3 #include "exec/gdbstub.h"
4 #include "exec/helper-proto.h"
5 #include "qemu/host-utils.h"
6 #include "sysemu/arch_init.h"
7 #include "sysemu/sysemu.h"
8 #include "qemu/bitops.h"
9 #include "qemu/crc32c.h"
10 #include "exec/cpu_ldst.h"
12 #include <zlib.h> /* For crc32 */
14 #ifndef CONFIG_USER_ONLY
15 static inline int get_phys_addr(CPUARMState
*env
, target_ulong address
,
16 int access_type
, ARMMMUIdx mmu_idx
,
17 hwaddr
*phys_ptr
, int *prot
,
18 target_ulong
*page_size
);
20 /* Definitions for the PMCCNTR and PMCR registers */
26 static int vfp_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
30 /* VFP data registers are always little-endian. */
31 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
33 stfq_le_p(buf
, env
->vfp
.regs
[reg
]);
36 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
37 /* Aliases for Q regs. */
40 stfq_le_p(buf
, env
->vfp
.regs
[(reg
- 32) * 2]);
41 stfq_le_p(buf
+ 8, env
->vfp
.regs
[(reg
- 32) * 2 + 1]);
45 switch (reg
- nregs
) {
46 case 0: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSID
]); return 4;
47 case 1: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSCR
]); return 4;
48 case 2: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPEXC
]); return 4;
53 static int vfp_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
57 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
59 env
->vfp
.regs
[reg
] = ldfq_le_p(buf
);
62 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
65 env
->vfp
.regs
[(reg
- 32) * 2] = ldfq_le_p(buf
);
66 env
->vfp
.regs
[(reg
- 32) * 2 + 1] = ldfq_le_p(buf
+ 8);
70 switch (reg
- nregs
) {
71 case 0: env
->vfp
.xregs
[ARM_VFP_FPSID
] = ldl_p(buf
); return 4;
72 case 1: env
->vfp
.xregs
[ARM_VFP_FPSCR
] = ldl_p(buf
); return 4;
73 case 2: env
->vfp
.xregs
[ARM_VFP_FPEXC
] = ldl_p(buf
) & (1 << 30); return 4;
78 static int aarch64_fpu_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
82 /* 128 bit FP register */
83 stfq_le_p(buf
, env
->vfp
.regs
[reg
* 2]);
84 stfq_le_p(buf
+ 8, env
->vfp
.regs
[reg
* 2 + 1]);
88 stl_p(buf
, vfp_get_fpsr(env
));
92 stl_p(buf
, vfp_get_fpcr(env
));
99 static int aarch64_fpu_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
103 /* 128 bit FP register */
104 env
->vfp
.regs
[reg
* 2] = ldfq_le_p(buf
);
105 env
->vfp
.regs
[reg
* 2 + 1] = ldfq_le_p(buf
+ 8);
109 vfp_set_fpsr(env
, ldl_p(buf
));
113 vfp_set_fpcr(env
, ldl_p(buf
));
120 static uint64_t raw_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
122 assert(ri
->fieldoffset
);
123 if (cpreg_field_is_64bit(ri
)) {
124 return CPREG_FIELD64(env
, ri
);
126 return CPREG_FIELD32(env
, ri
);
130 static void raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
133 assert(ri
->fieldoffset
);
134 if (cpreg_field_is_64bit(ri
)) {
135 CPREG_FIELD64(env
, ri
) = value
;
137 CPREG_FIELD32(env
, ri
) = value
;
141 static void *raw_ptr(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
143 return (char *)env
+ ri
->fieldoffset
;
146 static uint64_t read_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
148 /* Raw read of a coprocessor register (as needed for migration, etc). */
149 if (ri
->type
& ARM_CP_CONST
) {
150 return ri
->resetvalue
;
151 } else if (ri
->raw_readfn
) {
152 return ri
->raw_readfn(env
, ri
);
153 } else if (ri
->readfn
) {
154 return ri
->readfn(env
, ri
);
156 return raw_read(env
, ri
);
160 static void write_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
163 /* Raw write of a coprocessor register (as needed for migration, etc).
164 * Note that constant registers are treated as write-ignored; the
165 * caller should check for success by whether a readback gives the
168 if (ri
->type
& ARM_CP_CONST
) {
170 } else if (ri
->raw_writefn
) {
171 ri
->raw_writefn(env
, ri
, v
);
172 } else if (ri
->writefn
) {
173 ri
->writefn(env
, ri
, v
);
175 raw_write(env
, ri
, v
);
179 static bool raw_accessors_invalid(const ARMCPRegInfo
*ri
)
181 /* Return true if the regdef would cause an assertion if you called
182 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
183 * program bug for it not to have the NO_RAW flag).
184 * NB that returning false here doesn't necessarily mean that calling
185 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
186 * read/write access functions which are safe for raw use" from "has
187 * read/write access functions which have side effects but has forgotten
188 * to provide raw access functions".
189 * The tests here line up with the conditions in read/write_raw_cp_reg()
190 * and assertions in raw_read()/raw_write().
192 if ((ri
->type
& ARM_CP_CONST
) ||
194 ((ri
->raw_writefn
|| ri
->writefn
) && (ri
->raw_readfn
|| ri
->readfn
))) {
200 bool write_cpustate_to_list(ARMCPU
*cpu
)
202 /* Write the coprocessor state from cpu->env to the (index,value) list. */
206 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
207 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
208 const ARMCPRegInfo
*ri
;
210 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
215 if (ri
->type
& ARM_CP_NO_RAW
) {
218 cpu
->cpreg_values
[i
] = read_raw_cp_reg(&cpu
->env
, ri
);
223 bool write_list_to_cpustate(ARMCPU
*cpu
)
228 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
229 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
230 uint64_t v
= cpu
->cpreg_values
[i
];
231 const ARMCPRegInfo
*ri
;
233 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
238 if (ri
->type
& ARM_CP_NO_RAW
) {
241 /* Write value and confirm it reads back as written
242 * (to catch read-only registers and partially read-only
243 * registers where the incoming migration value doesn't match)
245 write_raw_cp_reg(&cpu
->env
, ri
, v
);
246 if (read_raw_cp_reg(&cpu
->env
, ri
) != v
) {
253 static void add_cpreg_to_list(gpointer key
, gpointer opaque
)
255 ARMCPU
*cpu
= opaque
;
257 const ARMCPRegInfo
*ri
;
259 regidx
= *(uint32_t *)key
;
260 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
262 if (!(ri
->type
& (ARM_CP_NO_RAW
|ARM_CP_ALIAS
))) {
263 cpu
->cpreg_indexes
[cpu
->cpreg_array_len
] = cpreg_to_kvm_id(regidx
);
264 /* The value array need not be initialized at this point */
265 cpu
->cpreg_array_len
++;
269 static void count_cpreg(gpointer key
, gpointer opaque
)
271 ARMCPU
*cpu
= opaque
;
273 const ARMCPRegInfo
*ri
;
275 regidx
= *(uint32_t *)key
;
276 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
278 if (!(ri
->type
& (ARM_CP_NO_RAW
|ARM_CP_ALIAS
))) {
279 cpu
->cpreg_array_len
++;
283 static gint
cpreg_key_compare(gconstpointer a
, gconstpointer b
)
285 uint64_t aidx
= cpreg_to_kvm_id(*(uint32_t *)a
);
286 uint64_t bidx
= cpreg_to_kvm_id(*(uint32_t *)b
);
297 static void cpreg_make_keylist(gpointer key
, gpointer value
, gpointer udata
)
299 GList
**plist
= udata
;
301 *plist
= g_list_prepend(*plist
, key
);
304 void init_cpreg_list(ARMCPU
*cpu
)
306 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
307 * Note that we require cpreg_tuples[] to be sorted by key ID.
312 g_hash_table_foreach(cpu
->cp_regs
, cpreg_make_keylist
, &keys
);
314 keys
= g_list_sort(keys
, cpreg_key_compare
);
316 cpu
->cpreg_array_len
= 0;
318 g_list_foreach(keys
, count_cpreg
, cpu
);
320 arraylen
= cpu
->cpreg_array_len
;
321 cpu
->cpreg_indexes
= g_new(uint64_t, arraylen
);
322 cpu
->cpreg_values
= g_new(uint64_t, arraylen
);
323 cpu
->cpreg_vmstate_indexes
= g_new(uint64_t, arraylen
);
324 cpu
->cpreg_vmstate_values
= g_new(uint64_t, arraylen
);
325 cpu
->cpreg_vmstate_array_len
= cpu
->cpreg_array_len
;
326 cpu
->cpreg_array_len
= 0;
328 g_list_foreach(keys
, add_cpreg_to_list
, cpu
);
330 assert(cpu
->cpreg_array_len
== arraylen
);
335 static void dacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
337 ARMCPU
*cpu
= arm_env_get_cpu(env
);
339 raw_write(env
, ri
, value
);
340 tlb_flush(CPU(cpu
), 1); /* Flush TLB as domain not tracked in TLB */
343 static void fcse_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
345 ARMCPU
*cpu
= arm_env_get_cpu(env
);
347 if (raw_read(env
, ri
) != value
) {
348 /* Unlike real hardware the qemu TLB uses virtual addresses,
349 * not modified virtual addresses, so this causes a TLB flush.
351 tlb_flush(CPU(cpu
), 1);
352 raw_write(env
, ri
, value
);
356 static void contextidr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
359 ARMCPU
*cpu
= arm_env_get_cpu(env
);
361 if (raw_read(env
, ri
) != value
&& !arm_feature(env
, ARM_FEATURE_MPU
)
362 && !extended_addresses_enabled(env
)) {
363 /* For VMSA (when not using the LPAE long descriptor page table
364 * format) this register includes the ASID, so do a TLB flush.
365 * For PMSA it is purely a process ID and no action is needed.
367 tlb_flush(CPU(cpu
), 1);
369 raw_write(env
, ri
, value
);
372 static void tlbiall_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
375 /* Invalidate all (TLBIALL) */
376 ARMCPU
*cpu
= arm_env_get_cpu(env
);
378 tlb_flush(CPU(cpu
), 1);
381 static void tlbimva_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
384 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
385 ARMCPU
*cpu
= arm_env_get_cpu(env
);
387 tlb_flush_page(CPU(cpu
), value
& TARGET_PAGE_MASK
);
390 static void tlbiasid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
393 /* Invalidate by ASID (TLBIASID) */
394 ARMCPU
*cpu
= arm_env_get_cpu(env
);
396 tlb_flush(CPU(cpu
), value
== 0);
399 static void tlbimvaa_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
402 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
403 ARMCPU
*cpu
= arm_env_get_cpu(env
);
405 tlb_flush_page(CPU(cpu
), value
& TARGET_PAGE_MASK
);
408 /* IS variants of TLB operations must affect all cores */
409 static void tlbiall_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
414 CPU_FOREACH(other_cs
) {
415 tlb_flush(other_cs
, 1);
419 static void tlbiasid_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
424 CPU_FOREACH(other_cs
) {
425 tlb_flush(other_cs
, value
== 0);
429 static void tlbimva_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
434 CPU_FOREACH(other_cs
) {
435 tlb_flush_page(other_cs
, value
& TARGET_PAGE_MASK
);
439 static void tlbimvaa_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
444 CPU_FOREACH(other_cs
) {
445 tlb_flush_page(other_cs
, value
& TARGET_PAGE_MASK
);
449 static const ARMCPRegInfo cp_reginfo
[] = {
450 /* Define the secure and non-secure FCSE identifier CP registers
451 * separately because there is no secure bank in V8 (no _EL3). This allows
452 * the secure register to be properly reset and migrated. There is also no
453 * v8 EL1 version of the register so the non-secure instance stands alone.
455 { .name
= "FCSEIDR(NS)",
456 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 0,
457 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_NS
,
458 .fieldoffset
= offsetof(CPUARMState
, cp15
.fcseidr_ns
),
459 .resetvalue
= 0, .writefn
= fcse_write
, .raw_writefn
= raw_write
, },
460 { .name
= "FCSEIDR(S)",
461 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 0,
462 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_S
,
463 .fieldoffset
= offsetof(CPUARMState
, cp15
.fcseidr_s
),
464 .resetvalue
= 0, .writefn
= fcse_write
, .raw_writefn
= raw_write
, },
465 /* Define the secure and non-secure context identifier CP registers
466 * separately because there is no secure bank in V8 (no _EL3). This allows
467 * the secure register to be properly reset and migrated. In the
468 * non-secure case, the 32-bit register will have reset and migration
469 * disabled during registration as it is handled by the 64-bit instance.
471 { .name
= "CONTEXTIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
472 .opc0
= 3, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 1,
473 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_NS
,
474 .fieldoffset
= offsetof(CPUARMState
, cp15
.contextidr_el
[1]),
475 .resetvalue
= 0, .writefn
= contextidr_write
, .raw_writefn
= raw_write
, },
476 { .name
= "CONTEXTIDR(S)", .state
= ARM_CP_STATE_AA32
,
477 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 1,
478 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_S
,
479 .fieldoffset
= offsetof(CPUARMState
, cp15
.contextidr_s
),
480 .resetvalue
= 0, .writefn
= contextidr_write
, .raw_writefn
= raw_write
, },
484 static const ARMCPRegInfo not_v8_cp_reginfo
[] = {
485 /* NB: Some of these registers exist in v8 but with more precise
486 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
488 /* MMU Domain access control / MPU write buffer control */
490 .cp
= 15, .opc1
= CP_ANY
, .crn
= 3, .crm
= CP_ANY
, .opc2
= CP_ANY
,
491 .access
= PL1_RW
, .resetvalue
= 0,
492 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
493 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dacr_s
),
494 offsetoflow32(CPUARMState
, cp15
.dacr_ns
) } },
495 /* ??? This covers not just the impdef TLB lockdown registers but also
496 * some v7VMSA registers relating to TEX remap, so it is overly broad.
498 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= CP_ANY
,
499 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
500 /* Cache maintenance ops; some of this space may be overridden later. */
501 { .name
= "CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
502 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
503 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
},
507 static const ARMCPRegInfo not_v6_cp_reginfo
[] = {
508 /* Not all pre-v6 cores implemented this WFI, so this is slightly
511 { .name
= "WFI_v5", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= 2,
512 .access
= PL1_W
, .type
= ARM_CP_WFI
},
516 static const ARMCPRegInfo not_v7_cp_reginfo
[] = {
517 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
518 * is UNPREDICTABLE; we choose to NOP as most implementations do).
520 { .name
= "WFI_v6", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
521 .access
= PL1_W
, .type
= ARM_CP_WFI
},
522 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
523 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
524 * OMAPCP will override this space.
526 { .name
= "DLOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 0,
527 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_data
),
529 { .name
= "ILOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 1,
530 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_insn
),
532 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
533 { .name
= "DUMMY", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= CP_ANY
,
534 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
536 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
537 * implementing it as RAZ means the "debug architecture version" bits
538 * will read as a reserved value, which should cause Linux to not try
539 * to use the debug hardware.
541 { .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
542 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
543 /* MMU TLB control. Note that the wildcarding means we cover not just
544 * the unified TLB ops but also the dside/iside/inner-shareable variants.
546 { .name
= "TLBIALL", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
547 .opc1
= CP_ANY
, .opc2
= 0, .access
= PL1_W
, .writefn
= tlbiall_write
,
548 .type
= ARM_CP_NO_RAW
},
549 { .name
= "TLBIMVA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
550 .opc1
= CP_ANY
, .opc2
= 1, .access
= PL1_W
, .writefn
= tlbimva_write
,
551 .type
= ARM_CP_NO_RAW
},
552 { .name
= "TLBIASID", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
553 .opc1
= CP_ANY
, .opc2
= 2, .access
= PL1_W
, .writefn
= tlbiasid_write
,
554 .type
= ARM_CP_NO_RAW
},
555 { .name
= "TLBIMVAA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
556 .opc1
= CP_ANY
, .opc2
= 3, .access
= PL1_W
, .writefn
= tlbimvaa_write
,
557 .type
= ARM_CP_NO_RAW
},
561 static void cpacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
566 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
567 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
568 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
569 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
570 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
572 if (arm_feature(env
, ARM_FEATURE_VFP
)) {
573 /* VFP coprocessor: cp10 & cp11 [23:20] */
574 mask
|= (1 << 31) | (1 << 30) | (0xf << 20);
576 if (!arm_feature(env
, ARM_FEATURE_NEON
)) {
577 /* ASEDIS [31] bit is RAO/WI */
581 /* VFPv3 and upwards with NEON implement 32 double precision
582 * registers (D0-D31).
584 if (!arm_feature(env
, ARM_FEATURE_NEON
) ||
585 !arm_feature(env
, ARM_FEATURE_VFP3
)) {
586 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
592 env
->cp15
.c1_coproc
= value
;
595 static const ARMCPRegInfo v6_cp_reginfo
[] = {
596 /* prefetch by MVA in v6, NOP in v7 */
597 { .name
= "MVA_prefetch",
598 .cp
= 15, .crn
= 7, .crm
= 13, .opc1
= 0, .opc2
= 1,
599 .access
= PL1_W
, .type
= ARM_CP_NOP
},
600 { .name
= "ISB", .cp
= 15, .crn
= 7, .crm
= 5, .opc1
= 0, .opc2
= 4,
601 .access
= PL0_W
, .type
= ARM_CP_NOP
},
602 { .name
= "DSB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 4,
603 .access
= PL0_W
, .type
= ARM_CP_NOP
},
604 { .name
= "DMB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 5,
605 .access
= PL0_W
, .type
= ARM_CP_NOP
},
606 { .name
= "IFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 2,
608 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ifar_s
),
609 offsetof(CPUARMState
, cp15
.ifar_ns
) },
611 /* Watchpoint Fault Address Register : should actually only be present
612 * for 1136, 1176, 11MPCore.
614 { .name
= "WFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 1,
615 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0, },
616 { .name
= "CPACR", .state
= ARM_CP_STATE_BOTH
, .opc0
= 3,
617 .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 2,
618 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_coproc
),
619 .resetvalue
= 0, .writefn
= cpacr_write
},
623 static CPAccessResult
pmreg_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
625 /* Performance monitor registers user accessibility is controlled
628 if (arm_current_el(env
) == 0 && !env
->cp15
.c9_pmuserenr
) {
629 return CP_ACCESS_TRAP
;
634 #ifndef CONFIG_USER_ONLY
636 static inline bool arm_ccnt_enabled(CPUARMState
*env
)
638 /* This does not support checking PMCCFILTR_EL0 register */
640 if (!(env
->cp15
.c9_pmcr
& PMCRE
)) {
647 void pmccntr_sync(CPUARMState
*env
)
651 temp_ticks
= muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL
),
652 get_ticks_per_sec(), 1000000);
654 if (env
->cp15
.c9_pmcr
& PMCRD
) {
655 /* Increment once every 64 processor clock cycles */
659 if (arm_ccnt_enabled(env
)) {
660 env
->cp15
.c15_ccnt
= temp_ticks
- env
->cp15
.c15_ccnt
;
664 static void pmcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
670 /* The counter has been reset */
671 env
->cp15
.c15_ccnt
= 0;
674 /* only the DP, X, D and E bits are writable */
675 env
->cp15
.c9_pmcr
&= ~0x39;
676 env
->cp15
.c9_pmcr
|= (value
& 0x39);
681 static uint64_t pmccntr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
683 uint64_t total_ticks
;
685 if (!arm_ccnt_enabled(env
)) {
686 /* Counter is disabled, do not change value */
687 return env
->cp15
.c15_ccnt
;
690 total_ticks
= muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL
),
691 get_ticks_per_sec(), 1000000);
693 if (env
->cp15
.c9_pmcr
& PMCRD
) {
694 /* Increment once every 64 processor clock cycles */
697 return total_ticks
- env
->cp15
.c15_ccnt
;
700 static void pmccntr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
703 uint64_t total_ticks
;
705 if (!arm_ccnt_enabled(env
)) {
706 /* Counter is disabled, set the absolute value */
707 env
->cp15
.c15_ccnt
= value
;
711 total_ticks
= muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL
),
712 get_ticks_per_sec(), 1000000);
714 if (env
->cp15
.c9_pmcr
& PMCRD
) {
715 /* Increment once every 64 processor clock cycles */
718 env
->cp15
.c15_ccnt
= total_ticks
- value
;
721 static void pmccntr_write32(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
724 uint64_t cur_val
= pmccntr_read(env
, NULL
);
726 pmccntr_write(env
, ri
, deposit64(cur_val
, 0, 32, value
));
729 #else /* CONFIG_USER_ONLY */
731 void pmccntr_sync(CPUARMState
*env
)
737 static void pmccfiltr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
741 env
->cp15
.pmccfiltr_el0
= value
& 0x7E000000;
745 static void pmcntenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
749 env
->cp15
.c9_pmcnten
|= value
;
752 static void pmcntenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
756 env
->cp15
.c9_pmcnten
&= ~value
;
759 static void pmovsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
762 env
->cp15
.c9_pmovsr
&= ~value
;
765 static void pmxevtyper_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
768 env
->cp15
.c9_pmxevtyper
= value
& 0xff;
771 static void pmuserenr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
774 env
->cp15
.c9_pmuserenr
= value
& 1;
777 static void pmintenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
780 /* We have no event counters so only the C bit can be changed */
782 env
->cp15
.c9_pminten
|= value
;
785 static void pmintenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
789 env
->cp15
.c9_pminten
&= ~value
;
792 static void vbar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
795 /* Note that even though the AArch64 view of this register has bits
796 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
797 * architectural requirements for bits which are RES0 only in some
798 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
799 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
801 raw_write(env
, ri
, value
& ~0x1FULL
);
804 static void scr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
806 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
807 * For bits that vary between AArch32/64, code needs to check the
808 * current execution mode before directly using the feature bit.
810 uint32_t valid_mask
= SCR_AARCH64_MASK
| SCR_AARCH32_MASK
;
812 if (!arm_feature(env
, ARM_FEATURE_EL2
)) {
813 valid_mask
&= ~SCR_HCE
;
815 /* On ARMv7, SMD (or SCD as it is called in v7) is only
816 * supported if EL2 exists. The bit is UNK/SBZP when
817 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
818 * when EL2 is unavailable.
820 if (arm_feature(env
, ARM_FEATURE_V7
)) {
821 valid_mask
&= ~SCR_SMD
;
825 /* Clear all-context RES0 bits. */
827 raw_write(env
, ri
, value
);
830 static uint64_t ccsidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
832 ARMCPU
*cpu
= arm_env_get_cpu(env
);
834 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
837 uint32_t index
= A32_BANKED_REG_GET(env
, csselr
,
838 ri
->secure
& ARM_CP_SECSTATE_S
);
840 return cpu
->ccsidr
[index
];
843 static void csselr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
846 raw_write(env
, ri
, value
& 0xf);
849 static uint64_t isr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
851 CPUState
*cs
= ENV_GET_CPU(env
);
854 if (cs
->interrupt_request
& CPU_INTERRUPT_HARD
) {
857 if (cs
->interrupt_request
& CPU_INTERRUPT_FIQ
) {
860 /* External aborts are not possible in QEMU so A bit is always clear */
864 static const ARMCPRegInfo v7_cp_reginfo
[] = {
865 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
866 { .name
= "NOP", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
867 .access
= PL1_W
, .type
= ARM_CP_NOP
},
868 /* Performance monitors are implementation defined in v7,
869 * but with an ARM recommended set of registers, which we
870 * follow (although we don't actually implement any counters)
872 * Performance registers fall into three categories:
873 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
874 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
875 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
876 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
877 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
879 { .name
= "PMCNTENSET", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 1,
880 .access
= PL0_RW
, .type
= ARM_CP_ALIAS
,
881 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcnten
),
882 .writefn
= pmcntenset_write
,
883 .accessfn
= pmreg_access
,
884 .raw_writefn
= raw_write
},
885 { .name
= "PMCNTENSET_EL0", .state
= ARM_CP_STATE_AA64
,
886 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 1,
887 .access
= PL0_RW
, .accessfn
= pmreg_access
,
888 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
), .resetvalue
= 0,
889 .writefn
= pmcntenset_write
, .raw_writefn
= raw_write
},
890 { .name
= "PMCNTENCLR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 2,
892 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcnten
),
893 .accessfn
= pmreg_access
,
894 .writefn
= pmcntenclr_write
,
895 .type
= ARM_CP_ALIAS
},
896 { .name
= "PMCNTENCLR_EL0", .state
= ARM_CP_STATE_AA64
,
897 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 2,
898 .access
= PL0_RW
, .accessfn
= pmreg_access
,
899 .type
= ARM_CP_ALIAS
,
900 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
),
901 .writefn
= pmcntenclr_write
},
902 { .name
= "PMOVSR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 3,
903 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmovsr
),
904 .accessfn
= pmreg_access
,
905 .writefn
= pmovsr_write
,
906 .raw_writefn
= raw_write
},
907 /* Unimplemented so WI. */
908 { .name
= "PMSWINC", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 4,
909 .access
= PL0_W
, .accessfn
= pmreg_access
, .type
= ARM_CP_NOP
},
910 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
911 * We choose to RAZ/WI.
913 { .name
= "PMSELR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 5,
914 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
915 .accessfn
= pmreg_access
},
916 #ifndef CONFIG_USER_ONLY
917 { .name
= "PMCCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 0,
918 .access
= PL0_RW
, .resetvalue
= 0, .type
= ARM_CP_IO
,
919 .readfn
= pmccntr_read
, .writefn
= pmccntr_write32
,
920 .accessfn
= pmreg_access
},
921 { .name
= "PMCCNTR_EL0", .state
= ARM_CP_STATE_AA64
,
922 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 13, .opc2
= 0,
923 .access
= PL0_RW
, .accessfn
= pmreg_access
,
925 .readfn
= pmccntr_read
, .writefn
= pmccntr_write
, },
927 { .name
= "PMCCFILTR_EL0", .state
= ARM_CP_STATE_AA64
,
928 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 15, .opc2
= 7,
929 .writefn
= pmccfiltr_write
,
930 .access
= PL0_RW
, .accessfn
= pmreg_access
,
932 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmccfiltr_el0
),
934 { .name
= "PMXEVTYPER", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 1,
936 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmxevtyper
),
937 .accessfn
= pmreg_access
, .writefn
= pmxevtyper_write
,
938 .raw_writefn
= raw_write
},
939 /* Unimplemented, RAZ/WI. */
940 { .name
= "PMXEVCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 2,
941 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
942 .accessfn
= pmreg_access
},
943 { .name
= "PMUSERENR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 0,
944 .access
= PL0_R
| PL1_RW
,
945 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmuserenr
),
947 .writefn
= pmuserenr_write
, .raw_writefn
= raw_write
},
948 { .name
= "PMINTENSET", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 1,
950 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
952 .writefn
= pmintenset_write
, .raw_writefn
= raw_write
},
953 { .name
= "PMINTENCLR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 2,
954 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
955 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
956 .resetvalue
= 0, .writefn
= pmintenclr_write
, },
957 { .name
= "VBAR", .state
= ARM_CP_STATE_BOTH
,
958 .opc0
= 3, .crn
= 12, .crm
= 0, .opc1
= 0, .opc2
= 0,
959 .access
= PL1_RW
, .writefn
= vbar_write
,
960 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.vbar_s
),
961 offsetof(CPUARMState
, cp15
.vbar_ns
) },
963 { .name
= "CCSIDR", .state
= ARM_CP_STATE_BOTH
,
964 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 0,
965 .access
= PL1_R
, .readfn
= ccsidr_read
, .type
= ARM_CP_NO_RAW
},
966 { .name
= "CSSELR", .state
= ARM_CP_STATE_BOTH
,
967 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 2, .opc2
= 0,
968 .access
= PL1_RW
, .writefn
= csselr_write
, .resetvalue
= 0,
969 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.csselr_s
),
970 offsetof(CPUARMState
, cp15
.csselr_ns
) } },
971 /* Auxiliary ID register: this actually has an IMPDEF value but for now
972 * just RAZ for all cores:
974 { .name
= "AIDR", .state
= ARM_CP_STATE_BOTH
,
975 .opc0
= 3, .opc1
= 1, .crn
= 0, .crm
= 0, .opc2
= 7,
976 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
977 /* Auxiliary fault status registers: these also are IMPDEF, and we
978 * choose to RAZ/WI for all cores.
980 { .name
= "AFSR0_EL1", .state
= ARM_CP_STATE_BOTH
,
981 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 1, .opc2
= 0,
982 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
983 { .name
= "AFSR1_EL1", .state
= ARM_CP_STATE_BOTH
,
984 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 1, .opc2
= 1,
985 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
986 /* MAIR can just read-as-written because we don't implement caches
987 * and so don't need to care about memory attributes.
989 { .name
= "MAIR_EL1", .state
= ARM_CP_STATE_AA64
,
990 .opc0
= 3, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 0,
991 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[1]),
993 /* For non-long-descriptor page tables these are PRRR and NMRR;
994 * regardless they still act as reads-as-written for QEMU.
995 * The override is necessary because of the overly-broad TLB_LOCKDOWN
998 /* MAIR0/1 are defined separately from their 64-bit counterpart which
999 * allows them to assign the correct fieldoffset based on the endianness
1000 * handled in the field definitions.
1002 { .name
= "MAIR0", .state
= ARM_CP_STATE_AA32
, .type
= ARM_CP_OVERRIDE
,
1003 .cp
= 15, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 0, .access
= PL1_RW
,
1004 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.mair0_s
),
1005 offsetof(CPUARMState
, cp15
.mair0_ns
) },
1006 .resetfn
= arm_cp_reset_ignore
},
1007 { .name
= "MAIR1", .state
= ARM_CP_STATE_AA32
, .type
= ARM_CP_OVERRIDE
,
1008 .cp
= 15, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 1, .access
= PL1_RW
,
1009 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.mair1_s
),
1010 offsetof(CPUARMState
, cp15
.mair1_ns
) },
1011 .resetfn
= arm_cp_reset_ignore
},
1012 { .name
= "ISR_EL1", .state
= ARM_CP_STATE_BOTH
,
1013 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 1, .opc2
= 0,
1014 .type
= ARM_CP_NO_RAW
, .access
= PL1_R
, .readfn
= isr_read
},
1015 /* 32 bit ITLB invalidates */
1016 { .name
= "ITLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 0,
1017 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1018 { .name
= "ITLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 1,
1019 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1020 { .name
= "ITLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 2,
1021 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1022 /* 32 bit DTLB invalidates */
1023 { .name
= "DTLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 0,
1024 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1025 { .name
= "DTLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 1,
1026 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1027 { .name
= "DTLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 2,
1028 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1029 /* 32 bit TLB invalidates */
1030 { .name
= "TLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 0,
1031 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1032 { .name
= "TLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 1,
1033 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1034 { .name
= "TLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 2,
1035 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1036 { .name
= "TLBIMVAA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 3,
1037 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
1041 static const ARMCPRegInfo v7mp_cp_reginfo
[] = {
1042 /* 32 bit TLB invalidates, Inner Shareable */
1043 { .name
= "TLBIALLIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 0,
1044 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_is_write
},
1045 { .name
= "TLBIMVAIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 1,
1046 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_is_write
},
1047 { .name
= "TLBIASIDIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 2,
1048 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
1049 .writefn
= tlbiasid_is_write
},
1050 { .name
= "TLBIMVAAIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 3,
1051 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
1052 .writefn
= tlbimvaa_is_write
},
1056 static void teecr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1063 static CPAccessResult
teehbr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1065 if (arm_current_el(env
) == 0 && (env
->teecr
& 1)) {
1066 return CP_ACCESS_TRAP
;
1068 return CP_ACCESS_OK
;
1071 static const ARMCPRegInfo t2ee_cp_reginfo
[] = {
1072 { .name
= "TEECR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 6, .opc2
= 0,
1073 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, teecr
),
1075 .writefn
= teecr_write
},
1076 { .name
= "TEEHBR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 6, .opc2
= 0,
1077 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, teehbr
),
1078 .accessfn
= teehbr_access
, .resetvalue
= 0 },
1082 static const ARMCPRegInfo v6k_cp_reginfo
[] = {
1083 { .name
= "TPIDR_EL0", .state
= ARM_CP_STATE_AA64
,
1084 .opc0
= 3, .opc1
= 3, .opc2
= 2, .crn
= 13, .crm
= 0,
1086 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[0]), .resetvalue
= 0 },
1087 { .name
= "TPIDRURW", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 2,
1089 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidrurw_s
),
1090 offsetoflow32(CPUARMState
, cp15
.tpidrurw_ns
) },
1091 .resetfn
= arm_cp_reset_ignore
},
1092 { .name
= "TPIDRRO_EL0", .state
= ARM_CP_STATE_AA64
,
1093 .opc0
= 3, .opc1
= 3, .opc2
= 3, .crn
= 13, .crm
= 0,
1094 .access
= PL0_R
|PL1_W
,
1095 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidrro_el
[0]),
1097 { .name
= "TPIDRURO", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 3,
1098 .access
= PL0_R
|PL1_W
,
1099 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidruro_s
),
1100 offsetoflow32(CPUARMState
, cp15
.tpidruro_ns
) },
1101 .resetfn
= arm_cp_reset_ignore
},
1102 { .name
= "TPIDR_EL1", .state
= ARM_CP_STATE_AA64
,
1103 .opc0
= 3, .opc1
= 0, .opc2
= 4, .crn
= 13, .crm
= 0,
1105 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[1]), .resetvalue
= 0 },
1106 { .name
= "TPIDRPRW", .opc1
= 0, .cp
= 15, .crn
= 13, .crm
= 0, .opc2
= 4,
1108 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidrprw_s
),
1109 offsetoflow32(CPUARMState
, cp15
.tpidrprw_ns
) },
1114 #ifndef CONFIG_USER_ONLY
1116 static CPAccessResult
gt_cntfrq_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1118 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
1119 if (arm_current_el(env
) == 0 && !extract32(env
->cp15
.c14_cntkctl
, 0, 2)) {
1120 return CP_ACCESS_TRAP
;
1122 return CP_ACCESS_OK
;
1125 static CPAccessResult
gt_counter_access(CPUARMState
*env
, int timeridx
)
1127 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1128 if (arm_current_el(env
) == 0 &&
1129 !extract32(env
->cp15
.c14_cntkctl
, timeridx
, 1)) {
1130 return CP_ACCESS_TRAP
;
1132 return CP_ACCESS_OK
;
1135 static CPAccessResult
gt_timer_access(CPUARMState
*env
, int timeridx
)
1137 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1138 * EL0[PV]TEN is zero.
1140 if (arm_current_el(env
) == 0 &&
1141 !extract32(env
->cp15
.c14_cntkctl
, 9 - timeridx
, 1)) {
1142 return CP_ACCESS_TRAP
;
1144 return CP_ACCESS_OK
;
1147 static CPAccessResult
gt_pct_access(CPUARMState
*env
,
1148 const ARMCPRegInfo
*ri
)
1150 return gt_counter_access(env
, GTIMER_PHYS
);
1153 static CPAccessResult
gt_vct_access(CPUARMState
*env
,
1154 const ARMCPRegInfo
*ri
)
1156 return gt_counter_access(env
, GTIMER_VIRT
);
1159 static CPAccessResult
gt_ptimer_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1161 return gt_timer_access(env
, GTIMER_PHYS
);
1164 static CPAccessResult
gt_vtimer_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1166 return gt_timer_access(env
, GTIMER_VIRT
);
1169 static uint64_t gt_get_countervalue(CPUARMState
*env
)
1171 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) / GTIMER_SCALE
;
1174 static void gt_recalc_timer(ARMCPU
*cpu
, int timeridx
)
1176 ARMGenericTimer
*gt
= &cpu
->env
.cp15
.c14_timer
[timeridx
];
1179 /* Timer enabled: calculate and set current ISTATUS, irq, and
1180 * reset timer to when ISTATUS next has to change
1182 uint64_t count
= gt_get_countervalue(&cpu
->env
);
1183 /* Note that this must be unsigned 64 bit arithmetic: */
1184 int istatus
= count
>= gt
->cval
;
1187 gt
->ctl
= deposit32(gt
->ctl
, 2, 1, istatus
);
1188 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
],
1189 (istatus
&& !(gt
->ctl
& 2)));
1191 /* Next transition is when count rolls back over to zero */
1192 nexttick
= UINT64_MAX
;
1194 /* Next transition is when we hit cval */
1195 nexttick
= gt
->cval
;
1197 /* Note that the desired next expiry time might be beyond the
1198 * signed-64-bit range of a QEMUTimer -- in this case we just
1199 * set the timer for as far in the future as possible. When the
1200 * timer expires we will reset the timer for any remaining period.
1202 if (nexttick
> INT64_MAX
/ GTIMER_SCALE
) {
1203 nexttick
= INT64_MAX
/ GTIMER_SCALE
;
1205 timer_mod(cpu
->gt_timer
[timeridx
], nexttick
);
1207 /* Timer disabled: ISTATUS and timer output always clear */
1209 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
], 0);
1210 timer_del(cpu
->gt_timer
[timeridx
]);
1214 static void gt_cnt_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1216 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1217 int timeridx
= ri
->opc1
& 1;
1219 timer_del(cpu
->gt_timer
[timeridx
]);
1222 static uint64_t gt_cnt_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1224 return gt_get_countervalue(env
);
1227 static void gt_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1230 int timeridx
= ri
->opc1
& 1;
1232 env
->cp15
.c14_timer
[timeridx
].cval
= value
;
1233 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
1236 static uint64_t gt_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1238 int timeridx
= ri
->crm
& 1;
1240 return (uint32_t)(env
->cp15
.c14_timer
[timeridx
].cval
-
1241 gt_get_countervalue(env
));
1244 static void gt_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1247 int timeridx
= ri
->crm
& 1;
1249 env
->cp15
.c14_timer
[timeridx
].cval
= gt_get_countervalue(env
) +
1250 + sextract64(value
, 0, 32);
1251 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
1254 static void gt_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1257 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1258 int timeridx
= ri
->crm
& 1;
1259 uint32_t oldval
= env
->cp15
.c14_timer
[timeridx
].ctl
;
1261 env
->cp15
.c14_timer
[timeridx
].ctl
= deposit64(oldval
, 0, 2, value
);
1262 if ((oldval
^ value
) & 1) {
1263 /* Enable toggled */
1264 gt_recalc_timer(cpu
, timeridx
);
1265 } else if ((oldval
^ value
) & 2) {
1266 /* IMASK toggled: don't need to recalculate,
1267 * just set the interrupt line based on ISTATUS
1269 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
],
1270 (oldval
& 4) && !(value
& 2));
1274 void arm_gt_ptimer_cb(void *opaque
)
1276 ARMCPU
*cpu
= opaque
;
1278 gt_recalc_timer(cpu
, GTIMER_PHYS
);
1281 void arm_gt_vtimer_cb(void *opaque
)
1283 ARMCPU
*cpu
= opaque
;
1285 gt_recalc_timer(cpu
, GTIMER_VIRT
);
1288 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
1289 /* Note that CNTFRQ is purely reads-as-written for the benefit
1290 * of software; writing it doesn't actually change the timer frequency.
1291 * Our reset value matches the fixed frequency we implement the timer at.
1293 { .name
= "CNTFRQ", .cp
= 15, .crn
= 14, .crm
= 0, .opc1
= 0, .opc2
= 0,
1294 .type
= ARM_CP_ALIAS
,
1295 .access
= PL1_RW
| PL0_R
, .accessfn
= gt_cntfrq_access
,
1296 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c14_cntfrq
),
1297 .resetfn
= arm_cp_reset_ignore
,
1299 { .name
= "CNTFRQ_EL0", .state
= ARM_CP_STATE_AA64
,
1300 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 0,
1301 .access
= PL1_RW
| PL0_R
, .accessfn
= gt_cntfrq_access
,
1302 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntfrq
),
1303 .resetvalue
= (1000 * 1000 * 1000) / GTIMER_SCALE
,
1305 /* overall control: mostly access permissions */
1306 { .name
= "CNTKCTL", .state
= ARM_CP_STATE_BOTH
,
1307 .opc0
= 3, .opc1
= 0, .crn
= 14, .crm
= 1, .opc2
= 0,
1309 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntkctl
),
1312 /* per-timer control */
1313 { .name
= "CNTP_CTL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 1,
1314 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL1_RW
| PL0_R
,
1315 .accessfn
= gt_ptimer_access
,
1316 .fieldoffset
= offsetoflow32(CPUARMState
,
1317 cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
1318 .resetfn
= arm_cp_reset_ignore
,
1319 .writefn
= gt_ctl_write
, .raw_writefn
= raw_write
,
1321 { .name
= "CNTP_CTL_EL0", .state
= ARM_CP_STATE_AA64
,
1322 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 1,
1323 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1324 .accessfn
= gt_ptimer_access
,
1325 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
1327 .writefn
= gt_ctl_write
, .raw_writefn
= raw_write
,
1329 { .name
= "CNTV_CTL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 1,
1330 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL1_RW
| PL0_R
,
1331 .accessfn
= gt_vtimer_access
,
1332 .fieldoffset
= offsetoflow32(CPUARMState
,
1333 cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
1334 .resetfn
= arm_cp_reset_ignore
,
1335 .writefn
= gt_ctl_write
, .raw_writefn
= raw_write
,
1337 { .name
= "CNTV_CTL_EL0", .state
= ARM_CP_STATE_AA64
,
1338 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 1,
1339 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1340 .accessfn
= gt_vtimer_access
,
1341 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
1343 .writefn
= gt_ctl_write
, .raw_writefn
= raw_write
,
1345 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1346 { .name
= "CNTP_TVAL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 0,
1347 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1348 .accessfn
= gt_ptimer_access
,
1349 .readfn
= gt_tval_read
, .writefn
= gt_tval_write
,
1351 { .name
= "CNTP_TVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1352 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 0,
1353 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1354 .readfn
= gt_tval_read
, .writefn
= gt_tval_write
,
1356 { .name
= "CNTV_TVAL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 0,
1357 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1358 .accessfn
= gt_vtimer_access
,
1359 .readfn
= gt_tval_read
, .writefn
= gt_tval_write
,
1361 { .name
= "CNTV_TVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1362 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 0,
1363 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1364 .readfn
= gt_tval_read
, .writefn
= gt_tval_write
,
1366 /* The counter itself */
1367 { .name
= "CNTPCT", .cp
= 15, .crm
= 14, .opc1
= 0,
1368 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_RAW
| ARM_CP_IO
,
1369 .accessfn
= gt_pct_access
,
1370 .readfn
= gt_cnt_read
, .resetfn
= arm_cp_reset_ignore
,
1372 { .name
= "CNTPCT_EL0", .state
= ARM_CP_STATE_AA64
,
1373 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 1,
1374 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
1375 .accessfn
= gt_pct_access
,
1376 .readfn
= gt_cnt_read
, .resetfn
= gt_cnt_reset
,
1378 { .name
= "CNTVCT", .cp
= 15, .crm
= 14, .opc1
= 1,
1379 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_RAW
| ARM_CP_IO
,
1380 .accessfn
= gt_vct_access
,
1381 .readfn
= gt_cnt_read
, .resetfn
= arm_cp_reset_ignore
,
1383 { .name
= "CNTVCT_EL0", .state
= ARM_CP_STATE_AA64
,
1384 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 2,
1385 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
1386 .accessfn
= gt_vct_access
,
1387 .readfn
= gt_cnt_read
, .resetfn
= gt_cnt_reset
,
1389 /* Comparison value, indicating when the timer goes off */
1390 { .name
= "CNTP_CVAL", .cp
= 15, .crm
= 14, .opc1
= 2,
1391 .access
= PL1_RW
| PL0_R
,
1392 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
1393 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
1394 .accessfn
= gt_ptimer_access
, .resetfn
= arm_cp_reset_ignore
,
1395 .writefn
= gt_cval_write
, .raw_writefn
= raw_write
,
1397 { .name
= "CNTP_CVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1398 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 2,
1399 .access
= PL1_RW
| PL0_R
,
1401 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
1402 .resetvalue
= 0, .accessfn
= gt_vtimer_access
,
1403 .writefn
= gt_cval_write
, .raw_writefn
= raw_write
,
1405 { .name
= "CNTV_CVAL", .cp
= 15, .crm
= 14, .opc1
= 3,
1406 .access
= PL1_RW
| PL0_R
,
1407 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
1408 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
1409 .accessfn
= gt_vtimer_access
, .resetfn
= arm_cp_reset_ignore
,
1410 .writefn
= gt_cval_write
, .raw_writefn
= raw_write
,
1412 { .name
= "CNTV_CVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1413 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 2,
1414 .access
= PL1_RW
| PL0_R
,
1416 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
1417 .resetvalue
= 0, .accessfn
= gt_vtimer_access
,
1418 .writefn
= gt_cval_write
, .raw_writefn
= raw_write
,
1424 /* In user-mode none of the generic timer registers are accessible,
1425 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1426 * so instead just don't register any of them.
1428 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
1434 static void par_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1436 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
1437 raw_write(env
, ri
, value
);
1438 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
1439 raw_write(env
, ri
, value
& 0xfffff6ff);
1441 raw_write(env
, ri
, value
& 0xfffff1ff);
1445 #ifndef CONFIG_USER_ONLY
1446 /* get_phys_addr() isn't present for user-mode-only targets */
1448 static CPAccessResult
ats_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1451 /* Other states are only available with TrustZone; in
1452 * a non-TZ implementation these registers don't exist
1453 * at all, which is an Uncategorized trap. This underdecoding
1454 * is safe because the reginfo is NO_RAW.
1456 return CP_ACCESS_TRAP_UNCATEGORIZED
;
1458 return CP_ACCESS_OK
;
1461 static uint64_t do_ats_write(CPUARMState
*env
, uint64_t value
,
1462 int access_type
, ARMMMUIdx mmu_idx
)
1465 target_ulong page_size
;
1470 ret
= get_phys_addr(env
, value
, access_type
, mmu_idx
,
1471 &phys_addr
, &prot
, &page_size
);
1472 if (extended_addresses_enabled(env
)) {
1473 /* ret is a DFSR/IFSR value for the long descriptor
1474 * translation table format, but with WnR always clear.
1475 * Convert it to a 64-bit PAR.
1477 par64
= (1 << 11); /* LPAE bit always set */
1479 par64
|= phys_addr
& ~0xfffULL
;
1480 /* We don't set the ATTR or SH fields in the PAR. */
1483 par64
|= (ret
& 0x3f) << 1; /* FS */
1484 /* Note that S2WLK and FSTAGE are always zero, because we don't
1485 * implement virtualization and therefore there can't be a stage 2
1490 /* ret is a DFSR/IFSR value for the short descriptor
1491 * translation table format (with WnR always clear).
1492 * Convert it to a 32-bit PAR.
1495 /* We do not set any attribute bits in the PAR */
1496 if (page_size
== (1 << 24)
1497 && arm_feature(env
, ARM_FEATURE_V7
)) {
1498 par64
= (phys_addr
& 0xff000000) | (1 << 1);
1500 par64
= phys_addr
& 0xfffff000;
1503 par64
= ((ret
& (1 << 10)) >> 5) | ((ret
& (1 << 12)) >> 6) |
1504 ((ret
& 0xf) << 1) | 1;
1510 static void ats_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1512 int access_type
= ri
->opc2
& 1;
1515 int el
= arm_current_el(env
);
1516 bool secure
= arm_is_secure_below_el3(env
);
1518 switch (ri
->opc2
& 6) {
1520 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
1523 mmu_idx
= ARMMMUIdx_S1E3
;
1526 mmu_idx
= ARMMMUIdx_S1NSE1
;
1529 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S1NSE1
;
1532 g_assert_not_reached();
1536 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
1539 mmu_idx
= ARMMMUIdx_S1SE0
;
1542 mmu_idx
= ARMMMUIdx_S1NSE0
;
1545 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S1NSE0
;
1548 g_assert_not_reached();
1552 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
1553 mmu_idx
= ARMMMUIdx_S12NSE1
;
1556 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
1557 mmu_idx
= ARMMMUIdx_S12NSE0
;
1560 g_assert_not_reached();
1563 par64
= do_ats_write(env
, value
, access_type
, mmu_idx
);
1565 A32_BANKED_CURRENT_REG_SET(env
, par
, par64
);
1568 static void ats_write64(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1571 int access_type
= ri
->opc2
& 1;
1573 int secure
= arm_is_secure_below_el3(env
);
1575 switch (ri
->opc2
& 6) {
1578 case 0: /* AT S1E1R, AT S1E1W */
1579 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S1NSE1
;
1581 case 4: /* AT S1E2R, AT S1E2W */
1582 mmu_idx
= ARMMMUIdx_S1E2
;
1584 case 6: /* AT S1E3R, AT S1E3W */
1585 mmu_idx
= ARMMMUIdx_S1E3
;
1588 g_assert_not_reached();
1591 case 2: /* AT S1E0R, AT S1E0W */
1592 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S1NSE0
;
1594 case 4: /* AT S12E1R, AT S12E1W */
1595 mmu_idx
= ARMMMUIdx_S12NSE1
;
1597 case 6: /* AT S12E0R, AT S12E0W */
1598 mmu_idx
= ARMMMUIdx_S12NSE0
;
1601 g_assert_not_reached();
1604 env
->cp15
.par_el
[1] = do_ats_write(env
, value
, access_type
, mmu_idx
);
1608 static const ARMCPRegInfo vapa_cp_reginfo
[] = {
1609 { .name
= "PAR", .cp
= 15, .crn
= 7, .crm
= 4, .opc1
= 0, .opc2
= 0,
1610 .access
= PL1_RW
, .resetvalue
= 0,
1611 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.par_s
),
1612 offsetoflow32(CPUARMState
, cp15
.par_ns
) },
1613 .writefn
= par_write
},
1614 #ifndef CONFIG_USER_ONLY
1615 { .name
= "ATS", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= CP_ANY
,
1616 .access
= PL1_W
, .accessfn
= ats_access
,
1617 .writefn
= ats_write
, .type
= ARM_CP_NO_RAW
},
1622 /* Return basic MPU access permission bits. */
1623 static uint32_t simple_mpu_ap_bits(uint32_t val
)
1630 for (i
= 0; i
< 16; i
+= 2) {
1631 ret
|= (val
>> i
) & mask
;
1637 /* Pad basic MPU access permission bits to extended format. */
1638 static uint32_t extended_mpu_ap_bits(uint32_t val
)
1645 for (i
= 0; i
< 16; i
+= 2) {
1646 ret
|= (val
& mask
) << i
;
1652 static void pmsav5_data_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1655 env
->cp15
.pmsav5_data_ap
= extended_mpu_ap_bits(value
);
1658 static uint64_t pmsav5_data_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1660 return simple_mpu_ap_bits(env
->cp15
.pmsav5_data_ap
);
1663 static void pmsav5_insn_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1666 env
->cp15
.pmsav5_insn_ap
= extended_mpu_ap_bits(value
);
1669 static uint64_t pmsav5_insn_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1671 return simple_mpu_ap_bits(env
->cp15
.pmsav5_insn_ap
);
1674 static const ARMCPRegInfo pmsav5_cp_reginfo
[] = {
1675 { .name
= "DATA_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
1676 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
1677 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_data_ap
),
1679 .readfn
= pmsav5_data_ap_read
, .writefn
= pmsav5_data_ap_write
, },
1680 { .name
= "INSN_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
1681 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
1682 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_insn_ap
),
1684 .readfn
= pmsav5_insn_ap_read
, .writefn
= pmsav5_insn_ap_write
, },
1685 { .name
= "DATA_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 2,
1687 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_data_ap
),
1689 { .name
= "INSN_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 3,
1691 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_insn_ap
),
1693 { .name
= "DCACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
1695 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_data
), .resetvalue
= 0, },
1696 { .name
= "ICACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 1,
1698 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_insn
), .resetvalue
= 0, },
1699 /* Protection region base and size registers */
1700 { .name
= "946_PRBS0", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0,
1701 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1702 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[0]) },
1703 { .name
= "946_PRBS1", .cp
= 15, .crn
= 6, .crm
= 1, .opc1
= 0,
1704 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1705 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[1]) },
1706 { .name
= "946_PRBS2", .cp
= 15, .crn
= 6, .crm
= 2, .opc1
= 0,
1707 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1708 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[2]) },
1709 { .name
= "946_PRBS3", .cp
= 15, .crn
= 6, .crm
= 3, .opc1
= 0,
1710 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1711 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[3]) },
1712 { .name
= "946_PRBS4", .cp
= 15, .crn
= 6, .crm
= 4, .opc1
= 0,
1713 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1714 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[4]) },
1715 { .name
= "946_PRBS5", .cp
= 15, .crn
= 6, .crm
= 5, .opc1
= 0,
1716 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1717 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[5]) },
1718 { .name
= "946_PRBS6", .cp
= 15, .crn
= 6, .crm
= 6, .opc1
= 0,
1719 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1720 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[6]) },
1721 { .name
= "946_PRBS7", .cp
= 15, .crn
= 6, .crm
= 7, .opc1
= 0,
1722 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1723 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[7]) },
1727 static void vmsa_ttbcr_raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1730 TCR
*tcr
= raw_ptr(env
, ri
);
1731 int maskshift
= extract32(value
, 0, 3);
1733 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
1734 if (arm_feature(env
, ARM_FEATURE_LPAE
) && (value
& TTBCR_EAE
)) {
1735 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
1736 * using Long-desciptor translation table format */
1737 value
&= ~((7 << 19) | (3 << 14) | (0xf << 3));
1738 } else if (arm_feature(env
, ARM_FEATURE_EL3
)) {
1739 /* In an implementation that includes the Security Extensions
1740 * TTBCR has additional fields PD0 [4] and PD1 [5] for
1741 * Short-descriptor translation table format.
1743 value
&= TTBCR_PD1
| TTBCR_PD0
| TTBCR_N
;
1749 /* Update the masks corresponding to the the TCR bank being written
1750 * Note that we always calculate mask and base_mask, but
1751 * they are only used for short-descriptor tables (ie if EAE is 0);
1752 * for long-descriptor tables the TCR fields are used differently
1753 * and the mask and base_mask values are meaningless.
1755 tcr
->raw_tcr
= value
;
1756 tcr
->mask
= ~(((uint32_t)0xffffffffu
) >> maskshift
);
1757 tcr
->base_mask
= ~((uint32_t)0x3fffu
>> maskshift
);
1760 static void vmsa_ttbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1763 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1765 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
1766 /* With LPAE the TTBCR could result in a change of ASID
1767 * via the TTBCR.A1 bit, so do a TLB flush.
1769 tlb_flush(CPU(cpu
), 1);
1771 vmsa_ttbcr_raw_write(env
, ri
, value
);
1774 static void vmsa_ttbcr_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1776 TCR
*tcr
= raw_ptr(env
, ri
);
1778 /* Reset both the TCR as well as the masks corresponding to the bank of
1779 * the TCR being reset.
1783 tcr
->base_mask
= 0xffffc000u
;
1786 static void vmsa_tcr_el1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1789 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1790 TCR
*tcr
= raw_ptr(env
, ri
);
1792 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
1793 tlb_flush(CPU(cpu
), 1);
1794 tcr
->raw_tcr
= value
;
1797 static void vmsa_ttbr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1800 /* 64 bit accesses to the TTBRs can change the ASID and so we
1801 * must flush the TLB.
1803 if (cpreg_field_is_64bit(ri
)) {
1804 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1806 tlb_flush(CPU(cpu
), 1);
1808 raw_write(env
, ri
, value
);
1811 static const ARMCPRegInfo vmsa_cp_reginfo
[] = {
1812 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
1813 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
1814 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dfsr_s
),
1815 offsetoflow32(CPUARMState
, cp15
.dfsr_ns
) },
1816 .resetfn
= arm_cp_reset_ignore
, },
1817 { .name
= "IFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
1818 .access
= PL1_RW
, .resetvalue
= 0,
1819 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.ifsr_s
),
1820 offsetoflow32(CPUARMState
, cp15
.ifsr_ns
) } },
1821 { .name
= "ESR_EL1", .state
= ARM_CP_STATE_AA64
,
1822 .opc0
= 3, .crn
= 5, .crm
= 2, .opc1
= 0, .opc2
= 0,
1824 .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[1]), .resetvalue
= 0, },
1825 { .name
= "TTBR0_EL1", .state
= ARM_CP_STATE_BOTH
,
1826 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 0, .opc2
= 0,
1827 .access
= PL1_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
1828 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr0_s
),
1829 offsetof(CPUARMState
, cp15
.ttbr0_ns
) } },
1830 { .name
= "TTBR1_EL1", .state
= ARM_CP_STATE_BOTH
,
1831 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 0, .opc2
= 1,
1832 .access
= PL1_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
1833 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr1_s
),
1834 offsetof(CPUARMState
, cp15
.ttbr1_ns
) } },
1835 { .name
= "TCR_EL1", .state
= ARM_CP_STATE_AA64
,
1836 .opc0
= 3, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
1837 .access
= PL1_RW
, .writefn
= vmsa_tcr_el1_write
,
1838 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= raw_write
,
1839 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[1]) },
1840 { .name
= "TTBCR", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
1841 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
, .writefn
= vmsa_ttbcr_write
,
1842 .resetfn
= arm_cp_reset_ignore
, .raw_writefn
= vmsa_ttbcr_raw_write
,
1843 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tcr_el
[3]),
1844 offsetoflow32(CPUARMState
, cp15
.tcr_el
[1])} },
1845 { .name
= "FAR_EL1", .state
= ARM_CP_STATE_AA64
,
1846 .opc0
= 3, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 0,
1847 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[1]),
1849 { .name
= "DFAR", .cp
= 15, .opc1
= 0, .crn
= 6, .crm
= 0, .opc2
= 0,
1850 .access
= PL1_RW
, .resetvalue
= 0,
1851 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.dfar_s
),
1852 offsetof(CPUARMState
, cp15
.dfar_ns
) } },
1856 static void omap_ticonfig_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1859 env
->cp15
.c15_ticonfig
= value
& 0xe7;
1860 /* The OS_TYPE bit in this register changes the reported CPUID! */
1861 env
->cp15
.c0_cpuid
= (value
& (1 << 5)) ?
1862 ARM_CPUID_TI915T
: ARM_CPUID_TI925T
;
1865 static void omap_threadid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1868 env
->cp15
.c15_threadid
= value
& 0xffff;
1871 static void omap_wfi_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1874 /* Wait-for-interrupt (deprecated) */
1875 cpu_interrupt(CPU(arm_env_get_cpu(env
)), CPU_INTERRUPT_HALT
);
1878 static void omap_cachemaint_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1881 /* On OMAP there are registers indicating the max/min index of dcache lines
1882 * containing a dirty line; cache flush operations have to reset these.
1884 env
->cp15
.c15_i_max
= 0x000;
1885 env
->cp15
.c15_i_min
= 0xff0;
1888 static const ARMCPRegInfo omap_cp_reginfo
[] = {
1889 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= CP_ANY
,
1890 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_OVERRIDE
,
1891 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.esr_el
[1]),
1893 { .name
= "", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 0,
1894 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
1895 { .name
= "TICONFIG", .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0,
1897 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_ticonfig
), .resetvalue
= 0,
1898 .writefn
= omap_ticonfig_write
},
1899 { .name
= "IMAX", .cp
= 15, .crn
= 15, .crm
= 2, .opc1
= 0, .opc2
= 0,
1901 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_max
), .resetvalue
= 0, },
1902 { .name
= "IMIN", .cp
= 15, .crn
= 15, .crm
= 3, .opc1
= 0, .opc2
= 0,
1903 .access
= PL1_RW
, .resetvalue
= 0xff0,
1904 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_min
) },
1905 { .name
= "THREADID", .cp
= 15, .crn
= 15, .crm
= 4, .opc1
= 0, .opc2
= 0,
1907 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_threadid
), .resetvalue
= 0,
1908 .writefn
= omap_threadid_write
},
1909 { .name
= "TI925T_STATUS", .cp
= 15, .crn
= 15,
1910 .crm
= 8, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
1911 .type
= ARM_CP_NO_RAW
,
1912 .readfn
= arm_cp_read_zero
, .writefn
= omap_wfi_write
, },
1913 /* TODO: Peripheral port remap register:
1914 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
1915 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
1918 { .name
= "OMAP_CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
1919 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
1920 .type
= ARM_CP_OVERRIDE
| ARM_CP_NO_RAW
,
1921 .writefn
= omap_cachemaint_write
},
1922 { .name
= "C9", .cp
= 15, .crn
= 9,
1923 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
,
1924 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
, .resetvalue
= 0 },
1928 static void xscale_cpar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1931 env
->cp15
.c15_cpar
= value
& 0x3fff;
1934 static const ARMCPRegInfo xscale_cp_reginfo
[] = {
1935 { .name
= "XSCALE_CPAR",
1936 .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
1937 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_cpar
), .resetvalue
= 0,
1938 .writefn
= xscale_cpar_write
, },
1939 { .name
= "XSCALE_AUXCR",
1940 .cp
= 15, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 1, .access
= PL1_RW
,
1941 .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_xscaleauxcr
),
1943 /* XScale specific cache-lockdown: since we have no cache we NOP these
1944 * and hope the guest does not really rely on cache behaviour.
1946 { .name
= "XSCALE_LOCK_ICACHE_LINE",
1947 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 0,
1948 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1949 { .name
= "XSCALE_UNLOCK_ICACHE",
1950 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 1,
1951 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1952 { .name
= "XSCALE_DCACHE_LOCK",
1953 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 2, .opc2
= 0,
1954 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
1955 { .name
= "XSCALE_UNLOCK_DCACHE",
1956 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 2, .opc2
= 1,
1957 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1961 static const ARMCPRegInfo dummy_c15_cp_reginfo
[] = {
1962 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
1963 * implementation of this implementation-defined space.
1964 * Ideally this should eventually disappear in favour of actually
1965 * implementing the correct behaviour for all cores.
1967 { .name
= "C15_IMPDEF", .cp
= 15, .crn
= 15,
1968 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
1970 .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
| ARM_CP_OVERRIDE
,
1975 static const ARMCPRegInfo cache_dirty_status_cp_reginfo
[] = {
1976 /* Cache status: RAZ because we have no cache so it's always clean */
1977 { .name
= "CDSR", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 6,
1978 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
1983 static const ARMCPRegInfo cache_block_ops_cp_reginfo
[] = {
1984 /* We never have a a block transfer operation in progress */
1985 { .name
= "BXSR", .cp
= 15, .crn
= 7, .crm
= 12, .opc1
= 0, .opc2
= 4,
1986 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
1988 /* The cache ops themselves: these all NOP for QEMU */
1989 { .name
= "IICR", .cp
= 15, .crm
= 5, .opc1
= 0,
1990 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1991 { .name
= "IDCR", .cp
= 15, .crm
= 6, .opc1
= 0,
1992 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1993 { .name
= "CDCR", .cp
= 15, .crm
= 12, .opc1
= 0,
1994 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1995 { .name
= "PIR", .cp
= 15, .crm
= 12, .opc1
= 1,
1996 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1997 { .name
= "PDR", .cp
= 15, .crm
= 12, .opc1
= 2,
1998 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1999 { .name
= "CIDCR", .cp
= 15, .crm
= 14, .opc1
= 0,
2000 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2004 static const ARMCPRegInfo cache_test_clean_cp_reginfo
[] = {
2005 /* The cache test-and-clean instructions always return (1 << 30)
2006 * to indicate that there are no dirty cache lines.
2008 { .name
= "TC_DCACHE", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 3,
2009 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2010 .resetvalue
= (1 << 30) },
2011 { .name
= "TCI_DCACHE", .cp
= 15, .crn
= 7, .crm
= 14, .opc1
= 0, .opc2
= 3,
2012 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2013 .resetvalue
= (1 << 30) },
2017 static const ARMCPRegInfo strongarm_cp_reginfo
[] = {
2018 /* Ignore ReadBuffer accesses */
2019 { .name
= "C9_READBUFFER", .cp
= 15, .crn
= 9,
2020 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
2021 .access
= PL1_RW
, .resetvalue
= 0,
2022 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
| ARM_CP_NO_RAW
},
2026 static uint64_t mpidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2028 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
2029 uint32_t mpidr
= cs
->cpu_index
;
2030 /* We don't support setting cluster ID ([8..11]) (known as Aff1
2031 * in later ARM ARM versions), or any of the higher affinity level fields,
2032 * so these bits always RAZ.
2034 if (arm_feature(env
, ARM_FEATURE_V7MP
)) {
2035 mpidr
|= (1U << 31);
2036 /* Cores which are uniprocessor (non-coherent)
2037 * but still implement the MP extensions set
2038 * bit 30. (For instance, A9UP.) However we do
2039 * not currently model any of those cores.
2045 static const ARMCPRegInfo mpidr_cp_reginfo
[] = {
2046 { .name
= "MPIDR", .state
= ARM_CP_STATE_BOTH
,
2047 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 5,
2048 .access
= PL1_R
, .readfn
= mpidr_read
, .type
= ARM_CP_NO_RAW
},
2052 static const ARMCPRegInfo lpae_cp_reginfo
[] = {
2053 /* NOP AMAIR0/1: the override is because these clash with the rather
2054 * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
2056 { .name
= "AMAIR0", .state
= ARM_CP_STATE_BOTH
,
2057 .opc0
= 3, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 0,
2058 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
,
2060 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2061 { .name
= "AMAIR1", .cp
= 15, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 1,
2062 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
,
2064 { .name
= "PAR", .cp
= 15, .crm
= 7, .opc1
= 0,
2065 .access
= PL1_RW
, .type
= ARM_CP_64BIT
, .resetvalue
= 0,
2066 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.par_s
),
2067 offsetof(CPUARMState
, cp15
.par_ns
)} },
2068 { .name
= "TTBR0", .cp
= 15, .crm
= 2, .opc1
= 0,
2069 .access
= PL1_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
2070 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr0_s
),
2071 offsetof(CPUARMState
, cp15
.ttbr0_ns
) },
2072 .writefn
= vmsa_ttbr_write
, .resetfn
= arm_cp_reset_ignore
},
2073 { .name
= "TTBR1", .cp
= 15, .crm
= 2, .opc1
= 1,
2074 .access
= PL1_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
2075 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr1_s
),
2076 offsetof(CPUARMState
, cp15
.ttbr1_ns
) },
2077 .writefn
= vmsa_ttbr_write
, .resetfn
= arm_cp_reset_ignore
},
2081 static uint64_t aa64_fpcr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2083 return vfp_get_fpcr(env
);
2086 static void aa64_fpcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2089 vfp_set_fpcr(env
, value
);
2092 static uint64_t aa64_fpsr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2094 return vfp_get_fpsr(env
);
2097 static void aa64_fpsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2100 vfp_set_fpsr(env
, value
);
2103 static CPAccessResult
aa64_daif_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2105 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UMA
)) {
2106 return CP_ACCESS_TRAP
;
2108 return CP_ACCESS_OK
;
2111 static void aa64_daif_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2114 env
->daif
= value
& PSTATE_DAIF
;
2117 static CPAccessResult
aa64_cacheop_access(CPUARMState
*env
,
2118 const ARMCPRegInfo
*ri
)
2120 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2121 * SCTLR_EL1.UCI is set.
2123 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UCI
)) {
2124 return CP_ACCESS_TRAP
;
2126 return CP_ACCESS_OK
;
2129 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2130 * Page D4-1736 (DDI0487A.b)
2133 static void tlbi_aa64_va_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2136 /* Invalidate by VA (AArch64 version) */
2137 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2138 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2140 tlb_flush_page(CPU(cpu
), pageaddr
);
2143 static void tlbi_aa64_vaa_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2146 /* Invalidate by VA, all ASIDs (AArch64 version) */
2147 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2148 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2150 tlb_flush_page(CPU(cpu
), pageaddr
);
2153 static void tlbi_aa64_asid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2156 /* Invalidate by ASID (AArch64 version) */
2157 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2158 int asid
= extract64(value
, 48, 16);
2159 tlb_flush(CPU(cpu
), asid
== 0);
2162 static void tlbi_aa64_va_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2166 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2168 CPU_FOREACH(other_cs
) {
2169 tlb_flush_page(other_cs
, pageaddr
);
2173 static void tlbi_aa64_vaa_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2177 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2179 CPU_FOREACH(other_cs
) {
2180 tlb_flush_page(other_cs
, pageaddr
);
2184 static void tlbi_aa64_asid_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2188 int asid
= extract64(value
, 48, 16);
2190 CPU_FOREACH(other_cs
) {
2191 tlb_flush(other_cs
, asid
== 0);
2195 static CPAccessResult
aa64_zva_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2197 /* We don't implement EL2, so the only control on DC ZVA is the
2198 * bit in the SCTLR which can prohibit access for EL0.
2200 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_DZE
)) {
2201 return CP_ACCESS_TRAP
;
2203 return CP_ACCESS_OK
;
2206 static uint64_t aa64_dczid_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2208 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2209 int dzp_bit
= 1 << 4;
2211 /* DZP indicates whether DC ZVA access is allowed */
2212 if (aa64_zva_access(env
, NULL
) == CP_ACCESS_OK
) {
2215 return cpu
->dcz_blocksize
| dzp_bit
;
2218 static CPAccessResult
sp_el0_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2220 if (!(env
->pstate
& PSTATE_SP
)) {
2221 /* Access to SP_EL0 is undefined if it's being used as
2222 * the stack pointer.
2224 return CP_ACCESS_TRAP_UNCATEGORIZED
;
2226 return CP_ACCESS_OK
;
2229 static uint64_t spsel_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2231 return env
->pstate
& PSTATE_SP
;
2234 static void spsel_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t val
)
2236 update_spsel(env
, val
);
2239 static void sctlr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2242 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2244 if (raw_read(env
, ri
) == value
) {
2245 /* Skip the TLB flush if nothing actually changed; Linux likes
2246 * to do a lot of pointless SCTLR writes.
2251 raw_write(env
, ri
, value
);
2252 /* ??? Lots of these bits are not implemented. */
2253 /* This may enable/disable the MMU, so do a TLB flush. */
2254 tlb_flush(CPU(cpu
), 1);
2257 static const ARMCPRegInfo v8_cp_reginfo
[] = {
2258 /* Minimal set of EL0-visible registers. This will need to be expanded
2259 * significantly for system emulation of AArch64 CPUs.
2261 { .name
= "NZCV", .state
= ARM_CP_STATE_AA64
,
2262 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 2,
2263 .access
= PL0_RW
, .type
= ARM_CP_NZCV
},
2264 { .name
= "DAIF", .state
= ARM_CP_STATE_AA64
,
2265 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 2,
2266 .type
= ARM_CP_NO_RAW
,
2267 .access
= PL0_RW
, .accessfn
= aa64_daif_access
,
2268 .fieldoffset
= offsetof(CPUARMState
, daif
),
2269 .writefn
= aa64_daif_write
, .resetfn
= arm_cp_reset_ignore
},
2270 { .name
= "FPCR", .state
= ARM_CP_STATE_AA64
,
2271 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 4,
2272 .access
= PL0_RW
, .readfn
= aa64_fpcr_read
, .writefn
= aa64_fpcr_write
},
2273 { .name
= "FPSR", .state
= ARM_CP_STATE_AA64
,
2274 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 4,
2275 .access
= PL0_RW
, .readfn
= aa64_fpsr_read
, .writefn
= aa64_fpsr_write
},
2276 { .name
= "DCZID_EL0", .state
= ARM_CP_STATE_AA64
,
2277 .opc0
= 3, .opc1
= 3, .opc2
= 7, .crn
= 0, .crm
= 0,
2278 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
,
2279 .readfn
= aa64_dczid_read
},
2280 { .name
= "DC_ZVA", .state
= ARM_CP_STATE_AA64
,
2281 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 4, .opc2
= 1,
2282 .access
= PL0_W
, .type
= ARM_CP_DC_ZVA
,
2283 #ifndef CONFIG_USER_ONLY
2284 /* Avoid overhead of an access check that always passes in user-mode */
2285 .accessfn
= aa64_zva_access
,
2288 { .name
= "CURRENTEL", .state
= ARM_CP_STATE_AA64
,
2289 .opc0
= 3, .opc1
= 0, .opc2
= 2, .crn
= 4, .crm
= 2,
2290 .access
= PL1_R
, .type
= ARM_CP_CURRENTEL
},
2291 /* Cache ops: all NOPs since we don't emulate caches */
2292 { .name
= "IC_IALLUIS", .state
= ARM_CP_STATE_AA64
,
2293 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 0,
2294 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2295 { .name
= "IC_IALLU", .state
= ARM_CP_STATE_AA64
,
2296 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 0,
2297 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2298 { .name
= "IC_IVAU", .state
= ARM_CP_STATE_AA64
,
2299 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 5, .opc2
= 1,
2300 .access
= PL0_W
, .type
= ARM_CP_NOP
,
2301 .accessfn
= aa64_cacheop_access
},
2302 { .name
= "DC_IVAC", .state
= ARM_CP_STATE_AA64
,
2303 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 1,
2304 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2305 { .name
= "DC_ISW", .state
= ARM_CP_STATE_AA64
,
2306 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 2,
2307 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2308 { .name
= "DC_CVAC", .state
= ARM_CP_STATE_AA64
,
2309 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 10, .opc2
= 1,
2310 .access
= PL0_W
, .type
= ARM_CP_NOP
,
2311 .accessfn
= aa64_cacheop_access
},
2312 { .name
= "DC_CSW", .state
= ARM_CP_STATE_AA64
,
2313 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 2,
2314 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2315 { .name
= "DC_CVAU", .state
= ARM_CP_STATE_AA64
,
2316 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 11, .opc2
= 1,
2317 .access
= PL0_W
, .type
= ARM_CP_NOP
,
2318 .accessfn
= aa64_cacheop_access
},
2319 { .name
= "DC_CIVAC", .state
= ARM_CP_STATE_AA64
,
2320 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 14, .opc2
= 1,
2321 .access
= PL0_W
, .type
= ARM_CP_NOP
,
2322 .accessfn
= aa64_cacheop_access
},
2323 { .name
= "DC_CISW", .state
= ARM_CP_STATE_AA64
,
2324 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 2,
2325 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2326 /* TLBI operations */
2327 { .name
= "TLBI_VMALLE1IS", .state
= ARM_CP_STATE_AA64
,
2328 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 0,
2329 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2330 .writefn
= tlbiall_is_write
},
2331 { .name
= "TLBI_VAE1IS", .state
= ARM_CP_STATE_AA64
,
2332 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 1,
2333 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2334 .writefn
= tlbi_aa64_va_is_write
},
2335 { .name
= "TLBI_ASIDE1IS", .state
= ARM_CP_STATE_AA64
,
2336 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 2,
2337 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2338 .writefn
= tlbi_aa64_asid_is_write
},
2339 { .name
= "TLBI_VAAE1IS", .state
= ARM_CP_STATE_AA64
,
2340 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 3,
2341 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2342 .writefn
= tlbi_aa64_vaa_is_write
},
2343 { .name
= "TLBI_VALE1IS", .state
= ARM_CP_STATE_AA64
,
2344 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 5,
2345 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2346 .writefn
= tlbi_aa64_va_is_write
},
2347 { .name
= "TLBI_VAALE1IS", .state
= ARM_CP_STATE_AA64
,
2348 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 7,
2349 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2350 .writefn
= tlbi_aa64_vaa_is_write
},
2351 { .name
= "TLBI_VMALLE1", .state
= ARM_CP_STATE_AA64
,
2352 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 0,
2353 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2354 .writefn
= tlbiall_write
},
2355 { .name
= "TLBI_VAE1", .state
= ARM_CP_STATE_AA64
,
2356 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 1,
2357 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2358 .writefn
= tlbi_aa64_va_write
},
2359 { .name
= "TLBI_ASIDE1", .state
= ARM_CP_STATE_AA64
,
2360 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 2,
2361 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2362 .writefn
= tlbi_aa64_asid_write
},
2363 { .name
= "TLBI_VAAE1", .state
= ARM_CP_STATE_AA64
,
2364 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 3,
2365 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2366 .writefn
= tlbi_aa64_vaa_write
},
2367 { .name
= "TLBI_VALE1", .state
= ARM_CP_STATE_AA64
,
2368 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 5,
2369 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2370 .writefn
= tlbi_aa64_va_write
},
2371 { .name
= "TLBI_VAALE1", .state
= ARM_CP_STATE_AA64
,
2372 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 7,
2373 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2374 .writefn
= tlbi_aa64_vaa_write
},
2375 #ifndef CONFIG_USER_ONLY
2376 /* 64 bit address translation operations */
2377 { .name
= "AT_S1E1R", .state
= ARM_CP_STATE_AA64
,
2378 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 0,
2379 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
2380 { .name
= "AT_S1E1W", .state
= ARM_CP_STATE_AA64
,
2381 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 1,
2382 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
2383 { .name
= "AT_S1E0R", .state
= ARM_CP_STATE_AA64
,
2384 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 2,
2385 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
2386 { .name
= "AT_S1E0W", .state
= ARM_CP_STATE_AA64
,
2387 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 3,
2388 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
2390 /* TLB invalidate last level of translation table walk */
2391 { .name
= "TLBIMVALIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 5,
2392 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_is_write
},
2393 { .name
= "TLBIMVAALIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 7,
2394 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
2395 .writefn
= tlbimvaa_is_write
},
2396 { .name
= "TLBIMVAL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 5,
2397 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
2398 { .name
= "TLBIMVAAL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 7,
2399 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
2400 /* 32 bit cache operations */
2401 { .name
= "ICIALLUIS", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 0,
2402 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2403 { .name
= "BPIALLUIS", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 6,
2404 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2405 { .name
= "ICIALLU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 0,
2406 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2407 { .name
= "ICIMVAU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 1,
2408 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2409 { .name
= "BPIALL", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 6,
2410 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2411 { .name
= "BPIMVA", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 7,
2412 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2413 { .name
= "DCIMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 1,
2414 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2415 { .name
= "DCISW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 2,
2416 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2417 { .name
= "DCCMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 1,
2418 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2419 { .name
= "DCCSW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 2,
2420 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2421 { .name
= "DCCMVAU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 11, .opc2
= 1,
2422 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2423 { .name
= "DCCIMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 1,
2424 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2425 { .name
= "DCCISW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 2,
2426 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2427 /* MMU Domain access control / MPU write buffer control */
2428 { .name
= "DACR", .cp
= 15, .opc1
= 0, .crn
= 3, .crm
= 0, .opc2
= 0,
2429 .access
= PL1_RW
, .resetvalue
= 0,
2430 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
2431 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dacr_s
),
2432 offsetoflow32(CPUARMState
, cp15
.dacr_ns
) } },
2433 { .name
= "ELR_EL1", .state
= ARM_CP_STATE_AA64
,
2434 .type
= ARM_CP_ALIAS
,
2435 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 0, .opc2
= 1,
2437 .fieldoffset
= offsetof(CPUARMState
, elr_el
[1]) },
2438 { .name
= "SPSR_EL1", .state
= ARM_CP_STATE_AA64
,
2439 .type
= ARM_CP_ALIAS
,
2440 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 0, .opc2
= 0,
2441 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[0]) },
2442 /* We rely on the access checks not allowing the guest to write to the
2443 * state field when SPSel indicates that it's being used as the stack
2446 { .name
= "SP_EL0", .state
= ARM_CP_STATE_AA64
,
2447 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 1, .opc2
= 0,
2448 .access
= PL1_RW
, .accessfn
= sp_el0_access
,
2449 .type
= ARM_CP_ALIAS
,
2450 .fieldoffset
= offsetof(CPUARMState
, sp_el
[0]) },
2451 { .name
= "SP_EL1", .state
= ARM_CP_STATE_AA64
,
2452 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 1, .opc2
= 0,
2453 .access
= PL2_RW
, .type
= ARM_CP_ALIAS
,
2454 .fieldoffset
= offsetof(CPUARMState
, sp_el
[1]) },
2455 { .name
= "SPSel", .state
= ARM_CP_STATE_AA64
,
2456 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 2, .opc2
= 0,
2457 .type
= ARM_CP_NO_RAW
,
2458 .access
= PL1_RW
, .readfn
= spsel_read
, .writefn
= spsel_write
},
2462 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
2463 static const ARMCPRegInfo v8_el3_no_el2_cp_reginfo
[] = {
2464 { .name
= "VBAR_EL2", .state
= ARM_CP_STATE_AA64
,
2465 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 0,
2467 .readfn
= arm_cp_read_zero
, .writefn
= arm_cp_write_ignore
},
2468 { .name
= "HCR_EL2", .state
= ARM_CP_STATE_AA64
,
2469 .type
= ARM_CP_NO_RAW
,
2470 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 0,
2472 .readfn
= arm_cp_read_zero
, .writefn
= arm_cp_write_ignore
},
2476 static void hcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
2478 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2479 uint64_t valid_mask
= HCR_MASK
;
2481 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
2482 valid_mask
&= ~HCR_HCD
;
2484 valid_mask
&= ~HCR_TSC
;
2487 /* Clear RES0 bits. */
2488 value
&= valid_mask
;
2490 /* These bits change the MMU setup:
2491 * HCR_VM enables stage 2 translation
2492 * HCR_PTW forbids certain page-table setups
2493 * HCR_DC Disables stage1 and enables stage2 translation
2495 if ((raw_read(env
, ri
) ^ value
) & (HCR_VM
| HCR_PTW
| HCR_DC
)) {
2496 tlb_flush(CPU(cpu
), 1);
2498 raw_write(env
, ri
, value
);
2501 static const ARMCPRegInfo v8_el2_cp_reginfo
[] = {
2502 { .name
= "HCR_EL2", .state
= ARM_CP_STATE_AA64
,
2503 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 0,
2504 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.hcr_el2
),
2505 .writefn
= hcr_write
},
2506 { .name
= "DACR32_EL2", .state
= ARM_CP_STATE_AA64
,
2507 .opc0
= 3, .opc1
= 4, .crn
= 3, .crm
= 0, .opc2
= 0,
2508 .access
= PL2_RW
, .resetvalue
= 0,
2509 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
2510 .fieldoffset
= offsetof(CPUARMState
, cp15
.dacr32_el2
) },
2511 { .name
= "ELR_EL2", .state
= ARM_CP_STATE_AA64
,
2512 .type
= ARM_CP_ALIAS
,
2513 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 0, .opc2
= 1,
2515 .fieldoffset
= offsetof(CPUARMState
, elr_el
[2]) },
2516 { .name
= "ESR_EL2", .state
= ARM_CP_STATE_AA64
,
2517 .type
= ARM_CP_ALIAS
,
2518 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 2, .opc2
= 0,
2519 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[2]) },
2520 { .name
= "IFSR32_EL2", .state
= ARM_CP_STATE_AA64
,
2521 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 0, .opc2
= 1,
2522 .access
= PL2_RW
, .resetvalue
= 0,
2523 .fieldoffset
= offsetof(CPUARMState
, cp15
.ifsr32_el2
) },
2524 { .name
= "FAR_EL2", .state
= ARM_CP_STATE_AA64
,
2525 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 0,
2526 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[2]) },
2527 { .name
= "SPSR_EL2", .state
= ARM_CP_STATE_AA64
,
2528 .type
= ARM_CP_ALIAS
,
2529 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 0, .opc2
= 0,
2530 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[6]) },
2531 { .name
= "VBAR_EL2", .state
= ARM_CP_STATE_AA64
,
2532 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 0,
2533 .access
= PL2_RW
, .writefn
= vbar_write
,
2534 .fieldoffset
= offsetof(CPUARMState
, cp15
.vbar_el
[2]),
2536 { .name
= "SP_EL2", .state
= ARM_CP_STATE_AA64
,
2537 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 1, .opc2
= 0,
2538 .access
= PL3_RW
, .type
= ARM_CP_ALIAS
,
2539 .fieldoffset
= offsetof(CPUARMState
, sp_el
[2]) },
2543 static const ARMCPRegInfo el3_cp_reginfo
[] = {
2544 { .name
= "SCR_EL3", .state
= ARM_CP_STATE_AA64
,
2545 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 0,
2546 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.scr_el3
),
2547 .resetvalue
= 0, .writefn
= scr_write
},
2548 { .name
= "SCR", .type
= ARM_CP_ALIAS
,
2549 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 0,
2550 .access
= PL3_RW
, .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.scr_el3
),
2551 .resetfn
= arm_cp_reset_ignore
, .writefn
= scr_write
},
2552 { .name
= "SDER32_EL3", .state
= ARM_CP_STATE_AA64
,
2553 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 1,
2554 .access
= PL3_RW
, .resetvalue
= 0,
2555 .fieldoffset
= offsetof(CPUARMState
, cp15
.sder
) },
2557 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 1,
2558 .access
= PL3_RW
, .resetvalue
= 0,
2559 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.sder
) },
2560 /* TODO: Implement NSACR trapping of secure EL1 accesses to EL3 */
2561 { .name
= "NSACR", .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 2,
2562 .access
= PL3_W
| PL1_R
, .resetvalue
= 0,
2563 .fieldoffset
= offsetof(CPUARMState
, cp15
.nsacr
) },
2564 { .name
= "MVBAR", .cp
= 15, .opc1
= 0, .crn
= 12, .crm
= 0, .opc2
= 1,
2565 .access
= PL3_RW
, .writefn
= vbar_write
, .resetvalue
= 0,
2566 .fieldoffset
= offsetof(CPUARMState
, cp15
.mvbar
) },
2567 { .name
= "SCTLR_EL3", .state
= ARM_CP_STATE_AA64
,
2568 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 0, .opc2
= 0,
2569 .access
= PL3_RW
, .raw_writefn
= raw_write
, .writefn
= sctlr_write
,
2570 .fieldoffset
= offsetof(CPUARMState
, cp15
.sctlr_el
[3]) },
2571 { .name
= "TTBR0_EL3", .state
= ARM_CP_STATE_AA64
,
2572 .opc0
= 3, .opc1
= 6, .crn
= 2, .crm
= 0, .opc2
= 0,
2573 .access
= PL3_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
2574 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[3]) },
2575 { .name
= "TCR_EL3", .state
= ARM_CP_STATE_AA64
,
2576 .opc0
= 3, .opc1
= 6, .crn
= 2, .crm
= 0, .opc2
= 2,
2577 .access
= PL3_RW
, .writefn
= vmsa_tcr_el1_write
,
2578 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= raw_write
,
2579 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[3]) },
2580 { .name
= "ELR_EL3", .state
= ARM_CP_STATE_AA64
,
2581 .type
= ARM_CP_ALIAS
,
2582 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 0, .opc2
= 1,
2584 .fieldoffset
= offsetof(CPUARMState
, elr_el
[3]) },
2585 { .name
= "ESR_EL3", .state
= ARM_CP_STATE_AA64
,
2586 .type
= ARM_CP_ALIAS
,
2587 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 2, .opc2
= 0,
2588 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[3]) },
2589 { .name
= "FAR_EL3", .state
= ARM_CP_STATE_AA64
,
2590 .opc0
= 3, .opc1
= 6, .crn
= 6, .crm
= 0, .opc2
= 0,
2591 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[3]) },
2592 { .name
= "SPSR_EL3", .state
= ARM_CP_STATE_AA64
,
2593 .type
= ARM_CP_ALIAS
,
2594 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 0, .opc2
= 0,
2595 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[7]) },
2596 { .name
= "VBAR_EL3", .state
= ARM_CP_STATE_AA64
,
2597 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 0, .opc2
= 0,
2598 .access
= PL3_RW
, .writefn
= vbar_write
,
2599 .fieldoffset
= offsetof(CPUARMState
, cp15
.vbar_el
[3]),
2604 static CPAccessResult
ctr_el0_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2606 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
2607 * but the AArch32 CTR has its own reginfo struct)
2609 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UCT
)) {
2610 return CP_ACCESS_TRAP
;
2612 return CP_ACCESS_OK
;
2615 static const ARMCPRegInfo debug_cp_reginfo
[] = {
2616 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
2617 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
2618 * unlike DBGDRAR it is never accessible from EL0.
2619 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
2622 { .name
= "DBGDRAR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 0,
2623 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2624 { .name
= "MDRAR_EL1", .state
= ARM_CP_STATE_AA64
,
2625 .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 0,
2626 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2627 { .name
= "DBGDSAR", .cp
= 14, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
2628 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2629 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
2630 { .name
= "MDSCR_EL1", .state
= ARM_CP_STATE_BOTH
,
2631 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
2633 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdscr_el1
),
2635 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
2636 * We don't implement the configurable EL0 access.
2638 { .name
= "MDCCSR_EL0", .state
= ARM_CP_STATE_BOTH
,
2639 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 0,
2640 .type
= ARM_CP_ALIAS
,
2642 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdscr_el1
),
2643 .resetfn
= arm_cp_reset_ignore
},
2644 /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */
2645 { .name
= "OSLAR_EL1", .state
= ARM_CP_STATE_BOTH
,
2646 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 4,
2647 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2648 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
2649 { .name
= "OSDLR_EL1", .state
= ARM_CP_STATE_BOTH
,
2650 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 3, .opc2
= 4,
2651 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
2652 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
2653 * implement vector catch debug events yet.
2656 .cp
= 14, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 0,
2657 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
2661 static const ARMCPRegInfo debug_lpae_cp_reginfo
[] = {
2662 /* 64 bit access versions of the (dummy) debug registers */
2663 { .name
= "DBGDRAR", .cp
= 14, .crm
= 1, .opc1
= 0,
2664 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
2665 { .name
= "DBGDSAR", .cp
= 14, .crm
= 2, .opc1
= 0,
2666 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
2670 void hw_watchpoint_update(ARMCPU
*cpu
, int n
)
2672 CPUARMState
*env
= &cpu
->env
;
2674 vaddr wvr
= env
->cp15
.dbgwvr
[n
];
2675 uint64_t wcr
= env
->cp15
.dbgwcr
[n
];
2677 int flags
= BP_CPU
| BP_STOP_BEFORE_ACCESS
;
2679 if (env
->cpu_watchpoint
[n
]) {
2680 cpu_watchpoint_remove_by_ref(CPU(cpu
), env
->cpu_watchpoint
[n
]);
2681 env
->cpu_watchpoint
[n
] = NULL
;
2684 if (!extract64(wcr
, 0, 1)) {
2685 /* E bit clear : watchpoint disabled */
2689 switch (extract64(wcr
, 3, 2)) {
2691 /* LSC 00 is reserved and must behave as if the wp is disabled */
2694 flags
|= BP_MEM_READ
;
2697 flags
|= BP_MEM_WRITE
;
2700 flags
|= BP_MEM_ACCESS
;
2704 /* Attempts to use both MASK and BAS fields simultaneously are
2705 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
2706 * thus generating a watchpoint for every byte in the masked region.
2708 mask
= extract64(wcr
, 24, 4);
2709 if (mask
== 1 || mask
== 2) {
2710 /* Reserved values of MASK; we must act as if the mask value was
2711 * some non-reserved value, or as if the watchpoint were disabled.
2712 * We choose the latter.
2716 /* Watchpoint covers an aligned area up to 2GB in size */
2718 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
2719 * whether the watchpoint fires when the unmasked bits match; we opt
2720 * to generate the exceptions.
2724 /* Watchpoint covers bytes defined by the byte address select bits */
2725 int bas
= extract64(wcr
, 5, 8);
2729 /* This must act as if the watchpoint is disabled */
2733 if (extract64(wvr
, 2, 1)) {
2734 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
2735 * ignored, and BAS[3:0] define which bytes to watch.
2739 /* The BAS bits are supposed to be programmed to indicate a contiguous
2740 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
2741 * we fire for each byte in the word/doubleword addressed by the WVR.
2742 * We choose to ignore any non-zero bits after the first range of 1s.
2744 basstart
= ctz32(bas
);
2745 len
= cto32(bas
>> basstart
);
2749 cpu_watchpoint_insert(CPU(cpu
), wvr
, len
, flags
,
2750 &env
->cpu_watchpoint
[n
]);
2753 void hw_watchpoint_update_all(ARMCPU
*cpu
)
2756 CPUARMState
*env
= &cpu
->env
;
2758 /* Completely clear out existing QEMU watchpoints and our array, to
2759 * avoid possible stale entries following migration load.
2761 cpu_watchpoint_remove_all(CPU(cpu
), BP_CPU
);
2762 memset(env
->cpu_watchpoint
, 0, sizeof(env
->cpu_watchpoint
));
2764 for (i
= 0; i
< ARRAY_SIZE(cpu
->env
.cpu_watchpoint
); i
++) {
2765 hw_watchpoint_update(cpu
, i
);
2769 static void dbgwvr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2772 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2775 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
2776 * register reads and behaves as if values written are sign extended.
2777 * Bits [1:0] are RES0.
2779 value
= sextract64(value
, 0, 49) & ~3ULL;
2781 raw_write(env
, ri
, value
);
2782 hw_watchpoint_update(cpu
, i
);
2785 static void dbgwcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2788 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2791 raw_write(env
, ri
, value
);
2792 hw_watchpoint_update(cpu
, i
);
2795 void hw_breakpoint_update(ARMCPU
*cpu
, int n
)
2797 CPUARMState
*env
= &cpu
->env
;
2798 uint64_t bvr
= env
->cp15
.dbgbvr
[n
];
2799 uint64_t bcr
= env
->cp15
.dbgbcr
[n
];
2804 if (env
->cpu_breakpoint
[n
]) {
2805 cpu_breakpoint_remove_by_ref(CPU(cpu
), env
->cpu_breakpoint
[n
]);
2806 env
->cpu_breakpoint
[n
] = NULL
;
2809 if (!extract64(bcr
, 0, 1)) {
2810 /* E bit clear : watchpoint disabled */
2814 bt
= extract64(bcr
, 20, 4);
2817 case 4: /* unlinked address mismatch (reserved if AArch64) */
2818 case 5: /* linked address mismatch (reserved if AArch64) */
2819 qemu_log_mask(LOG_UNIMP
,
2820 "arm: address mismatch breakpoint types not implemented");
2822 case 0: /* unlinked address match */
2823 case 1: /* linked address match */
2825 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
2826 * we behave as if the register was sign extended. Bits [1:0] are
2827 * RES0. The BAS field is used to allow setting breakpoints on 16
2828 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
2829 * a bp will fire if the addresses covered by the bp and the addresses
2830 * covered by the insn overlap but the insn doesn't start at the
2831 * start of the bp address range. We choose to require the insn and
2832 * the bp to have the same address. The constraints on writing to
2833 * BAS enforced in dbgbcr_write mean we have only four cases:
2834 * 0b0000 => no breakpoint
2835 * 0b0011 => breakpoint on addr
2836 * 0b1100 => breakpoint on addr + 2
2837 * 0b1111 => breakpoint on addr
2838 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
2840 int bas
= extract64(bcr
, 5, 4);
2841 addr
= sextract64(bvr
, 0, 49) & ~3ULL;
2850 case 2: /* unlinked context ID match */
2851 case 8: /* unlinked VMID match (reserved if no EL2) */
2852 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
2853 qemu_log_mask(LOG_UNIMP
,
2854 "arm: unlinked context breakpoint types not implemented");
2856 case 9: /* linked VMID match (reserved if no EL2) */
2857 case 11: /* linked context ID and VMID match (reserved if no EL2) */
2858 case 3: /* linked context ID match */
2860 /* We must generate no events for Linked context matches (unless
2861 * they are linked to by some other bp/wp, which is handled in
2862 * updates for the linking bp/wp). We choose to also generate no events
2863 * for reserved values.
2868 cpu_breakpoint_insert(CPU(cpu
), addr
, flags
, &env
->cpu_breakpoint
[n
]);
2871 void hw_breakpoint_update_all(ARMCPU
*cpu
)
2874 CPUARMState
*env
= &cpu
->env
;
2876 /* Completely clear out existing QEMU breakpoints and our array, to
2877 * avoid possible stale entries following migration load.
2879 cpu_breakpoint_remove_all(CPU(cpu
), BP_CPU
);
2880 memset(env
->cpu_breakpoint
, 0, sizeof(env
->cpu_breakpoint
));
2882 for (i
= 0; i
< ARRAY_SIZE(cpu
->env
.cpu_breakpoint
); i
++) {
2883 hw_breakpoint_update(cpu
, i
);
2887 static void dbgbvr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2890 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2893 raw_write(env
, ri
, value
);
2894 hw_breakpoint_update(cpu
, i
);
2897 static void dbgbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2900 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2903 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
2906 value
= deposit64(value
, 6, 1, extract64(value
, 5, 1));
2907 value
= deposit64(value
, 8, 1, extract64(value
, 7, 1));
2909 raw_write(env
, ri
, value
);
2910 hw_breakpoint_update(cpu
, i
);
2913 static void define_debug_regs(ARMCPU
*cpu
)
2915 /* Define v7 and v8 architectural debug registers.
2916 * These are just dummy implementations for now.
2919 int wrps
, brps
, ctx_cmps
;
2920 ARMCPRegInfo dbgdidr
= {
2921 .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
2922 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->dbgdidr
,
2925 /* Note that all these register fields hold "number of Xs minus 1". */
2926 brps
= extract32(cpu
->dbgdidr
, 24, 4);
2927 wrps
= extract32(cpu
->dbgdidr
, 28, 4);
2928 ctx_cmps
= extract32(cpu
->dbgdidr
, 20, 4);
2930 assert(ctx_cmps
<= brps
);
2932 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
2933 * of the debug registers such as number of breakpoints;
2934 * check that if they both exist then they agree.
2936 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
2937 assert(extract32(cpu
->id_aa64dfr0
, 12, 4) == brps
);
2938 assert(extract32(cpu
->id_aa64dfr0
, 20, 4) == wrps
);
2939 assert(extract32(cpu
->id_aa64dfr0
, 28, 4) == ctx_cmps
);
2942 define_one_arm_cp_reg(cpu
, &dbgdidr
);
2943 define_arm_cp_regs(cpu
, debug_cp_reginfo
);
2945 if (arm_feature(&cpu
->env
, ARM_FEATURE_LPAE
)) {
2946 define_arm_cp_regs(cpu
, debug_lpae_cp_reginfo
);
2949 for (i
= 0; i
< brps
+ 1; i
++) {
2950 ARMCPRegInfo dbgregs
[] = {
2951 { .name
= "DBGBVR", .state
= ARM_CP_STATE_BOTH
,
2952 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 4,
2954 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbvr
[i
]),
2955 .writefn
= dbgbvr_write
, .raw_writefn
= raw_write
2957 { .name
= "DBGBCR", .state
= ARM_CP_STATE_BOTH
,
2958 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 5,
2960 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbcr
[i
]),
2961 .writefn
= dbgbcr_write
, .raw_writefn
= raw_write
2965 define_arm_cp_regs(cpu
, dbgregs
);
2968 for (i
= 0; i
< wrps
+ 1; i
++) {
2969 ARMCPRegInfo dbgregs
[] = {
2970 { .name
= "DBGWVR", .state
= ARM_CP_STATE_BOTH
,
2971 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 6,
2973 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwvr
[i
]),
2974 .writefn
= dbgwvr_write
, .raw_writefn
= raw_write
2976 { .name
= "DBGWCR", .state
= ARM_CP_STATE_BOTH
,
2977 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 7,
2979 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwcr
[i
]),
2980 .writefn
= dbgwcr_write
, .raw_writefn
= raw_write
2984 define_arm_cp_regs(cpu
, dbgregs
);
2988 void register_cp_regs_for_features(ARMCPU
*cpu
)
2990 /* Register all the coprocessor registers based on feature bits */
2991 CPUARMState
*env
= &cpu
->env
;
2992 if (arm_feature(env
, ARM_FEATURE_M
)) {
2993 /* M profile has no coprocessor registers */
2997 define_arm_cp_regs(cpu
, cp_reginfo
);
2998 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
2999 /* Must go early as it is full of wildcards that may be
3000 * overridden by later definitions.
3002 define_arm_cp_regs(cpu
, not_v8_cp_reginfo
);
3005 if (arm_feature(env
, ARM_FEATURE_V6
)) {
3006 /* The ID registers all have impdef reset values */
3007 ARMCPRegInfo v6_idregs
[] = {
3008 { .name
= "ID_PFR0", .state
= ARM_CP_STATE_BOTH
,
3009 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 0,
3010 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3011 .resetvalue
= cpu
->id_pfr0
},
3012 { .name
= "ID_PFR1", .state
= ARM_CP_STATE_BOTH
,
3013 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 1,
3014 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3015 .resetvalue
= cpu
->id_pfr1
},
3016 { .name
= "ID_DFR0", .state
= ARM_CP_STATE_BOTH
,
3017 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 2,
3018 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3019 .resetvalue
= cpu
->id_dfr0
},
3020 { .name
= "ID_AFR0", .state
= ARM_CP_STATE_BOTH
,
3021 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 3,
3022 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3023 .resetvalue
= cpu
->id_afr0
},
3024 { .name
= "ID_MMFR0", .state
= ARM_CP_STATE_BOTH
,
3025 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 4,
3026 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3027 .resetvalue
= cpu
->id_mmfr0
},
3028 { .name
= "ID_MMFR1", .state
= ARM_CP_STATE_BOTH
,
3029 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 5,
3030 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3031 .resetvalue
= cpu
->id_mmfr1
},
3032 { .name
= "ID_MMFR2", .state
= ARM_CP_STATE_BOTH
,
3033 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 6,
3034 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3035 .resetvalue
= cpu
->id_mmfr2
},
3036 { .name
= "ID_MMFR3", .state
= ARM_CP_STATE_BOTH
,
3037 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 7,
3038 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3039 .resetvalue
= cpu
->id_mmfr3
},
3040 { .name
= "ID_ISAR0", .state
= ARM_CP_STATE_BOTH
,
3041 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 0,
3042 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3043 .resetvalue
= cpu
->id_isar0
},
3044 { .name
= "ID_ISAR1", .state
= ARM_CP_STATE_BOTH
,
3045 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 1,
3046 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3047 .resetvalue
= cpu
->id_isar1
},
3048 { .name
= "ID_ISAR2", .state
= ARM_CP_STATE_BOTH
,
3049 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
3050 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3051 .resetvalue
= cpu
->id_isar2
},
3052 { .name
= "ID_ISAR3", .state
= ARM_CP_STATE_BOTH
,
3053 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 3,
3054 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3055 .resetvalue
= cpu
->id_isar3
},
3056 { .name
= "ID_ISAR4", .state
= ARM_CP_STATE_BOTH
,
3057 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 4,
3058 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3059 .resetvalue
= cpu
->id_isar4
},
3060 { .name
= "ID_ISAR5", .state
= ARM_CP_STATE_BOTH
,
3061 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 5,
3062 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3063 .resetvalue
= cpu
->id_isar5
},
3064 /* 6..7 are as yet unallocated and must RAZ */
3065 { .name
= "ID_ISAR6", .cp
= 15, .crn
= 0, .crm
= 2,
3066 .opc1
= 0, .opc2
= 6, .access
= PL1_R
, .type
= ARM_CP_CONST
,
3068 { .name
= "ID_ISAR7", .cp
= 15, .crn
= 0, .crm
= 2,
3069 .opc1
= 0, .opc2
= 7, .access
= PL1_R
, .type
= ARM_CP_CONST
,
3073 define_arm_cp_regs(cpu
, v6_idregs
);
3074 define_arm_cp_regs(cpu
, v6_cp_reginfo
);
3076 define_arm_cp_regs(cpu
, not_v6_cp_reginfo
);
3078 if (arm_feature(env
, ARM_FEATURE_V6K
)) {
3079 define_arm_cp_regs(cpu
, v6k_cp_reginfo
);
3081 if (arm_feature(env
, ARM_FEATURE_V7MP
)) {
3082 define_arm_cp_regs(cpu
, v7mp_cp_reginfo
);
3084 if (arm_feature(env
, ARM_FEATURE_V7
)) {
3085 /* v7 performance monitor control register: same implementor
3086 * field as main ID register, and we implement only the cycle
3089 #ifndef CONFIG_USER_ONLY
3090 ARMCPRegInfo pmcr
= {
3091 .name
= "PMCR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 0,
3093 .type
= ARM_CP_IO
| ARM_CP_ALIAS
,
3094 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcr
),
3095 .accessfn
= pmreg_access
, .writefn
= pmcr_write
,
3096 .raw_writefn
= raw_write
,
3098 ARMCPRegInfo pmcr64
= {
3099 .name
= "PMCR_EL0", .state
= ARM_CP_STATE_AA64
,
3100 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 0,
3101 .access
= PL0_RW
, .accessfn
= pmreg_access
,
3103 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcr
),
3104 .resetvalue
= cpu
->midr
& 0xff000000,
3105 .writefn
= pmcr_write
, .raw_writefn
= raw_write
,
3107 define_one_arm_cp_reg(cpu
, &pmcr
);
3108 define_one_arm_cp_reg(cpu
, &pmcr64
);
3110 ARMCPRegInfo clidr
= {
3111 .name
= "CLIDR", .state
= ARM_CP_STATE_BOTH
,
3112 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 1,
3113 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->clidr
3115 define_one_arm_cp_reg(cpu
, &clidr
);
3116 define_arm_cp_regs(cpu
, v7_cp_reginfo
);
3117 define_debug_regs(cpu
);
3119 define_arm_cp_regs(cpu
, not_v7_cp_reginfo
);
3121 if (arm_feature(env
, ARM_FEATURE_V8
)) {
3122 /* AArch64 ID registers, which all have impdef reset values */
3123 ARMCPRegInfo v8_idregs
[] = {
3124 { .name
= "ID_AA64PFR0_EL1", .state
= ARM_CP_STATE_AA64
,
3125 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 0,
3126 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3127 .resetvalue
= cpu
->id_aa64pfr0
},
3128 { .name
= "ID_AA64PFR1_EL1", .state
= ARM_CP_STATE_AA64
,
3129 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 1,
3130 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3131 .resetvalue
= cpu
->id_aa64pfr1
},
3132 { .name
= "ID_AA64DFR0_EL1", .state
= ARM_CP_STATE_AA64
,
3133 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 0,
3134 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3135 /* We mask out the PMUVer field, because we don't currently
3136 * implement the PMU. Not advertising it prevents the guest
3137 * from trying to use it and getting UNDEFs on registers we
3140 .resetvalue
= cpu
->id_aa64dfr0
& ~0xf00 },
3141 { .name
= "ID_AA64DFR1_EL1", .state
= ARM_CP_STATE_AA64
,
3142 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 1,
3143 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3144 .resetvalue
= cpu
->id_aa64dfr1
},
3145 { .name
= "ID_AA64AFR0_EL1", .state
= ARM_CP_STATE_AA64
,
3146 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 4,
3147 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3148 .resetvalue
= cpu
->id_aa64afr0
},
3149 { .name
= "ID_AA64AFR1_EL1", .state
= ARM_CP_STATE_AA64
,
3150 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 5,
3151 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3152 .resetvalue
= cpu
->id_aa64afr1
},
3153 { .name
= "ID_AA64ISAR0_EL1", .state
= ARM_CP_STATE_AA64
,
3154 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 0,
3155 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3156 .resetvalue
= cpu
->id_aa64isar0
},
3157 { .name
= "ID_AA64ISAR1_EL1", .state
= ARM_CP_STATE_AA64
,
3158 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 1,
3159 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3160 .resetvalue
= cpu
->id_aa64isar1
},
3161 { .name
= "ID_AA64MMFR0_EL1", .state
= ARM_CP_STATE_AA64
,
3162 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 0,
3163 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3164 .resetvalue
= cpu
->id_aa64mmfr0
},
3165 { .name
= "ID_AA64MMFR1_EL1", .state
= ARM_CP_STATE_AA64
,
3166 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 1,
3167 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3168 .resetvalue
= cpu
->id_aa64mmfr1
},
3169 { .name
= "MVFR0_EL1", .state
= ARM_CP_STATE_AA64
,
3170 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 0,
3171 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3172 .resetvalue
= cpu
->mvfr0
},
3173 { .name
= "MVFR1_EL1", .state
= ARM_CP_STATE_AA64
,
3174 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 1,
3175 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3176 .resetvalue
= cpu
->mvfr1
},
3177 { .name
= "MVFR2_EL1", .state
= ARM_CP_STATE_AA64
,
3178 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 2,
3179 .access
= PL1_R
, .type
= ARM_CP_CONST
,
3180 .resetvalue
= cpu
->mvfr2
},
3183 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
3184 if (!arm_feature(env
, ARM_FEATURE_EL3
) &&
3185 !arm_feature(env
, ARM_FEATURE_EL2
)) {
3186 ARMCPRegInfo rvbar
= {
3187 .name
= "RVBAR_EL1", .state
= ARM_CP_STATE_AA64
,
3188 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 0, .opc2
= 1,
3189 .type
= ARM_CP_CONST
, .access
= PL1_R
, .resetvalue
= cpu
->rvbar
3191 define_one_arm_cp_reg(cpu
, &rvbar
);
3193 define_arm_cp_regs(cpu
, v8_idregs
);
3194 define_arm_cp_regs(cpu
, v8_cp_reginfo
);
3196 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
3197 define_arm_cp_regs(cpu
, v8_el2_cp_reginfo
);
3198 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
3199 if (!arm_feature(env
, ARM_FEATURE_EL3
)) {
3200 ARMCPRegInfo rvbar
= {
3201 .name
= "RVBAR_EL2", .state
= ARM_CP_STATE_AA64
,
3202 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 1,
3203 .type
= ARM_CP_CONST
, .access
= PL2_R
, .resetvalue
= cpu
->rvbar
3205 define_one_arm_cp_reg(cpu
, &rvbar
);
3208 /* If EL2 is missing but higher ELs are enabled, we need to
3209 * register the no_el2 reginfos.
3211 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
3212 define_arm_cp_regs(cpu
, v8_el3_no_el2_cp_reginfo
);
3215 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
3216 define_arm_cp_regs(cpu
, el3_cp_reginfo
);
3217 ARMCPRegInfo rvbar
= {
3218 .name
= "RVBAR_EL3", .state
= ARM_CP_STATE_AA64
,
3219 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 0, .opc2
= 1,
3220 .type
= ARM_CP_CONST
, .access
= PL3_R
, .resetvalue
= cpu
->rvbar
3222 define_one_arm_cp_reg(cpu
, &rvbar
);
3224 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
3225 /* These are the MPU registers prior to PMSAv6. Any new
3226 * PMSA core later than the ARM946 will require that we
3227 * implement the PMSAv6 or PMSAv7 registers, which are
3228 * completely different.
3230 assert(!arm_feature(env
, ARM_FEATURE_V6
));
3231 define_arm_cp_regs(cpu
, pmsav5_cp_reginfo
);
3233 define_arm_cp_regs(cpu
, vmsa_cp_reginfo
);
3235 if (arm_feature(env
, ARM_FEATURE_THUMB2EE
)) {
3236 define_arm_cp_regs(cpu
, t2ee_cp_reginfo
);
3238 if (arm_feature(env
, ARM_FEATURE_GENERIC_TIMER
)) {
3239 define_arm_cp_regs(cpu
, generic_timer_cp_reginfo
);
3241 if (arm_feature(env
, ARM_FEATURE_VAPA
)) {
3242 define_arm_cp_regs(cpu
, vapa_cp_reginfo
);
3244 if (arm_feature(env
, ARM_FEATURE_CACHE_TEST_CLEAN
)) {
3245 define_arm_cp_regs(cpu
, cache_test_clean_cp_reginfo
);
3247 if (arm_feature(env
, ARM_FEATURE_CACHE_DIRTY_REG
)) {
3248 define_arm_cp_regs(cpu
, cache_dirty_status_cp_reginfo
);
3250 if (arm_feature(env
, ARM_FEATURE_CACHE_BLOCK_OPS
)) {
3251 define_arm_cp_regs(cpu
, cache_block_ops_cp_reginfo
);
3253 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
3254 define_arm_cp_regs(cpu
, omap_cp_reginfo
);
3256 if (arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
3257 define_arm_cp_regs(cpu
, strongarm_cp_reginfo
);
3259 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
3260 define_arm_cp_regs(cpu
, xscale_cp_reginfo
);
3262 if (arm_feature(env
, ARM_FEATURE_DUMMY_C15_REGS
)) {
3263 define_arm_cp_regs(cpu
, dummy_c15_cp_reginfo
);
3265 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
3266 define_arm_cp_regs(cpu
, lpae_cp_reginfo
);
3268 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
3269 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
3270 * be read-only (ie write causes UNDEF exception).
3273 ARMCPRegInfo id_pre_v8_midr_cp_reginfo
[] = {
3274 /* Pre-v8 MIDR space.
3275 * Note that the MIDR isn't a simple constant register because
3276 * of the TI925 behaviour where writes to another register can
3277 * cause the MIDR value to change.
3279 * Unimplemented registers in the c15 0 0 0 space default to
3280 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
3281 * and friends override accordingly.
3284 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= CP_ANY
,
3285 .access
= PL1_R
, .resetvalue
= cpu
->midr
,
3286 .writefn
= arm_cp_write_ignore
, .raw_writefn
= raw_write
,
3287 .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cpuid
),
3288 .type
= ARM_CP_OVERRIDE
},
3289 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
3291 .cp
= 15, .crn
= 0, .crm
= 3, .opc1
= 0, .opc2
= CP_ANY
,
3292 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3294 .cp
= 15, .crn
= 0, .crm
= 4, .opc1
= 0, .opc2
= CP_ANY
,
3295 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3297 .cp
= 15, .crn
= 0, .crm
= 5, .opc1
= 0, .opc2
= CP_ANY
,
3298 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3300 .cp
= 15, .crn
= 0, .crm
= 6, .opc1
= 0, .opc2
= CP_ANY
,
3301 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3303 .cp
= 15, .crn
= 0, .crm
= 7, .opc1
= 0, .opc2
= CP_ANY
,
3304 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3307 ARMCPRegInfo id_v8_midr_cp_reginfo
[] = {
3308 /* v8 MIDR -- the wildcard isn't necessary, and nor is the
3309 * variable-MIDR TI925 behaviour. Instead we have a single
3310 * (strictly speaking IMPDEF) alias of the MIDR, REVIDR.
3312 { .name
= "MIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
3313 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 0,
3314 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->midr
},
3315 { .name
= "REVIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
3316 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 6,
3317 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->midr
},
3320 ARMCPRegInfo id_cp_reginfo
[] = {
3321 /* These are common to v8 and pre-v8 */
3323 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 1,
3324 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
3325 { .name
= "CTR_EL0", .state
= ARM_CP_STATE_AA64
,
3326 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 0, .crm
= 0,
3327 .access
= PL0_R
, .accessfn
= ctr_el0_access
,
3328 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
3329 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
3331 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 2,
3332 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3334 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 3,
3335 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3338 ARMCPRegInfo crn0_wi_reginfo
= {
3339 .name
= "CRN0_WI", .cp
= 15, .crn
= 0, .crm
= CP_ANY
,
3340 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_W
,
3341 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
3343 if (arm_feature(env
, ARM_FEATURE_OMAPCP
) ||
3344 arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
3346 /* Register the blanket "writes ignored" value first to cover the
3347 * whole space. Then update the specific ID registers to allow write
3348 * access, so that they ignore writes rather than causing them to
3351 define_one_arm_cp_reg(cpu
, &crn0_wi_reginfo
);
3352 for (r
= id_pre_v8_midr_cp_reginfo
;
3353 r
->type
!= ARM_CP_SENTINEL
; r
++) {
3356 for (r
= id_cp_reginfo
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
3360 if (arm_feature(env
, ARM_FEATURE_V8
)) {
3361 define_arm_cp_regs(cpu
, id_v8_midr_cp_reginfo
);
3363 define_arm_cp_regs(cpu
, id_pre_v8_midr_cp_reginfo
);
3365 define_arm_cp_regs(cpu
, id_cp_reginfo
);
3368 if (arm_feature(env
, ARM_FEATURE_MPIDR
)) {
3369 define_arm_cp_regs(cpu
, mpidr_cp_reginfo
);
3372 if (arm_feature(env
, ARM_FEATURE_AUXCR
)) {
3373 ARMCPRegInfo auxcr
= {
3374 .name
= "ACTLR_EL1", .state
= ARM_CP_STATE_BOTH
,
3375 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 1,
3376 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
3377 .resetvalue
= cpu
->reset_auxcr
3379 define_one_arm_cp_reg(cpu
, &auxcr
);
3382 if (arm_feature(env
, ARM_FEATURE_CBAR
)) {
3383 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
3384 /* 32 bit view is [31:18] 0...0 [43:32]. */
3385 uint32_t cbar32
= (extract64(cpu
->reset_cbar
, 18, 14) << 18)
3386 | extract64(cpu
->reset_cbar
, 32, 12);
3387 ARMCPRegInfo cbar_reginfo
[] = {
3389 .type
= ARM_CP_CONST
,
3390 .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 4, .opc2
= 0,
3391 .access
= PL1_R
, .resetvalue
= cpu
->reset_cbar
},
3392 { .name
= "CBAR_EL1", .state
= ARM_CP_STATE_AA64
,
3393 .type
= ARM_CP_CONST
,
3394 .opc0
= 3, .opc1
= 1, .crn
= 15, .crm
= 3, .opc2
= 0,
3395 .access
= PL1_R
, .resetvalue
= cbar32
},
3398 /* We don't implement a r/w 64 bit CBAR currently */
3399 assert(arm_feature(env
, ARM_FEATURE_CBAR_RO
));
3400 define_arm_cp_regs(cpu
, cbar_reginfo
);
3402 ARMCPRegInfo cbar
= {
3404 .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 4, .opc2
= 0,
3405 .access
= PL1_R
|PL3_W
, .resetvalue
= cpu
->reset_cbar
,
3406 .fieldoffset
= offsetof(CPUARMState
,
3407 cp15
.c15_config_base_address
)
3409 if (arm_feature(env
, ARM_FEATURE_CBAR_RO
)) {
3410 cbar
.access
= PL1_R
;
3411 cbar
.fieldoffset
= 0;
3412 cbar
.type
= ARM_CP_CONST
;
3414 define_one_arm_cp_reg(cpu
, &cbar
);
3418 /* Generic registers whose values depend on the implementation */
3420 ARMCPRegInfo sctlr
= {
3421 .name
= "SCTLR", .state
= ARM_CP_STATE_BOTH
,
3422 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 0,
3424 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.sctlr_s
),
3425 offsetof(CPUARMState
, cp15
.sctlr_ns
) },
3426 .writefn
= sctlr_write
, .resetvalue
= cpu
->reset_sctlr
,
3427 .raw_writefn
= raw_write
,
3429 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
3430 /* Normally we would always end the TB on an SCTLR write, but Linux
3431 * arch/arm/mach-pxa/sleep.S expects two instructions following
3432 * an MMU enable to execute from cache. Imitate this behaviour.
3434 sctlr
.type
|= ARM_CP_SUPPRESS_TB_END
;
3436 define_one_arm_cp_reg(cpu
, &sctlr
);
3440 ARMCPU
*cpu_arm_init(const char *cpu_model
)
3442 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU
, cpu_model
));
3445 void arm_cpu_register_gdb_regs_for_features(ARMCPU
*cpu
)
3447 CPUState
*cs
= CPU(cpu
);
3448 CPUARMState
*env
= &cpu
->env
;
3450 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
3451 gdb_register_coprocessor(cs
, aarch64_fpu_gdb_get_reg
,
3452 aarch64_fpu_gdb_set_reg
,
3453 34, "aarch64-fpu.xml", 0);
3454 } else if (arm_feature(env
, ARM_FEATURE_NEON
)) {
3455 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
3456 51, "arm-neon.xml", 0);
3457 } else if (arm_feature(env
, ARM_FEATURE_VFP3
)) {
3458 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
3459 35, "arm-vfp3.xml", 0);
3460 } else if (arm_feature(env
, ARM_FEATURE_VFP
)) {
3461 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
3462 19, "arm-vfp.xml", 0);
3466 /* Sort alphabetically by type name, except for "any". */
3467 static gint
arm_cpu_list_compare(gconstpointer a
, gconstpointer b
)
3469 ObjectClass
*class_a
= (ObjectClass
*)a
;
3470 ObjectClass
*class_b
= (ObjectClass
*)b
;
3471 const char *name_a
, *name_b
;
3473 name_a
= object_class_get_name(class_a
);
3474 name_b
= object_class_get_name(class_b
);
3475 if (strcmp(name_a
, "any-" TYPE_ARM_CPU
) == 0) {
3477 } else if (strcmp(name_b
, "any-" TYPE_ARM_CPU
) == 0) {
3480 return strcmp(name_a
, name_b
);
3484 static void arm_cpu_list_entry(gpointer data
, gpointer user_data
)
3486 ObjectClass
*oc
= data
;
3487 CPUListState
*s
= user_data
;
3488 const char *typename
;
3491 typename
= object_class_get_name(oc
);
3492 name
= g_strndup(typename
, strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
3493 (*s
->cpu_fprintf
)(s
->file
, " %s\n",
3498 void arm_cpu_list(FILE *f
, fprintf_function cpu_fprintf
)
3502 .cpu_fprintf
= cpu_fprintf
,
3506 list
= object_class_get_list(TYPE_ARM_CPU
, false);
3507 list
= g_slist_sort(list
, arm_cpu_list_compare
);
3508 (*cpu_fprintf
)(f
, "Available CPUs:\n");
3509 g_slist_foreach(list
, arm_cpu_list_entry
, &s
);
3512 /* The 'host' CPU type is dynamically registered only if KVM is
3513 * enabled, so we have to special-case it here:
3515 (*cpu_fprintf
)(f
, " host (only available in KVM mode)\n");
3519 static void arm_cpu_add_definition(gpointer data
, gpointer user_data
)
3521 ObjectClass
*oc
= data
;
3522 CpuDefinitionInfoList
**cpu_list
= user_data
;
3523 CpuDefinitionInfoList
*entry
;
3524 CpuDefinitionInfo
*info
;
3525 const char *typename
;
3527 typename
= object_class_get_name(oc
);
3528 info
= g_malloc0(sizeof(*info
));
3529 info
->name
= g_strndup(typename
,
3530 strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
3532 entry
= g_malloc0(sizeof(*entry
));
3533 entry
->value
= info
;
3534 entry
->next
= *cpu_list
;
3538 CpuDefinitionInfoList
*arch_query_cpu_definitions(Error
**errp
)
3540 CpuDefinitionInfoList
*cpu_list
= NULL
;
3543 list
= object_class_get_list(TYPE_ARM_CPU
, false);
3544 g_slist_foreach(list
, arm_cpu_add_definition
, &cpu_list
);
3550 static void add_cpreg_to_hashtable(ARMCPU
*cpu
, const ARMCPRegInfo
*r
,
3551 void *opaque
, int state
, int secstate
,
3552 int crm
, int opc1
, int opc2
)
3554 /* Private utility function for define_one_arm_cp_reg_with_opaque():
3555 * add a single reginfo struct to the hash table.
3557 uint32_t *key
= g_new(uint32_t, 1);
3558 ARMCPRegInfo
*r2
= g_memdup(r
, sizeof(ARMCPRegInfo
));
3559 int is64
= (r
->type
& ARM_CP_64BIT
) ? 1 : 0;
3560 int ns
= (secstate
& ARM_CP_SECSTATE_NS
) ? 1 : 0;
3562 /* Reset the secure state to the specific incoming state. This is
3563 * necessary as the register may have been defined with both states.
3565 r2
->secure
= secstate
;
3567 if (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1]) {
3568 /* Register is banked (using both entries in array).
3569 * Overwriting fieldoffset as the array is only used to define
3570 * banked registers but later only fieldoffset is used.
3572 r2
->fieldoffset
= r
->bank_fieldoffsets
[ns
];
3575 if (state
== ARM_CP_STATE_AA32
) {
3576 if (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1]) {
3577 /* If the register is banked then we don't need to migrate or
3578 * reset the 32-bit instance in certain cases:
3580 * 1) If the register has both 32-bit and 64-bit instances then we
3581 * can count on the 64-bit instance taking care of the
3583 * 2) If ARMv8 is enabled then we can count on a 64-bit version
3584 * taking care of the secure bank. This requires that separate
3585 * 32 and 64-bit definitions are provided.
3587 if ((r
->state
== ARM_CP_STATE_BOTH
&& ns
) ||
3588 (arm_feature(&cpu
->env
, ARM_FEATURE_V8
) && !ns
)) {
3589 r2
->type
|= ARM_CP_ALIAS
;
3590 r2
->resetfn
= arm_cp_reset_ignore
;
3592 } else if ((secstate
!= r
->secure
) && !ns
) {
3593 /* The register is not banked so we only want to allow migration of
3594 * the non-secure instance.
3596 r2
->type
|= ARM_CP_ALIAS
;
3597 r2
->resetfn
= arm_cp_reset_ignore
;
3600 if (r
->state
== ARM_CP_STATE_BOTH
) {
3601 /* We assume it is a cp15 register if the .cp field is left unset.
3607 #ifdef HOST_WORDS_BIGENDIAN
3608 if (r2
->fieldoffset
) {
3609 r2
->fieldoffset
+= sizeof(uint32_t);
3614 if (state
== ARM_CP_STATE_AA64
) {
3615 /* To allow abbreviation of ARMCPRegInfo
3616 * definitions, we treat cp == 0 as equivalent to
3617 * the value for "standard guest-visible sysreg".
3618 * STATE_BOTH definitions are also always "standard
3619 * sysreg" in their AArch64 view (the .cp value may
3620 * be non-zero for the benefit of the AArch32 view).
3622 if (r
->cp
== 0 || r
->state
== ARM_CP_STATE_BOTH
) {
3623 r2
->cp
= CP_REG_ARM64_SYSREG_CP
;
3625 *key
= ENCODE_AA64_CP_REG(r2
->cp
, r2
->crn
, crm
,
3626 r2
->opc0
, opc1
, opc2
);
3628 *key
= ENCODE_CP_REG(r2
->cp
, is64
, ns
, r2
->crn
, crm
, opc1
, opc2
);
3631 r2
->opaque
= opaque
;
3633 /* reginfo passed to helpers is correct for the actual access,
3634 * and is never ARM_CP_STATE_BOTH:
3637 /* Make sure reginfo passed to helpers for wildcarded regs
3638 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
3643 /* By convention, for wildcarded registers only the first
3644 * entry is used for migration; the others are marked as
3645 * ALIAS so we don't try to transfer the register
3646 * multiple times. Special registers (ie NOP/WFI) are
3647 * never migratable and not even raw-accessible.
3649 if ((r
->type
& ARM_CP_SPECIAL
)) {
3650 r2
->type
|= ARM_CP_NO_RAW
;
3652 if (((r
->crm
== CP_ANY
) && crm
!= 0) ||
3653 ((r
->opc1
== CP_ANY
) && opc1
!= 0) ||
3654 ((r
->opc2
== CP_ANY
) && opc2
!= 0)) {
3655 r2
->type
|= ARM_CP_ALIAS
;
3658 /* Check that raw accesses are either forbidden or handled. Note that
3659 * we can't assert this earlier because the setup of fieldoffset for
3660 * banked registers has to be done first.
3662 if (!(r2
->type
& ARM_CP_NO_RAW
)) {
3663 assert(!raw_accessors_invalid(r2
));
3666 /* Overriding of an existing definition must be explicitly
3669 if (!(r
->type
& ARM_CP_OVERRIDE
)) {
3670 ARMCPRegInfo
*oldreg
;
3671 oldreg
= g_hash_table_lookup(cpu
->cp_regs
, key
);
3672 if (oldreg
&& !(oldreg
->type
& ARM_CP_OVERRIDE
)) {
3673 fprintf(stderr
, "Register redefined: cp=%d %d bit "
3674 "crn=%d crm=%d opc1=%d opc2=%d, "
3675 "was %s, now %s\n", r2
->cp
, 32 + 32 * is64
,
3676 r2
->crn
, r2
->crm
, r2
->opc1
, r2
->opc2
,
3677 oldreg
->name
, r2
->name
);
3678 g_assert_not_reached();
3681 g_hash_table_insert(cpu
->cp_regs
, key
, r2
);
3685 void define_one_arm_cp_reg_with_opaque(ARMCPU
*cpu
,
3686 const ARMCPRegInfo
*r
, void *opaque
)
3688 /* Define implementations of coprocessor registers.
3689 * We store these in a hashtable because typically
3690 * there are less than 150 registers in a space which
3691 * is 16*16*16*8*8 = 262144 in size.
3692 * Wildcarding is supported for the crm, opc1 and opc2 fields.
3693 * If a register is defined twice then the second definition is
3694 * used, so this can be used to define some generic registers and
3695 * then override them with implementation specific variations.
3696 * At least one of the original and the second definition should
3697 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
3698 * against accidental use.
3700 * The state field defines whether the register is to be
3701 * visible in the AArch32 or AArch64 execution state. If the
3702 * state is set to ARM_CP_STATE_BOTH then we synthesise a
3703 * reginfo structure for the AArch32 view, which sees the lower
3704 * 32 bits of the 64 bit register.
3706 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
3707 * be wildcarded. AArch64 registers are always considered to be 64
3708 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
3709 * the register, if any.
3711 int crm
, opc1
, opc2
, state
;
3712 int crmmin
= (r
->crm
== CP_ANY
) ? 0 : r
->crm
;
3713 int crmmax
= (r
->crm
== CP_ANY
) ? 15 : r
->crm
;
3714 int opc1min
= (r
->opc1
== CP_ANY
) ? 0 : r
->opc1
;
3715 int opc1max
= (r
->opc1
== CP_ANY
) ? 7 : r
->opc1
;
3716 int opc2min
= (r
->opc2
== CP_ANY
) ? 0 : r
->opc2
;
3717 int opc2max
= (r
->opc2
== CP_ANY
) ? 7 : r
->opc2
;
3718 /* 64 bit registers have only CRm and Opc1 fields */
3719 assert(!((r
->type
& ARM_CP_64BIT
) && (r
->opc2
|| r
->crn
)));
3720 /* op0 only exists in the AArch64 encodings */
3721 assert((r
->state
!= ARM_CP_STATE_AA32
) || (r
->opc0
== 0));
3722 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
3723 assert((r
->state
!= ARM_CP_STATE_AA64
) || !(r
->type
& ARM_CP_64BIT
));
3724 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
3725 * encodes a minimum access level for the register. We roll this
3726 * runtime check into our general permission check code, so check
3727 * here that the reginfo's specified permissions are strict enough
3728 * to encompass the generic architectural permission check.
3730 if (r
->state
!= ARM_CP_STATE_AA32
) {
3733 case 0: case 1: case 2:
3746 /* unallocated encoding, so not possible */
3754 /* min_EL EL1, secure mode only (we don't check the latter) */
3758 /* broken reginfo with out-of-range opc1 */
3762 /* assert our permissions are not too lax (stricter is fine) */
3763 assert((r
->access
& ~mask
) == 0);
3766 /* Check that the register definition has enough info to handle
3767 * reads and writes if they are permitted.
3769 if (!(r
->type
& (ARM_CP_SPECIAL
|ARM_CP_CONST
))) {
3770 if (r
->access
& PL3_R
) {
3771 assert((r
->fieldoffset
||
3772 (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1])) ||
3775 if (r
->access
& PL3_W
) {
3776 assert((r
->fieldoffset
||
3777 (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1])) ||
3781 /* Bad type field probably means missing sentinel at end of reg list */
3782 assert(cptype_valid(r
->type
));
3783 for (crm
= crmmin
; crm
<= crmmax
; crm
++) {
3784 for (opc1
= opc1min
; opc1
<= opc1max
; opc1
++) {
3785 for (opc2
= opc2min
; opc2
<= opc2max
; opc2
++) {
3786 for (state
= ARM_CP_STATE_AA32
;
3787 state
<= ARM_CP_STATE_AA64
; state
++) {
3788 if (r
->state
!= state
&& r
->state
!= ARM_CP_STATE_BOTH
) {
3791 if (state
== ARM_CP_STATE_AA32
) {
3792 /* Under AArch32 CP registers can be common
3793 * (same for secure and non-secure world) or banked.
3795 switch (r
->secure
) {
3796 case ARM_CP_SECSTATE_S
:
3797 case ARM_CP_SECSTATE_NS
:
3798 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
3799 r
->secure
, crm
, opc1
, opc2
);
3802 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
3805 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
3811 /* AArch64 registers get mapped to non-secure instance
3813 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
3823 void define_arm_cp_regs_with_opaque(ARMCPU
*cpu
,
3824 const ARMCPRegInfo
*regs
, void *opaque
)
3826 /* Define a whole list of registers */
3827 const ARMCPRegInfo
*r
;
3828 for (r
= regs
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
3829 define_one_arm_cp_reg_with_opaque(cpu
, r
, opaque
);
3833 const ARMCPRegInfo
*get_arm_cp_reginfo(GHashTable
*cpregs
, uint32_t encoded_cp
)
3835 return g_hash_table_lookup(cpregs
, &encoded_cp
);
3838 void arm_cp_write_ignore(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3841 /* Helper coprocessor write function for write-ignore registers */
3844 uint64_t arm_cp_read_zero(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3846 /* Helper coprocessor write function for read-as-zero registers */
3850 void arm_cp_reset_ignore(CPUARMState
*env
, const ARMCPRegInfo
*opaque
)
3852 /* Helper coprocessor reset function for do-nothing-on-reset registers */
3855 static int bad_mode_switch(CPUARMState
*env
, int mode
)
3857 /* Return true if it is not valid for us to switch to
3858 * this CPU mode (ie all the UNPREDICTABLE cases in
3859 * the ARM ARM CPSRWriteByInstr pseudocode).
3862 case ARM_CPU_MODE_USR
:
3863 case ARM_CPU_MODE_SYS
:
3864 case ARM_CPU_MODE_SVC
:
3865 case ARM_CPU_MODE_ABT
:
3866 case ARM_CPU_MODE_UND
:
3867 case ARM_CPU_MODE_IRQ
:
3868 case ARM_CPU_MODE_FIQ
:
3870 case ARM_CPU_MODE_MON
:
3871 return !arm_is_secure(env
);
3877 uint32_t cpsr_read(CPUARMState
*env
)
3880 ZF
= (env
->ZF
== 0);
3881 return env
->uncached_cpsr
| (env
->NF
& 0x80000000) | (ZF
<< 30) |
3882 (env
->CF
<< 29) | ((env
->VF
& 0x80000000) >> 3) | (env
->QF
<< 27)
3883 | (env
->thumb
<< 5) | ((env
->condexec_bits
& 3) << 25)
3884 | ((env
->condexec_bits
& 0xfc) << 8)
3885 | (env
->GE
<< 16) | (env
->daif
& CPSR_AIF
);
3888 void cpsr_write(CPUARMState
*env
, uint32_t val
, uint32_t mask
)
3890 uint32_t changed_daif
;
3892 if (mask
& CPSR_NZCV
) {
3893 env
->ZF
= (~val
) & CPSR_Z
;
3895 env
->CF
= (val
>> 29) & 1;
3896 env
->VF
= (val
<< 3) & 0x80000000;
3899 env
->QF
= ((val
& CPSR_Q
) != 0);
3901 env
->thumb
= ((val
& CPSR_T
) != 0);
3902 if (mask
& CPSR_IT_0_1
) {
3903 env
->condexec_bits
&= ~3;
3904 env
->condexec_bits
|= (val
>> 25) & 3;
3906 if (mask
& CPSR_IT_2_7
) {
3907 env
->condexec_bits
&= 3;
3908 env
->condexec_bits
|= (val
>> 8) & 0xfc;
3910 if (mask
& CPSR_GE
) {
3911 env
->GE
= (val
>> 16) & 0xf;
3914 /* In a V7 implementation that includes the security extensions but does
3915 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
3916 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
3917 * bits respectively.
3919 * In a V8 implementation, it is permitted for privileged software to
3920 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
3922 if (!arm_feature(env
, ARM_FEATURE_V8
) &&
3923 arm_feature(env
, ARM_FEATURE_EL3
) &&
3924 !arm_feature(env
, ARM_FEATURE_EL2
) &&
3925 !arm_is_secure(env
)) {
3927 changed_daif
= (env
->daif
^ val
) & mask
;
3929 if (changed_daif
& CPSR_A
) {
3930 /* Check to see if we are allowed to change the masking of async
3931 * abort exceptions from a non-secure state.
3933 if (!(env
->cp15
.scr_el3
& SCR_AW
)) {
3934 qemu_log_mask(LOG_GUEST_ERROR
,
3935 "Ignoring attempt to switch CPSR_A flag from "
3936 "non-secure world with SCR.AW bit clear\n");
3941 if (changed_daif
& CPSR_F
) {
3942 /* Check to see if we are allowed to change the masking of FIQ
3943 * exceptions from a non-secure state.
3945 if (!(env
->cp15
.scr_el3
& SCR_FW
)) {
3946 qemu_log_mask(LOG_GUEST_ERROR
,
3947 "Ignoring attempt to switch CPSR_F flag from "
3948 "non-secure world with SCR.FW bit clear\n");
3952 /* Check whether non-maskable FIQ (NMFI) support is enabled.
3953 * If this bit is set software is not allowed to mask
3954 * FIQs, but is allowed to set CPSR_F to 0.
3956 if ((A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_NMFI
) &&
3958 qemu_log_mask(LOG_GUEST_ERROR
,
3959 "Ignoring attempt to enable CPSR_F flag "
3960 "(non-maskable FIQ [NMFI] support enabled)\n");
3966 env
->daif
&= ~(CPSR_AIF
& mask
);
3967 env
->daif
|= val
& CPSR_AIF
& mask
;
3969 if ((env
->uncached_cpsr
^ val
) & mask
& CPSR_M
) {
3970 if (bad_mode_switch(env
, val
& CPSR_M
)) {
3971 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
3972 * We choose to ignore the attempt and leave the CPSR M field
3977 switch_mode(env
, val
& CPSR_M
);
3980 mask
&= ~CACHED_CPSR_BITS
;
3981 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~mask
) | (val
& mask
);
3984 /* Sign/zero extend */
3985 uint32_t HELPER(sxtb16
)(uint32_t x
)
3988 res
= (uint16_t)(int8_t)x
;
3989 res
|= (uint32_t)(int8_t)(x
>> 16) << 16;
3993 uint32_t HELPER(uxtb16
)(uint32_t x
)
3996 res
= (uint16_t)(uint8_t)x
;
3997 res
|= (uint32_t)(uint8_t)(x
>> 16) << 16;
4001 uint32_t HELPER(clz
)(uint32_t x
)
4006 int32_t HELPER(sdiv
)(int32_t num
, int32_t den
)
4010 if (num
== INT_MIN
&& den
== -1)
4015 uint32_t HELPER(udiv
)(uint32_t num
, uint32_t den
)
4022 uint32_t HELPER(rbit
)(uint32_t x
)
4024 x
= ((x
& 0xff000000) >> 24)
4025 | ((x
& 0x00ff0000) >> 8)
4026 | ((x
& 0x0000ff00) << 8)
4027 | ((x
& 0x000000ff) << 24);
4028 x
= ((x
& 0xf0f0f0f0) >> 4)
4029 | ((x
& 0x0f0f0f0f) << 4);
4030 x
= ((x
& 0x88888888) >> 3)
4031 | ((x
& 0x44444444) >> 1)
4032 | ((x
& 0x22222222) << 1)
4033 | ((x
& 0x11111111) << 3);
4037 #if defined(CONFIG_USER_ONLY)
4039 int arm_cpu_handle_mmu_fault(CPUState
*cs
, vaddr address
, int rw
,
4042 ARMCPU
*cpu
= ARM_CPU(cs
);
4043 CPUARMState
*env
= &cpu
->env
;
4045 env
->exception
.vaddress
= address
;
4047 cs
->exception_index
= EXCP_PREFETCH_ABORT
;
4049 cs
->exception_index
= EXCP_DATA_ABORT
;
4054 /* These should probably raise undefined insn exceptions. */
4055 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
4057 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4059 cpu_abort(CPU(cpu
), "v7m_msr %d\n", reg
);
4062 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
4064 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4066 cpu_abort(CPU(cpu
), "v7m_mrs %d\n", reg
);
4070 void switch_mode(CPUARMState
*env
, int mode
)
4072 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4074 if (mode
!= ARM_CPU_MODE_USR
) {
4075 cpu_abort(CPU(cpu
), "Tried to switch out of user mode\n");
4079 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
4081 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4083 cpu_abort(CPU(cpu
), "banked r13 write\n");
4086 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
4088 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4090 cpu_abort(CPU(cpu
), "banked r13 read\n");
4094 unsigned int arm_excp_target_el(CPUState
*cs
, unsigned int excp_idx
)
4099 void aarch64_sync_64_to_32(CPUARMState
*env
)
4101 g_assert_not_reached();
4106 /* Map CPU modes onto saved register banks. */
4107 int bank_number(int mode
)
4110 case ARM_CPU_MODE_USR
:
4111 case ARM_CPU_MODE_SYS
:
4113 case ARM_CPU_MODE_SVC
:
4115 case ARM_CPU_MODE_ABT
:
4117 case ARM_CPU_MODE_UND
:
4119 case ARM_CPU_MODE_IRQ
:
4121 case ARM_CPU_MODE_FIQ
:
4123 case ARM_CPU_MODE_HYP
:
4125 case ARM_CPU_MODE_MON
:
4128 hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode
);
4131 void switch_mode(CPUARMState
*env
, int mode
)
4136 old_mode
= env
->uncached_cpsr
& CPSR_M
;
4137 if (mode
== old_mode
)
4140 if (old_mode
== ARM_CPU_MODE_FIQ
) {
4141 memcpy (env
->fiq_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
4142 memcpy (env
->regs
+ 8, env
->usr_regs
, 5 * sizeof(uint32_t));
4143 } else if (mode
== ARM_CPU_MODE_FIQ
) {
4144 memcpy (env
->usr_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
4145 memcpy (env
->regs
+ 8, env
->fiq_regs
, 5 * sizeof(uint32_t));
4148 i
= bank_number(old_mode
);
4149 env
->banked_r13
[i
] = env
->regs
[13];
4150 env
->banked_r14
[i
] = env
->regs
[14];
4151 env
->banked_spsr
[i
] = env
->spsr
;
4153 i
= bank_number(mode
);
4154 env
->regs
[13] = env
->banked_r13
[i
];
4155 env
->regs
[14] = env
->banked_r14
[i
];
4156 env
->spsr
= env
->banked_spsr
[i
];
4159 /* Physical Interrupt Target EL Lookup Table
4161 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
4163 * The below multi-dimensional table is used for looking up the target
4164 * exception level given numerous condition criteria. Specifically, the
4165 * target EL is based on SCR and HCR routing controls as well as the
4166 * currently executing EL and secure state.
4169 * target_el_table[2][2][2][2][2][4]
4170 * | | | | | +--- Current EL
4171 * | | | | +------ Non-secure(0)/Secure(1)
4172 * | | | +--------- HCR mask override
4173 * | | +------------ SCR exec state control
4174 * | +--------------- SCR mask override
4175 * +------------------ 32-bit(0)/64-bit(1) EL3
4177 * The table values are as such:
4181 * The ARM ARM target EL table includes entries indicating that an "exception
4182 * is not taken". The two cases where this is applicable are:
4183 * 1) An exception is taken from EL3 but the SCR does not have the exception
4185 * 2) An exception is taken from EL2 but the HCR does not have the exception
4187 * In these two cases, the below table contain a target of EL1. This value is
4188 * returned as it is expected that the consumer of the table data will check
4189 * for "target EL >= current EL" to ensure the exception is not taken.
4193 * BIT IRQ IMO Non-secure Secure
4194 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
4196 const int8_t target_el_table
[2][2][2][2][2][4] = {
4197 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
4198 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
4199 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
4200 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
4201 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
4202 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
4203 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
4204 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
4205 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
4206 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
4207 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
4208 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
4209 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
4210 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
4211 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
4212 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
4216 * Determine the target EL for physical exceptions
4218 static inline uint32_t arm_phys_excp_target_el(CPUState
*cs
, uint32_t excp_idx
,
4219 uint32_t cur_el
, bool secure
)
4221 CPUARMState
*env
= cs
->env_ptr
;
4222 int rw
= ((env
->cp15
.scr_el3
& SCR_RW
) == SCR_RW
);
4226 int is64
= arm_el_is_aa64(env
, 3);
4230 scr
= ((env
->cp15
.scr_el3
& SCR_IRQ
) == SCR_IRQ
);
4231 hcr
= ((env
->cp15
.hcr_el2
& HCR_IMO
) == HCR_IMO
);
4234 scr
= ((env
->cp15
.scr_el3
& SCR_FIQ
) == SCR_FIQ
);
4235 hcr
= ((env
->cp15
.hcr_el2
& HCR_FMO
) == HCR_FMO
);
4238 scr
= ((env
->cp15
.scr_el3
& SCR_EA
) == SCR_EA
);
4239 hcr
= ((env
->cp15
.hcr_el2
& HCR_AMO
) == HCR_AMO
);
4243 /* If HCR.TGE is set then HCR is treated as being 1 */
4244 hcr
|= ((env
->cp15
.hcr_el2
& HCR_TGE
) == HCR_TGE
);
4246 /* Perform a table-lookup for the target EL given the current state */
4247 target_el
= target_el_table
[is64
][scr
][rw
][hcr
][secure
][cur_el
];
4249 assert(target_el
> 0);
4255 * Determine the target EL for a given exception type.
4257 unsigned int arm_excp_target_el(CPUState
*cs
, unsigned int excp_idx
)
4259 ARMCPU
*cpu
= ARM_CPU(cs
);
4260 CPUARMState
*env
= &cpu
->env
;
4261 unsigned int cur_el
= arm_current_el(env
);
4262 unsigned int target_el
;
4263 bool secure
= arm_is_secure(env
);
4275 target_el
= arm_phys_excp_target_el(cs
, excp_idx
, cur_el
, secure
);
4282 target_el
= MAX(cur_el
, 1);
4288 static void v7m_push(CPUARMState
*env
, uint32_t val
)
4290 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
4293 stl_phys(cs
->as
, env
->regs
[13], val
);
4296 static uint32_t v7m_pop(CPUARMState
*env
)
4298 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
4301 val
= ldl_phys(cs
->as
, env
->regs
[13]);
4306 /* Switch to V7M main or process stack pointer. */
4307 static void switch_v7m_sp(CPUARMState
*env
, int process
)
4310 if (env
->v7m
.current_sp
!= process
) {
4311 tmp
= env
->v7m
.other_sp
;
4312 env
->v7m
.other_sp
= env
->regs
[13];
4313 env
->regs
[13] = tmp
;
4314 env
->v7m
.current_sp
= process
;
4318 static void do_v7m_exception_exit(CPUARMState
*env
)
4323 type
= env
->regs
[15];
4324 if (env
->v7m
.exception
!= 0)
4325 armv7m_nvic_complete_irq(env
->nvic
, env
->v7m
.exception
);
4327 /* Switch to the target stack. */
4328 switch_v7m_sp(env
, (type
& 4) != 0);
4329 /* Pop registers. */
4330 env
->regs
[0] = v7m_pop(env
);
4331 env
->regs
[1] = v7m_pop(env
);
4332 env
->regs
[2] = v7m_pop(env
);
4333 env
->regs
[3] = v7m_pop(env
);
4334 env
->regs
[12] = v7m_pop(env
);
4335 env
->regs
[14] = v7m_pop(env
);
4336 env
->regs
[15] = v7m_pop(env
);
4337 xpsr
= v7m_pop(env
);
4338 xpsr_write(env
, xpsr
, 0xfffffdff);
4339 /* Undo stack alignment. */
4342 /* ??? The exception return type specifies Thread/Handler mode. However
4343 this is also implied by the xPSR value. Not sure what to do
4344 if there is a mismatch. */
4345 /* ??? Likewise for mismatches between the CONTROL register and the stack
4349 void arm_v7m_cpu_do_interrupt(CPUState
*cs
)
4351 ARMCPU
*cpu
= ARM_CPU(cs
);
4352 CPUARMState
*env
= &cpu
->env
;
4353 uint32_t xpsr
= xpsr_read(env
);
4357 arm_log_exception(cs
->exception_index
);
4360 if (env
->v7m
.current_sp
)
4362 if (env
->v7m
.exception
== 0)
4365 /* For exceptions we just mark as pending on the NVIC, and let that
4367 /* TODO: Need to escalate if the current priority is higher than the
4368 one we're raising. */
4369 switch (cs
->exception_index
) {
4371 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
);
4374 /* The PC already points to the next instruction. */
4375 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SVC
);
4377 case EXCP_PREFETCH_ABORT
:
4378 case EXCP_DATA_ABORT
:
4379 /* TODO: if we implemented the MPU registers, this is where we
4380 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
4382 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_MEM
);
4385 if (semihosting_enabled
) {
4387 nr
= arm_lduw_code(env
, env
->regs
[15], env
->bswap_code
) & 0xff;
4390 env
->regs
[0] = do_arm_semihosting(env
);
4391 qemu_log_mask(CPU_LOG_INT
, "...handled as semihosting call\n");
4395 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_DEBUG
);
4398 env
->v7m
.exception
= armv7m_nvic_acknowledge_irq(env
->nvic
);
4400 case EXCP_EXCEPTION_EXIT
:
4401 do_v7m_exception_exit(env
);
4404 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
4405 return; /* Never happens. Keep compiler happy. */
4408 /* Align stack pointer. */
4409 /* ??? Should only do this if Configuration Control Register
4410 STACKALIGN bit is set. */
4411 if (env
->regs
[13] & 4) {
4415 /* Switch to the handler mode. */
4416 v7m_push(env
, xpsr
);
4417 v7m_push(env
, env
->regs
[15]);
4418 v7m_push(env
, env
->regs
[14]);
4419 v7m_push(env
, env
->regs
[12]);
4420 v7m_push(env
, env
->regs
[3]);
4421 v7m_push(env
, env
->regs
[2]);
4422 v7m_push(env
, env
->regs
[1]);
4423 v7m_push(env
, env
->regs
[0]);
4424 switch_v7m_sp(env
, 0);
4426 env
->condexec_bits
= 0;
4428 addr
= ldl_phys(cs
->as
, env
->v7m
.vecbase
+ env
->v7m
.exception
* 4);
4429 env
->regs
[15] = addr
& 0xfffffffe;
4430 env
->thumb
= addr
& 1;
4433 /* Function used to synchronize QEMU's AArch64 register set with AArch32
4434 * register set. This is necessary when switching between AArch32 and AArch64
4437 void aarch64_sync_32_to_64(CPUARMState
*env
)
4440 uint32_t mode
= env
->uncached_cpsr
& CPSR_M
;
4442 /* We can blanket copy R[0:7] to X[0:7] */
4443 for (i
= 0; i
< 8; i
++) {
4444 env
->xregs
[i
] = env
->regs
[i
];
4447 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
4448 * Otherwise, they come from the banked user regs.
4450 if (mode
== ARM_CPU_MODE_FIQ
) {
4451 for (i
= 8; i
< 13; i
++) {
4452 env
->xregs
[i
] = env
->usr_regs
[i
- 8];
4455 for (i
= 8; i
< 13; i
++) {
4456 env
->xregs
[i
] = env
->regs
[i
];
4460 /* Registers x13-x23 are the various mode SP and FP registers. Registers
4461 * r13 and r14 are only copied if we are in that mode, otherwise we copy
4462 * from the mode banked register.
4464 if (mode
== ARM_CPU_MODE_USR
|| mode
== ARM_CPU_MODE_SYS
) {
4465 env
->xregs
[13] = env
->regs
[13];
4466 env
->xregs
[14] = env
->regs
[14];
4468 env
->xregs
[13] = env
->banked_r13
[bank_number(ARM_CPU_MODE_USR
)];
4469 /* HYP is an exception in that it is copied from r14 */
4470 if (mode
== ARM_CPU_MODE_HYP
) {
4471 env
->xregs
[14] = env
->regs
[14];
4473 env
->xregs
[14] = env
->banked_r14
[bank_number(ARM_CPU_MODE_USR
)];
4477 if (mode
== ARM_CPU_MODE_HYP
) {
4478 env
->xregs
[15] = env
->regs
[13];
4480 env
->xregs
[15] = env
->banked_r13
[bank_number(ARM_CPU_MODE_HYP
)];
4483 if (mode
== ARM_CPU_MODE_IRQ
) {
4484 env
->xregs
[16] = env
->regs
[13];
4485 env
->xregs
[17] = env
->regs
[14];
4487 env
->xregs
[16] = env
->banked_r13
[bank_number(ARM_CPU_MODE_IRQ
)];
4488 env
->xregs
[17] = env
->banked_r14
[bank_number(ARM_CPU_MODE_IRQ
)];
4491 if (mode
== ARM_CPU_MODE_SVC
) {
4492 env
->xregs
[18] = env
->regs
[13];
4493 env
->xregs
[19] = env
->regs
[14];
4495 env
->xregs
[18] = env
->banked_r13
[bank_number(ARM_CPU_MODE_SVC
)];
4496 env
->xregs
[19] = env
->banked_r14
[bank_number(ARM_CPU_MODE_SVC
)];
4499 if (mode
== ARM_CPU_MODE_ABT
) {
4500 env
->xregs
[20] = env
->regs
[13];
4501 env
->xregs
[21] = env
->regs
[14];
4503 env
->xregs
[20] = env
->banked_r13
[bank_number(ARM_CPU_MODE_ABT
)];
4504 env
->xregs
[21] = env
->banked_r14
[bank_number(ARM_CPU_MODE_ABT
)];
4507 if (mode
== ARM_CPU_MODE_UND
) {
4508 env
->xregs
[22] = env
->regs
[13];
4509 env
->xregs
[23] = env
->regs
[14];
4511 env
->xregs
[22] = env
->banked_r13
[bank_number(ARM_CPU_MODE_UND
)];
4512 env
->xregs
[23] = env
->banked_r14
[bank_number(ARM_CPU_MODE_UND
)];
4515 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
4516 * mode, then we can copy from r8-r14. Otherwise, we copy from the
4517 * FIQ bank for r8-r14.
4519 if (mode
== ARM_CPU_MODE_FIQ
) {
4520 for (i
= 24; i
< 31; i
++) {
4521 env
->xregs
[i
] = env
->regs
[i
- 16]; /* X[24:30] <- R[8:14] */
4524 for (i
= 24; i
< 29; i
++) {
4525 env
->xregs
[i
] = env
->fiq_regs
[i
- 24];
4527 env
->xregs
[29] = env
->banked_r13
[bank_number(ARM_CPU_MODE_FIQ
)];
4528 env
->xregs
[30] = env
->banked_r14
[bank_number(ARM_CPU_MODE_FIQ
)];
4531 env
->pc
= env
->regs
[15];
4534 /* Function used to synchronize QEMU's AArch32 register set with AArch64
4535 * register set. This is necessary when switching between AArch32 and AArch64
4538 void aarch64_sync_64_to_32(CPUARMState
*env
)
4541 uint32_t mode
= env
->uncached_cpsr
& CPSR_M
;
4543 /* We can blanket copy X[0:7] to R[0:7] */
4544 for (i
= 0; i
< 8; i
++) {
4545 env
->regs
[i
] = env
->xregs
[i
];
4548 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
4549 * Otherwise, we copy x8-x12 into the banked user regs.
4551 if (mode
== ARM_CPU_MODE_FIQ
) {
4552 for (i
= 8; i
< 13; i
++) {
4553 env
->usr_regs
[i
- 8] = env
->xregs
[i
];
4556 for (i
= 8; i
< 13; i
++) {
4557 env
->regs
[i
] = env
->xregs
[i
];
4561 /* Registers r13 & r14 depend on the current mode.
4562 * If we are in a given mode, we copy the corresponding x registers to r13
4563 * and r14. Otherwise, we copy the x register to the banked r13 and r14
4566 if (mode
== ARM_CPU_MODE_USR
|| mode
== ARM_CPU_MODE_SYS
) {
4567 env
->regs
[13] = env
->xregs
[13];
4568 env
->regs
[14] = env
->xregs
[14];
4570 env
->banked_r13
[bank_number(ARM_CPU_MODE_USR
)] = env
->xregs
[13];
4572 /* HYP is an exception in that it does not have its own banked r14 but
4573 * shares the USR r14
4575 if (mode
== ARM_CPU_MODE_HYP
) {
4576 env
->regs
[14] = env
->xregs
[14];
4578 env
->banked_r14
[bank_number(ARM_CPU_MODE_USR
)] = env
->xregs
[14];
4582 if (mode
== ARM_CPU_MODE_HYP
) {
4583 env
->regs
[13] = env
->xregs
[15];
4585 env
->banked_r13
[bank_number(ARM_CPU_MODE_HYP
)] = env
->xregs
[15];
4588 if (mode
== ARM_CPU_MODE_IRQ
) {
4589 env
->regs
[13] = env
->xregs
[16];
4590 env
->regs
[14] = env
->xregs
[17];
4592 env
->banked_r13
[bank_number(ARM_CPU_MODE_IRQ
)] = env
->xregs
[16];
4593 env
->banked_r14
[bank_number(ARM_CPU_MODE_IRQ
)] = env
->xregs
[17];
4596 if (mode
== ARM_CPU_MODE_SVC
) {
4597 env
->regs
[13] = env
->xregs
[18];
4598 env
->regs
[14] = env
->xregs
[19];
4600 env
->banked_r13
[bank_number(ARM_CPU_MODE_SVC
)] = env
->xregs
[18];
4601 env
->banked_r14
[bank_number(ARM_CPU_MODE_SVC
)] = env
->xregs
[19];
4604 if (mode
== ARM_CPU_MODE_ABT
) {
4605 env
->regs
[13] = env
->xregs
[20];
4606 env
->regs
[14] = env
->xregs
[21];
4608 env
->banked_r13
[bank_number(ARM_CPU_MODE_ABT
)] = env
->xregs
[20];
4609 env
->banked_r14
[bank_number(ARM_CPU_MODE_ABT
)] = env
->xregs
[21];
4612 if (mode
== ARM_CPU_MODE_UND
) {
4613 env
->regs
[13] = env
->xregs
[22];
4614 env
->regs
[14] = env
->xregs
[23];
4616 env
->banked_r13
[bank_number(ARM_CPU_MODE_UND
)] = env
->xregs
[22];
4617 env
->banked_r14
[bank_number(ARM_CPU_MODE_UND
)] = env
->xregs
[23];
4620 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
4621 * mode, then we can copy to r8-r14. Otherwise, we copy to the
4622 * FIQ bank for r8-r14.
4624 if (mode
== ARM_CPU_MODE_FIQ
) {
4625 for (i
= 24; i
< 31; i
++) {
4626 env
->regs
[i
- 16] = env
->xregs
[i
]; /* X[24:30] -> R[8:14] */
4629 for (i
= 24; i
< 29; i
++) {
4630 env
->fiq_regs
[i
- 24] = env
->xregs
[i
];
4632 env
->banked_r13
[bank_number(ARM_CPU_MODE_FIQ
)] = env
->xregs
[29];
4633 env
->banked_r14
[bank_number(ARM_CPU_MODE_FIQ
)] = env
->xregs
[30];
4636 env
->regs
[15] = env
->pc
;
4639 /* Handle a CPU exception. */
4640 void arm_cpu_do_interrupt(CPUState
*cs
)
4642 ARMCPU
*cpu
= ARM_CPU(cs
);
4643 CPUARMState
*env
= &cpu
->env
;
4652 arm_log_exception(cs
->exception_index
);
4654 if (arm_is_psci_call(cpu
, cs
->exception_index
)) {
4655 arm_handle_psci_call(cpu
);
4656 qemu_log_mask(CPU_LOG_INT
, "...handled as PSCI call\n");
4660 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
4661 switch (env
->exception
.syndrome
>> ARM_EL_EC_SHIFT
) {
4663 case EC_BREAKPOINT_SAME_EL
:
4667 case EC_WATCHPOINT_SAME_EL
:
4673 case EC_VECTORCATCH
:
4682 env
->cp15
.mdscr_el1
= deposit64(env
->cp15
.mdscr_el1
, 2, 4, moe
);
4685 /* TODO: Vectored interrupt controller. */
4686 switch (cs
->exception_index
) {
4688 new_mode
= ARM_CPU_MODE_UND
;
4697 if (semihosting_enabled
) {
4698 /* Check for semihosting interrupt. */
4700 mask
= arm_lduw_code(env
, env
->regs
[15] - 2, env
->bswap_code
)
4703 mask
= arm_ldl_code(env
, env
->regs
[15] - 4, env
->bswap_code
)
4706 /* Only intercept calls from privileged modes, to provide some
4707 semblance of security. */
4708 if (((mask
== 0x123456 && !env
->thumb
)
4709 || (mask
== 0xab && env
->thumb
))
4710 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
4711 env
->regs
[0] = do_arm_semihosting(env
);
4712 qemu_log_mask(CPU_LOG_INT
, "...handled as semihosting call\n");
4716 new_mode
= ARM_CPU_MODE_SVC
;
4719 /* The PC already points to the next instruction. */
4723 /* See if this is a semihosting syscall. */
4724 if (env
->thumb
&& semihosting_enabled
) {
4725 mask
= arm_lduw_code(env
, env
->regs
[15], env
->bswap_code
) & 0xff;
4727 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
4729 env
->regs
[0] = do_arm_semihosting(env
);
4730 qemu_log_mask(CPU_LOG_INT
, "...handled as semihosting call\n");
4734 env
->exception
.fsr
= 2;
4735 /* Fall through to prefetch abort. */
4736 case EXCP_PREFETCH_ABORT
:
4737 A32_BANKED_CURRENT_REG_SET(env
, ifsr
, env
->exception
.fsr
);
4738 A32_BANKED_CURRENT_REG_SET(env
, ifar
, env
->exception
.vaddress
);
4739 qemu_log_mask(CPU_LOG_INT
, "...with IFSR 0x%x IFAR 0x%x\n",
4740 env
->exception
.fsr
, (uint32_t)env
->exception
.vaddress
);
4741 new_mode
= ARM_CPU_MODE_ABT
;
4743 mask
= CPSR_A
| CPSR_I
;
4746 case EXCP_DATA_ABORT
:
4747 A32_BANKED_CURRENT_REG_SET(env
, dfsr
, env
->exception
.fsr
);
4748 A32_BANKED_CURRENT_REG_SET(env
, dfar
, env
->exception
.vaddress
);
4749 qemu_log_mask(CPU_LOG_INT
, "...with DFSR 0x%x DFAR 0x%x\n",
4751 (uint32_t)env
->exception
.vaddress
);
4752 new_mode
= ARM_CPU_MODE_ABT
;
4754 mask
= CPSR_A
| CPSR_I
;
4758 new_mode
= ARM_CPU_MODE_IRQ
;
4760 /* Disable IRQ and imprecise data aborts. */
4761 mask
= CPSR_A
| CPSR_I
;
4763 if (env
->cp15
.scr_el3
& SCR_IRQ
) {
4764 /* IRQ routed to monitor mode */
4765 new_mode
= ARM_CPU_MODE_MON
;
4770 new_mode
= ARM_CPU_MODE_FIQ
;
4772 /* Disable FIQ, IRQ and imprecise data aborts. */
4773 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
4774 if (env
->cp15
.scr_el3
& SCR_FIQ
) {
4775 /* FIQ routed to monitor mode */
4776 new_mode
= ARM_CPU_MODE_MON
;
4781 new_mode
= ARM_CPU_MODE_MON
;
4783 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
4787 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
4788 return; /* Never happens. Keep compiler happy. */
4791 if (new_mode
== ARM_CPU_MODE_MON
) {
4792 addr
+= env
->cp15
.mvbar
;
4793 } else if (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_V
) {
4794 /* High vectors. When enabled, base address cannot be remapped. */
4797 /* ARM v7 architectures provide a vector base address register to remap
4798 * the interrupt vector table.
4799 * This register is only followed in non-monitor mode, and is banked.
4800 * Note: only bits 31:5 are valid.
4802 addr
+= A32_BANKED_CURRENT_REG_GET(env
, vbar
);
4805 if ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_MON
) {
4806 env
->cp15
.scr_el3
&= ~SCR_NS
;
4809 switch_mode (env
, new_mode
);
4810 /* For exceptions taken to AArch32 we must clear the SS bit in both
4811 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
4813 env
->uncached_cpsr
&= ~PSTATE_SS
;
4814 env
->spsr
= cpsr_read(env
);
4815 /* Clear IT bits. */
4816 env
->condexec_bits
= 0;
4817 /* Switch to the new mode, and to the correct instruction set. */
4818 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~CPSR_M
) | new_mode
;
4820 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
4821 * and we should just guard the thumb mode on V4 */
4822 if (arm_feature(env
, ARM_FEATURE_V4T
)) {
4823 env
->thumb
= (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_TE
) != 0;
4825 env
->regs
[14] = env
->regs
[15] + offset
;
4826 env
->regs
[15] = addr
;
4827 cs
->interrupt_request
|= CPU_INTERRUPT_EXITTB
;
4831 /* Return the exception level which controls this address translation regime */
4832 static inline uint32_t regime_el(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
4835 case ARMMMUIdx_S2NS
:
4836 case ARMMMUIdx_S1E2
:
4838 case ARMMMUIdx_S1E3
:
4840 case ARMMMUIdx_S1SE0
:
4841 return arm_el_is_aa64(env
, 3) ? 1 : 3;
4842 case ARMMMUIdx_S1SE1
:
4843 case ARMMMUIdx_S1NSE0
:
4844 case ARMMMUIdx_S1NSE1
:
4847 g_assert_not_reached();
4851 /* Return the SCTLR value which controls this address translation regime */
4852 static inline uint32_t regime_sctlr(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
4854 return env
->cp15
.sctlr_el
[regime_el(env
, mmu_idx
)];
4857 /* Return true if the specified stage of address translation is disabled */
4858 static inline bool regime_translation_disabled(CPUARMState
*env
,
4861 if (mmu_idx
== ARMMMUIdx_S2NS
) {
4862 return (env
->cp15
.hcr_el2
& HCR_VM
) == 0;
4864 return (regime_sctlr(env
, mmu_idx
) & SCTLR_M
) == 0;
4867 /* Return the TCR controlling this translation regime */
4868 static inline TCR
*regime_tcr(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
4870 if (mmu_idx
== ARMMMUIdx_S2NS
) {
4871 /* TODO: return VTCR_EL2 */
4872 g_assert_not_reached();
4874 return &env
->cp15
.tcr_el
[regime_el(env
, mmu_idx
)];
4877 /* Return true if the translation regime is using LPAE format page tables */
4878 static inline bool regime_using_lpae_format(CPUARMState
*env
,
4881 int el
= regime_el(env
, mmu_idx
);
4882 if (el
== 2 || arm_el_is_aa64(env
, el
)) {
4885 if (arm_feature(env
, ARM_FEATURE_LPAE
)
4886 && (regime_tcr(env
, mmu_idx
)->raw_tcr
& TTBCR_EAE
)) {
4892 static inline bool regime_is_user(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
4895 case ARMMMUIdx_S1SE0
:
4896 case ARMMMUIdx_S1NSE0
:
4900 case ARMMMUIdx_S12NSE0
:
4901 case ARMMMUIdx_S12NSE1
:
4902 g_assert_not_reached();
4906 /* Check section/page access permissions.
4907 Returns the page protection flags, or zero if the access is not
4909 static inline int check_ap(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
4910 int ap
, int domain_prot
,
4914 bool is_user
= regime_is_user(env
, mmu_idx
);
4916 if (domain_prot
== 3) {
4917 return PAGE_READ
| PAGE_WRITE
;
4920 if (access_type
== 1) {
4923 prot_ro
= PAGE_READ
;
4928 if (arm_feature(env
, ARM_FEATURE_V7
)) {
4931 if (access_type
== 1) {
4934 switch (regime_sctlr(env
, mmu_idx
) & (SCTLR_S
| SCTLR_R
)) {
4936 return is_user
? 0 : PAGE_READ
;
4943 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
4948 return PAGE_READ
| PAGE_WRITE
;
4951 return PAGE_READ
| PAGE_WRITE
;
4952 case 4: /* Reserved. */
4955 return is_user
? 0 : prot_ro
;
4959 if (!arm_feature(env
, ARM_FEATURE_V6K
)) {
4968 static bool get_level1_table_address(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
4969 uint32_t *table
, uint32_t address
)
4971 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
4972 int el
= regime_el(env
, mmu_idx
);
4973 TCR
*tcr
= regime_tcr(env
, mmu_idx
);
4975 if (address
& tcr
->mask
) {
4976 if (tcr
->raw_tcr
& TTBCR_PD1
) {
4977 /* Translation table walk disabled for TTBR1 */
4980 *table
= env
->cp15
.ttbr1_el
[el
] & 0xffffc000;
4982 if (tcr
->raw_tcr
& TTBCR_PD0
) {
4983 /* Translation table walk disabled for TTBR0 */
4986 *table
= env
->cp15
.ttbr0_el
[el
] & tcr
->base_mask
;
4988 *table
|= (address
>> 18) & 0x3ffc;
4992 static int get_phys_addr_v5(CPUARMState
*env
, uint32_t address
, int access_type
,
4993 ARMMMUIdx mmu_idx
, hwaddr
*phys_ptr
,
4994 int *prot
, target_ulong
*page_size
)
4996 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
5007 /* Pagetable walk. */
5008 /* Lookup l1 descriptor. */
5009 if (!get_level1_table_address(env
, mmu_idx
, &table
, address
)) {
5010 /* Section translation fault if page walk is disabled by PD0 or PD1 */
5014 desc
= ldl_phys(cs
->as
, table
);
5016 domain
= (desc
>> 5) & 0x0f;
5017 if (regime_el(env
, mmu_idx
) == 1) {
5018 dacr
= env
->cp15
.dacr_ns
;
5020 dacr
= env
->cp15
.dacr_s
;
5022 domain_prot
= (dacr
>> (domain
* 2)) & 3;
5024 /* Section translation fault. */
5028 if (domain_prot
== 0 || domain_prot
== 2) {
5030 code
= 9; /* Section domain fault. */
5032 code
= 11; /* Page domain fault. */
5037 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
5038 ap
= (desc
>> 10) & 3;
5040 *page_size
= 1024 * 1024;
5042 /* Lookup l2 entry. */
5044 /* Coarse pagetable. */
5045 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
5047 /* Fine pagetable. */
5048 table
= (desc
& 0xfffff000) | ((address
>> 8) & 0xffc);
5050 desc
= ldl_phys(cs
->as
, table
);
5052 case 0: /* Page translation fault. */
5055 case 1: /* 64k page. */
5056 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
5057 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
5058 *page_size
= 0x10000;
5060 case 2: /* 4k page. */
5061 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
5062 ap
= (desc
>> (4 + ((address
>> 9) & 6))) & 3;
5063 *page_size
= 0x1000;
5065 case 3: /* 1k page. */
5067 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
5068 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
5070 /* Page translation fault. */
5075 phys_addr
= (desc
& 0xfffffc00) | (address
& 0x3ff);
5077 ap
= (desc
>> 4) & 3;
5081 /* Never happens, but compiler isn't smart enough to tell. */
5086 *prot
= check_ap(env
, mmu_idx
, ap
, domain_prot
, access_type
);
5088 /* Access permission fault. */
5092 *phys_ptr
= phys_addr
;
5095 return code
| (domain
<< 4);
5098 static int get_phys_addr_v6(CPUARMState
*env
, uint32_t address
, int access_type
,
5099 ARMMMUIdx mmu_idx
, hwaddr
*phys_ptr
,
5100 int *prot
, target_ulong
*page_size
)
5102 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
5115 /* Pagetable walk. */
5116 /* Lookup l1 descriptor. */
5117 if (!get_level1_table_address(env
, mmu_idx
, &table
, address
)) {
5118 /* Section translation fault if page walk is disabled by PD0 or PD1 */
5122 desc
= ldl_phys(cs
->as
, table
);
5124 if (type
== 0 || (type
== 3 && !arm_feature(env
, ARM_FEATURE_PXN
))) {
5125 /* Section translation fault, or attempt to use the encoding
5126 * which is Reserved on implementations without PXN.
5131 if ((type
== 1) || !(desc
& (1 << 18))) {
5132 /* Page or Section. */
5133 domain
= (desc
>> 5) & 0x0f;
5135 if (regime_el(env
, mmu_idx
) == 1) {
5136 dacr
= env
->cp15
.dacr_ns
;
5138 dacr
= env
->cp15
.dacr_s
;
5140 domain_prot
= (dacr
>> (domain
* 2)) & 3;
5141 if (domain_prot
== 0 || domain_prot
== 2) {
5143 code
= 9; /* Section domain fault. */
5145 code
= 11; /* Page domain fault. */
5150 if (desc
& (1 << 18)) {
5152 phys_addr
= (desc
& 0xff000000) | (address
& 0x00ffffff);
5153 *page_size
= 0x1000000;
5156 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
5157 *page_size
= 0x100000;
5159 ap
= ((desc
>> 10) & 3) | ((desc
>> 13) & 4);
5160 xn
= desc
& (1 << 4);
5164 if (arm_feature(env
, ARM_FEATURE_PXN
)) {
5165 pxn
= (desc
>> 2) & 1;
5167 /* Lookup l2 entry. */
5168 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
5169 desc
= ldl_phys(cs
->as
, table
);
5170 ap
= ((desc
>> 4) & 3) | ((desc
>> 7) & 4);
5172 case 0: /* Page translation fault. */
5175 case 1: /* 64k page. */
5176 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
5177 xn
= desc
& (1 << 15);
5178 *page_size
= 0x10000;
5180 case 2: case 3: /* 4k page. */
5181 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
5183 *page_size
= 0x1000;
5186 /* Never happens, but compiler isn't smart enough to tell. */
5191 if (domain_prot
== 3) {
5192 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
5194 if (pxn
&& !regime_is_user(env
, mmu_idx
)) {
5197 if (xn
&& access_type
== 2)
5200 /* The simplified model uses AP[0] as an access control bit. */
5201 if ((regime_sctlr(env
, mmu_idx
) & SCTLR_AFE
)
5203 /* Access flag fault. */
5204 code
= (code
== 15) ? 6 : 3;
5207 *prot
= check_ap(env
, mmu_idx
, ap
, domain_prot
, access_type
);
5209 /* Access permission fault. */
5216 *phys_ptr
= phys_addr
;
5219 return code
| (domain
<< 4);
5222 /* Fault type for long-descriptor MMU fault reporting; this corresponds
5223 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
5226 translation_fault
= 1,
5228 permission_fault
= 3,
5231 static int get_phys_addr_lpae(CPUARMState
*env
, target_ulong address
,
5232 int access_type
, ARMMMUIdx mmu_idx
,
5233 hwaddr
*phys_ptr
, int *prot
,
5234 target_ulong
*page_size_ptr
)
5236 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
5237 /* Read an LPAE long-descriptor translation table. */
5238 MMUFaultType fault_type
= translation_fault
;
5245 hwaddr descaddr
, descmask
;
5246 uint32_t tableattrs
;
5247 target_ulong page_size
;
5249 int32_t granule_sz
= 9;
5250 int32_t va_size
= 32;
5253 TCR
*tcr
= regime_tcr(env
, mmu_idx
);
5256 * This code assumes we're either a 64-bit EL1 or a 32-bit PL1;
5257 * it doesn't handle the different format TCR for TCR_EL2, TCR_EL3,
5258 * and VTCR_EL2, or the fact that those regimes don't have a split
5259 * TTBR0/TTBR1. Attribute and permission bit handling should also
5260 * be checked when adding support for those page table walks.
5262 if (arm_el_is_aa64(env
, regime_el(env
, mmu_idx
))) {
5264 if (extract64(address
, 55, 1))
5265 tbi
= extract64(tcr
->raw_tcr
, 38, 1);
5267 tbi
= extract64(tcr
->raw_tcr
, 37, 1);
5271 /* Determine whether this address is in the region controlled by
5272 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
5273 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
5274 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
5276 uint32_t t0sz
= extract32(tcr
->raw_tcr
, 0, 6);
5277 if (va_size
== 64) {
5278 t0sz
= MIN(t0sz
, 39);
5279 t0sz
= MAX(t0sz
, 16);
5281 uint32_t t1sz
= extract32(tcr
->raw_tcr
, 16, 6);
5282 if (va_size
== 64) {
5283 t1sz
= MIN(t1sz
, 39);
5284 t1sz
= MAX(t1sz
, 16);
5286 if (t0sz
&& !extract64(address
, va_size
- t0sz
, t0sz
- tbi
)) {
5287 /* there is a ttbr0 region and we are in it (high bits all zero) */
5289 } else if (t1sz
&& !extract64(~address
, va_size
- t1sz
, t1sz
- tbi
)) {
5290 /* there is a ttbr1 region and we are in it (high bits all one) */
5293 /* ttbr0 region is "everything not in the ttbr1 region" */
5296 /* ttbr1 region is "everything not in the ttbr0 region" */
5299 /* in the gap between the two regions, this is a Translation fault */
5300 fault_type
= translation_fault
;
5304 /* Note that QEMU ignores shareability and cacheability attributes,
5305 * so we don't need to do anything with the SH, ORGN, IRGN fields
5306 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
5307 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
5308 * implement any ASID-like capability so we can ignore it (instead
5309 * we will always flush the TLB any time the ASID is changed).
5311 if (ttbr_select
== 0) {
5312 ttbr
= A32_BANKED_CURRENT_REG_GET(env
, ttbr0
);
5313 epd
= extract32(tcr
->raw_tcr
, 7, 1);
5316 tg
= extract32(tcr
->raw_tcr
, 14, 2);
5317 if (tg
== 1) { /* 64KB pages */
5320 if (tg
== 2) { /* 16KB pages */
5324 ttbr
= A32_BANKED_CURRENT_REG_GET(env
, ttbr1
);
5325 epd
= extract32(tcr
->raw_tcr
, 23, 1);
5328 tg
= extract32(tcr
->raw_tcr
, 30, 2);
5329 if (tg
== 3) { /* 64KB pages */
5332 if (tg
== 1) { /* 16KB pages */
5337 /* Here we should have set up all the parameters for the translation:
5338 * va_size, ttbr, epd, tsz, granule_sz, tbi
5342 /* Translation table walk disabled => Translation fault on TLB miss */
5346 /* The starting level depends on the virtual address size (which can be
5347 * up to 48 bits) and the translation granule size. It indicates the number
5348 * of strides (granule_sz bits at a time) needed to consume the bits
5349 * of the input address. In the pseudocode this is:
5350 * level = 4 - RoundUp((inputsize - grainsize) / stride)
5351 * where their 'inputsize' is our 'va_size - tsz', 'grainsize' is
5352 * our 'granule_sz + 3' and 'stride' is our 'granule_sz'.
5353 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
5354 * = 4 - (va_size - tsz - granule_sz - 3 + granule_sz - 1) / granule_sz
5355 * = 4 - (va_size - tsz - 4) / granule_sz;
5357 level
= 4 - (va_size
- tsz
- 4) / granule_sz
;
5359 /* Clear the vaddr bits which aren't part of the within-region address,
5360 * so that we don't have to special case things when calculating the
5361 * first descriptor address.
5364 address
&= (1ULL << (va_size
- tsz
)) - 1;
5367 descmask
= (1ULL << (granule_sz
+ 3)) - 1;
5369 /* Now we can extract the actual base address from the TTBR */
5370 descaddr
= extract64(ttbr
, 0, 48);
5371 descaddr
&= ~((1ULL << (va_size
- tsz
- (granule_sz
* (4 - level
)))) - 1);
5375 uint64_t descriptor
;
5377 descaddr
|= (address
>> (granule_sz
* (4 - level
))) & descmask
;
5379 descriptor
= ldq_phys(cs
->as
, descaddr
);
5380 if (!(descriptor
& 1) ||
5381 (!(descriptor
& 2) && (level
== 3))) {
5382 /* Invalid, or the Reserved level 3 encoding */
5385 descaddr
= descriptor
& 0xfffffff000ULL
;
5387 if ((descriptor
& 2) && (level
< 3)) {
5388 /* Table entry. The top five bits are attributes which may
5389 * propagate down through lower levels of the table (and
5390 * which are all arranged so that 0 means "no effect", so
5391 * we can gather them up by ORing in the bits at each level).
5393 tableattrs
|= extract64(descriptor
, 59, 5);
5397 /* Block entry at level 1 or 2, or page entry at level 3.
5398 * These are basically the same thing, although the number
5399 * of bits we pull in from the vaddr varies.
5401 page_size
= (1ULL << ((granule_sz
* (4 - level
)) + 3));
5402 descaddr
|= (address
& (page_size
- 1));
5403 /* Extract attributes from the descriptor and merge with table attrs */
5404 attrs
= extract64(descriptor
, 2, 10)
5405 | (extract64(descriptor
, 52, 12) << 10);
5406 attrs
|= extract32(tableattrs
, 0, 2) << 11; /* XN, PXN */
5407 attrs
|= extract32(tableattrs
, 3, 1) << 5; /* APTable[1] => AP[2] */
5408 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
5409 * means "force PL1 access only", which means forcing AP[1] to 0.
5411 if (extract32(tableattrs
, 2, 1)) {
5414 /* Since we're always in the Non-secure state, NSTable is ignored. */
5417 /* Here descaddr is the final physical address, and attributes
5420 fault_type
= access_fault
;
5421 if ((attrs
& (1 << 8)) == 0) {
5425 fault_type
= permission_fault
;
5426 is_user
= regime_is_user(env
, mmu_idx
);
5427 if (is_user
&& !(attrs
& (1 << 4))) {
5428 /* Unprivileged access not enabled */
5431 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
5432 if ((arm_feature(env
, ARM_FEATURE_V8
) && is_user
&& (attrs
& (1 << 12))) ||
5433 (!arm_feature(env
, ARM_FEATURE_V8
) && (attrs
& (1 << 12))) ||
5434 (!is_user
&& (attrs
& (1 << 11)))) {
5435 /* XN/UXN or PXN. Since we only implement EL0/EL1 we unconditionally
5436 * treat XN/UXN as UXN for v8.
5438 if (access_type
== 2) {
5441 *prot
&= ~PAGE_EXEC
;
5443 if (attrs
& (1 << 5)) {
5444 /* Write access forbidden */
5445 if (access_type
== 1) {
5448 *prot
&= ~PAGE_WRITE
;
5451 *phys_ptr
= descaddr
;
5452 *page_size_ptr
= page_size
;
5456 /* Long-descriptor format IFSR/DFSR value */
5457 return (1 << 9) | (fault_type
<< 2) | level
;
5460 static int get_phys_addr_mpu(CPUARMState
*env
, uint32_t address
,
5461 int access_type
, ARMMMUIdx mmu_idx
,
5462 hwaddr
*phys_ptr
, int *prot
)
5467 bool is_user
= regime_is_user(env
, mmu_idx
);
5469 *phys_ptr
= address
;
5470 for (n
= 7; n
>= 0; n
--) {
5471 base
= env
->cp15
.c6_region
[n
];
5472 if ((base
& 1) == 0) {
5475 mask
= 1 << ((base
>> 1) & 0x1f);
5476 /* Keep this shift separate from the above to avoid an
5477 (undefined) << 32. */
5478 mask
= (mask
<< 1) - 1;
5479 if (((base
^ address
) & ~mask
) == 0) {
5487 if (access_type
== 2) {
5488 mask
= env
->cp15
.pmsav5_insn_ap
;
5490 mask
= env
->cp15
.pmsav5_data_ap
;
5492 mask
= (mask
>> (n
* 4)) & 0xf;
5500 *prot
= PAGE_READ
| PAGE_WRITE
;
5505 *prot
|= PAGE_WRITE
;
5509 *prot
= PAGE_READ
| PAGE_WRITE
;
5521 /* Bad permission. */
5528 /* get_phys_addr - get the physical address for this virtual address
5530 * Find the physical address corresponding to the given virtual address,
5531 * by doing a translation table walk on MMU based systems or using the
5532 * MPU state on MPU based systems.
5534 * Returns 0 if the translation was successful. Otherwise, phys_ptr,
5535 * prot and page_size are not filled in, and the return value provides
5536 * information on why the translation aborted, in the format of a
5537 * DFSR/IFSR fault register, with the following caveats:
5538 * * we honour the short vs long DFSR format differences.
5539 * * the WnR bit is never set (the caller must do this).
5540 * * for MPU based systems we don't bother to return a full FSR format
5544 * @address: virtual address to get physical address for
5545 * @access_type: 0 for read, 1 for write, 2 for execute
5546 * @mmu_idx: MMU index indicating required translation regime
5547 * @phys_ptr: set to the physical address corresponding to the virtual address
5548 * @prot: set to the permissions for the page containing phys_ptr
5549 * @page_size: set to the size of the page containing phys_ptr
5551 static inline int get_phys_addr(CPUARMState
*env
, target_ulong address
,
5552 int access_type
, ARMMMUIdx mmu_idx
,
5553 hwaddr
*phys_ptr
, int *prot
,
5554 target_ulong
*page_size
)
5556 if (mmu_idx
== ARMMMUIdx_S12NSE0
|| mmu_idx
== ARMMMUIdx_S12NSE1
) {
5557 /* TODO: when we support EL2 we should here call ourselves recursively
5558 * to do the stage 1 and then stage 2 translations. The ldl_phys
5559 * calls for stage 1 will also need changing.
5560 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
5562 assert(!arm_feature(env
, ARM_FEATURE_EL2
));
5563 mmu_idx
+= ARMMMUIdx_S1NSE0
;
5566 /* Fast Context Switch Extension. This doesn't exist at all in v8.
5567 * In v7 and earlier it affects all stage 1 translations.
5569 if (address
< 0x02000000 && mmu_idx
!= ARMMMUIdx_S2NS
5570 && !arm_feature(env
, ARM_FEATURE_V8
)) {
5571 if (regime_el(env
, mmu_idx
) == 3) {
5572 address
+= env
->cp15
.fcseidr_s
;
5574 address
+= env
->cp15
.fcseidr_ns
;
5578 if (regime_translation_disabled(env
, mmu_idx
)) {
5579 /* MMU/MPU disabled. */
5580 *phys_ptr
= address
;
5581 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
5582 *page_size
= TARGET_PAGE_SIZE
;
5586 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
5587 *page_size
= TARGET_PAGE_SIZE
;
5588 return get_phys_addr_mpu(env
, address
, access_type
, mmu_idx
, phys_ptr
,
5592 if (regime_using_lpae_format(env
, mmu_idx
)) {
5593 return get_phys_addr_lpae(env
, address
, access_type
, mmu_idx
, phys_ptr
,
5595 } else if (regime_sctlr(env
, mmu_idx
) & SCTLR_XP
) {
5596 return get_phys_addr_v6(env
, address
, access_type
, mmu_idx
, phys_ptr
,
5599 return get_phys_addr_v5(env
, address
, access_type
, mmu_idx
, phys_ptr
,
5604 int arm_cpu_handle_mmu_fault(CPUState
*cs
, vaddr address
,
5605 int access_type
, int mmu_idx
)
5607 ARMCPU
*cpu
= ARM_CPU(cs
);
5608 CPUARMState
*env
= &cpu
->env
;
5610 target_ulong page_size
;
5614 bool same_el
= (arm_current_el(env
) != 0);
5616 ret
= get_phys_addr(env
, address
, access_type
, mmu_idx
, &phys_addr
, &prot
,
5619 /* Map a single [sub]page. */
5620 phys_addr
&= TARGET_PAGE_MASK
;
5621 address
&= TARGET_PAGE_MASK
;
5622 tlb_set_page(cs
, address
, phys_addr
, prot
, mmu_idx
, page_size
);
5626 /* AArch64 syndrome does not have an LPAE bit */
5627 syn
= ret
& ~(1 << 9);
5629 /* For insn and data aborts we assume there is no instruction syndrome
5630 * information; this is always true for exceptions reported to EL1.
5632 if (access_type
== 2) {
5633 syn
= syn_insn_abort(same_el
, 0, 0, syn
);
5634 cs
->exception_index
= EXCP_PREFETCH_ABORT
;
5636 syn
= syn_data_abort(same_el
, 0, 0, 0, access_type
== 1, syn
);
5637 if (access_type
== 1 && arm_feature(env
, ARM_FEATURE_V6
)) {
5640 cs
->exception_index
= EXCP_DATA_ABORT
;
5643 env
->exception
.syndrome
= syn
;
5644 env
->exception
.vaddress
= address
;
5645 env
->exception
.fsr
= ret
;
5649 hwaddr
arm_cpu_get_phys_page_debug(CPUState
*cs
, vaddr addr
)
5651 ARMCPU
*cpu
= ARM_CPU(cs
);
5652 CPUARMState
*env
= &cpu
->env
;
5654 target_ulong page_size
;
5658 ret
= get_phys_addr(env
, addr
, 0, cpu_mmu_index(env
), &phys_addr
,
5668 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
5670 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
5671 env
->regs
[13] = val
;
5673 env
->banked_r13
[bank_number(mode
)] = val
;
5677 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
5679 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
5680 return env
->regs
[13];
5682 return env
->banked_r13
[bank_number(mode
)];
5686 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
5688 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5692 return xpsr_read(env
) & 0xf8000000;
5694 return xpsr_read(env
) & 0xf80001ff;
5696 return xpsr_read(env
) & 0xff00fc00;
5698 return xpsr_read(env
) & 0xff00fdff;
5700 return xpsr_read(env
) & 0x000001ff;
5702 return xpsr_read(env
) & 0x0700fc00;
5704 return xpsr_read(env
) & 0x0700edff;
5706 return env
->v7m
.current_sp
? env
->v7m
.other_sp
: env
->regs
[13];
5708 return env
->v7m
.current_sp
? env
->regs
[13] : env
->v7m
.other_sp
;
5709 case 16: /* PRIMASK */
5710 return (env
->daif
& PSTATE_I
) != 0;
5711 case 17: /* BASEPRI */
5712 case 18: /* BASEPRI_MAX */
5713 return env
->v7m
.basepri
;
5714 case 19: /* FAULTMASK */
5715 return (env
->daif
& PSTATE_F
) != 0;
5716 case 20: /* CONTROL */
5717 return env
->v7m
.control
;
5719 /* ??? For debugging only. */
5720 cpu_abort(CPU(cpu
), "Unimplemented system register read (%d)\n", reg
);
5725 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
5727 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5731 xpsr_write(env
, val
, 0xf8000000);
5734 xpsr_write(env
, val
, 0xf8000000);
5737 xpsr_write(env
, val
, 0xfe00fc00);
5740 xpsr_write(env
, val
, 0xfe00fc00);
5743 /* IPSR bits are readonly. */
5746 xpsr_write(env
, val
, 0x0600fc00);
5749 xpsr_write(env
, val
, 0x0600fc00);
5752 if (env
->v7m
.current_sp
)
5753 env
->v7m
.other_sp
= val
;
5755 env
->regs
[13] = val
;
5758 if (env
->v7m
.current_sp
)
5759 env
->regs
[13] = val
;
5761 env
->v7m
.other_sp
= val
;
5763 case 16: /* PRIMASK */
5765 env
->daif
|= PSTATE_I
;
5767 env
->daif
&= ~PSTATE_I
;
5770 case 17: /* BASEPRI */
5771 env
->v7m
.basepri
= val
& 0xff;
5773 case 18: /* BASEPRI_MAX */
5775 if (val
!= 0 && (val
< env
->v7m
.basepri
|| env
->v7m
.basepri
== 0))
5776 env
->v7m
.basepri
= val
;
5778 case 19: /* FAULTMASK */
5780 env
->daif
|= PSTATE_F
;
5782 env
->daif
&= ~PSTATE_F
;
5785 case 20: /* CONTROL */
5786 env
->v7m
.control
= val
& 3;
5787 switch_v7m_sp(env
, (val
& 2) != 0);
5790 /* ??? For debugging only. */
5791 cpu_abort(CPU(cpu
), "Unimplemented system register write (%d)\n", reg
);
5798 void HELPER(dc_zva
)(CPUARMState
*env
, uint64_t vaddr_in
)
5800 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
5801 * Note that we do not implement the (architecturally mandated)
5802 * alignment fault for attempts to use this on Device memory
5803 * (which matches the usual QEMU behaviour of not implementing either
5804 * alignment faults or any memory attribute handling).
5807 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5808 uint64_t blocklen
= 4 << cpu
->dcz_blocksize
;
5809 uint64_t vaddr
= vaddr_in
& ~(blocklen
- 1);
5811 #ifndef CONFIG_USER_ONLY
5813 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
5814 * the block size so we might have to do more than one TLB lookup.
5815 * We know that in fact for any v8 CPU the page size is at least 4K
5816 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
5817 * 1K as an artefact of legacy v5 subpage support being present in the
5818 * same QEMU executable.
5820 int maxidx
= DIV_ROUND_UP(blocklen
, TARGET_PAGE_SIZE
);
5821 void *hostaddr
[maxidx
];
5824 for (try = 0; try < 2; try++) {
5826 for (i
= 0; i
< maxidx
; i
++) {
5827 hostaddr
[i
] = tlb_vaddr_to_host(env
,
5828 vaddr
+ TARGET_PAGE_SIZE
* i
,
5829 1, cpu_mmu_index(env
));
5835 /* If it's all in the TLB it's fair game for just writing to;
5836 * we know we don't need to update dirty status, etc.
5838 for (i
= 0; i
< maxidx
- 1; i
++) {
5839 memset(hostaddr
[i
], 0, TARGET_PAGE_SIZE
);
5841 memset(hostaddr
[i
], 0, blocklen
- (i
* TARGET_PAGE_SIZE
));
5844 /* OK, try a store and see if we can populate the tlb. This
5845 * might cause an exception if the memory isn't writable,
5846 * in which case we will longjmp out of here. We must for
5847 * this purpose use the actual register value passed to us
5848 * so that we get the fault address right.
5850 helper_ret_stb_mmu(env
, vaddr_in
, 0, cpu_mmu_index(env
), GETRA());
5851 /* Now we can populate the other TLB entries, if any */
5852 for (i
= 0; i
< maxidx
; i
++) {
5853 uint64_t va
= vaddr
+ TARGET_PAGE_SIZE
* i
;
5854 if (va
!= (vaddr_in
& TARGET_PAGE_MASK
)) {
5855 helper_ret_stb_mmu(env
, va
, 0, cpu_mmu_index(env
), GETRA());
5860 /* Slow path (probably attempt to do this to an I/O device or
5861 * similar, or clearing of a block of code we have translations
5862 * cached for). Just do a series of byte writes as the architecture
5863 * demands. It's not worth trying to use a cpu_physical_memory_map(),
5864 * memset(), unmap() sequence here because:
5865 * + we'd need to account for the blocksize being larger than a page
5866 * + the direct-RAM access case is almost always going to be dealt
5867 * with in the fastpath code above, so there's no speed benefit
5868 * + we would have to deal with the map returning NULL because the
5869 * bounce buffer was in use
5871 for (i
= 0; i
< blocklen
; i
++) {
5872 helper_ret_stb_mmu(env
, vaddr
+ i
, 0, cpu_mmu_index(env
), GETRA());
5876 memset(g2h(vaddr
), 0, blocklen
);
5880 /* Note that signed overflow is undefined in C. The following routines are
5881 careful to use unsigned types where modulo arithmetic is required.
5882 Failure to do so _will_ break on newer gcc. */
5884 /* Signed saturating arithmetic. */
5886 /* Perform 16-bit signed saturating addition. */
5887 static inline uint16_t add16_sat(uint16_t a
, uint16_t b
)
5892 if (((res
^ a
) & 0x8000) && !((a
^ b
) & 0x8000)) {
5901 /* Perform 8-bit signed saturating addition. */
5902 static inline uint8_t add8_sat(uint8_t a
, uint8_t b
)
5907 if (((res
^ a
) & 0x80) && !((a
^ b
) & 0x80)) {
5916 /* Perform 16-bit signed saturating subtraction. */
5917 static inline uint16_t sub16_sat(uint16_t a
, uint16_t b
)
5922 if (((res
^ a
) & 0x8000) && ((a
^ b
) & 0x8000)) {
5931 /* Perform 8-bit signed saturating subtraction. */
5932 static inline uint8_t sub8_sat(uint8_t a
, uint8_t b
)
5937 if (((res
^ a
) & 0x80) && ((a
^ b
) & 0x80)) {
5946 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
5947 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
5948 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
5949 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
5952 #include "op_addsub.h"
5954 /* Unsigned saturating arithmetic. */
5955 static inline uint16_t add16_usat(uint16_t a
, uint16_t b
)
5964 static inline uint16_t sub16_usat(uint16_t a
, uint16_t b
)
5972 static inline uint8_t add8_usat(uint8_t a
, uint8_t b
)
5981 static inline uint8_t sub8_usat(uint8_t a
, uint8_t b
)
5989 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
5990 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
5991 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
5992 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
5995 #include "op_addsub.h"
5997 /* Signed modulo arithmetic. */
5998 #define SARITH16(a, b, n, op) do { \
6000 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
6001 RESULT(sum, n, 16); \
6003 ge |= 3 << (n * 2); \
6006 #define SARITH8(a, b, n, op) do { \
6008 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
6009 RESULT(sum, n, 8); \
6015 #define ADD16(a, b, n) SARITH16(a, b, n, +)
6016 #define SUB16(a, b, n) SARITH16(a, b, n, -)
6017 #define ADD8(a, b, n) SARITH8(a, b, n, +)
6018 #define SUB8(a, b, n) SARITH8(a, b, n, -)
6022 #include "op_addsub.h"
6024 /* Unsigned modulo arithmetic. */
6025 #define ADD16(a, b, n) do { \
6027 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
6028 RESULT(sum, n, 16); \
6029 if ((sum >> 16) == 1) \
6030 ge |= 3 << (n * 2); \
6033 #define ADD8(a, b, n) do { \
6035 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
6036 RESULT(sum, n, 8); \
6037 if ((sum >> 8) == 1) \
6041 #define SUB16(a, b, n) do { \
6043 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
6044 RESULT(sum, n, 16); \
6045 if ((sum >> 16) == 0) \
6046 ge |= 3 << (n * 2); \
6049 #define SUB8(a, b, n) do { \
6051 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
6052 RESULT(sum, n, 8); \
6053 if ((sum >> 8) == 0) \
6060 #include "op_addsub.h"
6062 /* Halved signed arithmetic. */
6063 #define ADD16(a, b, n) \
6064 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
6065 #define SUB16(a, b, n) \
6066 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
6067 #define ADD8(a, b, n) \
6068 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
6069 #define SUB8(a, b, n) \
6070 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
6073 #include "op_addsub.h"
6075 /* Halved unsigned arithmetic. */
6076 #define ADD16(a, b, n) \
6077 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
6078 #define SUB16(a, b, n) \
6079 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
6080 #define ADD8(a, b, n) \
6081 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
6082 #define SUB8(a, b, n) \
6083 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
6086 #include "op_addsub.h"
6088 static inline uint8_t do_usad(uint8_t a
, uint8_t b
)
6096 /* Unsigned sum of absolute byte differences. */
6097 uint32_t HELPER(usad8
)(uint32_t a
, uint32_t b
)
6100 sum
= do_usad(a
, b
);
6101 sum
+= do_usad(a
>> 8, b
>> 8);
6102 sum
+= do_usad(a
>> 16, b
>>16);
6103 sum
+= do_usad(a
>> 24, b
>> 24);
6107 /* For ARMv6 SEL instruction. */
6108 uint32_t HELPER(sel_flags
)(uint32_t flags
, uint32_t a
, uint32_t b
)
6121 return (a
& mask
) | (b
& ~mask
);
6124 /* VFP support. We follow the convention used for VFP instructions:
6125 Single precision routines have a "s" suffix, double precision a
6128 /* Convert host exception flags to vfp form. */
6129 static inline int vfp_exceptbits_from_host(int host_bits
)
6131 int target_bits
= 0;
6133 if (host_bits
& float_flag_invalid
)
6135 if (host_bits
& float_flag_divbyzero
)
6137 if (host_bits
& float_flag_overflow
)
6139 if (host_bits
& (float_flag_underflow
| float_flag_output_denormal
))
6141 if (host_bits
& float_flag_inexact
)
6142 target_bits
|= 0x10;
6143 if (host_bits
& float_flag_input_denormal
)
6144 target_bits
|= 0x80;
6148 uint32_t HELPER(vfp_get_fpscr
)(CPUARMState
*env
)
6153 fpscr
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & 0xffc8ffff)
6154 | (env
->vfp
.vec_len
<< 16)
6155 | (env
->vfp
.vec_stride
<< 20);
6156 i
= get_float_exception_flags(&env
->vfp
.fp_status
);
6157 i
|= get_float_exception_flags(&env
->vfp
.standard_fp_status
);
6158 fpscr
|= vfp_exceptbits_from_host(i
);
6162 uint32_t vfp_get_fpscr(CPUARMState
*env
)
6164 return HELPER(vfp_get_fpscr
)(env
);
6167 /* Convert vfp exception flags to target form. */
6168 static inline int vfp_exceptbits_to_host(int target_bits
)
6172 if (target_bits
& 1)
6173 host_bits
|= float_flag_invalid
;
6174 if (target_bits
& 2)
6175 host_bits
|= float_flag_divbyzero
;
6176 if (target_bits
& 4)
6177 host_bits
|= float_flag_overflow
;
6178 if (target_bits
& 8)
6179 host_bits
|= float_flag_underflow
;
6180 if (target_bits
& 0x10)
6181 host_bits
|= float_flag_inexact
;
6182 if (target_bits
& 0x80)
6183 host_bits
|= float_flag_input_denormal
;
6187 void HELPER(vfp_set_fpscr
)(CPUARMState
*env
, uint32_t val
)
6192 changed
= env
->vfp
.xregs
[ARM_VFP_FPSCR
];
6193 env
->vfp
.xregs
[ARM_VFP_FPSCR
] = (val
& 0xffc8ffff);
6194 env
->vfp
.vec_len
= (val
>> 16) & 7;
6195 env
->vfp
.vec_stride
= (val
>> 20) & 3;
6198 if (changed
& (3 << 22)) {
6199 i
= (val
>> 22) & 3;
6201 case FPROUNDING_TIEEVEN
:
6202 i
= float_round_nearest_even
;
6204 case FPROUNDING_POSINF
:
6207 case FPROUNDING_NEGINF
:
6208 i
= float_round_down
;
6210 case FPROUNDING_ZERO
:
6211 i
= float_round_to_zero
;
6214 set_float_rounding_mode(i
, &env
->vfp
.fp_status
);
6216 if (changed
& (1 << 24)) {
6217 set_flush_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
6218 set_flush_inputs_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
6220 if (changed
& (1 << 25))
6221 set_default_nan_mode((val
& (1 << 25)) != 0, &env
->vfp
.fp_status
);
6223 i
= vfp_exceptbits_to_host(val
);
6224 set_float_exception_flags(i
, &env
->vfp
.fp_status
);
6225 set_float_exception_flags(0, &env
->vfp
.standard_fp_status
);
6228 void vfp_set_fpscr(CPUARMState
*env
, uint32_t val
)
6230 HELPER(vfp_set_fpscr
)(env
, val
);
6233 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
6235 #define VFP_BINOP(name) \
6236 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
6238 float_status *fpst = fpstp; \
6239 return float32_ ## name(a, b, fpst); \
6241 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
6243 float_status *fpst = fpstp; \
6244 return float64_ ## name(a, b, fpst); \
6256 float32
VFP_HELPER(neg
, s
)(float32 a
)
6258 return float32_chs(a
);
6261 float64
VFP_HELPER(neg
, d
)(float64 a
)
6263 return float64_chs(a
);
6266 float32
VFP_HELPER(abs
, s
)(float32 a
)
6268 return float32_abs(a
);
6271 float64
VFP_HELPER(abs
, d
)(float64 a
)
6273 return float64_abs(a
);
6276 float32
VFP_HELPER(sqrt
, s
)(float32 a
, CPUARMState
*env
)
6278 return float32_sqrt(a
, &env
->vfp
.fp_status
);
6281 float64
VFP_HELPER(sqrt
, d
)(float64 a
, CPUARMState
*env
)
6283 return float64_sqrt(a
, &env
->vfp
.fp_status
);
6286 /* XXX: check quiet/signaling case */
6287 #define DO_VFP_cmp(p, type) \
6288 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
6291 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
6292 case 0: flags = 0x6; break; \
6293 case -1: flags = 0x8; break; \
6294 case 1: flags = 0x2; break; \
6295 default: case 2: flags = 0x3; break; \
6297 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
6298 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
6300 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
6303 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
6304 case 0: flags = 0x6; break; \
6305 case -1: flags = 0x8; break; \
6306 case 1: flags = 0x2; break; \
6307 default: case 2: flags = 0x3; break; \
6309 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
6310 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
6312 DO_VFP_cmp(s
, float32
)
6313 DO_VFP_cmp(d
, float64
)
6316 /* Integer to float and float to integer conversions */
6318 #define CONV_ITOF(name, fsz, sign) \
6319 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
6321 float_status *fpst = fpstp; \
6322 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
6325 #define CONV_FTOI(name, fsz, sign, round) \
6326 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
6328 float_status *fpst = fpstp; \
6329 if (float##fsz##_is_any_nan(x)) { \
6330 float_raise(float_flag_invalid, fpst); \
6333 return float##fsz##_to_##sign##int32##round(x, fpst); \
6336 #define FLOAT_CONVS(name, p, fsz, sign) \
6337 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
6338 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
6339 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
6341 FLOAT_CONVS(si
, s
, 32, )
6342 FLOAT_CONVS(si
, d
, 64, )
6343 FLOAT_CONVS(ui
, s
, 32, u
)
6344 FLOAT_CONVS(ui
, d
, 64, u
)
6350 /* floating point conversion */
6351 float64
VFP_HELPER(fcvtd
, s
)(float32 x
, CPUARMState
*env
)
6353 float64 r
= float32_to_float64(x
, &env
->vfp
.fp_status
);
6354 /* ARM requires that S<->D conversion of any kind of NaN generates
6355 * a quiet NaN by forcing the most significant frac bit to 1.
6357 return float64_maybe_silence_nan(r
);
6360 float32
VFP_HELPER(fcvts
, d
)(float64 x
, CPUARMState
*env
)
6362 float32 r
= float64_to_float32(x
, &env
->vfp
.fp_status
);
6363 /* ARM requires that S<->D conversion of any kind of NaN generates
6364 * a quiet NaN by forcing the most significant frac bit to 1.
6366 return float32_maybe_silence_nan(r
);
6369 /* VFP3 fixed point conversion. */
6370 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
6371 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
6374 float_status *fpst = fpstp; \
6376 tmp = itype##_to_##float##fsz(x, fpst); \
6377 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
6380 /* Notice that we want only input-denormal exception flags from the
6381 * scalbn operation: the other possible flags (overflow+inexact if
6382 * we overflow to infinity, output-denormal) aren't correct for the
6383 * complete scale-and-convert operation.
6385 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
6386 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
6390 float_status *fpst = fpstp; \
6391 int old_exc_flags = get_float_exception_flags(fpst); \
6393 if (float##fsz##_is_any_nan(x)) { \
6394 float_raise(float_flag_invalid, fpst); \
6397 tmp = float##fsz##_scalbn(x, shift, fpst); \
6398 old_exc_flags |= get_float_exception_flags(fpst) \
6399 & float_flag_input_denormal; \
6400 set_float_exception_flags(old_exc_flags, fpst); \
6401 return float##fsz##_to_##itype##round(tmp, fpst); \
6404 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
6405 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
6406 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
6407 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
6409 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
6410 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
6411 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
6413 VFP_CONV_FIX(sh
, d
, 64, 64, int16
)
6414 VFP_CONV_FIX(sl
, d
, 64, 64, int32
)
6415 VFP_CONV_FIX_A64(sq
, d
, 64, 64, int64
)
6416 VFP_CONV_FIX(uh
, d
, 64, 64, uint16
)
6417 VFP_CONV_FIX(ul
, d
, 64, 64, uint32
)
6418 VFP_CONV_FIX_A64(uq
, d
, 64, 64, uint64
)
6419 VFP_CONV_FIX(sh
, s
, 32, 32, int16
)
6420 VFP_CONV_FIX(sl
, s
, 32, 32, int32
)
6421 VFP_CONV_FIX_A64(sq
, s
, 32, 64, int64
)
6422 VFP_CONV_FIX(uh
, s
, 32, 32, uint16
)
6423 VFP_CONV_FIX(ul
, s
, 32, 32, uint32
)
6424 VFP_CONV_FIX_A64(uq
, s
, 32, 64, uint64
)
6426 #undef VFP_CONV_FIX_FLOAT
6427 #undef VFP_CONV_FLOAT_FIX_ROUND
6429 /* Set the current fp rounding mode and return the old one.
6430 * The argument is a softfloat float_round_ value.
6432 uint32_t HELPER(set_rmode
)(uint32_t rmode
, CPUARMState
*env
)
6434 float_status
*fp_status
= &env
->vfp
.fp_status
;
6436 uint32_t prev_rmode
= get_float_rounding_mode(fp_status
);
6437 set_float_rounding_mode(rmode
, fp_status
);
6442 /* Set the current fp rounding mode in the standard fp status and return
6443 * the old one. This is for NEON instructions that need to change the
6444 * rounding mode but wish to use the standard FPSCR values for everything
6445 * else. Always set the rounding mode back to the correct value after
6447 * The argument is a softfloat float_round_ value.
6449 uint32_t HELPER(set_neon_rmode
)(uint32_t rmode
, CPUARMState
*env
)
6451 float_status
*fp_status
= &env
->vfp
.standard_fp_status
;
6453 uint32_t prev_rmode
= get_float_rounding_mode(fp_status
);
6454 set_float_rounding_mode(rmode
, fp_status
);
6459 /* Half precision conversions. */
6460 static float32
do_fcvt_f16_to_f32(uint32_t a
, CPUARMState
*env
, float_status
*s
)
6462 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
6463 float32 r
= float16_to_float32(make_float16(a
), ieee
, s
);
6465 return float32_maybe_silence_nan(r
);
6470 static uint32_t do_fcvt_f32_to_f16(float32 a
, CPUARMState
*env
, float_status
*s
)
6472 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
6473 float16 r
= float32_to_float16(a
, ieee
, s
);
6475 r
= float16_maybe_silence_nan(r
);
6477 return float16_val(r
);
6480 float32
HELPER(neon_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
6482 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.standard_fp_status
);
6485 uint32_t HELPER(neon_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
6487 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.standard_fp_status
);
6490 float32
HELPER(vfp_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
6492 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.fp_status
);
6495 uint32_t HELPER(vfp_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
6497 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.fp_status
);
6500 float64
HELPER(vfp_fcvt_f16_to_f64
)(uint32_t a
, CPUARMState
*env
)
6502 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
6503 float64 r
= float16_to_float64(make_float16(a
), ieee
, &env
->vfp
.fp_status
);
6505 return float64_maybe_silence_nan(r
);
6510 uint32_t HELPER(vfp_fcvt_f64_to_f16
)(float64 a
, CPUARMState
*env
)
6512 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
6513 float16 r
= float64_to_float16(a
, ieee
, &env
->vfp
.fp_status
);
6515 r
= float16_maybe_silence_nan(r
);
6517 return float16_val(r
);
6520 #define float32_two make_float32(0x40000000)
6521 #define float32_three make_float32(0x40400000)
6522 #define float32_one_point_five make_float32(0x3fc00000)
6524 float32
HELPER(recps_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
6526 float_status
*s
= &env
->vfp
.standard_fp_status
;
6527 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
6528 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
6529 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
6530 float_raise(float_flag_input_denormal
, s
);
6534 return float32_sub(float32_two
, float32_mul(a
, b
, s
), s
);
6537 float32
HELPER(rsqrts_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
6539 float_status
*s
= &env
->vfp
.standard_fp_status
;
6541 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
6542 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
6543 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
6544 float_raise(float_flag_input_denormal
, s
);
6546 return float32_one_point_five
;
6548 product
= float32_mul(a
, b
, s
);
6549 return float32_div(float32_sub(float32_three
, product
, s
), float32_two
, s
);
6554 /* Constants 256 and 512 are used in some helpers; we avoid relying on
6555 * int->float conversions at run-time. */
6556 #define float64_256 make_float64(0x4070000000000000LL)
6557 #define float64_512 make_float64(0x4080000000000000LL)
6558 #define float32_maxnorm make_float32(0x7f7fffff)
6559 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
6561 /* Reciprocal functions
6563 * The algorithm that must be used to calculate the estimate
6564 * is specified by the ARM ARM, see FPRecipEstimate()
6567 static float64
recip_estimate(float64 a
, float_status
*real_fp_status
)
6569 /* These calculations mustn't set any fp exception flags,
6570 * so we use a local copy of the fp_status.
6572 float_status dummy_status
= *real_fp_status
;
6573 float_status
*s
= &dummy_status
;
6574 /* q = (int)(a * 512.0) */
6575 float64 q
= float64_mul(float64_512
, a
, s
);
6576 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
6578 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
6579 q
= int64_to_float64(q_int
, s
);
6580 q
= float64_add(q
, float64_half
, s
);
6581 q
= float64_div(q
, float64_512
, s
);
6582 q
= float64_div(float64_one
, q
, s
);
6584 /* s = (int)(256.0 * r + 0.5) */
6585 q
= float64_mul(q
, float64_256
, s
);
6586 q
= float64_add(q
, float64_half
, s
);
6587 q_int
= float64_to_int64_round_to_zero(q
, s
);
6589 /* return (double)s / 256.0 */
6590 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
6593 /* Common wrapper to call recip_estimate */
6594 static float64
call_recip_estimate(float64 num
, int off
, float_status
*fpst
)
6596 uint64_t val64
= float64_val(num
);
6597 uint64_t frac
= extract64(val64
, 0, 52);
6598 int64_t exp
= extract64(val64
, 52, 11);
6600 float64 scaled
, estimate
;
6602 /* Generate the scaled number for the estimate function */
6604 if (extract64(frac
, 51, 1) == 0) {
6606 frac
= extract64(frac
, 0, 50) << 2;
6608 frac
= extract64(frac
, 0, 51) << 1;
6612 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
6613 scaled
= make_float64((0x3feULL
<< 52)
6614 | extract64(frac
, 44, 8) << 44);
6616 estimate
= recip_estimate(scaled
, fpst
);
6618 /* Build new result */
6619 val64
= float64_val(estimate
);
6620 sbit
= 0x8000000000000000ULL
& val64
;
6622 frac
= extract64(val64
, 0, 52);
6625 frac
= 1ULL << 51 | extract64(frac
, 1, 51);
6626 } else if (exp
== -1) {
6627 frac
= 1ULL << 50 | extract64(frac
, 2, 50);
6631 return make_float64(sbit
| (exp
<< 52) | frac
);
6634 static bool round_to_inf(float_status
*fpst
, bool sign_bit
)
6636 switch (fpst
->float_rounding_mode
) {
6637 case float_round_nearest_even
: /* Round to Nearest */
6639 case float_round_up
: /* Round to +Inf */
6641 case float_round_down
: /* Round to -Inf */
6643 case float_round_to_zero
: /* Round to Zero */
6647 g_assert_not_reached();
6650 float32
HELPER(recpe_f32
)(float32 input
, void *fpstp
)
6652 float_status
*fpst
= fpstp
;
6653 float32 f32
= float32_squash_input_denormal(input
, fpst
);
6654 uint32_t f32_val
= float32_val(f32
);
6655 uint32_t f32_sbit
= 0x80000000ULL
& f32_val
;
6656 int32_t f32_exp
= extract32(f32_val
, 23, 8);
6657 uint32_t f32_frac
= extract32(f32_val
, 0, 23);
6663 if (float32_is_any_nan(f32
)) {
6665 if (float32_is_signaling_nan(f32
)) {
6666 float_raise(float_flag_invalid
, fpst
);
6667 nan
= float32_maybe_silence_nan(f32
);
6669 if (fpst
->default_nan_mode
) {
6670 nan
= float32_default_nan
;
6673 } else if (float32_is_infinity(f32
)) {
6674 return float32_set_sign(float32_zero
, float32_is_neg(f32
));
6675 } else if (float32_is_zero(f32
)) {
6676 float_raise(float_flag_divbyzero
, fpst
);
6677 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
6678 } else if ((f32_val
& ~(1ULL << 31)) < (1ULL << 21)) {
6679 /* Abs(value) < 2.0^-128 */
6680 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
6681 if (round_to_inf(fpst
, f32_sbit
)) {
6682 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
6684 return float32_set_sign(float32_maxnorm
, float32_is_neg(f32
));
6686 } else if (f32_exp
>= 253 && fpst
->flush_to_zero
) {
6687 float_raise(float_flag_underflow
, fpst
);
6688 return float32_set_sign(float32_zero
, float32_is_neg(f32
));
6692 f64
= make_float64(((int64_t)(f32_exp
) << 52) | (int64_t)(f32_frac
) << 29);
6693 r64
= call_recip_estimate(f64
, 253, fpst
);
6694 r64_val
= float64_val(r64
);
6695 r64_exp
= extract64(r64_val
, 52, 11);
6696 r64_frac
= extract64(r64_val
, 0, 52);
6698 /* result = sign : result_exp<7:0> : fraction<51:29>; */
6699 return make_float32(f32_sbit
|
6700 (r64_exp
& 0xff) << 23 |
6701 extract64(r64_frac
, 29, 24));
6704 float64
HELPER(recpe_f64
)(float64 input
, void *fpstp
)
6706 float_status
*fpst
= fpstp
;
6707 float64 f64
= float64_squash_input_denormal(input
, fpst
);
6708 uint64_t f64_val
= float64_val(f64
);
6709 uint64_t f64_sbit
= 0x8000000000000000ULL
& f64_val
;
6710 int64_t f64_exp
= extract64(f64_val
, 52, 11);
6716 /* Deal with any special cases */
6717 if (float64_is_any_nan(f64
)) {
6719 if (float64_is_signaling_nan(f64
)) {
6720 float_raise(float_flag_invalid
, fpst
);
6721 nan
= float64_maybe_silence_nan(f64
);
6723 if (fpst
->default_nan_mode
) {
6724 nan
= float64_default_nan
;
6727 } else if (float64_is_infinity(f64
)) {
6728 return float64_set_sign(float64_zero
, float64_is_neg(f64
));
6729 } else if (float64_is_zero(f64
)) {
6730 float_raise(float_flag_divbyzero
, fpst
);
6731 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
6732 } else if ((f64_val
& ~(1ULL << 63)) < (1ULL << 50)) {
6733 /* Abs(value) < 2.0^-1024 */
6734 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
6735 if (round_to_inf(fpst
, f64_sbit
)) {
6736 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
6738 return float64_set_sign(float64_maxnorm
, float64_is_neg(f64
));
6740 } else if (f64_exp
>= 2045 && fpst
->flush_to_zero
) {
6741 float_raise(float_flag_underflow
, fpst
);
6742 return float64_set_sign(float64_zero
, float64_is_neg(f64
));
6745 r64
= call_recip_estimate(f64
, 2045, fpst
);
6746 r64_val
= float64_val(r64
);
6747 r64_exp
= extract64(r64_val
, 52, 11);
6748 r64_frac
= extract64(r64_val
, 0, 52);
6750 /* result = sign : result_exp<10:0> : fraction<51:0> */
6751 return make_float64(f64_sbit
|
6752 ((r64_exp
& 0x7ff) << 52) |
6756 /* The algorithm that must be used to calculate the estimate
6757 * is specified by the ARM ARM.
6759 static float64
recip_sqrt_estimate(float64 a
, float_status
*real_fp_status
)
6761 /* These calculations mustn't set any fp exception flags,
6762 * so we use a local copy of the fp_status.
6764 float_status dummy_status
= *real_fp_status
;
6765 float_status
*s
= &dummy_status
;
6769 if (float64_lt(a
, float64_half
, s
)) {
6770 /* range 0.25 <= a < 0.5 */
6772 /* a in units of 1/512 rounded down */
6773 /* q0 = (int)(a * 512.0); */
6774 q
= float64_mul(float64_512
, a
, s
);
6775 q_int
= float64_to_int64_round_to_zero(q
, s
);
6777 /* reciprocal root r */
6778 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
6779 q
= int64_to_float64(q_int
, s
);
6780 q
= float64_add(q
, float64_half
, s
);
6781 q
= float64_div(q
, float64_512
, s
);
6782 q
= float64_sqrt(q
, s
);
6783 q
= float64_div(float64_one
, q
, s
);
6785 /* range 0.5 <= a < 1.0 */
6787 /* a in units of 1/256 rounded down */
6788 /* q1 = (int)(a * 256.0); */
6789 q
= float64_mul(float64_256
, a
, s
);
6790 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
6792 /* reciprocal root r */
6793 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
6794 q
= int64_to_float64(q_int
, s
);
6795 q
= float64_add(q
, float64_half
, s
);
6796 q
= float64_div(q
, float64_256
, s
);
6797 q
= float64_sqrt(q
, s
);
6798 q
= float64_div(float64_one
, q
, s
);
6800 /* r in units of 1/256 rounded to nearest */
6801 /* s = (int)(256.0 * r + 0.5); */
6803 q
= float64_mul(q
, float64_256
,s
);
6804 q
= float64_add(q
, float64_half
, s
);
6805 q_int
= float64_to_int64_round_to_zero(q
, s
);
6807 /* return (double)s / 256.0;*/
6808 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
6811 float32
HELPER(rsqrte_f32
)(float32 input
, void *fpstp
)
6813 float_status
*s
= fpstp
;
6814 float32 f32
= float32_squash_input_denormal(input
, s
);
6815 uint32_t val
= float32_val(f32
);
6816 uint32_t f32_sbit
= 0x80000000 & val
;
6817 int32_t f32_exp
= extract32(val
, 23, 8);
6818 uint32_t f32_frac
= extract32(val
, 0, 23);
6824 if (float32_is_any_nan(f32
)) {
6826 if (float32_is_signaling_nan(f32
)) {
6827 float_raise(float_flag_invalid
, s
);
6828 nan
= float32_maybe_silence_nan(f32
);
6830 if (s
->default_nan_mode
) {
6831 nan
= float32_default_nan
;
6834 } else if (float32_is_zero(f32
)) {
6835 float_raise(float_flag_divbyzero
, s
);
6836 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
6837 } else if (float32_is_neg(f32
)) {
6838 float_raise(float_flag_invalid
, s
);
6839 return float32_default_nan
;
6840 } else if (float32_is_infinity(f32
)) {
6841 return float32_zero
;
6844 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
6845 * preserving the parity of the exponent. */
6847 f64_frac
= ((uint64_t) f32_frac
) << 29;
6849 while (extract64(f64_frac
, 51, 1) == 0) {
6850 f64_frac
= f64_frac
<< 1;
6851 f32_exp
= f32_exp
-1;
6853 f64_frac
= extract64(f64_frac
, 0, 51) << 1;
6856 if (extract64(f32_exp
, 0, 1) == 0) {
6857 f64
= make_float64(((uint64_t) f32_sbit
) << 32
6861 f64
= make_float64(((uint64_t) f32_sbit
) << 32
6866 result_exp
= (380 - f32_exp
) / 2;
6868 f64
= recip_sqrt_estimate(f64
, s
);
6870 val64
= float64_val(f64
);
6872 val
= ((result_exp
& 0xff) << 23)
6873 | ((val64
>> 29) & 0x7fffff);
6874 return make_float32(val
);
6877 float64
HELPER(rsqrte_f64
)(float64 input
, void *fpstp
)
6879 float_status
*s
= fpstp
;
6880 float64 f64
= float64_squash_input_denormal(input
, s
);
6881 uint64_t val
= float64_val(f64
);
6882 uint64_t f64_sbit
= 0x8000000000000000ULL
& val
;
6883 int64_t f64_exp
= extract64(val
, 52, 11);
6884 uint64_t f64_frac
= extract64(val
, 0, 52);
6886 uint64_t result_frac
;
6888 if (float64_is_any_nan(f64
)) {
6890 if (float64_is_signaling_nan(f64
)) {
6891 float_raise(float_flag_invalid
, s
);
6892 nan
= float64_maybe_silence_nan(f64
);
6894 if (s
->default_nan_mode
) {
6895 nan
= float64_default_nan
;
6898 } else if (float64_is_zero(f64
)) {
6899 float_raise(float_flag_divbyzero
, s
);
6900 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
6901 } else if (float64_is_neg(f64
)) {
6902 float_raise(float_flag_invalid
, s
);
6903 return float64_default_nan
;
6904 } else if (float64_is_infinity(f64
)) {
6905 return float64_zero
;
6908 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
6909 * preserving the parity of the exponent. */
6912 while (extract64(f64_frac
, 51, 1) == 0) {
6913 f64_frac
= f64_frac
<< 1;
6914 f64_exp
= f64_exp
- 1;
6916 f64_frac
= extract64(f64_frac
, 0, 51) << 1;
6919 if (extract64(f64_exp
, 0, 1) == 0) {
6920 f64
= make_float64(f64_sbit
6924 f64
= make_float64(f64_sbit
6929 result_exp
= (3068 - f64_exp
) / 2;
6931 f64
= recip_sqrt_estimate(f64
, s
);
6933 result_frac
= extract64(float64_val(f64
), 0, 52);
6935 return make_float64(f64_sbit
|
6936 ((result_exp
& 0x7ff) << 52) |
6940 uint32_t HELPER(recpe_u32
)(uint32_t a
, void *fpstp
)
6942 float_status
*s
= fpstp
;
6945 if ((a
& 0x80000000) == 0) {
6949 f64
= make_float64((0x3feULL
<< 52)
6950 | ((int64_t)(a
& 0x7fffffff) << 21));
6952 f64
= recip_estimate(f64
, s
);
6954 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
6957 uint32_t HELPER(rsqrte_u32
)(uint32_t a
, void *fpstp
)
6959 float_status
*fpst
= fpstp
;
6962 if ((a
& 0xc0000000) == 0) {
6966 if (a
& 0x80000000) {
6967 f64
= make_float64((0x3feULL
<< 52)
6968 | ((uint64_t)(a
& 0x7fffffff) << 21));
6969 } else { /* bits 31-30 == '01' */
6970 f64
= make_float64((0x3fdULL
<< 52)
6971 | ((uint64_t)(a
& 0x3fffffff) << 22));
6974 f64
= recip_sqrt_estimate(f64
, fpst
);
6976 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
6979 /* VFPv4 fused multiply-accumulate */
6980 float32
VFP_HELPER(muladd
, s
)(float32 a
, float32 b
, float32 c
, void *fpstp
)
6982 float_status
*fpst
= fpstp
;
6983 return float32_muladd(a
, b
, c
, 0, fpst
);
6986 float64
VFP_HELPER(muladd
, d
)(float64 a
, float64 b
, float64 c
, void *fpstp
)
6988 float_status
*fpst
= fpstp
;
6989 return float64_muladd(a
, b
, c
, 0, fpst
);
6992 /* ARMv8 round to integral */
6993 float32
HELPER(rints_exact
)(float32 x
, void *fp_status
)
6995 return float32_round_to_int(x
, fp_status
);
6998 float64
HELPER(rintd_exact
)(float64 x
, void *fp_status
)
7000 return float64_round_to_int(x
, fp_status
);
7003 float32
HELPER(rints
)(float32 x
, void *fp_status
)
7005 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
7008 ret
= float32_round_to_int(x
, fp_status
);
7010 /* Suppress any inexact exceptions the conversion produced */
7011 if (!(old_flags
& float_flag_inexact
)) {
7012 new_flags
= get_float_exception_flags(fp_status
);
7013 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
7019 float64
HELPER(rintd
)(float64 x
, void *fp_status
)
7021 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
7024 ret
= float64_round_to_int(x
, fp_status
);
7026 new_flags
= get_float_exception_flags(fp_status
);
7028 /* Suppress any inexact exceptions the conversion produced */
7029 if (!(old_flags
& float_flag_inexact
)) {
7030 new_flags
= get_float_exception_flags(fp_status
);
7031 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
7037 /* Convert ARM rounding mode to softfloat */
7038 int arm_rmode_to_sf(int rmode
)
7041 case FPROUNDING_TIEAWAY
:
7042 rmode
= float_round_ties_away
;
7044 case FPROUNDING_ODD
:
7045 /* FIXME: add support for TIEAWAY and ODD */
7046 qemu_log_mask(LOG_UNIMP
, "arm: unimplemented rounding mode: %d\n",
7048 case FPROUNDING_TIEEVEN
:
7050 rmode
= float_round_nearest_even
;
7052 case FPROUNDING_POSINF
:
7053 rmode
= float_round_up
;
7055 case FPROUNDING_NEGINF
:
7056 rmode
= float_round_down
;
7058 case FPROUNDING_ZERO
:
7059 rmode
= float_round_to_zero
;
7066 * The upper bytes of val (above the number specified by 'bytes') must have
7067 * been zeroed out by the caller.
7069 uint32_t HELPER(crc32
)(uint32_t acc
, uint32_t val
, uint32_t bytes
)
7075 /* zlib crc32 converts the accumulator and output to one's complement. */
7076 return crc32(acc
^ 0xffffffff, buf
, bytes
) ^ 0xffffffff;
7079 uint32_t HELPER(crc32c
)(uint32_t acc
, uint32_t val
, uint32_t bytes
)
7085 /* Linux crc32c converts the output to one's complement. */
7086 return crc32c(acc
, buf
, bytes
) ^ 0xffffffff;