2 * QEMU MC146818 RTC emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu/osdep.h"
26 #include "qemu-common.h"
27 #include "qemu/cutils.h"
28 #include "qemu/module.h"
30 #include "hw/acpi/aml-build.h"
32 #include "hw/qdev-properties.h"
33 #include "hw/qdev-properties-system.h"
34 #include "qemu/timer.h"
35 #include "sysemu/sysemu.h"
36 #include "sysemu/replay.h"
37 #include "sysemu/reset.h"
38 #include "sysemu/runstate.h"
39 #include "hw/rtc/mc146818rtc.h"
40 #include "hw/rtc/mc146818rtc_regs.h"
41 #include "migration/vmstate.h"
42 #include "qapi/error.h"
43 #include "qapi/qapi-events-misc-target.h"
44 #include "qapi/visitor.h"
45 #include "exec/address-spaces.h"
46 #include "hw/rtc/mc146818rtc_regs.h"
49 #include "qapi/qapi-commands-misc-target.h"
50 #include "hw/i386/apic.h"
54 //#define DEBUG_COALESCED
57 # define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__)
59 # define CMOS_DPRINTF(format, ...) do { } while (0)
62 #ifdef DEBUG_COALESCED
63 # define DPRINTF_C(format, ...) printf(format, ## __VA_ARGS__)
65 # define DPRINTF_C(format, ...) do { } while (0)
68 #define SEC_PER_MIN 60
69 #define MIN_PER_HOUR 60
70 #define SEC_PER_HOUR 3600
71 #define HOUR_PER_DAY 24
72 #define SEC_PER_DAY 86400
74 #define RTC_REINJECT_ON_ACK_COUNT 20
75 #define RTC_CLOCK_RATE 32768
76 #define UIP_HOLD_LENGTH (8 * NANOSECONDS_PER_SECOND / 32768)
78 static void rtc_set_time(RTCState
*s
);
79 static void rtc_update_time(RTCState
*s
);
80 static void rtc_set_cmos(RTCState
*s
, const struct tm
*tm
);
81 static inline int rtc_from_bcd(RTCState
*s
, int a
);
82 static uint64_t get_next_alarm(RTCState
*s
);
84 static inline bool rtc_running(RTCState
*s
)
86 return (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
) &&
87 (s
->cmos_data
[RTC_REG_A
] & 0x70) <= 0x20);
90 static uint64_t get_guest_rtc_ns(RTCState
*s
)
92 uint64_t guest_clock
= qemu_clock_get_ns(rtc_clock
);
94 return s
->base_rtc
* NANOSECONDS_PER_SECOND
+
95 guest_clock
- s
->last_update
+ s
->offset
;
98 static void rtc_coalesced_timer_update(RTCState
*s
)
100 if (s
->irq_coalesced
== 0) {
101 timer_del(s
->coalesced_timer
);
103 /* divide each RTC interval to 2 - 8 smaller intervals */
104 int c
= MIN(s
->irq_coalesced
, 7) + 1;
105 int64_t next_clock
= qemu_clock_get_ns(rtc_clock
) +
106 periodic_clock_to_ns(s
->period
/ c
);
107 timer_mod(s
->coalesced_timer
, next_clock
);
111 static QLIST_HEAD(, RTCState
) rtc_devices
=
112 QLIST_HEAD_INITIALIZER(rtc_devices
);
115 void qmp_rtc_reset_reinjection(Error
**errp
)
119 QLIST_FOREACH(s
, &rtc_devices
, link
) {
120 s
->irq_coalesced
= 0;
124 static bool rtc_policy_slew_deliver_irq(RTCState
*s
)
126 apic_reset_irq_delivered();
127 qemu_irq_raise(s
->irq
);
128 return apic_get_irq_delivered();
131 static void rtc_coalesced_timer(void *opaque
)
133 RTCState
*s
= opaque
;
135 if (s
->irq_coalesced
!= 0) {
136 s
->cmos_data
[RTC_REG_C
] |= 0xc0;
137 DPRINTF_C("cmos: injecting from timer\n");
138 if (rtc_policy_slew_deliver_irq(s
)) {
140 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
145 rtc_coalesced_timer_update(s
);
148 static bool rtc_policy_slew_deliver_irq(RTCState
*s
)
155 static uint32_t rtc_periodic_clock_ticks(RTCState
*s
)
159 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
)) {
163 period_code
= s
->cmos_data
[RTC_REG_A
] & 0x0f;
165 return periodic_period_to_clock(period_code
);
169 * handle periodic timer. @old_period indicates the periodic timer update
170 * is just due to period adjustment.
173 periodic_timer_update(RTCState
*s
, int64_t current_time
, uint32_t old_period
, bool period_change
)
176 int64_t cur_clock
, next_irq_clock
, lost_clock
= 0;
178 period
= rtc_periodic_clock_ticks(s
);
182 s
->irq_coalesced
= 0;
183 timer_del(s
->periodic_timer
);
187 /* compute 32 khz clock */
189 muldiv64(current_time
, RTC_CLOCK_RATE
, NANOSECONDS_PER_SECOND
);
192 * if the periodic timer's update is due to period re-configuration,
193 * we should count the clock since last interrupt.
195 if (old_period
&& period_change
) {
196 int64_t last_periodic_clock
, next_periodic_clock
;
198 next_periodic_clock
= muldiv64(s
->next_periodic_time
,
199 RTC_CLOCK_RATE
, NANOSECONDS_PER_SECOND
);
200 last_periodic_clock
= next_periodic_clock
- old_period
;
201 lost_clock
= cur_clock
- last_periodic_clock
;
202 assert(lost_clock
>= 0);
206 * s->irq_coalesced can change for two reasons:
208 * a) if one or more periodic timer interrupts have been lost,
209 * lost_clock will be more that a period.
211 * b) when the period may be reconfigured, we expect the OS to
212 * treat delayed tick as the new period. So, when switching
213 * from a shorter to a longer period, scale down the missing,
214 * because the OS will treat past delayed ticks as longer
215 * (leftovers are put back into lost_clock). When switching
216 * to a shorter period, scale up the missing ticks since the
217 * OS handler will treat past delayed ticks as shorter.
219 if (s
->lost_tick_policy
== LOST_TICK_POLICY_SLEW
) {
220 uint32_t old_irq_coalesced
= s
->irq_coalesced
;
222 lost_clock
+= old_irq_coalesced
* old_period
;
223 s
->irq_coalesced
= lost_clock
/ s
->period
;
224 lost_clock
%= s
->period
;
225 if (old_irq_coalesced
!= s
->irq_coalesced
||
226 old_period
!= s
->period
) {
227 DPRINTF_C("cmos: coalesced irqs scaled from %d to %d, "
228 "period scaled from %d to %d\n", old_irq_coalesced
,
229 s
->irq_coalesced
, old_period
, s
->period
);
230 rtc_coalesced_timer_update(s
);
234 * no way to compensate the interrupt if LOST_TICK_POLICY_SLEW
235 * is not used, we should make the time progress anyway.
237 lost_clock
= MIN(lost_clock
, period
);
240 assert(lost_clock
>= 0 && lost_clock
<= period
);
242 next_irq_clock
= cur_clock
+ period
- lost_clock
;
243 s
->next_periodic_time
= periodic_clock_to_ns(next_irq_clock
) + 1;
244 timer_mod(s
->periodic_timer
, s
->next_periodic_time
);
247 static void rtc_periodic_timer(void *opaque
)
249 RTCState
*s
= opaque
;
251 periodic_timer_update(s
, s
->next_periodic_time
, s
->period
, false);
252 s
->cmos_data
[RTC_REG_C
] |= REG_C_PF
;
253 if (s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
) {
254 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
;
255 if (s
->lost_tick_policy
== LOST_TICK_POLICY_SLEW
) {
256 if (s
->irq_reinject_on_ack_count
>= RTC_REINJECT_ON_ACK_COUNT
)
257 s
->irq_reinject_on_ack_count
= 0;
258 if (!rtc_policy_slew_deliver_irq(s
)) {
260 rtc_coalesced_timer_update(s
);
261 DPRINTF_C("cmos: coalesced irqs increased to %d\n",
265 qemu_irq_raise(s
->irq
);
269 /* handle update-ended timer */
270 static void check_update_timer(RTCState
*s
)
272 uint64_t next_update_time
;
276 /* From the data sheet: "Holding the dividers in reset prevents
277 * interrupts from operating, while setting the SET bit allows"
280 if ((s
->cmos_data
[RTC_REG_A
] & 0x60) == 0x60) {
281 assert((s
->cmos_data
[RTC_REG_A
] & REG_A_UIP
) == 0);
282 timer_del(s
->update_timer
);
286 guest_nsec
= get_guest_rtc_ns(s
) % NANOSECONDS_PER_SECOND
;
287 next_update_time
= qemu_clock_get_ns(rtc_clock
)
288 + NANOSECONDS_PER_SECOND
- guest_nsec
;
290 /* Compute time of next alarm. One second is already accounted
291 * for in next_update_time.
293 next_alarm_sec
= get_next_alarm(s
);
294 s
->next_alarm_time
= next_update_time
+
295 (next_alarm_sec
- 1) * NANOSECONDS_PER_SECOND
;
297 /* If update_in_progress latched the UIP bit, we must keep the timer
298 * programmed to the next second, so that UIP is cleared. Otherwise,
299 * if UF is already set, we might be able to optimize.
301 if (!(s
->cmos_data
[RTC_REG_A
] & REG_A_UIP
) &&
302 (s
->cmos_data
[RTC_REG_C
] & REG_C_UF
)) {
303 /* If AF cannot change (i.e. either it is set already, or
304 * SET=1 and then the time is not updated), nothing to do.
306 if ((s
->cmos_data
[RTC_REG_B
] & REG_B_SET
) ||
307 (s
->cmos_data
[RTC_REG_C
] & REG_C_AF
)) {
308 timer_del(s
->update_timer
);
312 /* UF is set, but AF is clear. Program the timer to target
314 next_update_time
= s
->next_alarm_time
;
316 if (next_update_time
!= timer_expire_time_ns(s
->update_timer
)) {
317 timer_mod(s
->update_timer
, next_update_time
);
321 static inline uint8_t convert_hour(RTCState
*s
, uint8_t hour
)
323 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_24H
)) {
325 if (s
->cmos_data
[RTC_HOURS
] & 0x80) {
332 static uint64_t get_next_alarm(RTCState
*s
)
334 int32_t alarm_sec
, alarm_min
, alarm_hour
, cur_hour
, cur_min
, cur_sec
;
335 int32_t hour
, min
, sec
;
339 alarm_sec
= rtc_from_bcd(s
, s
->cmos_data
[RTC_SECONDS_ALARM
]);
340 alarm_min
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MINUTES_ALARM
]);
341 alarm_hour
= rtc_from_bcd(s
, s
->cmos_data
[RTC_HOURS_ALARM
]);
342 alarm_hour
= alarm_hour
== -1 ? -1 : convert_hour(s
, alarm_hour
);
344 cur_sec
= rtc_from_bcd(s
, s
->cmos_data
[RTC_SECONDS
]);
345 cur_min
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MINUTES
]);
346 cur_hour
= rtc_from_bcd(s
, s
->cmos_data
[RTC_HOURS
]);
347 cur_hour
= convert_hour(s
, cur_hour
);
349 if (alarm_hour
== -1) {
350 alarm_hour
= cur_hour
;
351 if (alarm_min
== -1) {
353 if (alarm_sec
== -1) {
354 alarm_sec
= cur_sec
+ 1;
355 } else if (cur_sec
> alarm_sec
) {
358 } else if (cur_min
== alarm_min
) {
359 if (alarm_sec
== -1) {
360 alarm_sec
= cur_sec
+ 1;
362 if (cur_sec
> alarm_sec
) {
366 if (alarm_sec
== SEC_PER_MIN
) {
367 /* wrap to next hour, minutes is not in don't care mode */
371 } else if (cur_min
> alarm_min
) {
374 } else if (cur_hour
== alarm_hour
) {
375 if (alarm_min
== -1) {
377 if (alarm_sec
== -1) {
378 alarm_sec
= cur_sec
+ 1;
379 } else if (cur_sec
> alarm_sec
) {
383 if (alarm_sec
== SEC_PER_MIN
) {
387 /* wrap to next day, hour is not in don't care mode */
388 alarm_min
%= MIN_PER_HOUR
;
389 } else if (cur_min
== alarm_min
) {
390 if (alarm_sec
== -1) {
391 alarm_sec
= cur_sec
+ 1;
393 /* wrap to next day, hours+minutes not in don't care mode */
394 alarm_sec
%= SEC_PER_MIN
;
398 /* values that are still don't care fire at the next min/sec */
399 if (alarm_min
== -1) {
402 if (alarm_sec
== -1) {
406 /* keep values in range */
407 if (alarm_sec
== SEC_PER_MIN
) {
411 if (alarm_min
== MIN_PER_HOUR
) {
415 alarm_hour
%= HOUR_PER_DAY
;
417 hour
= alarm_hour
- cur_hour
;
418 min
= hour
* MIN_PER_HOUR
+ alarm_min
- cur_min
;
419 sec
= min
* SEC_PER_MIN
+ alarm_sec
- cur_sec
;
420 return sec
<= 0 ? sec
+ SEC_PER_DAY
: sec
;
423 static void rtc_update_timer(void *opaque
)
425 RTCState
*s
= opaque
;
426 int32_t irqs
= REG_C_UF
;
429 assert((s
->cmos_data
[RTC_REG_A
] & 0x60) != 0x60);
431 /* UIP might have been latched, update time and clear it. */
433 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
435 if (qemu_clock_get_ns(rtc_clock
) >= s
->next_alarm_time
) {
437 if (s
->cmos_data
[RTC_REG_B
] & REG_B_AIE
) {
438 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC
, NULL
);
442 new_irqs
= irqs
& ~s
->cmos_data
[RTC_REG_C
];
443 s
->cmos_data
[RTC_REG_C
] |= irqs
;
444 if ((new_irqs
& s
->cmos_data
[RTC_REG_B
]) != 0) {
445 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
;
446 qemu_irq_raise(s
->irq
);
448 check_update_timer(s
);
451 static void cmos_ioport_write(void *opaque
, hwaddr addr
,
452 uint64_t data
, unsigned size
)
454 RTCState
*s
= opaque
;
456 bool update_periodic_timer
;
458 if ((addr
& 1) == 0) {
459 s
->cmos_index
= data
& 0x7f;
461 CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02" PRIx64
"\n",
462 s
->cmos_index
, data
);
463 switch(s
->cmos_index
) {
464 case RTC_SECONDS_ALARM
:
465 case RTC_MINUTES_ALARM
:
466 case RTC_HOURS_ALARM
:
467 s
->cmos_data
[s
->cmos_index
] = data
;
468 check_update_timer(s
);
470 case RTC_IBM_PS2_CENTURY_BYTE
:
471 s
->cmos_index
= RTC_CENTURY
;
477 case RTC_DAY_OF_WEEK
:
478 case RTC_DAY_OF_MONTH
:
481 s
->cmos_data
[s
->cmos_index
] = data
;
482 /* if in set mode, do not update the time */
483 if (rtc_running(s
)) {
485 check_update_timer(s
);
489 update_periodic_timer
= (s
->cmos_data
[RTC_REG_A
] ^ data
) & 0x0f;
490 old_period
= rtc_periodic_clock_ticks(s
);
492 if ((data
& 0x60) == 0x60) {
493 if (rtc_running(s
)) {
496 /* What happens to UIP when divider reset is enabled is
497 * unclear from the datasheet. Shouldn't matter much
500 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
501 } else if (((s
->cmos_data
[RTC_REG_A
] & 0x60) == 0x60) &&
502 (data
& 0x70) <= 0x20) {
503 /* when the divider reset is removed, the first update cycle
504 * begins one-half second later*/
505 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
506 s
->offset
= 500000000;
509 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
511 /* UIP bit is read only */
512 s
->cmos_data
[RTC_REG_A
] = (data
& ~REG_A_UIP
) |
513 (s
->cmos_data
[RTC_REG_A
] & REG_A_UIP
);
515 if (update_periodic_timer
) {
516 periodic_timer_update(s
, qemu_clock_get_ns(rtc_clock
),
520 check_update_timer(s
);
523 update_periodic_timer
= (s
->cmos_data
[RTC_REG_B
] ^ data
)
525 old_period
= rtc_periodic_clock_ticks(s
);
527 if (data
& REG_B_SET
) {
528 /* update cmos to when the rtc was stopping */
529 if (rtc_running(s
)) {
532 /* set mode: reset UIP mode */
533 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
536 /* if disabling set mode, update the time */
537 if ((s
->cmos_data
[RTC_REG_B
] & REG_B_SET
) &&
538 (s
->cmos_data
[RTC_REG_A
] & 0x70) <= 0x20) {
539 s
->offset
= get_guest_rtc_ns(s
) % NANOSECONDS_PER_SECOND
;
543 /* if an interrupt flag is already set when the interrupt
544 * becomes enabled, raise an interrupt immediately. */
545 if (data
& s
->cmos_data
[RTC_REG_C
] & REG_C_MASK
) {
546 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
;
547 qemu_irq_raise(s
->irq
);
549 s
->cmos_data
[RTC_REG_C
] &= ~REG_C_IRQF
;
550 qemu_irq_lower(s
->irq
);
552 s
->cmos_data
[RTC_REG_B
] = data
;
554 if (update_periodic_timer
) {
555 periodic_timer_update(s
, qemu_clock_get_ns(rtc_clock
),
559 check_update_timer(s
);
563 /* cannot write to them */
566 s
->cmos_data
[s
->cmos_index
] = data
;
572 static inline int rtc_to_bcd(RTCState
*s
, int a
)
574 if (s
->cmos_data
[RTC_REG_B
] & REG_B_DM
) {
577 return ((a
/ 10) << 4) | (a
% 10);
581 static inline int rtc_from_bcd(RTCState
*s
, int a
)
583 if ((a
& 0xc0) == 0xc0) {
586 if (s
->cmos_data
[RTC_REG_B
] & REG_B_DM
) {
589 return ((a
>> 4) * 10) + (a
& 0x0f);
593 static void rtc_get_time(RTCState
*s
, struct tm
*tm
)
595 tm
->tm_sec
= rtc_from_bcd(s
, s
->cmos_data
[RTC_SECONDS
]);
596 tm
->tm_min
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MINUTES
]);
597 tm
->tm_hour
= rtc_from_bcd(s
, s
->cmos_data
[RTC_HOURS
] & 0x7f);
598 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_24H
)) {
600 if (s
->cmos_data
[RTC_HOURS
] & 0x80) {
604 tm
->tm_wday
= rtc_from_bcd(s
, s
->cmos_data
[RTC_DAY_OF_WEEK
]) - 1;
605 tm
->tm_mday
= rtc_from_bcd(s
, s
->cmos_data
[RTC_DAY_OF_MONTH
]);
606 tm
->tm_mon
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MONTH
]) - 1;
608 rtc_from_bcd(s
, s
->cmos_data
[RTC_YEAR
]) + s
->base_year
+
609 rtc_from_bcd(s
, s
->cmos_data
[RTC_CENTURY
]) * 100 - 1900;
612 static void rtc_set_time(RTCState
*s
)
616 rtc_get_time(s
, &tm
);
617 s
->base_rtc
= mktimegm(&tm
);
618 s
->last_update
= qemu_clock_get_ns(rtc_clock
);
620 qapi_event_send_rtc_change(qemu_timedate_diff(&tm
));
623 static void rtc_set_cmos(RTCState
*s
, const struct tm
*tm
)
627 s
->cmos_data
[RTC_SECONDS
] = rtc_to_bcd(s
, tm
->tm_sec
);
628 s
->cmos_data
[RTC_MINUTES
] = rtc_to_bcd(s
, tm
->tm_min
);
629 if (s
->cmos_data
[RTC_REG_B
] & REG_B_24H
) {
631 s
->cmos_data
[RTC_HOURS
] = rtc_to_bcd(s
, tm
->tm_hour
);
634 int h
= (tm
->tm_hour
% 12) ? tm
->tm_hour
% 12 : 12;
635 s
->cmos_data
[RTC_HOURS
] = rtc_to_bcd(s
, h
);
636 if (tm
->tm_hour
>= 12)
637 s
->cmos_data
[RTC_HOURS
] |= 0x80;
639 s
->cmos_data
[RTC_DAY_OF_WEEK
] = rtc_to_bcd(s
, tm
->tm_wday
+ 1);
640 s
->cmos_data
[RTC_DAY_OF_MONTH
] = rtc_to_bcd(s
, tm
->tm_mday
);
641 s
->cmos_data
[RTC_MONTH
] = rtc_to_bcd(s
, tm
->tm_mon
+ 1);
642 year
= tm
->tm_year
+ 1900 - s
->base_year
;
643 s
->cmos_data
[RTC_YEAR
] = rtc_to_bcd(s
, year
% 100);
644 s
->cmos_data
[RTC_CENTURY
] = rtc_to_bcd(s
, year
/ 100);
647 static void rtc_update_time(RTCState
*s
)
653 guest_nsec
= get_guest_rtc_ns(s
);
654 guest_sec
= guest_nsec
/ NANOSECONDS_PER_SECOND
;
655 gmtime_r(&guest_sec
, &ret
);
657 /* Is SET flag of Register B disabled? */
658 if ((s
->cmos_data
[RTC_REG_B
] & REG_B_SET
) == 0) {
659 rtc_set_cmos(s
, &ret
);
663 static int update_in_progress(RTCState
*s
)
667 if (!rtc_running(s
)) {
670 if (timer_pending(s
->update_timer
)) {
671 int64_t next_update_time
= timer_expire_time_ns(s
->update_timer
);
672 /* Latch UIP until the timer expires. */
673 if (qemu_clock_get_ns(rtc_clock
) >=
674 (next_update_time
- UIP_HOLD_LENGTH
)) {
675 s
->cmos_data
[RTC_REG_A
] |= REG_A_UIP
;
680 guest_nsec
= get_guest_rtc_ns(s
);
681 /* UIP bit will be set at last 244us of every second. */
682 if ((guest_nsec
% NANOSECONDS_PER_SECOND
) >=
683 (NANOSECONDS_PER_SECOND
- UIP_HOLD_LENGTH
)) {
689 static uint64_t cmos_ioport_read(void *opaque
, hwaddr addr
,
692 RTCState
*s
= opaque
;
694 if ((addr
& 1) == 0) {
697 switch(s
->cmos_index
) {
698 case RTC_IBM_PS2_CENTURY_BYTE
:
699 s
->cmos_index
= RTC_CENTURY
;
705 case RTC_DAY_OF_WEEK
:
706 case RTC_DAY_OF_MONTH
:
709 /* if not in set mode, calibrate cmos before
711 if (rtc_running(s
)) {
714 ret
= s
->cmos_data
[s
->cmos_index
];
717 ret
= s
->cmos_data
[s
->cmos_index
];
718 if (update_in_progress(s
)) {
723 ret
= s
->cmos_data
[s
->cmos_index
];
724 qemu_irq_lower(s
->irq
);
725 s
->cmos_data
[RTC_REG_C
] = 0x00;
726 if (ret
& (REG_C_UF
| REG_C_AF
)) {
727 check_update_timer(s
);
730 if(s
->irq_coalesced
&&
731 (s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
) &&
732 s
->irq_reinject_on_ack_count
< RTC_REINJECT_ON_ACK_COUNT
) {
733 s
->irq_reinject_on_ack_count
++;
734 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
| REG_C_PF
;
735 DPRINTF_C("cmos: injecting on ack\n");
736 if (rtc_policy_slew_deliver_irq(s
)) {
738 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
744 ret
= s
->cmos_data
[s
->cmos_index
];
747 CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
753 void rtc_set_memory(ISADevice
*dev
, int addr
, int val
)
755 RTCState
*s
= MC146818_RTC(dev
);
756 if (addr
>= 0 && addr
<= 127)
757 s
->cmos_data
[addr
] = val
;
760 int rtc_get_memory(ISADevice
*dev
, int addr
)
762 RTCState
*s
= MC146818_RTC(dev
);
763 assert(addr
>= 0 && addr
<= 127);
764 return s
->cmos_data
[addr
];
767 static void rtc_set_date_from_host(ISADevice
*dev
)
769 RTCState
*s
= MC146818_RTC(dev
);
772 qemu_get_timedate(&tm
, 0);
774 s
->base_rtc
= mktimegm(&tm
);
775 s
->last_update
= qemu_clock_get_ns(rtc_clock
);
778 /* set the CMOS date */
779 rtc_set_cmos(s
, &tm
);
782 static int rtc_pre_save(void *opaque
)
784 RTCState
*s
= opaque
;
791 static int rtc_post_load(void *opaque
, int version_id
)
793 RTCState
*s
= opaque
;
795 if (version_id
<= 2 || rtc_clock
== QEMU_CLOCK_REALTIME
) {
798 check_update_timer(s
);
800 s
->period
= rtc_periodic_clock_ticks(s
);
802 /* The periodic timer is deterministic in record/replay mode,
803 * so there is no need to update it after loading the vmstate.
804 * Reading RTC here would misalign record and replay.
806 if (replay_mode
== REPLAY_MODE_NONE
) {
807 uint64_t now
= qemu_clock_get_ns(rtc_clock
);
808 if (now
< s
->next_periodic_time
||
809 now
> (s
->next_periodic_time
+ get_max_clock_jump())) {
810 periodic_timer_update(s
, qemu_clock_get_ns(rtc_clock
), s
->period
, false);
814 if (version_id
>= 2) {
815 if (s
->lost_tick_policy
== LOST_TICK_POLICY_SLEW
) {
816 rtc_coalesced_timer_update(s
);
822 static bool rtc_irq_reinject_on_ack_count_needed(void *opaque
)
824 RTCState
*s
= (RTCState
*)opaque
;
825 return s
->irq_reinject_on_ack_count
!= 0;
828 static const VMStateDescription vmstate_rtc_irq_reinject_on_ack_count
= {
829 .name
= "mc146818rtc/irq_reinject_on_ack_count",
831 .minimum_version_id
= 1,
832 .needed
= rtc_irq_reinject_on_ack_count_needed
,
833 .fields
= (VMStateField
[]) {
834 VMSTATE_UINT16(irq_reinject_on_ack_count
, RTCState
),
835 VMSTATE_END_OF_LIST()
839 static const VMStateDescription vmstate_rtc
= {
840 .name
= "mc146818rtc",
842 .minimum_version_id
= 1,
843 .pre_save
= rtc_pre_save
,
844 .post_load
= rtc_post_load
,
845 .fields
= (VMStateField
[]) {
846 VMSTATE_BUFFER(cmos_data
, RTCState
),
847 VMSTATE_UINT8(cmos_index
, RTCState
),
849 VMSTATE_TIMER_PTR(periodic_timer
, RTCState
),
850 VMSTATE_INT64(next_periodic_time
, RTCState
),
852 VMSTATE_UINT32_V(irq_coalesced
, RTCState
, 2),
853 VMSTATE_UINT32_V(period
, RTCState
, 2),
854 VMSTATE_UINT64_V(base_rtc
, RTCState
, 3),
855 VMSTATE_UINT64_V(last_update
, RTCState
, 3),
856 VMSTATE_INT64_V(offset
, RTCState
, 3),
857 VMSTATE_TIMER_PTR_V(update_timer
, RTCState
, 3),
858 VMSTATE_UINT64_V(next_alarm_time
, RTCState
, 3),
859 VMSTATE_END_OF_LIST()
861 .subsections
= (const VMStateDescription
*[]) {
862 &vmstate_rtc_irq_reinject_on_ack_count
,
867 /* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
868 BIOS will read it and start S3 resume at POST Entry */
869 static void rtc_notify_suspend(Notifier
*notifier
, void *data
)
871 RTCState
*s
= container_of(notifier
, RTCState
, suspend_notifier
);
872 rtc_set_memory(ISA_DEVICE(s
), 0xF, 0xFE);
875 static void rtc_reset(void *opaque
)
877 RTCState
*s
= opaque
;
879 s
->cmos_data
[RTC_REG_B
] &= ~(REG_B_PIE
| REG_B_AIE
| REG_B_SQWE
);
880 s
->cmos_data
[RTC_REG_C
] &= ~(REG_C_UF
| REG_C_IRQF
| REG_C_PF
| REG_C_AF
);
881 check_update_timer(s
);
883 qemu_irq_lower(s
->irq
);
885 if (s
->lost_tick_policy
== LOST_TICK_POLICY_SLEW
) {
886 s
->irq_coalesced
= 0;
887 s
->irq_reinject_on_ack_count
= 0;
891 static const MemoryRegionOps cmos_ops
= {
892 .read
= cmos_ioport_read
,
893 .write
= cmos_ioport_write
,
895 .min_access_size
= 1,
896 .max_access_size
= 1,
898 .endianness
= DEVICE_LITTLE_ENDIAN
,
901 static void rtc_get_date(Object
*obj
, struct tm
*current_tm
, Error
**errp
)
903 RTCState
*s
= MC146818_RTC(obj
);
906 rtc_get_time(s
, current_tm
);
909 static void rtc_realizefn(DeviceState
*dev
, Error
**errp
)
911 ISADevice
*isadev
= ISA_DEVICE(dev
);
912 RTCState
*s
= MC146818_RTC(dev
);
914 s
->cmos_data
[RTC_REG_A
] = 0x26;
915 s
->cmos_data
[RTC_REG_B
] = 0x02;
916 s
->cmos_data
[RTC_REG_C
] = 0x00;
917 s
->cmos_data
[RTC_REG_D
] = 0x80;
919 /* This is for historical reasons. The default base year qdev property
920 * was set to 2000 for most machine types before the century byte was
923 * This if statement means that the century byte will be always 0
924 * (at least until 2079...) for base_year = 1980, but will be set
925 * correctly for base_year = 2000.
927 if (s
->base_year
== 2000) {
931 rtc_set_date_from_host(isadev
);
933 switch (s
->lost_tick_policy
) {
935 case LOST_TICK_POLICY_SLEW
:
937 timer_new_ns(rtc_clock
, rtc_coalesced_timer
, s
);
940 case LOST_TICK_POLICY_DISCARD
:
943 error_setg(errp
, "Invalid lost tick policy.");
947 s
->periodic_timer
= timer_new_ns(rtc_clock
, rtc_periodic_timer
, s
);
948 s
->update_timer
= timer_new_ns(rtc_clock
, rtc_update_timer
, s
);
949 check_update_timer(s
);
951 s
->suspend_notifier
.notify
= rtc_notify_suspend
;
952 qemu_register_suspend_notifier(&s
->suspend_notifier
);
954 memory_region_init_io(&s
->io
, OBJECT(s
), &cmos_ops
, s
, "rtc", 2);
955 isa_register_ioport(isadev
, &s
->io
, RTC_ISA_BASE
);
957 /* register rtc 0x70 port for coalesced_pio */
958 memory_region_set_flush_coalesced(&s
->io
);
959 memory_region_init_io(&s
->coalesced_io
, OBJECT(s
), &cmos_ops
,
961 memory_region_add_subregion(&s
->io
, 0, &s
->coalesced_io
);
962 memory_region_add_coalescing(&s
->coalesced_io
, 0, 1);
964 qdev_set_legacy_instance_id(dev
, RTC_ISA_BASE
, 3);
965 qemu_register_reset(rtc_reset
, s
);
967 object_property_add_tm(OBJECT(s
), "date", rtc_get_date
);
969 qdev_init_gpio_out(dev
, &s
->irq
, 1);
970 QLIST_INSERT_HEAD(&rtc_devices
, s
, link
);
973 ISADevice
*mc146818_rtc_init(ISABus
*bus
, int base_year
, qemu_irq intercept_irq
)
978 isadev
= isa_new(TYPE_MC146818_RTC
);
979 dev
= DEVICE(isadev
);
980 qdev_prop_set_int32(dev
, "base_year", base_year
);
981 isa_realize_and_unref(isadev
, bus
, &error_fatal
);
983 qdev_connect_gpio_out(dev
, 0, intercept_irq
);
985 isa_connect_gpio_out(isadev
, 0, RTC_ISA_IRQ
);
988 object_property_add_alias(qdev_get_machine(), "rtc-time", OBJECT(isadev
),
994 static Property mc146818rtc_properties
[] = {
995 DEFINE_PROP_INT32("base_year", RTCState
, base_year
, 1980),
996 DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState
,
997 lost_tick_policy
, LOST_TICK_POLICY_DISCARD
),
998 DEFINE_PROP_END_OF_LIST(),
1001 static void rtc_resetdev(DeviceState
*d
)
1003 RTCState
*s
= MC146818_RTC(d
);
1005 /* Reason: VM do suspend self will set 0xfe
1006 * Reset any values other than 0xfe(Guest suspend case) */
1007 if (s
->cmos_data
[0x0f] != 0xfe) {
1008 s
->cmos_data
[0x0f] = 0x00;
1012 static void rtc_build_aml(ISADevice
*isadev
, Aml
*scope
)
1018 * Reserving 8 io ports here, following what physical hardware
1019 * does, even though qemu only responds to the first two ports.
1021 crs
= aml_resource_template();
1022 aml_append(crs
, aml_io(AML_DECODE16
, RTC_ISA_BASE
, RTC_ISA_BASE
,
1024 aml_append(crs
, aml_irq_no_flags(RTC_ISA_IRQ
));
1026 dev
= aml_device("RTC");
1027 aml_append(dev
, aml_name_decl("_HID", aml_eisaid("PNP0B00")));
1028 aml_append(dev
, aml_name_decl("_CRS", crs
));
1030 aml_append(scope
, dev
);
1033 static void rtc_class_initfn(ObjectClass
*klass
, void *data
)
1035 DeviceClass
*dc
= DEVICE_CLASS(klass
);
1036 ISADeviceClass
*isa
= ISA_DEVICE_CLASS(klass
);
1038 dc
->realize
= rtc_realizefn
;
1039 dc
->reset
= rtc_resetdev
;
1040 dc
->vmsd
= &vmstate_rtc
;
1041 isa
->build_aml
= rtc_build_aml
;
1042 device_class_set_props(dc
, mc146818rtc_properties
);
1045 static const TypeInfo mc146818rtc_info
= {
1046 .name
= TYPE_MC146818_RTC
,
1047 .parent
= TYPE_ISA_DEVICE
,
1048 .instance_size
= sizeof(RTCState
),
1049 .class_init
= rtc_class_initfn
,
1052 static void mc146818rtc_register_types(void)
1054 type_register_static(&mc146818rtc_info
);
1057 type_init(mc146818rtc_register_types
)