ppc/xics: Implement H_IPOLL using an accessor
[qemu/kevin.git] / hw / ppc / ppc.c
blobe4252528a69d7a8eee57070bbd650be9a8812175
1 /*
2 * QEMU generic PowerPC hardware System Emulator
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "qemu/osdep.h"
25 #include "qemu-common.h"
26 #include "cpu.h"
27 #include "hw/hw.h"
28 #include "hw/ppc/ppc.h"
29 #include "hw/ppc/ppc_e500.h"
30 #include "qemu/timer.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/cpus.h"
33 #include "hw/timer/m48t59.h"
34 #include "qemu/log.h"
35 #include "qemu/error-report.h"
36 #include "hw/loader.h"
37 #include "sysemu/kvm.h"
38 #include "kvm_ppc.h"
39 #include "trace.h"
41 //#define PPC_DEBUG_IRQ
42 //#define PPC_DEBUG_TB
44 #ifdef PPC_DEBUG_IRQ
45 # define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
46 #else
47 # define LOG_IRQ(...) do { } while (0)
48 #endif
51 #ifdef PPC_DEBUG_TB
52 # define LOG_TB(...) qemu_log(__VA_ARGS__)
53 #else
54 # define LOG_TB(...) do { } while (0)
55 #endif
57 static void cpu_ppc_tb_stop (CPUPPCState *env);
58 static void cpu_ppc_tb_start (CPUPPCState *env);
60 void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level)
62 CPUState *cs = CPU(cpu);
63 CPUPPCState *env = &cpu->env;
64 unsigned int old_pending = env->pending_interrupts;
66 if (level) {
67 env->pending_interrupts |= 1 << n_IRQ;
68 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
69 } else {
70 env->pending_interrupts &= ~(1 << n_IRQ);
71 if (env->pending_interrupts == 0) {
72 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
76 if (old_pending != env->pending_interrupts) {
77 #ifdef CONFIG_KVM
78 kvmppc_set_interrupt(cpu, n_IRQ, level);
79 #endif
82 LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
83 "req %08x\n", __func__, env, n_IRQ, level,
84 env->pending_interrupts, CPU(cpu)->interrupt_request);
87 /* PowerPC 6xx / 7xx internal IRQ controller */
88 static void ppc6xx_set_irq(void *opaque, int pin, int level)
90 PowerPCCPU *cpu = opaque;
91 CPUPPCState *env = &cpu->env;
92 int cur_level;
94 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
95 env, pin, level);
96 cur_level = (env->irq_input_state >> pin) & 1;
97 /* Don't generate spurious events */
98 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
99 CPUState *cs = CPU(cpu);
101 switch (pin) {
102 case PPC6xx_INPUT_TBEN:
103 /* Level sensitive - active high */
104 LOG_IRQ("%s: %s the time base\n",
105 __func__, level ? "start" : "stop");
106 if (level) {
107 cpu_ppc_tb_start(env);
108 } else {
109 cpu_ppc_tb_stop(env);
111 case PPC6xx_INPUT_INT:
112 /* Level sensitive - active high */
113 LOG_IRQ("%s: set the external IRQ state to %d\n",
114 __func__, level);
115 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
116 break;
117 case PPC6xx_INPUT_SMI:
118 /* Level sensitive - active high */
119 LOG_IRQ("%s: set the SMI IRQ state to %d\n",
120 __func__, level);
121 ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
122 break;
123 case PPC6xx_INPUT_MCP:
124 /* Negative edge sensitive */
125 /* XXX: TODO: actual reaction may depends on HID0 status
126 * 603/604/740/750: check HID0[EMCP]
128 if (cur_level == 1 && level == 0) {
129 LOG_IRQ("%s: raise machine check state\n",
130 __func__);
131 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
133 break;
134 case PPC6xx_INPUT_CKSTP_IN:
135 /* Level sensitive - active low */
136 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
137 /* XXX: Note that the only way to restart the CPU is to reset it */
138 if (level) {
139 LOG_IRQ("%s: stop the CPU\n", __func__);
140 cs->halted = 1;
142 break;
143 case PPC6xx_INPUT_HRESET:
144 /* Level sensitive - active low */
145 if (level) {
146 LOG_IRQ("%s: reset the CPU\n", __func__);
147 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
149 break;
150 case PPC6xx_INPUT_SRESET:
151 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
152 __func__, level);
153 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
154 break;
155 default:
156 /* Unknown pin - do nothing */
157 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
158 return;
160 if (level)
161 env->irq_input_state |= 1 << pin;
162 else
163 env->irq_input_state &= ~(1 << pin);
167 void ppc6xx_irq_init(PowerPCCPU *cpu)
169 CPUPPCState *env = &cpu->env;
171 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu,
172 PPC6xx_INPUT_NB);
175 #if defined(TARGET_PPC64)
176 /* PowerPC 970 internal IRQ controller */
177 static void ppc970_set_irq(void *opaque, int pin, int level)
179 PowerPCCPU *cpu = opaque;
180 CPUPPCState *env = &cpu->env;
181 int cur_level;
183 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
184 env, pin, level);
185 cur_level = (env->irq_input_state >> pin) & 1;
186 /* Don't generate spurious events */
187 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
188 CPUState *cs = CPU(cpu);
190 switch (pin) {
191 case PPC970_INPUT_INT:
192 /* Level sensitive - active high */
193 LOG_IRQ("%s: set the external IRQ state to %d\n",
194 __func__, level);
195 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
196 break;
197 case PPC970_INPUT_THINT:
198 /* Level sensitive - active high */
199 LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
200 level);
201 ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
202 break;
203 case PPC970_INPUT_MCP:
204 /* Negative edge sensitive */
205 /* XXX: TODO: actual reaction may depends on HID0 status
206 * 603/604/740/750: check HID0[EMCP]
208 if (cur_level == 1 && level == 0) {
209 LOG_IRQ("%s: raise machine check state\n",
210 __func__);
211 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
213 break;
214 case PPC970_INPUT_CKSTP:
215 /* Level sensitive - active low */
216 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
217 if (level) {
218 LOG_IRQ("%s: stop the CPU\n", __func__);
219 cs->halted = 1;
220 } else {
221 LOG_IRQ("%s: restart the CPU\n", __func__);
222 cs->halted = 0;
223 qemu_cpu_kick(cs);
225 break;
226 case PPC970_INPUT_HRESET:
227 /* Level sensitive - active low */
228 if (level) {
229 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
231 break;
232 case PPC970_INPUT_SRESET:
233 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
234 __func__, level);
235 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
236 break;
237 case PPC970_INPUT_TBEN:
238 LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
239 level);
240 /* XXX: TODO */
241 break;
242 default:
243 /* Unknown pin - do nothing */
244 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
245 return;
247 if (level)
248 env->irq_input_state |= 1 << pin;
249 else
250 env->irq_input_state &= ~(1 << pin);
254 void ppc970_irq_init(PowerPCCPU *cpu)
256 CPUPPCState *env = &cpu->env;
258 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu,
259 PPC970_INPUT_NB);
262 /* POWER7 internal IRQ controller */
263 static void power7_set_irq(void *opaque, int pin, int level)
265 PowerPCCPU *cpu = opaque;
266 CPUPPCState *env = &cpu->env;
268 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
269 env, pin, level);
271 switch (pin) {
272 case POWER7_INPUT_INT:
273 /* Level sensitive - active high */
274 LOG_IRQ("%s: set the external IRQ state to %d\n",
275 __func__, level);
276 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
277 break;
278 default:
279 /* Unknown pin - do nothing */
280 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
281 return;
283 if (level) {
284 env->irq_input_state |= 1 << pin;
285 } else {
286 env->irq_input_state &= ~(1 << pin);
290 void ppcPOWER7_irq_init(PowerPCCPU *cpu)
292 CPUPPCState *env = &cpu->env;
294 env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu,
295 POWER7_INPUT_NB);
297 #endif /* defined(TARGET_PPC64) */
299 /* PowerPC 40x internal IRQ controller */
300 static void ppc40x_set_irq(void *opaque, int pin, int level)
302 PowerPCCPU *cpu = opaque;
303 CPUPPCState *env = &cpu->env;
304 int cur_level;
306 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
307 env, pin, level);
308 cur_level = (env->irq_input_state >> pin) & 1;
309 /* Don't generate spurious events */
310 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
311 CPUState *cs = CPU(cpu);
313 switch (pin) {
314 case PPC40x_INPUT_RESET_SYS:
315 if (level) {
316 LOG_IRQ("%s: reset the PowerPC system\n",
317 __func__);
318 ppc40x_system_reset(cpu);
320 break;
321 case PPC40x_INPUT_RESET_CHIP:
322 if (level) {
323 LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
324 ppc40x_chip_reset(cpu);
326 break;
327 case PPC40x_INPUT_RESET_CORE:
328 /* XXX: TODO: update DBSR[MRR] */
329 if (level) {
330 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
331 ppc40x_core_reset(cpu);
333 break;
334 case PPC40x_INPUT_CINT:
335 /* Level sensitive - active high */
336 LOG_IRQ("%s: set the critical IRQ state to %d\n",
337 __func__, level);
338 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
339 break;
340 case PPC40x_INPUT_INT:
341 /* Level sensitive - active high */
342 LOG_IRQ("%s: set the external IRQ state to %d\n",
343 __func__, level);
344 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
345 break;
346 case PPC40x_INPUT_HALT:
347 /* Level sensitive - active low */
348 if (level) {
349 LOG_IRQ("%s: stop the CPU\n", __func__);
350 cs->halted = 1;
351 } else {
352 LOG_IRQ("%s: restart the CPU\n", __func__);
353 cs->halted = 0;
354 qemu_cpu_kick(cs);
356 break;
357 case PPC40x_INPUT_DEBUG:
358 /* Level sensitive - active high */
359 LOG_IRQ("%s: set the debug pin state to %d\n",
360 __func__, level);
361 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
362 break;
363 default:
364 /* Unknown pin - do nothing */
365 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
366 return;
368 if (level)
369 env->irq_input_state |= 1 << pin;
370 else
371 env->irq_input_state &= ~(1 << pin);
375 void ppc40x_irq_init(PowerPCCPU *cpu)
377 CPUPPCState *env = &cpu->env;
379 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
380 cpu, PPC40x_INPUT_NB);
383 /* PowerPC E500 internal IRQ controller */
384 static void ppce500_set_irq(void *opaque, int pin, int level)
386 PowerPCCPU *cpu = opaque;
387 CPUPPCState *env = &cpu->env;
388 int cur_level;
390 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
391 env, pin, level);
392 cur_level = (env->irq_input_state >> pin) & 1;
393 /* Don't generate spurious events */
394 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
395 switch (pin) {
396 case PPCE500_INPUT_MCK:
397 if (level) {
398 LOG_IRQ("%s: reset the PowerPC system\n",
399 __func__);
400 qemu_system_reset_request();
402 break;
403 case PPCE500_INPUT_RESET_CORE:
404 if (level) {
405 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
406 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
408 break;
409 case PPCE500_INPUT_CINT:
410 /* Level sensitive - active high */
411 LOG_IRQ("%s: set the critical IRQ state to %d\n",
412 __func__, level);
413 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
414 break;
415 case PPCE500_INPUT_INT:
416 /* Level sensitive - active high */
417 LOG_IRQ("%s: set the core IRQ state to %d\n",
418 __func__, level);
419 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
420 break;
421 case PPCE500_INPUT_DEBUG:
422 /* Level sensitive - active high */
423 LOG_IRQ("%s: set the debug pin state to %d\n",
424 __func__, level);
425 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
426 break;
427 default:
428 /* Unknown pin - do nothing */
429 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
430 return;
432 if (level)
433 env->irq_input_state |= 1 << pin;
434 else
435 env->irq_input_state &= ~(1 << pin);
439 void ppce500_irq_init(PowerPCCPU *cpu)
441 CPUPPCState *env = &cpu->env;
443 env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
444 cpu, PPCE500_INPUT_NB);
447 /* Enable or Disable the E500 EPR capability */
448 void ppce500_set_mpic_proxy(bool enabled)
450 CPUState *cs;
452 CPU_FOREACH(cs) {
453 PowerPCCPU *cpu = POWERPC_CPU(cs);
455 cpu->env.mpic_proxy = enabled;
456 if (kvm_enabled()) {
457 kvmppc_set_mpic_proxy(cpu, enabled);
462 /*****************************************************************************/
463 /* PowerPC time base and decrementer emulation */
465 uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
467 /* TB time in tb periods */
468 return muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND) + tb_offset;
471 uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
473 ppc_tb_t *tb_env = env->tb_env;
474 uint64_t tb;
476 if (kvm_enabled()) {
477 return env->spr[SPR_TBL];
480 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
481 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
483 return tb;
486 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
488 ppc_tb_t *tb_env = env->tb_env;
489 uint64_t tb;
491 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
492 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
494 return tb >> 32;
497 uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
499 if (kvm_enabled()) {
500 return env->spr[SPR_TBU];
503 return _cpu_ppc_load_tbu(env);
506 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
507 int64_t *tb_offsetp, uint64_t value)
509 *tb_offsetp = value -
510 muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
512 LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
513 __func__, value, *tb_offsetp);
516 void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
518 ppc_tb_t *tb_env = env->tb_env;
519 uint64_t tb;
521 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
522 tb &= 0xFFFFFFFF00000000ULL;
523 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
524 &tb_env->tb_offset, tb | (uint64_t)value);
527 static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
529 ppc_tb_t *tb_env = env->tb_env;
530 uint64_t tb;
532 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
533 tb &= 0x00000000FFFFFFFFULL;
534 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
535 &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
538 void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
540 _cpu_ppc_store_tbu(env, value);
543 uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
545 ppc_tb_t *tb_env = env->tb_env;
546 uint64_t tb;
548 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
549 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
551 return tb;
554 uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
556 ppc_tb_t *tb_env = env->tb_env;
557 uint64_t tb;
559 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
560 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
562 return tb >> 32;
565 void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
567 ppc_tb_t *tb_env = env->tb_env;
568 uint64_t tb;
570 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
571 tb &= 0xFFFFFFFF00000000ULL;
572 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
573 &tb_env->atb_offset, tb | (uint64_t)value);
576 void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
578 ppc_tb_t *tb_env = env->tb_env;
579 uint64_t tb;
581 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
582 tb &= 0x00000000FFFFFFFFULL;
583 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
584 &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
587 static void cpu_ppc_tb_stop (CPUPPCState *env)
589 ppc_tb_t *tb_env = env->tb_env;
590 uint64_t tb, atb, vmclk;
592 /* If the time base is already frozen, do nothing */
593 if (tb_env->tb_freq != 0) {
594 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
595 /* Get the time base */
596 tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
597 /* Get the alternate time base */
598 atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
599 /* Store the time base value (ie compute the current offset) */
600 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
601 /* Store the alternate time base value (compute the current offset) */
602 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
603 /* Set the time base frequency to zero */
604 tb_env->tb_freq = 0;
605 /* Now, the time bases are frozen to tb_offset / atb_offset value */
609 static void cpu_ppc_tb_start (CPUPPCState *env)
611 ppc_tb_t *tb_env = env->tb_env;
612 uint64_t tb, atb, vmclk;
614 /* If the time base is not frozen, do nothing */
615 if (tb_env->tb_freq == 0) {
616 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
617 /* Get the time base from tb_offset */
618 tb = tb_env->tb_offset;
619 /* Get the alternate time base from atb_offset */
620 atb = tb_env->atb_offset;
621 /* Restore the tb frequency from the decrementer frequency */
622 tb_env->tb_freq = tb_env->decr_freq;
623 /* Store the time base value */
624 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
625 /* Store the alternate time base value */
626 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
630 bool ppc_decr_clear_on_delivery(CPUPPCState *env)
632 ppc_tb_t *tb_env = env->tb_env;
633 int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL;
634 return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED);
637 static inline uint32_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
639 ppc_tb_t *tb_env = env->tb_env;
640 uint32_t decr;
641 int64_t diff;
643 diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
644 if (diff >= 0) {
645 decr = muldiv64(diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
646 } else if (tb_env->flags & PPC_TIMER_BOOKE) {
647 decr = 0;
648 } else {
649 decr = -muldiv64(-diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
651 LOG_TB("%s: %08" PRIx32 "\n", __func__, decr);
653 return decr;
656 uint32_t cpu_ppc_load_decr (CPUPPCState *env)
658 ppc_tb_t *tb_env = env->tb_env;
660 if (kvm_enabled()) {
661 return env->spr[SPR_DECR];
664 return _cpu_ppc_load_decr(env, tb_env->decr_next);
667 uint32_t cpu_ppc_load_hdecr (CPUPPCState *env)
669 ppc_tb_t *tb_env = env->tb_env;
671 return _cpu_ppc_load_decr(env, tb_env->hdecr_next);
674 uint64_t cpu_ppc_load_purr (CPUPPCState *env)
676 ppc_tb_t *tb_env = env->tb_env;
677 uint64_t diff;
679 diff = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - tb_env->purr_start;
681 return tb_env->purr_load +
682 muldiv64(diff, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
685 /* When decrementer expires,
686 * all we need to do is generate or queue a CPU exception
688 static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
690 /* Raise it */
691 LOG_TB("raise decrementer exception\n");
692 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
695 static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu)
697 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
700 static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
702 CPUPPCState *env = &cpu->env;
704 /* Raise it */
705 LOG_TB("raise hv decrementer exception\n");
707 /* The architecture specifies that we don't deliver HDEC
708 * interrupts in a PM state. Not only they don't cause a
709 * wakeup but they also get effectively discarded.
711 if (!env->in_pm_state) {
712 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
716 static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu)
718 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
721 static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
722 QEMUTimer *timer,
723 void (*raise_excp)(void *),
724 void (*lower_excp)(PowerPCCPU *),
725 uint32_t decr, uint32_t value)
727 CPUPPCState *env = &cpu->env;
728 ppc_tb_t *tb_env = env->tb_env;
729 uint64_t now, next;
731 LOG_TB("%s: %08" PRIx32 " => %08" PRIx32 "\n", __func__,
732 decr, value);
734 if (kvm_enabled()) {
735 /* KVM handles decrementer exceptions, we don't need our own timer */
736 return;
740 * Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC
741 * interrupt.
743 * If we get a really small DEC value, we can assume that by the time we
744 * handled it we should inject an interrupt already.
746 * On MSB level based DEC implementations the MSB always means the interrupt
747 * is pending, so raise it on those.
749 * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
750 * an edge interrupt, so raise it here too.
752 if ((value < 3) ||
753 ((tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL) && (value & 0x80000000)) ||
754 ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED) && (value & 0x80000000)
755 && !(decr & 0x80000000))) {
756 (*raise_excp)(cpu);
757 return;
760 /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
761 if (!(value & 0x80000000) && (tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL)) {
762 (*lower_excp)(cpu);
765 /* Calculate the next timer event */
766 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
767 next = now + muldiv64(value, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
768 *nextp = next;
770 /* Adjust timer */
771 timer_mod(timer, next);
774 static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, uint32_t decr,
775 uint32_t value)
777 ppc_tb_t *tb_env = cpu->env.tb_env;
779 __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
780 tb_env->decr_timer->cb, &cpu_ppc_decr_lower, decr,
781 value);
784 void cpu_ppc_store_decr (CPUPPCState *env, uint32_t value)
786 PowerPCCPU *cpu = ppc_env_get_cpu(env);
788 _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value);
791 static void cpu_ppc_decr_cb(void *opaque)
793 PowerPCCPU *cpu = opaque;
795 cpu_ppc_decr_excp(cpu);
798 static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, uint32_t hdecr,
799 uint32_t value)
801 ppc_tb_t *tb_env = cpu->env.tb_env;
803 if (tb_env->hdecr_timer != NULL) {
804 __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
805 tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower,
806 hdecr, value);
810 void cpu_ppc_store_hdecr (CPUPPCState *env, uint32_t value)
812 PowerPCCPU *cpu = ppc_env_get_cpu(env);
814 _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value);
817 static void cpu_ppc_hdecr_cb(void *opaque)
819 PowerPCCPU *cpu = opaque;
821 cpu_ppc_hdecr_excp(cpu);
824 static void cpu_ppc_store_purr(PowerPCCPU *cpu, uint64_t value)
826 ppc_tb_t *tb_env = cpu->env.tb_env;
828 tb_env->purr_load = value;
829 tb_env->purr_start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
832 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
834 CPUPPCState *env = opaque;
835 PowerPCCPU *cpu = ppc_env_get_cpu(env);
836 ppc_tb_t *tb_env = env->tb_env;
838 tb_env->tb_freq = freq;
839 tb_env->decr_freq = freq;
840 /* There is a bug in Linux 2.4 kernels:
841 * if a decrementer exception is pending when it enables msr_ee at startup,
842 * it's not ready to handle it...
844 _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF);
845 _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF);
846 cpu_ppc_store_purr(cpu, 0x0000000000000000ULL);
849 static void timebase_pre_save(void *opaque)
851 PPCTimebase *tb = opaque;
852 uint64_t ticks = cpu_get_host_ticks();
853 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
855 if (!first_ppc_cpu->env.tb_env) {
856 error_report("No timebase object");
857 return;
860 tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
862 * tb_offset is only expected to be changed by migration so
863 * there is no need to update it from KVM here
865 tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset;
868 static int timebase_post_load(void *opaque, int version_id)
870 PPCTimebase *tb_remote = opaque;
871 CPUState *cpu;
872 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
873 int64_t tb_off_adj, tb_off, ns_diff;
874 int64_t migration_duration_ns, migration_duration_tb, guest_tb, host_ns;
875 unsigned long freq;
877 if (!first_ppc_cpu->env.tb_env) {
878 error_report("No timebase object");
879 return -1;
882 freq = first_ppc_cpu->env.tb_env->tb_freq;
884 * Calculate timebase on the destination side of migration.
885 * The destination timebase must be not less than the source timebase.
886 * We try to adjust timebase by downtime if host clocks are not
887 * too much out of sync (1 second for now).
889 host_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
890 ns_diff = MAX(0, host_ns - tb_remote->time_of_the_day_ns);
891 migration_duration_ns = MIN(NANOSECONDS_PER_SECOND, ns_diff);
892 migration_duration_tb = muldiv64(freq, migration_duration_ns,
893 NANOSECONDS_PER_SECOND);
894 guest_tb = tb_remote->guest_timebase + MIN(0, migration_duration_tb);
896 tb_off_adj = guest_tb - cpu_get_host_ticks();
898 tb_off = first_ppc_cpu->env.tb_env->tb_offset;
899 trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off,
900 (tb_off_adj - tb_off) / freq);
902 /* Set new offset to all CPUs */
903 CPU_FOREACH(cpu) {
904 PowerPCCPU *pcpu = POWERPC_CPU(cpu);
905 pcpu->env.tb_env->tb_offset = tb_off_adj;
908 return 0;
911 const VMStateDescription vmstate_ppc_timebase = {
912 .name = "timebase",
913 .version_id = 1,
914 .minimum_version_id = 1,
915 .minimum_version_id_old = 1,
916 .pre_save = timebase_pre_save,
917 .post_load = timebase_post_load,
918 .fields = (VMStateField []) {
919 VMSTATE_UINT64(guest_timebase, PPCTimebase),
920 VMSTATE_INT64(time_of_the_day_ns, PPCTimebase),
921 VMSTATE_END_OF_LIST()
925 /* Set up (once) timebase frequency (in Hz) */
926 clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
928 PowerPCCPU *cpu = ppc_env_get_cpu(env);
929 ppc_tb_t *tb_env;
931 tb_env = g_malloc0(sizeof(ppc_tb_t));
932 env->tb_env = tb_env;
933 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
934 if (env->insns_flags & PPC_SEGMENT_64B) {
935 /* All Book3S 64bit CPUs implement level based DEC logic */
936 tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL;
938 /* Create new timer */
939 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu);
940 if (env->has_hv_mode) {
941 tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb,
942 cpu);
943 } else {
944 tb_env->hdecr_timer = NULL;
946 cpu_ppc_set_tb_clk(env, freq);
948 return &cpu_ppc_set_tb_clk;
951 /* Specific helpers for POWER & PowerPC 601 RTC */
952 #if 0
953 static clk_setup_cb cpu_ppc601_rtc_init (CPUPPCState *env)
955 return cpu_ppc_tb_init(env, 7812500);
957 #endif
959 void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value)
961 _cpu_ppc_store_tbu(env, value);
964 uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env)
966 return _cpu_ppc_load_tbu(env);
969 void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value)
971 cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
974 uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env)
976 return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
979 /*****************************************************************************/
980 /* PowerPC 40x timers */
982 /* PIT, FIT & WDT */
983 typedef struct ppc40x_timer_t ppc40x_timer_t;
984 struct ppc40x_timer_t {
985 uint64_t pit_reload; /* PIT auto-reload value */
986 uint64_t fit_next; /* Tick for next FIT interrupt */
987 QEMUTimer *fit_timer;
988 uint64_t wdt_next; /* Tick for next WDT interrupt */
989 QEMUTimer *wdt_timer;
991 /* 405 have the PIT, 440 have a DECR. */
992 unsigned int decr_excp;
995 /* Fixed interval timer */
996 static void cpu_4xx_fit_cb (void *opaque)
998 PowerPCCPU *cpu;
999 CPUPPCState *env;
1000 ppc_tb_t *tb_env;
1001 ppc40x_timer_t *ppc40x_timer;
1002 uint64_t now, next;
1004 env = opaque;
1005 cpu = ppc_env_get_cpu(env);
1006 tb_env = env->tb_env;
1007 ppc40x_timer = tb_env->opaque;
1008 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1009 switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
1010 case 0:
1011 next = 1 << 9;
1012 break;
1013 case 1:
1014 next = 1 << 13;
1015 break;
1016 case 2:
1017 next = 1 << 17;
1018 break;
1019 case 3:
1020 next = 1 << 21;
1021 break;
1022 default:
1023 /* Cannot occur, but makes gcc happy */
1024 return;
1026 next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->tb_freq);
1027 if (next == now)
1028 next++;
1029 timer_mod(ppc40x_timer->fit_timer, next);
1030 env->spr[SPR_40x_TSR] |= 1 << 26;
1031 if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
1032 ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
1034 LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1035 (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
1036 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1039 /* Programmable interval timer */
1040 static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
1042 ppc40x_timer_t *ppc40x_timer;
1043 uint64_t now, next;
1045 ppc40x_timer = tb_env->opaque;
1046 if (ppc40x_timer->pit_reload <= 1 ||
1047 !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
1048 (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
1049 /* Stop PIT */
1050 LOG_TB("%s: stop PIT\n", __func__);
1051 timer_del(tb_env->decr_timer);
1052 } else {
1053 LOG_TB("%s: start PIT %016" PRIx64 "\n",
1054 __func__, ppc40x_timer->pit_reload);
1055 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1056 next = now + muldiv64(ppc40x_timer->pit_reload,
1057 NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1058 if (is_excp)
1059 next += tb_env->decr_next - now;
1060 if (next == now)
1061 next++;
1062 timer_mod(tb_env->decr_timer, next);
1063 tb_env->decr_next = next;
1067 static void cpu_4xx_pit_cb (void *opaque)
1069 PowerPCCPU *cpu;
1070 CPUPPCState *env;
1071 ppc_tb_t *tb_env;
1072 ppc40x_timer_t *ppc40x_timer;
1074 env = opaque;
1075 cpu = ppc_env_get_cpu(env);
1076 tb_env = env->tb_env;
1077 ppc40x_timer = tb_env->opaque;
1078 env->spr[SPR_40x_TSR] |= 1 << 27;
1079 if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
1080 ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
1082 start_stop_pit(env, tb_env, 1);
1083 LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
1084 "%016" PRIx64 "\n", __func__,
1085 (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
1086 (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
1087 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
1088 ppc40x_timer->pit_reload);
1091 /* Watchdog timer */
1092 static void cpu_4xx_wdt_cb (void *opaque)
1094 PowerPCCPU *cpu;
1095 CPUPPCState *env;
1096 ppc_tb_t *tb_env;
1097 ppc40x_timer_t *ppc40x_timer;
1098 uint64_t now, next;
1100 env = opaque;
1101 cpu = ppc_env_get_cpu(env);
1102 tb_env = env->tb_env;
1103 ppc40x_timer = tb_env->opaque;
1104 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1105 switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
1106 case 0:
1107 next = 1 << 17;
1108 break;
1109 case 1:
1110 next = 1 << 21;
1111 break;
1112 case 2:
1113 next = 1 << 25;
1114 break;
1115 case 3:
1116 next = 1 << 29;
1117 break;
1118 default:
1119 /* Cannot occur, but makes gcc happy */
1120 return;
1122 next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1123 if (next == now)
1124 next++;
1125 LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1126 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1127 switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
1128 case 0x0:
1129 case 0x1:
1130 timer_mod(ppc40x_timer->wdt_timer, next);
1131 ppc40x_timer->wdt_next = next;
1132 env->spr[SPR_40x_TSR] |= 1U << 31;
1133 break;
1134 case 0x2:
1135 timer_mod(ppc40x_timer->wdt_timer, next);
1136 ppc40x_timer->wdt_next = next;
1137 env->spr[SPR_40x_TSR] |= 1 << 30;
1138 if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1139 ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1141 break;
1142 case 0x3:
1143 env->spr[SPR_40x_TSR] &= ~0x30000000;
1144 env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1145 switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1146 case 0x0:
1147 /* No reset */
1148 break;
1149 case 0x1: /* Core reset */
1150 ppc40x_core_reset(cpu);
1151 break;
1152 case 0x2: /* Chip reset */
1153 ppc40x_chip_reset(cpu);
1154 break;
1155 case 0x3: /* System reset */
1156 ppc40x_system_reset(cpu);
1157 break;
1162 void store_40x_pit (CPUPPCState *env, target_ulong val)
1164 ppc_tb_t *tb_env;
1165 ppc40x_timer_t *ppc40x_timer;
1167 tb_env = env->tb_env;
1168 ppc40x_timer = tb_env->opaque;
1169 LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
1170 ppc40x_timer->pit_reload = val;
1171 start_stop_pit(env, tb_env, 0);
1174 target_ulong load_40x_pit (CPUPPCState *env)
1176 return cpu_ppc_load_decr(env);
1179 static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1181 CPUPPCState *env = opaque;
1182 ppc_tb_t *tb_env = env->tb_env;
1184 LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
1185 freq);
1186 tb_env->tb_freq = freq;
1187 tb_env->decr_freq = freq;
1188 /* XXX: we should also update all timers */
1191 clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1192 unsigned int decr_excp)
1194 ppc_tb_t *tb_env;
1195 ppc40x_timer_t *ppc40x_timer;
1197 tb_env = g_malloc0(sizeof(ppc_tb_t));
1198 env->tb_env = tb_env;
1199 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1200 ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t));
1201 tb_env->tb_freq = freq;
1202 tb_env->decr_freq = freq;
1203 tb_env->opaque = ppc40x_timer;
1204 LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
1205 if (ppc40x_timer != NULL) {
1206 /* We use decr timer for PIT */
1207 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, env);
1208 ppc40x_timer->fit_timer =
1209 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, env);
1210 ppc40x_timer->wdt_timer =
1211 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, env);
1212 ppc40x_timer->decr_excp = decr_excp;
1215 return &ppc_40x_set_tb_clk;
1218 /*****************************************************************************/
1219 /* Embedded PowerPC Device Control Registers */
1220 typedef struct ppc_dcrn_t ppc_dcrn_t;
1221 struct ppc_dcrn_t {
1222 dcr_read_cb dcr_read;
1223 dcr_write_cb dcr_write;
1224 void *opaque;
1227 /* XXX: on 460, DCR addresses are 32 bits wide,
1228 * using DCRIPR to get the 22 upper bits of the DCR address
1230 #define DCRN_NB 1024
1231 struct ppc_dcr_t {
1232 ppc_dcrn_t dcrn[DCRN_NB];
1233 int (*read_error)(int dcrn);
1234 int (*write_error)(int dcrn);
1237 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1239 ppc_dcrn_t *dcr;
1241 if (dcrn < 0 || dcrn >= DCRN_NB)
1242 goto error;
1243 dcr = &dcr_env->dcrn[dcrn];
1244 if (dcr->dcr_read == NULL)
1245 goto error;
1246 *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1248 return 0;
1250 error:
1251 if (dcr_env->read_error != NULL)
1252 return (*dcr_env->read_error)(dcrn);
1254 return -1;
1257 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1259 ppc_dcrn_t *dcr;
1261 if (dcrn < 0 || dcrn >= DCRN_NB)
1262 goto error;
1263 dcr = &dcr_env->dcrn[dcrn];
1264 if (dcr->dcr_write == NULL)
1265 goto error;
1266 (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1268 return 0;
1270 error:
1271 if (dcr_env->write_error != NULL)
1272 return (*dcr_env->write_error)(dcrn);
1274 return -1;
1277 int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1278 dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1280 ppc_dcr_t *dcr_env;
1281 ppc_dcrn_t *dcr;
1283 dcr_env = env->dcr_env;
1284 if (dcr_env == NULL)
1285 return -1;
1286 if (dcrn < 0 || dcrn >= DCRN_NB)
1287 return -1;
1288 dcr = &dcr_env->dcrn[dcrn];
1289 if (dcr->opaque != NULL ||
1290 dcr->dcr_read != NULL ||
1291 dcr->dcr_write != NULL)
1292 return -1;
1293 dcr->opaque = opaque;
1294 dcr->dcr_read = dcr_read;
1295 dcr->dcr_write = dcr_write;
1297 return 0;
1300 int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1301 int (*write_error)(int dcrn))
1303 ppc_dcr_t *dcr_env;
1305 dcr_env = g_malloc0(sizeof(ppc_dcr_t));
1306 dcr_env->read_error = read_error;
1307 dcr_env->write_error = write_error;
1308 env->dcr_env = dcr_env;
1310 return 0;
1313 /*****************************************************************************/
1314 /* Debug port */
1315 void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
1317 addr &= 0xF;
1318 switch (addr) {
1319 case 0:
1320 printf("%c", val);
1321 break;
1322 case 1:
1323 printf("\n");
1324 fflush(stdout);
1325 break;
1326 case 2:
1327 printf("Set loglevel to %04" PRIx32 "\n", val);
1328 qemu_set_log(val | 0x100);
1329 break;
1333 /* CPU device-tree ID helpers */
1334 int ppc_get_vcpu_dt_id(PowerPCCPU *cpu)
1336 return cpu->cpu_dt_id;
1339 PowerPCCPU *ppc_get_vcpu_by_dt_id(int cpu_dt_id)
1341 CPUState *cs;
1343 CPU_FOREACH(cs) {
1344 PowerPCCPU *cpu = POWERPC_CPU(cs);
1346 if (cpu->cpu_dt_id == cpu_dt_id) {
1347 return cpu;
1351 return NULL;