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3200 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3202 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3203 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3204 .type = ARM_CP_IO, .access = PL0_RW,
3205 .accessfn = gt_vtimer_access,
3206 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3207 .resetvalue = 0,
3208 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3209 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3211 /* TimerValue views: a 32 bit downcounting view of the underlying state */
3212 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3213 .secure = ARM_CP_SECSTATE_NS,
3214 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3215 .accessfn = gt_ptimer_access,
3216 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3218 { .name = "CNTP_TVAL_S",
3219 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3220 .secure = ARM_CP_SECSTATE_S,
3221 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3222 .accessfn = gt_ptimer_access,
3223 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3225 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3226 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3227 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3228 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3229 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3231 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3232 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3233 .accessfn = gt_vtimer_access,
3234 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3236 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3237 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3238 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3239 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3240 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3242 /* The counter itself */
3243 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3244 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3245 .accessfn = gt_pct_access,
3246 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3248 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3249 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3250 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3251 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3253 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3254 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3255 .accessfn = gt_vct_access,
3256 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3258 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3259 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3260 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3261 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3263 /* Comparison value, indicating when the timer goes off */
3264 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3265 .secure = ARM_CP_SECSTATE_NS,
3266 .access = PL0_RW,
3267 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3268 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3269 .accessfn = gt_ptimer_access,
3270 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3271 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3273 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3274 .secure = ARM_CP_SECSTATE_S,
3275 .access = PL0_RW,
3276 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3277 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3278 .accessfn = gt_ptimer_access,
3279 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3281 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3282 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3283 .access = PL0_RW,
3284 .type = ARM_CP_IO,
3285 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3286 .resetvalue = 0, .accessfn = gt_ptimer_access,
3287 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3288 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3290 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3291 .access = PL0_RW,
3292 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3293 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3294 .accessfn = gt_vtimer_access,
3295 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3296 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3298 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3299 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3300 .access = PL0_RW,
3301 .type = ARM_CP_IO,
3302 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3303 .resetvalue = 0, .accessfn = gt_vtimer_access,
3304 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3305 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3307 /* Secure timer -- this is actually restricted to only EL3
3308 * and configurably Secure-EL1 via the accessfn.
3310 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3311 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3312 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3313 .accessfn = gt_stimer_access,
3314 .readfn = gt_sec_tval_read,
3315 .writefn = gt_sec_tval_write,
3316 .resetfn = gt_sec_timer_reset,
3318 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3319 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3320 .type = ARM_CP_IO, .access = PL1_RW,
3321 .accessfn = gt_stimer_access,
3322 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3323 .resetvalue = 0,
3324 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3326 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3327 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3328 .type = ARM_CP_IO, .access = PL1_RW,
3329 .accessfn = gt_stimer_access,
3330 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3331 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3333 REGINFO_SENTINEL
3336 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3337 bool isread)
3339 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3340 return CP_ACCESS_TRAP;
3342 return CP_ACCESS_OK;
3345 #else
3347 /* In user-mode most of the generic timer registers are inaccessible
3348 * however modern kernels (4.12+) allow access to cntvct_el0
3351 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3353 ARMCPU *cpu = env_archcpu(env);
3355 /* Currently we have no support for QEMUTimer in linux-user so we
3356 * can't call gt_get_countervalue(env), instead we directly
3357 * call the lower level functions.
3359 return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3362 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3363 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3364 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3365 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3366 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3367 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3369 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3370 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3371 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3372 .readfn = gt_virt_cnt_read,
3374 REGINFO_SENTINEL
3377 #endif
3379 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3381 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3382 raw_write(env, ri, value);
3383 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3384 raw_write(env, ri, value & 0xfffff6ff);
3385 } else {
3386 raw_write(env, ri, value & 0xfffff1ff);
3390 #ifndef CONFIG_USER_ONLY
3391 /* get_phys_addr() isn't present for user-mode-only targets */
3393 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3394 bool isread)
3396 if (ri->opc2 & 4) {
3397 /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3398 * Secure EL1 (which can only happen if EL3 is AArch64).
3399 * They are simply UNDEF if executed from NS EL1.
3400 * They function normally from EL2 or EL3.
3402 if (arm_current_el(env) == 1) {
3403 if (arm_is_secure_below_el3(env)) {
3404 if (env->cp15.scr_el3 & SCR_EEL2) {
3405 return CP_ACCESS_TRAP_UNCATEGORIZED_EL2;
3407 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
3409 return CP_ACCESS_TRAP_UNCATEGORIZED;
3412 return CP_ACCESS_OK;
3415 #ifdef CONFIG_TCG
3416 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3417 MMUAccessType access_type, ARMMMUIdx mmu_idx)
3419 hwaddr phys_addr;
3420 target_ulong page_size;
3421 int prot;
3422 bool ret;
3423 uint64_t par64;
3424 bool format64 = false;
3425 MemTxAttrs attrs = {};
3426 ARMMMUFaultInfo fi = {};
3427 ARMCacheAttrs cacheattrs = {};
3429 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
3430 &prot, &page_size, &fi, &cacheattrs);
3432 if (ret) {
3434 * Some kinds of translation fault must cause exceptions rather
3435 * than being reported in the PAR.
3437 int current_el = arm_current_el(env);
3438 int target_el;
3439 uint32_t syn, fsr, fsc;
3440 bool take_exc = false;
3442 if (fi.s1ptw && current_el == 1
3443 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3445 * Synchronous stage 2 fault on an access made as part of the
3446 * translation table walk for AT S1E0* or AT S1E1* insn
3447 * executed from NS EL1. If this is a synchronous external abort
3448 * and SCR_EL3.EA == 1, then we take a synchronous external abort
3449 * to EL3. Otherwise the fault is taken as an exception to EL2,
3450 * and HPFAR_EL2 holds the faulting IPA.
3452 if (fi.type == ARMFault_SyncExternalOnWalk &&
3453 (env->cp15.scr_el3 & SCR_EA)) {
3454 target_el = 3;
3455 } else {
3456 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3457 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3458 env->cp15.hpfar_el2 |= HPFAR_NS;
3460 target_el = 2;
3462 take_exc = true;
3463 } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3465 * Synchronous external aborts during a translation table walk
3466 * are taken as Data Abort exceptions.
3468 if (fi.stage2) {
3469 if (current_el == 3) {
3470 target_el = 3;
3471 } else {
3472 target_el = 2;
3474 } else {
3475 target_el = exception_target_el(env);
3477 take_exc = true;
3480 if (take_exc) {
3481 /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3482 if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3483 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3484 fsr = arm_fi_to_lfsc(&fi);
3485 fsc = extract32(fsr, 0, 6);
3486 } else {
3487 fsr = arm_fi_to_sfsc(&fi);
3488 fsc = 0x3f;
3491 * Report exception with ESR indicating a fault due to a
3492 * translation table walk for a cache maintenance instruction.
3494 syn = syn_data_abort_no_iss(current_el == target_el, 0,
3495 fi.ea, 1, fi.s1ptw, 1, fsc);
3496 env->exception.vaddress = value;
3497 env->exception.fsr = fsr;
3498 raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3502 if (is_a64(env)) {
3503 format64 = true;
3504 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3506 * ATS1Cxx:
3507 * * TTBCR.EAE determines whether the result is returned using the
3508 * 32-bit or the 64-bit PAR format
3509 * * Instructions executed in Hyp mode always use the 64bit format
3511 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3512 * * The Non-secure TTBCR.EAE bit is set to 1
3513 * * The implementation includes EL2, and the value of HCR.VM is 1
3515 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3517 * ATS1Hx always uses the 64bit format.
3519 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3521 if (arm_feature(env, ARM_FEATURE_EL2)) {
3522 if (mmu_idx == ARMMMUIdx_E10_0 ||
3523 mmu_idx == ARMMMUIdx_E10_1 ||
3524 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3525 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3526 } else {
3527 format64 |= arm_current_el(env) == 2;
3532 if (format64) {
3533 /* Create a 64-bit PAR */
3534 par64 = (1 << 11); /* LPAE bit always set */
3535 if (!ret) {
3536 par64 |= phys_addr & ~0xfffULL;
3537 if (!attrs.secure) {
3538 par64 |= (1 << 9); /* NS */
3540 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
3541 par64 |= cacheattrs.shareability << 7; /* SH */
3542 } else {
3543 uint32_t fsr = arm_fi_to_lfsc(&fi);
3545 par64 |= 1; /* F */
3546 par64 |= (fsr & 0x3f) << 1; /* FS */
3547 if (fi.stage2) {
3548 par64 |= (1 << 9); /* S */
3550 if (fi.s1ptw) {
3551 par64 |= (1 << 8); /* PTW */
3554 } else {
3555 /* fsr is a DFSR/IFSR value for the short descriptor
3556 * translation table format (with WnR always clear).
3557 * Convert it to a 32-bit PAR.
3559 if (!ret) {
3560 /* We do not set any attribute bits in the PAR */
3561 if (page_size == (1 << 24)
3562 && arm_feature(env, ARM_FEATURE_V7)) {
3563 par64 = (phys_addr & 0xff000000) | (1 << 1);
3564 } else {
3565 par64 = phys_addr & 0xfffff000;
3567 if (!attrs.secure) {
3568 par64 |= (1 << 9); /* NS */
3570 } else {
3571 uint32_t fsr = arm_fi_to_sfsc(&fi);
3573 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3574 ((fsr & 0xf) << 1) | 1;
3577 return par64;
3579 #endif /* CONFIG_TCG */
3581 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3583 #ifdef CONFIG_TCG
3584 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3585 uint64_t par64;
3586 ARMMMUIdx mmu_idx;
3587 int el = arm_current_el(env);
3588 bool secure = arm_is_secure_below_el3(env);
3590 switch (ri->opc2 & 6) {
3591 case 0:
3592 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3593 switch (el) {
3594 case 3:
3595 mmu_idx = ARMMMUIdx_SE3;
3596 break;
3597 case 2:
3598 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */
3599 /* fall through */
3600 case 1:
3601 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3602 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3603 : ARMMMUIdx_Stage1_E1_PAN);
3604 } else {
3605 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3607 break;
3608 default:
3609 g_assert_not_reached();
3611 break;
3612 case 2:
3613 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3614 switch (el) {
3615 case 3:
3616 mmu_idx = ARMMMUIdx_SE10_0;
3617 break;
3618 case 2:
3619 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */
3620 mmu_idx = ARMMMUIdx_Stage1_E0;
3621 break;
3622 case 1:
3623 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3624 break;
3625 default:
3626 g_assert_not_reached();
3628 break;
3629 case 4:
3630 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3631 mmu_idx = ARMMMUIdx_E10_1;
3632 break;
3633 case 6:
3634 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3635 mmu_idx = ARMMMUIdx_E10_0;
3636 break;
3637 default:
3638 g_assert_not_reached();
3641 par64 = do_ats_write(env, value, access_type, mmu_idx);
3643 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3644 #else
3645 /* Handled by hardware accelerator. */
3646 g_assert_not_reached();
3647 #endif /* CONFIG_TCG */
3650 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3651 uint64_t value)
3653 #ifdef CONFIG_TCG
3654 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3655 uint64_t par64;
3657 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2);
3659 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3660 #else
3661 /* Handled by hardware accelerator. */
3662 g_assert_not_reached();
3663 #endif /* CONFIG_TCG */
3666 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3667 bool isread)
3669 if (arm_current_el(env) == 3 &&
3670 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3671 return CP_ACCESS_TRAP;
3673 return CP_ACCESS_OK;
3676 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3677 uint64_t value)
3679 #ifdef CONFIG_TCG
3680 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3681 ARMMMUIdx mmu_idx;
3682 int secure = arm_is_secure_below_el3(env);
3684 switch (ri->opc2 & 6) {
3685 case 0:
3686 switch (ri->opc1) {
3687 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3688 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3689 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3690 : ARMMMUIdx_Stage1_E1_PAN);
3691 } else {
3692 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3694 break;
3695 case 4: /* AT S1E2R, AT S1E2W */
3696 mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2;
3697 break;
3698 case 6: /* AT S1E3R, AT S1E3W */
3699 mmu_idx = ARMMMUIdx_SE3;
3700 break;
3701 default:
3702 g_assert_not_reached();
3704 break;
3705 case 2: /* AT S1E0R, AT S1E0W */
3706 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3707 break;
3708 case 4: /* AT S12E1R, AT S12E1W */
3709 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1;
3710 break;
3711 case 6: /* AT S12E0R, AT S12E0W */
3712 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0;
3713 break;
3714 default:
3715 g_assert_not_reached();
3718 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3719 #else
3720 /* Handled by hardware accelerator. */
3721 g_assert_not_reached();
3722 #endif /* CONFIG_TCG */
3724 #endif
3726 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3727 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3728 .access = PL1_RW, .resetvalue = 0,
3729 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3730 offsetoflow32(CPUARMState, cp15.par_ns) },
3731 .writefn = par_write },
3732 #ifndef CONFIG_USER_ONLY
3733 /* This underdecoding is safe because the reginfo is NO_RAW. */
3734 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3735 .access = PL1_W, .accessfn = ats_access,
3736 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3737 #endif
3738 REGINFO_SENTINEL
3741 /* Return basic MPU access permission bits. */
3742 static uint32_t simple_mpu_ap_bits(uint32_t val)
3744 uint32_t ret;
3745 uint32_t mask;
3746 int i;
3747 ret = 0;
3748 mask = 3;
3749 for (i = 0; i < 16; i += 2) {
3750 ret |= (val >> i) & mask;
3751 mask <<= 2;
3753 return ret;
3756 /* Pad basic MPU access permission bits to extended format. */
3757 static uint32_t extended_mpu_ap_bits(uint32_t val)
3759 uint32_t ret;
3760 uint32_t mask;
3761 int i;
3762 ret = 0;
3763 mask = 3;
3764 for (i = 0; i < 16; i += 2) {
3765 ret |= (val & mask) << i;
3766 mask <<= 2;
3768 return ret;
3771 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3772 uint64_t value)
3774 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3777 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3779 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3782 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3783 uint64_t value)
3785 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3788 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3790 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3793 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3795 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3797 if (!u32p) {
3798 return 0;
3801 u32p += env->pmsav7.rnr[M_REG_NS];
3802 return *u32p;
3805 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3806 uint64_t value)
3808 ARMCPU *cpu = env_archcpu(env);
3809 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3811 if (!u32p) {
3812 return;
3815 u32p += env->pmsav7.rnr[M_REG_NS];
3816 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3817 *u32p = value;
3820 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3821 uint64_t value)
3823 ARMCPU *cpu = env_archcpu(env);
3824 uint32_t nrgs = cpu->pmsav7_dregion;
3826 if (value >= nrgs) {
3827 qemu_log_mask(LOG_GUEST_ERROR,
3828 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3829 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3830 return;
3833 raw_write(env, ri, value);
3836 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3837 /* Reset for all these registers is handled in arm_cpu_reset(),
3838 * because the PMSAv7 is also used by M-profile CPUs, which do
3839 * not register cpregs but still need the state to be reset.
3841 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3842 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3843 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3844 .readfn = pmsav7_read, .writefn = pmsav7_write,
3845 .resetfn = arm_cp_reset_ignore },
3846 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3847 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3848 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3849 .readfn = pmsav7_read, .writefn = pmsav7_write,
3850 .resetfn = arm_cp_reset_ignore },
3851 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3852 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3853 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3854 .readfn = pmsav7_read, .writefn = pmsav7_write,
3855 .resetfn = arm_cp_reset_ignore },
3856 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3857 .access = PL1_RW,
3858 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3859 .writefn = pmsav7_rgnr_write,
3860 .resetfn = arm_cp_reset_ignore },
3861 REGINFO_SENTINEL
3864 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3865 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3866 .access = PL1_RW, .type = ARM_CP_ALIAS,
3867 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3868 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3869 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3870 .access = PL1_RW, .type = ARM_CP_ALIAS,
3871 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3872 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3873 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3874 .access = PL1_RW,
3875 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3876 .resetvalue = 0, },
3877 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3878 .access = PL1_RW,
3879 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3880 .resetvalue = 0, },
3881 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3882 .access = PL1_RW,
3883 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3884 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3885 .access = PL1_RW,
3886 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3887 /* Protection region base and size registers */
3888 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3889 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3890 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3891 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3892 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3893 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3894 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3895 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3896 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3897 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3898 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3899 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3900 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3901 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3902 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3903 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3904 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3905 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3906 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3907 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3908 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3909 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3910 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3911 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3912 REGINFO_SENTINEL
3915 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3916 uint64_t value)
3918 TCR *tcr = raw_ptr(env, ri);
3919 int maskshift = extract32(value, 0, 3);
3921 if (!arm_feature(env, ARM_FEATURE_V8)) {
3922 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3923 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3924 * using Long-desciptor translation table format */
3925 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3926 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3927 /* In an implementation that includes the Security Extensions
3928 * TTBCR has additional fields PD0 [4] and PD1 [5] for
3929 * Short-descriptor translation table format.
3931 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3932 } else {
3933 value &= TTBCR_N;
3937 /* Update the masks corresponding to the TCR bank being written
3938 * Note that we always calculate mask and base_mask, but
3939 * they are only used for short-descriptor tables (ie if EAE is 0);
3940 * for long-descriptor tables the TCR fields are used differently
3941 * and the mask and base_mask values are meaningless.
3943 tcr->raw_tcr = value;
3944 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3945 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3948 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3949 uint64_t value)
3951 ARMCPU *cpu = env_archcpu(env);
3952 TCR *tcr = raw_ptr(env, ri);
3954 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3955 /* With LPAE the TTBCR could result in a change of ASID
3956 * via the TTBCR.A1 bit, so do a TLB flush.
3958 tlb_flush(CPU(cpu));
3960 /* Preserve the high half of TCR_EL1, set via TTBCR2. */
3961 value = deposit64(tcr->raw_tcr, 0, 32, value);
3962 vmsa_ttbcr_raw_write(env, ri, value);
3965 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3967 TCR *tcr = raw_ptr(env, ri);
3969 /* Reset both the TCR as well as the masks corresponding to the bank of
3970 * the TCR being reset.
3972 tcr->raw_tcr = 0;
3973 tcr->mask = 0;
3974 tcr->base_mask = 0xffffc000u;
3977 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
3978 uint64_t value)
3980 ARMCPU *cpu = env_archcpu(env);
3981 TCR *tcr = raw_ptr(env, ri);
3983 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3984 tlb_flush(CPU(cpu));
3985 tcr->raw_tcr = value;
3988 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3989 uint64_t value)
3991 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
3992 if (cpreg_field_is_64bit(ri) &&
3993 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
3994 ARMCPU *cpu = env_archcpu(env);
3995 tlb_flush(CPU(cpu));
3997 raw_write(env, ri, value);
4000 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4001 uint64_t value)
4004 * If we are running with E2&0 regime, then an ASID is active.
4005 * Flush if that might be changing. Note we're not checking
4006 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4007 * holds the active ASID, only checking the field that might.
4009 if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4010 (arm_hcr_el2_eff(env) & HCR_E2H)) {
4011 uint16_t mask = ARMMMUIdxBit_E20_2 |
4012 ARMMMUIdxBit_E20_2_PAN |
4013 ARMMMUIdxBit_E20_0;
4015 if (arm_is_secure_below_el3(env)) {
4016 mask >>= ARM_MMU_IDX_A_NS;
4019 tlb_flush_by_mmuidx(env_cpu(env), mask);
4021 raw_write(env, ri, value);
4024 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4025 uint64_t value)
4027 ARMCPU *cpu = env_archcpu(env);
4028 CPUState *cs = CPU(cpu);
4031 * A change in VMID to the stage2 page table (Stage2) invalidates
4032 * the combined stage 1&2 tlbs (EL10_1 and EL10_0).
4034 if (raw_read(env, ri) != value) {
4035 uint16_t mask = ARMMMUIdxBit_E10_1 |
4036 ARMMMUIdxBit_E10_1_PAN |
4037 ARMMMUIdxBit_E10_0;
4039 if (arm_is_secure_below_el3(env)) {
4040 mask >>= ARM_MMU_IDX_A_NS;
4043 tlb_flush_by_mmuidx(cs, mask);
4044 raw_write(env, ri, value);
4048 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4049 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4050 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4051 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4052 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4053 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4054 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4055 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4056 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4057 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4058 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4059 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4060 offsetof(CPUARMState, cp15.dfar_ns) } },
4061 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4062 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4063 .access = PL1_RW, .accessfn = access_tvm_trvm,
4064 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4065 .resetvalue = 0, },
4066 REGINFO_SENTINEL
4069 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4070 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4071 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4072 .access = PL1_RW, .accessfn = access_tvm_trvm,
4073 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4074 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4075 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4076 .access = PL1_RW, .accessfn = access_tvm_trvm,
4077 .writefn = vmsa_ttbr_write, .resetvalue = 0,
4078 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4079 offsetof(CPUARMState, cp15.ttbr0_ns) } },
4080 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4081 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4082 .access = PL1_RW, .accessfn = access_tvm_trvm,
4083 .writefn = vmsa_ttbr_write, .resetvalue = 0,
4084 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4085 offsetof(CPUARMState, cp15.ttbr1_ns) } },
4086 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4087 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4088 .access = PL1_RW, .accessfn = access_tvm_trvm,
4089 .writefn = vmsa_tcr_el12_write,
4090 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
4091 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4092 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4093 .access = PL1_RW, .accessfn = access_tvm_trvm,
4094 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4095 .raw_writefn = vmsa_ttbcr_raw_write,
4096 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4097 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4098 REGINFO_SENTINEL
4101 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4102 * qemu tlbs nor adjusting cached masks.
4104 static const ARMCPRegInfo ttbcr2_reginfo = {
4105 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4106 .access = PL1_RW, .accessfn = access_tvm_trvm,
4107 .type = ARM_CP_ALIAS,
4108 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4109 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) },
4112 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4113 uint64_t value)
4115 env->cp15.c15_ticonfig = value & 0xe7;
4116 /* The OS_TYPE bit in this register changes the reported CPUID! */
4117 env->cp15.c0_cpuid = (value & (1 << 5)) ?
4118 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4121 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4122 uint64_t value)
4124 env->cp15.c15_threadid = value & 0xffff;
4127 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4128 uint64_t value)
4130 /* Wait-for-interrupt (deprecated) */
4131 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4134 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4135 uint64_t value)
4137 /* On OMAP there are registers indicating the max/min index of dcache lines
4138 * containing a dirty line; cache flush operations have to reset these.
4140 env->cp15.c15_i_max = 0x000;
4141 env->cp15.c15_i_min = 0xff0;
4144 static const ARMCPRegInfo omap_cp_reginfo[] = {
4145 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4146 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4147 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4148 .resetvalue = 0, },
4149 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4150 .access = PL1_RW, .type = ARM_CP_NOP },
4151 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4152 .access = PL1_RW,
4153 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4154 .writefn = omap_ticonfig_write },
4155 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4156 .access = PL1_RW,
4157 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4158 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4159 .access = PL1_RW, .resetvalue = 0xff0,
4160 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4161 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4162 .access = PL1_RW,
4163 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4164 .writefn = omap_threadid_write },
4165 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4166 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4167 .type = ARM_CP_NO_RAW,
4168 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4169 /* TODO: Peripheral port remap register:
4170 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4171 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4172 * when MMU is off.
4174 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4175 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4176 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4177 .writefn = omap_cachemaint_write },
4178 { .name = "C9", .cp = 15, .crn = 9,
4179 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4180 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4181 REGINFO_SENTINEL
4184 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4185 uint64_t value)
4187 env->cp15.c15_cpar = value & 0x3fff;
4190 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4191 { .name = "XSCALE_CPAR",
4192 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4193 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4194 .writefn = xscale_cpar_write, },
4195 { .name = "XSCALE_AUXCR",
4196 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4197 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4198 .resetvalue = 0, },
4199 /* XScale specific cache-lockdown: since we have no cache we NOP these
4200 * and hope the guest does not really rely on cache behaviour.
4202 { .name = "XSCALE_LOCK_ICACHE_LINE",
4203 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4204 .access = PL1_W, .type = ARM_CP_NOP },
4205 { .name = "XSCALE_UNLOCK_ICACHE",
4206 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4207 .access = PL1_W, .type = ARM_CP_NOP },
4208 { .name = "XSCALE_DCACHE_LOCK",
4209 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4210 .access = PL1_RW, .type = ARM_CP_NOP },
4211 { .name = "XSCALE_UNLOCK_DCACHE",
4212 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4213 .access = PL1_W, .type = ARM_CP_NOP },
4214 REGINFO_SENTINEL
4217 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4218 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
4219 * implementation of this implementation-defined space.
4220 * Ideally this should eventually disappear in favour of actually
4221 * implementing the correct behaviour for all cores.
4223 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4224 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4225 .access = PL1_RW,
4226 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4227 .resetvalue = 0 },
4228 REGINFO_SENTINEL
4231 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4232 /* Cache status: RAZ because we have no cache so it's always clean */
4233 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4234 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4235 .resetvalue = 0 },
4236 REGINFO_SENTINEL
4239 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4240 /* We never have a a block transfer operation in progress */
4241 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4242 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4243 .resetvalue = 0 },
4244 /* The cache ops themselves: these all NOP for QEMU */
4245 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4246 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4247 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4248 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4249 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4250 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4251 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4252 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4253 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4254 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4255 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4256 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4257 REGINFO_SENTINEL
4260 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4261 /* The cache test-and-clean instructions always return (1 << 30)
4262 * to indicate that there are no dirty cache lines.
4264 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4265 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4266 .resetvalue = (1 << 30) },
4267 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4268 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4269 .resetvalue = (1 << 30) },
4270 REGINFO_SENTINEL
4273 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4274 /* Ignore ReadBuffer accesses */
4275 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4276 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4277 .access = PL1_RW, .resetvalue = 0,
4278 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4279 REGINFO_SENTINEL
4282 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4284 unsigned int cur_el = arm_current_el(env);
4286 if (arm_is_el2_enabled(env) && cur_el == 1) {
4287 return env->cp15.vpidr_el2;
4289 return raw_read(env, ri);
4292 static uint64_t mpidr_read_val(CPUARMState *env)
4294 ARMCPU *cpu = env_archcpu(env);
4295 uint64_t mpidr = cpu->mp_affinity;
4297 if (arm_feature(env, ARM_FEATURE_V7MP)) {
4298 mpidr |= (1U << 31);
4299 /* Cores which are uniprocessor (non-coherent)
4300 * but still implement the MP extensions set
4301 * bit 30. (For instance, Cortex-R5).
4303 if (cpu->mp_is_up) {
4304 mpidr |= (1u << 30);
4307 return mpidr;
4310 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4312 unsigned int cur_el = arm_current_el(env);
4314 if (arm_is_el2_enabled(env) && cur_el == 1) {
4315 return env->cp15.vmpidr_el2;
4317 return mpidr_read_val(env);
4320 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4321 /* NOP AMAIR0/1 */
4322 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4323 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4324 .access = PL1_RW, .accessfn = access_tvm_trvm,
4325 .type = ARM_CP_CONST, .resetvalue = 0 },
4326 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4327 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4328 .access = PL1_RW, .accessfn = access_tvm_trvm,
4329 .type = ARM_CP_CONST, .resetvalue = 0 },
4330 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4331 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4332 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4333 offsetof(CPUARMState, cp15.par_ns)} },
4334 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4335 .access = PL1_RW, .accessfn = access_tvm_trvm,
4336 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4337 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4338 offsetof(CPUARMState, cp15.ttbr0_ns) },
4339 .writefn = vmsa_ttbr_write, },
4340 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4341 .access = PL1_RW, .accessfn = access_tvm_trvm,
4342 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4343 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4344 offsetof(CPUARMState, cp15.ttbr1_ns) },
4345 .writefn = vmsa_ttbr_write, },
4346 REGINFO_SENTINEL
4349 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4351 return vfp_get_fpcr(env);
4354 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4355 uint64_t value)
4357 vfp_set_fpcr(env, value);
4360 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4362 return vfp_get_fpsr(env);
4365 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4366 uint64_t value)
4368 vfp_set_fpsr(env, value);
4371 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4372 bool isread)
4374 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4375 return CP_ACCESS_TRAP;
4377 return CP_ACCESS_OK;
4380 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4381 uint64_t value)
4383 env->daif = value & PSTATE_DAIF;
4386 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4388 return env->pstate & PSTATE_PAN;
4391 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4392 uint64_t value)
4394 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4397 static const ARMCPRegInfo pan_reginfo = {
4398 .name = "PAN", .state = ARM_CP_STATE_AA64,
4399 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4400 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4401 .readfn = aa64_pan_read, .writefn = aa64_pan_write
4404 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4406 return env->pstate & PSTATE_UAO;
4409 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4410 uint64_t value)
4412 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4415 static const ARMCPRegInfo uao_reginfo = {
4416 .name = "UAO", .state = ARM_CP_STATE_AA64,
4417 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4418 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4419 .readfn = aa64_uao_read, .writefn = aa64_uao_write
4422 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4423 const ARMCPRegInfo *ri,
4424 bool isread)
4426 /* Cache invalidate/clean to Point of Coherency or Persistence... */
4427 switch (arm_current_el(env)) {
4428 case 0:
4429 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4430 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4431 return CP_ACCESS_TRAP;
4433 /* fall through */
4434 case 1:
4435 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */
4436 if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4437 return CP_ACCESS_TRAP_EL2;
4439 break;
4441 return CP_ACCESS_OK;
4444 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env,
4445 const ARMCPRegInfo *ri,
4446 bool isread)
4448 /* Cache invalidate/clean to Point of Unification... */
4449 switch (arm_current_el(env)) {
4450 case 0:
4451 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4452 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4453 return CP_ACCESS_TRAP;
4455 /* fall through */
4456 case 1:
4457 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */
4458 if (arm_hcr_el2_eff(env) & HCR_TPU) {
4459 return CP_ACCESS_TRAP_EL2;
4461 break;
4463 return CP_ACCESS_OK;
4466 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4467 * Page D4-1736 (DDI0487A.b)
4470 static int vae1_tlbmask(CPUARMState *env)
4472 uint64_t hcr = arm_hcr_el2_eff(env);
4473 uint16_t mask;
4475 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4476 mask = ARMMMUIdxBit_E20_2 |
4477 ARMMMUIdxBit_E20_2_PAN |
4478 ARMMMUIdxBit_E20_0;
4479 } else {
4480 mask = ARMMMUIdxBit_E10_1 |
4481 ARMMMUIdxBit_E10_1_PAN |
4482 ARMMMUIdxBit_E10_0;
4485 if (arm_is_secure_below_el3(env)) {
4486 mask >>= ARM_MMU_IDX_A_NS;
4489 return mask;
4492 /* Return 56 if TBI is enabled, 64 otherwise. */
4493 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4494 uint64_t addr)
4496 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
4497 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4498 int select = extract64(addr, 55, 1);
4500 return (tbi >> select) & 1 ? 56 : 64;
4503 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4505 uint64_t hcr = arm_hcr_el2_eff(env);
4506 ARMMMUIdx mmu_idx;
4508 /* Only the regime of the mmu_idx below is significant. */
4509 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4510 mmu_idx = ARMMMUIdx_E20_0;
4511 } else {
4512 mmu_idx = ARMMMUIdx_E10_0;
4515 if (arm_is_secure_below_el3(env)) {
4516 mmu_idx &= ~ARM_MMU_IDX_A_NS;
4519 return tlbbits_for_regime(env, mmu_idx, addr);
4522 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4523 uint64_t value)
4525 CPUState *cs = env_cpu(env);
4526 int mask = vae1_tlbmask(env);
4528 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4531 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4532 uint64_t value)
4534 CPUState *cs = env_cpu(env);
4535 int mask = vae1_tlbmask(env);
4537 if (tlb_force_broadcast(env)) {
4538 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4539 } else {
4540 tlb_flush_by_mmuidx(cs, mask);
4544 static int alle1_tlbmask(CPUARMState *env)
4547 * Note that the 'ALL' scope must invalidate both stage 1 and
4548 * stage 2 translations, whereas most other scopes only invalidate
4549 * stage 1 translations.
4551 if (arm_is_secure_below_el3(env)) {
4552 return ARMMMUIdxBit_SE10_1 |
4553 ARMMMUIdxBit_SE10_1_PAN |
4554 ARMMMUIdxBit_SE10_0;
4555 } else {
4556 return ARMMMUIdxBit_E10_1 |
4557 ARMMMUIdxBit_E10_1_PAN |
4558 ARMMMUIdxBit_E10_0;
4562 static int e2_tlbmask(CPUARMState *env)
4564 if (arm_is_secure_below_el3(env)) {
4565 return ARMMMUIdxBit_SE20_0 |
4566 ARMMMUIdxBit_SE20_2 |
4567 ARMMMUIdxBit_SE20_2_PAN |
4568 ARMMMUIdxBit_SE2;
4569 } else {
4570 return ARMMMUIdxBit_E20_0 |
4571 ARMMMUIdxBit_E20_2 |
4572 ARMMMUIdxBit_E20_2_PAN |
4573 ARMMMUIdxBit_E2;
4577 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4578 uint64_t value)
4580 CPUState *cs = env_cpu(env);
4581 int mask = alle1_tlbmask(env);
4583 tlb_flush_by_mmuidx(cs, mask);
4586 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4587 uint64_t value)
4589 CPUState *cs = env_cpu(env);
4590 int mask = e2_tlbmask(env);
4592 tlb_flush_by_mmuidx(cs, mask);
4595 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4596 uint64_t value)
4598 ARMCPU *cpu = env_archcpu(env);
4599 CPUState *cs = CPU(cpu);
4601 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3);
4604 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4605 uint64_t value)
4607 CPUState *cs = env_cpu(env);
4608 int mask = alle1_tlbmask(env);
4610 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4613 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4614 uint64_t value)
4616 CPUState *cs = env_cpu(env);
4617 int mask = e2_tlbmask(env);
4619 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4622 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4623 uint64_t value)
4625 CPUState *cs = env_cpu(env);
4627 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3);
4630 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4631 uint64_t value)
4633 /* Invalidate by VA, EL2
4634 * Currently handles both VAE2 and VALE2, since we don't support
4635 * flush-last-level-only.
4637 CPUState *cs = env_cpu(env);
4638 int mask = e2_tlbmask(env);
4639 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4641 tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4644 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4645 uint64_t value)
4647 /* Invalidate by VA, EL3
4648 * Currently handles both VAE3 and VALE3, since we don't support
4649 * flush-last-level-only.
4651 ARMCPU *cpu = env_archcpu(env);
4652 CPUState *cs = CPU(cpu);
4653 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4655 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3);
4658 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4659 uint64_t value)
4661 CPUState *cs = env_cpu(env);
4662 int mask = vae1_tlbmask(env);
4663 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4664 int bits = vae1_tlbbits(env, pageaddr);
4666 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4669 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4670 uint64_t value)
4672 /* Invalidate by VA, EL1&0 (AArch64 version).
4673 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4674 * since we don't support flush-for-specific-ASID-only or
4675 * flush-last-level-only.
4677 CPUState *cs = env_cpu(env);
4678 int mask = vae1_tlbmask(env);
4679 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4680 int bits = vae1_tlbbits(env, pageaddr);
4682 if (tlb_force_broadcast(env)) {
4683 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4684 } else {
4685 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4689 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4690 uint64_t value)
4692 CPUState *cs = env_cpu(env);
4693 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4694 bool secure = arm_is_secure_below_el3(env);
4695 int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2;
4696 int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_E2 : ARMMMUIdx_SE2,
4697 pageaddr);
4699 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4702 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4703 uint64_t value)
4705 CPUState *cs = env_cpu(env);
4706 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4707 int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr);
4709 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4710 ARMMMUIdxBit_SE3, bits);
4713 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4714 bool isread)
4716 int cur_el = arm_current_el(env);
4718 if (cur_el < 2) {
4719 uint64_t hcr = arm_hcr_el2_eff(env);
4721 if (cur_el == 0) {
4722 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4723 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
4724 return CP_ACCESS_TRAP_EL2;
4726 } else {
4727 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4728 return CP_ACCESS_TRAP;
4730 if (hcr & HCR_TDZ) {
4731 return CP_ACCESS_TRAP_EL2;
4734 } else if (hcr & HCR_TDZ) {
4735 return CP_ACCESS_TRAP_EL2;
4738 return CP_ACCESS_OK;
4741 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4743 ARMCPU *cpu = env_archcpu(env);
4744 int dzp_bit = 1 << 4;
4746 /* DZP indicates whether DC ZVA access is allowed */
4747 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4748 dzp_bit = 0;
4750 return cpu->dcz_blocksize | dzp_bit;
4753 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4754 bool isread)
4756 if (!(env->pstate & PSTATE_SP)) {
4757 /* Access to SP_EL0 is undefined if it's being used as
4758 * the stack pointer.
4760 return CP_ACCESS_TRAP_UNCATEGORIZED;
4762 return CP_ACCESS_OK;
4765 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4767 return env->pstate & PSTATE_SP;
4770 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4772 update_spsel(env, val);
4775 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4776 uint64_t value)
4778 ARMCPU *cpu = env_archcpu(env);
4780 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4781 /* M bit is RAZ/WI for PMSA with no MPU implemented */
4782 value &= ~SCTLR_M;
4785 /* ??? Lots of these bits are not implemented. */
4787 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
4788 if (ri->opc1 == 6) { /* SCTLR_EL3 */
4789 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
4790 } else {
4791 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
4792 SCTLR_ATA0 | SCTLR_ATA);
4796 if (raw_read(env, ri) == value) {
4797 /* Skip the TLB flush if nothing actually changed; Linux likes
4798 * to do a lot of pointless SCTLR writes.
4800 return;
4803 raw_write(env, ri, value);
4805 /* This may enable/disable the MMU, so do a TLB flush. */
4806 tlb_flush(CPU(cpu));
4808 if (ri->type & ARM_CP_SUPPRESS_TB_END) {
4810 * Normally we would always end the TB on an SCTLR write; see the
4811 * comment in ARMCPRegInfo sctlr initialization below for why Xscale
4812 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
4813 * of hflags from the translator, so do it here.
4815 arm_rebuild_hflags(env);
4819 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
4820 bool isread)
4822 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
4823 return CP_ACCESS_TRAP_FP_EL2;
4825 if (env->cp15.cptr_el[3] & CPTR_TFP) {
4826 return CP_ACCESS_TRAP_FP_EL3;
4828 return CP_ACCESS_OK;
4831 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4832 uint64_t value)
4834 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4837 static const ARMCPRegInfo v8_cp_reginfo[] = {
4838 /* Minimal set of EL0-visible registers. This will need to be expanded
4839 * significantly for system emulation of AArch64 CPUs.
4841 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4842 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4843 .access = PL0_RW, .type = ARM_CP_NZCV },
4844 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4845 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4846 .type = ARM_CP_NO_RAW,
4847 .access = PL0_RW, .accessfn = aa64_daif_access,
4848 .fieldoffset = offsetof(CPUARMState, daif),
4849 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4850 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4851 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4852 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4853 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4854 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4855 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4856 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4857 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4858 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4859 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4860 .access = PL0_R, .type = ARM_CP_NO_RAW,
4861 .readfn = aa64_dczid_read },
4862 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4863 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4864 .access = PL0_W, .type = ARM_CP_DC_ZVA,
4865 #ifndef CONFIG_USER_ONLY
4866 /* Avoid overhead of an access check that always passes in user-mode */
4867 .accessfn = aa64_zva_access,
4868 #endif
4870 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4871 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4872 .access = PL1_R, .type = ARM_CP_CURRENTEL },
4873 /* Cache ops: all NOPs since we don't emulate caches */
4874 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4875 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4876 .access = PL1_W, .type = ARM_CP_NOP,
4877 .accessfn = aa64_cacheop_pou_access },
4878 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4879 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4880 .access = PL1_W, .type = ARM_CP_NOP,
4881 .accessfn = aa64_cacheop_pou_access },
4882 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4883 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4884 .access = PL0_W, .type = ARM_CP_NOP,
4885 .accessfn = aa64_cacheop_pou_access },
4886 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4887 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4888 .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
4889 .type = ARM_CP_NOP },
4890 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4891 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4892 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4893 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4894 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4895 .access = PL0_W, .type = ARM_CP_NOP,
4896 .accessfn = aa64_cacheop_poc_access },
4897 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4898 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4899 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4900 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4901 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4902 .access = PL0_W, .type = ARM_CP_NOP,
4903 .accessfn = aa64_cacheop_pou_access },
4904 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4905 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4906 .access = PL0_W, .type = ARM_CP_NOP,
4907 .accessfn = aa64_cacheop_poc_access },
4908 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4909 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4910 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4911 /* TLBI operations */
4912 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4913 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4914 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4915 .writefn = tlbi_aa64_vmalle1is_write },
4916 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4917 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4918 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4919 .writefn = tlbi_aa64_vae1is_write },
4920 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4921 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4922 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4923 .writefn = tlbi_aa64_vmalle1is_write },
4924 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4925 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4926 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4927 .writefn = tlbi_aa64_vae1is_write },
4928 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4929 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4930 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4931 .writefn = tlbi_aa64_vae1is_write },
4932 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4933 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4934 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4935 .writefn = tlbi_aa64_vae1is_write },
4936 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4937 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4938 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4939 .writefn = tlbi_aa64_vmalle1_write },
4940 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4941 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4942 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4943 .writefn = tlbi_aa64_vae1_write },
4944 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4945 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4946 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4947 .writefn = tlbi_aa64_vmalle1_write },
4948 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4949 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4950 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4951 .writefn = tlbi_aa64_vae1_write },
4952 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
4953 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4954 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4955 .writefn = tlbi_aa64_vae1_write },
4956 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
4957 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4958 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4959 .writefn = tlbi_aa64_vae1_write },
4960 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4961 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4962 .access = PL2_W, .type = ARM_CP_NOP },
4963 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4964 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4965 .access = PL2_W, .type = ARM_CP_NOP },
4966 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4967 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4968 .access = PL2_W, .type = ARM_CP_NO_RAW,
4969 .writefn = tlbi_aa64_alle1is_write },
4970 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4971 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4972 .access = PL2_W, .type = ARM_CP_NO_RAW,
4973 .writefn = tlbi_aa64_alle1is_write },
4974 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4975 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4976 .access = PL2_W, .type = ARM_CP_NOP },
4977 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4978 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4979 .access = PL2_W, .type = ARM_CP_NOP },
4980 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4981 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4982 .access = PL2_W, .type = ARM_CP_NO_RAW,
4983 .writefn = tlbi_aa64_alle1_write },
4984 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4985 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4986 .access = PL2_W, .type = ARM_CP_NO_RAW,
4987 .writefn = tlbi_aa64_alle1is_write },
4988 #ifndef CONFIG_USER_ONLY
4989 /* 64 bit address translation operations */
4990 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4991 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
4992 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4993 .writefn = ats_write64 },
4994 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4995 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
4996 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4997 .writefn = ats_write64 },
4998 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4999 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
5000 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5001 .writefn = ats_write64 },
5002 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
5003 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
5004 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5005 .writefn = ats_write64 },
5006 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
5007 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
5008 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5009 .writefn = ats_write64 },
5010 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
5011 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
5012 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5013 .writefn = ats_write64 },
5014 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
5015 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
5016 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5017 .writefn = ats_write64 },
5018 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
5019 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
5020 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5021 .writefn = ats_write64 },
5022 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5023 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5024 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
5025 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5026 .writefn = ats_write64 },
5027 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5028 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
5029 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5030 .writefn = ats_write64 },
5031 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5032 .type = ARM_CP_ALIAS,
5033 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5034 .access = PL1_RW, .resetvalue = 0,
5035 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5036 .writefn = par_write },
5037 #endif
5038 /* TLB invalidate last level of translation table walk */
5039 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5040 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5041 .writefn = tlbimva_is_write },
5042 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5043 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5044 .writefn = tlbimvaa_is_write },
5045 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5046 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5047 .writefn = tlbimva_write },
5048 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5049 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5050 .writefn = tlbimvaa_write },
5051 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5052 .type = ARM_CP_NO_RAW, .access = PL2_W,
5053 .writefn = tlbimva_hyp_write },
5054 { .name = "TLBIMVALHIS",
5055 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5056 .type = ARM_CP_NO_RAW, .access = PL2_W,
5057 .writefn = tlbimva_hyp_is_write },
5058 { .name = "TLBIIPAS2",
5059 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5060 .type = ARM_CP_NOP, .access = PL2_W },
5061 { .name = "TLBIIPAS2IS",
5062 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5063 .type = ARM_CP_NOP, .access = PL2_W },
5064 { .name = "TLBIIPAS2L",
5065 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5066 .type = ARM_CP_NOP, .access = PL2_W },
5067 { .name = "TLBIIPAS2LIS",
5068 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5069 .type = ARM_CP_NOP, .access = PL2_W },
5070 /* 32 bit cache operations */
5071 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5072 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5073 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5074 .type = ARM_CP_NOP, .access = PL1_W },
5075 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5076 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5077 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5078 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5079 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5080 .type = ARM_CP_NOP, .access = PL1_W },
5081 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5082 .type = ARM_CP_NOP, .access = PL1_W },
5083 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5084 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5085 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5086 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5087 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5088 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5089 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5090 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5091 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5092 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5093 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5094 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5095 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5096 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5097 /* MMU Domain access control / MPU write buffer control */
5098 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5099 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5100 .writefn = dacr_write, .raw_writefn = raw_write,
5101 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5102 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5103 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5104 .type = ARM_CP_ALIAS,
5105 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5106 .access = PL1_RW,
5107 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5108 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5109 .type = ARM_CP_ALIAS,
5110 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5111 .access = PL1_RW,
5112 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5113 /* We rely on the access checks not allowing the guest to write to the
5114 * state field when SPSel indicates that it's being used as the stack
5115 * pointer.
5117 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5118 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5119 .access = PL1_RW, .accessfn = sp_el0_access,
5120 .type = ARM_CP_ALIAS,
5121 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5122 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5123 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5124 .access = PL2_RW, .type = ARM_CP_ALIAS,
5125 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5126 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5127 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5128 .type = ARM_CP_NO_RAW,
5129 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5130 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5131 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5132 .type = ARM_CP_ALIAS,
5133 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
5134 .access = PL2_RW, .accessfn = fpexc32_access },
5135 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5136 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5137 .access = PL2_RW, .resetvalue = 0,
5138 .writefn = dacr_write, .raw_writefn = raw_write,
5139 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5140 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5141 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5142 .access = PL2_RW, .resetvalue = 0,
5143 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5144 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5145 .type = ARM_CP_ALIAS,
5146 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5147 .access = PL2_RW,
5148 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5149 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5150 .type = ARM_CP_ALIAS,
5151 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5152 .access = PL2_RW,
5153 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5154 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5155 .type = ARM_CP_ALIAS,
5156 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5157 .access = PL2_RW,
5158 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5159 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5160 .type = ARM_CP_ALIAS,
5161 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5162 .access = PL2_RW,
5163 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5164 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5165 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5166 .resetvalue = 0,
5167 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5168 { .name = "SDCR", .type = ARM_CP_ALIAS,
5169 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5170 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5171 .writefn = sdcr_write,
5172 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5173 REGINFO_SENTINEL
5176 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
5177 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
5178 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5179 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5180 .access = PL2_RW,
5181 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
5182 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
5183 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5184 .access = PL2_RW,
5185 .type = ARM_CP_CONST, .resetvalue = 0 },
5186 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5187 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5188 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5189 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5190 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5191 .access = PL2_RW,
5192 .type = ARM_CP_CONST, .resetvalue = 0 },
5193 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5194 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5195 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5196 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5197 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5198 .access = PL2_RW, .type = ARM_CP_CONST,
5199 .resetvalue = 0 },
5200 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5201 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5202 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5203 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5204 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5205 .access = PL2_RW, .type = ARM_CP_CONST,
5206 .resetvalue = 0 },
5207 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5208 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5209 .access = PL2_RW, .type = ARM_CP_CONST,
5210 .resetvalue = 0 },
5211 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5212 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5213 .access = PL2_RW, .type = ARM_CP_CONST,
5214 .resetvalue = 0 },
5215 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5216 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5217 .access = PL2_RW, .type = ARM_CP_CONST,
5218 .resetvalue = 0 },
5219 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5220 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5221 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5222 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
5223 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5224 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5225 .type = ARM_CP_CONST, .resetvalue = 0 },
5226 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5227 .cp = 15, .opc1 = 6, .crm = 2,
5228 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5229 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
5230 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5231 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5232 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5233 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5234 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5235 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5236 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5237 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5238 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5239 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5240 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5241 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5242 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5243 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5244 .resetvalue = 0 },
5245 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5246 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5247 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5248 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5249 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5250 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5251 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5252 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5253 .resetvalue = 0 },
5254 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5255 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5256 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5257 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5258 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5259 .resetvalue = 0 },
5260 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5261 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5262 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5263 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5264 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5265 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5266 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5267 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5268 .access = PL2_RW, .accessfn = access_tda,
5269 .type = ARM_CP_CONST, .resetvalue = 0 },
5270 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
5271 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5272 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5273 .type = ARM_CP_CONST, .resetvalue = 0 },
5274 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5275 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5276 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5277 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5278 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5279 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5280 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5281 .type = ARM_CP_CONST,
5282 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5283 .access = PL2_RW, .resetvalue = 0 },
5284 REGINFO_SENTINEL
5287 /* Ditto, but for registers which exist in ARMv8 but not v7 */
5288 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
5289 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5290 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5291 .access = PL2_RW,
5292 .type = ARM_CP_CONST, .resetvalue = 0 },
5293 REGINFO_SENTINEL
5296 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5298 ARMCPU *cpu = env_archcpu(env);
5300 if (arm_feature(env, ARM_FEATURE_V8)) {
5301 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */
5302 } else {
5303 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */
5306 if (arm_feature(env, ARM_FEATURE_EL3)) {
5307 valid_mask &= ~HCR_HCD;
5308 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5309 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5310 * However, if we're using the SMC PSCI conduit then QEMU is
5311 * effectively acting like EL3 firmware and so the guest at
5312 * EL2 should retain the ability to prevent EL1 from being
5313 * able to make SMC calls into the ersatz firmware, so in
5314 * that case HCR.TSC should be read/write.
5316 valid_mask &= ~HCR_TSC;
5319 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5320 if (cpu_isar_feature(aa64_vh, cpu)) {
5321 valid_mask |= HCR_E2H;
5323 if (cpu_isar_feature(aa64_lor, cpu)) {
5324 valid_mask |= HCR_TLOR;
5326 if (cpu_isar_feature(aa64_pauth, cpu)) {
5327 valid_mask |= HCR_API | HCR_APK;
5329 if (cpu_isar_feature(aa64_mte, cpu)) {
5330 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5334 /* Clear RES0 bits. */
5335 value &= valid_mask;
5338 * These bits change the MMU setup:
5339 * HCR_VM enables stage 2 translation
5340 * HCR_PTW forbids certain page-table setups
5341 * HCR_DC disables stage1 and enables stage2 translation
5342 * HCR_DCT enables tagging on (disabled) stage1 translation
5344 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) {
5345 tlb_flush(CPU(cpu));
5347 env->cp15.hcr_el2 = value;
5350 * Updates to VI and VF require us to update the status of
5351 * virtual interrupts, which are the logical OR of these bits
5352 * and the state of the input lines from the GIC. (This requires
5353 * that we have the iothread lock, which is done by marking the
5354 * reginfo structs as ARM_CP_IO.)
5355 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5356 * possible for it to be taken immediately, because VIRQ and
5357 * VFIQ are masked unless running at EL0 or EL1, and HCR
5358 * can only be written at EL2.
5360 g_assert(qemu_mutex_iothread_locked());
5361 arm_cpu_update_virq(cpu);
5362 arm_cpu_update_vfiq(cpu);
5365 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5367 do_hcr_write(env, value, 0);
5370 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5371 uint64_t value)
5373 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5374 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5375 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5378 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5379 uint64_t value)
5381 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5382 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5383 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5387 * Return the effective value of HCR_EL2.
5388 * Bits that are not included here:
5389 * RW (read from SCR_EL3.RW as needed)
5391 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5393 uint64_t ret = env->cp15.hcr_el2;
5395 if (!arm_is_el2_enabled(env)) {
5397 * "This register has no effect if EL2 is not enabled in the
5398 * current Security state". This is ARMv8.4-SecEL2 speak for
5399 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5401 * Prior to that, the language was "In an implementation that
5402 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5403 * as if this field is 0 for all purposes other than a direct
5404 * read or write access of HCR_EL2". With lots of enumeration
5405 * on a per-field basis. In current QEMU, this is condition
5406 * is arm_is_secure_below_el3.
5408 * Since the v8.4 language applies to the entire register, and
5409 * appears to be backward compatible, use that.
5411 return 0;
5415 * For a cpu that supports both aarch64 and aarch32, we can set bits
5416 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5417 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5419 if (!arm_el_is_aa64(env, 2)) {
5420 uint64_t aa32_valid;
5423 * These bits are up-to-date as of ARMv8.6.
5424 * For HCR, it's easiest to list just the 2 bits that are invalid.
5425 * For HCR2, list those that are valid.
5427 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5428 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5429 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5430 ret &= aa32_valid;
5433 if (ret & HCR_TGE) {
5434 /* These bits are up-to-date as of ARMv8.6. */
5435 if (ret & HCR_E2H) {
5436 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5437 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5438 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5439 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5440 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5441 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5442 } else {
5443 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5445 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5446 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5447 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5448 HCR_TLOR);
5451 return ret;
5454 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5455 uint64_t value)
5458 * For A-profile AArch32 EL3, if NSACR.CP10
5459 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5461 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5462 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5463 value &= ~(0x3 << 10);
5464 value |= env->cp15.cptr_el[2] & (0x3 << 10);
5466 env->cp15.cptr_el[2] = value;
5469 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5472 * For A-profile AArch32 EL3, if NSACR.CP10
5473 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5475 uint64_t value = env->cp15.cptr_el[2];
5477 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5478 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5479 value |= 0x3 << 10;
5481 return value;
5484 static const ARMCPRegInfo el2_cp_reginfo[] = {
5485 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5486 .type = ARM_CP_IO,
5487 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5488 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5489 .writefn = hcr_write },
5490 { .name = "HCR", .state = ARM_CP_STATE_AA32,
5491 .type = ARM_CP_ALIAS | ARM_CP_IO,
5492 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5493 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5494 .writefn = hcr_writelow },
5495 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5496 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5497 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5498 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5499 .type = ARM_CP_ALIAS,
5500 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5501 .access = PL2_RW,
5502 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5503 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5504 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5505 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5506 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5507 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5508 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5509 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5510 .type = ARM_CP_ALIAS,
5511 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5512 .access = PL2_RW,
5513 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5514 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5515 .type = ARM_CP_ALIAS,
5516 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5517 .access = PL2_RW,
5518 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5519 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5520 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5521 .access = PL2_RW, .writefn = vbar_write,
5522 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5523 .resetvalue = 0 },
5524 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5525 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5526 .access = PL3_RW, .type = ARM_CP_ALIAS,
5527 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5528 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5529 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5530 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5531 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5532 .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5533 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5534 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5535 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5536 .resetvalue = 0 },
5537 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5538 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5539 .access = PL2_RW, .type = ARM_CP_ALIAS,
5540 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5541 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5542 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5543 .access = PL2_RW, .type = ARM_CP_CONST,
5544 .resetvalue = 0 },
5545 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5546 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5547 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5548 .access = PL2_RW, .type = ARM_CP_CONST,
5549 .resetvalue = 0 },
5550 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5551 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5552 .access = PL2_RW, .type = ARM_CP_CONST,
5553 .resetvalue = 0 },
5554 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5555 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5556 .access = PL2_RW, .type = ARM_CP_CONST,
5557 .resetvalue = 0 },
5558 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5559 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5560 .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5561 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */
5562 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5563 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5564 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5565 .type = ARM_CP_ALIAS,
5566 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5567 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5568 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5569 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5570 .access = PL2_RW,
5571 /* no .writefn needed as this can't cause an ASID change;
5572 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
5574 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5575 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5576 .cp = 15, .opc1 = 6, .crm = 2,
5577 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5578 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5579 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
5580 .writefn = vttbr_write },
5581 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5582 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5583 .access = PL2_RW, .writefn = vttbr_write,
5584 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
5585 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5586 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5587 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
5588 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
5589 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5590 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5591 .access = PL2_RW, .resetvalue = 0,
5592 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
5593 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5594 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5595 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
5596 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5597 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5598 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5599 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5600 { .name = "TLBIALLNSNH",
5601 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5602 .type = ARM_CP_NO_RAW, .access = PL2_W,
5603 .writefn = tlbiall_nsnh_write },
5604 { .name = "TLBIALLNSNHIS",
5605 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5606 .type = ARM_CP_NO_RAW, .access = PL2_W,
5607 .writefn = tlbiall_nsnh_is_write },
5608 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5609 .type = ARM_CP_NO_RAW, .access = PL2_W,
5610 .writefn = tlbiall_hyp_write },
5611 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5612 .type = ARM_CP_NO_RAW, .access = PL2_W,
5613 .writefn = tlbiall_hyp_is_write },
5614 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5615 .type = ARM_CP_NO_RAW, .access = PL2_W,
5616 .writefn = tlbimva_hyp_write },
5617 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5618 .type = ARM_CP_NO_RAW, .access = PL2_W,
5619 .writefn = tlbimva_hyp_is_write },
5620 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
5621 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5622 .type = ARM_CP_NO_RAW, .access = PL2_W,
5623 .writefn = tlbi_aa64_alle2_write },
5624 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
5625 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5626 .type = ARM_CP_NO_RAW, .access = PL2_W,
5627 .writefn = tlbi_aa64_vae2_write },
5628 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
5629 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5630 .access = PL2_W, .type = ARM_CP_NO_RAW,
5631 .writefn = tlbi_aa64_vae2_write },
5632 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
5633 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5634 .access = PL2_W, .type = ARM_CP_NO_RAW,
5635 .writefn = tlbi_aa64_alle2is_write },
5636 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
5637 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5638 .type = ARM_CP_NO_RAW, .access = PL2_W,
5639 .writefn = tlbi_aa64_vae2is_write },
5640 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
5641 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5642 .access = PL2_W, .type = ARM_CP_NO_RAW,
5643 .writefn = tlbi_aa64_vae2is_write },
5644 #ifndef CONFIG_USER_ONLY
5645 /* Unlike the other EL2-related AT operations, these must
5646 * UNDEF from EL3 if EL2 is not implemented, which is why we
5647 * define them here rather than with the rest of the AT ops.
5649 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
5650 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5651 .access = PL2_W, .accessfn = at_s1e2_access,
5652 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5653 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
5654 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5655 .access = PL2_W, .accessfn = at_s1e2_access,
5656 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5657 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
5658 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
5659 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
5660 * to behave as if SCR.NS was 1.
5662 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5663 .access = PL2_W,
5664 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5665 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5666 .access = PL2_W,
5667 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5668 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5669 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5670 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
5671 * reset values as IMPDEF. We choose to reset to 3 to comply with
5672 * both ARMv7 and ARMv8.
5674 .access = PL2_RW, .resetvalue = 3,
5675 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
5676 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5677 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5678 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
5679 .writefn = gt_cntvoff_write,
5680 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5681 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5682 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
5683 .writefn = gt_cntvoff_write,
5684 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5685 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5686 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5687 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5688 .type = ARM_CP_IO, .access = PL2_RW,
5689 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5690 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5691 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5692 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
5693 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5694 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5695 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5696 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
5697 .resetfn = gt_hyp_timer_reset,
5698 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
5699 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5700 .type = ARM_CP_IO,
5701 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5702 .access = PL2_RW,
5703 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
5704 .resetvalue = 0,
5705 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
5706 #endif
5707 /* The only field of MDCR_EL2 that has a defined architectural reset value
5708 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
5709 * don't implement any PMU event counters, so using zero as a reset
5710 * value for MDCR_EL2 is okay
5712 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5713 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5714 .access = PL2_RW, .resetvalue = 0,
5715 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
5716 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
5717 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5718 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5719 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5720 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
5721 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5722 .access = PL2_RW,
5723 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5724 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5725 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5726 .access = PL2_RW,
5727 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
5728 REGINFO_SENTINEL
5731 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
5732 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5733 .type = ARM_CP_ALIAS | ARM_CP_IO,
5734 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5735 .access = PL2_RW,
5736 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
5737 .writefn = hcr_writehigh },
5738 REGINFO_SENTINEL
5741 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
5742 bool isread)
5744 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
5745 return CP_ACCESS_OK;
5747 return CP_ACCESS_TRAP_UNCATEGORIZED;
5750 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
5751 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
5752 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
5753 .access = PL2_RW, .accessfn = sel2_access,
5754 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
5755 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
5756 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
5757 .access = PL2_RW, .accessfn = sel2_access,
5758 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
5759 REGINFO_SENTINEL
5762 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
5763 bool isread)
5765 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
5766 * At Secure EL1 it traps to EL3 or EL2.
5768 if (arm_current_el(env) == 3) {
5769 return CP_ACCESS_OK;
5771 if (arm_is_secure_below_el3(env)) {
5772 if (env->cp15.scr_el3 & SCR_EEL2) {
5773 return CP_ACCESS_TRAP_EL2;
5775 return CP_ACCESS_TRAP_EL3;
5777 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
5778 if (isread) {
5779 return CP_ACCESS_OK;
5781 return CP_ACCESS_TRAP_UNCATEGORIZED;
5784 static const ARMCPRegInfo el3_cp_reginfo[] = {
5785 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
5786 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
5787 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
5788 .resetvalue = 0, .writefn = scr_write },
5789 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
5790 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
5791 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5792 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
5793 .writefn = scr_write },
5794 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
5795 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
5796 .access = PL3_RW, .resetvalue = 0,
5797 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
5798 { .name = "SDER",
5799 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
5800 .access = PL3_RW, .resetvalue = 0,
5801 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
5802 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5803 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5804 .writefn = vbar_write, .resetvalue = 0,
5805 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
5806 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
5807 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
5808 .access = PL3_RW, .resetvalue = 0,
5809 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
5810 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
5811 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
5812 .access = PL3_RW,
5813 /* no .writefn needed as this can't cause an ASID change;
5814 * we must provide a .raw_writefn and .resetfn because we handle
5815 * reset and migration for the AArch32 TTBCR(S), which might be
5816 * using mask and base_mask.
5818 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
5819 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
5820 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
5821 .type = ARM_CP_ALIAS,
5822 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
5823 .access = PL3_RW,
5824 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
5825 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
5826 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
5827 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
5828 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
5829 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
5830 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
5831 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
5832 .type = ARM_CP_ALIAS,
5833 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
5834 .access = PL3_RW,
5835 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
5836 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
5837 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
5838 .access = PL3_RW, .writefn = vbar_write,
5839 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
5840 .resetvalue = 0 },
5841 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
5842 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
5843 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
5844 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
5845 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
5846 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5847 .access = PL3_RW, .resetvalue = 0,
5848 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
5849 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5850 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5851 .access = PL3_RW, .type = ARM_CP_CONST,
5852 .resetvalue = 0 },
5853 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5854 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5855 .access = PL3_RW, .type = ARM_CP_CONST,
5856 .resetvalue = 0 },
5857 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5858 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5859 .access = PL3_RW, .type = ARM_CP_CONST,
5860 .resetvalue = 0 },
5861 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5862 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5863 .access = PL3_W, .type = ARM_CP_NO_RAW,
5864 .writefn = tlbi_aa64_alle3is_write },
5865 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5866 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5867 .access = PL3_W, .type = ARM_CP_NO_RAW,
5868 .writefn = tlbi_aa64_vae3is_write },
5869 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5870 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5871 .access = PL3_W, .type = ARM_CP_NO_RAW,
5872 .writefn = tlbi_aa64_vae3is_write },
5873 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5874 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5875 .access = PL3_W, .type = ARM_CP_NO_RAW,
5876 .writefn = tlbi_aa64_alle3_write },
5877 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5878 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5879 .access = PL3_W, .type = ARM_CP_NO_RAW,
5880 .writefn = tlbi_aa64_vae3_write },
5881 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5882 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5883 .access = PL3_W, .type = ARM_CP_NO_RAW,
5884 .writefn = tlbi_aa64_vae3_write },
5885 REGINFO_SENTINEL
5888 #ifndef CONFIG_USER_ONLY
5889 /* Test if system register redirection is to occur in the current state. */
5890 static bool redirect_for_e2h(CPUARMState *env)
5892 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
5895 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
5897 CPReadFn *readfn;
5899 if (redirect_for_e2h(env)) {
5900 /* Switch to the saved EL2 version of the register. */
5901 ri = ri->opaque;
5902 readfn = ri->readfn;
5903 } else {
5904 readfn = ri->orig_readfn;
5906 if (readfn == NULL) {
5907 readfn = raw_read;
5909 return readfn(env, ri);
5912 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
5913 uint64_t value)
5915 CPWriteFn *writefn;
5917 if (redirect_for_e2h(env)) {
5918 /* Switch to the saved EL2 version of the register. */
5919 ri = ri->opaque;
5920 writefn = ri->writefn;
5921 } else {
5922 writefn = ri->orig_writefn;
5924 if (writefn == NULL) {
5925 writefn = raw_write;
5927 writefn(env, ri, value);
5930 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
5932 struct E2HAlias {
5933 uint32_t src_key, dst_key, new_key;
5934 const char *src_name, *dst_name, *new_name;
5935 bool (*feature)(const ARMISARegisters *id);
5938 #define K(op0, op1, crn, crm, op2) \
5939 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
5941 static const struct E2HAlias aliases[] = {
5942 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0),
5943 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
5944 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2),
5945 "CPACR", "CPTR_EL2", "CPACR_EL12" },
5946 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0),
5947 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
5948 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1),
5949 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
5950 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2),
5951 "TCR_EL1", "TCR_EL2", "TCR_EL12" },
5952 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0),
5953 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
5954 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1),
5955 "ELR_EL1", "ELR_EL2", "ELR_EL12" },
5956 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0),
5957 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
5958 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1),
5959 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
5960 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0),
5961 "ESR_EL1", "ESR_EL2", "ESR_EL12" },
5962 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0),
5963 "FAR_EL1", "FAR_EL2", "FAR_EL12" },
5964 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
5965 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
5966 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
5967 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
5968 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
5969 "VBAR", "VBAR_EL2", "VBAR_EL12" },
5970 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
5971 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
5972 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
5973 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
5976 * Note that redirection of ZCR is mentioned in the description
5977 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
5978 * not in the summary table.
5980 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0),
5981 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
5983 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0),
5984 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
5986 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
5987 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
5989 #undef K
5991 size_t i;
5993 for (i = 0; i < ARRAY_SIZE(aliases); i++) {
5994 const struct E2HAlias *a = &aliases[i];
5995 ARMCPRegInfo *src_reg, *dst_reg;
5997 if (a->feature && !a->feature(&cpu->isar)) {
5998 continue;
6001 src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key);
6002 dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key);
6003 g_assert(src_reg != NULL);
6004 g_assert(dst_reg != NULL);
6006 /* Cross-compare names to detect typos in the keys. */
6007 g_assert(strcmp(src_reg->name, a->src_name) == 0);
6008 g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
6010 /* None of the core system registers use opaque; we will. */
6011 g_assert(src_reg->opaque == NULL);
6013 /* Create alias before redirection so we dup the right data. */
6014 if (a->new_key) {
6015 ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
6016 uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t));
6017 bool ok;
6019 new_reg->name = a->new_name;
6020 new_reg->type |= ARM_CP_ALIAS;
6021 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */
6022 new_reg->access &= PL2_RW | PL3_RW;
6024 ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg);
6025 g_assert(ok);
6028 src_reg->opaque = dst_reg;
6029 src_reg->orig_readfn = src_reg->readfn ?: raw_read;
6030 src_reg->orig_writefn = src_reg->writefn ?: raw_write;
6031 if (!src_reg->raw_readfn) {
6032 src_reg->raw_readfn = raw_read;
6034 if (!src_reg->raw_writefn) {
6035 src_reg->raw_writefn = raw_write;
6037 src_reg->readfn = el2_e2h_read;
6038 src_reg->writefn = el2_e2h_write;
6041 #endif
6043 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6044 bool isread)
6046 int cur_el = arm_current_el(env);
6048 if (cur_el < 2) {
6049 uint64_t hcr = arm_hcr_el2_eff(env);
6051 if (cur_el == 0) {
6052 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6053 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6054 return CP_ACCESS_TRAP_EL2;
6056 } else {
6057 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6058 return CP_ACCESS_TRAP;
6060 if (hcr & HCR_TID2) {
6061 return CP_ACCESS_TRAP_EL2;
6064 } else if (hcr & HCR_TID2) {
6065 return CP_ACCESS_TRAP_EL2;
6069 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6070 return CP_ACCESS_TRAP_EL2;
6073 return CP_ACCESS_OK;
6076 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
6077 uint64_t value)
6079 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
6080 * read via a bit in OSLSR_EL1.
6082 int oslock;
6084 if (ri->state == ARM_CP_STATE_AA32) {
6085 oslock = (value == 0xC5ACCE55);
6086 } else {
6087 oslock = value & 1;
6090 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
6093 static const ARMCPRegInfo debug_cp_reginfo[] = {
6094 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
6095 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
6096 * unlike DBGDRAR it is never accessible from EL0.
6097 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
6098 * accessor.
6100 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
6101 .access = PL0_R, .accessfn = access_tdra,
6102 .type = ARM_CP_CONST, .resetvalue = 0 },
6103 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
6104 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
6105 .access = PL1_R, .accessfn = access_tdra,
6106 .type = ARM_CP_CONST, .resetvalue = 0 },
6107 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
6108 .access = PL0_R, .accessfn = access_tdra,
6109 .type = ARM_CP_CONST, .resetvalue = 0 },
6110 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
6111 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
6112 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
6113 .access = PL1_RW, .accessfn = access_tda,
6114 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
6115 .resetvalue = 0 },
6116 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
6117 * We don't implement the configurable EL0 access.
6119 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
6120 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
6121 .type = ARM_CP_ALIAS,
6122 .access = PL1_R, .accessfn = access_tda,
6123 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
6124 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
6125 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
6126 .access = PL1_W, .type = ARM_CP_NO_RAW,
6127 .accessfn = access_tdosa,
6128 .writefn = oslar_write },
6129 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
6130 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
6131 .access = PL1_R, .resetvalue = 10,
6132 .accessfn = access_tdosa,
6133 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
6134 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
6135 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
6136 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
6137 .access = PL1_RW, .accessfn = access_tdosa,
6138 .type = ARM_CP_NOP },
6139 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
6140 * implement vector catch debug events yet.
6142 { .name = "DBGVCR",
6143 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6144 .access = PL1_RW, .accessfn = access_tda,
6145 .type = ARM_CP_NOP },
6146 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
6147 * to save and restore a 32-bit guest's DBGVCR)
6149 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
6150 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
6151 .access = PL2_RW, .accessfn = access_tda,
6152 .type = ARM_CP_NOP },
6153 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
6154 * Channel but Linux may try to access this register. The 32-bit
6155 * alias is DBGDCCINT.
6157 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
6158 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
6159 .access = PL1_RW, .accessfn = access_tda,
6160 .type = ARM_CP_NOP },
6161 REGINFO_SENTINEL
6164 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
6165 /* 64 bit access versions of the (dummy) debug registers */
6166 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
6167 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6168 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
6169 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6170 REGINFO_SENTINEL
6173 /* Return the exception level to which exceptions should be taken
6174 * via SVEAccessTrap. If an exception should be routed through
6175 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
6176 * take care of raising that exception.
6177 * C.f. the ARM pseudocode function CheckSVEEnabled.
6179 int sve_exception_el(CPUARMState *env, int el)
6181 #ifndef CONFIG_USER_ONLY
6182 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
6184 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
6185 bool disabled = false;
6187 /* The CPACR.ZEN controls traps to EL1:
6188 * 0, 2 : trap EL0 and EL1 accesses
6189 * 1 : trap only EL0 accesses
6190 * 3 : trap no accesses
6192 if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
6193 disabled = true;
6194 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
6195 disabled = el == 0;
6197 if (disabled) {
6198 /* route_to_el2 */
6199 return hcr_el2 & HCR_TGE ? 2 : 1;
6202 /* Check CPACR.FPEN. */
6203 if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
6204 disabled = true;
6205 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
6206 disabled = el == 0;
6208 if (disabled) {
6209 return 0;
6213 /* CPTR_EL2. Since TZ and TFP are positive,
6214 * they will be zero when EL2 is not present.
6216 if (el <= 2 && arm_is_el2_enabled(env)) {
6217 if (env->cp15.cptr_el[2] & CPTR_TZ) {
6218 return 2;
6220 if (env->cp15.cptr_el[2] & CPTR_TFP) {
6221 return 0;
6225 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
6226 if (arm_feature(env, ARM_FEATURE_EL3)
6227 && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
6228 return 3;
6230 #endif
6231 return 0;
6234 static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len)
6236 uint32_t end_len;
6238 end_len = start_len &= 0xf;
6239 if (!test_bit(start_len, cpu->sve_vq_map)) {
6240 end_len = find_last_bit(cpu->sve_vq_map, start_len);
6241 assert(end_len < start_len);
6243 return end_len;
6247 * Given that SVE is enabled, return the vector length for EL.
6249 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
6251 ARMCPU *cpu = env_archcpu(env);
6252 uint32_t zcr_len = cpu->sve_max_vq - 1;
6254 if (el <= 1) {
6255 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
6257 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6258 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
6260 if (arm_feature(env, ARM_FEATURE_EL3)) {
6261 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
6264 return sve_zcr_get_valid_len(cpu, zcr_len);
6267 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6268 uint64_t value)
6270 int cur_el = arm_current_el(env);
6271 int old_len = sve_zcr_len_for_el(env, cur_el);
6272 int new_len;
6274 /* Bits other than [3:0] are RAZ/WI. */
6275 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6276 raw_write(env, ri, value & 0xf);
6279 * Because we arrived here, we know both FP and SVE are enabled;
6280 * otherwise we would have trapped access to the ZCR_ELn register.
6282 new_len = sve_zcr_len_for_el(env, cur_el);
6283 if (new_len < old_len) {
6284 aarch64_sve_narrow_vq(env, new_len + 1);
6288 static const ARMCPRegInfo zcr_el1_reginfo = {
6289 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6290 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6291 .access = PL1_RW, .type = ARM_CP_SVE,
6292 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6293 .writefn = zcr_write, .raw_writefn = raw_write
6296 static const ARMCPRegInfo zcr_el2_reginfo = {
6297 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6298 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6299 .access = PL2_RW, .type = ARM_CP_SVE,
6300 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6301 .writefn = zcr_write, .raw_writefn = raw_write
6304 static const ARMCPRegInfo zcr_no_el2_reginfo = {
6305 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6306 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6307 .access = PL2_RW, .type = ARM_CP_SVE,
6308 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
6311 static const ARMCPRegInfo zcr_el3_reginfo = {
6312 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6313 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6314 .access = PL3_RW, .type = ARM_CP_SVE,
6315 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6316 .writefn = zcr_write, .raw_writefn = raw_write
6319 void hw_watchpoint_update(ARMCPU *cpu, int n)
6321 CPUARMState *env = &cpu->env;
6322 vaddr len = 0;
6323 vaddr wvr = env->cp15.dbgwvr[n];
6324 uint64_t wcr = env->cp15.dbgwcr[n];
6325 int mask;
6326 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
6328 if (env->cpu_watchpoint[n]) {
6329 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
6330 env->cpu_watchpoint[n] = NULL;
6333 if (!extract64(wcr, 0, 1)) {
6334 /* E bit clear : watchpoint disabled */
6335 return;
6338 switch (extract64(wcr, 3, 2)) {
6339 case 0:
6340 /* LSC 00 is reserved and must behave as if the wp is disabled */
6341 return;
6342 case 1:
6343 flags |= BP_MEM_READ;
6344 break;
6345 case 2:
6346 flags |= BP_MEM_WRITE;
6347 break;
6348 case 3:
6349 flags |= BP_MEM_ACCESS;
6350 break;
6353 /* Attempts to use both MASK and BAS fields simultaneously are
6354 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
6355 * thus generating a watchpoint for every byte in the masked region.
6357 mask = extract64(wcr, 24, 4);
6358 if (mask == 1 || mask == 2) {
6359 /* Reserved values of MASK; we must act as if the mask value was
6360 * some non-reserved value, or as if the watchpoint were disabled.
6361 * We choose the latter.
6363 return;
6364 } else if (mask) {
6365 /* Watchpoint covers an aligned area up to 2GB in size */
6366 len = 1ULL << mask;
6367 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
6368 * whether the watchpoint fires when the unmasked bits match; we opt
6369 * to generate the exceptions.
6371 wvr &= ~(len - 1);
6372 } else {
6373 /* Watchpoint covers bytes defined by the byte address select bits */
6374 int bas = extract64(wcr, 5, 8);
6375 int basstart;
6377 if (extract64(wvr, 2, 1)) {
6378 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
6379 * ignored, and BAS[3:0] define which bytes to watch.
6381 bas &= 0xf;
6384 if (bas == 0) {
6385 /* This must act as if the watchpoint is disabled */
6386 return;
6389 /* The BAS bits are supposed to be programmed to indicate a contiguous
6390 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
6391 * we fire for each byte in the word/doubleword addressed by the WVR.
6392 * We choose to ignore any non-zero bits after the first range of 1s.
6394 basstart = ctz32(bas);
6395 len = cto32(bas >> basstart);
6396 wvr += basstart;
6399 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
6400 &env->cpu_watchpoint[n]);
6403 void hw_watchpoint_update_all(ARMCPU *cpu)
6405 int i;
6406 CPUARMState *env = &cpu->env;
6408 /* Completely clear out existing QEMU watchpoints and our array, to
6409 * avoid possible stale entries following migration load.
6411 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
6412 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
6414 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
6415 hw_watchpoint_update(cpu, i);
6419 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6420 uint64_t value)
6422 ARMCPU *cpu = env_archcpu(env);
6423 int i = ri->crm;
6425 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
6426 * register reads and behaves as if values written are sign extended.
6427 * Bits [1:0] are RES0.
6429 value = sextract64(value, 0, 49) & ~3ULL;
6431 raw_write(env, ri, value);
6432 hw_watchpoint_update(cpu, i);
6435 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6436 uint64_t value)
6438 ARMCPU *cpu = env_archcpu(env);
6439 int i = ri->crm;
6441 raw_write(env, ri, value);
6442 hw_watchpoint_update(cpu, i);
6445 void hw_breakpoint_update(ARMCPU *cpu, int n)
6447 CPUARMState *env = &cpu->env;
6448 uint64_t bvr = env->cp15.dbgbvr[n];
6449 uint64_t bcr = env->cp15.dbgbcr[n];
6450 vaddr addr;
6451 int bt;
6452 int flags = BP_CPU;
6454 if (env->cpu_breakpoint[n]) {
6455 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
6456 env->cpu_breakpoint[n] = NULL;
6459 if (!extract64(bcr, 0, 1)) {
6460 /* E bit clear : watchpoint disabled */
6461 return;
6464 bt = extract64(bcr, 20, 4);
6466 switch (bt) {
6467 case 4: /* unlinked address mismatch (reserved if AArch64) */
6468 case 5: /* linked address mismatch (reserved if AArch64) */
6469 qemu_log_mask(LOG_UNIMP,
6470 "arm: address mismatch breakpoint types not implemented\n");
6471 return;
6472 case 0: /* unlinked address match */
6473 case 1: /* linked address match */
6475 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
6476 * we behave as if the register was sign extended. Bits [1:0] are
6477 * RES0. The BAS field is used to allow setting breakpoints on 16
6478 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
6479 * a bp will fire if the addresses covered by the bp and the addresses
6480 * covered by the insn overlap but the insn doesn't start at the
6481 * start of the bp address range. We choose to require the insn and
6482 * the bp to have the same address. The constraints on writing to
6483 * BAS enforced in dbgbcr_write mean we have only four cases:
6484 * 0b0000 => no breakpoint
6485 * 0b0011 => breakpoint on addr
6486 * 0b1100 => breakpoint on addr + 2
6487 * 0b1111 => breakpoint on addr
6488 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
6490 int bas = extract64(bcr, 5, 4);
6491 addr = sextract64(bvr, 0, 49) & ~3ULL;
6492 if (bas == 0) {
6493 return;
6495 if (bas == 0xc) {
6496 addr += 2;
6498 break;
6500 case 2: /* unlinked context ID match */
6501 case 8: /* unlinked VMID match (reserved if no EL2) */
6502 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
6503 qemu_log_mask(LOG_UNIMP,
6504 "arm: unlinked context breakpoint types not implemented\n");
6505 return;
6506 case 9: /* linked VMID match (reserved if no EL2) */
6507 case 11: /* linked context ID and VMID match (reserved if no EL2) */
6508 case 3: /* linked context ID match */
6509 default:
6510 /* We must generate no events for Linked context matches (unless
6511 * they are linked to by some other bp/wp, which is handled in
6512 * updates for the linking bp/wp). We choose to also generate no events
6513 * for reserved values.
6515 return;
6518 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
6521 void hw_breakpoint_update_all(ARMCPU *cpu)
6523 int i;
6524 CPUARMState *env = &cpu->env;
6526 /* Completely clear out existing QEMU breakpoints and our array, to
6527 * avoid possible stale entries following migration load.
6529 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
6530 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
6532 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
6533 hw_breakpoint_update(cpu, i);
6537 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6538 uint64_t value)
6540 ARMCPU *cpu = env_archcpu(env);
6541 int i = ri->crm;
6543 raw_write(env, ri, value);
6544 hw_breakpoint_update(cpu, i);
6547 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6548 uint64_t value)
6550 ARMCPU *cpu = env_archcpu(env);
6551 int i = ri->crm;
6553 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
6554 * copy of BAS[0].
6556 value = deposit64(value, 6, 1, extract64(value, 5, 1));
6557 value = deposit64(value, 8, 1, extract64(value, 7, 1));
6559 raw_write(env, ri, value);
6560 hw_breakpoint_update(cpu, i);
6563 static void define_debug_regs(ARMCPU *cpu)
6565 /* Define v7 and v8 architectural debug registers.
6566 * These are just dummy implementations for now.
6568 int i;
6569 int wrps, brps, ctx_cmps;
6570 ARMCPRegInfo dbgdidr = {
6571 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
6572 .access = PL0_R, .accessfn = access_tda,
6573 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
6576 /* Note that all these register fields hold "number of Xs minus 1". */
6577 brps = arm_num_brps(cpu);
6578 wrps = arm_num_wrps(cpu);
6579 ctx_cmps = arm_num_ctx_cmps(cpu);
6581 assert(ctx_cmps <= brps);
6583 define_one_arm_cp_reg(cpu, &dbgdidr);
6584 define_arm_cp_regs(cpu, debug_cp_reginfo);
6586 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
6587 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
6590 for (i = 0; i < brps; i++) {
6591 ARMCPRegInfo dbgregs[] = {
6592 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
6593 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
6594 .access = PL1_RW, .accessfn = access_tda,
6595 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
6596 .writefn = dbgbvr_write, .raw_writefn = raw_write
6598 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
6599 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
6600 .access = PL1_RW, .accessfn = access_tda,
6601 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
6602 .writefn = dbgbcr_write, .raw_writefn = raw_write
6604 REGINFO_SENTINEL
6606 define_arm_cp_regs(cpu, dbgregs);
6609 for (i = 0; i < wrps; i++) {
6610 ARMCPRegInfo dbgregs[] = {
6611 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
6612 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
6613 .access = PL1_RW, .accessfn = access_tda,
6614 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
6615 .writefn = dbgwvr_write, .raw_writefn = raw_write
6617 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
6618 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
6619 .access = PL1_RW, .accessfn = access_tda,
6620 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
6621 .writefn = dbgwcr_write, .raw_writefn = raw_write
6623 REGINFO_SENTINEL
6625 define_arm_cp_regs(cpu, dbgregs);
6629 static void define_pmu_regs(ARMCPU *cpu)
6632 * v7 performance monitor control register: same implementor
6633 * field as main ID register, and we implement four counters in
6634 * addition to the cycle count register.
6636 unsigned int i, pmcrn = 4;
6637 ARMCPRegInfo pmcr = {
6638 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6639 .access = PL0_RW,
6640 .type = ARM_CP_IO | ARM_CP_ALIAS,
6641 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6642 .accessfn = pmreg_access, .writefn = pmcr_write,
6643 .raw_writefn = raw_write,
6645 ARMCPRegInfo pmcr64 = {
6646 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6647 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6648 .access = PL0_RW, .accessfn = pmreg_access,
6649 .type = ARM_CP_IO,
6650 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6651 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) |
6652 PMCRLC,
6653 .writefn = pmcr_write, .raw_writefn = raw_write,
6655 define_one_arm_cp_reg(cpu, &pmcr);
6656 define_one_arm_cp_reg(cpu, &pmcr64);
6657 for (i = 0; i < pmcrn; i++) {
6658 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6659 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6660 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6661 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6662 ARMCPRegInfo pmev_regs[] = {
6663 { .name = pmevcntr_name, .cp = 15, .crn = 14,
6664 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6665 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6666 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6667 .accessfn = pmreg_access },
6668 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6669 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6670 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6671 .type = ARM_CP_IO,
6672 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6673 .raw_readfn = pmevcntr_rawread,
6674 .raw_writefn = pmevcntr_rawwrite },
6675 { .name = pmevtyper_name, .cp = 15, .crn = 14,
6676 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6677 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6678 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6679 .accessfn = pmreg_access },
6680 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6681 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6682 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6683 .type = ARM_CP_IO,
6684 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6685 .raw_writefn = pmevtyper_rawwrite },
6686 REGINFO_SENTINEL
6688 define_arm_cp_regs(cpu, pmev_regs);
6689 g_free(pmevcntr_name);
6690 g_free(pmevcntr_el0_name);
6691 g_free(pmevtyper_name);
6692 g_free(pmevtyper_el0_name);
6694 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) {
6695 ARMCPRegInfo v81_pmu_regs[] = {
6696 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6697 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6698 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6699 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6700 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6701 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6702 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6703 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6704 REGINFO_SENTINEL
6706 define_arm_cp_regs(cpu, v81_pmu_regs);
6708 if (cpu_isar_feature(any_pmu_8_4, cpu)) {
6709 static const ARMCPRegInfo v84_pmmir = {
6710 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
6711 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
6712 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6713 .resetvalue = 0
6715 define_one_arm_cp_reg(cpu, &v84_pmmir);
6719 /* We don't know until after realize whether there's a GICv3
6720 * attached, and that is what registers the gicv3 sysregs.
6721 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
6722 * at runtime.
6724 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
6726 ARMCPU *cpu = env_archcpu(env);
6727 uint64_t pfr1 = cpu->isar.id_pfr1;
6729 if (env->gicv3state) {
6730 pfr1 |= 1 << 28;
6732 return pfr1;
6735 #ifndef CONFIG_USER_ONLY
6736 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
6738 ARMCPU *cpu = env_archcpu(env);
6739 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
6741 if (env->gicv3state) {
6742 pfr0 |= 1 << 24;
6744 return pfr0;
6746 #endif
6748 /* Shared logic between LORID and the rest of the LOR* registers.
6749 * Secure state exclusion has already been dealt with.
6751 static CPAccessResult access_lor_ns(CPUARMState *env,
6752 const ARMCPRegInfo *ri, bool isread)
6754 int el = arm_current_el(env);
6756 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
6757 return CP_ACCESS_TRAP_EL2;
6759 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
6760 return CP_ACCESS_TRAP_EL3;
6762 return CP_ACCESS_OK;
6765 static CPAccessResult access_lor_other(CPUARMState *env,
6766 const ARMCPRegInfo *ri, bool isread)
6768 if (arm_is_secure_below_el3(env)) {
6769 /* Access denied in secure mode. */
6770 return CP_ACCESS_TRAP;
6772 return access_lor_ns(env, ri, isread);
6776 * A trivial implementation of ARMv8.1-LOR leaves all of these
6777 * registers fixed at 0, which indicates that there are zero
6778 * supported Limited Ordering regions.
6780 static const ARMCPRegInfo lor_reginfo[] = {
6781 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6782 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6783 .access = PL1_RW, .accessfn = access_lor_other,
6784 .type = ARM_CP_CONST, .resetvalue = 0 },
6785 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6786 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6787 .access = PL1_RW, .accessfn = access_lor_other,
6788 .type = ARM_CP_CONST, .resetvalue = 0 },
6789 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6790 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6791 .access = PL1_RW, .accessfn = access_lor_other,
6792 .type = ARM_CP_CONST, .resetvalue = 0 },
6793 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6794 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6795 .access = PL1_RW, .accessfn = access_lor_other,
6796 .type = ARM_CP_CONST, .resetvalue = 0 },
6797 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6798 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6799 .access = PL1_R, .accessfn = access_lor_ns,
6800 .type = ARM_CP_CONST, .resetvalue = 0 },
6801 REGINFO_SENTINEL
6804 #ifdef TARGET_AARCH64
6805 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
6806 bool isread)
6808 int el = arm_current_el(env);
6810 if (el < 2 &&
6811 arm_feature(env, ARM_FEATURE_EL2) &&
6812 !(arm_hcr_el2_eff(env) & HCR_APK)) {
6813 return CP_ACCESS_TRAP_EL2;
6815 if (el < 3 &&
6816 arm_feature(env, ARM_FEATURE_EL3) &&
6817 !(env->cp15.scr_el3 & SCR_APK)) {
6818 return CP_ACCESS_TRAP_EL3;
6820 return CP_ACCESS_OK;
6823 static const ARMCPRegInfo pauth_reginfo[] = {
6824 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6825 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
6826 .access = PL1_RW, .accessfn = access_pauth,
6827 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
6828 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6829 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
6830 .access = PL1_RW, .accessfn = access_pauth,
6831 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
6832 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6833 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
6834 .access = PL1_RW, .accessfn = access_pauth,
6835 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
6836 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6837 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
6838 .access = PL1_RW, .accessfn = access_pauth,
6839 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
6840 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6841 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
6842 .access = PL1_RW, .accessfn = access_pauth,
6843 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
6844 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6845 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
6846 .access = PL1_RW, .accessfn = access_pauth,
6847 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
6848 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6849 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
6850 .access = PL1_RW, .accessfn = access_pauth,
6851 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
6852 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6853 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
6854 .access = PL1_RW, .accessfn = access_pauth,
6855 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
6856 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6857 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
6858 .access = PL1_RW, .accessfn = access_pauth,
6859 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
6860 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6861 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
6862 .access = PL1_RW, .accessfn = access_pauth,
6863 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
6864 REGINFO_SENTINEL
6867 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
6869 Error *err = NULL;
6870 uint64_t ret;
6872 /* Success sets NZCV = 0000. */
6873 env->NF = env->CF = env->VF = 0, env->ZF = 1;
6875 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
6877 * ??? Failed, for unknown reasons in the crypto subsystem.
6878 * The best we can do is log the reason and return the
6879 * timed-out indication to the guest. There is no reason
6880 * we know to expect this failure to be transitory, so the
6881 * guest may well hang retrying the operation.
6883 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
6884 ri->name, error_get_pretty(err));
6885 error_free(err);
6887 env->ZF = 0; /* NZCF = 0100 */
6888 return 0;
6890 return ret;
6893 /* We do not support re-seeding, so the two registers operate the same. */
6894 static const ARMCPRegInfo rndr_reginfo[] = {
6895 { .name = "RNDR", .state = ARM_CP_STATE_AA64,
6896 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
6897 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
6898 .access = PL0_R, .readfn = rndr_readfn },
6899 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
6900 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
6901 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
6902 .access = PL0_R, .readfn = rndr_readfn },
6903 REGINFO_SENTINEL
6906 #ifndef CONFIG_USER_ONLY
6907 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
6908 uint64_t value)
6910 ARMCPU *cpu = env_archcpu(env);
6911 /* CTR_EL0 System register -> DminLine, bits [19:16] */
6912 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
6913 uint64_t vaddr_in = (uint64_t) value;
6914 uint64_t vaddr = vaddr_in & ~(dline_size - 1);
6915 void *haddr;
6916 int mem_idx = cpu_mmu_index(env, false);
6918 /* This won't be crossing page boundaries */
6919 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
6920 if (haddr) {
6922 ram_addr_t offset;
6923 MemoryRegion *mr;
6925 /* RCU lock is already being held */
6926 mr = memory_region_from_host(haddr, &offset);
6928 if (mr) {
6929 memory_region_writeback(mr, offset, dline_size);
6934 static const ARMCPRegInfo dcpop_reg[] = {
6935 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
6936 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
6937 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
6938 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
6939 REGINFO_SENTINEL
6942 static const ARMCPRegInfo dcpodp_reg[] = {
6943 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
6944 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
6945 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
6946 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
6947 REGINFO_SENTINEL
6949 #endif /*CONFIG_USER_ONLY*/
6951 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
6952 bool isread)
6954 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
6955 return CP_ACCESS_TRAP_EL2;
6958 return CP_ACCESS_OK;
6961 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
6962 bool isread)
6964 int el = arm_current_el(env);
6966 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6967 uint64_t hcr = arm_hcr_el2_eff(env);
6968 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
6969 return CP_ACCESS_TRAP_EL2;
6972 if (el < 3 &&
6973 arm_feature(env, ARM_FEATURE_EL3) &&
6974 !(env->cp15.scr_el3 & SCR_ATA)) {
6975 return CP_ACCESS_TRAP_EL3;
6977 return CP_ACCESS_OK;
6980 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
6982 return env->pstate & PSTATE_TCO;
6985 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
6987 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
6990 static const ARMCPRegInfo mte_reginfo[] = {
6991 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
6992 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
6993 .access = PL1_RW, .accessfn = access_mte,
6994 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
6995 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
6996 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
6997 .access = PL1_RW, .accessfn = access_mte,
6998 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
6999 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7000 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7001 .access = PL2_RW, .accessfn = access_mte,
7002 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7003 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7004 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7005 .access = PL3_RW,
7006 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7007 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7008 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7009 .access = PL1_RW, .accessfn = access_mte,
7010 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7011 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7012 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7013 .access = PL1_RW, .accessfn = access_mte,
7014 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
7015 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
7016 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
7017 .access = PL1_R, .accessfn = access_aa64_tid5,
7018 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
7019 { .name = "TCO", .state = ARM_CP_STATE_AA64,
7020 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7021 .type = ARM_CP_NO_RAW,
7022 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
7023 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
7024 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
7025 .type = ARM_CP_NOP, .access = PL1_W,
7026 .accessfn = aa64_cacheop_poc_access },
7027 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
7028 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
7029 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7030 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
7031 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
7032 .type = ARM_CP_NOP, .access = PL1_W,
7033 .accessfn = aa64_cacheop_poc_access },
7034 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
7035 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
7036 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7037 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
7038 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
7039 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7040 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
7041 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
7042 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7043 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
7044 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
7045 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7046 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
7047 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
7048 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7049 REGINFO_SENTINEL
7052 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
7053 { .name = "TCO", .state = ARM_CP_STATE_AA64,
7054 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7055 .type = ARM_CP_CONST, .access = PL0_RW, },
7056 REGINFO_SENTINEL
7059 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
7060 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
7061 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
7062 .type = ARM_CP_NOP, .access = PL0_W,
7063 .accessfn = aa64_cacheop_poc_access },
7064 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
7065 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7066 .type = ARM_CP_NOP, .access = PL0_W,
7067 .accessfn = aa64_cacheop_poc_access },
7068 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7069 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7070 .type = ARM_CP_NOP, .access = PL0_W,
7071 .accessfn = aa64_cacheop_poc_access },
7072 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7073 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7074 .type = ARM_CP_NOP, .access = PL0_W,
7075 .accessfn = aa64_cacheop_poc_access },
7076 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7077 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7078 .type = ARM_CP_NOP, .access = PL0_W,
7079 .accessfn = aa64_cacheop_poc_access },
7080 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7081 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7082 .type = ARM_CP_NOP, .access = PL0_W,
7083 .accessfn = aa64_cacheop_poc_access },
7084 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7085 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7086 .type = ARM_CP_NOP, .access = PL0_W,
7087 .accessfn = aa64_cacheop_poc_access },
7088 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7089 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7090 .type = ARM_CP_NOP, .access = PL0_W,
7091 .accessfn = aa64_cacheop_poc_access },
7092 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7093 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7094 .access = PL0_W, .type = ARM_CP_DC_GVA,
7095 #ifndef CONFIG_USER_ONLY
7096 /* Avoid overhead of an access check that always passes in user-mode */
7097 .accessfn = aa64_zva_access,
7098 #endif
7100 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7101 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7102 .access = PL0_W, .type = ARM_CP_DC_GZVA,
7103 #ifndef CONFIG_USER_ONLY
7104 /* Avoid overhead of an access check that always passes in user-mode */
7105 .accessfn = aa64_zva_access,
7106 #endif
7108 REGINFO_SENTINEL
7111 #endif
7113 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7114 bool isread)
7116 int el = arm_current_el(env);
7118 if (el == 0) {
7119 uint64_t sctlr = arm_sctlr(env, el);
7120 if (!(sctlr & SCTLR_EnRCTX)) {
7121 return CP_ACCESS_TRAP;
7123 } else if (el == 1) {
7124 uint64_t hcr = arm_hcr_el2_eff(env);
7125 if (hcr & HCR_NV) {
7126 return CP_ACCESS_TRAP_EL2;
7129 return CP_ACCESS_OK;
7132 static const ARMCPRegInfo predinv_reginfo[] = {
7133 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7134 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7135 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7136 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7137 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7138 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7139 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7140 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7141 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7143 * Note the AArch32 opcodes have a different OPC1.
7145 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7146 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7147 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7148 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7149 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7150 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7151 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7152 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7153 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7154 REGINFO_SENTINEL
7157 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7159 /* Read the high 32 bits of the current CCSIDR */
7160 return extract64(ccsidr_read(env, ri), 32, 32);
7163 static const ARMCPRegInfo ccsidr2_reginfo[] = {
7164 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7165 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7166 .access = PL1_R,
7167 .accessfn = access_aa64_tid2,
7168 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
7169 REGINFO_SENTINEL
7172 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7173 bool isread)
7175 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
7176 return CP_ACCESS_TRAP_EL2;
7179 return CP_ACCESS_OK;
7182 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7183 bool isread)
7185 if (arm_feature(env, ARM_FEATURE_V8)) {
7186 return access_aa64_tid3(env, ri, isread);
7189 return CP_ACCESS_OK;
7192 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
7193 bool isread)
7195 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
7196 return CP_ACCESS_TRAP_EL2;
7199 return CP_ACCESS_OK;
7202 static const ARMCPRegInfo jazelle_regs[] = {
7203 { .name = "JIDR",
7204 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
7205 .access = PL1_R, .accessfn = access_jazelle,
7206 .type = ARM_CP_CONST, .resetvalue = 0 },
7207 { .name = "JOSCR",
7208 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
7209 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7210 { .name = "JMCR",
7211 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
7212 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7213 REGINFO_SENTINEL
7216 static const ARMCPRegInfo vhe_reginfo[] = {
7217 { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
7218 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
7219 .access = PL2_RW,
7220 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) },
7221 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
7222 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
7223 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
7224 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
7225 #ifndef CONFIG_USER_ONLY
7226 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
7227 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
7228 .fieldoffset =
7229 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
7230 .type = ARM_CP_IO, .access = PL2_RW,
7231 .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
7232 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
7233 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
7234 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
7235 .resetfn = gt_hv_timer_reset,
7236 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
7237 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
7238 .type = ARM_CP_IO,
7239 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
7240 .access = PL2_RW,
7241 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
7242 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
7243 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
7244 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
7245 .type = ARM_CP_IO | ARM_CP_ALIAS,
7246 .access = PL2_RW, .accessfn = e2h_access,
7247 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
7248 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
7249 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
7250 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
7251 .type = ARM_CP_IO | ARM_CP_ALIAS,
7252 .access = PL2_RW, .accessfn = e2h_access,
7253 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
7254 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
7255 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7256 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
7257 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7258 .access = PL2_RW, .accessfn = e2h_access,
7259 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
7260 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7261 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
7262 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7263 .access = PL2_RW, .accessfn = e2h_access,
7264 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
7265 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7266 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
7267 .type = ARM_CP_IO | ARM_CP_ALIAS,
7268 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
7269 .access = PL2_RW, .accessfn = e2h_access,
7270 .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
7271 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7272 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
7273 .type = ARM_CP_IO | ARM_CP_ALIAS,
7274 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
7275 .access = PL2_RW, .accessfn = e2h_access,
7276 .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
7277 #endif
7278 REGINFO_SENTINEL
7281 #ifndef CONFIG_USER_ONLY
7282 static const ARMCPRegInfo ats1e1_reginfo[] = {
7283 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
7284 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7285 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7286 .writefn = ats_write64 },
7287 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
7288 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7289 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7290 .writefn = ats_write64 },
7291 REGINFO_SENTINEL
7294 static const ARMCPRegInfo ats1cp_reginfo[] = {
7295 { .name = "ATS1CPRP",
7296 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7297 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7298 .writefn = ats_write },
7299 { .name = "ATS1CPWP",
7300 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7301 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7302 .writefn = ats_write },
7303 REGINFO_SENTINEL
7305 #endif
7308 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
7309 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
7310 * is non-zero, which is never for ARMv7, optionally in ARMv8
7311 * and mandatorily for ARMv8.2 and up.
7312 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
7313 * implementation is RAZ/WI we can ignore this detail, as we
7314 * do for ACTLR.
7316 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
7317 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
7318 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
7319 .access = PL1_RW, .accessfn = access_tacr,
7320 .type = ARM_CP_CONST, .resetvalue = 0 },
7321 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
7322 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
7323 .access = PL2_RW, .type = ARM_CP_CONST,
7324 .resetvalue = 0 },
7325 REGINFO_SENTINEL
7328 void register_cp_regs_for_features(ARMCPU *cpu)
7330 /* Register all the coprocessor registers based on feature bits */
7331 CPUARMState *env = &cpu->env;
7332 if (arm_feature(env, ARM_FEATURE_M)) {
7333 /* M profile has no coprocessor registers */
7334 return;
7337 define_arm_cp_regs(cpu, cp_reginfo);
7338 if (!arm_feature(env, ARM_FEATURE_V8)) {
7339 /* Must go early as it is full of wildcards that may be
7340 * overridden by later definitions.
7342 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
7345 if (arm_feature(env, ARM_FEATURE_V6)) {
7346 /* The ID registers all have impdef reset values */
7347 ARMCPRegInfo v6_idregs[] = {
7348 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
7349 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7350 .access = PL1_R, .type = ARM_CP_CONST,
7351 .accessfn = access_aa32_tid3,
7352 .resetvalue = cpu->isar.id_pfr0 },
7353 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
7354 * the value of the GIC field until after we define these regs.
7356 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
7357 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
7358 .access = PL1_R, .type = ARM_CP_NO_RAW,
7359 .accessfn = access_aa32_tid3,
7360 .readfn = id_pfr1_read,
7361 .writefn = arm_cp_write_ignore },
7362 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
7363 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
7364 .access = PL1_R, .type = ARM_CP_CONST,
7365 .accessfn = access_aa32_tid3,
7366 .resetvalue = cpu->isar.id_dfr0 },
7367 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
7368 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
7369 .access = PL1_R, .type = ARM_CP_CONST,
7370 .accessfn = access_aa32_tid3,
7371 .resetvalue = cpu->id_afr0 },
7372 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
7373 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
7374 .access = PL1_R, .type = ARM_CP_CONST,
7375 .accessfn = access_aa32_tid3,
7376 .resetvalue = cpu->isar.id_mmfr0 },
7377 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
7378 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
7379 .access = PL1_R, .type = ARM_CP_CONST,
7380 .accessfn = access_aa32_tid3,
7381 .resetvalue = cpu->isar.id_mmfr1 },
7382 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
7383 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
7384 .access = PL1_R, .type = ARM_CP_CONST,
7385 .accessfn = access_aa32_tid3,
7386 .resetvalue = cpu->isar.id_mmfr2 },
7387 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
7388 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
7389 .access = PL1_R, .type = ARM_CP_CONST,
7390 .accessfn = access_aa32_tid3,
7391 .resetvalue = cpu->isar.id_mmfr3 },
7392 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
7393 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
7394 .access = PL1_R, .type = ARM_CP_CONST,
7395 .accessfn = access_aa32_tid3,
7396 .resetvalue = cpu->isar.id_isar0 },
7397 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
7398 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
7399 .access = PL1_R, .type = ARM_CP_CONST,
7400 .accessfn = access_aa32_tid3,
7401 .resetvalue = cpu->isar.id_isar1 },
7402 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
7403 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
7404 .access = PL1_R, .type = ARM_CP_CONST,
7405 .accessfn = access_aa32_tid3,
7406 .resetvalue = cpu->isar.id_isar2 },
7407 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
7408 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
7409 .access = PL1_R, .type = ARM_CP_CONST,
7410 .accessfn = access_aa32_tid3,
7411 .resetvalue = cpu->isar.id_isar3 },
7412 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
7413 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
7414 .access = PL1_R, .type = ARM_CP_CONST,
7415 .accessfn = access_aa32_tid3,
7416 .resetvalue = cpu->isar.id_isar4 },
7417 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
7418 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
7419 .access = PL1_R, .type = ARM_CP_CONST,
7420 .accessfn = access_aa32_tid3,
7421 .resetvalue = cpu->isar.id_isar5 },
7422 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
7423 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
7424 .access = PL1_R, .type = ARM_CP_CONST,
7425 .accessfn = access_aa32_tid3,
7426 .resetvalue = cpu->isar.id_mmfr4 },
7427 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
7428 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
7429 .access = PL1_R, .type = ARM_CP_CONST,
7430 .accessfn = access_aa32_tid3,
7431 .resetvalue = cpu->isar.id_isar6 },
7432 REGINFO_SENTINEL
7434 define_arm_cp_regs(cpu, v6_idregs);
7435 define_arm_cp_regs(cpu, v6_cp_reginfo);
7436 } else {
7437 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
7439 if (arm_feature(env, ARM_FEATURE_V6K)) {
7440 define_arm_cp_regs(cpu, v6k_cp_reginfo);
7442 if (arm_feature(env, ARM_FEATURE_V7MP) &&
7443 !arm_feature(env, ARM_FEATURE_PMSA)) {
7444 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
7446 if (arm_feature(env, ARM_FEATURE_V7VE)) {
7447 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
7449 if (arm_feature(env, ARM_FEATURE_V7)) {
7450 ARMCPRegInfo clidr = {
7451 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
7452 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
7453 .access = PL1_R, .type = ARM_CP_CONST,
7454 .accessfn = access_aa64_tid2,
7455 .resetvalue = cpu->clidr
7457 define_one_arm_cp_reg(cpu, &clidr);
7458 define_arm_cp_regs(cpu, v7_cp_reginfo);
7459 define_debug_regs(cpu);
7460 define_pmu_regs(cpu);
7461 } else {
7462 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
7464 if (arm_feature(env, ARM_FEATURE_V8)) {
7465 /* AArch64 ID registers, which all have impdef reset values.
7466 * Note that within the ID register ranges the unused slots
7467 * must all RAZ, not UNDEF; future architecture versions may
7468 * define new registers here.
7470 ARMCPRegInfo v8_idregs[] = {
7472 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
7473 * emulation because we don't know the right value for the
7474 * GIC field until after we define these regs.
7476 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
7477 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
7478 .access = PL1_R,
7479 #ifdef CONFIG_USER_ONLY
7480 .type = ARM_CP_CONST,
7481 .resetvalue = cpu->isar.id_aa64pfr0
7482 #else
7483 .type = ARM_CP_NO_RAW,
7484 .accessfn = access_aa64_tid3,
7485 .readfn = id_aa64pfr0_read,
7486 .writefn = arm_cp_write_ignore
7487 #endif
7489 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
7490 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
7491 .access = PL1_R, .type = ARM_CP_CONST,
7492 .accessfn = access_aa64_tid3,
7493 .resetvalue = cpu->isar.id_aa64pfr1},
7494 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7495 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
7496 .access = PL1_R, .type = ARM_CP_CONST,
7497 .accessfn = access_aa64_tid3,
7498 .resetvalue = 0 },
7499 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7500 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
7501 .access = PL1_R, .type = ARM_CP_CONST,
7502 .accessfn = access_aa64_tid3,
7503 .resetvalue = 0 },
7504 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
7505 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
7506 .access = PL1_R, .type = ARM_CP_CONST,
7507 .accessfn = access_aa64_tid3,
7508 /* At present, only SVEver == 0 is defined anyway. */
7509 .resetvalue = 0 },
7510 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7511 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
7512 .access = PL1_R, .type = ARM_CP_CONST,
7513 .accessfn = access_aa64_tid3,
7514 .resetvalue = 0 },
7515 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7516 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
7517 .access = PL1_R, .type = ARM_CP_CONST,
7518 .accessfn = access_aa64_tid3,
7519 .resetvalue = 0 },
7520 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7521 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
7522 .access = PL1_R, .type = ARM_CP_CONST,
7523 .accessfn = access_aa64_tid3,
7524 .resetvalue = 0 },
7525 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
7526 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
7527 .access = PL1_R, .type = ARM_CP_CONST,
7528 .accessfn = access_aa64_tid3,
7529 .resetvalue = cpu->isar.id_aa64dfr0 },
7530 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
7531 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
7532 .access = PL1_R, .type = ARM_CP_CONST,
7533 .accessfn = access_aa64_tid3,
7534 .resetvalue = cpu->isar.id_aa64dfr1 },
7535 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7536 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
7537 .access = PL1_R, .type = ARM_CP_CONST,
7538 .accessfn = access_aa64_tid3,
7539 .resetvalue = 0 },
7540 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7541 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
7542 .access = PL1_R, .type = ARM_CP_CONST,
7543 .accessfn = access_aa64_tid3,
7544 .resetvalue = 0 },
7545 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
7546 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
7547 .access = PL1_R, .type = ARM_CP_CONST,
7548 .accessfn = access_aa64_tid3,
7549 .resetvalue = cpu->id_aa64afr0 },
7550 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
7551 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
7552 .access = PL1_R, .type = ARM_CP_CONST,
7553 .accessfn = access_aa64_tid3,
7554 .resetvalue = cpu->id_aa64afr1 },
7555 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7556 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
7557 .access = PL1_R, .type = ARM_CP_CONST,
7558 .accessfn = access_aa64_tid3,
7559 .resetvalue = 0 },
7560 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7561 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
7562 .access = PL1_R, .type = ARM_CP_CONST,
7563 .accessfn = access_aa64_tid3,
7564 .resetvalue = 0 },
7565 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
7566 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
7567 .access = PL1_R, .type = ARM_CP_CONST,
7568 .accessfn = access_aa64_tid3,
7569 .resetvalue = cpu->isar.id_aa64isar0 },
7570 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
7571 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
7572 .access = PL1_R, .type = ARM_CP_CONST,
7573 .accessfn = access_aa64_tid3,
7574 .resetvalue = cpu->isar.id_aa64isar1 },
7575 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7576 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
7577 .access = PL1_R, .type = ARM_CP_CONST,
7578 .accessfn = access_aa64_tid3,
7579 .resetvalue = 0 },
7580 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7581 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
7582 .access = PL1_R, .type = ARM_CP_CONST,
7583 .accessfn = access_aa64_tid3,
7584 .resetvalue = 0 },
7585 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7586 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
7587 .access = PL1_R, .type = ARM_CP_CONST,
7588 .accessfn = access_aa64_tid3,
7589 .resetvalue = 0 },
7590 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7591 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
7592 .access = PL1_R, .type = ARM_CP_CONST,
7593 .accessfn = access_aa64_tid3,
7594 .resetvalue = 0 },
7595 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7596 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
7597 .access = PL1_R, .type = ARM_CP_CONST,
7598 .accessfn = access_aa64_tid3,
7599 .resetvalue = 0 },
7600 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7601 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
7602 .access = PL1_R, .type = ARM_CP_CONST,
7603 .accessfn = access_aa64_tid3,
7604 .resetvalue = 0 },
7605 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
7606 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
7607 .access = PL1_R, .type = ARM_CP_CONST,
7608 .accessfn = access_aa64_tid3,
7609 .resetvalue = cpu->isar.id_aa64mmfr0 },
7610 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
7611 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
7612 .access = PL1_R, .type = ARM_CP_CONST,
7613 .accessfn = access_aa64_tid3,
7614 .resetvalue = cpu->isar.id_aa64mmfr1 },
7615 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
7616 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
7617 .access = PL1_R, .type = ARM_CP_CONST,
7618 .accessfn = access_aa64_tid3,
7619 .resetvalue = cpu->isar.id_aa64mmfr2 },
7620 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7621 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
7622 .access = PL1_R, .type = ARM_CP_CONST,
7623 .accessfn = access_aa64_tid3,
7624 .resetvalue = 0 },
7625 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7626 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
7627 .access = PL1_R, .type = ARM_CP_CONST,
7628 .accessfn = access_aa64_tid3,
7629 .resetvalue = 0 },
7630 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7631 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
7632 .access = PL1_R, .type = ARM_CP_CONST,
7633 .accessfn = access_aa64_tid3,
7634 .resetvalue = 0 },
7635 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7636 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
7637 .access = PL1_R, .type = ARM_CP_CONST,
7638 .accessfn = access_aa64_tid3,
7639 .resetvalue = 0 },
7640 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7641 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
7642 .access = PL1_R, .type = ARM_CP_CONST,
7643 .accessfn = access_aa64_tid3,
7644 .resetvalue = 0 },
7645 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
7646 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
7647 .access = PL1_R, .type = ARM_CP_CONST,
7648 .accessfn = access_aa64_tid3,
7649 .resetvalue = cpu->isar.mvfr0 },
7650 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
7651 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
7652 .access = PL1_R, .type = ARM_CP_CONST,
7653 .accessfn = access_aa64_tid3,
7654 .resetvalue = cpu->isar.mvfr1 },
7655 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
7656 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
7657 .access = PL1_R, .type = ARM_CP_CONST,
7658 .accessfn = access_aa64_tid3,
7659 .resetvalue = cpu->isar.mvfr2 },
7660 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7661 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
7662 .access = PL1_R, .type = ARM_CP_CONST,
7663 .accessfn = access_aa64_tid3,
7664 .resetvalue = 0 },
7665 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
7666 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
7667 .access = PL1_R, .type = ARM_CP_CONST,
7668 .accessfn = access_aa64_tid3,
7669 .resetvalue = cpu->isar.id_pfr2 },
7670 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7671 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
7672 .access = PL1_R, .type = ARM_CP_CONST,
7673 .accessfn = access_aa64_tid3,
7674 .resetvalue = 0 },
7675 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7676 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
7677 .access = PL1_R, .type = ARM_CP_CONST,
7678 .accessfn = access_aa64_tid3,
7679 .resetvalue = 0 },
7680 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7681 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
7682 .access = PL1_R, .type = ARM_CP_CONST,
7683 .accessfn = access_aa64_tid3,
7684 .resetvalue = 0 },
7685 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
7686 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
7687 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7688 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
7689 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
7690 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
7691 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7692 .resetvalue = cpu->pmceid0 },
7693 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
7694 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
7695 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7696 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
7697 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
7698 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
7699 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7700 .resetvalue = cpu->pmceid1 },
7701 REGINFO_SENTINEL
7703 #ifdef CONFIG_USER_ONLY
7704 ARMCPRegUserSpaceInfo v8_user_idregs[] = {
7705 { .name = "ID_AA64PFR0_EL1",
7706 .exported_bits = 0x000f000f00ff0000,
7707 .fixed_bits = 0x0000000000000011 },
7708 { .name = "ID_AA64PFR1_EL1",
7709 .exported_bits = 0x00000000000000f0 },
7710 { .name = "ID_AA64PFR*_EL1_RESERVED",
7711 .is_glob = true },
7712 { .name = "ID_AA64ZFR0_EL1" },
7713 { .name = "ID_AA64MMFR0_EL1",
7714 .fixed_bits = 0x00000000ff000000 },
7715 { .name = "ID_AA64MMFR1_EL1" },
7716 { .name = "ID_AA64MMFR*_EL1_RESERVED",
7717 .is_glob = true },
7718 { .name = "ID_AA64DFR0_EL1",
7719 .fixed_bits = 0x0000000000000006 },
7720 { .name = "ID_AA64DFR1_EL1" },
7721 { .name = "ID_AA64DFR*_EL1_RESERVED",
7722 .is_glob = true },
7723 { .name = "ID_AA64AFR*",
7724 .is_glob = true },
7725 { .name = "ID_AA64ISAR0_EL1",
7726 .exported_bits = 0x00fffffff0fffff0 },
7727 { .name = "ID_AA64ISAR1_EL1",
7728 .exported_bits = 0x000000f0ffffffff },
7729 { .name = "ID_AA64ISAR*_EL1_RESERVED",
7730 .is_glob = true },
7731 REGUSERINFO_SENTINEL
7733 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
7734 #endif
7735 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
7736 if (!arm_feature(env, ARM_FEATURE_EL3) &&
7737 !arm_feature(env, ARM_FEATURE_EL2)) {
7738 ARMCPRegInfo rvbar = {
7739 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
7740 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
7741 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
7743 define_one_arm_cp_reg(cpu, &rvbar);
7745 define_arm_cp_regs(cpu, v8_idregs);
7746 define_arm_cp_regs(cpu, v8_cp_reginfo);
7748 if (arm_feature(env, ARM_FEATURE_EL2)) {
7749 uint64_t vmpidr_def = mpidr_read_val(env);
7750 ARMCPRegInfo vpidr_regs[] = {
7751 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
7752 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7753 .access = PL2_RW, .accessfn = access_el3_aa32ns,
7754 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
7755 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
7756 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
7757 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7758 .access = PL2_RW, .resetvalue = cpu->midr,
7759 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
7760 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
7761 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7762 .access = PL2_RW, .accessfn = access_el3_aa32ns,
7763 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
7764 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
7765 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
7766 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7767 .access = PL2_RW,
7768 .resetvalue = vmpidr_def,
7769 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
7770 REGINFO_SENTINEL
7772 define_arm_cp_regs(cpu, vpidr_regs);
7773 define_arm_cp_regs(cpu, el2_cp_reginfo);
7774 if (arm_feature(env, ARM_FEATURE_V8)) {
7775 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
7777 if (cpu_isar_feature(aa64_sel2, cpu)) {
7778 define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
7780 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
7781 if (!arm_feature(env, ARM_FEATURE_EL3)) {
7782 ARMCPRegInfo rvbar = {
7783 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
7784 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
7785 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
7787 define_one_arm_cp_reg(cpu, &rvbar);
7789 } else {
7790 /* If EL2 is missing but higher ELs are enabled, we need to
7791 * register the no_el2 reginfos.
7793 if (arm_feature(env, ARM_FEATURE_EL3)) {
7794 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
7795 * of MIDR_EL1 and MPIDR_EL1.
7797 ARMCPRegInfo vpidr_regs[] = {
7798 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
7799 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7800 .access = PL2_RW, .accessfn = access_el3_aa32ns,
7801 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
7802 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
7803 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
7804 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7805 .access = PL2_RW, .accessfn = access_el3_aa32ns,
7806 .type = ARM_CP_NO_RAW,
7807 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
7808 REGINFO_SENTINEL
7810 define_arm_cp_regs(cpu, vpidr_regs);
7811 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
7812 if (arm_feature(env, ARM_FEATURE_V8)) {
7813 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
7817 if (arm_feature(env, ARM_FEATURE_EL3)) {
7818 define_arm_cp_regs(cpu, el3_cp_reginfo);
7819 ARMCPRegInfo el3_regs[] = {
7820 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
7821 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
7822 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
7823 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
7824 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
7825 .access = PL3_RW,
7826 .raw_writefn = raw_write, .writefn = sctlr_write,
7827 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
7828 .resetvalue = cpu->reset_sctlr },
7829 REGINFO_SENTINEL
7832 define_arm_cp_regs(cpu, el3_regs);
7834 /* The behaviour of NSACR is sufficiently various that we don't
7835 * try to describe it in a single reginfo:
7836 * if EL3 is 64 bit, then trap to EL3 from S EL1,
7837 * reads as constant 0xc00 from NS EL1 and NS EL2
7838 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
7839 * if v7 without EL3, register doesn't exist
7840 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
7842 if (arm_feature(env, ARM_FEATURE_EL3)) {
7843 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
7844 ARMCPRegInfo nsacr = {
7845 .name = "NSACR", .type = ARM_CP_CONST,
7846 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7847 .access = PL1_RW, .accessfn = nsacr_access,
7848 .resetvalue = 0xc00
7850 define_one_arm_cp_reg(cpu, &nsacr);
7851 } else {
7852 ARMCPRegInfo nsacr = {
7853 .name = "NSACR",
7854 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7855 .access = PL3_RW | PL1_R,
7856 .resetvalue = 0,
7857 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
7859 define_one_arm_cp_reg(cpu, &nsacr);
7861 } else {
7862 if (arm_feature(env, ARM_FEATURE_V8)) {
7863 ARMCPRegInfo nsacr = {
7864 .name = "NSACR", .type = ARM_CP_CONST,
7865 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7866 .access = PL1_R,
7867 .resetvalue = 0xc00
7869 define_one_arm_cp_reg(cpu, &nsacr);
7873 if (arm_feature(env, ARM_FEATURE_PMSA)) {
7874 if (arm_feature(env, ARM_FEATURE_V6)) {
7875 /* PMSAv6 not implemented */
7876 assert(arm_feature(env, ARM_FEATURE_V7));
7877 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
7878 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
7879 } else {
7880 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
7882 } else {
7883 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
7884 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
7885 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */
7886 if (cpu_isar_feature(aa32_hpd, cpu)) {
7887 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
7890 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
7891 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
7893 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
7894 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
7896 if (arm_feature(env, ARM_FEATURE_VAPA)) {
7897 define_arm_cp_regs(cpu, vapa_cp_reginfo);
7899 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
7900 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
7902 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
7903 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
7905 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
7906 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
7908 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
7909 define_arm_cp_regs(cpu, omap_cp_reginfo);
7911 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
7912 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
7914 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
7915 define_arm_cp_regs(cpu, xscale_cp_reginfo);
7917 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
7918 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
7920 if (arm_feature(env, ARM_FEATURE_LPAE)) {
7921 define_arm_cp_regs(cpu, lpae_cp_reginfo);
7923 if (cpu_isar_feature(aa32_jazelle, cpu)) {
7924 define_arm_cp_regs(cpu, jazelle_regs);
7926 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
7927 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
7928 * be read-only (ie write causes UNDEF exception).
7931 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
7932 /* Pre-v8 MIDR space.
7933 * Note that the MIDR isn't a simple constant register because
7934 * of the TI925 behaviour where writes to another register can
7935 * cause the MIDR value to change.
7937 * Unimplemented registers in the c15 0 0 0 space default to
7938 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
7939 * and friends override accordingly.
7941 { .name = "MIDR",
7942 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
7943 .access = PL1_R, .resetvalue = cpu->midr,
7944 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
7945 .readfn = midr_read,
7946 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
7947 .type = ARM_CP_OVERRIDE },
7948 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
7949 { .name = "DUMMY",
7950 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
7951 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7952 { .name = "DUMMY",
7953 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
7954 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7955 { .name = "DUMMY",
7956 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
7957 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7958 { .name = "DUMMY",
7959 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
7960 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7961 { .name = "DUMMY",
7962 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
7963 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7964 REGINFO_SENTINEL
7966 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
7967 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
7968 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
7969 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
7970 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
7971 .readfn = midr_read },
7972 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
7973 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
7974 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
7975 .access = PL1_R, .resetvalue = cpu->midr },
7976 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
7977 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
7978 .access = PL1_R, .resetvalue = cpu->midr },
7979 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
7980 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
7981 .access = PL1_R,
7982 .accessfn = access_aa64_tid1,
7983 .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
7984 REGINFO_SENTINEL
7986 ARMCPRegInfo id_cp_reginfo[] = {
7987 /* These are common to v8 and pre-v8 */
7988 { .name = "CTR",
7989 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
7990 .access = PL1_R, .accessfn = ctr_el0_access,
7991 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
7992 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
7993 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
7994 .access = PL0_R, .accessfn = ctr_el0_access,
7995 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
7996 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
7997 { .name = "TCMTR",
7998 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
7999 .access = PL1_R,
8000 .accessfn = access_aa32_tid1,
8001 .type = ARM_CP_CONST, .resetvalue = 0 },
8002 REGINFO_SENTINEL
8004 /* TLBTR is specific to VMSA */
8005 ARMCPRegInfo id_tlbtr_reginfo = {
8006 .name = "TLBTR",
8007 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
8008 .access = PL1_R,
8009 .accessfn = access_aa32_tid1,
8010 .type = ARM_CP_CONST, .resetvalue = 0,
8012 /* MPUIR is specific to PMSA V6+ */
8013 ARMCPRegInfo id_mpuir_reginfo = {
8014 .name = "MPUIR",
8015 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8016 .access = PL1_R, .type = ARM_CP_CONST,
8017 .resetvalue = cpu->pmsav7_dregion << 8
8019 ARMCPRegInfo crn0_wi_reginfo = {
8020 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
8021 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
8022 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
8024 #ifdef CONFIG_USER_ONLY
8025 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
8026 { .name = "MIDR_EL1",
8027 .exported_bits = 0x00000000ffffffff },
8028 { .name = "REVIDR_EL1" },
8029 REGUSERINFO_SENTINEL
8031 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
8032 #endif
8033 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
8034 arm_feature(env, ARM_FEATURE_STRONGARM)) {
8035 ARMCPRegInfo *r;
8036 /* Register the blanket "writes ignored" value first to cover the
8037 * whole space. Then update the specific ID registers to allow write
8038 * access, so that they ignore writes rather than causing them to
8039 * UNDEF.
8041 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
8042 for (r = id_pre_v8_midr_cp_reginfo;
8043 r->type != ARM_CP_SENTINEL; r++) {
8044 r->access = PL1_RW;
8046 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
8047 r->access = PL1_RW;
8049 id_mpuir_reginfo.access = PL1_RW;
8050 id_tlbtr_reginfo.access = PL1_RW;
8052 if (arm_feature(env, ARM_FEATURE_V8)) {
8053 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
8054 } else {
8055 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
8057 define_arm_cp_regs(cpu, id_cp_reginfo);
8058 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8059 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
8060 } else if (arm_feature(env, ARM_FEATURE_V7)) {
8061 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8065 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
8066 ARMCPRegInfo mpidr_cp_reginfo[] = {
8067 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
8068 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
8069 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
8070 REGINFO_SENTINEL
8072 #ifdef CONFIG_USER_ONLY
8073 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
8074 { .name = "MPIDR_EL1",
8075 .fixed_bits = 0x0000000080000000 },
8076 REGUSERINFO_SENTINEL
8078 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
8079 #endif
8080 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
8083 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
8084 ARMCPRegInfo auxcr_reginfo[] = {
8085 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
8086 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
8087 .access = PL1_RW, .accessfn = access_tacr,
8088 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
8089 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
8090 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
8091 .access = PL2_RW, .type = ARM_CP_CONST,
8092 .resetvalue = 0 },
8093 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
8094 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
8095 .access = PL3_RW, .type = ARM_CP_CONST,
8096 .resetvalue = 0 },
8097 REGINFO_SENTINEL
8099 define_arm_cp_regs(cpu, auxcr_reginfo);
8100 if (cpu_isar_feature(aa32_ac2, cpu)) {
8101 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
8105 if (arm_feature(env, ARM_FEATURE_CBAR)) {
8107 * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
8108 * There are two flavours:
8109 * (1) older 32-bit only cores have a simple 32-bit CBAR
8110 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
8111 * 32-bit register visible to AArch32 at a different encoding
8112 * to the "flavour 1" register and with the bits rearranged to
8113 * be able to squash a 64-bit address into the 32-bit view.
8114 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
8115 * in future if we support AArch32-only configs of some of the
8116 * AArch64 cores we might need to add a specific feature flag
8117 * to indicate cores with "flavour 2" CBAR.
8119 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8120 /* 32 bit view is [31:18] 0...0 [43:32]. */
8121 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
8122 | extract64(cpu->reset_cbar, 32, 12);
8123 ARMCPRegInfo cbar_reginfo[] = {
8124 { .name = "CBAR",
8125 .type = ARM_CP_CONST,
8126 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
8127 .access = PL1_R, .resetvalue = cbar32 },
8128 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
8129 .type = ARM_CP_CONST,
8130 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
8131 .access = PL1_R, .resetvalue = cpu->reset_cbar },
8132 REGINFO_SENTINEL
8134 /* We don't implement a r/w 64 bit CBAR currently */
8135 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
8136 define_arm_cp_regs(cpu, cbar_reginfo);
8137 } else {
8138 ARMCPRegInfo cbar = {
8139 .name = "CBAR",
8140 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
8141 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
8142 .fieldoffset = offsetof(CPUARMState,
8143 cp15.c15_config_base_address)
8145 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
8146 cbar.access = PL1_R;
8147 cbar.fieldoffset = 0;
8148 cbar.type = ARM_CP_CONST;
8150 define_one_arm_cp_reg(cpu, &cbar);
8154 if (arm_feature(env, ARM_FEATURE_VBAR)) {
8155 ARMCPRegInfo vbar_cp_reginfo[] = {
8156 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
8157 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
8158 .access = PL1_RW, .writefn = vbar_write,
8159 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
8160 offsetof(CPUARMState, cp15.vbar_ns) },
8161 .resetvalue = 0 },
8162 REGINFO_SENTINEL
8164 define_arm_cp_regs(cpu, vbar_cp_reginfo);
8167 /* Generic registers whose values depend on the implementation */
8169 ARMCPRegInfo sctlr = {
8170 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
8171 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
8172 .access = PL1_RW, .accessfn = access_tvm_trvm,
8173 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
8174 offsetof(CPUARMState, cp15.sctlr_ns) },
8175 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
8176 .raw_writefn = raw_write,
8178 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8179 /* Normally we would always end the TB on an SCTLR write, but Linux
8180 * arch/arm/mach-pxa/sleep.S expects two instructions following
8181 * an MMU enable to execute from cache. Imitate this behaviour.
8183 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
8185 define_one_arm_cp_reg(cpu, &sctlr);
8188 if (cpu_isar_feature(aa64_lor, cpu)) {
8189 define_arm_cp_regs(cpu, lor_reginfo);
8191 if (cpu_isar_feature(aa64_pan, cpu)) {
8192 define_one_arm_cp_reg(cpu, &pan_reginfo);
8194 #ifndef CONFIG_USER_ONLY
8195 if (cpu_isar_feature(aa64_ats1e1, cpu)) {
8196 define_arm_cp_regs(cpu, ats1e1_reginfo);
8198 if (cpu_isar_feature(aa32_ats1e1, cpu)) {
8199 define_arm_cp_regs(cpu, ats1cp_reginfo);
8201 #endif
8202 if (cpu_isar_feature(aa64_uao, cpu)) {
8203 define_one_arm_cp_reg(cpu, &uao_reginfo);
8206 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8207 define_arm_cp_regs(cpu, vhe_reginfo);
8210 if (cpu_isar_feature(aa64_sve, cpu)) {
8211 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
8212 if (arm_feature(env, ARM_FEATURE_EL2)) {
8213 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
8214 } else {
8215 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
8217 if (arm_feature(env, ARM_FEATURE_EL3)) {
8218 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
8222 #ifdef TARGET_AARCH64
8223 if (cpu_isar_feature(aa64_pauth, cpu)) {
8224 define_arm_cp_regs(cpu, pauth_reginfo);
8226 if (cpu_isar_feature(aa64_rndr, cpu)) {
8227 define_arm_cp_regs(cpu, rndr_reginfo);
8229 #ifndef CONFIG_USER_ONLY
8230 /* Data Cache clean instructions up to PoP */
8231 if (cpu_isar_feature(aa64_dcpop, cpu)) {
8232 define_one_arm_cp_reg(cpu, dcpop_reg);
8234 if (cpu_isar_feature(aa64_dcpodp, cpu)) {
8235 define_one_arm_cp_reg(cpu, dcpodp_reg);
8238 #endif /*CONFIG_USER_ONLY*/
8241 * If full MTE is enabled, add all of the system registers.
8242 * If only "instructions available at EL0" are enabled,
8243 * then define only a RAZ/WI version of PSTATE.TCO.
8245 if (cpu_isar_feature(aa64_mte, cpu)) {
8246 define_arm_cp_regs(cpu, mte_reginfo);
8247 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8248 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
8249 define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
8250 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8252 #endif
8254 if (cpu_isar_feature(any_predinv, cpu)) {
8255 define_arm_cp_regs(cpu, predinv_reginfo);
8258 if (cpu_isar_feature(any_ccidx, cpu)) {
8259 define_arm_cp_regs(cpu, ccsidr2_reginfo);
8262 #ifndef CONFIG_USER_ONLY
8264 * Register redirections and aliases must be done last,
8265 * after the registers from the other extensions have been defined.
8267 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8268 define_arm_vh_e2h_redirects_aliases(cpu);
8270 #endif
8273 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
8275 CPUState *cs = CPU(cpu);
8276 CPUARMState *env = &cpu->env;
8278 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8280 * The lower part of each SVE register aliases to the FPU
8281 * registers so we don't need to include both.
8283 #ifdef TARGET_AARCH64
8284 if (isar_feature_aa64_sve(&cpu->isar)) {
8285 gdb_register_coprocessor(cs, arm_gdb_get_svereg, arm_gdb_set_svereg,
8286 arm_gen_dynamic_svereg_xml(cs, cs->gdb_num_regs),
8287 "sve-registers.xml", 0);
8288 } else
8289 #endif
8291 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
8292 aarch64_fpu_gdb_set_reg,
8293 34, "aarch64-fpu.xml", 0);
8295 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
8296 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8297 51, "arm-neon.xml", 0);
8298 } else if (cpu_isar_feature(aa32_simd_r32, cpu)) {
8299 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8300 35, "arm-vfp3.xml", 0);
8301 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
8302 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8303 19, "arm-vfp.xml", 0);
8305 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
8306 arm_gen_dynamic_sysreg_xml(cs, cs->gdb_num_regs),
8307 "system-registers.xml", 0);
8311 /* Sort alphabetically by type name, except for "any". */
8312 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
8314 ObjectClass *class_a = (ObjectClass *)a;
8315 ObjectClass *class_b = (ObjectClass *)b;
8316 const char *name_a, *name_b;
8318 name_a = object_class_get_name(class_a);
8319 name_b = object_class_get_name(class_b);
8320 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
8321 return 1;
8322 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
8323 return -1;
8324 } else {
8325 return strcmp(name_a, name_b);
8329 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
8331 ObjectClass *oc = data;
8332 const char *typename;
8333 char *name;
8335 typename = object_class_get_name(oc);
8336 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
8337 qemu_printf(" %s\n", name);
8338 g_free(name);
8341 void arm_cpu_list(void)
8343 GSList *list;
8345 list = object_class_get_list(TYPE_ARM_CPU, false);
8346 list = g_slist_sort(list, arm_cpu_list_compare);
8347 qemu_printf("Available CPUs:\n");
8348 g_slist_foreach(list, arm_cpu_list_entry, NULL);
8349 g_slist_free(list);
8352 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
8354 ObjectClass *oc = data;
8355 CpuDefinitionInfoList **cpu_list = user_data;
8356 CpuDefinitionInfo *info;
8357 const char *typename;
8359 typename = object_class_get_name(oc);
8360 info = g_malloc0(sizeof(*info));
8361 info->name = g_strndup(typename,
8362 strlen(typename) - strlen("-" TYPE_ARM_CPU));
8363 info->q_typename = g_strdup(typename);
8365 QAPI_LIST_PREPEND(*cpu_list, info);
8368 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
8370 CpuDefinitionInfoList *cpu_list = NULL;
8371 GSList *list;
8373 list = object_class_get_list(TYPE_ARM_CPU, false);
8374 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
8375 g_slist_free(list);
8377 return cpu_list;
8380 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
8381 void *opaque, int state, int secstate,
8382 int crm, int opc1, int opc2,
8383 const char *name)
8385 /* Private utility function for define_one_arm_cp_reg_with_opaque():
8386 * add a single reginfo struct to the hash table.
8388 uint32_t *key = g_new(uint32_t, 1);
8389 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
8390 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
8391 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
8393 r2->name = g_strdup(name);
8394 /* Reset the secure state to the specific incoming state. This is
8395 * necessary as the register may have been defined with both states.
8397 r2->secure = secstate;
8399 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8400 /* Register is banked (using both entries in array).
8401 * Overwriting fieldoffset as the array is only used to define
8402 * banked registers but later only fieldoffset is used.
8404 r2->fieldoffset = r->bank_fieldoffsets[ns];
8407 if (state == ARM_CP_STATE_AA32) {
8408 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8409 /* If the register is banked then we don't need to migrate or
8410 * reset the 32-bit instance in certain cases:
8412 * 1) If the register has both 32-bit and 64-bit instances then we
8413 * can count on the 64-bit instance taking care of the
8414 * non-secure bank.
8415 * 2) If ARMv8 is enabled then we can count on a 64-bit version
8416 * taking care of the secure bank. This requires that separate
8417 * 32 and 64-bit definitions are provided.
8419 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
8420 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
8421 r2->type |= ARM_CP_ALIAS;
8423 } else if ((secstate != r->secure) && !ns) {
8424 /* The register is not banked so we only want to allow migration of
8425 * the non-secure instance.
8427 r2->type |= ARM_CP_ALIAS;
8430 if (r->state == ARM_CP_STATE_BOTH) {
8431 /* We assume it is a cp15 register if the .cp field is left unset.
8433 if (r2->cp == 0) {
8434 r2->cp = 15;
8437 #ifdef HOST_WORDS_BIGENDIAN
8438 if (r2->fieldoffset) {
8439 r2->fieldoffset += sizeof(uint32_t);
8441 #endif
8444 if (state == ARM_CP_STATE_AA64) {
8445 /* To allow abbreviation of ARMCPRegInfo
8446 * definitions, we treat cp == 0 as equivalent to
8447 * the value for "standard guest-visible sysreg".
8448 * STATE_BOTH definitions are also always "standard
8449 * sysreg" in their AArch64 view (the .cp value may
8450 * be non-zero for the benefit of the AArch32 view).
8452 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
8453 r2->cp = CP_REG_ARM64_SYSREG_CP;
8455 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
8456 r2->opc0, opc1, opc2);
8457 } else {
8458 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
8460 if (opaque) {
8461 r2->opaque = opaque;
8463 /* reginfo passed to helpers is correct for the actual access,
8464 * and is never ARM_CP_STATE_BOTH:
8466 r2->state = state;
8467 /* Make sure reginfo passed to helpers for wildcarded regs
8468 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
8470 r2->crm = crm;
8471 r2->opc1 = opc1;
8472 r2->opc2 = opc2;
8473 /* By convention, for wildcarded registers only the first
8474 * entry is used for migration; the others are marked as
8475 * ALIAS so we don't try to transfer the register
8476 * multiple times. Special registers (ie NOP/WFI) are
8477 * never migratable and not even raw-accessible.
8479 if ((r->type & ARM_CP_SPECIAL)) {
8480 r2->type |= ARM_CP_NO_RAW;
8482 if (((r->crm == CP_ANY) && crm != 0) ||
8483 ((r->opc1 == CP_ANY) && opc1 != 0) ||
8484 ((r->opc2 == CP_ANY) && opc2 != 0)) {
8485 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
8488 /* Check that raw accesses are either forbidden or handled. Note that
8489 * we can't assert this earlier because the setup of fieldoffset for
8490 * banked registers has to be done first.
8492 if (!(r2->type & ARM_CP_NO_RAW)) {
8493 assert(!raw_accessors_invalid(r2));
8496 /* Overriding of an existing definition must be explicitly
8497 * requested.
8499 if (!(r->type & ARM_CP_OVERRIDE)) {
8500 ARMCPRegInfo *oldreg;
8501 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
8502 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
8503 fprintf(stderr, "Register redefined: cp=%d %d bit "
8504 "crn=%d crm=%d opc1=%d opc2=%d, "
8505 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
8506 r2->crn, r2->crm, r2->opc1, r2->opc2,
8507 oldreg->name, r2->name);
8508 g_assert_not_reached();
8511 g_hash_table_insert(cpu->cp_regs, key, r2);
8515 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
8516 const ARMCPRegInfo *r, void *opaque)
8518 /* Define implementations of coprocessor registers.
8519 * We store these in a hashtable because typically
8520 * there are less than 150 registers in a space which
8521 * is 16*16*16*8*8 = 262144 in size.
8522 * Wildcarding is supported for the crm, opc1 and opc2 fields.
8523 * If a register is defined twice then the second definition is
8524 * used, so this can be used to define some generic registers and
8525 * then override them with implementation specific variations.
8526 * At least one of the original and the second definition should
8527 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
8528 * against accidental use.
8530 * The state field defines whether the register is to be
8531 * visible in the AArch32 or AArch64 execution state. If the
8532 * state is set to ARM_CP_STATE_BOTH then we synthesise a
8533 * reginfo structure for the AArch32 view, which sees the lower
8534 * 32 bits of the 64 bit register.
8536 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
8537 * be wildcarded. AArch64 registers are always considered to be 64
8538 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
8539 * the register, if any.
8541 int crm, opc1, opc2, state;
8542 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
8543 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
8544 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
8545 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
8546 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
8547 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
8548 /* 64 bit registers have only CRm and Opc1 fields */
8549 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
8550 /* op0 only exists in the AArch64 encodings */
8551 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
8552 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
8553 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
8555 * This API is only for Arm's system coprocessors (14 and 15) or
8556 * (M-profile or v7A-and-earlier only) for implementation defined
8557 * coprocessors in the range 0..7. Our decode assumes this, since
8558 * 8..13 can be used for other insns including VFP and Neon. See
8559 * valid_cp() in translate.c. Assert here that we haven't tried
8560 * to use an invalid coprocessor number.
8562 switch (r->state) {
8563 case ARM_CP_STATE_BOTH:
8564 /* 0 has a special meaning, but otherwise the same rules as AA32. */
8565 if (r->cp == 0) {
8566 break;
8568 /* fall through */
8569 case ARM_CP_STATE_AA32:
8570 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
8571 !arm_feature(&cpu->env, ARM_FEATURE_M)) {
8572 assert(r->cp >= 14 && r->cp <= 15);
8573 } else {
8574 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
8576 break;
8577 case ARM_CP_STATE_AA64:
8578 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
8579 break;
8580 default:
8581 g_assert_not_reached();
8583 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
8584 * encodes a minimum access level for the register. We roll this
8585 * runtime check into our general permission check code, so check
8586 * here that the reginfo's specified permissions are strict enough
8587 * to encompass the generic architectural permission check.
8589 if (r->state != ARM_CP_STATE_AA32) {
8590 int mask = 0;
8591 switch (r->opc1) {
8592 case 0:
8593 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
8594 mask = PL0U_R | PL1_RW;
8595 break;
8596 case 1: case 2:
8597 /* min_EL EL1 */
8598 mask = PL1_RW;
8599 break;
8600 case 3:
8601 /* min_EL EL0 */
8602 mask = PL0_RW;
8603 break;
8604 case 4:
8605 case 5:
8606 /* min_EL EL2 */
8607 mask = PL2_RW;
8608 break;
8609 case 6:
8610 /* min_EL EL3 */
8611 mask = PL3_RW;
8612 break;
8613 case 7:
8614 /* min_EL EL1, secure mode only (we don't check the latter) */
8615 mask = PL1_RW;
8616 break;
8617 default:
8618 /* broken reginfo with out-of-range opc1 */
8619 assert(false);
8620 break;
8622 /* assert our permissions are not too lax (stricter is fine) */
8623 assert((r->access & ~mask) == 0);
8626 /* Check that the register definition has enough info to handle
8627 * reads and writes if they are permitted.
8629 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
8630 if (r->access & PL3_R) {
8631 assert((r->fieldoffset ||
8632 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8633 r->readfn);
8635 if (r->access & PL3_W) {
8636 assert((r->fieldoffset ||
8637 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8638 r->writefn);
8641 /* Bad type field probably means missing sentinel at end of reg list */
8642 assert(cptype_valid(r->type));
8643 for (crm = crmmin; crm <= crmmax; crm++) {
8644 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
8645 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
8646 for (state = ARM_CP_STATE_AA32;
8647 state <= ARM_CP_STATE_AA64; state++) {
8648 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
8649 continue;
8651 if (state == ARM_CP_STATE_AA32) {
8652 /* Under AArch32 CP registers can be common
8653 * (same for secure and non-secure world) or banked.
8655 char *name;
8657 switch (r->secure) {
8658 case ARM_CP_SECSTATE_S:
8659 case ARM_CP_SECSTATE_NS:
8660 add_cpreg_to_hashtable(cpu, r, opaque, state,
8661 r->secure, crm, opc1, opc2,
8662 r->name);
8663 break;
8664 default:
8665 name = g_strdup_printf("%s_S", r->name);
8666 add_cpreg_to_hashtable(cpu, r, opaque, state,
8667 ARM_CP_SECSTATE_S,
8668 crm, opc1, opc2, name);
8669 g_free(name);
8670 add_cpreg_to_hashtable(cpu, r, opaque, state,
8671 ARM_CP_SECSTATE_NS,
8672 crm, opc1, opc2, r->name);
8673 break;
8675 } else {
8676 /* AArch64 registers get mapped to non-secure instance
8677 * of AArch32 */
8678 add_cpreg_to_hashtable(cpu, r, opaque, state,
8679 ARM_CP_SECSTATE_NS,
8680 crm, opc1, opc2, r->name);
8688 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
8689 const ARMCPRegInfo *regs, void *opaque)
8691 /* Define a whole list of registers */
8692 const ARMCPRegInfo *r;
8693 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
8694 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
8699 * Modify ARMCPRegInfo for access from userspace.
8701 * This is a data driven modification directed by
8702 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
8703 * user-space cannot alter any values and dynamic values pertaining to
8704 * execution state are hidden from user space view anyway.
8706 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
8708 const ARMCPRegUserSpaceInfo *m;
8709 ARMCPRegInfo *r;
8711 for (m = mods; m->name; m++) {
8712 GPatternSpec *pat = NULL;
8713 if (m->is_glob) {
8714 pat = g_pattern_spec_new(m->name);
8716 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
8717 if (pat && g_pattern_match_string(pat, r->name)) {
8718 r->type = ARM_CP_CONST;
8719 r->access = PL0U_R;
8720 r->resetvalue = 0;
8721 /* continue */
8722 } else if (strcmp(r->name, m->name) == 0) {
8723 r->type = ARM_CP_CONST;
8724 r->access = PL0U_R;
8725 r->resetvalue &= m->exported_bits;
8726 r->resetvalue |= m->fixed_bits;
8727 break;
8730 if (pat) {
8731 g_pattern_spec_free(pat);
8736 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
8738 return g_hash_table_lookup(cpregs, &encoded_cp);
8741 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
8742 uint64_t value)
8744 /* Helper coprocessor write function for write-ignore registers */
8747 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
8749 /* Helper coprocessor write function for read-as-zero registers */
8750 return 0;
8753 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
8755 /* Helper coprocessor reset function for do-nothing-on-reset registers */
8758 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
8760 /* Return true if it is not valid for us to switch to
8761 * this CPU mode (ie all the UNPREDICTABLE cases in
8762 * the ARM ARM CPSRWriteByInstr pseudocode).
8765 /* Changes to or from Hyp via MSR and CPS are illegal. */
8766 if (write_type == CPSRWriteByInstr &&
8767 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
8768 mode == ARM_CPU_MODE_HYP)) {
8769 return 1;
8772 switch (mode) {
8773 case ARM_CPU_MODE_USR:
8774 return 0;
8775 case ARM_CPU_MODE_SYS:
8776 case ARM_CPU_MODE_SVC:
8777 case ARM_CPU_MODE_ABT:
8778 case ARM_CPU_MODE_UND:
8779 case ARM_CPU_MODE_IRQ:
8780 case ARM_CPU_MODE_FIQ:
8781 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
8782 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
8784 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
8785 * and CPS are treated as illegal mode changes.
8787 if (write_type == CPSRWriteByInstr &&
8788 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
8789 (arm_hcr_el2_eff(env) & HCR_TGE)) {
8790 return 1;
8792 return 0;
8793 case ARM_CPU_MODE_HYP:
8794 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
8795 case ARM_CPU_MODE_MON:
8796 return arm_current_el(env) < 3;
8797 default:
8798 return 1;
8802 uint32_t cpsr_read(CPUARMState *env)
8804 int ZF;
8805 ZF = (env->ZF == 0);
8806 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
8807 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
8808 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
8809 | ((env->condexec_bits & 0xfc) << 8)
8810 | (env->GE << 16) | (env->daif & CPSR_AIF);
8813 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
8814 CPSRWriteType write_type)
8816 uint32_t changed_daif;
8818 if (mask & CPSR_NZCV) {
8819 env->ZF = (~val) & CPSR_Z;
8820 env->NF = val;
8821 env->CF = (val >> 29) & 1;
8822 env->VF = (val << 3) & 0x80000000;
8824 if (mask & CPSR_Q)
8825 env->QF = ((val & CPSR_Q) != 0);
8826 if (mask & CPSR_T)
8827 env->thumb = ((val & CPSR_T) != 0);
8828 if (mask & CPSR_IT_0_1) {
8829 env->condexec_bits &= ~3;
8830 env->condexec_bits |= (val >> 25) & 3;
8832 if (mask & CPSR_IT_2_7) {
8833 env->condexec_bits &= 3;
8834 env->condexec_bits |= (val >> 8) & 0xfc;
8836 if (mask & CPSR_GE) {
8837 env->GE = (val >> 16) & 0xf;
8840 /* In a V7 implementation that includes the security extensions but does
8841 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
8842 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
8843 * bits respectively.
8845 * In a V8 implementation, it is permitted for privileged software to
8846 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
8848 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
8849 arm_feature(env, ARM_FEATURE_EL3) &&
8850 !arm_feature(env, ARM_FEATURE_EL2) &&
8851 !arm_is_secure(env)) {
8853 changed_daif = (env->daif ^ val) & mask;
8855 if (changed_daif & CPSR_A) {
8856 /* Check to see if we are allowed to change the masking of async
8857 * abort exceptions from a non-secure state.
8859 if (!(env->cp15.scr_el3 & SCR_AW)) {
8860 qemu_log_mask(LOG_GUEST_ERROR,
8861 "Ignoring attempt to switch CPSR_A flag from "
8862 "non-secure world with SCR.AW bit clear\n");
8863 mask &= ~CPSR_A;
8867 if (changed_daif & CPSR_F) {
8868 /* Check to see if we are allowed to change the masking of FIQ
8869 * exceptions from a non-secure state.
8871 if (!(env->cp15.scr_el3 & SCR_FW)) {
8872 qemu_log_mask(LOG_GUEST_ERROR,
8873 "Ignoring attempt to switch CPSR_F flag from "
8874 "non-secure world with SCR.FW bit clear\n");
8875 mask &= ~CPSR_F;
8878 /* Check whether non-maskable FIQ (NMFI) support is enabled.
8879 * If this bit is set software is not allowed to mask
8880 * FIQs, but is allowed to set CPSR_F to 0.
8882 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
8883 (val & CPSR_F)) {
8884 qemu_log_mask(LOG_GUEST_ERROR,
8885 "Ignoring attempt to enable CPSR_F flag "
8886 "(non-maskable FIQ [NMFI] support enabled)\n");
8887 mask &= ~CPSR_F;
8892 env->daif &= ~(CPSR_AIF & mask);
8893 env->daif |= val & CPSR_AIF & mask;
8895 if (write_type != CPSRWriteRaw &&
8896 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
8897 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
8898 /* Note that we can only get here in USR mode if this is a
8899 * gdb stub write; for this case we follow the architectural
8900 * behaviour for guest writes in USR mode of ignoring an attempt
8901 * to switch mode. (Those are caught by translate.c for writes
8902 * triggered by guest instructions.)
8904 mask &= ~CPSR_M;
8905 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
8906 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
8907 * v7, and has defined behaviour in v8:
8908 * + leave CPSR.M untouched
8909 * + allow changes to the other CPSR fields
8910 * + set PSTATE.IL
8911 * For user changes via the GDB stub, we don't set PSTATE.IL,
8912 * as this would be unnecessarily harsh for a user error.
8914 mask &= ~CPSR_M;
8915 if (write_type != CPSRWriteByGDBStub &&
8916 arm_feature(env, ARM_FEATURE_V8)) {
8917 mask |= CPSR_IL;
8918 val |= CPSR_IL;
8920 qemu_log_mask(LOG_GUEST_ERROR,
8921 "Illegal AArch32 mode switch attempt from %s to %s\n",
8922 aarch32_mode_name(env->uncached_cpsr),
8923 aarch32_mode_name(val));
8924 } else {
8925 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
8926 write_type == CPSRWriteExceptionReturn ?
8927 "Exception return from AArch32" :
8928 "AArch32 mode switch from",
8929 aarch32_mode_name(env->uncached_cpsr),
8930 aarch32_mode_name(val), env->regs[15]);
8931 switch_mode(env, val & CPSR_M);
8934 mask &= ~CACHED_CPSR_BITS;
8935 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
8938 /* Sign/zero extend */
8939 uint32_t HELPER(sxtb16)(uint32_t x)
8941 uint32_t res;
8942 res = (uint16_t)(int8_t)x;
8943 res |= (uint32_t)(int8_t)(x >> 16) << 16;
8944 return res;
8947 uint32_t HELPER(uxtb16)(uint32_t x)
8949 uint32_t res;
8950 res = (uint16_t)(uint8_t)x;
8951 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
8952 return res;
8955 int32_t HELPER(sdiv)(int32_t num, int32_t den)
8957 if (den == 0)
8958 return 0;
8959 if (num == INT_MIN && den == -1)
8960 return INT_MIN;
8961 return num / den;
8964 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
8966 if (den == 0)
8967 return 0;
8968 return num / den;
8971 uint32_t HELPER(rbit)(uint32_t x)
8973 return revbit32(x);
8976 #ifdef CONFIG_USER_ONLY
8978 static void switch_mode(CPUARMState *env, int mode)
8980 ARMCPU *cpu = env_archcpu(env);
8982 if (mode != ARM_CPU_MODE_USR) {
8983 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
8987 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
8988 uint32_t cur_el, bool secure)
8990 return 1;
8993 void aarch64_sync_64_to_32(CPUARMState *env)
8995 g_assert_not_reached();
8998 #else
9000 static void switch_mode(CPUARMState *env, int mode)
9002 int old_mode;
9003 int i;
9005 old_mode = env->uncached_cpsr & CPSR_M;
9006 if (mode == old_mode)
9007 return;
9009 if (old_mode == ARM_CPU_MODE_FIQ) {
9010 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
9011 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
9012 } else if (mode == ARM_CPU_MODE_FIQ) {
9013 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
9014 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
9017 i = bank_number(old_mode);
9018 env->banked_r13[i] = env->regs[13];
9019 env->banked_spsr[i] = env->spsr;
9021 i = bank_number(mode);
9022 env->regs[13] = env->banked_r13[i];
9023 env->spsr = env->banked_spsr[i];
9025 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
9026 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
9029 /* Physical Interrupt Target EL Lookup Table
9031 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
9033 * The below multi-dimensional table is used for looking up the target
9034 * exception level given numerous condition criteria. Specifically, the
9035 * target EL is based on SCR and HCR routing controls as well as the
9036 * currently executing EL and secure state.
9038 * Dimensions:
9039 * target_el_table[2][2][2][2][2][4]
9040 * | | | | | +--- Current EL
9041 * | | | | +------ Non-secure(0)/Secure(1)
9042 * | | | +--------- HCR mask override
9043 * | | +------------ SCR exec state control
9044 * | +--------------- SCR mask override
9045 * +------------------ 32-bit(0)/64-bit(1) EL3
9047 * The table values are as such:
9048 * 0-3 = EL0-EL3
9049 * -1 = Cannot occur
9051 * The ARM ARM target EL table includes entries indicating that an "exception
9052 * is not taken". The two cases where this is applicable are:
9053 * 1) An exception is taken from EL3 but the SCR does not have the exception
9054 * routed to EL3.
9055 * 2) An exception is taken from EL2 but the HCR does not have the exception
9056 * routed to EL2.
9057 * In these two cases, the below table contain a target of EL1. This value is
9058 * returned as it is expected that the consumer of the table data will check
9059 * for "target EL >= current EL" to ensure the exception is not taken.
9061 * SCR HCR
9062 * 64 EA AMO From
9063 * BIT IRQ IMO Non-secure Secure
9064 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
9066 static const int8_t target_el_table[2][2][2][2][2][4] = {
9067 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
9068 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
9069 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
9070 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
9071 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
9072 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
9073 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
9074 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
9075 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
9076 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},},
9077 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },},
9078 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},},
9079 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
9080 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
9081 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},
9082 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},},
9086 * Determine the target EL for physical exceptions
9088 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9089 uint32_t cur_el, bool secure)
9091 CPUARMState *env = cs->env_ptr;
9092 bool rw;
9093 bool scr;
9094 bool hcr;
9095 int target_el;
9096 /* Is the highest EL AArch64? */
9097 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
9098 uint64_t hcr_el2;
9100 if (arm_feature(env, ARM_FEATURE_EL3)) {
9101 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
9102 } else {
9103 /* Either EL2 is the highest EL (and so the EL2 register width
9104 * is given by is64); or there is no EL2 or EL3, in which case
9105 * the value of 'rw' does not affect the table lookup anyway.
9107 rw = is64;
9110 hcr_el2 = arm_hcr_el2_eff(env);
9111 switch (excp_idx) {
9112 case EXCP_IRQ:
9113 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
9114 hcr = hcr_el2 & HCR_IMO;
9115 break;
9116 case EXCP_FIQ:
9117 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
9118 hcr = hcr_el2 & HCR_FMO;
9119 break;
9120 default:
9121 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
9122 hcr = hcr_el2 & HCR_AMO;
9123 break;
9127 * For these purposes, TGE and AMO/IMO/FMO both force the
9128 * interrupt to EL2. Fold TGE into the bit extracted above.
9130 hcr |= (hcr_el2 & HCR_TGE) != 0;
9132 /* Perform a table-lookup for the target EL given the current state */
9133 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
9135 assert(target_el > 0);
9137 return target_el;
9140 void arm_log_exception(int idx)
9142 if (qemu_loglevel_mask(CPU_LOG_INT)) {
9143 const char *exc = NULL;
9144 static const char * const excnames[] = {
9145 [EXCP_UDEF] = "Undefined Instruction",
9146 [EXCP_SWI] = "SVC",
9147 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
9148 [EXCP_DATA_ABORT] = "Data Abort",
9149 [EXCP_IRQ] = "IRQ",
9150 [EXCP_FIQ] = "FIQ",
9151 [EXCP_BKPT] = "Breakpoint",
9152 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
9153 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
9154 [EXCP_HVC] = "Hypervisor Call",
9155 [EXCP_HYP_TRAP] = "Hypervisor Trap",
9156 [EXCP_SMC] = "Secure Monitor Call",
9157 [EXCP_VIRQ] = "Virtual IRQ",
9158 [EXCP_VFIQ] = "Virtual FIQ",
9159 [EXCP_SEMIHOST] = "Semihosting call",
9160 [EXCP_NOCP] = "v7M NOCP UsageFault",
9161 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
9162 [EXCP_STKOF] = "v8M STKOF UsageFault",
9163 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
9164 [EXCP_LSERR] = "v8M LSERR UsageFault",
9165 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
9168 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
9169 exc = excnames[idx];
9171 if (!exc) {
9172 exc = "unknown";
9174 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
9179 * Function used to synchronize QEMU's AArch64 register set with AArch32
9180 * register set. This is necessary when switching between AArch32 and AArch64
9181 * execution state.
9183 void aarch64_sync_32_to_64(CPUARMState *env)
9185 int i;
9186 uint32_t mode = env->uncached_cpsr & CPSR_M;
9188 /* We can blanket copy R[0:7] to X[0:7] */
9189 for (i = 0; i < 8; i++) {
9190 env->xregs[i] = env->regs[i];
9194 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
9195 * Otherwise, they come from the banked user regs.
9197 if (mode == ARM_CPU_MODE_FIQ) {
9198 for (i = 8; i < 13; i++) {
9199 env->xregs[i] = env->usr_regs[i - 8];
9201 } else {
9202 for (i = 8; i < 13; i++) {
9203 env->xregs[i] = env->regs[i];
9208 * Registers x13-x23 are the various mode SP and FP registers. Registers
9209 * r13 and r14 are only copied if we are in that mode, otherwise we copy
9210 * from the mode banked register.
9212 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9213 env->xregs[13] = env->regs[13];
9214 env->xregs[14] = env->regs[14];
9215 } else {
9216 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
9217 /* HYP is an exception in that it is copied from r14 */
9218 if (mode == ARM_CPU_MODE_HYP) {
9219 env->xregs[14] = env->regs[14];
9220 } else {
9221 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
9225 if (mode == ARM_CPU_MODE_HYP) {
9226 env->xregs[15] = env->regs[13];
9227 } else {
9228 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
9231 if (mode == ARM_CPU_MODE_IRQ) {
9232 env->xregs[16] = env->regs[14];
9233 env->xregs[17] = env->regs[13];
9234 } else {
9235 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
9236 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
9239 if (mode == ARM_CPU_MODE_SVC) {
9240 env->xregs[18] = env->regs[14];
9241 env->xregs[19] = env->regs[13];
9242 } else {
9243 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
9244 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
9247 if (mode == ARM_CPU_MODE_ABT) {
9248 env->xregs[20] = env->regs[14];
9249 env->xregs[21] = env->regs[13];
9250 } else {
9251 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
9252 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
9255 if (mode == ARM_CPU_MODE_UND) {
9256 env->xregs[22] = env->regs[14];
9257 env->xregs[23] = env->regs[13];
9258 } else {
9259 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
9260 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
9264 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9265 * mode, then we can copy from r8-r14. Otherwise, we copy from the
9266 * FIQ bank for r8-r14.
9268 if (mode == ARM_CPU_MODE_FIQ) {
9269 for (i = 24; i < 31; i++) {
9270 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
9272 } else {
9273 for (i = 24; i < 29; i++) {
9274 env->xregs[i] = env->fiq_regs[i - 24];
9276 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
9277 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
9280 env->pc = env->regs[15];
9284 * Function used to synchronize QEMU's AArch32 register set with AArch64
9285 * register set. This is necessary when switching between AArch32 and AArch64
9286 * execution state.
9288 void aarch64_sync_64_to_32(CPUARMState *env)
9290 int i;
9291 uint32_t mode = env->uncached_cpsr & CPSR_M;
9293 /* We can blanket copy X[0:7] to R[0:7] */
9294 for (i = 0; i < 8; i++) {
9295 env->regs[i] = env->xregs[i];
9299 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
9300 * Otherwise, we copy x8-x12 into the banked user regs.
9302 if (mode == ARM_CPU_MODE_FIQ) {
9303 for (i = 8; i < 13; i++) {
9304 env->usr_regs[i - 8] = env->xregs[i];
9306 } else {
9307 for (i = 8; i < 13; i++) {
9308 env->regs[i] = env->xregs[i];
9313 * Registers r13 & r14 depend on the current mode.
9314 * If we are in a given mode, we copy the corresponding x registers to r13
9315 * and r14. Otherwise, we copy the x register to the banked r13 and r14
9316 * for the mode.
9318 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9319 env->regs[13] = env->xregs[13];
9320 env->regs[14] = env->xregs[14];
9321 } else {
9322 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
9325 * HYP is an exception in that it does not have its own banked r14 but
9326 * shares the USR r14
9328 if (mode == ARM_CPU_MODE_HYP) {
9329 env->regs[14] = env->xregs[14];
9330 } else {
9331 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
9335 if (mode == ARM_CPU_MODE_HYP) {
9336 env->regs[13] = env->xregs[15];
9337 } else {
9338 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
9341 if (mode == ARM_CPU_MODE_IRQ) {
9342 env->regs[14] = env->xregs[16];
9343 env->regs[13] = env->xregs[17];
9344 } else {
9345 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
9346 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
9349 if (mode == ARM_CPU_MODE_SVC) {
9350 env->regs[14] = env->xregs[18];
9351 env->regs[13] = env->xregs[19];
9352 } else {
9353 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
9354 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
9357 if (mode == ARM_CPU_MODE_ABT) {
9358 env->regs[14] = env->xregs[20];
9359 env->regs[13] = env->xregs[21];
9360 } else {
9361 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
9362 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
9365 if (mode == ARM_CPU_MODE_UND) {
9366 env->regs[14] = env->xregs[22];
9367 env->regs[13] = env->xregs[23];
9368 } else {
9369 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
9370 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
9373 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9374 * mode, then we can copy to r8-r14. Otherwise, we copy to the
9375 * FIQ bank for r8-r14.
9377 if (mode == ARM_CPU_MODE_FIQ) {
9378 for (i = 24; i < 31; i++) {
9379 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
9381 } else {
9382 for (i = 24; i < 29; i++) {
9383 env->fiq_regs[i - 24] = env->xregs[i];
9385 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
9386 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
9389 env->regs[15] = env->pc;
9392 static void take_aarch32_exception(CPUARMState *env, int new_mode,
9393 uint32_t mask, uint32_t offset,
9394 uint32_t newpc)
9396 int new_el;
9398 /* Change the CPU state so as to actually take the exception. */
9399 switch_mode(env, new_mode);
9402 * For exceptions taken to AArch32 we must clear the SS bit in both
9403 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
9405 env->uncached_cpsr &= ~PSTATE_SS;
9406 env->spsr = cpsr_read(env);
9407 /* Clear IT bits. */
9408 env->condexec_bits = 0;
9409 /* Switch to the new mode, and to the correct instruction set. */
9410 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
9412 /* This must be after mode switching. */
9413 new_el = arm_current_el(env);
9415 /* Set new mode endianness */
9416 env->uncached_cpsr &= ~CPSR_E;
9417 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
9418 env->uncached_cpsr |= CPSR_E;
9420 /* J and IL must always be cleared for exception entry */
9421 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
9422 env->daif |= mask;
9424 if (new_mode == ARM_CPU_MODE_HYP) {
9425 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
9426 env->elr_el[2] = env->regs[15];
9427 } else {
9428 /* CPSR.PAN is normally preserved preserved unless... */
9429 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
9430 switch (new_el) {
9431 case 3:
9432 if (!arm_is_secure_below_el3(env)) {
9433 /* ... the target is EL3, from non-secure state. */
9434 env->uncached_cpsr &= ~CPSR_PAN;
9435 break;
9437 /* ... the target is EL3, from secure state ... */
9438 /* fall through */
9439 case 1:
9440 /* ... the target is EL1 and SCTLR.SPAN is 0. */
9441 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
9442 env->uncached_cpsr |= CPSR_PAN;
9444 break;
9448 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
9449 * and we should just guard the thumb mode on V4
9451 if (arm_feature(env, ARM_FEATURE_V4T)) {
9452 env->thumb =
9453 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
9455 env->regs[14] = env->regs[15] + offset;
9457 env->regs[15] = newpc;
9458 arm_rebuild_hflags(env);
9461 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
9464 * Handle exception entry to Hyp mode; this is sufficiently
9465 * different to entry to other AArch32 modes that we handle it
9466 * separately here.
9468 * The vector table entry used is always the 0x14 Hyp mode entry point,
9469 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
9470 * The offset applied to the preferred return address is always zero
9471 * (see DDI0487C.a section G1.12.3).
9472 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
9474 uint32_t addr, mask;
9475 ARMCPU *cpu = ARM_CPU(cs);
9476 CPUARMState *env = &cpu->env;
9478 switch (cs->exception_index) {
9479 case EXCP_UDEF:
9480 addr = 0x04;
9481 break;
9482 case EXCP_SWI:
9483 addr = 0x14;
9484 break;
9485 case EXCP_BKPT:
9486 /* Fall through to prefetch abort. */
9487 case EXCP_PREFETCH_ABORT:
9488 env->cp15.ifar_s = env->exception.vaddress;
9489 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
9490 (uint32_t)env->exception.vaddress);
9491 addr = 0x0c;
9492 break;
9493 case EXCP_DATA_ABORT:
9494 env->cp15.dfar_s = env->exception.vaddress;
9495 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
9496 (uint32_t)env->exception.vaddress);
9497 addr = 0x10;
9498 break;
9499 case EXCP_IRQ:
9500 addr = 0x18;
9501 break;
9502 case EXCP_FIQ:
9503 addr = 0x1c;
9504 break;
9505 case EXCP_HVC:
9506 addr = 0x08;
9507 break;
9508 case EXCP_HYP_TRAP:
9509 addr = 0x14;
9510 break;
9511 default:
9512 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9515 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
9516 if (!arm_feature(env, ARM_FEATURE_V8)) {
9518 * QEMU syndrome values are v8-style. v7 has the IL bit
9519 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
9520 * If this is a v7 CPU, squash the IL bit in those cases.
9522 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
9523 (cs->exception_index == EXCP_DATA_ABORT &&
9524 !(env->exception.syndrome & ARM_EL_ISV)) ||
9525 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
9526 env->exception.syndrome &= ~ARM_EL_IL;
9529 env->cp15.esr_el[2] = env->exception.syndrome;
9532 if (arm_current_el(env) != 2 && addr < 0x14) {
9533 addr = 0x14;
9536 mask = 0;
9537 if (!(env->cp15.scr_el3 & SCR_EA)) {
9538 mask |= CPSR_A;
9540 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
9541 mask |= CPSR_I;
9543 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
9544 mask |= CPSR_F;
9547 addr += env->cp15.hvbar;
9549 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
9552 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
9554 ARMCPU *cpu = ARM_CPU(cs);
9555 CPUARMState *env = &cpu->env;
9556 uint32_t addr;
9557 uint32_t mask;
9558 int new_mode;
9559 uint32_t offset;
9560 uint32_t moe;
9562 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
9563 switch (syn_get_ec(env->exception.syndrome)) {
9564 case EC_BREAKPOINT:
9565 case EC_BREAKPOINT_SAME_EL:
9566 moe = 1;
9567 break;
9568 case EC_WATCHPOINT:
9569 case EC_WATCHPOINT_SAME_EL:
9570 moe = 10;
9571 break;
9572 case EC_AA32_BKPT:
9573 moe = 3;
9574 break;
9575 case EC_VECTORCATCH:
9576 moe = 5;
9577 break;
9578 default:
9579 moe = 0;
9580 break;
9583 if (moe) {
9584 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
9587 if (env->exception.target_el == 2) {
9588 arm_cpu_do_interrupt_aarch32_hyp(cs);
9589 return;
9592 switch (cs->exception_index) {
9593 case EXCP_UDEF:
9594 new_mode = ARM_CPU_MODE_UND;
9595 addr = 0x04;
9596 mask = CPSR_I;
9597 if (env->thumb)
9598 offset = 2;
9599 else
9600 offset = 4;
9601 break;
9602 case EXCP_SWI:
9603 new_mode = ARM_CPU_MODE_SVC;
9604 addr = 0x08;
9605 mask = CPSR_I;
9606 /* The PC already points to the next instruction. */
9607 offset = 0;
9608 break;
9609 case EXCP_BKPT:
9610 /* Fall through to prefetch abort. */
9611 case EXCP_PREFETCH_ABORT:
9612 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
9613 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
9614 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
9615 env->exception.fsr, (uint32_t)env->exception.vaddress);
9616 new_mode = ARM_CPU_MODE_ABT;
9617 addr = 0x0c;
9618 mask = CPSR_A | CPSR_I;
9619 offset = 4;
9620 break;
9621 case EXCP_DATA_ABORT:
9622 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
9623 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
9624 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
9625 env->exception.fsr,
9626 (uint32_t)env->exception.vaddress);
9627 new_mode = ARM_CPU_MODE_ABT;
9628 addr = 0x10;
9629 mask = CPSR_A | CPSR_I;
9630 offset = 8;
9631 break;
9632 case EXCP_IRQ:
9633 new_mode = ARM_CPU_MODE_IRQ;
9634 addr = 0x18;
9635 /* Disable IRQ and imprecise data aborts. */
9636 mask = CPSR_A | CPSR_I;
9637 offset = 4;
9638 if (env->cp15.scr_el3 & SCR_IRQ) {
9639 /* IRQ routed to monitor mode */
9640 new_mode = ARM_CPU_MODE_MON;
9641 mask |= CPSR_F;
9643 break;
9644 case EXCP_FIQ:
9645 new_mode = ARM_CPU_MODE_FIQ;
9646 addr = 0x1c;
9647 /* Disable FIQ, IRQ and imprecise data aborts. */
9648 mask = CPSR_A | CPSR_I | CPSR_F;
9649 if (env->cp15.scr_el3 & SCR_FIQ) {
9650 /* FIQ routed to monitor mode */
9651 new_mode = ARM_CPU_MODE_MON;
9653 offset = 4;
9654 break;
9655 case EXCP_VIRQ:
9656 new_mode = ARM_CPU_MODE_IRQ;
9657 addr = 0x18;
9658 /* Disable IRQ and imprecise data aborts. */
9659 mask = CPSR_A | CPSR_I;
9660 offset = 4;
9661 break;
9662 case EXCP_VFIQ:
9663 new_mode = ARM_CPU_MODE_FIQ;
9664 addr = 0x1c;
9665 /* Disable FIQ, IRQ and imprecise data aborts. */
9666 mask = CPSR_A | CPSR_I | CPSR_F;
9667 offset = 4;
9668 break;
9669 case EXCP_SMC:
9670 new_mode = ARM_CPU_MODE_MON;
9671 addr = 0x08;
9672 mask = CPSR_A | CPSR_I | CPSR_F;
9673 offset = 0;
9674 break;
9675 default:
9676 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9677 return; /* Never happens. Keep compiler happy. */
9680 if (new_mode == ARM_CPU_MODE_MON) {
9681 addr += env->cp15.mvbar;
9682 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
9683 /* High vectors. When enabled, base address cannot be remapped. */
9684 addr += 0xffff0000;
9685 } else {
9686 /* ARM v7 architectures provide a vector base address register to remap
9687 * the interrupt vector table.
9688 * This register is only followed in non-monitor mode, and is banked.
9689 * Note: only bits 31:5 are valid.
9691 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
9694 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
9695 env->cp15.scr_el3 &= ~SCR_NS;
9698 take_aarch32_exception(env, new_mode, mask, offset, addr);
9701 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
9704 * Return the register number of the AArch64 view of the AArch32
9705 * register @aarch32_reg. The CPUARMState CPSR is assumed to still
9706 * be that of the AArch32 mode the exception came from.
9708 int mode = env->uncached_cpsr & CPSR_M;
9710 switch (aarch32_reg) {
9711 case 0 ... 7:
9712 return aarch32_reg;
9713 case 8 ... 12:
9714 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
9715 case 13:
9716 switch (mode) {
9717 case ARM_CPU_MODE_USR:
9718 case ARM_CPU_MODE_SYS:
9719 return 13;
9720 case ARM_CPU_MODE_HYP:
9721 return 15;
9722 case ARM_CPU_MODE_IRQ:
9723 return 17;
9724 case ARM_CPU_MODE_SVC:
9725 return 19;
9726 case ARM_CPU_MODE_ABT:
9727 return 21;
9728 case ARM_CPU_MODE_UND:
9729 return 23;
9730 case ARM_CPU_MODE_FIQ:
9731 return 29;
9732 default:
9733 g_assert_not_reached();
9735 case 14:
9736 switch (mode) {
9737 case ARM_CPU_MODE_USR:
9738 case ARM_CPU_MODE_SYS:
9739 case ARM_CPU_MODE_HYP:
9740 return 14;
9741 case ARM_CPU_MODE_IRQ:
9742 return 16;
9743 case ARM_CPU_MODE_SVC:
9744 return 18;
9745 case ARM_CPU_MODE_ABT:
9746 return 20;
9747 case ARM_CPU_MODE_UND:
9748 return 22;
9749 case ARM_CPU_MODE_FIQ:
9750 return 30;
9751 default:
9752 g_assert_not_reached();
9754 case 15:
9755 return 31;
9756 default:
9757 g_assert_not_reached();
9761 /* Handle exception entry to a target EL which is using AArch64 */
9762 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
9764 ARMCPU *cpu = ARM_CPU(cs);
9765 CPUARMState *env = &cpu->env;
9766 unsigned int new_el = env->exception.target_el;
9767 target_ulong addr = env->cp15.vbar_el[new_el];
9768 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
9769 unsigned int old_mode;
9770 unsigned int cur_el = arm_current_el(env);
9771 int rt;
9774 * Note that new_el can never be 0. If cur_el is 0, then
9775 * el0_a64 is is_a64(), else el0_a64 is ignored.
9777 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
9779 if (cur_el < new_el) {
9780 /* Entry vector offset depends on whether the implemented EL
9781 * immediately lower than the target level is using AArch32 or AArch64
9783 bool is_aa64;
9784 uint64_t hcr;
9786 switch (new_el) {
9787 case 3:
9788 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
9789 break;
9790 case 2:
9791 hcr = arm_hcr_el2_eff(env);
9792 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
9793 is_aa64 = (hcr & HCR_RW) != 0;
9794 break;
9796 /* fall through */
9797 case 1:
9798 is_aa64 = is_a64(env);
9799 break;
9800 default:
9801 g_assert_not_reached();
9804 if (is_aa64) {
9805 addr += 0x400;
9806 } else {
9807 addr += 0x600;
9809 } else if (pstate_read(env) & PSTATE_SP) {
9810 addr += 0x200;
9813 switch (cs->exception_index) {
9814 case EXCP_PREFETCH_ABORT:
9815 case EXCP_DATA_ABORT:
9816 env->cp15.far_el[new_el] = env->exception.vaddress;
9817 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
9818 env->cp15.far_el[new_el]);
9819 /* fall through */
9820 case EXCP_BKPT:
9821 case EXCP_UDEF:
9822 case EXCP_SWI:
9823 case EXCP_HVC:
9824 case EXCP_HYP_TRAP:
9825 case EXCP_SMC:
9826 switch (syn_get_ec(env->exception.syndrome)) {
9827 case EC_ADVSIMDFPACCESSTRAP:
9829 * QEMU internal FP/SIMD syndromes from AArch32 include the
9830 * TA and coproc fields which are only exposed if the exception
9831 * is taken to AArch32 Hyp mode. Mask them out to get a valid
9832 * AArch64 format syndrome.
9834 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
9835 break;
9836 case EC_CP14RTTRAP:
9837 case EC_CP15RTTRAP:
9838 case EC_CP14DTTRAP:
9840 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
9841 * the raw register field from the insn; when taking this to
9842 * AArch64 we must convert it to the AArch64 view of the register
9843 * number. Notice that we read a 4-bit AArch32 register number and
9844 * write back a 5-bit AArch64 one.
9846 rt = extract32(env->exception.syndrome, 5, 4);
9847 rt = aarch64_regnum(env, rt);
9848 env->exception.syndrome = deposit32(env->exception.syndrome,
9849 5, 5, rt);
9850 break;
9851 case EC_CP15RRTTRAP:
9852 case EC_CP14RRTTRAP:
9853 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
9854 rt = extract32(env->exception.syndrome, 5, 4);
9855 rt = aarch64_regnum(env, rt);
9856 env->exception.syndrome = deposit32(env->exception.syndrome,
9857 5, 5, rt);
9858 rt = extract32(env->exception.syndrome, 10, 4);
9859 rt = aarch64_regnum(env, rt);
9860 env->exception.syndrome = deposit32(env->exception.syndrome,
9861 10, 5, rt);
9862 break;
9864 env->cp15.esr_el[new_el] = env->exception.syndrome;
9865 break;
9866 case EXCP_IRQ:
9867 case EXCP_VIRQ:
9868 addr += 0x80;
9869 break;
9870 case EXCP_FIQ:
9871 case EXCP_VFIQ:
9872 addr += 0x100;
9873 break;
9874 default:
9875 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9878 if (is_a64(env)) {
9879 old_mode = pstate_read(env);
9880 aarch64_save_sp(env, arm_current_el(env));
9881 env->elr_el[new_el] = env->pc;
9882 } else {
9883 old_mode = cpsr_read(env);
9884 env->elr_el[new_el] = env->regs[15];
9886 aarch64_sync_32_to_64(env);
9888 env->condexec_bits = 0;
9890 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
9892 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
9893 env->elr_el[new_el]);
9895 if (cpu_isar_feature(aa64_pan, cpu)) {
9896 /* The value of PSTATE.PAN is normally preserved, except when ... */
9897 new_mode |= old_mode & PSTATE_PAN;
9898 switch (new_el) {
9899 case 2:
9900 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */
9901 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
9902 != (HCR_E2H | HCR_TGE)) {
9903 break;
9905 /* fall through */
9906 case 1:
9907 /* ... the target is EL1 ... */
9908 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */
9909 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
9910 new_mode |= PSTATE_PAN;
9912 break;
9915 if (cpu_isar_feature(aa64_mte, cpu)) {
9916 new_mode |= PSTATE_TCO;
9919 pstate_write(env, PSTATE_DAIF | new_mode);
9920 env->aarch64 = 1;
9921 aarch64_restore_sp(env, new_el);
9922 helper_rebuild_hflags_a64(env, new_el);
9924 env->pc = addr;
9926 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
9927 new_el, env->pc, pstate_read(env));
9931 * Do semihosting call and set the appropriate return value. All the
9932 * permission and validity checks have been done at translate time.
9934 * We only see semihosting exceptions in TCG only as they are not
9935 * trapped to the hypervisor in KVM.
9937 #ifdef CONFIG_TCG
9938 static void handle_semihosting(CPUState *cs)
9940 ARMCPU *cpu = ARM_CPU(cs);
9941 CPUARMState *env = &cpu->env;
9943 if (is_a64(env)) {
9944 qemu_log_mask(CPU_LOG_INT,
9945 "...handling as semihosting call 0x%" PRIx64 "\n",
9946 env->xregs[0]);
9947 env->xregs[0] = do_common_semihosting(cs);
9948 env->pc += 4;
9949 } else {
9950 qemu_log_mask(CPU_LOG_INT,
9951 "...handling as semihosting call 0x%x\n",
9952 env->regs[0]);
9953 env->regs[0] = do_common_semihosting(cs);
9954 env->regs[15] += env->thumb ? 2 : 4;
9957 #endif
9959 /* Handle a CPU exception for A and R profile CPUs.
9960 * Do any appropriate logging, handle PSCI calls, and then hand off
9961 * to the AArch64-entry or AArch32-entry function depending on the
9962 * target exception level's register width.
9964 void arm_cpu_do_interrupt(CPUState *cs)
9966 ARMCPU *cpu = ARM_CPU(cs);
9967 CPUARMState *env = &cpu->env;
9968 unsigned int new_el = env->exception.target_el;
9970 assert(!arm_feature(env, ARM_FEATURE_M));
9972 arm_log_exception(cs->exception_index);
9973 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
9974 new_el);
9975 if (qemu_loglevel_mask(CPU_LOG_INT)
9976 && !excp_is_internal(cs->exception_index)) {
9977 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
9978 syn_get_ec(env->exception.syndrome),
9979 env->exception.syndrome);
9982 if (arm_is_psci_call(cpu, cs->exception_index)) {
9983 arm_handle_psci_call(cpu);
9984 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
9985 return;
9989 * Semihosting semantics depend on the register width of the code
9990 * that caused the exception, not the target exception level, so
9991 * must be handled here.
9993 #ifdef CONFIG_TCG
9994 if (cs->exception_index == EXCP_SEMIHOST) {
9995 handle_semihosting(cs);
9996 return;
9998 #endif
10000 /* Hooks may change global state so BQL should be held, also the
10001 * BQL needs to be held for any modification of
10002 * cs->interrupt_request.
10004 g_assert(qemu_mutex_iothread_locked());
10006 arm_call_pre_el_change_hook(cpu);
10008 assert(!excp_is_internal(cs->exception_index));
10009 if (arm_el_is_aa64(env, new_el)) {
10010 arm_cpu_do_interrupt_aarch64(cs);
10011 } else {
10012 arm_cpu_do_interrupt_aarch32(cs);
10015 arm_call_el_change_hook(cpu);
10017 if (!kvm_enabled()) {
10018 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
10021 #endif /* !CONFIG_USER_ONLY */
10023 uint64_t arm_sctlr(CPUARMState *env, int el)
10025 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
10026 if (el == 0) {
10027 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
10028 el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0)
10029 ? 2 : 1;
10031 return env->cp15.sctlr_el[el];
10034 /* Return the SCTLR value which controls this address translation regime */
10035 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
10037 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
10040 #ifndef CONFIG_USER_ONLY
10042 /* Return true if the specified stage of address translation is disabled */
10043 static inline bool regime_translation_disabled(CPUARMState *env,
10044 ARMMMUIdx mmu_idx)
10046 uint64_t hcr_el2;
10048 if (arm_feature(env, ARM_FEATURE_M)) {
10049 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
10050 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
10051 case R_V7M_MPU_CTRL_ENABLE_MASK:
10052 /* Enabled, but not for HardFault and NMI */
10053 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
10054 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
10055 /* Enabled for all cases */
10056 return false;
10057 case 0:
10058 default:
10059 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
10060 * we warned about that in armv7m_nvic.c when the guest set it.
10062 return true;
10066 hcr_el2 = arm_hcr_el2_eff(env);
10068 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
10069 /* HCR.DC means HCR.VM behaves as 1 */
10070 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
10073 if (hcr_el2 & HCR_TGE) {
10074 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
10075 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
10076 return true;
10080 if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
10081 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
10082 return true;
10085 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
10088 static inline bool regime_translation_big_endian(CPUARMState *env,
10089 ARMMMUIdx mmu_idx)
10091 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
10094 /* Return the TTBR associated with this translation regime */
10095 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
10096 int ttbrn)
10098 if (mmu_idx == ARMMMUIdx_Stage2) {
10099 return env->cp15.vttbr_el2;
10101 if (mmu_idx == ARMMMUIdx_Stage2_S) {
10102 return env->cp15.vsttbr_el2;
10104 if (ttbrn == 0) {
10105 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
10106 } else {
10107 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
10111 #endif /* !CONFIG_USER_ONLY */
10113 /* Convert a possible stage1+2 MMU index into the appropriate
10114 * stage 1 MMU index
10116 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
10118 switch (mmu_idx) {
10119 case ARMMMUIdx_SE10_0:
10120 return ARMMMUIdx_Stage1_SE0;
10121 case ARMMMUIdx_SE10_1:
10122 return ARMMMUIdx_Stage1_SE1;
10123 case ARMMMUIdx_SE10_1_PAN:
10124 return ARMMMUIdx_Stage1_SE1_PAN;
10125 case ARMMMUIdx_E10_0:
10126 return ARMMMUIdx_Stage1_E0;
10127 case ARMMMUIdx_E10_1:
10128 return ARMMMUIdx_Stage1_E1;
10129 case ARMMMUIdx_E10_1_PAN:
10130 return ARMMMUIdx_Stage1_E1_PAN;
10131 default:
10132 return mmu_idx;
10136 /* Return true if the translation regime is using LPAE format page tables */
10137 static inline bool regime_using_lpae_format(CPUARMState *env,
10138 ARMMMUIdx mmu_idx)
10140 int el = regime_el(env, mmu_idx);
10141 if (el == 2 || arm_el_is_aa64(env, el)) {
10142 return true;
10144 if (arm_feature(env, ARM_FEATURE_LPAE)
10145 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
10146 return true;
10148 return false;
10151 /* Returns true if the stage 1 translation regime is using LPAE format page
10152 * tables. Used when raising alignment exceptions, whose FSR changes depending
10153 * on whether the long or short descriptor format is in use. */
10154 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
10156 mmu_idx = stage_1_mmu_idx(mmu_idx);
10158 return regime_using_lpae_format(env, mmu_idx);
10161 #ifndef CONFIG_USER_ONLY
10162 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
10164 switch (mmu_idx) {
10165 case ARMMMUIdx_SE10_0:
10166 case ARMMMUIdx_E20_0:
10167 case ARMMMUIdx_SE20_0:
10168 case ARMMMUIdx_Stage1_E0:
10169 case ARMMMUIdx_Stage1_SE0:
10170 case ARMMMUIdx_MUser:
10171 case ARMMMUIdx_MSUser:
10172 case ARMMMUIdx_MUserNegPri:
10173 case ARMMMUIdx_MSUserNegPri:
10174 return true;
10175 default:
10176 return false;
10177 case ARMMMUIdx_E10_0:
10178 case ARMMMUIdx_E10_1:
10179 case ARMMMUIdx_E10_1_PAN:
10180 g_assert_not_reached();
10184 /* Translate section/page access permissions to page
10185 * R/W protection flags
10187 * @env: CPUARMState
10188 * @mmu_idx: MMU index indicating required translation regime
10189 * @ap: The 3-bit access permissions (AP[2:0])
10190 * @domain_prot: The 2-bit domain access permissions
10192 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
10193 int ap, int domain_prot)
10195 bool is_user = regime_is_user(env, mmu_idx);
10197 if (domain_prot == 3) {
10198 return PAGE_READ | PAGE_WRITE;
10201 switch (ap) {
10202 case 0:
10203 if (arm_feature(env, ARM_FEATURE_V7)) {
10204 return 0;
10206 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
10207 case SCTLR_S:
10208 return is_user ? 0 : PAGE_READ;
10209 case SCTLR_R:
10210 return PAGE_READ;
10211 default:
10212 return 0;
10214 case 1:
10215 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10216 case 2:
10217 if (is_user) {
10218 return PAGE_READ;
10219 } else {
10220 return PAGE_READ | PAGE_WRITE;
10222 case 3:
10223 return PAGE_READ | PAGE_WRITE;
10224 case 4: /* Reserved. */
10225 return 0;
10226 case 5:
10227 return is_user ? 0 : PAGE_READ;
10228 case 6:
10229 return PAGE_READ;
10230 case 7:
10231 if (!arm_feature(env, ARM_FEATURE_V6K)) {
10232 return 0;
10234 return PAGE_READ;
10235 default:
10236 g_assert_not_reached();
10240 /* Translate section/page access permissions to page
10241 * R/W protection flags.
10243 * @ap: The 2-bit simple AP (AP[2:1])
10244 * @is_user: TRUE if accessing from PL0
10246 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
10248 switch (ap) {
10249 case 0:
10250 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10251 case 1:
10252 return PAGE_READ | PAGE_WRITE;
10253 case 2:
10254 return is_user ? 0 : PAGE_READ;
10255 case 3:
10256 return PAGE_READ;
10257 default:
10258 g_assert_not_reached();
10262 static inline int
10263 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
10265 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
10268 /* Translate S2 section/page access permissions to protection flags
10270 * @env: CPUARMState
10271 * @s2ap: The 2-bit stage2 access permissions (S2AP)
10272 * @xn: XN (execute-never) bits
10273 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
10275 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
10277 int prot = 0;
10279 if (s2ap & 1) {
10280 prot |= PAGE_READ;
10282 if (s2ap & 2) {
10283 prot |= PAGE_WRITE;
10286 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
10287 switch (xn) {
10288 case 0:
10289 prot |= PAGE_EXEC;
10290 break;
10291 case 1:
10292 if (s1_is_el0) {
10293 prot |= PAGE_EXEC;
10295 break;
10296 case 2:
10297 break;
10298 case 3:
10299 if (!s1_is_el0) {
10300 prot |= PAGE_EXEC;
10302 break;
10303 default:
10304 g_assert_not_reached();
10306 } else {
10307 if (!extract32(xn, 1, 1)) {
10308 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
10309 prot |= PAGE_EXEC;
10313 return prot;
10316 /* Translate section/page access permissions to protection flags
10318 * @env: CPUARMState
10319 * @mmu_idx: MMU index indicating required translation regime
10320 * @is_aa64: TRUE if AArch64
10321 * @ap: The 2-bit simple AP (AP[2:1])
10322 * @ns: NS (non-secure) bit
10323 * @xn: XN (execute-never) bit
10324 * @pxn: PXN (privileged execute-never) bit
10326 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
10327 int ap, int ns, int xn, int pxn)
10329 bool is_user = regime_is_user(env, mmu_idx);
10330 int prot_rw, user_rw;
10331 bool have_wxn;
10332 int wxn = 0;
10334 assert(mmu_idx != ARMMMUIdx_Stage2);
10335 assert(mmu_idx != ARMMMUIdx_Stage2_S);
10337 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
10338 if (is_user) {
10339 prot_rw = user_rw;
10340 } else {
10341 if (user_rw && regime_is_pan(env, mmu_idx)) {
10342 /* PAN forbids data accesses but doesn't affect insn fetch */
10343 prot_rw = 0;
10344 } else {
10345 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
10349 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
10350 return prot_rw;
10353 /* TODO have_wxn should be replaced with
10354 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
10355 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
10356 * compatible processors have EL2, which is required for [U]WXN.
10358 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
10360 if (have_wxn) {
10361 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
10364 if (is_aa64) {
10365 if (regime_has_2_ranges(mmu_idx) && !is_user) {
10366 xn = pxn || (user_rw & PAGE_WRITE);
10368 } else if (arm_feature(env, ARM_FEATURE_V7)) {
10369 switch (regime_el(env, mmu_idx)) {
10370 case 1:
10371 case 3:
10372 if (is_user) {
10373 xn = xn || !(user_rw & PAGE_READ);
10374 } else {
10375 int uwxn = 0;
10376 if (have_wxn) {
10377 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
10379 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
10380 (uwxn && (user_rw & PAGE_WRITE));
10382 break;
10383 case 2:
10384 break;
10386 } else {
10387 xn = wxn = 0;
10390 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
10391 return prot_rw;
10393 return prot_rw | PAGE_EXEC;
10396 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
10397 uint32_t *table, uint32_t address)
10399 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
10400 TCR *tcr = regime_tcr(env, mmu_idx);
10402 if (address & tcr->mask) {
10403 if (tcr->raw_tcr & TTBCR_PD1) {
10404 /* Translation table walk disabled for TTBR1 */
10405 return false;
10407 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
10408 } else {
10409 if (tcr->raw_tcr & TTBCR_PD0) {
10410 /* Translation table walk disabled for TTBR0 */
10411 return false;
10413 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
10415 *table |= (address >> 18) & 0x3ffc;
10416 return true;
10419 /* Translate a S1 pagetable walk through S2 if needed. */
10420 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
10421 hwaddr addr, bool *is_secure,
10422 ARMMMUFaultInfo *fi)
10424 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) &&
10425 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
10426 target_ulong s2size;
10427 hwaddr s2pa;
10428 int s2prot;
10429 int ret;
10430 ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S
10431 : ARMMMUIdx_Stage2;
10432 ARMCacheAttrs cacheattrs = {};
10433 MemTxAttrs txattrs = {};
10435 ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false,
10436 &s2pa, &txattrs, &s2prot, &s2size, fi,
10437 &cacheattrs);
10438 if (ret) {
10439 assert(fi->type != ARMFault_None);
10440 fi->s2addr = addr;
10441 fi->stage2 = true;
10442 fi->s1ptw = true;
10443 fi->s1ns = !*is_secure;
10444 return ~0;
10446 if ((arm_hcr_el2_eff(env) & HCR_PTW) &&
10447 (cacheattrs.attrs & 0xf0) == 0) {
10449 * PTW set and S1 walk touched S2 Device memory:
10450 * generate Permission fault.
10452 fi->type = ARMFault_Permission;
10453 fi->s2addr = addr;
10454 fi->stage2 = true;
10455 fi->s1ptw = true;
10456 fi->s1ns = !*is_secure;
10457 return ~0;
10460 if (arm_is_secure_below_el3(env)) {
10461 /* Check if page table walk is to secure or non-secure PA space. */
10462 if (*is_secure) {
10463 *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW);
10464 } else {
10465 *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW);
10467 } else {
10468 assert(!*is_secure);
10471 addr = s2pa;
10473 return addr;
10476 /* All loads done in the course of a page table walk go through here. */
10477 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10478 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10480 ARMCPU *cpu = ARM_CPU(cs);
10481 CPUARMState *env = &cpu->env;
10482 MemTxAttrs attrs = {};
10483 MemTxResult result = MEMTX_OK;
10484 AddressSpace *as;
10485 uint32_t data;
10487 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
10488 attrs.secure = is_secure;
10489 as = arm_addressspace(cs, attrs);
10490 if (fi->s1ptw) {
10491 return 0;
10493 if (regime_translation_big_endian(env, mmu_idx)) {
10494 data = address_space_ldl_be(as, addr, attrs, &result);
10495 } else {
10496 data = address_space_ldl_le(as, addr, attrs, &result);
10498 if (result == MEMTX_OK) {
10499 return data;
10501 fi->type = ARMFault_SyncExternalOnWalk;
10502 fi->ea = arm_extabort_type(result);
10503 return 0;
10506 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10507 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10509 ARMCPU *cpu = ARM_CPU(cs);
10510 CPUARMState *env = &cpu->env;
10511 MemTxAttrs attrs = {};
10512 MemTxResult result = MEMTX_OK;
10513 AddressSpace *as;
10514 uint64_t data;
10516 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
10517 attrs.secure = is_secure;
10518 as = arm_addressspace(cs, attrs);
10519 if (fi->s1ptw) {
10520 return 0;
10522 if (regime_translation_big_endian(env, mmu_idx)) {
10523 data = address_space_ldq_be(as, addr, attrs, &result);
10524 } else {
10525 data = address_space_ldq_le(as, addr, attrs, &result);
10527 if (result == MEMTX_OK) {
10528 return data;
10530 fi->type = ARMFault_SyncExternalOnWalk;
10531 fi->ea = arm_extabort_type(result);
10532 return 0;
10535 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
10536 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10537 hwaddr *phys_ptr, int *prot,
10538 target_ulong *page_size,
10539 ARMMMUFaultInfo *fi)
10541 CPUState *cs = env_cpu(env);
10542 int level = 1;
10543 uint32_t table;
10544 uint32_t desc;
10545 int type;
10546 int ap;
10547 int domain = 0;
10548 int domain_prot;
10549 hwaddr phys_addr;
10550 uint32_t dacr;
10552 /* Pagetable walk. */
10553 /* Lookup l1 descriptor. */
10554 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10555 /* Section translation fault if page walk is disabled by PD0 or PD1 */
10556 fi->type = ARMFault_Translation;
10557 goto do_fault;
10559 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10560 mmu_idx, fi);
10561 if (fi->type != ARMFault_None) {
10562 goto do_fault;
10564 type = (desc & 3);
10565 domain = (desc >> 5) & 0x0f;
10566 if (regime_el(env, mmu_idx) == 1) {
10567 dacr = env->cp15.dacr_ns;
10568 } else {
10569 dacr = env->cp15.dacr_s;
10571 domain_prot = (dacr >> (domain * 2)) & 3;
10572 if (type == 0) {
10573 /* Section translation fault. */
10574 fi->type = ARMFault_Translation;
10575 goto do_fault;
10577 if (type != 2) {
10578 level = 2;
10580 if (domain_prot == 0 || domain_prot == 2) {
10581 fi->type = ARMFault_Domain;
10582 goto do_fault;
10584 if (type == 2) {
10585 /* 1Mb section. */
10586 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10587 ap = (desc >> 10) & 3;
10588 *page_size = 1024 * 1024;
10589 } else {
10590 /* Lookup l2 entry. */
10591 if (type == 1) {
10592 /* Coarse pagetable. */
10593 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10594 } else {
10595 /* Fine pagetable. */
10596 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
10598 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10599 mmu_idx, fi);
10600 if (fi->type != ARMFault_None) {
10601 goto do_fault;
10603 switch (desc & 3) {
10604 case 0: /* Page translation fault. */
10605 fi->type = ARMFault_Translation;
10606 goto do_fault;
10607 case 1: /* 64k page. */
10608 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10609 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
10610 *page_size = 0x10000;
10611 break;
10612 case 2: /* 4k page. */
10613 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10614 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
10615 *page_size = 0x1000;
10616 break;
10617 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
10618 if (type == 1) {
10619 /* ARMv6/XScale extended small page format */
10620 if (arm_feature(env, ARM_FEATURE_XSCALE)
10621 || arm_feature(env, ARM_FEATURE_V6)) {
10622 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10623 *page_size = 0x1000;
10624 } else {
10625 /* UNPREDICTABLE in ARMv5; we choose to take a
10626 * page translation fault.
10628 fi->type = ARMFault_Translation;
10629 goto do_fault;
10631 } else {
10632 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
10633 *page_size = 0x400;
10635 ap = (desc >> 4) & 3;
10636 break;
10637 default:
10638 /* Never happens, but compiler isn't smart enough to tell. */
10639 abort();
10642 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10643 *prot |= *prot ? PAGE_EXEC : 0;
10644 if (!(*prot & (1 << access_type))) {
10645 /* Access permission fault. */
10646 fi->type = ARMFault_Permission;
10647 goto do_fault;
10649 *phys_ptr = phys_addr;
10650 return false;
10651 do_fault:
10652 fi->domain = domain;
10653 fi->level = level;
10654 return true;
10657 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
10658 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10659 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10660 target_ulong *page_size, ARMMMUFaultInfo *fi)
10662 CPUState *cs = env_cpu(env);
10663 ARMCPU *cpu = env_archcpu(env);
10664 int level = 1;
10665 uint32_t table;
10666 uint32_t desc;
10667 uint32_t xn;
10668 uint32_t pxn = 0;
10669 int type;
10670 int ap;
10671 int domain = 0;
10672 int domain_prot;
10673 hwaddr phys_addr;
10674 uint32_t dacr;
10675 bool ns;
10677 /* Pagetable walk. */
10678 /* Lookup l1 descriptor. */
10679 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10680 /* Section translation fault if page walk is disabled by PD0 or PD1 */
10681 fi->type = ARMFault_Translation;
10682 goto do_fault;
10684 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10685 mmu_idx, fi);
10686 if (fi->type != ARMFault_None) {
10687 goto do_fault;
10689 type = (desc & 3);
10690 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
10691 /* Section translation fault, or attempt to use the encoding
10692 * which is Reserved on implementations without PXN.
10694 fi->type = ARMFault_Translation;
10695 goto do_fault;
10697 if ((type == 1) || !(desc & (1 << 18))) {
10698 /* Page or Section. */
10699 domain = (desc >> 5) & 0x0f;
10701 if (regime_el(env, mmu_idx) == 1) {
10702 dacr = env->cp15.dacr_ns;
10703 } else {
10704 dacr = env->cp15.dacr_s;
10706 if (type == 1) {
10707 level = 2;
10709 domain_prot = (dacr >> (domain * 2)) & 3;
10710 if (domain_prot == 0 || domain_prot == 2) {
10711 /* Section or Page domain fault */
10712 fi->type = ARMFault_Domain;
10713 goto do_fault;
10715 if (type != 1) {
10716 if (desc & (1 << 18)) {
10717 /* Supersection. */
10718 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
10719 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
10720 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
10721 *page_size = 0x1000000;
10722 } else {
10723 /* Section. */
10724 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10725 *page_size = 0x100000;
10727 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
10728 xn = desc & (1 << 4);
10729 pxn = desc & 1;
10730 ns = extract32(desc, 19, 1);
10731 } else {
10732 if (cpu_isar_feature(aa32_pxn, cpu)) {
10733 pxn = (desc >> 2) & 1;
10735 ns = extract32(desc, 3, 1);
10736 /* Lookup l2 entry. */
10737 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10738 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10739 mmu_idx, fi);
10740 if (fi->type != ARMFault_None) {
10741 goto do_fault;
10743 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
10744 switch (desc & 3) {
10745 case 0: /* Page translation fault. */
10746 fi->type = ARMFault_Translation;
10747 goto do_fault;
10748 case 1: /* 64k page. */
10749 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10750 xn = desc & (1 << 15);
10751 *page_size = 0x10000;
10752 break;
10753 case 2: case 3: /* 4k page. */
10754 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10755 xn = desc & 1;
10756 *page_size = 0x1000;
10757 break;
10758 default:
10759 /* Never happens, but compiler isn't smart enough to tell. */
10760 abort();
10763 if (domain_prot == 3) {
10764 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10765 } else {
10766 if (pxn && !regime_is_user(env, mmu_idx)) {
10767 xn = 1;
10769 if (xn && access_type == MMU_INST_FETCH) {
10770 fi->type = ARMFault_Permission;
10771 goto do_fault;
10774 if (arm_feature(env, ARM_FEATURE_V6K) &&
10775 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
10776 /* The simplified model uses AP[0] as an access control bit. */
10777 if ((ap & 1) == 0) {
10778 /* Access flag fault. */
10779 fi->type = ARMFault_AccessFlag;
10780 goto do_fault;
10782 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
10783 } else {
10784 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10786 if (*prot && !xn) {
10787 *prot |= PAGE_EXEC;
10789 if (!(*prot & (1 << access_type))) {
10790 /* Access permission fault. */
10791 fi->type = ARMFault_Permission;
10792 goto do_fault;
10795 if (ns) {
10796 /* The NS bit will (as required by the architecture) have no effect if
10797 * the CPU doesn't support TZ or this is a non-secure translation
10798 * regime, because the attribute will already be non-secure.
10800 attrs->secure = false;
10802 *phys_ptr = phys_addr;
10803 return false;
10804 do_fault:
10805 fi->domain = domain;
10806 fi->level = level;
10807 return true;
10811 * check_s2_mmu_setup
10812 * @cpu: ARMCPU
10813 * @is_aa64: True if the translation regime is in AArch64 state
10814 * @startlevel: Suggested starting level
10815 * @inputsize: Bitsize of IPAs
10816 * @stride: Page-table stride (See the ARM ARM)
10818 * Returns true if the suggested S2 translation parameters are OK and
10819 * false otherwise.
10821 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
10822 int inputsize, int stride)
10824 const int grainsize = stride + 3;
10825 int startsizecheck;
10827 /* Negative levels are never allowed. */
10828 if (level < 0) {
10829 return false;
10832 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
10833 if (startsizecheck < 1 || startsizecheck > stride + 4) {
10834 return false;
10837 if (is_aa64) {
10838 CPUARMState *env = &cpu->env;
10839 unsigned int pamax = arm_pamax(cpu);
10841 switch (stride) {
10842 case 13: /* 64KB Pages. */
10843 if (level == 0 || (level == 1 && pamax <= 42)) {
10844 return false;
10846 break;
10847 case 11: /* 16KB Pages. */
10848 if (level == 0 || (level == 1 && pamax <= 40)) {
10849 return false;
10851 break;
10852 case 9: /* 4KB Pages. */
10853 if (level == 0 && pamax <= 42) {
10854 return false;
10856 break;
10857 default:
10858 g_assert_not_reached();
10861 /* Inputsize checks. */
10862 if (inputsize > pamax &&
10863 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
10864 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
10865 return false;
10867 } else {
10868 /* AArch32 only supports 4KB pages. Assert on that. */
10869 assert(stride == 9);
10871 if (level == 0) {
10872 return false;
10875 return true;
10878 /* Translate from the 4-bit stage 2 representation of
10879 * memory attributes (without cache-allocation hints) to
10880 * the 8-bit representation of the stage 1 MAIR registers
10881 * (which includes allocation hints).
10883 * ref: shared/translation/attrs/S2AttrDecode()
10884 * .../S2ConvertAttrsHints()
10886 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
10888 uint8_t hiattr = extract32(s2attrs, 2, 2);
10889 uint8_t loattr = extract32(s2attrs, 0, 2);
10890 uint8_t hihint = 0, lohint = 0;
10892 if (hiattr != 0) { /* normal memory */
10893 if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */
10894 hiattr = loattr = 1; /* non-cacheable */
10895 } else {
10896 if (hiattr != 1) { /* Write-through or write-back */
10897 hihint = 3; /* RW allocate */
10899 if (loattr != 1) { /* Write-through or write-back */
10900 lohint = 3; /* RW allocate */
10905 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
10907 #endif /* !CONFIG_USER_ONLY */
10909 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
10911 if (regime_has_2_ranges(mmu_idx)) {
10912 return extract64(tcr, 37, 2);
10913 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
10914 return 0; /* VTCR_EL2 */
10915 } else {
10916 /* Replicate the single TBI bit so we always have 2 bits. */
10917 return extract32(tcr, 20, 1) * 3;
10921 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
10923 if (regime_has_2_ranges(mmu_idx)) {
10924 return extract64(tcr, 51, 2);
10925 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
10926 return 0; /* VTCR_EL2 */
10927 } else {
10928 /* Replicate the single TBID bit so we always have 2 bits. */
10929 return extract32(tcr, 29, 1) * 3;
10933 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
10935 if (regime_has_2_ranges(mmu_idx)) {
10936 return extract64(tcr, 57, 2);
10937 } else {
10938 /* Replicate the single TCMA bit so we always have 2 bits. */
10939 return extract32(tcr, 30, 1) * 3;
10943 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
10944 ARMMMUIdx mmu_idx, bool data)
10946 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
10947 bool epd, hpd, using16k, using64k;
10948 int select, tsz, tbi, max_tsz;
10950 if (!regime_has_2_ranges(mmu_idx)) {
10951 select = 0;
10952 tsz = extract32(tcr, 0, 6);
10953 using64k = extract32(tcr, 14, 1);
10954 using16k = extract32(tcr, 15, 1);
10955 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
10956 /* VTCR_EL2 */
10957 hpd = false;
10958 } else {
10959 hpd = extract32(tcr, 24, 1);
10961 epd = false;
10962 } else {
10964 * Bit 55 is always between the two regions, and is canonical for
10965 * determining if address tagging is enabled.
10967 select = extract64(va, 55, 1);
10968 if (!select) {
10969 tsz = extract32(tcr, 0, 6);
10970 epd = extract32(tcr, 7, 1);
10971 using64k = extract32(tcr, 14, 1);
10972 using16k = extract32(tcr, 15, 1);
10973 hpd = extract64(tcr, 41, 1);
10974 } else {
10975 int tg = extract32(tcr, 30, 2);
10976 using16k = tg == 1;
10977 using64k = tg == 3;
10978 tsz = extract32(tcr, 16, 6);
10979 epd = extract32(tcr, 23, 1);
10980 hpd = extract64(tcr, 42, 1);
10984 if (cpu_isar_feature(aa64_st, env_archcpu(env))) {
10985 max_tsz = 48 - using64k;
10986 } else {
10987 max_tsz = 39;
10990 tsz = MIN(tsz, max_tsz);
10991 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */
10993 /* Present TBI as a composite with TBID. */
10994 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
10995 if (!data) {
10996 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
10998 tbi = (tbi >> select) & 1;
11000 return (ARMVAParameters) {
11001 .tsz = tsz,
11002 .select = select,
11003 .tbi = tbi,
11004 .epd = epd,
11005 .hpd = hpd,
11006 .using16k = using16k,
11007 .using64k = using64k,
11011 #ifndef CONFIG_USER_ONLY
11012 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
11013 ARMMMUIdx mmu_idx)
11015 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11016 uint32_t el = regime_el(env, mmu_idx);
11017 int select, tsz;
11018 bool epd, hpd;
11020 assert(mmu_idx != ARMMMUIdx_Stage2_S);
11022 if (mmu_idx == ARMMMUIdx_Stage2) {
11023 /* VTCR */
11024 bool sext = extract32(tcr, 4, 1);
11025 bool sign = extract32(tcr, 3, 1);
11028 * If the sign-extend bit is not the same as t0sz[3], the result
11029 * is unpredictable. Flag this as a guest error.
11031 if (sign != sext) {
11032 qemu_log_mask(LOG_GUEST_ERROR,
11033 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
11035 tsz = sextract32(tcr, 0, 4) + 8;
11036 select = 0;
11037 hpd = false;
11038 epd = false;
11039 } else if (el == 2) {
11040 /* HTCR */
11041 tsz = extract32(tcr, 0, 3);
11042 select = 0;
11043 hpd = extract64(tcr, 24, 1);
11044 epd = false;
11045 } else {
11046 int t0sz = extract32(tcr, 0, 3);
11047 int t1sz = extract32(tcr, 16, 3);
11049 if (t1sz == 0) {
11050 select = va > (0xffffffffu >> t0sz);
11051 } else {
11052 /* Note that we will detect errors later. */
11053 select = va >= ~(0xffffffffu >> t1sz);
11055 if (!select) {
11056 tsz = t0sz;
11057 epd = extract32(tcr, 7, 1);
11058 hpd = extract64(tcr, 41, 1);
11059 } else {
11060 tsz = t1sz;
11061 epd = extract32(tcr, 23, 1);
11062 hpd = extract64(tcr, 42, 1);
11064 /* For aarch32, hpd0 is not enabled without t2e as well. */
11065 hpd &= extract32(tcr, 6, 1);
11068 return (ARMVAParameters) {
11069 .tsz = tsz,
11070 .select = select,
11071 .epd = epd,
11072 .hpd = hpd,
11077 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
11079 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
11080 * prot and page_size may not be filled in, and the populated fsr value provides
11081 * information on why the translation aborted, in the format of a long-format
11082 * DFSR/IFSR fault register, with the following caveats:
11083 * * the WnR bit is never set (the caller must do this).
11085 * @env: CPUARMState
11086 * @address: virtual address to get physical address for
11087 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
11088 * @mmu_idx: MMU index indicating required translation regime
11089 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table
11090 * walk), must be true if this is stage 2 of a stage 1+2 walk for an
11091 * EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored.
11092 * @phys_ptr: set to the physical address corresponding to the virtual address
11093 * @attrs: set to the memory transaction attributes to use
11094 * @prot: set to the permissions for the page containing phys_ptr
11095 * @page_size_ptr: set to the size of the page containing phys_ptr
11096 * @fi: set to fault info if the translation fails
11097 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
11099 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
11100 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11101 bool s1_is_el0,
11102 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
11103 target_ulong *page_size_ptr,
11104 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
11106 ARMCPU *cpu = env_archcpu(env);
11107 CPUState *cs = CPU(cpu);
11108 /* Read an LPAE long-descriptor translation table. */
11109 ARMFaultType fault_type = ARMFault_Translation;
11110 uint32_t level;
11111 ARMVAParameters param;
11112 uint64_t ttbr;
11113 hwaddr descaddr, indexmask, indexmask_grainsize;
11114 uint32_t tableattrs;
11115 target_ulong page_size;
11116 uint32_t attrs;
11117 int32_t stride;
11118 int addrsize, inputsize;
11119 TCR *tcr = regime_tcr(env, mmu_idx);
11120 int ap, ns, xn, pxn;
11121 uint32_t el = regime_el(env, mmu_idx);
11122 uint64_t descaddrmask;
11123 bool aarch64 = arm_el_is_aa64(env, el);
11124 bool guarded = false;
11126 /* TODO: This code does not support shareability levels. */
11127 if (aarch64) {
11128 param = aa64_va_parameters(env, address, mmu_idx,
11129 access_type != MMU_INST_FETCH);
11130 level = 0;
11131 addrsize = 64 - 8 * param.tbi;
11132 inputsize = 64 - param.tsz;
11133 } else {
11134 param = aa32_va_parameters(env, address, mmu_idx);
11135 level = 1;
11136 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
11137 inputsize = addrsize - param.tsz;
11141 * We determined the region when collecting the parameters, but we
11142 * have not yet validated that the address is valid for the region.
11143 * Extract the top bits and verify that they all match select.
11145 * For aa32, if inputsize == addrsize, then we have selected the
11146 * region by exclusion in aa32_va_parameters and there is no more
11147 * validation to do here.
11149 if (inputsize < addrsize) {
11150 target_ulong top_bits = sextract64(address, inputsize,
11151 addrsize - inputsize);
11152 if (-top_bits != param.select) {
11153 /* The gap between the two regions is a Translation fault */
11154 fault_type = ARMFault_Translation;
11155 goto do_fault;
11159 if (param.using64k) {
11160 stride = 13;
11161 } else if (param.using16k) {
11162 stride = 11;
11163 } else {
11164 stride = 9;
11167 /* Note that QEMU ignores shareability and cacheability attributes,
11168 * so we don't need to do anything with the SH, ORGN, IRGN fields
11169 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
11170 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
11171 * implement any ASID-like capability so we can ignore it (instead
11172 * we will always flush the TLB any time the ASID is changed).
11174 ttbr = regime_ttbr(env, mmu_idx, param.select);
11176 /* Here we should have set up all the parameters for the translation:
11177 * inputsize, ttbr, epd, stride, tbi
11180 if (param.epd) {
11181 /* Translation table walk disabled => Translation fault on TLB miss
11182 * Note: This is always 0 on 64-bit EL2 and EL3.
11184 goto do_fault;
11187 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
11188 /* The starting level depends on the virtual address size (which can
11189 * be up to 48 bits) and the translation granule size. It indicates
11190 * the number of strides (stride bits at a time) needed to
11191 * consume the bits of the input address. In the pseudocode this is:
11192 * level = 4 - RoundUp((inputsize - grainsize) / stride)
11193 * where their 'inputsize' is our 'inputsize', 'grainsize' is
11194 * our 'stride + 3' and 'stride' is our 'stride'.
11195 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
11196 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
11197 * = 4 - (inputsize - 4) / stride;
11199 level = 4 - (inputsize - 4) / stride;
11200 } else {
11201 /* For stage 2 translations the starting level is specified by the
11202 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
11204 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
11205 uint32_t startlevel;
11206 bool ok;
11208 if (!aarch64 || stride == 9) {
11209 /* AArch32 or 4KB pages */
11210 startlevel = 2 - sl0;
11212 if (cpu_isar_feature(aa64_st, cpu)) {
11213 startlevel &= 3;
11215 } else {
11216 /* 16KB or 64KB pages */
11217 startlevel = 3 - sl0;
11220 /* Check that the starting level is valid. */
11221 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
11222 inputsize, stride);
11223 if (!ok) {
11224 fault_type = ARMFault_Translation;
11225 goto do_fault;
11227 level = startlevel;
11230 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
11231 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
11233 /* Now we can extract the actual base address from the TTBR */
11234 descaddr = extract64(ttbr, 0, 48);
11236 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
11237 * and also to mask out CnP (bit 0) which could validly be non-zero.
11239 descaddr &= ~indexmask;
11241 /* The address field in the descriptor goes up to bit 39 for ARMv7
11242 * but up to bit 47 for ARMv8, but we use the descaddrmask
11243 * up to bit 39 for AArch32, because we don't need other bits in that case
11244 * to construct next descriptor address (anyway they should be all zeroes).
11246 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
11247 ~indexmask_grainsize;
11249 /* Secure accesses start with the page table in secure memory and
11250 * can be downgraded to non-secure at any step. Non-secure accesses
11251 * remain non-secure. We implement this by just ORing in the NSTable/NS
11252 * bits at each step.
11254 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
11255 for (;;) {
11256 uint64_t descriptor;
11257 bool nstable;
11259 descaddr |= (address >> (stride * (4 - level))) & indexmask;
11260 descaddr &= ~7ULL;
11261 nstable = extract32(tableattrs, 4, 1);
11262 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
11263 if (fi->type != ARMFault_None) {
11264 goto do_fault;
11267 if (!(descriptor & 1) ||
11268 (!(descriptor & 2) && (level == 3))) {
11269 /* Invalid, or the Reserved level 3 encoding */
11270 goto do_fault;
11272 descaddr = descriptor & descaddrmask;
11274 if ((descriptor & 2) && (level < 3)) {
11275 /* Table entry. The top five bits are attributes which may
11276 * propagate down through lower levels of the table (and
11277 * which are all arranged so that 0 means "no effect", so
11278 * we can gather them up by ORing in the bits at each level).
11280 tableattrs |= extract64(descriptor, 59, 5);
11281 level++;
11282 indexmask = indexmask_grainsize;
11283 continue;
11285 /* Block entry at level 1 or 2, or page entry at level 3.
11286 * These are basically the same thing, although the number
11287 * of bits we pull in from the vaddr varies.
11289 page_size = (1ULL << ((stride * (4 - level)) + 3));
11290 descaddr |= (address & (page_size - 1));
11291 /* Extract attributes from the descriptor */
11292 attrs = extract64(descriptor, 2, 10)
11293 | (extract64(descriptor, 52, 12) << 10);
11295 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11296 /* Stage 2 table descriptors do not include any attribute fields */
11297 break;
11299 /* Merge in attributes from table descriptors */
11300 attrs |= nstable << 3; /* NS */
11301 guarded = extract64(descriptor, 50, 1); /* GP */
11302 if (param.hpd) {
11303 /* HPD disables all the table attributes except NSTable. */
11304 break;
11306 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
11307 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
11308 * means "force PL1 access only", which means forcing AP[1] to 0.
11310 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */
11311 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */
11312 break;
11314 /* Here descaddr is the final physical address, and attributes
11315 * are all in attrs.
11317 fault_type = ARMFault_AccessFlag;
11318 if ((attrs & (1 << 8)) == 0) {
11319 /* Access flag */
11320 goto do_fault;
11323 ap = extract32(attrs, 4, 2);
11325 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11326 ns = mmu_idx == ARMMMUIdx_Stage2;
11327 xn = extract32(attrs, 11, 2);
11328 *prot = get_S2prot(env, ap, xn, s1_is_el0);
11329 } else {
11330 ns = extract32(attrs, 3, 1);
11331 xn = extract32(attrs, 12, 1);
11332 pxn = extract32(attrs, 11, 1);
11333 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
11336 fault_type = ARMFault_Permission;
11337 if (!(*prot & (1 << access_type))) {
11338 goto do_fault;
11341 if (ns) {
11342 /* The NS bit will (as required by the architecture) have no effect if
11343 * the CPU doesn't support TZ or this is a non-secure translation
11344 * regime, because the attribute will already be non-secure.
11346 txattrs->secure = false;
11348 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */
11349 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
11350 arm_tlb_bti_gp(txattrs) = true;
11353 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11354 cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4));
11355 } else {
11356 /* Index into MAIR registers for cache attributes */
11357 uint8_t attrindx = extract32(attrs, 0, 3);
11358 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
11359 assert(attrindx <= 7);
11360 cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
11362 cacheattrs->shareability = extract32(attrs, 6, 2);
11364 *phys_ptr = descaddr;
11365 *page_size_ptr = page_size;
11366 return false;
11368 do_fault:
11369 fi->type = fault_type;
11370 fi->level = level;
11371 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
11372 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 ||
11373 mmu_idx == ARMMMUIdx_Stage2_S);
11374 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2;
11375 return true;
11378 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
11379 ARMMMUIdx mmu_idx,
11380 int32_t address, int *prot)
11382 if (!arm_feature(env, ARM_FEATURE_M)) {
11383 *prot = PAGE_READ | PAGE_WRITE;
11384 switch (address) {
11385 case 0xF0000000 ... 0xFFFFFFFF:
11386 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
11387 /* hivecs execing is ok */
11388 *prot |= PAGE_EXEC;
11390 break;
11391 case 0x00000000 ... 0x7FFFFFFF:
11392 *prot |= PAGE_EXEC;
11393 break;
11395 } else {
11396 /* Default system address map for M profile cores.
11397 * The architecture specifies which regions are execute-never;
11398 * at the MPU level no other checks are defined.
11400 switch (address) {
11401 case 0x00000000 ... 0x1fffffff: /* ROM */
11402 case 0x20000000 ... 0x3fffffff: /* SRAM */
11403 case 0x60000000 ... 0x7fffffff: /* RAM */
11404 case 0x80000000 ... 0x9fffffff: /* RAM */
11405 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11406 break;
11407 case 0x40000000 ... 0x5fffffff: /* Peripheral */
11408 case 0xa0000000 ... 0xbfffffff: /* Device */
11409 case 0xc0000000 ... 0xdfffffff: /* Device */
11410 case 0xe0000000 ... 0xffffffff: /* System */
11411 *prot = PAGE_READ | PAGE_WRITE;
11412 break;
11413 default:
11414 g_assert_not_reached();
11419 static bool pmsav7_use_background_region(ARMCPU *cpu,
11420 ARMMMUIdx mmu_idx, bool is_user)
11422 /* Return true if we should use the default memory map as a
11423 * "background" region if there are no hits against any MPU regions.
11425 CPUARMState *env = &cpu->env;
11427 if (is_user) {
11428 return false;
11431 if (arm_feature(env, ARM_FEATURE_M)) {
11432 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
11433 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
11434 } else {
11435 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
11439 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
11441 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
11442 return arm_feature(env, ARM_FEATURE_M) &&
11443 extract32(address, 20, 12) == 0xe00;
11446 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
11448 /* True if address is in the M profile system region
11449 * 0xe0000000 - 0xffffffff
11451 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
11454 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
11455 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11456 hwaddr *phys_ptr, int *prot,
11457 target_ulong *page_size,
11458 ARMMMUFaultInfo *fi)
11460 ARMCPU *cpu = env_archcpu(env);
11461 int n;
11462 bool is_user = regime_is_user(env, mmu_idx);
11464 *phys_ptr = address;
11465 *page_size = TARGET_PAGE_SIZE;
11466 *prot = 0;
11468 if (regime_translation_disabled(env, mmu_idx) ||
11469 m_is_ppb_region(env, address)) {
11470 /* MPU disabled or M profile PPB access: use default memory map.
11471 * The other case which uses the default memory map in the
11472 * v7M ARM ARM pseudocode is exception vector reads from the vector
11473 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
11474 * which always does a direct read using address_space_ldl(), rather
11475 * than going via this function, so we don't need to check that here.
11477 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11478 } else { /* MPU enabled */
11479 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11480 /* region search */
11481 uint32_t base = env->pmsav7.drbar[n];
11482 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
11483 uint32_t rmask;
11484 bool srdis = false;
11486 if (!(env->pmsav7.drsr[n] & 0x1)) {
11487 continue;
11490 if (!rsize) {
11491 qemu_log_mask(LOG_GUEST_ERROR,
11492 "DRSR[%d]: Rsize field cannot be 0\n", n);
11493 continue;
11495 rsize++;
11496 rmask = (1ull << rsize) - 1;
11498 if (base & rmask) {
11499 qemu_log_mask(LOG_GUEST_ERROR,
11500 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
11501 "to DRSR region size, mask = 0x%" PRIx32 "\n",
11502 n, base, rmask);
11503 continue;
11506 if (address < base || address > base + rmask) {
11508 * Address not in this region. We must check whether the
11509 * region covers addresses in the same page as our address.
11510 * In that case we must not report a size that covers the
11511 * whole page for a subsequent hit against a different MPU
11512 * region or the background region, because it would result in
11513 * incorrect TLB hits for subsequent accesses to addresses that
11514 * are in this MPU region.
11516 if (ranges_overlap(base, rmask,
11517 address & TARGET_PAGE_MASK,
11518 TARGET_PAGE_SIZE)) {
11519 *page_size = 1;
11521 continue;
11524 /* Region matched */
11526 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
11527 int i, snd;
11528 uint32_t srdis_mask;
11530 rsize -= 3; /* sub region size (power of 2) */
11531 snd = ((address - base) >> rsize) & 0x7;
11532 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
11534 srdis_mask = srdis ? 0x3 : 0x0;
11535 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
11536 /* This will check in groups of 2, 4 and then 8, whether
11537 * the subregion bits are consistent. rsize is incremented
11538 * back up to give the region size, considering consistent
11539 * adjacent subregions as one region. Stop testing if rsize
11540 * is already big enough for an entire QEMU page.
11542 int snd_rounded = snd & ~(i - 1);
11543 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
11544 snd_rounded + 8, i);
11545 if (srdis_mask ^ srdis_multi) {
11546 break;
11548 srdis_mask = (srdis_mask << i) | srdis_mask;
11549 rsize++;
11552 if (srdis) {
11553 continue;
11555 if (rsize < TARGET_PAGE_BITS) {
11556 *page_size = 1 << rsize;
11558 break;
11561 if (n == -1) { /* no hits */
11562 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11563 /* background fault */
11564 fi->type = ARMFault_Background;
11565 return true;
11567 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11568 } else { /* a MPU hit! */
11569 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
11570 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
11572 if (m_is_system_region(env, address)) {
11573 /* System space is always execute never */
11574 xn = 1;
11577 if (is_user) { /* User mode AP bit decoding */
11578 switch (ap) {
11579 case 0:
11580 case 1:
11581 case 5:
11582 break; /* no access */
11583 case 3:
11584 *prot |= PAGE_WRITE;
11585 /* fall through */
11586 case 2:
11587 case 6:
11588 *prot |= PAGE_READ | PAGE_EXEC;
11589 break;
11590 case 7:
11591 /* for v7M, same as 6; for R profile a reserved value */
11592 if (arm_feature(env, ARM_FEATURE_M)) {
11593 *prot |= PAGE_READ | PAGE_EXEC;
11594 break;
11596 /* fall through */
11597 default:
11598 qemu_log_mask(LOG_GUEST_ERROR,
11599 "DRACR[%d]: Bad value for AP bits: 0x%"
11600 PRIx32 "\n", n, ap);
11602 } else { /* Priv. mode AP bits decoding */
11603 switch (ap) {
11604 case 0:
11605 break; /* no access */
11606 case 1:
11607 case 2:
11608 case 3:
11609 *prot |= PAGE_WRITE;
11610 /* fall through */
11611 case 5:
11612 case 6:
11613 *prot |= PAGE_READ | PAGE_EXEC;
11614 break;
11615 case 7:
11616 /* for v7M, same as 6; for R profile a reserved value */
11617 if (arm_feature(env, ARM_FEATURE_M)) {
11618 *prot |= PAGE_READ | PAGE_EXEC;
11619 break;
11621 /* fall through */
11622 default:
11623 qemu_log_mask(LOG_GUEST_ERROR,
11624 "DRACR[%d]: Bad value for AP bits: 0x%"
11625 PRIx32 "\n", n, ap);
11629 /* execute never */
11630 if (xn) {
11631 *prot &= ~PAGE_EXEC;
11636 fi->type = ARMFault_Permission;
11637 fi->level = 1;
11638 return !(*prot & (1 << access_type));
11641 static bool v8m_is_sau_exempt(CPUARMState *env,
11642 uint32_t address, MMUAccessType access_type)
11644 /* The architecture specifies that certain address ranges are
11645 * exempt from v8M SAU/IDAU checks.
11647 return
11648 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
11649 (address >= 0xe0000000 && address <= 0xe0002fff) ||
11650 (address >= 0xe000e000 && address <= 0xe000efff) ||
11651 (address >= 0xe002e000 && address <= 0xe002efff) ||
11652 (address >= 0xe0040000 && address <= 0xe0041fff) ||
11653 (address >= 0xe00ff000 && address <= 0xe00fffff);
11656 void v8m_security_lookup(CPUARMState *env, uint32_t address,
11657 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11658 V8M_SAttributes *sattrs)
11660 /* Look up the security attributes for this address. Compare the
11661 * pseudocode SecurityCheck() function.
11662 * We assume the caller has zero-initialized *sattrs.
11664 ARMCPU *cpu = env_archcpu(env);
11665 int r;
11666 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
11667 int idau_region = IREGION_NOTVALID;
11668 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11669 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11671 if (cpu->idau) {
11672 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
11673 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
11675 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
11676 &idau_nsc);
11679 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
11680 /* 0xf0000000..0xffffffff is always S for insn fetches */
11681 return;
11684 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
11685 sattrs->ns = !regime_is_secure(env, mmu_idx);
11686 return;
11689 if (idau_region != IREGION_NOTVALID) {
11690 sattrs->irvalid = true;
11691 sattrs->iregion = idau_region;
11694 switch (env->sau.ctrl & 3) {
11695 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
11696 break;
11697 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
11698 sattrs->ns = true;
11699 break;
11700 default: /* SAU.ENABLE == 1 */
11701 for (r = 0; r < cpu->sau_sregion; r++) {
11702 if (env->sau.rlar[r] & 1) {
11703 uint32_t base = env->sau.rbar[r] & ~0x1f;
11704 uint32_t limit = env->sau.rlar[r] | 0x1f;
11706 if (base <= address && limit >= address) {
11707 if (base > addr_page_base || limit < addr_page_limit) {
11708 sattrs->subpage = true;
11710 if (sattrs->srvalid) {
11711 /* If we hit in more than one region then we must report
11712 * as Secure, not NS-Callable, with no valid region
11713 * number info.
11715 sattrs->ns = false;
11716 sattrs->nsc = false;
11717 sattrs->sregion = 0;
11718 sattrs->srvalid = false;
11719 break;
11720 } else {
11721 if (env->sau.rlar[r] & 2) {
11722 sattrs->nsc = true;
11723 } else {
11724 sattrs->ns = true;
11726 sattrs->srvalid = true;
11727 sattrs->sregion = r;
11729 } else {
11731 * Address not in this region. We must check whether the
11732 * region covers addresses in the same page as our address.
11733 * In that case we must not report a size that covers the
11734 * whole page for a subsequent hit against a different MPU
11735 * region or the background region, because it would result
11736 * in incorrect TLB hits for subsequent accesses to
11737 * addresses that are in this MPU region.
11739 if (limit >= base &&
11740 ranges_overlap(base, limit - base + 1,
11741 addr_page_base,
11742 TARGET_PAGE_SIZE)) {
11743 sattrs->subpage = true;
11748 break;
11752 * The IDAU will override the SAU lookup results if it specifies
11753 * higher security than the SAU does.
11755 if (!idau_ns) {
11756 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
11757 sattrs->ns = false;
11758 sattrs->nsc = idau_nsc;
11763 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
11764 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11765 hwaddr *phys_ptr, MemTxAttrs *txattrs,
11766 int *prot, bool *is_subpage,
11767 ARMMMUFaultInfo *fi, uint32_t *mregion)
11769 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
11770 * that a full phys-to-virt translation does).
11771 * mregion is (if not NULL) set to the region number which matched,
11772 * or -1 if no region number is returned (MPU off, address did not
11773 * hit a region, address hit in multiple regions).
11774 * We set is_subpage to true if the region hit doesn't cover the
11775 * entire TARGET_PAGE the address is within.
11777 ARMCPU *cpu = env_archcpu(env);
11778 bool is_user = regime_is_user(env, mmu_idx);
11779 uint32_t secure = regime_is_secure(env, mmu_idx);
11780 int n;
11781 int matchregion = -1;
11782 bool hit = false;
11783 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11784 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11786 *is_subpage = false;
11787 *phys_ptr = address;
11788 *prot = 0;
11789 if (mregion) {
11790 *mregion = -1;
11793 /* Unlike the ARM ARM pseudocode, we don't need to check whether this
11794 * was an exception vector read from the vector table (which is always
11795 * done using the default system address map), because those accesses
11796 * are done in arm_v7m_load_vector(), which always does a direct
11797 * read using address_space_ldl(), rather than going via this function.
11799 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
11800 hit = true;
11801 } else if (m_is_ppb_region(env, address)) {
11802 hit = true;
11803 } else {
11804 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11805 hit = true;
11808 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11809 /* region search */
11810 /* Note that the base address is bits [31:5] from the register
11811 * with bits [4:0] all zeroes, but the limit address is bits
11812 * [31:5] from the register with bits [4:0] all ones.
11814 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
11815 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
11817 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
11818 /* Region disabled */
11819 continue;
11822 if (address < base || address > limit) {
11824 * Address not in this region. We must check whether the
11825 * region covers addresses in the same page as our address.
11826 * In that case we must not report a size that covers the
11827 * whole page for a subsequent hit against a different MPU
11828 * region or the background region, because it would result in
11829 * incorrect TLB hits for subsequent accesses to addresses that
11830 * are in this MPU region.
11832 if (limit >= base &&
11833 ranges_overlap(base, limit - base + 1,
11834 addr_page_base,
11835 TARGET_PAGE_SIZE)) {
11836 *is_subpage = true;
11838 continue;
11841 if (base > addr_page_base || limit < addr_page_limit) {
11842 *is_subpage = true;
11845 if (matchregion != -1) {
11846 /* Multiple regions match -- always a failure (unlike
11847 * PMSAv7 where highest-numbered-region wins)
11849 fi->type = ARMFault_Permission;
11850 fi->level = 1;
11851 return true;
11854 matchregion = n;
11855 hit = true;
11859 if (!hit) {
11860 /* background fault */
11861 fi->type = ARMFault_Background;
11862 return true;
11865 if (matchregion == -1) {
11866 /* hit using the background region */
11867 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11868 } else {
11869 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
11870 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
11871 bool pxn = false;
11873 if (arm_feature(env, ARM_FEATURE_V8_1M)) {
11874 pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1);
11877 if (m_is_system_region(env, address)) {
11878 /* System space is always execute never */
11879 xn = 1;
11882 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
11883 if (*prot && !xn && !(pxn && !is_user)) {
11884 *prot |= PAGE_EXEC;
11886 /* We don't need to look the attribute up in the MAIR0/MAIR1
11887 * registers because that only tells us about cacheability.
11889 if (mregion) {
11890 *mregion = matchregion;
11894 fi->type = ARMFault_Permission;
11895 fi->level = 1;
11896 return !(*prot & (1 << access_type));
11900 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
11901 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11902 hwaddr *phys_ptr, MemTxAttrs *txattrs,
11903 int *prot, target_ulong *page_size,
11904 ARMMMUFaultInfo *fi)
11906 uint32_t secure = regime_is_secure(env, mmu_idx);
11907 V8M_SAttributes sattrs = {};
11908 bool ret;
11909 bool mpu_is_subpage;
11911 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
11912 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
11913 if (access_type == MMU_INST_FETCH) {
11914 /* Instruction fetches always use the MMU bank and the
11915 * transaction attribute determined by the fetch address,
11916 * regardless of CPU state. This is painful for QEMU
11917 * to handle, because it would mean we need to encode
11918 * into the mmu_idx not just the (user, negpri) information
11919 * for the current security state but also that for the
11920 * other security state, which would balloon the number
11921 * of mmu_idx values needed alarmingly.
11922 * Fortunately we can avoid this because it's not actually
11923 * possible to arbitrarily execute code from memory with
11924 * the wrong security attribute: it will always generate
11925 * an exception of some kind or another, apart from the
11926 * special case of an NS CPU executing an SG instruction
11927 * in S&NSC memory. So we always just fail the translation
11928 * here and sort things out in the exception handler
11929 * (including possibly emulating an SG instruction).
11931 if (sattrs.ns != !secure) {
11932 if (sattrs.nsc) {
11933 fi->type = ARMFault_QEMU_NSCExec;
11934 } else {
11935 fi->type = ARMFault_QEMU_SFault;
11937 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
11938 *phys_ptr = address;
11939 *prot = 0;
11940 return true;
11942 } else {
11943 /* For data accesses we always use the MMU bank indicated
11944 * by the current CPU state, but the security attributes
11945 * might downgrade a secure access to nonsecure.
11947 if (sattrs.ns) {
11948 txattrs->secure = false;
11949 } else if (!secure) {
11950 /* NS access to S memory must fault.
11951 * Architecturally we should first check whether the
11952 * MPU information for this address indicates that we
11953 * are doing an unaligned access to Device memory, which
11954 * should generate a UsageFault instead. QEMU does not
11955 * currently check for that kind of unaligned access though.
11956 * If we added it we would need to do so as a special case
11957 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
11959 fi->type = ARMFault_QEMU_SFault;
11960 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
11961 *phys_ptr = address;
11962 *prot = 0;
11963 return true;
11968 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
11969 txattrs, prot, &mpu_is_subpage, fi, NULL);
11970 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
11971 return ret;
11974 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
11975 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11976 hwaddr *phys_ptr, int *prot,
11977 ARMMMUFaultInfo *fi)
11979 int n;
11980 uint32_t mask;
11981 uint32_t base;
11982 bool is_user = regime_is_user(env, mmu_idx);
11984 if (regime_translation_disabled(env, mmu_idx)) {
11985 /* MPU disabled. */
11986 *phys_ptr = address;
11987 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11988 return false;
11991 *phys_ptr = address;
11992 for (n = 7; n >= 0; n--) {
11993 base = env->cp15.c6_region[n];
11994 if ((base & 1) == 0) {
11995 continue;
11997 mask = 1 << ((base >> 1) & 0x1f);
11998 /* Keep this shift separate from the above to avoid an
11999 (undefined) << 32. */
12000 mask = (mask << 1) - 1;
12001 if (((base ^ address) & ~mask) == 0) {
12002 break;
12005 if (n < 0) {
12006 fi->type = ARMFault_Background;
12007 return true;
12010 if (access_type == MMU_INST_FETCH) {
12011 mask = env->cp15.pmsav5_insn_ap;
12012 } else {
12013 mask = env->cp15.pmsav5_data_ap;
12015 mask = (mask >> (n * 4)) & 0xf;
12016 switch (mask) {
12017 case 0:
12018 fi->type = ARMFault_Permission;
12019 fi->level = 1;
12020 return true;
12021 case 1:
12022 if (is_user) {
12023 fi->type = ARMFault_Permission;
12024 fi->level = 1;
12025 return true;
12027 *prot = PAGE_READ | PAGE_WRITE;
12028 break;
12029 case 2:
12030 *prot = PAGE_READ;
12031 if (!is_user) {
12032 *prot |= PAGE_WRITE;
12034 break;
12035 case 3:
12036 *prot = PAGE_READ | PAGE_WRITE;
12037 break;
12038 case 5:
12039 if (is_user) {
12040 fi->type = ARMFault_Permission;
12041 fi->level = 1;
12042 return true;
12044 *prot = PAGE_READ;
12045 break;
12046 case 6:
12047 *prot = PAGE_READ;
12048 break;
12049 default:
12050 /* Bad permission. */
12051 fi->type = ARMFault_Permission;
12052 fi->level = 1;
12053 return true;
12055 *prot |= PAGE_EXEC;
12056 return false;
12059 /* Combine either inner or outer cacheability attributes for normal
12060 * memory, according to table D4-42 and pseudocode procedure
12061 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
12063 * NB: only stage 1 includes allocation hints (RW bits), leading to
12064 * some asymmetry.
12066 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
12068 if (s1 == 4 || s2 == 4) {
12069 /* non-cacheable has precedence */
12070 return 4;
12071 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
12072 /* stage 1 write-through takes precedence */
12073 return s1;
12074 } else if (extract32(s2, 2, 2) == 2) {
12075 /* stage 2 write-through takes precedence, but the allocation hint
12076 * is still taken from stage 1
12078 return (2 << 2) | extract32(s1, 0, 2);
12079 } else { /* write-back */
12080 return s1;
12084 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
12085 * and CombineS1S2Desc()
12087 * @s1: Attributes from stage 1 walk
12088 * @s2: Attributes from stage 2 walk
12090 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
12092 uint8_t s1lo, s2lo, s1hi, s2hi;
12093 ARMCacheAttrs ret;
12094 bool tagged = false;
12096 if (s1.attrs == 0xf0) {
12097 tagged = true;
12098 s1.attrs = 0xff;
12101 s1lo = extract32(s1.attrs, 0, 4);
12102 s2lo = extract32(s2.attrs, 0, 4);
12103 s1hi = extract32(s1.attrs, 4, 4);
12104 s2hi = extract32(s2.attrs, 4, 4);
12106 /* Combine shareability attributes (table D4-43) */
12107 if (s1.shareability == 2 || s2.shareability == 2) {
12108 /* if either are outer-shareable, the result is outer-shareable */
12109 ret.shareability = 2;
12110 } else if (s1.shareability == 3 || s2.shareability == 3) {
12111 /* if either are inner-shareable, the result is inner-shareable */
12112 ret.shareability = 3;
12113 } else {
12114 /* both non-shareable */
12115 ret.shareability = 0;
12118 /* Combine memory type and cacheability attributes */
12119 if (s1hi == 0 || s2hi == 0) {
12120 /* Device has precedence over normal */
12121 if (s1lo == 0 || s2lo == 0) {
12122 /* nGnRnE has precedence over anything */
12123 ret.attrs = 0;
12124 } else if (s1lo == 4 || s2lo == 4) {
12125 /* non-Reordering has precedence over Reordering */
12126 ret.attrs = 4; /* nGnRE */
12127 } else if (s1lo == 8 || s2lo == 8) {
12128 /* non-Gathering has precedence over Gathering */
12129 ret.attrs = 8; /* nGRE */
12130 } else {
12131 ret.attrs = 0xc; /* GRE */
12134 /* Any location for which the resultant memory type is any
12135 * type of Device memory is always treated as Outer Shareable.
12137 ret.shareability = 2;
12138 } else { /* Normal memory */
12139 /* Outer/inner cacheability combine independently */
12140 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
12141 | combine_cacheattr_nibble(s1lo, s2lo);
12143 if (ret.attrs == 0x44) {
12144 /* Any location for which the resultant memory type is Normal
12145 * Inner Non-cacheable, Outer Non-cacheable is always treated
12146 * as Outer Shareable.
12148 ret.shareability = 2;
12152 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
12153 if (tagged && ret.attrs == 0xff) {
12154 ret.attrs = 0xf0;
12157 return ret;
12161 /* get_phys_addr - get the physical address for this virtual address
12163 * Find the physical address corresponding to the given virtual address,
12164 * by doing a translation table walk on MMU based systems or using the
12165 * MPU state on MPU based systems.
12167 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
12168 * prot and page_size may not be filled in, and the populated fsr value provides
12169 * information on why the translation aborted, in the format of a
12170 * DFSR/IFSR fault register, with the following caveats:
12171 * * we honour the short vs long DFSR format differences.
12172 * * the WnR bit is never set (the caller must do this).
12173 * * for PSMAv5 based systems we don't bother to return a full FSR format
12174 * value.
12176 * @env: CPUARMState
12177 * @address: virtual address to get physical address for
12178 * @access_type: 0 for read, 1 for write, 2 for execute
12179 * @mmu_idx: MMU index indicating required translation regime
12180 * @phys_ptr: set to the physical address corresponding to the virtual address
12181 * @attrs: set to the memory transaction attributes to use
12182 * @prot: set to the permissions for the page containing phys_ptr
12183 * @page_size: set to the size of the page containing phys_ptr
12184 * @fi: set to fault info if the translation fails
12185 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
12187 bool get_phys_addr(CPUARMState *env, target_ulong address,
12188 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12189 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
12190 target_ulong *page_size,
12191 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
12193 ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx);
12195 if (mmu_idx != s1_mmu_idx) {
12196 /* Call ourselves recursively to do the stage 1 and then stage 2
12197 * translations if mmu_idx is a two-stage regime.
12199 if (arm_feature(env, ARM_FEATURE_EL2)) {
12200 hwaddr ipa;
12201 int s2_prot;
12202 int ret;
12203 ARMCacheAttrs cacheattrs2 = {};
12204 ARMMMUIdx s2_mmu_idx;
12205 bool is_el0;
12207 ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa,
12208 attrs, prot, page_size, fi, cacheattrs);
12210 /* If S1 fails or S2 is disabled, return early. */
12211 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
12212 *phys_ptr = ipa;
12213 return ret;
12216 s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
12217 is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0;
12219 /* S1 is done. Now do S2 translation. */
12220 ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0,
12221 phys_ptr, attrs, &s2_prot,
12222 page_size, fi, &cacheattrs2);
12223 fi->s2addr = ipa;
12224 /* Combine the S1 and S2 perms. */
12225 *prot &= s2_prot;
12227 /* If S2 fails, return early. */
12228 if (ret) {
12229 return ret;
12232 /* Combine the S1 and S2 cache attributes. */
12233 if (arm_hcr_el2_eff(env) & HCR_DC) {
12235 * HCR.DC forces the first stage attributes to
12236 * Normal Non-Shareable,
12237 * Inner Write-Back Read-Allocate Write-Allocate,
12238 * Outer Write-Back Read-Allocate Write-Allocate.
12239 * Do not overwrite Tagged within attrs.
12241 if (cacheattrs->attrs != 0xf0) {
12242 cacheattrs->attrs = 0xff;
12244 cacheattrs->shareability = 0;
12246 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
12248 /* Check if IPA translates to secure or non-secure PA space. */
12249 if (arm_is_secure_below_el3(env)) {
12250 if (attrs->secure) {
12251 attrs->secure =
12252 !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW));
12253 } else {
12254 attrs->secure =
12255 !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW))
12256 || (env->cp15.vstcr_el2.raw_tcr & VSTCR_SA));
12259 return 0;
12260 } else {
12262 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
12264 mmu_idx = stage_1_mmu_idx(mmu_idx);
12268 /* The page table entries may downgrade secure to non-secure, but
12269 * cannot upgrade an non-secure translation regime's attributes
12270 * to secure.
12272 attrs->secure = regime_is_secure(env, mmu_idx);
12273 attrs->user = regime_is_user(env, mmu_idx);
12275 /* Fast Context Switch Extension. This doesn't exist at all in v8.
12276 * In v7 and earlier it affects all stage 1 translations.
12278 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
12279 && !arm_feature(env, ARM_FEATURE_V8)) {
12280 if (regime_el(env, mmu_idx) == 3) {
12281 address += env->cp15.fcseidr_s;
12282 } else {
12283 address += env->cp15.fcseidr_ns;
12287 if (arm_feature(env, ARM_FEATURE_PMSA)) {
12288 bool ret;
12289 *page_size = TARGET_PAGE_SIZE;
12291 if (arm_feature(env, ARM_FEATURE_V8)) {
12292 /* PMSAv8 */
12293 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
12294 phys_ptr, attrs, prot, page_size, fi);
12295 } else if (arm_feature(env, ARM_FEATURE_V7)) {
12296 /* PMSAv7 */
12297 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
12298 phys_ptr, prot, page_size, fi);
12299 } else {
12300 /* Pre-v7 MPU */
12301 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
12302 phys_ptr, prot, fi);
12304 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
12305 " mmu_idx %u -> %s (prot %c%c%c)\n",
12306 access_type == MMU_DATA_LOAD ? "reading" :
12307 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
12308 (uint32_t)address, mmu_idx,
12309 ret ? "Miss" : "Hit",
12310 *prot & PAGE_READ ? 'r' : '-',
12311 *prot & PAGE_WRITE ? 'w' : '-',
12312 *prot & PAGE_EXEC ? 'x' : '-');
12314 return ret;
12317 /* Definitely a real MMU, not an MPU */
12319 if (regime_translation_disabled(env, mmu_idx)) {
12320 uint64_t hcr;
12321 uint8_t memattr;
12324 * MMU disabled. S1 addresses within aa64 translation regimes are
12325 * still checked for bounds -- see AArch64.TranslateAddressS1Off.
12327 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
12328 int r_el = regime_el(env, mmu_idx);
12329 if (arm_el_is_aa64(env, r_el)) {
12330 int pamax = arm_pamax(env_archcpu(env));
12331 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr;
12332 int addrtop, tbi;
12334 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
12335 if (access_type == MMU_INST_FETCH) {
12336 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
12338 tbi = (tbi >> extract64(address, 55, 1)) & 1;
12339 addrtop = (tbi ? 55 : 63);
12341 if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
12342 fi->type = ARMFault_AddressSize;
12343 fi->level = 0;
12344 fi->stage2 = false;
12345 return 1;
12349 * When TBI is disabled, we've just validated that all of the
12350 * bits above PAMax are zero, so logically we only need to
12351 * clear the top byte for TBI. But it's clearer to follow
12352 * the pseudocode set of addrdesc.paddress.
12354 address = extract64(address, 0, 52);
12357 *phys_ptr = address;
12358 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12359 *page_size = TARGET_PAGE_SIZE;
12361 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
12362 hcr = arm_hcr_el2_eff(env);
12363 cacheattrs->shareability = 0;
12364 if (hcr & HCR_DC) {
12365 if (hcr & HCR_DCT) {
12366 memattr = 0xf0; /* Tagged, Normal, WB, RWA */
12367 } else {
12368 memattr = 0xff; /* Normal, WB, RWA */
12370 } else if (access_type == MMU_INST_FETCH) {
12371 if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
12372 memattr = 0xee; /* Normal, WT, RA, NT */
12373 } else {
12374 memattr = 0x44; /* Normal, NC, No */
12376 cacheattrs->shareability = 2; /* outer sharable */
12377 } else {
12378 memattr = 0x00; /* Device, nGnRnE */
12380 cacheattrs->attrs = memattr;
12381 return 0;
12384 if (regime_using_lpae_format(env, mmu_idx)) {
12385 return get_phys_addr_lpae(env, address, access_type, mmu_idx, false,
12386 phys_ptr, attrs, prot, page_size,
12387 fi, cacheattrs);
12388 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
12389 return get_phys_addr_v6(env, address, access_type, mmu_idx,
12390 phys_ptr, attrs, prot, page_size, fi);
12391 } else {
12392 return get_phys_addr_v5(env, address, access_type, mmu_idx,
12393 phys_ptr, prot, page_size, fi);
12397 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
12398 MemTxAttrs *attrs)
12400 ARMCPU *cpu = ARM_CPU(cs);
12401 CPUARMState *env = &cpu->env;
12402 hwaddr phys_addr;
12403 target_ulong page_size;
12404 int prot;
12405 bool ret;
12406 ARMMMUFaultInfo fi = {};
12407 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
12408 ARMCacheAttrs cacheattrs = {};
12410 *attrs = (MemTxAttrs) {};
12412 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
12413 attrs, &prot, &page_size, &fi, &cacheattrs);
12415 if (ret) {
12416 return -1;
12418 return phys_addr;
12421 #endif
12423 /* Note that signed overflow is undefined in C. The following routines are
12424 careful to use unsigned types where modulo arithmetic is required.
12425 Failure to do so _will_ break on newer gcc. */
12427 /* Signed saturating arithmetic. */
12429 /* Perform 16-bit signed saturating addition. */
12430 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
12432 uint16_t res;
12434 res = a + b;
12435 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
12436 if (a & 0x8000)
12437 res = 0x8000;
12438 else
12439 res = 0x7fff;
12441 return res;
12444 /* Perform 8-bit signed saturating addition. */
12445 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
12447 uint8_t res;
12449 res = a + b;
12450 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
12451 if (a & 0x80)
12452 res = 0x80;
12453 else
12454 res = 0x7f;
12456 return res;
12459 /* Perform 16-bit signed saturating subtraction. */
12460 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
12462 uint16_t res;
12464 res = a - b;
12465 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
12466 if (a & 0x8000)
12467 res = 0x8000;
12468 else
12469 res = 0x7fff;
12471 return res;
12474 /* Perform 8-bit signed saturating subtraction. */
12475 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
12477 uint8_t res;
12479 res = a - b;
12480 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
12481 if (a & 0x80)
12482 res = 0x80;
12483 else
12484 res = 0x7f;
12486 return res;
12489 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12490 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12491 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
12492 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
12493 #define PFX q
12495 #include "op_addsub.h"
12497 /* Unsigned saturating arithmetic. */
12498 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
12500 uint16_t res;
12501 res = a + b;
12502 if (res < a)
12503 res = 0xffff;
12504 return res;
12507 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
12509 if (a > b)
12510 return a - b;
12511 else
12512 return 0;
12515 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
12517 uint8_t res;
12518 res = a + b;
12519 if (res < a)
12520 res = 0xff;
12521 return res;
12524 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
12526 if (a > b)
12527 return a - b;
12528 else
12529 return 0;
12532 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
12533 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
12534 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
12535 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
12536 #define PFX uq
12538 #include "op_addsub.h"
12540 /* Signed modulo arithmetic. */
12541 #define SARITH16(a, b, n, op) do { \
12542 int32_t sum; \
12543 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
12544 RESULT(sum, n, 16); \
12545 if (sum >= 0) \
12546 ge |= 3 << (n * 2); \
12547 } while(0)
12549 #define SARITH8(a, b, n, op) do { \
12550 int32_t sum; \
12551 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
12552 RESULT(sum, n, 8); \
12553 if (sum >= 0) \
12554 ge |= 1 << n; \
12555 } while(0)
12558 #define ADD16(a, b, n) SARITH16(a, b, n, +)
12559 #define SUB16(a, b, n) SARITH16(a, b, n, -)
12560 #define ADD8(a, b, n) SARITH8(a, b, n, +)
12561 #define SUB8(a, b, n) SARITH8(a, b, n, -)
12562 #define PFX s
12563 #define ARITH_GE
12565 #include "op_addsub.h"
12567 /* Unsigned modulo arithmetic. */
12568 #define ADD16(a, b, n) do { \
12569 uint32_t sum; \
12570 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
12571 RESULT(sum, n, 16); \
12572 if ((sum >> 16) == 1) \
12573 ge |= 3 << (n * 2); \
12574 } while(0)
12576 #define ADD8(a, b, n) do { \
12577 uint32_t sum; \
12578 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
12579 RESULT(sum, n, 8); \
12580 if ((sum >> 8) == 1) \
12581 ge |= 1 << n; \
12582 } while(0)
12584 #define SUB16(a, b, n) do { \
12585 uint32_t sum; \
12586 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
12587 RESULT(sum, n, 16); \
12588 if ((sum >> 16) == 0) \
12589 ge |= 3 << (n * 2); \
12590 } while(0)
12592 #define SUB8(a, b, n) do { \
12593 uint32_t sum; \
12594 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
12595 RESULT(sum, n, 8); \
12596 if ((sum >> 8) == 0) \
12597 ge |= 1 << n; \
12598 } while(0)
12600 #define PFX u
12601 #define ARITH_GE
12603 #include "op_addsub.h"
12605 /* Halved signed arithmetic. */
12606 #define ADD16(a, b, n) \
12607 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
12608 #define SUB16(a, b, n) \
12609 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
12610 #define ADD8(a, b, n) \
12611 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
12612 #define SUB8(a, b, n) \
12613 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
12614 #define PFX sh
12616 #include "op_addsub.h"
12618 /* Halved unsigned arithmetic. */
12619 #define ADD16(a, b, n) \
12620 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12621 #define SUB16(a, b, n) \
12622 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12623 #define ADD8(a, b, n) \
12624 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12625 #define SUB8(a, b, n) \
12626 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12627 #define PFX uh
12629 #include "op_addsub.h"
12631 static inline uint8_t do_usad(uint8_t a, uint8_t b)
12633 if (a > b)
12634 return a - b;
12635 else
12636 return b - a;
12639 /* Unsigned sum of absolute byte differences. */
12640 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
12642 uint32_t sum;
12643 sum = do_usad(a, b);
12644 sum += do_usad(a >> 8, b >> 8);
12645 sum += do_usad(a >> 16, b >> 16);
12646 sum += do_usad(a >> 24, b >> 24);
12647 return sum;
12650 /* For ARMv6 SEL instruction. */
12651 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
12653 uint32_t mask;
12655 mask = 0;
12656 if (flags & 1)
12657 mask |= 0xff;
12658 if (flags & 2)
12659 mask |= 0xff00;
12660 if (flags & 4)
12661 mask |= 0xff0000;
12662 if (flags & 8)
12663 mask |= 0xff000000;
12664 return (a & mask) | (b & ~mask);
12667 /* CRC helpers.
12668 * The upper bytes of val (above the number specified by 'bytes') must have
12669 * been zeroed out by the caller.
12671 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
12673 uint8_t buf[4];
12675 stl_le_p(buf, val);
12677 /* zlib crc32 converts the accumulator and output to one's complement. */
12678 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
12681 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
12683 uint8_t buf[4];
12685 stl_le_p(buf, val);
12687 /* Linux crc32c converts the output to one's complement. */
12688 return crc32c(acc, buf, bytes) ^ 0xffffffff;
12691 /* Return the exception level to which FP-disabled exceptions should
12692 * be taken, or 0 if FP is enabled.
12694 int fp_exception_el(CPUARMState *env, int cur_el)
12696 #ifndef CONFIG_USER_ONLY
12697 /* CPACR and the CPTR registers don't exist before v6, so FP is
12698 * always accessible
12700 if (!arm_feature(env, ARM_FEATURE_V6)) {
12701 return 0;
12704 if (arm_feature(env, ARM_FEATURE_M)) {
12705 /* CPACR can cause a NOCP UsageFault taken to current security state */
12706 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
12707 return 1;
12710 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
12711 if (!extract32(env->v7m.nsacr, 10, 1)) {
12712 /* FP insns cause a NOCP UsageFault taken to Secure */
12713 return 3;
12717 return 0;
12720 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12721 * 0, 2 : trap EL0 and EL1/PL1 accesses
12722 * 1 : trap only EL0 accesses
12723 * 3 : trap no accesses
12724 * This register is ignored if E2H+TGE are both set.
12726 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
12727 int fpen = extract32(env->cp15.cpacr_el1, 20, 2);
12729 switch (fpen) {
12730 case 0:
12731 case 2:
12732 if (cur_el == 0 || cur_el == 1) {
12733 /* Trap to PL1, which might be EL1 or EL3 */
12734 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
12735 return 3;
12737 return 1;
12739 if (cur_el == 3 && !is_a64(env)) {
12740 /* Secure PL1 running at EL3 */
12741 return 3;
12743 break;
12744 case 1:
12745 if (cur_el == 0) {
12746 return 1;
12748 break;
12749 case 3:
12750 break;
12755 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
12756 * to control non-secure access to the FPU. It doesn't have any
12757 * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
12759 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
12760 cur_el <= 2 && !arm_is_secure_below_el3(env))) {
12761 if (!extract32(env->cp15.nsacr, 10, 1)) {
12762 /* FP insns act as UNDEF */
12763 return cur_el == 2 ? 2 : 1;
12767 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
12768 * check because zero bits in the registers mean "don't trap".
12771 /* CPTR_EL2 : present in v7VE or v8 */
12772 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
12773 && arm_is_el2_enabled(env)) {
12774 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
12775 return 2;
12778 /* CPTR_EL3 : present in v8 */
12779 if (extract32(env->cp15.cptr_el[3], 10, 1)) {
12780 /* Trap all FP ops to EL3 */
12781 return 3;
12783 #endif
12784 return 0;
12787 /* Return the exception level we're running at if this is our mmu_idx */
12788 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
12790 if (mmu_idx & ARM_MMU_IDX_M) {
12791 return mmu_idx & ARM_MMU_IDX_M_PRIV;
12794 switch (mmu_idx) {
12795 case ARMMMUIdx_E10_0:
12796 case ARMMMUIdx_E20_0:
12797 case ARMMMUIdx_SE10_0:
12798 case ARMMMUIdx_SE20_0:
12799 return 0;
12800 case ARMMMUIdx_E10_1:
12801 case ARMMMUIdx_E10_1_PAN:
12802 case ARMMMUIdx_SE10_1:
12803 case ARMMMUIdx_SE10_1_PAN:
12804 return 1;
12805 case ARMMMUIdx_E2:
12806 case ARMMMUIdx_E20_2:
12807 case ARMMMUIdx_E20_2_PAN:
12808 case ARMMMUIdx_SE2:
12809 case ARMMMUIdx_SE20_2:
12810 case ARMMMUIdx_SE20_2_PAN:
12811 return 2;
12812 case ARMMMUIdx_SE3:
12813 return 3;
12814 default:
12815 g_assert_not_reached();
12819 #ifndef CONFIG_TCG
12820 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
12822 g_assert_not_reached();
12824 #endif
12826 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
12828 ARMMMUIdx idx;
12829 uint64_t hcr;
12831 if (arm_feature(env, ARM_FEATURE_M)) {
12832 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
12835 /* See ARM pseudo-function ELIsInHost. */
12836 switch (el) {
12837 case 0:
12838 hcr = arm_hcr_el2_eff(env);
12839 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
12840 idx = ARMMMUIdx_E20_0;
12841 } else {
12842 idx = ARMMMUIdx_E10_0;
12844 break;
12845 case 1:
12846 if (env->pstate & PSTATE_PAN) {
12847 idx = ARMMMUIdx_E10_1_PAN;
12848 } else {
12849 idx = ARMMMUIdx_E10_1;
12851 break;
12852 case 2:
12853 /* Note that TGE does not apply at EL2. */
12854 if (arm_hcr_el2_eff(env) & HCR_E2H) {
12855 if (env->pstate & PSTATE_PAN) {
12856 idx = ARMMMUIdx_E20_2_PAN;
12857 } else {
12858 idx = ARMMMUIdx_E20_2;
12860 } else {
12861 idx = ARMMMUIdx_E2;
12863 break;
12864 case 3:
12865 return ARMMMUIdx_SE3;
12866 default:
12867 g_assert_not_reached();
12870 if (arm_is_secure_below_el3(env)) {
12871 idx &= ~ARM_MMU_IDX_A_NS;
12874 return idx;
12877 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
12879 return arm_mmu_idx_el(env, arm_current_el(env));
12882 #ifndef CONFIG_USER_ONLY
12883 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
12885 return stage_1_mmu_idx(arm_mmu_idx(env));
12887 #endif
12889 static uint32_t rebuild_hflags_common(CPUARMState *env, int fp_el,
12890 ARMMMUIdx mmu_idx, uint32_t flags)
12892 flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el);
12893 flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX,
12894 arm_to_core_mmu_idx(mmu_idx));
12896 if (arm_singlestep_active(env)) {
12897 flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1);
12899 return flags;
12902 static uint32_t rebuild_hflags_common_32(CPUARMState *env, int fp_el,
12903 ARMMMUIdx mmu_idx, uint32_t flags)
12905 bool sctlr_b = arm_sctlr_b(env);
12907 if (sctlr_b) {
12908 flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, 1);
12910 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
12911 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
12913 flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env));
12915 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
12918 static uint32_t rebuild_hflags_m32(CPUARMState *env, int fp_el,
12919 ARMMMUIdx mmu_idx)
12921 uint32_t flags = 0;
12923 if (arm_v7m_is_handler_mode(env)) {
12924 flags = FIELD_DP32(flags, TBFLAG_M32, HANDLER, 1);
12928 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
12929 * is suppressing them because the requested execution priority
12930 * is less than 0.
12932 if (arm_feature(env, ARM_FEATURE_V8) &&
12933 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
12934 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
12935 flags = FIELD_DP32(flags, TBFLAG_M32, STACKCHECK, 1);
12938 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
12941 static uint32_t rebuild_hflags_aprofile(CPUARMState *env)
12943 int flags = 0;
12945 flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL,
12946 arm_debug_target_el(env));
12947 return flags;
12950 static uint32_t rebuild_hflags_a32(CPUARMState *env, int fp_el,
12951 ARMMMUIdx mmu_idx)
12953 uint32_t flags = rebuild_hflags_aprofile(env);
12955 if (arm_el_is_aa64(env, 1)) {
12956 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
12959 if (arm_current_el(env) < 2 && env->cp15.hstr_el2 &&
12960 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
12961 flags = FIELD_DP32(flags, TBFLAG_A32, HSTR_ACTIVE, 1);
12964 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
12967 static uint32_t rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
12968 ARMMMUIdx mmu_idx)
12970 uint32_t flags = rebuild_hflags_aprofile(env);
12971 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
12972 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
12973 uint64_t sctlr;
12974 int tbii, tbid;
12976 flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1);
12978 /* Get control bits for tagged addresses. */
12979 tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
12980 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
12982 flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii);
12983 flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid);
12985 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
12986 int sve_el = sve_exception_el(env, el);
12987 uint32_t zcr_len;
12990 * If SVE is disabled, but FP is enabled,
12991 * then the effective len is 0.
12993 if (sve_el != 0 && fp_el == 0) {
12994 zcr_len = 0;
12995 } else {
12996 zcr_len = sve_zcr_len_for_el(env, el);
12998 flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el);
12999 flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len);
13002 sctlr = regime_sctlr(env, stage1);
13004 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
13005 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
13008 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
13010 * In order to save space in flags, we record only whether
13011 * pauth is "inactive", meaning all insns are implemented as
13012 * a nop, or "active" when some action must be performed.
13013 * The decision of which action to take is left to a helper.
13015 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
13016 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1);
13020 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
13021 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */
13022 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
13023 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1);
13027 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
13028 if (!(env->pstate & PSTATE_UAO)) {
13029 switch (mmu_idx) {
13030 case ARMMMUIdx_E10_1:
13031 case ARMMMUIdx_E10_1_PAN:
13032 case ARMMMUIdx_SE10_1:
13033 case ARMMMUIdx_SE10_1_PAN:
13034 /* TODO: ARMv8.3-NV */
13035 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1);
13036 break;
13037 case ARMMMUIdx_E20_2:
13038 case ARMMMUIdx_E20_2_PAN:
13039 case ARMMMUIdx_SE20_2:
13040 case ARMMMUIdx_SE20_2_PAN:
13042 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
13043 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
13045 if (env->cp15.hcr_el2 & HCR_TGE) {
13046 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1);
13048 break;
13049 default:
13050 break;
13054 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) {
13056 * Set MTE_ACTIVE if any access may be Checked, and leave clear
13057 * if all accesses must be Unchecked:
13058 * 1) If no TBI, then there are no tags in the address to check,
13059 * 2) If Tag Check Override, then all accesses are Unchecked,
13060 * 3) If Tag Check Fail == 0, then Checked access have no effect,
13061 * 4) If no Allocation Tag Access, then all accesses are Unchecked.
13063 if (allocation_tag_access_enabled(env, el, sctlr)) {
13064 flags = FIELD_DP32(flags, TBFLAG_A64, ATA, 1);
13065 if (tbid
13066 && !(env->pstate & PSTATE_TCO)
13067 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) {
13068 flags = FIELD_DP32(flags, TBFLAG_A64, MTE_ACTIVE, 1);
13071 /* And again for unprivileged accesses, if required. */
13072 if (FIELD_EX32(flags, TBFLAG_A64, UNPRIV)
13073 && tbid
13074 && !(env->pstate & PSTATE_TCO)
13075 && (sctlr & SCTLR_TCF)
13076 && allocation_tag_access_enabled(env, 0, sctlr)) {
13077 flags = FIELD_DP32(flags, TBFLAG_A64, MTE0_ACTIVE, 1);
13079 /* Cache TCMA as well as TBI. */
13080 flags = FIELD_DP32(flags, TBFLAG_A64, TCMA,
13081 aa64_va_parameter_tcma(tcr, mmu_idx));
13084 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
13087 static uint32_t rebuild_hflags_internal(CPUARMState *env)
13089 int el = arm_current_el(env);
13090 int fp_el = fp_exception_el(env, el);
13091 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13093 if (is_a64(env)) {
13094 return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
13095 } else if (arm_feature(env, ARM_FEATURE_M)) {
13096 return rebuild_hflags_m32(env, fp_el, mmu_idx);
13097 } else {
13098 return rebuild_hflags_a32(env, fp_el, mmu_idx);
13102 void arm_rebuild_hflags(CPUARMState *env)
13104 env->hflags = rebuild_hflags_internal(env);
13108 * If we have triggered a EL state change we can't rely on the
13109 * translator having passed it to us, we need to recompute.
13111 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
13113 int el = arm_current_el(env);
13114 int fp_el = fp_exception_el(env, el);
13115 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13116 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
13119 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
13121 int fp_el = fp_exception_el(env, el);
13122 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13124 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
13128 * If we have triggered a EL state change we can't rely on the
13129 * translator having passed it to us, we need to recompute.
13131 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
13133 int el = arm_current_el(env);
13134 int fp_el = fp_exception_el(env, el);
13135 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13136 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
13139 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
13141 int fp_el = fp_exception_el(env, el);
13142 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13144 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
13147 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
13149 int fp_el = fp_exception_el(env, el);
13150 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13152 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
13155 static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
13157 #ifdef CONFIG_DEBUG_TCG
13158 uint32_t env_flags_current = env->hflags;
13159 uint32_t env_flags_rebuilt = rebuild_hflags_internal(env);
13161 if (unlikely(env_flags_current != env_flags_rebuilt)) {
13162 fprintf(stderr, "TCG hflags mismatch (current:0x%08x rebuilt:0x%08x)\n",
13163 env_flags_current, env_flags_rebuilt);
13164 abort();
13166 #endif
13169 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
13170 target_ulong *cs_base, uint32_t *pflags)
13172 uint32_t flags = env->hflags;
13173 uint32_t pstate_for_ss;
13175 *cs_base = 0;
13176 assert_hflags_rebuild_correctly(env);
13178 if (FIELD_EX32(flags, TBFLAG_ANY, AARCH64_STATE)) {
13179 *pc = env->pc;
13180 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
13181 flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype);
13183 pstate_for_ss = env->pstate;
13184 } else {
13185 *pc = env->regs[15];
13187 if (arm_feature(env, ARM_FEATURE_M)) {
13188 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
13189 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
13190 != env->v7m.secure) {
13191 flags = FIELD_DP32(flags, TBFLAG_M32, FPCCR_S_WRONG, 1);
13194 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
13195 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
13196 (env->v7m.secure &&
13197 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
13199 * ASPEN is set, but FPCA/SFPA indicate that there is no
13200 * active FP context; we must create a new FP context before
13201 * executing any FP insn.
13203 flags = FIELD_DP32(flags, TBFLAG_M32, NEW_FP_CTXT_NEEDED, 1);
13206 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
13207 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
13208 flags = FIELD_DP32(flags, TBFLAG_M32, LSPACT, 1);
13210 } else {
13212 * Note that XSCALE_CPAR shares bits with VECSTRIDE.
13213 * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
13215 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
13216 flags = FIELD_DP32(flags, TBFLAG_A32,
13217 XSCALE_CPAR, env->cp15.c15_cpar);
13218 } else {
13219 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN,
13220 env->vfp.vec_len);
13221 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE,
13222 env->vfp.vec_stride);
13224 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
13225 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
13229 flags = FIELD_DP32(flags, TBFLAG_AM32, THUMB, env->thumb);
13230 flags = FIELD_DP32(flags, TBFLAG_AM32, CONDEXEC, env->condexec_bits);
13231 pstate_for_ss = env->uncached_cpsr;
13235 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
13236 * states defined in the ARM ARM for software singlestep:
13237 * SS_ACTIVE PSTATE.SS State
13238 * 0 x Inactive (the TB flag for SS is always 0)
13239 * 1 0 Active-pending
13240 * 1 1 Active-not-pending
13241 * SS_ACTIVE is set in hflags; PSTATE_SS is computed every TB.
13243 if (FIELD_EX32(flags, TBFLAG_ANY, SS_ACTIVE) &&
13244 (pstate_for_ss & PSTATE_SS)) {
13245 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
13248 *pflags = flags;
13251 #ifdef TARGET_AARCH64
13253 * The manual says that when SVE is enabled and VQ is widened the
13254 * implementation is allowed to zero the previously inaccessible
13255 * portion of the registers. The corollary to that is that when
13256 * SVE is enabled and VQ is narrowed we are also allowed to zero
13257 * the now inaccessible portion of the registers.
13259 * The intent of this is that no predicate bit beyond VQ is ever set.
13260 * Which means that some operations on predicate registers themselves
13261 * may operate on full uint64_t or even unrolled across the maximum
13262 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
13263 * may well be cheaper than conditionals to restrict the operation
13264 * to the relevant portion of a uint16_t[16].
13266 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
13268 int i, j;
13269 uint64_t pmask;
13271 assert(vq >= 1 && vq <= ARM_MAX_VQ);
13272 assert(vq <= env_archcpu(env)->sve_max_vq);
13274 /* Zap the high bits of the zregs. */
13275 for (i = 0; i < 32; i++) {
13276 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
13279 /* Zap the high bits of the pregs and ffr. */
13280 pmask = 0;
13281 if (vq & 3) {
13282 pmask = ~(-1ULL << (16 * (vq & 3)));
13284 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
13285 for (i = 0; i < 17; ++i) {
13286 env->vfp.pregs[i].p[j] &= pmask;
13288 pmask = 0;
13293 * Notice a change in SVE vector size when changing EL.
13295 void aarch64_sve_change_el(CPUARMState *env, int old_el,
13296 int new_el, bool el0_a64)
13298 ARMCPU *cpu = env_archcpu(env);
13299 int old_len, new_len;
13300 bool old_a64, new_a64;
13302 /* Nothing to do if no SVE. */
13303 if (!cpu_isar_feature(aa64_sve, cpu)) {
13304 return;
13307 /* Nothing to do if FP is disabled in either EL. */
13308 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
13309 return;
13313 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
13314 * at ELx, or not available because the EL is in AArch32 state, then
13315 * for all purposes other than a direct read, the ZCR_ELx.LEN field
13316 * has an effective value of 0".
13318 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
13319 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
13320 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
13321 * we already have the correct register contents when encountering the
13322 * vq0->vq0 transition between EL0->EL1.
13324 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
13325 old_len = (old_a64 && !sve_exception_el(env, old_el)
13326 ? sve_zcr_len_for_el(env, old_el) : 0);
13327 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
13328 new_len = (new_a64 && !sve_exception_el(env, new_el)
13329 ? sve_zcr_len_for_el(env, new_el) : 0);
13331 /* When changing vector length, clear inaccessible state. */
13332 if (new_len < old_len) {
13333 aarch64_sve_narrow_vq(env, new_len + 1);
13336 #endif