target-i386: Simplify error handling on cpu_x86_init_user()
[qemu/kevin.git] / target-arm / helper.c
blob3bc20af04f01228bc14384dd99ab66615d08913e
1 #include "cpu.h"
2 #include "internals.h"
3 #include "exec/gdbstub.h"
4 #include "exec/helper-proto.h"
5 #include "qemu/host-utils.h"
6 #include "sysemu/arch_init.h"
7 #include "sysemu/sysemu.h"
8 #include "qemu/bitops.h"
9 #include "qemu/crc32c.h"
10 #include "exec/cpu_ldst.h"
11 #include "arm_ldst.h"
12 #include <zlib.h> /* For crc32 */
14 #ifndef CONFIG_USER_ONLY
15 static inline int get_phys_addr(CPUARMState *env, target_ulong address,
16 int access_type, ARMMMUIdx mmu_idx,
17 hwaddr *phys_ptr, int *prot,
18 target_ulong *page_size);
20 /* Definitions for the PMCCNTR and PMCR registers */
21 #define PMCRD 0x8
22 #define PMCRC 0x4
23 #define PMCRE 0x1
24 #endif
26 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
28 int nregs;
30 /* VFP data registers are always little-endian. */
31 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
32 if (reg < nregs) {
33 stfq_le_p(buf, env->vfp.regs[reg]);
34 return 8;
36 if (arm_feature(env, ARM_FEATURE_NEON)) {
37 /* Aliases for Q regs. */
38 nregs += 16;
39 if (reg < nregs) {
40 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
41 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
42 return 16;
45 switch (reg - nregs) {
46 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
47 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
48 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
50 return 0;
53 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
55 int nregs;
57 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
58 if (reg < nregs) {
59 env->vfp.regs[reg] = ldfq_le_p(buf);
60 return 8;
62 if (arm_feature(env, ARM_FEATURE_NEON)) {
63 nregs += 16;
64 if (reg < nregs) {
65 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
66 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
67 return 16;
70 switch (reg - nregs) {
71 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
72 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
73 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
75 return 0;
78 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
80 switch (reg) {
81 case 0 ... 31:
82 /* 128 bit FP register */
83 stfq_le_p(buf, env->vfp.regs[reg * 2]);
84 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
85 return 16;
86 case 32:
87 /* FPSR */
88 stl_p(buf, vfp_get_fpsr(env));
89 return 4;
90 case 33:
91 /* FPCR */
92 stl_p(buf, vfp_get_fpcr(env));
93 return 4;
94 default:
95 return 0;
99 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
101 switch (reg) {
102 case 0 ... 31:
103 /* 128 bit FP register */
104 env->vfp.regs[reg * 2] = ldfq_le_p(buf);
105 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
106 return 16;
107 case 32:
108 /* FPSR */
109 vfp_set_fpsr(env, ldl_p(buf));
110 return 4;
111 case 33:
112 /* FPCR */
113 vfp_set_fpcr(env, ldl_p(buf));
114 return 4;
115 default:
116 return 0;
120 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
122 assert(ri->fieldoffset);
123 if (cpreg_field_is_64bit(ri)) {
124 return CPREG_FIELD64(env, ri);
125 } else {
126 return CPREG_FIELD32(env, ri);
130 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
131 uint64_t value)
133 assert(ri->fieldoffset);
134 if (cpreg_field_is_64bit(ri)) {
135 CPREG_FIELD64(env, ri) = value;
136 } else {
137 CPREG_FIELD32(env, ri) = value;
141 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
143 return (char *)env + ri->fieldoffset;
146 static uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
148 /* Raw read of a coprocessor register (as needed for migration, etc). */
149 if (ri->type & ARM_CP_CONST) {
150 return ri->resetvalue;
151 } else if (ri->raw_readfn) {
152 return ri->raw_readfn(env, ri);
153 } else if (ri->readfn) {
154 return ri->readfn(env, ri);
155 } else {
156 return raw_read(env, ri);
160 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
161 uint64_t v)
163 /* Raw write of a coprocessor register (as needed for migration, etc).
164 * Note that constant registers are treated as write-ignored; the
165 * caller should check for success by whether a readback gives the
166 * value written.
168 if (ri->type & ARM_CP_CONST) {
169 return;
170 } else if (ri->raw_writefn) {
171 ri->raw_writefn(env, ri, v);
172 } else if (ri->writefn) {
173 ri->writefn(env, ri, v);
174 } else {
175 raw_write(env, ri, v);
179 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
181 /* Return true if the regdef would cause an assertion if you called
182 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
183 * program bug for it not to have the NO_RAW flag).
184 * NB that returning false here doesn't necessarily mean that calling
185 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
186 * read/write access functions which are safe for raw use" from "has
187 * read/write access functions which have side effects but has forgotten
188 * to provide raw access functions".
189 * The tests here line up with the conditions in read/write_raw_cp_reg()
190 * and assertions in raw_read()/raw_write().
192 if ((ri->type & ARM_CP_CONST) ||
193 ri->fieldoffset ||
194 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
195 return false;
197 return true;
200 bool write_cpustate_to_list(ARMCPU *cpu)
202 /* Write the coprocessor state from cpu->env to the (index,value) list. */
203 int i;
204 bool ok = true;
206 for (i = 0; i < cpu->cpreg_array_len; i++) {
207 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
208 const ARMCPRegInfo *ri;
210 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
211 if (!ri) {
212 ok = false;
213 continue;
215 if (ri->type & ARM_CP_NO_RAW) {
216 continue;
218 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
220 return ok;
223 bool write_list_to_cpustate(ARMCPU *cpu)
225 int i;
226 bool ok = true;
228 for (i = 0; i < cpu->cpreg_array_len; i++) {
229 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
230 uint64_t v = cpu->cpreg_values[i];
231 const ARMCPRegInfo *ri;
233 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
234 if (!ri) {
235 ok = false;
236 continue;
238 if (ri->type & ARM_CP_NO_RAW) {
239 continue;
241 /* Write value and confirm it reads back as written
242 * (to catch read-only registers and partially read-only
243 * registers where the incoming migration value doesn't match)
245 write_raw_cp_reg(&cpu->env, ri, v);
246 if (read_raw_cp_reg(&cpu->env, ri) != v) {
247 ok = false;
250 return ok;
253 static void add_cpreg_to_list(gpointer key, gpointer opaque)
255 ARMCPU *cpu = opaque;
256 uint64_t regidx;
257 const ARMCPRegInfo *ri;
259 regidx = *(uint32_t *)key;
260 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
262 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
263 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
264 /* The value array need not be initialized at this point */
265 cpu->cpreg_array_len++;
269 static void count_cpreg(gpointer key, gpointer opaque)
271 ARMCPU *cpu = opaque;
272 uint64_t regidx;
273 const ARMCPRegInfo *ri;
275 regidx = *(uint32_t *)key;
276 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
278 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
279 cpu->cpreg_array_len++;
283 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
285 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
286 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
288 if (aidx > bidx) {
289 return 1;
291 if (aidx < bidx) {
292 return -1;
294 return 0;
297 static void cpreg_make_keylist(gpointer key, gpointer value, gpointer udata)
299 GList **plist = udata;
301 *plist = g_list_prepend(*plist, key);
304 void init_cpreg_list(ARMCPU *cpu)
306 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
307 * Note that we require cpreg_tuples[] to be sorted by key ID.
309 GList *keys = NULL;
310 int arraylen;
312 g_hash_table_foreach(cpu->cp_regs, cpreg_make_keylist, &keys);
314 keys = g_list_sort(keys, cpreg_key_compare);
316 cpu->cpreg_array_len = 0;
318 g_list_foreach(keys, count_cpreg, cpu);
320 arraylen = cpu->cpreg_array_len;
321 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
322 cpu->cpreg_values = g_new(uint64_t, arraylen);
323 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
324 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
325 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
326 cpu->cpreg_array_len = 0;
328 g_list_foreach(keys, add_cpreg_to_list, cpu);
330 assert(cpu->cpreg_array_len == arraylen);
332 g_list_free(keys);
335 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
337 ARMCPU *cpu = arm_env_get_cpu(env);
339 raw_write(env, ri, value);
340 tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */
343 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
345 ARMCPU *cpu = arm_env_get_cpu(env);
347 if (raw_read(env, ri) != value) {
348 /* Unlike real hardware the qemu TLB uses virtual addresses,
349 * not modified virtual addresses, so this causes a TLB flush.
351 tlb_flush(CPU(cpu), 1);
352 raw_write(env, ri, value);
356 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
357 uint64_t value)
359 ARMCPU *cpu = arm_env_get_cpu(env);
361 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU)
362 && !extended_addresses_enabled(env)) {
363 /* For VMSA (when not using the LPAE long descriptor page table
364 * format) this register includes the ASID, so do a TLB flush.
365 * For PMSA it is purely a process ID and no action is needed.
367 tlb_flush(CPU(cpu), 1);
369 raw_write(env, ri, value);
372 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
373 uint64_t value)
375 /* Invalidate all (TLBIALL) */
376 ARMCPU *cpu = arm_env_get_cpu(env);
378 tlb_flush(CPU(cpu), 1);
381 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
382 uint64_t value)
384 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
385 ARMCPU *cpu = arm_env_get_cpu(env);
387 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
390 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
391 uint64_t value)
393 /* Invalidate by ASID (TLBIASID) */
394 ARMCPU *cpu = arm_env_get_cpu(env);
396 tlb_flush(CPU(cpu), value == 0);
399 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
400 uint64_t value)
402 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
403 ARMCPU *cpu = arm_env_get_cpu(env);
405 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
408 /* IS variants of TLB operations must affect all cores */
409 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
410 uint64_t value)
412 CPUState *other_cs;
414 CPU_FOREACH(other_cs) {
415 tlb_flush(other_cs, 1);
419 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
420 uint64_t value)
422 CPUState *other_cs;
424 CPU_FOREACH(other_cs) {
425 tlb_flush(other_cs, value == 0);
429 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
430 uint64_t value)
432 CPUState *other_cs;
434 CPU_FOREACH(other_cs) {
435 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
439 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
440 uint64_t value)
442 CPUState *other_cs;
444 CPU_FOREACH(other_cs) {
445 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
449 static const ARMCPRegInfo cp_reginfo[] = {
450 /* Define the secure and non-secure FCSE identifier CP registers
451 * separately because there is no secure bank in V8 (no _EL3). This allows
452 * the secure register to be properly reset and migrated. There is also no
453 * v8 EL1 version of the register so the non-secure instance stands alone.
455 { .name = "FCSEIDR(NS)",
456 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
457 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
458 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
459 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
460 { .name = "FCSEIDR(S)",
461 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
462 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
463 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
464 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
465 /* Define the secure and non-secure context identifier CP registers
466 * separately because there is no secure bank in V8 (no _EL3). This allows
467 * the secure register to be properly reset and migrated. In the
468 * non-secure case, the 32-bit register will have reset and migration
469 * disabled during registration as it is handled by the 64-bit instance.
471 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
472 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
473 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
474 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
475 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
476 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
477 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
478 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
479 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
480 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
481 REGINFO_SENTINEL
484 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
485 /* NB: Some of these registers exist in v8 but with more precise
486 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
488 /* MMU Domain access control / MPU write buffer control */
489 { .name = "DACR",
490 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
491 .access = PL1_RW, .resetvalue = 0,
492 .writefn = dacr_write, .raw_writefn = raw_write,
493 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
494 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
495 /* ??? This covers not just the impdef TLB lockdown registers but also
496 * some v7VMSA registers relating to TEX remap, so it is overly broad.
498 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY,
499 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
500 /* Cache maintenance ops; some of this space may be overridden later. */
501 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
502 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
503 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
504 REGINFO_SENTINEL
507 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
508 /* Not all pre-v6 cores implemented this WFI, so this is slightly
509 * over-broad.
511 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
512 .access = PL1_W, .type = ARM_CP_WFI },
513 REGINFO_SENTINEL
516 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
517 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
518 * is UNPREDICTABLE; we choose to NOP as most implementations do).
520 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
521 .access = PL1_W, .type = ARM_CP_WFI },
522 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
523 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
524 * OMAPCP will override this space.
526 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
527 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
528 .resetvalue = 0 },
529 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
530 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
531 .resetvalue = 0 },
532 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
533 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
534 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
535 .resetvalue = 0 },
536 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
537 * implementing it as RAZ means the "debug architecture version" bits
538 * will read as a reserved value, which should cause Linux to not try
539 * to use the debug hardware.
541 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
542 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
543 /* MMU TLB control. Note that the wildcarding means we cover not just
544 * the unified TLB ops but also the dside/iside/inner-shareable variants.
546 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
547 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
548 .type = ARM_CP_NO_RAW },
549 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
550 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
551 .type = ARM_CP_NO_RAW },
552 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
553 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
554 .type = ARM_CP_NO_RAW },
555 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
556 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
557 .type = ARM_CP_NO_RAW },
558 REGINFO_SENTINEL
561 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
562 uint64_t value)
564 uint32_t mask = 0;
566 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
567 if (!arm_feature(env, ARM_FEATURE_V8)) {
568 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
569 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
570 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
572 if (arm_feature(env, ARM_FEATURE_VFP)) {
573 /* VFP coprocessor: cp10 & cp11 [23:20] */
574 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
576 if (!arm_feature(env, ARM_FEATURE_NEON)) {
577 /* ASEDIS [31] bit is RAO/WI */
578 value |= (1 << 31);
581 /* VFPv3 and upwards with NEON implement 32 double precision
582 * registers (D0-D31).
584 if (!arm_feature(env, ARM_FEATURE_NEON) ||
585 !arm_feature(env, ARM_FEATURE_VFP3)) {
586 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
587 value |= (1 << 30);
590 value &= mask;
592 env->cp15.c1_coproc = value;
595 static const ARMCPRegInfo v6_cp_reginfo[] = {
596 /* prefetch by MVA in v6, NOP in v7 */
597 { .name = "MVA_prefetch",
598 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
599 .access = PL1_W, .type = ARM_CP_NOP },
600 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
601 .access = PL0_W, .type = ARM_CP_NOP },
602 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
603 .access = PL0_W, .type = ARM_CP_NOP },
604 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
605 .access = PL0_W, .type = ARM_CP_NOP },
606 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
607 .access = PL1_RW,
608 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
609 offsetof(CPUARMState, cp15.ifar_ns) },
610 .resetvalue = 0, },
611 /* Watchpoint Fault Address Register : should actually only be present
612 * for 1136, 1176, 11MPCore.
614 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
615 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
616 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
617 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2,
618 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc),
619 .resetvalue = 0, .writefn = cpacr_write },
620 REGINFO_SENTINEL
623 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri)
625 /* Performance monitor registers user accessibility is controlled
626 * by PMUSERENR.
628 if (arm_current_el(env) == 0 && !env->cp15.c9_pmuserenr) {
629 return CP_ACCESS_TRAP;
631 return CP_ACCESS_OK;
634 #ifndef CONFIG_USER_ONLY
636 static inline bool arm_ccnt_enabled(CPUARMState *env)
638 /* This does not support checking PMCCFILTR_EL0 register */
640 if (!(env->cp15.c9_pmcr & PMCRE)) {
641 return false;
644 return true;
647 void pmccntr_sync(CPUARMState *env)
649 uint64_t temp_ticks;
651 temp_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
652 get_ticks_per_sec(), 1000000);
654 if (env->cp15.c9_pmcr & PMCRD) {
655 /* Increment once every 64 processor clock cycles */
656 temp_ticks /= 64;
659 if (arm_ccnt_enabled(env)) {
660 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
664 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
665 uint64_t value)
667 pmccntr_sync(env);
669 if (value & PMCRC) {
670 /* The counter has been reset */
671 env->cp15.c15_ccnt = 0;
674 /* only the DP, X, D and E bits are writable */
675 env->cp15.c9_pmcr &= ~0x39;
676 env->cp15.c9_pmcr |= (value & 0x39);
678 pmccntr_sync(env);
681 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
683 uint64_t total_ticks;
685 if (!arm_ccnt_enabled(env)) {
686 /* Counter is disabled, do not change value */
687 return env->cp15.c15_ccnt;
690 total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
691 get_ticks_per_sec(), 1000000);
693 if (env->cp15.c9_pmcr & PMCRD) {
694 /* Increment once every 64 processor clock cycles */
695 total_ticks /= 64;
697 return total_ticks - env->cp15.c15_ccnt;
700 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
701 uint64_t value)
703 uint64_t total_ticks;
705 if (!arm_ccnt_enabled(env)) {
706 /* Counter is disabled, set the absolute value */
707 env->cp15.c15_ccnt = value;
708 return;
711 total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
712 get_ticks_per_sec(), 1000000);
714 if (env->cp15.c9_pmcr & PMCRD) {
715 /* Increment once every 64 processor clock cycles */
716 total_ticks /= 64;
718 env->cp15.c15_ccnt = total_ticks - value;
721 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
722 uint64_t value)
724 uint64_t cur_val = pmccntr_read(env, NULL);
726 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
729 #else /* CONFIG_USER_ONLY */
731 void pmccntr_sync(CPUARMState *env)
735 #endif
737 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
738 uint64_t value)
740 pmccntr_sync(env);
741 env->cp15.pmccfiltr_el0 = value & 0x7E000000;
742 pmccntr_sync(env);
745 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
746 uint64_t value)
748 value &= (1 << 31);
749 env->cp15.c9_pmcnten |= value;
752 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
753 uint64_t value)
755 value &= (1 << 31);
756 env->cp15.c9_pmcnten &= ~value;
759 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
760 uint64_t value)
762 env->cp15.c9_pmovsr &= ~value;
765 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
766 uint64_t value)
768 env->cp15.c9_pmxevtyper = value & 0xff;
771 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
772 uint64_t value)
774 env->cp15.c9_pmuserenr = value & 1;
777 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
778 uint64_t value)
780 /* We have no event counters so only the C bit can be changed */
781 value &= (1 << 31);
782 env->cp15.c9_pminten |= value;
785 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
786 uint64_t value)
788 value &= (1 << 31);
789 env->cp15.c9_pminten &= ~value;
792 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
793 uint64_t value)
795 /* Note that even though the AArch64 view of this register has bits
796 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
797 * architectural requirements for bits which are RES0 only in some
798 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
799 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
801 raw_write(env, ri, value & ~0x1FULL);
804 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
806 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
807 * For bits that vary between AArch32/64, code needs to check the
808 * current execution mode before directly using the feature bit.
810 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
812 if (!arm_feature(env, ARM_FEATURE_EL2)) {
813 valid_mask &= ~SCR_HCE;
815 /* On ARMv7, SMD (or SCD as it is called in v7) is only
816 * supported if EL2 exists. The bit is UNK/SBZP when
817 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
818 * when EL2 is unavailable.
820 if (arm_feature(env, ARM_FEATURE_V7)) {
821 valid_mask &= ~SCR_SMD;
825 /* Clear all-context RES0 bits. */
826 value &= valid_mask;
827 raw_write(env, ri, value);
830 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
832 ARMCPU *cpu = arm_env_get_cpu(env);
834 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
835 * bank
837 uint32_t index = A32_BANKED_REG_GET(env, csselr,
838 ri->secure & ARM_CP_SECSTATE_S);
840 return cpu->ccsidr[index];
843 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
844 uint64_t value)
846 raw_write(env, ri, value & 0xf);
849 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
851 CPUState *cs = ENV_GET_CPU(env);
852 uint64_t ret = 0;
854 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
855 ret |= CPSR_I;
857 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
858 ret |= CPSR_F;
860 /* External aborts are not possible in QEMU so A bit is always clear */
861 return ret;
864 static const ARMCPRegInfo v7_cp_reginfo[] = {
865 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
866 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
867 .access = PL1_W, .type = ARM_CP_NOP },
868 /* Performance monitors are implementation defined in v7,
869 * but with an ARM recommended set of registers, which we
870 * follow (although we don't actually implement any counters)
872 * Performance registers fall into three categories:
873 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
874 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
875 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
876 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
877 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
879 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
880 .access = PL0_RW, .type = ARM_CP_ALIAS,
881 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
882 .writefn = pmcntenset_write,
883 .accessfn = pmreg_access,
884 .raw_writefn = raw_write },
885 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
886 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
887 .access = PL0_RW, .accessfn = pmreg_access,
888 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
889 .writefn = pmcntenset_write, .raw_writefn = raw_write },
890 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
891 .access = PL0_RW,
892 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
893 .accessfn = pmreg_access,
894 .writefn = pmcntenclr_write,
895 .type = ARM_CP_ALIAS },
896 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
897 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
898 .access = PL0_RW, .accessfn = pmreg_access,
899 .type = ARM_CP_ALIAS,
900 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
901 .writefn = pmcntenclr_write },
902 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
903 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
904 .accessfn = pmreg_access,
905 .writefn = pmovsr_write,
906 .raw_writefn = raw_write },
907 /* Unimplemented so WI. */
908 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
909 .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
910 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
911 * We choose to RAZ/WI.
913 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
914 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
915 .accessfn = pmreg_access },
916 #ifndef CONFIG_USER_ONLY
917 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
918 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
919 .readfn = pmccntr_read, .writefn = pmccntr_write32,
920 .accessfn = pmreg_access },
921 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
922 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
923 .access = PL0_RW, .accessfn = pmreg_access,
924 .type = ARM_CP_IO,
925 .readfn = pmccntr_read, .writefn = pmccntr_write, },
926 #endif
927 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
928 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
929 .writefn = pmccfiltr_write,
930 .access = PL0_RW, .accessfn = pmreg_access,
931 .type = ARM_CP_IO,
932 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
933 .resetvalue = 0, },
934 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
935 .access = PL0_RW,
936 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
937 .accessfn = pmreg_access, .writefn = pmxevtyper_write,
938 .raw_writefn = raw_write },
939 /* Unimplemented, RAZ/WI. */
940 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
941 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
942 .accessfn = pmreg_access },
943 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
944 .access = PL0_R | PL1_RW,
945 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
946 .resetvalue = 0,
947 .writefn = pmuserenr_write, .raw_writefn = raw_write },
948 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
949 .access = PL1_RW,
950 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
951 .resetvalue = 0,
952 .writefn = pmintenset_write, .raw_writefn = raw_write },
953 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
954 .access = PL1_RW, .type = ARM_CP_ALIAS,
955 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
956 .resetvalue = 0, .writefn = pmintenclr_write, },
957 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
958 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
959 .access = PL1_RW, .writefn = vbar_write,
960 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
961 offsetof(CPUARMState, cp15.vbar_ns) },
962 .resetvalue = 0 },
963 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
964 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
965 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
966 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
967 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
968 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
969 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
970 offsetof(CPUARMState, cp15.csselr_ns) } },
971 /* Auxiliary ID register: this actually has an IMPDEF value but for now
972 * just RAZ for all cores:
974 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
975 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
976 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
977 /* Auxiliary fault status registers: these also are IMPDEF, and we
978 * choose to RAZ/WI for all cores.
980 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
981 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
982 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
983 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
984 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
985 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
986 /* MAIR can just read-as-written because we don't implement caches
987 * and so don't need to care about memory attributes.
989 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
990 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
991 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
992 .resetvalue = 0 },
993 /* For non-long-descriptor page tables these are PRRR and NMRR;
994 * regardless they still act as reads-as-written for QEMU.
995 * The override is necessary because of the overly-broad TLB_LOCKDOWN
996 * definition.
998 /* MAIR0/1 are defined separately from their 64-bit counterpart which
999 * allows them to assign the correct fieldoffset based on the endianness
1000 * handled in the field definitions.
1002 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE,
1003 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1004 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1005 offsetof(CPUARMState, cp15.mair0_ns) },
1006 .resetfn = arm_cp_reset_ignore },
1007 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE,
1008 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1009 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1010 offsetof(CPUARMState, cp15.mair1_ns) },
1011 .resetfn = arm_cp_reset_ignore },
1012 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1013 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1014 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1015 /* 32 bit ITLB invalidates */
1016 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1017 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1018 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1019 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1020 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1021 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1022 /* 32 bit DTLB invalidates */
1023 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1024 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1025 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1026 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1027 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1028 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1029 /* 32 bit TLB invalidates */
1030 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1031 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1032 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1033 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1034 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1035 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1036 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1037 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1038 REGINFO_SENTINEL
1041 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1042 /* 32 bit TLB invalidates, Inner Shareable */
1043 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1044 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1045 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1046 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1047 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1048 .type = ARM_CP_NO_RAW, .access = PL1_W,
1049 .writefn = tlbiasid_is_write },
1050 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1051 .type = ARM_CP_NO_RAW, .access = PL1_W,
1052 .writefn = tlbimvaa_is_write },
1053 REGINFO_SENTINEL
1056 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1057 uint64_t value)
1059 value &= 1;
1060 env->teecr = value;
1063 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri)
1065 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1066 return CP_ACCESS_TRAP;
1068 return CP_ACCESS_OK;
1071 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1072 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1073 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1074 .resetvalue = 0,
1075 .writefn = teecr_write },
1076 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1077 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1078 .accessfn = teehbr_access, .resetvalue = 0 },
1079 REGINFO_SENTINEL
1082 static const ARMCPRegInfo v6k_cp_reginfo[] = {
1083 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1084 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1085 .access = PL0_RW,
1086 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1087 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1088 .access = PL0_RW,
1089 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1090 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1091 .resetfn = arm_cp_reset_ignore },
1092 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1093 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1094 .access = PL0_R|PL1_W,
1095 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1096 .resetvalue = 0},
1097 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1098 .access = PL0_R|PL1_W,
1099 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1100 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1101 .resetfn = arm_cp_reset_ignore },
1102 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1103 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1104 .access = PL1_RW,
1105 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1106 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1107 .access = PL1_RW,
1108 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1109 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1110 .resetvalue = 0 },
1111 REGINFO_SENTINEL
1114 #ifndef CONFIG_USER_ONLY
1116 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri)
1118 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
1119 if (arm_current_el(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) {
1120 return CP_ACCESS_TRAP;
1122 return CP_ACCESS_OK;
1125 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx)
1127 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1128 if (arm_current_el(env) == 0 &&
1129 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1130 return CP_ACCESS_TRAP;
1132 return CP_ACCESS_OK;
1135 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx)
1137 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1138 * EL0[PV]TEN is zero.
1140 if (arm_current_el(env) == 0 &&
1141 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1142 return CP_ACCESS_TRAP;
1144 return CP_ACCESS_OK;
1147 static CPAccessResult gt_pct_access(CPUARMState *env,
1148 const ARMCPRegInfo *ri)
1150 return gt_counter_access(env, GTIMER_PHYS);
1153 static CPAccessResult gt_vct_access(CPUARMState *env,
1154 const ARMCPRegInfo *ri)
1156 return gt_counter_access(env, GTIMER_VIRT);
1159 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
1161 return gt_timer_access(env, GTIMER_PHYS);
1164 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
1166 return gt_timer_access(env, GTIMER_VIRT);
1169 static uint64_t gt_get_countervalue(CPUARMState *env)
1171 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1174 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1176 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1178 if (gt->ctl & 1) {
1179 /* Timer enabled: calculate and set current ISTATUS, irq, and
1180 * reset timer to when ISTATUS next has to change
1182 uint64_t count = gt_get_countervalue(&cpu->env);
1183 /* Note that this must be unsigned 64 bit arithmetic: */
1184 int istatus = count >= gt->cval;
1185 uint64_t nexttick;
1187 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1188 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
1189 (istatus && !(gt->ctl & 2)));
1190 if (istatus) {
1191 /* Next transition is when count rolls back over to zero */
1192 nexttick = UINT64_MAX;
1193 } else {
1194 /* Next transition is when we hit cval */
1195 nexttick = gt->cval;
1197 /* Note that the desired next expiry time might be beyond the
1198 * signed-64-bit range of a QEMUTimer -- in this case we just
1199 * set the timer for as far in the future as possible. When the
1200 * timer expires we will reset the timer for any remaining period.
1202 if (nexttick > INT64_MAX / GTIMER_SCALE) {
1203 nexttick = INT64_MAX / GTIMER_SCALE;
1205 timer_mod(cpu->gt_timer[timeridx], nexttick);
1206 } else {
1207 /* Timer disabled: ISTATUS and timer output always clear */
1208 gt->ctl &= ~4;
1209 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1210 timer_del(cpu->gt_timer[timeridx]);
1214 static void gt_cnt_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1216 ARMCPU *cpu = arm_env_get_cpu(env);
1217 int timeridx = ri->opc1 & 1;
1219 timer_del(cpu->gt_timer[timeridx]);
1222 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1224 return gt_get_countervalue(env);
1227 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1228 uint64_t value)
1230 int timeridx = ri->opc1 & 1;
1232 env->cp15.c14_timer[timeridx].cval = value;
1233 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1236 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1238 int timeridx = ri->crm & 1;
1240 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1241 gt_get_countervalue(env));
1244 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1245 uint64_t value)
1247 int timeridx = ri->crm & 1;
1249 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) +
1250 + sextract64(value, 0, 32);
1251 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1254 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1255 uint64_t value)
1257 ARMCPU *cpu = arm_env_get_cpu(env);
1258 int timeridx = ri->crm & 1;
1259 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1261 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1262 if ((oldval ^ value) & 1) {
1263 /* Enable toggled */
1264 gt_recalc_timer(cpu, timeridx);
1265 } else if ((oldval ^ value) & 2) {
1266 /* IMASK toggled: don't need to recalculate,
1267 * just set the interrupt line based on ISTATUS
1269 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
1270 (oldval & 4) && !(value & 2));
1274 void arm_gt_ptimer_cb(void *opaque)
1276 ARMCPU *cpu = opaque;
1278 gt_recalc_timer(cpu, GTIMER_PHYS);
1281 void arm_gt_vtimer_cb(void *opaque)
1283 ARMCPU *cpu = opaque;
1285 gt_recalc_timer(cpu, GTIMER_VIRT);
1288 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1289 /* Note that CNTFRQ is purely reads-as-written for the benefit
1290 * of software; writing it doesn't actually change the timer frequency.
1291 * Our reset value matches the fixed frequency we implement the timer at.
1293 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1294 .type = ARM_CP_ALIAS,
1295 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1296 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
1297 .resetfn = arm_cp_reset_ignore,
1299 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1300 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1301 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1302 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1303 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
1305 /* overall control: mostly access permissions */
1306 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1307 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1308 .access = PL1_RW,
1309 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1310 .resetvalue = 0,
1312 /* per-timer control */
1313 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1314 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1315 .accessfn = gt_ptimer_access,
1316 .fieldoffset = offsetoflow32(CPUARMState,
1317 cp15.c14_timer[GTIMER_PHYS].ctl),
1318 .resetfn = arm_cp_reset_ignore,
1319 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1321 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1322 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1323 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1324 .accessfn = gt_ptimer_access,
1325 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1326 .resetvalue = 0,
1327 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1329 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1330 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1331 .accessfn = gt_vtimer_access,
1332 .fieldoffset = offsetoflow32(CPUARMState,
1333 cp15.c14_timer[GTIMER_VIRT].ctl),
1334 .resetfn = arm_cp_reset_ignore,
1335 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1337 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1338 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1339 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1340 .accessfn = gt_vtimer_access,
1341 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1342 .resetvalue = 0,
1343 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1345 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1346 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1347 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1348 .accessfn = gt_ptimer_access,
1349 .readfn = gt_tval_read, .writefn = gt_tval_write,
1351 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1352 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
1353 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1354 .readfn = gt_tval_read, .writefn = gt_tval_write,
1356 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
1357 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1358 .accessfn = gt_vtimer_access,
1359 .readfn = gt_tval_read, .writefn = gt_tval_write,
1361 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1362 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
1363 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1364 .readfn = gt_tval_read, .writefn = gt_tval_write,
1366 /* The counter itself */
1367 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
1368 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1369 .accessfn = gt_pct_access,
1370 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
1372 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
1373 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
1374 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1375 .accessfn = gt_pct_access,
1376 .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
1378 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
1379 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1380 .accessfn = gt_vct_access,
1381 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
1383 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
1384 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
1385 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1386 .accessfn = gt_vct_access,
1387 .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
1389 /* Comparison value, indicating when the timer goes off */
1390 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
1391 .access = PL1_RW | PL0_R,
1392 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1393 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1394 .accessfn = gt_ptimer_access, .resetfn = arm_cp_reset_ignore,
1395 .writefn = gt_cval_write, .raw_writefn = raw_write,
1397 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1398 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
1399 .access = PL1_RW | PL0_R,
1400 .type = ARM_CP_IO,
1401 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1402 .resetvalue = 0, .accessfn = gt_vtimer_access,
1403 .writefn = gt_cval_write, .raw_writefn = raw_write,
1405 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
1406 .access = PL1_RW | PL0_R,
1407 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1408 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1409 .accessfn = gt_vtimer_access, .resetfn = arm_cp_reset_ignore,
1410 .writefn = gt_cval_write, .raw_writefn = raw_write,
1412 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1413 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
1414 .access = PL1_RW | PL0_R,
1415 .type = ARM_CP_IO,
1416 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1417 .resetvalue = 0, .accessfn = gt_vtimer_access,
1418 .writefn = gt_cval_write, .raw_writefn = raw_write,
1420 REGINFO_SENTINEL
1423 #else
1424 /* In user-mode none of the generic timer registers are accessible,
1425 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1426 * so instead just don't register any of them.
1428 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1429 REGINFO_SENTINEL
1432 #endif
1434 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1436 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1437 raw_write(env, ri, value);
1438 } else if (arm_feature(env, ARM_FEATURE_V7)) {
1439 raw_write(env, ri, value & 0xfffff6ff);
1440 } else {
1441 raw_write(env, ri, value & 0xfffff1ff);
1445 #ifndef CONFIG_USER_ONLY
1446 /* get_phys_addr() isn't present for user-mode-only targets */
1448 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri)
1450 if (ri->opc2 & 4) {
1451 /* Other states are only available with TrustZone; in
1452 * a non-TZ implementation these registers don't exist
1453 * at all, which is an Uncategorized trap. This underdecoding
1454 * is safe because the reginfo is NO_RAW.
1456 return CP_ACCESS_TRAP_UNCATEGORIZED;
1458 return CP_ACCESS_OK;
1461 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
1462 int access_type, ARMMMUIdx mmu_idx)
1464 hwaddr phys_addr;
1465 target_ulong page_size;
1466 int prot;
1467 int ret;
1468 uint64_t par64;
1470 ret = get_phys_addr(env, value, access_type, mmu_idx,
1471 &phys_addr, &prot, &page_size);
1472 if (extended_addresses_enabled(env)) {
1473 /* ret is a DFSR/IFSR value for the long descriptor
1474 * translation table format, but with WnR always clear.
1475 * Convert it to a 64-bit PAR.
1477 par64 = (1 << 11); /* LPAE bit always set */
1478 if (ret == 0) {
1479 par64 |= phys_addr & ~0xfffULL;
1480 /* We don't set the ATTR or SH fields in the PAR. */
1481 } else {
1482 par64 |= 1; /* F */
1483 par64 |= (ret & 0x3f) << 1; /* FS */
1484 /* Note that S2WLK and FSTAGE are always zero, because we don't
1485 * implement virtualization and therefore there can't be a stage 2
1486 * fault.
1489 } else {
1490 /* ret is a DFSR/IFSR value for the short descriptor
1491 * translation table format (with WnR always clear).
1492 * Convert it to a 32-bit PAR.
1494 if (ret == 0) {
1495 /* We do not set any attribute bits in the PAR */
1496 if (page_size == (1 << 24)
1497 && arm_feature(env, ARM_FEATURE_V7)) {
1498 par64 = (phys_addr & 0xff000000) | (1 << 1);
1499 } else {
1500 par64 = phys_addr & 0xfffff000;
1502 } else {
1503 par64 = ((ret & (1 << 10)) >> 5) | ((ret & (1 << 12)) >> 6) |
1504 ((ret & 0xf) << 1) | 1;
1507 return par64;
1510 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1512 int access_type = ri->opc2 & 1;
1513 uint64_t par64;
1514 ARMMMUIdx mmu_idx;
1515 int el = arm_current_el(env);
1516 bool secure = arm_is_secure_below_el3(env);
1518 switch (ri->opc2 & 6) {
1519 case 0:
1520 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
1521 switch (el) {
1522 case 3:
1523 mmu_idx = ARMMMUIdx_S1E3;
1524 break;
1525 case 2:
1526 mmu_idx = ARMMMUIdx_S1NSE1;
1527 break;
1528 case 1:
1529 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
1530 break;
1531 default:
1532 g_assert_not_reached();
1534 break;
1535 case 2:
1536 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
1537 switch (el) {
1538 case 3:
1539 mmu_idx = ARMMMUIdx_S1SE0;
1540 break;
1541 case 2:
1542 mmu_idx = ARMMMUIdx_S1NSE0;
1543 break;
1544 case 1:
1545 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
1546 break;
1547 default:
1548 g_assert_not_reached();
1550 break;
1551 case 4:
1552 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
1553 mmu_idx = ARMMMUIdx_S12NSE1;
1554 break;
1555 case 6:
1556 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
1557 mmu_idx = ARMMMUIdx_S12NSE0;
1558 break;
1559 default:
1560 g_assert_not_reached();
1563 par64 = do_ats_write(env, value, access_type, mmu_idx);
1565 A32_BANKED_CURRENT_REG_SET(env, par, par64);
1568 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
1569 uint64_t value)
1571 int access_type = ri->opc2 & 1;
1572 ARMMMUIdx mmu_idx;
1573 int secure = arm_is_secure_below_el3(env);
1575 switch (ri->opc2 & 6) {
1576 case 0:
1577 switch (ri->opc1) {
1578 case 0: /* AT S1E1R, AT S1E1W */
1579 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
1580 break;
1581 case 4: /* AT S1E2R, AT S1E2W */
1582 mmu_idx = ARMMMUIdx_S1E2;
1583 break;
1584 case 6: /* AT S1E3R, AT S1E3W */
1585 mmu_idx = ARMMMUIdx_S1E3;
1586 break;
1587 default:
1588 g_assert_not_reached();
1590 break;
1591 case 2: /* AT S1E0R, AT S1E0W */
1592 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
1593 break;
1594 case 4: /* AT S12E1R, AT S12E1W */
1595 mmu_idx = ARMMMUIdx_S12NSE1;
1596 break;
1597 case 6: /* AT S12E0R, AT S12E0W */
1598 mmu_idx = ARMMMUIdx_S12NSE0;
1599 break;
1600 default:
1601 g_assert_not_reached();
1604 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
1606 #endif
1608 static const ARMCPRegInfo vapa_cp_reginfo[] = {
1609 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
1610 .access = PL1_RW, .resetvalue = 0,
1611 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
1612 offsetoflow32(CPUARMState, cp15.par_ns) },
1613 .writefn = par_write },
1614 #ifndef CONFIG_USER_ONLY
1615 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
1616 .access = PL1_W, .accessfn = ats_access,
1617 .writefn = ats_write, .type = ARM_CP_NO_RAW },
1618 #endif
1619 REGINFO_SENTINEL
1622 /* Return basic MPU access permission bits. */
1623 static uint32_t simple_mpu_ap_bits(uint32_t val)
1625 uint32_t ret;
1626 uint32_t mask;
1627 int i;
1628 ret = 0;
1629 mask = 3;
1630 for (i = 0; i < 16; i += 2) {
1631 ret |= (val >> i) & mask;
1632 mask <<= 2;
1634 return ret;
1637 /* Pad basic MPU access permission bits to extended format. */
1638 static uint32_t extended_mpu_ap_bits(uint32_t val)
1640 uint32_t ret;
1641 uint32_t mask;
1642 int i;
1643 ret = 0;
1644 mask = 3;
1645 for (i = 0; i < 16; i += 2) {
1646 ret |= (val & mask) << i;
1647 mask <<= 2;
1649 return ret;
1652 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1653 uint64_t value)
1655 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
1658 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1660 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
1663 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1664 uint64_t value)
1666 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
1669 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1671 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
1674 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
1675 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1676 .access = PL1_RW, .type = ARM_CP_ALIAS,
1677 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
1678 .resetvalue = 0,
1679 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
1680 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
1681 .access = PL1_RW, .type = ARM_CP_ALIAS,
1682 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
1683 .resetvalue = 0,
1684 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
1685 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
1686 .access = PL1_RW,
1687 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
1688 .resetvalue = 0, },
1689 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
1690 .access = PL1_RW,
1691 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
1692 .resetvalue = 0, },
1693 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
1694 .access = PL1_RW,
1695 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
1696 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
1697 .access = PL1_RW,
1698 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
1699 /* Protection region base and size registers */
1700 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
1701 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1702 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
1703 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
1704 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1705 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
1706 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
1707 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1708 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
1709 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
1710 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1711 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
1712 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
1713 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1714 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
1715 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
1716 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1717 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
1718 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
1719 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1720 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
1721 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
1722 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1723 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
1724 REGINFO_SENTINEL
1727 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
1728 uint64_t value)
1730 TCR *tcr = raw_ptr(env, ri);
1731 int maskshift = extract32(value, 0, 3);
1733 if (!arm_feature(env, ARM_FEATURE_V8)) {
1734 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
1735 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
1736 * using Long-desciptor translation table format */
1737 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
1738 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
1739 /* In an implementation that includes the Security Extensions
1740 * TTBCR has additional fields PD0 [4] and PD1 [5] for
1741 * Short-descriptor translation table format.
1743 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
1744 } else {
1745 value &= TTBCR_N;
1749 /* Update the masks corresponding to the the TCR bank being written
1750 * Note that we always calculate mask and base_mask, but
1751 * they are only used for short-descriptor tables (ie if EAE is 0);
1752 * for long-descriptor tables the TCR fields are used differently
1753 * and the mask and base_mask values are meaningless.
1755 tcr->raw_tcr = value;
1756 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
1757 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
1760 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1761 uint64_t value)
1763 ARMCPU *cpu = arm_env_get_cpu(env);
1765 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1766 /* With LPAE the TTBCR could result in a change of ASID
1767 * via the TTBCR.A1 bit, so do a TLB flush.
1769 tlb_flush(CPU(cpu), 1);
1771 vmsa_ttbcr_raw_write(env, ri, value);
1774 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1776 TCR *tcr = raw_ptr(env, ri);
1778 /* Reset both the TCR as well as the masks corresponding to the bank of
1779 * the TCR being reset.
1781 tcr->raw_tcr = 0;
1782 tcr->mask = 0;
1783 tcr->base_mask = 0xffffc000u;
1786 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
1787 uint64_t value)
1789 ARMCPU *cpu = arm_env_get_cpu(env);
1790 TCR *tcr = raw_ptr(env, ri);
1792 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
1793 tlb_flush(CPU(cpu), 1);
1794 tcr->raw_tcr = value;
1797 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1798 uint64_t value)
1800 /* 64 bit accesses to the TTBRs can change the ASID and so we
1801 * must flush the TLB.
1803 if (cpreg_field_is_64bit(ri)) {
1804 ARMCPU *cpu = arm_env_get_cpu(env);
1806 tlb_flush(CPU(cpu), 1);
1808 raw_write(env, ri, value);
1811 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
1812 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1813 .access = PL1_RW, .type = ARM_CP_ALIAS,
1814 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
1815 offsetoflow32(CPUARMState, cp15.dfsr_ns) },
1816 .resetfn = arm_cp_reset_ignore, },
1817 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
1818 .access = PL1_RW, .resetvalue = 0,
1819 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
1820 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
1821 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
1822 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
1823 .access = PL1_RW,
1824 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
1825 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
1826 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
1827 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
1828 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
1829 offsetof(CPUARMState, cp15.ttbr0_ns) } },
1830 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
1831 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
1832 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
1833 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
1834 offsetof(CPUARMState, cp15.ttbr1_ns) } },
1835 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
1836 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
1837 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
1838 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
1839 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
1840 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
1841 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
1842 .resetfn = arm_cp_reset_ignore, .raw_writefn = vmsa_ttbcr_raw_write,
1843 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
1844 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
1845 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
1846 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
1847 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
1848 .resetvalue = 0, },
1849 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
1850 .access = PL1_RW, .resetvalue = 0,
1851 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
1852 offsetof(CPUARMState, cp15.dfar_ns) } },
1853 REGINFO_SENTINEL
1856 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
1857 uint64_t value)
1859 env->cp15.c15_ticonfig = value & 0xe7;
1860 /* The OS_TYPE bit in this register changes the reported CPUID! */
1861 env->cp15.c0_cpuid = (value & (1 << 5)) ?
1862 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1865 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
1866 uint64_t value)
1868 env->cp15.c15_threadid = value & 0xffff;
1871 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
1872 uint64_t value)
1874 /* Wait-for-interrupt (deprecated) */
1875 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
1878 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
1879 uint64_t value)
1881 /* On OMAP there are registers indicating the max/min index of dcache lines
1882 * containing a dirty line; cache flush operations have to reset these.
1884 env->cp15.c15_i_max = 0x000;
1885 env->cp15.c15_i_min = 0xff0;
1888 static const ARMCPRegInfo omap_cp_reginfo[] = {
1889 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
1890 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
1891 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
1892 .resetvalue = 0, },
1893 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1894 .access = PL1_RW, .type = ARM_CP_NOP },
1895 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1896 .access = PL1_RW,
1897 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
1898 .writefn = omap_ticonfig_write },
1899 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
1900 .access = PL1_RW,
1901 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
1902 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
1903 .access = PL1_RW, .resetvalue = 0xff0,
1904 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
1905 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
1906 .access = PL1_RW,
1907 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
1908 .writefn = omap_threadid_write },
1909 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
1910 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1911 .type = ARM_CP_NO_RAW,
1912 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
1913 /* TODO: Peripheral port remap register:
1914 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
1915 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
1916 * when MMU is off.
1918 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
1919 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
1920 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
1921 .writefn = omap_cachemaint_write },
1922 { .name = "C9", .cp = 15, .crn = 9,
1923 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
1924 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
1925 REGINFO_SENTINEL
1928 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1929 uint64_t value)
1931 env->cp15.c15_cpar = value & 0x3fff;
1934 static const ARMCPRegInfo xscale_cp_reginfo[] = {
1935 { .name = "XSCALE_CPAR",
1936 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1937 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
1938 .writefn = xscale_cpar_write, },
1939 { .name = "XSCALE_AUXCR",
1940 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
1941 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
1942 .resetvalue = 0, },
1943 /* XScale specific cache-lockdown: since we have no cache we NOP these
1944 * and hope the guest does not really rely on cache behaviour.
1946 { .name = "XSCALE_LOCK_ICACHE_LINE",
1947 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1948 .access = PL1_W, .type = ARM_CP_NOP },
1949 { .name = "XSCALE_UNLOCK_ICACHE",
1950 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1951 .access = PL1_W, .type = ARM_CP_NOP },
1952 { .name = "XSCALE_DCACHE_LOCK",
1953 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
1954 .access = PL1_RW, .type = ARM_CP_NOP },
1955 { .name = "XSCALE_UNLOCK_DCACHE",
1956 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
1957 .access = PL1_W, .type = ARM_CP_NOP },
1958 REGINFO_SENTINEL
1961 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
1962 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
1963 * implementation of this implementation-defined space.
1964 * Ideally this should eventually disappear in favour of actually
1965 * implementing the correct behaviour for all cores.
1967 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
1968 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1969 .access = PL1_RW,
1970 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
1971 .resetvalue = 0 },
1972 REGINFO_SENTINEL
1975 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
1976 /* Cache status: RAZ because we have no cache so it's always clean */
1977 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
1978 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
1979 .resetvalue = 0 },
1980 REGINFO_SENTINEL
1983 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
1984 /* We never have a a block transfer operation in progress */
1985 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
1986 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
1987 .resetvalue = 0 },
1988 /* The cache ops themselves: these all NOP for QEMU */
1989 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
1990 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1991 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
1992 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1993 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
1994 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1995 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
1996 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1997 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
1998 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1999 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2000 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2001 REGINFO_SENTINEL
2004 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2005 /* The cache test-and-clean instructions always return (1 << 30)
2006 * to indicate that there are no dirty cache lines.
2008 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2009 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2010 .resetvalue = (1 << 30) },
2011 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2012 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2013 .resetvalue = (1 << 30) },
2014 REGINFO_SENTINEL
2017 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2018 /* Ignore ReadBuffer accesses */
2019 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2020 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2021 .access = PL1_RW, .resetvalue = 0,
2022 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2023 REGINFO_SENTINEL
2026 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2028 CPUState *cs = CPU(arm_env_get_cpu(env));
2029 uint32_t mpidr = cs->cpu_index;
2030 /* We don't support setting cluster ID ([8..11]) (known as Aff1
2031 * in later ARM ARM versions), or any of the higher affinity level fields,
2032 * so these bits always RAZ.
2034 if (arm_feature(env, ARM_FEATURE_V7MP)) {
2035 mpidr |= (1U << 31);
2036 /* Cores which are uniprocessor (non-coherent)
2037 * but still implement the MP extensions set
2038 * bit 30. (For instance, A9UP.) However we do
2039 * not currently model any of those cores.
2042 return mpidr;
2045 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2046 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2047 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2048 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
2049 REGINFO_SENTINEL
2052 static const ARMCPRegInfo lpae_cp_reginfo[] = {
2053 /* NOP AMAIR0/1: the override is because these clash with the rather
2054 * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
2056 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2057 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
2058 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
2059 .resetvalue = 0 },
2060 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2061 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
2062 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
2063 .resetvalue = 0 },
2064 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
2065 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2066 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2067 offsetof(CPUARMState, cp15.par_ns)} },
2068 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
2069 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2070 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2071 offsetof(CPUARMState, cp15.ttbr0_ns) },
2072 .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore },
2073 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
2074 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2075 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2076 offsetof(CPUARMState, cp15.ttbr1_ns) },
2077 .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore },
2078 REGINFO_SENTINEL
2081 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2083 return vfp_get_fpcr(env);
2086 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2087 uint64_t value)
2089 vfp_set_fpcr(env, value);
2092 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2094 return vfp_get_fpsr(env);
2097 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2098 uint64_t value)
2100 vfp_set_fpsr(env, value);
2103 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri)
2105 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
2106 return CP_ACCESS_TRAP;
2108 return CP_ACCESS_OK;
2111 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
2112 uint64_t value)
2114 env->daif = value & PSTATE_DAIF;
2117 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
2118 const ARMCPRegInfo *ri)
2120 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2121 * SCTLR_EL1.UCI is set.
2123 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
2124 return CP_ACCESS_TRAP;
2126 return CP_ACCESS_OK;
2129 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2130 * Page D4-1736 (DDI0487A.b)
2133 static void tlbi_aa64_va_write(CPUARMState *env, const ARMCPRegInfo *ri,
2134 uint64_t value)
2136 /* Invalidate by VA (AArch64 version) */
2137 ARMCPU *cpu = arm_env_get_cpu(env);
2138 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2140 tlb_flush_page(CPU(cpu), pageaddr);
2143 static void tlbi_aa64_vaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
2144 uint64_t value)
2146 /* Invalidate by VA, all ASIDs (AArch64 version) */
2147 ARMCPU *cpu = arm_env_get_cpu(env);
2148 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2150 tlb_flush_page(CPU(cpu), pageaddr);
2153 static void tlbi_aa64_asid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2154 uint64_t value)
2156 /* Invalidate by ASID (AArch64 version) */
2157 ARMCPU *cpu = arm_env_get_cpu(env);
2158 int asid = extract64(value, 48, 16);
2159 tlb_flush(CPU(cpu), asid == 0);
2162 static void tlbi_aa64_va_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2163 uint64_t value)
2165 CPUState *other_cs;
2166 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2168 CPU_FOREACH(other_cs) {
2169 tlb_flush_page(other_cs, pageaddr);
2173 static void tlbi_aa64_vaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2174 uint64_t value)
2176 CPUState *other_cs;
2177 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2179 CPU_FOREACH(other_cs) {
2180 tlb_flush_page(other_cs, pageaddr);
2184 static void tlbi_aa64_asid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2185 uint64_t value)
2187 CPUState *other_cs;
2188 int asid = extract64(value, 48, 16);
2190 CPU_FOREACH(other_cs) {
2191 tlb_flush(other_cs, asid == 0);
2195 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri)
2197 /* We don't implement EL2, so the only control on DC ZVA is the
2198 * bit in the SCTLR which can prohibit access for EL0.
2200 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
2201 return CP_ACCESS_TRAP;
2203 return CP_ACCESS_OK;
2206 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
2208 ARMCPU *cpu = arm_env_get_cpu(env);
2209 int dzp_bit = 1 << 4;
2211 /* DZP indicates whether DC ZVA access is allowed */
2212 if (aa64_zva_access(env, NULL) == CP_ACCESS_OK) {
2213 dzp_bit = 0;
2215 return cpu->dcz_blocksize | dzp_bit;
2218 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
2220 if (!(env->pstate & PSTATE_SP)) {
2221 /* Access to SP_EL0 is undefined if it's being used as
2222 * the stack pointer.
2224 return CP_ACCESS_TRAP_UNCATEGORIZED;
2226 return CP_ACCESS_OK;
2229 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
2231 return env->pstate & PSTATE_SP;
2234 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
2236 update_spsel(env, val);
2239 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2240 uint64_t value)
2242 ARMCPU *cpu = arm_env_get_cpu(env);
2244 if (raw_read(env, ri) == value) {
2245 /* Skip the TLB flush if nothing actually changed; Linux likes
2246 * to do a lot of pointless SCTLR writes.
2248 return;
2251 raw_write(env, ri, value);
2252 /* ??? Lots of these bits are not implemented. */
2253 /* This may enable/disable the MMU, so do a TLB flush. */
2254 tlb_flush(CPU(cpu), 1);
2257 static const ARMCPRegInfo v8_cp_reginfo[] = {
2258 /* Minimal set of EL0-visible registers. This will need to be expanded
2259 * significantly for system emulation of AArch64 CPUs.
2261 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
2262 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
2263 .access = PL0_RW, .type = ARM_CP_NZCV },
2264 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
2265 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
2266 .type = ARM_CP_NO_RAW,
2267 .access = PL0_RW, .accessfn = aa64_daif_access,
2268 .fieldoffset = offsetof(CPUARMState, daif),
2269 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
2270 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
2271 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
2272 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
2273 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
2274 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
2275 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
2276 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
2277 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
2278 .access = PL0_R, .type = ARM_CP_NO_RAW,
2279 .readfn = aa64_dczid_read },
2280 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
2281 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
2282 .access = PL0_W, .type = ARM_CP_DC_ZVA,
2283 #ifndef CONFIG_USER_ONLY
2284 /* Avoid overhead of an access check that always passes in user-mode */
2285 .accessfn = aa64_zva_access,
2286 #endif
2288 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
2289 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
2290 .access = PL1_R, .type = ARM_CP_CURRENTEL },
2291 /* Cache ops: all NOPs since we don't emulate caches */
2292 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
2293 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
2294 .access = PL1_W, .type = ARM_CP_NOP },
2295 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
2296 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
2297 .access = PL1_W, .type = ARM_CP_NOP },
2298 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
2299 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
2300 .access = PL0_W, .type = ARM_CP_NOP,
2301 .accessfn = aa64_cacheop_access },
2302 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
2303 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
2304 .access = PL1_W, .type = ARM_CP_NOP },
2305 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
2306 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
2307 .access = PL1_W, .type = ARM_CP_NOP },
2308 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
2309 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
2310 .access = PL0_W, .type = ARM_CP_NOP,
2311 .accessfn = aa64_cacheop_access },
2312 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
2313 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
2314 .access = PL1_W, .type = ARM_CP_NOP },
2315 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
2316 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
2317 .access = PL0_W, .type = ARM_CP_NOP,
2318 .accessfn = aa64_cacheop_access },
2319 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
2320 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
2321 .access = PL0_W, .type = ARM_CP_NOP,
2322 .accessfn = aa64_cacheop_access },
2323 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
2324 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
2325 .access = PL1_W, .type = ARM_CP_NOP },
2326 /* TLBI operations */
2327 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
2328 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2329 .access = PL1_W, .type = ARM_CP_NO_RAW,
2330 .writefn = tlbiall_is_write },
2331 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
2332 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2333 .access = PL1_W, .type = ARM_CP_NO_RAW,
2334 .writefn = tlbi_aa64_va_is_write },
2335 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
2336 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2337 .access = PL1_W, .type = ARM_CP_NO_RAW,
2338 .writefn = tlbi_aa64_asid_is_write },
2339 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
2340 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2341 .access = PL1_W, .type = ARM_CP_NO_RAW,
2342 .writefn = tlbi_aa64_vaa_is_write },
2343 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
2344 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
2345 .access = PL1_W, .type = ARM_CP_NO_RAW,
2346 .writefn = tlbi_aa64_va_is_write },
2347 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
2348 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
2349 .access = PL1_W, .type = ARM_CP_NO_RAW,
2350 .writefn = tlbi_aa64_vaa_is_write },
2351 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
2352 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2353 .access = PL1_W, .type = ARM_CP_NO_RAW,
2354 .writefn = tlbiall_write },
2355 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
2356 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2357 .access = PL1_W, .type = ARM_CP_NO_RAW,
2358 .writefn = tlbi_aa64_va_write },
2359 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
2360 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2361 .access = PL1_W, .type = ARM_CP_NO_RAW,
2362 .writefn = tlbi_aa64_asid_write },
2363 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
2364 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2365 .access = PL1_W, .type = ARM_CP_NO_RAW,
2366 .writefn = tlbi_aa64_vaa_write },
2367 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
2368 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
2369 .access = PL1_W, .type = ARM_CP_NO_RAW,
2370 .writefn = tlbi_aa64_va_write },
2371 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
2372 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
2373 .access = PL1_W, .type = ARM_CP_NO_RAW,
2374 .writefn = tlbi_aa64_vaa_write },
2375 #ifndef CONFIG_USER_ONLY
2376 /* 64 bit address translation operations */
2377 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
2378 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
2379 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2380 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
2381 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
2382 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2383 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
2384 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
2385 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2386 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
2387 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
2388 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2389 #endif
2390 /* TLB invalidate last level of translation table walk */
2391 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
2392 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
2393 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
2394 .type = ARM_CP_NO_RAW, .access = PL1_W,
2395 .writefn = tlbimvaa_is_write },
2396 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
2397 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2398 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
2399 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
2400 /* 32 bit cache operations */
2401 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
2402 .type = ARM_CP_NOP, .access = PL1_W },
2403 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
2404 .type = ARM_CP_NOP, .access = PL1_W },
2405 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
2406 .type = ARM_CP_NOP, .access = PL1_W },
2407 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
2408 .type = ARM_CP_NOP, .access = PL1_W },
2409 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
2410 .type = ARM_CP_NOP, .access = PL1_W },
2411 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
2412 .type = ARM_CP_NOP, .access = PL1_W },
2413 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
2414 .type = ARM_CP_NOP, .access = PL1_W },
2415 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
2416 .type = ARM_CP_NOP, .access = PL1_W },
2417 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
2418 .type = ARM_CP_NOP, .access = PL1_W },
2419 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
2420 .type = ARM_CP_NOP, .access = PL1_W },
2421 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
2422 .type = ARM_CP_NOP, .access = PL1_W },
2423 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
2424 .type = ARM_CP_NOP, .access = PL1_W },
2425 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
2426 .type = ARM_CP_NOP, .access = PL1_W },
2427 /* MMU Domain access control / MPU write buffer control */
2428 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
2429 .access = PL1_RW, .resetvalue = 0,
2430 .writefn = dacr_write, .raw_writefn = raw_write,
2431 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
2432 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
2433 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
2434 .type = ARM_CP_ALIAS,
2435 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
2436 .access = PL1_RW,
2437 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
2438 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
2439 .type = ARM_CP_ALIAS,
2440 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
2441 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[0]) },
2442 /* We rely on the access checks not allowing the guest to write to the
2443 * state field when SPSel indicates that it's being used as the stack
2444 * pointer.
2446 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
2447 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
2448 .access = PL1_RW, .accessfn = sp_el0_access,
2449 .type = ARM_CP_ALIAS,
2450 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
2451 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
2452 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
2453 .access = PL2_RW, .type = ARM_CP_ALIAS,
2454 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
2455 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
2456 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
2457 .type = ARM_CP_NO_RAW,
2458 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
2459 REGINFO_SENTINEL
2462 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
2463 static const ARMCPRegInfo v8_el3_no_el2_cp_reginfo[] = {
2464 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
2465 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
2466 .access = PL2_RW,
2467 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
2468 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
2469 .type = ARM_CP_NO_RAW,
2470 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
2471 .access = PL2_RW,
2472 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
2473 REGINFO_SENTINEL
2476 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2478 ARMCPU *cpu = arm_env_get_cpu(env);
2479 uint64_t valid_mask = HCR_MASK;
2481 if (arm_feature(env, ARM_FEATURE_EL3)) {
2482 valid_mask &= ~HCR_HCD;
2483 } else {
2484 valid_mask &= ~HCR_TSC;
2487 /* Clear RES0 bits. */
2488 value &= valid_mask;
2490 /* These bits change the MMU setup:
2491 * HCR_VM enables stage 2 translation
2492 * HCR_PTW forbids certain page-table setups
2493 * HCR_DC Disables stage1 and enables stage2 translation
2495 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
2496 tlb_flush(CPU(cpu), 1);
2498 raw_write(env, ri, value);
2501 static const ARMCPRegInfo v8_el2_cp_reginfo[] = {
2502 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
2503 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
2504 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
2505 .writefn = hcr_write },
2506 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
2507 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
2508 .access = PL2_RW, .resetvalue = 0,
2509 .writefn = dacr_write, .raw_writefn = raw_write,
2510 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
2511 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
2512 .type = ARM_CP_ALIAS,
2513 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
2514 .access = PL2_RW,
2515 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
2516 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
2517 .type = ARM_CP_ALIAS,
2518 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
2519 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
2520 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
2521 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
2522 .access = PL2_RW, .resetvalue = 0,
2523 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
2524 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
2525 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
2526 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
2527 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
2528 .type = ARM_CP_ALIAS,
2529 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
2530 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[6]) },
2531 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
2532 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
2533 .access = PL2_RW, .writefn = vbar_write,
2534 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
2535 .resetvalue = 0 },
2536 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
2537 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
2538 .access = PL3_RW, .type = ARM_CP_ALIAS,
2539 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
2540 REGINFO_SENTINEL
2543 static const ARMCPRegInfo el3_cp_reginfo[] = {
2544 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
2545 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
2546 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
2547 .resetvalue = 0, .writefn = scr_write },
2548 { .name = "SCR", .type = ARM_CP_ALIAS,
2549 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
2550 .access = PL3_RW, .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
2551 .resetfn = arm_cp_reset_ignore, .writefn = scr_write },
2552 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
2553 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
2554 .access = PL3_RW, .resetvalue = 0,
2555 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
2556 { .name = "SDER",
2557 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
2558 .access = PL3_RW, .resetvalue = 0,
2559 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
2560 /* TODO: Implement NSACR trapping of secure EL1 accesses to EL3 */
2561 { .name = "NSACR", .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
2562 .access = PL3_W | PL1_R, .resetvalue = 0,
2563 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) },
2564 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
2565 .access = PL3_RW, .writefn = vbar_write, .resetvalue = 0,
2566 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
2567 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
2568 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
2569 .access = PL3_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
2570 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]) },
2571 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
2572 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
2573 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2574 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
2575 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
2576 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
2577 .access = PL3_RW, .writefn = vmsa_tcr_el1_write,
2578 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2579 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
2580 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
2581 .type = ARM_CP_ALIAS,
2582 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
2583 .access = PL3_RW,
2584 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
2585 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
2586 .type = ARM_CP_ALIAS,
2587 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
2588 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
2589 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
2590 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
2591 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
2592 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
2593 .type = ARM_CP_ALIAS,
2594 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
2595 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[7]) },
2596 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
2597 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
2598 .access = PL3_RW, .writefn = vbar_write,
2599 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
2600 .resetvalue = 0 },
2601 REGINFO_SENTINEL
2604 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
2606 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
2607 * but the AArch32 CTR has its own reginfo struct)
2609 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
2610 return CP_ACCESS_TRAP;
2612 return CP_ACCESS_OK;
2615 static const ARMCPRegInfo debug_cp_reginfo[] = {
2616 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
2617 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
2618 * unlike DBGDRAR it is never accessible from EL0.
2619 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
2620 * accessor.
2622 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
2623 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2624 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
2625 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
2626 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2627 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2628 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2629 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
2630 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
2631 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
2632 .access = PL1_RW,
2633 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
2634 .resetvalue = 0 },
2635 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
2636 * We don't implement the configurable EL0 access.
2638 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
2639 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
2640 .type = ARM_CP_ALIAS,
2641 .access = PL1_R,
2642 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
2643 .resetfn = arm_cp_reset_ignore },
2644 /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */
2645 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
2646 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
2647 .access = PL1_W, .type = ARM_CP_NOP },
2648 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
2649 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
2650 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
2651 .access = PL1_RW, .type = ARM_CP_NOP },
2652 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
2653 * implement vector catch debug events yet.
2655 { .name = "DBGVCR",
2656 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
2657 .access = PL1_RW, .type = ARM_CP_NOP },
2658 REGINFO_SENTINEL
2661 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
2662 /* 64 bit access versions of the (dummy) debug registers */
2663 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
2664 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
2665 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
2666 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
2667 REGINFO_SENTINEL
2670 void hw_watchpoint_update(ARMCPU *cpu, int n)
2672 CPUARMState *env = &cpu->env;
2673 vaddr len = 0;
2674 vaddr wvr = env->cp15.dbgwvr[n];
2675 uint64_t wcr = env->cp15.dbgwcr[n];
2676 int mask;
2677 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
2679 if (env->cpu_watchpoint[n]) {
2680 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
2681 env->cpu_watchpoint[n] = NULL;
2684 if (!extract64(wcr, 0, 1)) {
2685 /* E bit clear : watchpoint disabled */
2686 return;
2689 switch (extract64(wcr, 3, 2)) {
2690 case 0:
2691 /* LSC 00 is reserved and must behave as if the wp is disabled */
2692 return;
2693 case 1:
2694 flags |= BP_MEM_READ;
2695 break;
2696 case 2:
2697 flags |= BP_MEM_WRITE;
2698 break;
2699 case 3:
2700 flags |= BP_MEM_ACCESS;
2701 break;
2704 /* Attempts to use both MASK and BAS fields simultaneously are
2705 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
2706 * thus generating a watchpoint for every byte in the masked region.
2708 mask = extract64(wcr, 24, 4);
2709 if (mask == 1 || mask == 2) {
2710 /* Reserved values of MASK; we must act as if the mask value was
2711 * some non-reserved value, or as if the watchpoint were disabled.
2712 * We choose the latter.
2714 return;
2715 } else if (mask) {
2716 /* Watchpoint covers an aligned area up to 2GB in size */
2717 len = 1ULL << mask;
2718 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
2719 * whether the watchpoint fires when the unmasked bits match; we opt
2720 * to generate the exceptions.
2722 wvr &= ~(len - 1);
2723 } else {
2724 /* Watchpoint covers bytes defined by the byte address select bits */
2725 int bas = extract64(wcr, 5, 8);
2726 int basstart;
2728 if (bas == 0) {
2729 /* This must act as if the watchpoint is disabled */
2730 return;
2733 if (extract64(wvr, 2, 1)) {
2734 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
2735 * ignored, and BAS[3:0] define which bytes to watch.
2737 bas &= 0xf;
2739 /* The BAS bits are supposed to be programmed to indicate a contiguous
2740 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
2741 * we fire for each byte in the word/doubleword addressed by the WVR.
2742 * We choose to ignore any non-zero bits after the first range of 1s.
2744 basstart = ctz32(bas);
2745 len = cto32(bas >> basstart);
2746 wvr += basstart;
2749 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
2750 &env->cpu_watchpoint[n]);
2753 void hw_watchpoint_update_all(ARMCPU *cpu)
2755 int i;
2756 CPUARMState *env = &cpu->env;
2758 /* Completely clear out existing QEMU watchpoints and our array, to
2759 * avoid possible stale entries following migration load.
2761 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
2762 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
2764 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
2765 hw_watchpoint_update(cpu, i);
2769 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2770 uint64_t value)
2772 ARMCPU *cpu = arm_env_get_cpu(env);
2773 int i = ri->crm;
2775 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
2776 * register reads and behaves as if values written are sign extended.
2777 * Bits [1:0] are RES0.
2779 value = sextract64(value, 0, 49) & ~3ULL;
2781 raw_write(env, ri, value);
2782 hw_watchpoint_update(cpu, i);
2785 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2786 uint64_t value)
2788 ARMCPU *cpu = arm_env_get_cpu(env);
2789 int i = ri->crm;
2791 raw_write(env, ri, value);
2792 hw_watchpoint_update(cpu, i);
2795 void hw_breakpoint_update(ARMCPU *cpu, int n)
2797 CPUARMState *env = &cpu->env;
2798 uint64_t bvr = env->cp15.dbgbvr[n];
2799 uint64_t bcr = env->cp15.dbgbcr[n];
2800 vaddr addr;
2801 int bt;
2802 int flags = BP_CPU;
2804 if (env->cpu_breakpoint[n]) {
2805 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
2806 env->cpu_breakpoint[n] = NULL;
2809 if (!extract64(bcr, 0, 1)) {
2810 /* E bit clear : watchpoint disabled */
2811 return;
2814 bt = extract64(bcr, 20, 4);
2816 switch (bt) {
2817 case 4: /* unlinked address mismatch (reserved if AArch64) */
2818 case 5: /* linked address mismatch (reserved if AArch64) */
2819 qemu_log_mask(LOG_UNIMP,
2820 "arm: address mismatch breakpoint types not implemented");
2821 return;
2822 case 0: /* unlinked address match */
2823 case 1: /* linked address match */
2825 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
2826 * we behave as if the register was sign extended. Bits [1:0] are
2827 * RES0. The BAS field is used to allow setting breakpoints on 16
2828 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
2829 * a bp will fire if the addresses covered by the bp and the addresses
2830 * covered by the insn overlap but the insn doesn't start at the
2831 * start of the bp address range. We choose to require the insn and
2832 * the bp to have the same address. The constraints on writing to
2833 * BAS enforced in dbgbcr_write mean we have only four cases:
2834 * 0b0000 => no breakpoint
2835 * 0b0011 => breakpoint on addr
2836 * 0b1100 => breakpoint on addr + 2
2837 * 0b1111 => breakpoint on addr
2838 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
2840 int bas = extract64(bcr, 5, 4);
2841 addr = sextract64(bvr, 0, 49) & ~3ULL;
2842 if (bas == 0) {
2843 return;
2845 if (bas == 0xc) {
2846 addr += 2;
2848 break;
2850 case 2: /* unlinked context ID match */
2851 case 8: /* unlinked VMID match (reserved if no EL2) */
2852 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
2853 qemu_log_mask(LOG_UNIMP,
2854 "arm: unlinked context breakpoint types not implemented");
2855 return;
2856 case 9: /* linked VMID match (reserved if no EL2) */
2857 case 11: /* linked context ID and VMID match (reserved if no EL2) */
2858 case 3: /* linked context ID match */
2859 default:
2860 /* We must generate no events for Linked context matches (unless
2861 * they are linked to by some other bp/wp, which is handled in
2862 * updates for the linking bp/wp). We choose to also generate no events
2863 * for reserved values.
2865 return;
2868 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
2871 void hw_breakpoint_update_all(ARMCPU *cpu)
2873 int i;
2874 CPUARMState *env = &cpu->env;
2876 /* Completely clear out existing QEMU breakpoints and our array, to
2877 * avoid possible stale entries following migration load.
2879 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
2880 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
2882 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
2883 hw_breakpoint_update(cpu, i);
2887 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2888 uint64_t value)
2890 ARMCPU *cpu = arm_env_get_cpu(env);
2891 int i = ri->crm;
2893 raw_write(env, ri, value);
2894 hw_breakpoint_update(cpu, i);
2897 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2898 uint64_t value)
2900 ARMCPU *cpu = arm_env_get_cpu(env);
2901 int i = ri->crm;
2903 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
2904 * copy of BAS[0].
2906 value = deposit64(value, 6, 1, extract64(value, 5, 1));
2907 value = deposit64(value, 8, 1, extract64(value, 7, 1));
2909 raw_write(env, ri, value);
2910 hw_breakpoint_update(cpu, i);
2913 static void define_debug_regs(ARMCPU *cpu)
2915 /* Define v7 and v8 architectural debug registers.
2916 * These are just dummy implementations for now.
2918 int i;
2919 int wrps, brps, ctx_cmps;
2920 ARMCPRegInfo dbgdidr = {
2921 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
2922 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
2925 /* Note that all these register fields hold "number of Xs minus 1". */
2926 brps = extract32(cpu->dbgdidr, 24, 4);
2927 wrps = extract32(cpu->dbgdidr, 28, 4);
2928 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
2930 assert(ctx_cmps <= brps);
2932 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
2933 * of the debug registers such as number of breakpoints;
2934 * check that if they both exist then they agree.
2936 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2937 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
2938 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
2939 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
2942 define_one_arm_cp_reg(cpu, &dbgdidr);
2943 define_arm_cp_regs(cpu, debug_cp_reginfo);
2945 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
2946 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
2949 for (i = 0; i < brps + 1; i++) {
2950 ARMCPRegInfo dbgregs[] = {
2951 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
2952 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
2953 .access = PL1_RW,
2954 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
2955 .writefn = dbgbvr_write, .raw_writefn = raw_write
2957 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
2958 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
2959 .access = PL1_RW,
2960 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
2961 .writefn = dbgbcr_write, .raw_writefn = raw_write
2963 REGINFO_SENTINEL
2965 define_arm_cp_regs(cpu, dbgregs);
2968 for (i = 0; i < wrps + 1; i++) {
2969 ARMCPRegInfo dbgregs[] = {
2970 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
2971 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
2972 .access = PL1_RW,
2973 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
2974 .writefn = dbgwvr_write, .raw_writefn = raw_write
2976 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
2977 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
2978 .access = PL1_RW,
2979 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
2980 .writefn = dbgwcr_write, .raw_writefn = raw_write
2982 REGINFO_SENTINEL
2984 define_arm_cp_regs(cpu, dbgregs);
2988 void register_cp_regs_for_features(ARMCPU *cpu)
2990 /* Register all the coprocessor registers based on feature bits */
2991 CPUARMState *env = &cpu->env;
2992 if (arm_feature(env, ARM_FEATURE_M)) {
2993 /* M profile has no coprocessor registers */
2994 return;
2997 define_arm_cp_regs(cpu, cp_reginfo);
2998 if (!arm_feature(env, ARM_FEATURE_V8)) {
2999 /* Must go early as it is full of wildcards that may be
3000 * overridden by later definitions.
3002 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
3005 if (arm_feature(env, ARM_FEATURE_V6)) {
3006 /* The ID registers all have impdef reset values */
3007 ARMCPRegInfo v6_idregs[] = {
3008 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
3009 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
3010 .access = PL1_R, .type = ARM_CP_CONST,
3011 .resetvalue = cpu->id_pfr0 },
3012 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
3013 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
3014 .access = PL1_R, .type = ARM_CP_CONST,
3015 .resetvalue = cpu->id_pfr1 },
3016 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
3017 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
3018 .access = PL1_R, .type = ARM_CP_CONST,
3019 .resetvalue = cpu->id_dfr0 },
3020 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
3021 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
3022 .access = PL1_R, .type = ARM_CP_CONST,
3023 .resetvalue = cpu->id_afr0 },
3024 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
3025 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
3026 .access = PL1_R, .type = ARM_CP_CONST,
3027 .resetvalue = cpu->id_mmfr0 },
3028 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
3029 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
3030 .access = PL1_R, .type = ARM_CP_CONST,
3031 .resetvalue = cpu->id_mmfr1 },
3032 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
3033 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
3034 .access = PL1_R, .type = ARM_CP_CONST,
3035 .resetvalue = cpu->id_mmfr2 },
3036 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
3037 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
3038 .access = PL1_R, .type = ARM_CP_CONST,
3039 .resetvalue = cpu->id_mmfr3 },
3040 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
3041 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
3042 .access = PL1_R, .type = ARM_CP_CONST,
3043 .resetvalue = cpu->id_isar0 },
3044 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
3045 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
3046 .access = PL1_R, .type = ARM_CP_CONST,
3047 .resetvalue = cpu->id_isar1 },
3048 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
3049 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
3050 .access = PL1_R, .type = ARM_CP_CONST,
3051 .resetvalue = cpu->id_isar2 },
3052 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
3053 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
3054 .access = PL1_R, .type = ARM_CP_CONST,
3055 .resetvalue = cpu->id_isar3 },
3056 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
3057 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
3058 .access = PL1_R, .type = ARM_CP_CONST,
3059 .resetvalue = cpu->id_isar4 },
3060 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
3061 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
3062 .access = PL1_R, .type = ARM_CP_CONST,
3063 .resetvalue = cpu->id_isar5 },
3064 /* 6..7 are as yet unallocated and must RAZ */
3065 { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
3066 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
3067 .resetvalue = 0 },
3068 { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
3069 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
3070 .resetvalue = 0 },
3071 REGINFO_SENTINEL
3073 define_arm_cp_regs(cpu, v6_idregs);
3074 define_arm_cp_regs(cpu, v6_cp_reginfo);
3075 } else {
3076 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
3078 if (arm_feature(env, ARM_FEATURE_V6K)) {
3079 define_arm_cp_regs(cpu, v6k_cp_reginfo);
3081 if (arm_feature(env, ARM_FEATURE_V7MP)) {
3082 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
3084 if (arm_feature(env, ARM_FEATURE_V7)) {
3085 /* v7 performance monitor control register: same implementor
3086 * field as main ID register, and we implement only the cycle
3087 * count register.
3089 #ifndef CONFIG_USER_ONLY
3090 ARMCPRegInfo pmcr = {
3091 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
3092 .access = PL0_RW,
3093 .type = ARM_CP_IO | ARM_CP_ALIAS,
3094 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
3095 .accessfn = pmreg_access, .writefn = pmcr_write,
3096 .raw_writefn = raw_write,
3098 ARMCPRegInfo pmcr64 = {
3099 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
3100 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
3101 .access = PL0_RW, .accessfn = pmreg_access,
3102 .type = ARM_CP_IO,
3103 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
3104 .resetvalue = cpu->midr & 0xff000000,
3105 .writefn = pmcr_write, .raw_writefn = raw_write,
3107 define_one_arm_cp_reg(cpu, &pmcr);
3108 define_one_arm_cp_reg(cpu, &pmcr64);
3109 #endif
3110 ARMCPRegInfo clidr = {
3111 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
3112 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
3113 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
3115 define_one_arm_cp_reg(cpu, &clidr);
3116 define_arm_cp_regs(cpu, v7_cp_reginfo);
3117 define_debug_regs(cpu);
3118 } else {
3119 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
3121 if (arm_feature(env, ARM_FEATURE_V8)) {
3122 /* AArch64 ID registers, which all have impdef reset values */
3123 ARMCPRegInfo v8_idregs[] = {
3124 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
3125 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
3126 .access = PL1_R, .type = ARM_CP_CONST,
3127 .resetvalue = cpu->id_aa64pfr0 },
3128 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
3129 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
3130 .access = PL1_R, .type = ARM_CP_CONST,
3131 .resetvalue = cpu->id_aa64pfr1},
3132 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
3133 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
3134 .access = PL1_R, .type = ARM_CP_CONST,
3135 /* We mask out the PMUVer field, because we don't currently
3136 * implement the PMU. Not advertising it prevents the guest
3137 * from trying to use it and getting UNDEFs on registers we
3138 * don't implement.
3140 .resetvalue = cpu->id_aa64dfr0 & ~0xf00 },
3141 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
3142 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
3143 .access = PL1_R, .type = ARM_CP_CONST,
3144 .resetvalue = cpu->id_aa64dfr1 },
3145 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
3146 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
3147 .access = PL1_R, .type = ARM_CP_CONST,
3148 .resetvalue = cpu->id_aa64afr0 },
3149 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
3150 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
3151 .access = PL1_R, .type = ARM_CP_CONST,
3152 .resetvalue = cpu->id_aa64afr1 },
3153 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
3154 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
3155 .access = PL1_R, .type = ARM_CP_CONST,
3156 .resetvalue = cpu->id_aa64isar0 },
3157 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
3158 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
3159 .access = PL1_R, .type = ARM_CP_CONST,
3160 .resetvalue = cpu->id_aa64isar1 },
3161 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
3162 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
3163 .access = PL1_R, .type = ARM_CP_CONST,
3164 .resetvalue = cpu->id_aa64mmfr0 },
3165 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
3166 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
3167 .access = PL1_R, .type = ARM_CP_CONST,
3168 .resetvalue = cpu->id_aa64mmfr1 },
3169 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
3170 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
3171 .access = PL1_R, .type = ARM_CP_CONST,
3172 .resetvalue = cpu->mvfr0 },
3173 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
3174 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
3175 .access = PL1_R, .type = ARM_CP_CONST,
3176 .resetvalue = cpu->mvfr1 },
3177 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
3178 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
3179 .access = PL1_R, .type = ARM_CP_CONST,
3180 .resetvalue = cpu->mvfr2 },
3181 REGINFO_SENTINEL
3183 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
3184 if (!arm_feature(env, ARM_FEATURE_EL3) &&
3185 !arm_feature(env, ARM_FEATURE_EL2)) {
3186 ARMCPRegInfo rvbar = {
3187 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
3188 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
3189 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
3191 define_one_arm_cp_reg(cpu, &rvbar);
3193 define_arm_cp_regs(cpu, v8_idregs);
3194 define_arm_cp_regs(cpu, v8_cp_reginfo);
3196 if (arm_feature(env, ARM_FEATURE_EL2)) {
3197 define_arm_cp_regs(cpu, v8_el2_cp_reginfo);
3198 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
3199 if (!arm_feature(env, ARM_FEATURE_EL3)) {
3200 ARMCPRegInfo rvbar = {
3201 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
3202 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
3203 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
3205 define_one_arm_cp_reg(cpu, &rvbar);
3207 } else {
3208 /* If EL2 is missing but higher ELs are enabled, we need to
3209 * register the no_el2 reginfos.
3211 if (arm_feature(env, ARM_FEATURE_EL3)) {
3212 define_arm_cp_regs(cpu, v8_el3_no_el2_cp_reginfo);
3215 if (arm_feature(env, ARM_FEATURE_EL3)) {
3216 define_arm_cp_regs(cpu, el3_cp_reginfo);
3217 ARMCPRegInfo rvbar = {
3218 .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
3219 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
3220 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar
3222 define_one_arm_cp_reg(cpu, &rvbar);
3224 if (arm_feature(env, ARM_FEATURE_MPU)) {
3225 /* These are the MPU registers prior to PMSAv6. Any new
3226 * PMSA core later than the ARM946 will require that we
3227 * implement the PMSAv6 or PMSAv7 registers, which are
3228 * completely different.
3230 assert(!arm_feature(env, ARM_FEATURE_V6));
3231 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
3232 } else {
3233 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
3235 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
3236 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
3238 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
3239 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
3241 if (arm_feature(env, ARM_FEATURE_VAPA)) {
3242 define_arm_cp_regs(cpu, vapa_cp_reginfo);
3244 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
3245 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
3247 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
3248 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
3250 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
3251 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
3253 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
3254 define_arm_cp_regs(cpu, omap_cp_reginfo);
3256 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
3257 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
3259 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
3260 define_arm_cp_regs(cpu, xscale_cp_reginfo);
3262 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
3263 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
3265 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3266 define_arm_cp_regs(cpu, lpae_cp_reginfo);
3268 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
3269 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
3270 * be read-only (ie write causes UNDEF exception).
3273 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
3274 /* Pre-v8 MIDR space.
3275 * Note that the MIDR isn't a simple constant register because
3276 * of the TI925 behaviour where writes to another register can
3277 * cause the MIDR value to change.
3279 * Unimplemented registers in the c15 0 0 0 space default to
3280 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
3281 * and friends override accordingly.
3283 { .name = "MIDR",
3284 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
3285 .access = PL1_R, .resetvalue = cpu->midr,
3286 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
3287 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
3288 .type = ARM_CP_OVERRIDE },
3289 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
3290 { .name = "DUMMY",
3291 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
3292 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3293 { .name = "DUMMY",
3294 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
3295 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3296 { .name = "DUMMY",
3297 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
3298 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3299 { .name = "DUMMY",
3300 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
3301 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3302 { .name = "DUMMY",
3303 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
3304 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3305 REGINFO_SENTINEL
3307 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
3308 /* v8 MIDR -- the wildcard isn't necessary, and nor is the
3309 * variable-MIDR TI925 behaviour. Instead we have a single
3310 * (strictly speaking IMPDEF) alias of the MIDR, REVIDR.
3312 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
3313 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
3314 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->midr },
3315 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
3316 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
3317 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->midr },
3318 REGINFO_SENTINEL
3320 ARMCPRegInfo id_cp_reginfo[] = {
3321 /* These are common to v8 and pre-v8 */
3322 { .name = "CTR",
3323 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
3324 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
3325 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
3326 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
3327 .access = PL0_R, .accessfn = ctr_el0_access,
3328 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
3329 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
3330 { .name = "TCMTR",
3331 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
3332 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3333 { .name = "TLBTR",
3334 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
3335 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3336 REGINFO_SENTINEL
3338 ARMCPRegInfo crn0_wi_reginfo = {
3339 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
3340 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
3341 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
3343 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
3344 arm_feature(env, ARM_FEATURE_STRONGARM)) {
3345 ARMCPRegInfo *r;
3346 /* Register the blanket "writes ignored" value first to cover the
3347 * whole space. Then update the specific ID registers to allow write
3348 * access, so that they ignore writes rather than causing them to
3349 * UNDEF.
3351 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
3352 for (r = id_pre_v8_midr_cp_reginfo;
3353 r->type != ARM_CP_SENTINEL; r++) {
3354 r->access = PL1_RW;
3356 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
3357 r->access = PL1_RW;
3360 if (arm_feature(env, ARM_FEATURE_V8)) {
3361 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
3362 } else {
3363 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
3365 define_arm_cp_regs(cpu, id_cp_reginfo);
3368 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
3369 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
3372 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
3373 ARMCPRegInfo auxcr = {
3374 .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
3375 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
3376 .access = PL1_RW, .type = ARM_CP_CONST,
3377 .resetvalue = cpu->reset_auxcr
3379 define_one_arm_cp_reg(cpu, &auxcr);
3382 if (arm_feature(env, ARM_FEATURE_CBAR)) {
3383 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
3384 /* 32 bit view is [31:18] 0...0 [43:32]. */
3385 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
3386 | extract64(cpu->reset_cbar, 32, 12);
3387 ARMCPRegInfo cbar_reginfo[] = {
3388 { .name = "CBAR",
3389 .type = ARM_CP_CONST,
3390 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
3391 .access = PL1_R, .resetvalue = cpu->reset_cbar },
3392 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
3393 .type = ARM_CP_CONST,
3394 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
3395 .access = PL1_R, .resetvalue = cbar32 },
3396 REGINFO_SENTINEL
3398 /* We don't implement a r/w 64 bit CBAR currently */
3399 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
3400 define_arm_cp_regs(cpu, cbar_reginfo);
3401 } else {
3402 ARMCPRegInfo cbar = {
3403 .name = "CBAR",
3404 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
3405 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
3406 .fieldoffset = offsetof(CPUARMState,
3407 cp15.c15_config_base_address)
3409 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
3410 cbar.access = PL1_R;
3411 cbar.fieldoffset = 0;
3412 cbar.type = ARM_CP_CONST;
3414 define_one_arm_cp_reg(cpu, &cbar);
3418 /* Generic registers whose values depend on the implementation */
3420 ARMCPRegInfo sctlr = {
3421 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
3422 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
3423 .access = PL1_RW,
3424 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
3425 offsetof(CPUARMState, cp15.sctlr_ns) },
3426 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
3427 .raw_writefn = raw_write,
3429 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
3430 /* Normally we would always end the TB on an SCTLR write, but Linux
3431 * arch/arm/mach-pxa/sleep.S expects two instructions following
3432 * an MMU enable to execute from cache. Imitate this behaviour.
3434 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
3436 define_one_arm_cp_reg(cpu, &sctlr);
3440 ARMCPU *cpu_arm_init(const char *cpu_model)
3442 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
3445 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
3447 CPUState *cs = CPU(cpu);
3448 CPUARMState *env = &cpu->env;
3450 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
3451 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
3452 aarch64_fpu_gdb_set_reg,
3453 34, "aarch64-fpu.xml", 0);
3454 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
3455 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
3456 51, "arm-neon.xml", 0);
3457 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
3458 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
3459 35, "arm-vfp3.xml", 0);
3460 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
3461 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
3462 19, "arm-vfp.xml", 0);
3466 /* Sort alphabetically by type name, except for "any". */
3467 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
3469 ObjectClass *class_a = (ObjectClass *)a;
3470 ObjectClass *class_b = (ObjectClass *)b;
3471 const char *name_a, *name_b;
3473 name_a = object_class_get_name(class_a);
3474 name_b = object_class_get_name(class_b);
3475 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
3476 return 1;
3477 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
3478 return -1;
3479 } else {
3480 return strcmp(name_a, name_b);
3484 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
3486 ObjectClass *oc = data;
3487 CPUListState *s = user_data;
3488 const char *typename;
3489 char *name;
3491 typename = object_class_get_name(oc);
3492 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
3493 (*s->cpu_fprintf)(s->file, " %s\n",
3494 name);
3495 g_free(name);
3498 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
3500 CPUListState s = {
3501 .file = f,
3502 .cpu_fprintf = cpu_fprintf,
3504 GSList *list;
3506 list = object_class_get_list(TYPE_ARM_CPU, false);
3507 list = g_slist_sort(list, arm_cpu_list_compare);
3508 (*cpu_fprintf)(f, "Available CPUs:\n");
3509 g_slist_foreach(list, arm_cpu_list_entry, &s);
3510 g_slist_free(list);
3511 #ifdef CONFIG_KVM
3512 /* The 'host' CPU type is dynamically registered only if KVM is
3513 * enabled, so we have to special-case it here:
3515 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
3516 #endif
3519 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
3521 ObjectClass *oc = data;
3522 CpuDefinitionInfoList **cpu_list = user_data;
3523 CpuDefinitionInfoList *entry;
3524 CpuDefinitionInfo *info;
3525 const char *typename;
3527 typename = object_class_get_name(oc);
3528 info = g_malloc0(sizeof(*info));
3529 info->name = g_strndup(typename,
3530 strlen(typename) - strlen("-" TYPE_ARM_CPU));
3532 entry = g_malloc0(sizeof(*entry));
3533 entry->value = info;
3534 entry->next = *cpu_list;
3535 *cpu_list = entry;
3538 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
3540 CpuDefinitionInfoList *cpu_list = NULL;
3541 GSList *list;
3543 list = object_class_get_list(TYPE_ARM_CPU, false);
3544 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
3545 g_slist_free(list);
3547 return cpu_list;
3550 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
3551 void *opaque, int state, int secstate,
3552 int crm, int opc1, int opc2)
3554 /* Private utility function for define_one_arm_cp_reg_with_opaque():
3555 * add a single reginfo struct to the hash table.
3557 uint32_t *key = g_new(uint32_t, 1);
3558 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
3559 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
3560 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
3562 /* Reset the secure state to the specific incoming state. This is
3563 * necessary as the register may have been defined with both states.
3565 r2->secure = secstate;
3567 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
3568 /* Register is banked (using both entries in array).
3569 * Overwriting fieldoffset as the array is only used to define
3570 * banked registers but later only fieldoffset is used.
3572 r2->fieldoffset = r->bank_fieldoffsets[ns];
3575 if (state == ARM_CP_STATE_AA32) {
3576 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
3577 /* If the register is banked then we don't need to migrate or
3578 * reset the 32-bit instance in certain cases:
3580 * 1) If the register has both 32-bit and 64-bit instances then we
3581 * can count on the 64-bit instance taking care of the
3582 * non-secure bank.
3583 * 2) If ARMv8 is enabled then we can count on a 64-bit version
3584 * taking care of the secure bank. This requires that separate
3585 * 32 and 64-bit definitions are provided.
3587 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
3588 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
3589 r2->type |= ARM_CP_ALIAS;
3590 r2->resetfn = arm_cp_reset_ignore;
3592 } else if ((secstate != r->secure) && !ns) {
3593 /* The register is not banked so we only want to allow migration of
3594 * the non-secure instance.
3596 r2->type |= ARM_CP_ALIAS;
3597 r2->resetfn = arm_cp_reset_ignore;
3600 if (r->state == ARM_CP_STATE_BOTH) {
3601 /* We assume it is a cp15 register if the .cp field is left unset.
3603 if (r2->cp == 0) {
3604 r2->cp = 15;
3607 #ifdef HOST_WORDS_BIGENDIAN
3608 if (r2->fieldoffset) {
3609 r2->fieldoffset += sizeof(uint32_t);
3611 #endif
3614 if (state == ARM_CP_STATE_AA64) {
3615 /* To allow abbreviation of ARMCPRegInfo
3616 * definitions, we treat cp == 0 as equivalent to
3617 * the value for "standard guest-visible sysreg".
3618 * STATE_BOTH definitions are also always "standard
3619 * sysreg" in their AArch64 view (the .cp value may
3620 * be non-zero for the benefit of the AArch32 view).
3622 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
3623 r2->cp = CP_REG_ARM64_SYSREG_CP;
3625 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
3626 r2->opc0, opc1, opc2);
3627 } else {
3628 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
3630 if (opaque) {
3631 r2->opaque = opaque;
3633 /* reginfo passed to helpers is correct for the actual access,
3634 * and is never ARM_CP_STATE_BOTH:
3636 r2->state = state;
3637 /* Make sure reginfo passed to helpers for wildcarded regs
3638 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
3640 r2->crm = crm;
3641 r2->opc1 = opc1;
3642 r2->opc2 = opc2;
3643 /* By convention, for wildcarded registers only the first
3644 * entry is used for migration; the others are marked as
3645 * ALIAS so we don't try to transfer the register
3646 * multiple times. Special registers (ie NOP/WFI) are
3647 * never migratable and not even raw-accessible.
3649 if ((r->type & ARM_CP_SPECIAL)) {
3650 r2->type |= ARM_CP_NO_RAW;
3652 if (((r->crm == CP_ANY) && crm != 0) ||
3653 ((r->opc1 == CP_ANY) && opc1 != 0) ||
3654 ((r->opc2 == CP_ANY) && opc2 != 0)) {
3655 r2->type |= ARM_CP_ALIAS;
3658 /* Check that raw accesses are either forbidden or handled. Note that
3659 * we can't assert this earlier because the setup of fieldoffset for
3660 * banked registers has to be done first.
3662 if (!(r2->type & ARM_CP_NO_RAW)) {
3663 assert(!raw_accessors_invalid(r2));
3666 /* Overriding of an existing definition must be explicitly
3667 * requested.
3669 if (!(r->type & ARM_CP_OVERRIDE)) {
3670 ARMCPRegInfo *oldreg;
3671 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
3672 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
3673 fprintf(stderr, "Register redefined: cp=%d %d bit "
3674 "crn=%d crm=%d opc1=%d opc2=%d, "
3675 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
3676 r2->crn, r2->crm, r2->opc1, r2->opc2,
3677 oldreg->name, r2->name);
3678 g_assert_not_reached();
3681 g_hash_table_insert(cpu->cp_regs, key, r2);
3685 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
3686 const ARMCPRegInfo *r, void *opaque)
3688 /* Define implementations of coprocessor registers.
3689 * We store these in a hashtable because typically
3690 * there are less than 150 registers in a space which
3691 * is 16*16*16*8*8 = 262144 in size.
3692 * Wildcarding is supported for the crm, opc1 and opc2 fields.
3693 * If a register is defined twice then the second definition is
3694 * used, so this can be used to define some generic registers and
3695 * then override them with implementation specific variations.
3696 * At least one of the original and the second definition should
3697 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
3698 * against accidental use.
3700 * The state field defines whether the register is to be
3701 * visible in the AArch32 or AArch64 execution state. If the
3702 * state is set to ARM_CP_STATE_BOTH then we synthesise a
3703 * reginfo structure for the AArch32 view, which sees the lower
3704 * 32 bits of the 64 bit register.
3706 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
3707 * be wildcarded. AArch64 registers are always considered to be 64
3708 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
3709 * the register, if any.
3711 int crm, opc1, opc2, state;
3712 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
3713 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
3714 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
3715 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
3716 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
3717 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
3718 /* 64 bit registers have only CRm and Opc1 fields */
3719 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
3720 /* op0 only exists in the AArch64 encodings */
3721 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
3722 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
3723 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
3724 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
3725 * encodes a minimum access level for the register. We roll this
3726 * runtime check into our general permission check code, so check
3727 * here that the reginfo's specified permissions are strict enough
3728 * to encompass the generic architectural permission check.
3730 if (r->state != ARM_CP_STATE_AA32) {
3731 int mask = 0;
3732 switch (r->opc1) {
3733 case 0: case 1: case 2:
3734 /* min_EL EL1 */
3735 mask = PL1_RW;
3736 break;
3737 case 3:
3738 /* min_EL EL0 */
3739 mask = PL0_RW;
3740 break;
3741 case 4:
3742 /* min_EL EL2 */
3743 mask = PL2_RW;
3744 break;
3745 case 5:
3746 /* unallocated encoding, so not possible */
3747 assert(false);
3748 break;
3749 case 6:
3750 /* min_EL EL3 */
3751 mask = PL3_RW;
3752 break;
3753 case 7:
3754 /* min_EL EL1, secure mode only (we don't check the latter) */
3755 mask = PL1_RW;
3756 break;
3757 default:
3758 /* broken reginfo with out-of-range opc1 */
3759 assert(false);
3760 break;
3762 /* assert our permissions are not too lax (stricter is fine) */
3763 assert((r->access & ~mask) == 0);
3766 /* Check that the register definition has enough info to handle
3767 * reads and writes if they are permitted.
3769 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
3770 if (r->access & PL3_R) {
3771 assert((r->fieldoffset ||
3772 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
3773 r->readfn);
3775 if (r->access & PL3_W) {
3776 assert((r->fieldoffset ||
3777 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
3778 r->writefn);
3781 /* Bad type field probably means missing sentinel at end of reg list */
3782 assert(cptype_valid(r->type));
3783 for (crm = crmmin; crm <= crmmax; crm++) {
3784 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
3785 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
3786 for (state = ARM_CP_STATE_AA32;
3787 state <= ARM_CP_STATE_AA64; state++) {
3788 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
3789 continue;
3791 if (state == ARM_CP_STATE_AA32) {
3792 /* Under AArch32 CP registers can be common
3793 * (same for secure and non-secure world) or banked.
3795 switch (r->secure) {
3796 case ARM_CP_SECSTATE_S:
3797 case ARM_CP_SECSTATE_NS:
3798 add_cpreg_to_hashtable(cpu, r, opaque, state,
3799 r->secure, crm, opc1, opc2);
3800 break;
3801 default:
3802 add_cpreg_to_hashtable(cpu, r, opaque, state,
3803 ARM_CP_SECSTATE_S,
3804 crm, opc1, opc2);
3805 add_cpreg_to_hashtable(cpu, r, opaque, state,
3806 ARM_CP_SECSTATE_NS,
3807 crm, opc1, opc2);
3808 break;
3810 } else {
3811 /* AArch64 registers get mapped to non-secure instance
3812 * of AArch32 */
3813 add_cpreg_to_hashtable(cpu, r, opaque, state,
3814 ARM_CP_SECSTATE_NS,
3815 crm, opc1, opc2);
3823 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
3824 const ARMCPRegInfo *regs, void *opaque)
3826 /* Define a whole list of registers */
3827 const ARMCPRegInfo *r;
3828 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
3829 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
3833 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
3835 return g_hash_table_lookup(cpregs, &encoded_cp);
3838 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
3839 uint64_t value)
3841 /* Helper coprocessor write function for write-ignore registers */
3844 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
3846 /* Helper coprocessor write function for read-as-zero registers */
3847 return 0;
3850 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
3852 /* Helper coprocessor reset function for do-nothing-on-reset registers */
3855 static int bad_mode_switch(CPUARMState *env, int mode)
3857 /* Return true if it is not valid for us to switch to
3858 * this CPU mode (ie all the UNPREDICTABLE cases in
3859 * the ARM ARM CPSRWriteByInstr pseudocode).
3861 switch (mode) {
3862 case ARM_CPU_MODE_USR:
3863 case ARM_CPU_MODE_SYS:
3864 case ARM_CPU_MODE_SVC:
3865 case ARM_CPU_MODE_ABT:
3866 case ARM_CPU_MODE_UND:
3867 case ARM_CPU_MODE_IRQ:
3868 case ARM_CPU_MODE_FIQ:
3869 return 0;
3870 case ARM_CPU_MODE_MON:
3871 return !arm_is_secure(env);
3872 default:
3873 return 1;
3877 uint32_t cpsr_read(CPUARMState *env)
3879 int ZF;
3880 ZF = (env->ZF == 0);
3881 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
3882 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
3883 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
3884 | ((env->condexec_bits & 0xfc) << 8)
3885 | (env->GE << 16) | (env->daif & CPSR_AIF);
3888 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
3890 uint32_t changed_daif;
3892 if (mask & CPSR_NZCV) {
3893 env->ZF = (~val) & CPSR_Z;
3894 env->NF = val;
3895 env->CF = (val >> 29) & 1;
3896 env->VF = (val << 3) & 0x80000000;
3898 if (mask & CPSR_Q)
3899 env->QF = ((val & CPSR_Q) != 0);
3900 if (mask & CPSR_T)
3901 env->thumb = ((val & CPSR_T) != 0);
3902 if (mask & CPSR_IT_0_1) {
3903 env->condexec_bits &= ~3;
3904 env->condexec_bits |= (val >> 25) & 3;
3906 if (mask & CPSR_IT_2_7) {
3907 env->condexec_bits &= 3;
3908 env->condexec_bits |= (val >> 8) & 0xfc;
3910 if (mask & CPSR_GE) {
3911 env->GE = (val >> 16) & 0xf;
3914 /* In a V7 implementation that includes the security extensions but does
3915 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
3916 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
3917 * bits respectively.
3919 * In a V8 implementation, it is permitted for privileged software to
3920 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
3922 if (!arm_feature(env, ARM_FEATURE_V8) &&
3923 arm_feature(env, ARM_FEATURE_EL3) &&
3924 !arm_feature(env, ARM_FEATURE_EL2) &&
3925 !arm_is_secure(env)) {
3927 changed_daif = (env->daif ^ val) & mask;
3929 if (changed_daif & CPSR_A) {
3930 /* Check to see if we are allowed to change the masking of async
3931 * abort exceptions from a non-secure state.
3933 if (!(env->cp15.scr_el3 & SCR_AW)) {
3934 qemu_log_mask(LOG_GUEST_ERROR,
3935 "Ignoring attempt to switch CPSR_A flag from "
3936 "non-secure world with SCR.AW bit clear\n");
3937 mask &= ~CPSR_A;
3941 if (changed_daif & CPSR_F) {
3942 /* Check to see if we are allowed to change the masking of FIQ
3943 * exceptions from a non-secure state.
3945 if (!(env->cp15.scr_el3 & SCR_FW)) {
3946 qemu_log_mask(LOG_GUEST_ERROR,
3947 "Ignoring attempt to switch CPSR_F flag from "
3948 "non-secure world with SCR.FW bit clear\n");
3949 mask &= ~CPSR_F;
3952 /* Check whether non-maskable FIQ (NMFI) support is enabled.
3953 * If this bit is set software is not allowed to mask
3954 * FIQs, but is allowed to set CPSR_F to 0.
3956 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
3957 (val & CPSR_F)) {
3958 qemu_log_mask(LOG_GUEST_ERROR,
3959 "Ignoring attempt to enable CPSR_F flag "
3960 "(non-maskable FIQ [NMFI] support enabled)\n");
3961 mask &= ~CPSR_F;
3966 env->daif &= ~(CPSR_AIF & mask);
3967 env->daif |= val & CPSR_AIF & mask;
3969 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
3970 if (bad_mode_switch(env, val & CPSR_M)) {
3971 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
3972 * We choose to ignore the attempt and leave the CPSR M field
3973 * untouched.
3975 mask &= ~CPSR_M;
3976 } else {
3977 switch_mode(env, val & CPSR_M);
3980 mask &= ~CACHED_CPSR_BITS;
3981 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
3984 /* Sign/zero extend */
3985 uint32_t HELPER(sxtb16)(uint32_t x)
3987 uint32_t res;
3988 res = (uint16_t)(int8_t)x;
3989 res |= (uint32_t)(int8_t)(x >> 16) << 16;
3990 return res;
3993 uint32_t HELPER(uxtb16)(uint32_t x)
3995 uint32_t res;
3996 res = (uint16_t)(uint8_t)x;
3997 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
3998 return res;
4001 uint32_t HELPER(clz)(uint32_t x)
4003 return clz32(x);
4006 int32_t HELPER(sdiv)(int32_t num, int32_t den)
4008 if (den == 0)
4009 return 0;
4010 if (num == INT_MIN && den == -1)
4011 return INT_MIN;
4012 return num / den;
4015 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
4017 if (den == 0)
4018 return 0;
4019 return num / den;
4022 uint32_t HELPER(rbit)(uint32_t x)
4024 x = ((x & 0xff000000) >> 24)
4025 | ((x & 0x00ff0000) >> 8)
4026 | ((x & 0x0000ff00) << 8)
4027 | ((x & 0x000000ff) << 24);
4028 x = ((x & 0xf0f0f0f0) >> 4)
4029 | ((x & 0x0f0f0f0f) << 4);
4030 x = ((x & 0x88888888) >> 3)
4031 | ((x & 0x44444444) >> 1)
4032 | ((x & 0x22222222) << 1)
4033 | ((x & 0x11111111) << 3);
4034 return x;
4037 #if defined(CONFIG_USER_ONLY)
4039 int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw,
4040 int mmu_idx)
4042 ARMCPU *cpu = ARM_CPU(cs);
4043 CPUARMState *env = &cpu->env;
4045 env->exception.vaddress = address;
4046 if (rw == 2) {
4047 cs->exception_index = EXCP_PREFETCH_ABORT;
4048 } else {
4049 cs->exception_index = EXCP_DATA_ABORT;
4051 return 1;
4054 /* These should probably raise undefined insn exceptions. */
4055 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
4057 ARMCPU *cpu = arm_env_get_cpu(env);
4059 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
4062 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
4064 ARMCPU *cpu = arm_env_get_cpu(env);
4066 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
4067 return 0;
4070 void switch_mode(CPUARMState *env, int mode)
4072 ARMCPU *cpu = arm_env_get_cpu(env);
4074 if (mode != ARM_CPU_MODE_USR) {
4075 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
4079 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
4081 ARMCPU *cpu = arm_env_get_cpu(env);
4083 cpu_abort(CPU(cpu), "banked r13 write\n");
4086 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
4088 ARMCPU *cpu = arm_env_get_cpu(env);
4090 cpu_abort(CPU(cpu), "banked r13 read\n");
4091 return 0;
4094 unsigned int arm_excp_target_el(CPUState *cs, unsigned int excp_idx)
4096 return 1;
4099 void aarch64_sync_64_to_32(CPUARMState *env)
4101 g_assert_not_reached();
4104 #else
4106 /* Map CPU modes onto saved register banks. */
4107 int bank_number(int mode)
4109 switch (mode) {
4110 case ARM_CPU_MODE_USR:
4111 case ARM_CPU_MODE_SYS:
4112 return 0;
4113 case ARM_CPU_MODE_SVC:
4114 return 1;
4115 case ARM_CPU_MODE_ABT:
4116 return 2;
4117 case ARM_CPU_MODE_UND:
4118 return 3;
4119 case ARM_CPU_MODE_IRQ:
4120 return 4;
4121 case ARM_CPU_MODE_FIQ:
4122 return 5;
4123 case ARM_CPU_MODE_HYP:
4124 return 6;
4125 case ARM_CPU_MODE_MON:
4126 return 7;
4128 hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode);
4131 void switch_mode(CPUARMState *env, int mode)
4133 int old_mode;
4134 int i;
4136 old_mode = env->uncached_cpsr & CPSR_M;
4137 if (mode == old_mode)
4138 return;
4140 if (old_mode == ARM_CPU_MODE_FIQ) {
4141 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
4142 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
4143 } else if (mode == ARM_CPU_MODE_FIQ) {
4144 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
4145 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
4148 i = bank_number(old_mode);
4149 env->banked_r13[i] = env->regs[13];
4150 env->banked_r14[i] = env->regs[14];
4151 env->banked_spsr[i] = env->spsr;
4153 i = bank_number(mode);
4154 env->regs[13] = env->banked_r13[i];
4155 env->regs[14] = env->banked_r14[i];
4156 env->spsr = env->banked_spsr[i];
4159 /* Physical Interrupt Target EL Lookup Table
4161 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
4163 * The below multi-dimensional table is used for looking up the target
4164 * exception level given numerous condition criteria. Specifically, the
4165 * target EL is based on SCR and HCR routing controls as well as the
4166 * currently executing EL and secure state.
4168 * Dimensions:
4169 * target_el_table[2][2][2][2][2][4]
4170 * | | | | | +--- Current EL
4171 * | | | | +------ Non-secure(0)/Secure(1)
4172 * | | | +--------- HCR mask override
4173 * | | +------------ SCR exec state control
4174 * | +--------------- SCR mask override
4175 * +------------------ 32-bit(0)/64-bit(1) EL3
4177 * The table values are as such:
4178 * 0-3 = EL0-EL3
4179 * -1 = Cannot occur
4181 * The ARM ARM target EL table includes entries indicating that an "exception
4182 * is not taken". The two cases where this is applicable are:
4183 * 1) An exception is taken from EL3 but the SCR does not have the exception
4184 * routed to EL3.
4185 * 2) An exception is taken from EL2 but the HCR does not have the exception
4186 * routed to EL2.
4187 * In these two cases, the below table contain a target of EL1. This value is
4188 * returned as it is expected that the consumer of the table data will check
4189 * for "target EL >= current EL" to ensure the exception is not taken.
4191 * SCR HCR
4192 * 64 EA AMO From
4193 * BIT IRQ IMO Non-secure Secure
4194 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
4196 const int8_t target_el_table[2][2][2][2][2][4] = {
4197 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
4198 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
4199 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
4200 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
4201 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
4202 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
4203 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
4204 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
4205 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
4206 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
4207 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
4208 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
4209 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
4210 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
4211 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
4212 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
4216 * Determine the target EL for physical exceptions
4218 static inline uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
4219 uint32_t cur_el, bool secure)
4221 CPUARMState *env = cs->env_ptr;
4222 int rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
4223 int scr;
4224 int hcr;
4225 int target_el;
4226 int is64 = arm_el_is_aa64(env, 3);
4228 switch (excp_idx) {
4229 case EXCP_IRQ:
4230 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
4231 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
4232 break;
4233 case EXCP_FIQ:
4234 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
4235 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
4236 break;
4237 default:
4238 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
4239 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
4240 break;
4243 /* If HCR.TGE is set then HCR is treated as being 1 */
4244 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
4246 /* Perform a table-lookup for the target EL given the current state */
4247 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
4249 assert(target_el > 0);
4251 return target_el;
4255 * Determine the target EL for a given exception type.
4257 unsigned int arm_excp_target_el(CPUState *cs, unsigned int excp_idx)
4259 ARMCPU *cpu = ARM_CPU(cs);
4260 CPUARMState *env = &cpu->env;
4261 unsigned int cur_el = arm_current_el(env);
4262 unsigned int target_el;
4263 bool secure = arm_is_secure(env);
4265 switch (excp_idx) {
4266 case EXCP_HVC:
4267 case EXCP_HYP_TRAP:
4268 target_el = 2;
4269 break;
4270 case EXCP_SMC:
4271 target_el = 3;
4272 break;
4273 case EXCP_FIQ:
4274 case EXCP_IRQ:
4275 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
4276 break;
4277 case EXCP_VIRQ:
4278 case EXCP_VFIQ:
4279 target_el = 1;
4280 break;
4281 default:
4282 target_el = MAX(cur_el, 1);
4283 break;
4285 return target_el;
4288 static void v7m_push(CPUARMState *env, uint32_t val)
4290 CPUState *cs = CPU(arm_env_get_cpu(env));
4292 env->regs[13] -= 4;
4293 stl_phys(cs->as, env->regs[13], val);
4296 static uint32_t v7m_pop(CPUARMState *env)
4298 CPUState *cs = CPU(arm_env_get_cpu(env));
4299 uint32_t val;
4301 val = ldl_phys(cs->as, env->regs[13]);
4302 env->regs[13] += 4;
4303 return val;
4306 /* Switch to V7M main or process stack pointer. */
4307 static void switch_v7m_sp(CPUARMState *env, int process)
4309 uint32_t tmp;
4310 if (env->v7m.current_sp != process) {
4311 tmp = env->v7m.other_sp;
4312 env->v7m.other_sp = env->regs[13];
4313 env->regs[13] = tmp;
4314 env->v7m.current_sp = process;
4318 static void do_v7m_exception_exit(CPUARMState *env)
4320 uint32_t type;
4321 uint32_t xpsr;
4323 type = env->regs[15];
4324 if (env->v7m.exception != 0)
4325 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
4327 /* Switch to the target stack. */
4328 switch_v7m_sp(env, (type & 4) != 0);
4329 /* Pop registers. */
4330 env->regs[0] = v7m_pop(env);
4331 env->regs[1] = v7m_pop(env);
4332 env->regs[2] = v7m_pop(env);
4333 env->regs[3] = v7m_pop(env);
4334 env->regs[12] = v7m_pop(env);
4335 env->regs[14] = v7m_pop(env);
4336 env->regs[15] = v7m_pop(env);
4337 xpsr = v7m_pop(env);
4338 xpsr_write(env, xpsr, 0xfffffdff);
4339 /* Undo stack alignment. */
4340 if (xpsr & 0x200)
4341 env->regs[13] |= 4;
4342 /* ??? The exception return type specifies Thread/Handler mode. However
4343 this is also implied by the xPSR value. Not sure what to do
4344 if there is a mismatch. */
4345 /* ??? Likewise for mismatches between the CONTROL register and the stack
4346 pointer. */
4349 void arm_v7m_cpu_do_interrupt(CPUState *cs)
4351 ARMCPU *cpu = ARM_CPU(cs);
4352 CPUARMState *env = &cpu->env;
4353 uint32_t xpsr = xpsr_read(env);
4354 uint32_t lr;
4355 uint32_t addr;
4357 arm_log_exception(cs->exception_index);
4359 lr = 0xfffffff1;
4360 if (env->v7m.current_sp)
4361 lr |= 4;
4362 if (env->v7m.exception == 0)
4363 lr |= 8;
4365 /* For exceptions we just mark as pending on the NVIC, and let that
4366 handle it. */
4367 /* TODO: Need to escalate if the current priority is higher than the
4368 one we're raising. */
4369 switch (cs->exception_index) {
4370 case EXCP_UDEF:
4371 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
4372 return;
4373 case EXCP_SWI:
4374 /* The PC already points to the next instruction. */
4375 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
4376 return;
4377 case EXCP_PREFETCH_ABORT:
4378 case EXCP_DATA_ABORT:
4379 /* TODO: if we implemented the MPU registers, this is where we
4380 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
4382 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
4383 return;
4384 case EXCP_BKPT:
4385 if (semihosting_enabled) {
4386 int nr;
4387 nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
4388 if (nr == 0xab) {
4389 env->regs[15] += 2;
4390 env->regs[0] = do_arm_semihosting(env);
4391 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
4392 return;
4395 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
4396 return;
4397 case EXCP_IRQ:
4398 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
4399 break;
4400 case EXCP_EXCEPTION_EXIT:
4401 do_v7m_exception_exit(env);
4402 return;
4403 default:
4404 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
4405 return; /* Never happens. Keep compiler happy. */
4408 /* Align stack pointer. */
4409 /* ??? Should only do this if Configuration Control Register
4410 STACKALIGN bit is set. */
4411 if (env->regs[13] & 4) {
4412 env->regs[13] -= 4;
4413 xpsr |= 0x200;
4415 /* Switch to the handler mode. */
4416 v7m_push(env, xpsr);
4417 v7m_push(env, env->regs[15]);
4418 v7m_push(env, env->regs[14]);
4419 v7m_push(env, env->regs[12]);
4420 v7m_push(env, env->regs[3]);
4421 v7m_push(env, env->regs[2]);
4422 v7m_push(env, env->regs[1]);
4423 v7m_push(env, env->regs[0]);
4424 switch_v7m_sp(env, 0);
4425 /* Clear IT bits */
4426 env->condexec_bits = 0;
4427 env->regs[14] = lr;
4428 addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4);
4429 env->regs[15] = addr & 0xfffffffe;
4430 env->thumb = addr & 1;
4433 /* Function used to synchronize QEMU's AArch64 register set with AArch32
4434 * register set. This is necessary when switching between AArch32 and AArch64
4435 * execution state.
4437 void aarch64_sync_32_to_64(CPUARMState *env)
4439 int i;
4440 uint32_t mode = env->uncached_cpsr & CPSR_M;
4442 /* We can blanket copy R[0:7] to X[0:7] */
4443 for (i = 0; i < 8; i++) {
4444 env->xregs[i] = env->regs[i];
4447 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
4448 * Otherwise, they come from the banked user regs.
4450 if (mode == ARM_CPU_MODE_FIQ) {
4451 for (i = 8; i < 13; i++) {
4452 env->xregs[i] = env->usr_regs[i - 8];
4454 } else {
4455 for (i = 8; i < 13; i++) {
4456 env->xregs[i] = env->regs[i];
4460 /* Registers x13-x23 are the various mode SP and FP registers. Registers
4461 * r13 and r14 are only copied if we are in that mode, otherwise we copy
4462 * from the mode banked register.
4464 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
4465 env->xregs[13] = env->regs[13];
4466 env->xregs[14] = env->regs[14];
4467 } else {
4468 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
4469 /* HYP is an exception in that it is copied from r14 */
4470 if (mode == ARM_CPU_MODE_HYP) {
4471 env->xregs[14] = env->regs[14];
4472 } else {
4473 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
4477 if (mode == ARM_CPU_MODE_HYP) {
4478 env->xregs[15] = env->regs[13];
4479 } else {
4480 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
4483 if (mode == ARM_CPU_MODE_IRQ) {
4484 env->xregs[16] = env->regs[13];
4485 env->xregs[17] = env->regs[14];
4486 } else {
4487 env->xregs[16] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
4488 env->xregs[17] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
4491 if (mode == ARM_CPU_MODE_SVC) {
4492 env->xregs[18] = env->regs[13];
4493 env->xregs[19] = env->regs[14];
4494 } else {
4495 env->xregs[18] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
4496 env->xregs[19] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
4499 if (mode == ARM_CPU_MODE_ABT) {
4500 env->xregs[20] = env->regs[13];
4501 env->xregs[21] = env->regs[14];
4502 } else {
4503 env->xregs[20] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
4504 env->xregs[21] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
4507 if (mode == ARM_CPU_MODE_UND) {
4508 env->xregs[22] = env->regs[13];
4509 env->xregs[23] = env->regs[14];
4510 } else {
4511 env->xregs[22] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
4512 env->xregs[23] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
4515 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
4516 * mode, then we can copy from r8-r14. Otherwise, we copy from the
4517 * FIQ bank for r8-r14.
4519 if (mode == ARM_CPU_MODE_FIQ) {
4520 for (i = 24; i < 31; i++) {
4521 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
4523 } else {
4524 for (i = 24; i < 29; i++) {
4525 env->xregs[i] = env->fiq_regs[i - 24];
4527 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
4528 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
4531 env->pc = env->regs[15];
4534 /* Function used to synchronize QEMU's AArch32 register set with AArch64
4535 * register set. This is necessary when switching between AArch32 and AArch64
4536 * execution state.
4538 void aarch64_sync_64_to_32(CPUARMState *env)
4540 int i;
4541 uint32_t mode = env->uncached_cpsr & CPSR_M;
4543 /* We can blanket copy X[0:7] to R[0:7] */
4544 for (i = 0; i < 8; i++) {
4545 env->regs[i] = env->xregs[i];
4548 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
4549 * Otherwise, we copy x8-x12 into the banked user regs.
4551 if (mode == ARM_CPU_MODE_FIQ) {
4552 for (i = 8; i < 13; i++) {
4553 env->usr_regs[i - 8] = env->xregs[i];
4555 } else {
4556 for (i = 8; i < 13; i++) {
4557 env->regs[i] = env->xregs[i];
4561 /* Registers r13 & r14 depend on the current mode.
4562 * If we are in a given mode, we copy the corresponding x registers to r13
4563 * and r14. Otherwise, we copy the x register to the banked r13 and r14
4564 * for the mode.
4566 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
4567 env->regs[13] = env->xregs[13];
4568 env->regs[14] = env->xregs[14];
4569 } else {
4570 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
4572 /* HYP is an exception in that it does not have its own banked r14 but
4573 * shares the USR r14
4575 if (mode == ARM_CPU_MODE_HYP) {
4576 env->regs[14] = env->xregs[14];
4577 } else {
4578 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
4582 if (mode == ARM_CPU_MODE_HYP) {
4583 env->regs[13] = env->xregs[15];
4584 } else {
4585 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
4588 if (mode == ARM_CPU_MODE_IRQ) {
4589 env->regs[13] = env->xregs[16];
4590 env->regs[14] = env->xregs[17];
4591 } else {
4592 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
4593 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
4596 if (mode == ARM_CPU_MODE_SVC) {
4597 env->regs[13] = env->xregs[18];
4598 env->regs[14] = env->xregs[19];
4599 } else {
4600 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
4601 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
4604 if (mode == ARM_CPU_MODE_ABT) {
4605 env->regs[13] = env->xregs[20];
4606 env->regs[14] = env->xregs[21];
4607 } else {
4608 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
4609 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
4612 if (mode == ARM_CPU_MODE_UND) {
4613 env->regs[13] = env->xregs[22];
4614 env->regs[14] = env->xregs[23];
4615 } else {
4616 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
4617 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
4620 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
4621 * mode, then we can copy to r8-r14. Otherwise, we copy to the
4622 * FIQ bank for r8-r14.
4624 if (mode == ARM_CPU_MODE_FIQ) {
4625 for (i = 24; i < 31; i++) {
4626 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
4628 } else {
4629 for (i = 24; i < 29; i++) {
4630 env->fiq_regs[i - 24] = env->xregs[i];
4632 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
4633 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
4636 env->regs[15] = env->pc;
4639 /* Handle a CPU exception. */
4640 void arm_cpu_do_interrupt(CPUState *cs)
4642 ARMCPU *cpu = ARM_CPU(cs);
4643 CPUARMState *env = &cpu->env;
4644 uint32_t addr;
4645 uint32_t mask;
4646 int new_mode;
4647 uint32_t offset;
4648 uint32_t moe;
4650 assert(!IS_M(env));
4652 arm_log_exception(cs->exception_index);
4654 if (arm_is_psci_call(cpu, cs->exception_index)) {
4655 arm_handle_psci_call(cpu);
4656 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
4657 return;
4660 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
4661 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
4662 case EC_BREAKPOINT:
4663 case EC_BREAKPOINT_SAME_EL:
4664 moe = 1;
4665 break;
4666 case EC_WATCHPOINT:
4667 case EC_WATCHPOINT_SAME_EL:
4668 moe = 10;
4669 break;
4670 case EC_AA32_BKPT:
4671 moe = 3;
4672 break;
4673 case EC_VECTORCATCH:
4674 moe = 5;
4675 break;
4676 default:
4677 moe = 0;
4678 break;
4681 if (moe) {
4682 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
4685 /* TODO: Vectored interrupt controller. */
4686 switch (cs->exception_index) {
4687 case EXCP_UDEF:
4688 new_mode = ARM_CPU_MODE_UND;
4689 addr = 0x04;
4690 mask = CPSR_I;
4691 if (env->thumb)
4692 offset = 2;
4693 else
4694 offset = 4;
4695 break;
4696 case EXCP_SWI:
4697 if (semihosting_enabled) {
4698 /* Check for semihosting interrupt. */
4699 if (env->thumb) {
4700 mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
4701 & 0xff;
4702 } else {
4703 mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
4704 & 0xffffff;
4706 /* Only intercept calls from privileged modes, to provide some
4707 semblance of security. */
4708 if (((mask == 0x123456 && !env->thumb)
4709 || (mask == 0xab && env->thumb))
4710 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
4711 env->regs[0] = do_arm_semihosting(env);
4712 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
4713 return;
4716 new_mode = ARM_CPU_MODE_SVC;
4717 addr = 0x08;
4718 mask = CPSR_I;
4719 /* The PC already points to the next instruction. */
4720 offset = 0;
4721 break;
4722 case EXCP_BKPT:
4723 /* See if this is a semihosting syscall. */
4724 if (env->thumb && semihosting_enabled) {
4725 mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
4726 if (mask == 0xab
4727 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
4728 env->regs[15] += 2;
4729 env->regs[0] = do_arm_semihosting(env);
4730 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
4731 return;
4734 env->exception.fsr = 2;
4735 /* Fall through to prefetch abort. */
4736 case EXCP_PREFETCH_ABORT:
4737 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
4738 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
4739 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
4740 env->exception.fsr, (uint32_t)env->exception.vaddress);
4741 new_mode = ARM_CPU_MODE_ABT;
4742 addr = 0x0c;
4743 mask = CPSR_A | CPSR_I;
4744 offset = 4;
4745 break;
4746 case EXCP_DATA_ABORT:
4747 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
4748 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
4749 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
4750 env->exception.fsr,
4751 (uint32_t)env->exception.vaddress);
4752 new_mode = ARM_CPU_MODE_ABT;
4753 addr = 0x10;
4754 mask = CPSR_A | CPSR_I;
4755 offset = 8;
4756 break;
4757 case EXCP_IRQ:
4758 new_mode = ARM_CPU_MODE_IRQ;
4759 addr = 0x18;
4760 /* Disable IRQ and imprecise data aborts. */
4761 mask = CPSR_A | CPSR_I;
4762 offset = 4;
4763 if (env->cp15.scr_el3 & SCR_IRQ) {
4764 /* IRQ routed to monitor mode */
4765 new_mode = ARM_CPU_MODE_MON;
4766 mask |= CPSR_F;
4768 break;
4769 case EXCP_FIQ:
4770 new_mode = ARM_CPU_MODE_FIQ;
4771 addr = 0x1c;
4772 /* Disable FIQ, IRQ and imprecise data aborts. */
4773 mask = CPSR_A | CPSR_I | CPSR_F;
4774 if (env->cp15.scr_el3 & SCR_FIQ) {
4775 /* FIQ routed to monitor mode */
4776 new_mode = ARM_CPU_MODE_MON;
4778 offset = 4;
4779 break;
4780 case EXCP_SMC:
4781 new_mode = ARM_CPU_MODE_MON;
4782 addr = 0x08;
4783 mask = CPSR_A | CPSR_I | CPSR_F;
4784 offset = 0;
4785 break;
4786 default:
4787 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
4788 return; /* Never happens. Keep compiler happy. */
4791 if (new_mode == ARM_CPU_MODE_MON) {
4792 addr += env->cp15.mvbar;
4793 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
4794 /* High vectors. When enabled, base address cannot be remapped. */
4795 addr += 0xffff0000;
4796 } else {
4797 /* ARM v7 architectures provide a vector base address register to remap
4798 * the interrupt vector table.
4799 * This register is only followed in non-monitor mode, and is banked.
4800 * Note: only bits 31:5 are valid.
4802 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
4805 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
4806 env->cp15.scr_el3 &= ~SCR_NS;
4809 switch_mode (env, new_mode);
4810 /* For exceptions taken to AArch32 we must clear the SS bit in both
4811 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
4813 env->uncached_cpsr &= ~PSTATE_SS;
4814 env->spsr = cpsr_read(env);
4815 /* Clear IT bits. */
4816 env->condexec_bits = 0;
4817 /* Switch to the new mode, and to the correct instruction set. */
4818 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
4819 env->daif |= mask;
4820 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
4821 * and we should just guard the thumb mode on V4 */
4822 if (arm_feature(env, ARM_FEATURE_V4T)) {
4823 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
4825 env->regs[14] = env->regs[15] + offset;
4826 env->regs[15] = addr;
4827 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
4831 /* Return the exception level which controls this address translation regime */
4832 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
4834 switch (mmu_idx) {
4835 case ARMMMUIdx_S2NS:
4836 case ARMMMUIdx_S1E2:
4837 return 2;
4838 case ARMMMUIdx_S1E3:
4839 return 3;
4840 case ARMMMUIdx_S1SE0:
4841 return arm_el_is_aa64(env, 3) ? 1 : 3;
4842 case ARMMMUIdx_S1SE1:
4843 case ARMMMUIdx_S1NSE0:
4844 case ARMMMUIdx_S1NSE1:
4845 return 1;
4846 default:
4847 g_assert_not_reached();
4851 /* Return the SCTLR value which controls this address translation regime */
4852 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
4854 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
4857 /* Return true if the specified stage of address translation is disabled */
4858 static inline bool regime_translation_disabled(CPUARMState *env,
4859 ARMMMUIdx mmu_idx)
4861 if (mmu_idx == ARMMMUIdx_S2NS) {
4862 return (env->cp15.hcr_el2 & HCR_VM) == 0;
4864 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
4867 /* Return the TCR controlling this translation regime */
4868 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
4870 if (mmu_idx == ARMMMUIdx_S2NS) {
4871 /* TODO: return VTCR_EL2 */
4872 g_assert_not_reached();
4874 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
4877 /* Return true if the translation regime is using LPAE format page tables */
4878 static inline bool regime_using_lpae_format(CPUARMState *env,
4879 ARMMMUIdx mmu_idx)
4881 int el = regime_el(env, mmu_idx);
4882 if (el == 2 || arm_el_is_aa64(env, el)) {
4883 return true;
4885 if (arm_feature(env, ARM_FEATURE_LPAE)
4886 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
4887 return true;
4889 return false;
4892 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
4894 switch (mmu_idx) {
4895 case ARMMMUIdx_S1SE0:
4896 case ARMMMUIdx_S1NSE0:
4897 return true;
4898 default:
4899 return false;
4900 case ARMMMUIdx_S12NSE0:
4901 case ARMMMUIdx_S12NSE1:
4902 g_assert_not_reached();
4906 /* Check section/page access permissions.
4907 Returns the page protection flags, or zero if the access is not
4908 permitted. */
4909 static inline int check_ap(CPUARMState *env, ARMMMUIdx mmu_idx,
4910 int ap, int domain_prot,
4911 int access_type)
4913 int prot_ro;
4914 bool is_user = regime_is_user(env, mmu_idx);
4916 if (domain_prot == 3) {
4917 return PAGE_READ | PAGE_WRITE;
4920 if (access_type == 1) {
4921 prot_ro = 0;
4922 } else {
4923 prot_ro = PAGE_READ;
4926 switch (ap) {
4927 case 0:
4928 if (arm_feature(env, ARM_FEATURE_V7)) {
4929 return 0;
4931 if (access_type == 1) {
4932 return 0;
4934 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
4935 case SCTLR_S:
4936 return is_user ? 0 : PAGE_READ;
4937 case SCTLR_R:
4938 return PAGE_READ;
4939 default:
4940 return 0;
4942 case 1:
4943 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
4944 case 2:
4945 if (is_user) {
4946 return prot_ro;
4947 } else {
4948 return PAGE_READ | PAGE_WRITE;
4950 case 3:
4951 return PAGE_READ | PAGE_WRITE;
4952 case 4: /* Reserved. */
4953 return 0;
4954 case 5:
4955 return is_user ? 0 : prot_ro;
4956 case 6:
4957 return prot_ro;
4958 case 7:
4959 if (!arm_feature(env, ARM_FEATURE_V6K)) {
4960 return 0;
4962 return prot_ro;
4963 default:
4964 abort();
4968 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
4969 uint32_t *table, uint32_t address)
4971 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
4972 int el = regime_el(env, mmu_idx);
4973 TCR *tcr = regime_tcr(env, mmu_idx);
4975 if (address & tcr->mask) {
4976 if (tcr->raw_tcr & TTBCR_PD1) {
4977 /* Translation table walk disabled for TTBR1 */
4978 return false;
4980 *table = env->cp15.ttbr1_el[el] & 0xffffc000;
4981 } else {
4982 if (tcr->raw_tcr & TTBCR_PD0) {
4983 /* Translation table walk disabled for TTBR0 */
4984 return false;
4986 *table = env->cp15.ttbr0_el[el] & tcr->base_mask;
4988 *table |= (address >> 18) & 0x3ffc;
4989 return true;
4992 static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
4993 ARMMMUIdx mmu_idx, hwaddr *phys_ptr,
4994 int *prot, target_ulong *page_size)
4996 CPUState *cs = CPU(arm_env_get_cpu(env));
4997 int code;
4998 uint32_t table;
4999 uint32_t desc;
5000 int type;
5001 int ap;
5002 int domain = 0;
5003 int domain_prot;
5004 hwaddr phys_addr;
5005 uint32_t dacr;
5007 /* Pagetable walk. */
5008 /* Lookup l1 descriptor. */
5009 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
5010 /* Section translation fault if page walk is disabled by PD0 or PD1 */
5011 code = 5;
5012 goto do_fault;
5014 desc = ldl_phys(cs->as, table);
5015 type = (desc & 3);
5016 domain = (desc >> 5) & 0x0f;
5017 if (regime_el(env, mmu_idx) == 1) {
5018 dacr = env->cp15.dacr_ns;
5019 } else {
5020 dacr = env->cp15.dacr_s;
5022 domain_prot = (dacr >> (domain * 2)) & 3;
5023 if (type == 0) {
5024 /* Section translation fault. */
5025 code = 5;
5026 goto do_fault;
5028 if (domain_prot == 0 || domain_prot == 2) {
5029 if (type == 2)
5030 code = 9; /* Section domain fault. */
5031 else
5032 code = 11; /* Page domain fault. */
5033 goto do_fault;
5035 if (type == 2) {
5036 /* 1Mb section. */
5037 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
5038 ap = (desc >> 10) & 3;
5039 code = 13;
5040 *page_size = 1024 * 1024;
5041 } else {
5042 /* Lookup l2 entry. */
5043 if (type == 1) {
5044 /* Coarse pagetable. */
5045 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
5046 } else {
5047 /* Fine pagetable. */
5048 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
5050 desc = ldl_phys(cs->as, table);
5051 switch (desc & 3) {
5052 case 0: /* Page translation fault. */
5053 code = 7;
5054 goto do_fault;
5055 case 1: /* 64k page. */
5056 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
5057 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
5058 *page_size = 0x10000;
5059 break;
5060 case 2: /* 4k page. */
5061 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
5062 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
5063 *page_size = 0x1000;
5064 break;
5065 case 3: /* 1k page. */
5066 if (type == 1) {
5067 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5068 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
5069 } else {
5070 /* Page translation fault. */
5071 code = 7;
5072 goto do_fault;
5074 } else {
5075 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
5077 ap = (desc >> 4) & 3;
5078 *page_size = 0x400;
5079 break;
5080 default:
5081 /* Never happens, but compiler isn't smart enough to tell. */
5082 abort();
5084 code = 15;
5086 *prot = check_ap(env, mmu_idx, ap, domain_prot, access_type);
5087 if (!*prot) {
5088 /* Access permission fault. */
5089 goto do_fault;
5091 *prot |= PAGE_EXEC;
5092 *phys_ptr = phys_addr;
5093 return 0;
5094 do_fault:
5095 return code | (domain << 4);
5098 static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
5099 ARMMMUIdx mmu_idx, hwaddr *phys_ptr,
5100 int *prot, target_ulong *page_size)
5102 CPUState *cs = CPU(arm_env_get_cpu(env));
5103 int code;
5104 uint32_t table;
5105 uint32_t desc;
5106 uint32_t xn;
5107 uint32_t pxn = 0;
5108 int type;
5109 int ap;
5110 int domain = 0;
5111 int domain_prot;
5112 hwaddr phys_addr;
5113 uint32_t dacr;
5115 /* Pagetable walk. */
5116 /* Lookup l1 descriptor. */
5117 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
5118 /* Section translation fault if page walk is disabled by PD0 or PD1 */
5119 code = 5;
5120 goto do_fault;
5122 desc = ldl_phys(cs->as, table);
5123 type = (desc & 3);
5124 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
5125 /* Section translation fault, or attempt to use the encoding
5126 * which is Reserved on implementations without PXN.
5128 code = 5;
5129 goto do_fault;
5131 if ((type == 1) || !(desc & (1 << 18))) {
5132 /* Page or Section. */
5133 domain = (desc >> 5) & 0x0f;
5135 if (regime_el(env, mmu_idx) == 1) {
5136 dacr = env->cp15.dacr_ns;
5137 } else {
5138 dacr = env->cp15.dacr_s;
5140 domain_prot = (dacr >> (domain * 2)) & 3;
5141 if (domain_prot == 0 || domain_prot == 2) {
5142 if (type != 1) {
5143 code = 9; /* Section domain fault. */
5144 } else {
5145 code = 11; /* Page domain fault. */
5147 goto do_fault;
5149 if (type != 1) {
5150 if (desc & (1 << 18)) {
5151 /* Supersection. */
5152 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
5153 *page_size = 0x1000000;
5154 } else {
5155 /* Section. */
5156 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
5157 *page_size = 0x100000;
5159 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
5160 xn = desc & (1 << 4);
5161 pxn = desc & 1;
5162 code = 13;
5163 } else {
5164 if (arm_feature(env, ARM_FEATURE_PXN)) {
5165 pxn = (desc >> 2) & 1;
5167 /* Lookup l2 entry. */
5168 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
5169 desc = ldl_phys(cs->as, table);
5170 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
5171 switch (desc & 3) {
5172 case 0: /* Page translation fault. */
5173 code = 7;
5174 goto do_fault;
5175 case 1: /* 64k page. */
5176 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
5177 xn = desc & (1 << 15);
5178 *page_size = 0x10000;
5179 break;
5180 case 2: case 3: /* 4k page. */
5181 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
5182 xn = desc & 1;
5183 *page_size = 0x1000;
5184 break;
5185 default:
5186 /* Never happens, but compiler isn't smart enough to tell. */
5187 abort();
5189 code = 15;
5191 if (domain_prot == 3) {
5192 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
5193 } else {
5194 if (pxn && !regime_is_user(env, mmu_idx)) {
5195 xn = 1;
5197 if (xn && access_type == 2)
5198 goto do_fault;
5200 /* The simplified model uses AP[0] as an access control bit. */
5201 if ((regime_sctlr(env, mmu_idx) & SCTLR_AFE)
5202 && (ap & 1) == 0) {
5203 /* Access flag fault. */
5204 code = (code == 15) ? 6 : 3;
5205 goto do_fault;
5207 *prot = check_ap(env, mmu_idx, ap, domain_prot, access_type);
5208 if (!*prot) {
5209 /* Access permission fault. */
5210 goto do_fault;
5212 if (!xn) {
5213 *prot |= PAGE_EXEC;
5216 *phys_ptr = phys_addr;
5217 return 0;
5218 do_fault:
5219 return code | (domain << 4);
5222 /* Fault type for long-descriptor MMU fault reporting; this corresponds
5223 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
5225 typedef enum {
5226 translation_fault = 1,
5227 access_fault = 2,
5228 permission_fault = 3,
5229 } MMUFaultType;
5231 static int get_phys_addr_lpae(CPUARMState *env, target_ulong address,
5232 int access_type, ARMMMUIdx mmu_idx,
5233 hwaddr *phys_ptr, int *prot,
5234 target_ulong *page_size_ptr)
5236 CPUState *cs = CPU(arm_env_get_cpu(env));
5237 /* Read an LPAE long-descriptor translation table. */
5238 MMUFaultType fault_type = translation_fault;
5239 uint32_t level = 1;
5240 uint32_t epd;
5241 int32_t tsz;
5242 uint32_t tg;
5243 uint64_t ttbr;
5244 int ttbr_select;
5245 hwaddr descaddr, descmask;
5246 uint32_t tableattrs;
5247 target_ulong page_size;
5248 uint32_t attrs;
5249 int32_t granule_sz = 9;
5250 int32_t va_size = 32;
5251 int32_t tbi = 0;
5252 bool is_user;
5253 TCR *tcr = regime_tcr(env, mmu_idx);
5255 /* TODO:
5256 * This code assumes we're either a 64-bit EL1 or a 32-bit PL1;
5257 * it doesn't handle the different format TCR for TCR_EL2, TCR_EL3,
5258 * and VTCR_EL2, or the fact that those regimes don't have a split
5259 * TTBR0/TTBR1. Attribute and permission bit handling should also
5260 * be checked when adding support for those page table walks.
5262 if (arm_el_is_aa64(env, regime_el(env, mmu_idx))) {
5263 va_size = 64;
5264 if (extract64(address, 55, 1))
5265 tbi = extract64(tcr->raw_tcr, 38, 1);
5266 else
5267 tbi = extract64(tcr->raw_tcr, 37, 1);
5268 tbi *= 8;
5271 /* Determine whether this address is in the region controlled by
5272 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
5273 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
5274 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
5276 uint32_t t0sz = extract32(tcr->raw_tcr, 0, 6);
5277 if (va_size == 64) {
5278 t0sz = MIN(t0sz, 39);
5279 t0sz = MAX(t0sz, 16);
5281 uint32_t t1sz = extract32(tcr->raw_tcr, 16, 6);
5282 if (va_size == 64) {
5283 t1sz = MIN(t1sz, 39);
5284 t1sz = MAX(t1sz, 16);
5286 if (t0sz && !extract64(address, va_size - t0sz, t0sz - tbi)) {
5287 /* there is a ttbr0 region and we are in it (high bits all zero) */
5288 ttbr_select = 0;
5289 } else if (t1sz && !extract64(~address, va_size - t1sz, t1sz - tbi)) {
5290 /* there is a ttbr1 region and we are in it (high bits all one) */
5291 ttbr_select = 1;
5292 } else if (!t0sz) {
5293 /* ttbr0 region is "everything not in the ttbr1 region" */
5294 ttbr_select = 0;
5295 } else if (!t1sz) {
5296 /* ttbr1 region is "everything not in the ttbr0 region" */
5297 ttbr_select = 1;
5298 } else {
5299 /* in the gap between the two regions, this is a Translation fault */
5300 fault_type = translation_fault;
5301 goto do_fault;
5304 /* Note that QEMU ignores shareability and cacheability attributes,
5305 * so we don't need to do anything with the SH, ORGN, IRGN fields
5306 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
5307 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
5308 * implement any ASID-like capability so we can ignore it (instead
5309 * we will always flush the TLB any time the ASID is changed).
5311 if (ttbr_select == 0) {
5312 ttbr = A32_BANKED_CURRENT_REG_GET(env, ttbr0);
5313 epd = extract32(tcr->raw_tcr, 7, 1);
5314 tsz = t0sz;
5316 tg = extract32(tcr->raw_tcr, 14, 2);
5317 if (tg == 1) { /* 64KB pages */
5318 granule_sz = 13;
5320 if (tg == 2) { /* 16KB pages */
5321 granule_sz = 11;
5323 } else {
5324 ttbr = A32_BANKED_CURRENT_REG_GET(env, ttbr1);
5325 epd = extract32(tcr->raw_tcr, 23, 1);
5326 tsz = t1sz;
5328 tg = extract32(tcr->raw_tcr, 30, 2);
5329 if (tg == 3) { /* 64KB pages */
5330 granule_sz = 13;
5332 if (tg == 1) { /* 16KB pages */
5333 granule_sz = 11;
5337 /* Here we should have set up all the parameters for the translation:
5338 * va_size, ttbr, epd, tsz, granule_sz, tbi
5341 if (epd) {
5342 /* Translation table walk disabled => Translation fault on TLB miss */
5343 goto do_fault;
5346 /* The starting level depends on the virtual address size (which can be
5347 * up to 48 bits) and the translation granule size. It indicates the number
5348 * of strides (granule_sz bits at a time) needed to consume the bits
5349 * of the input address. In the pseudocode this is:
5350 * level = 4 - RoundUp((inputsize - grainsize) / stride)
5351 * where their 'inputsize' is our 'va_size - tsz', 'grainsize' is
5352 * our 'granule_sz + 3' and 'stride' is our 'granule_sz'.
5353 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
5354 * = 4 - (va_size - tsz - granule_sz - 3 + granule_sz - 1) / granule_sz
5355 * = 4 - (va_size - tsz - 4) / granule_sz;
5357 level = 4 - (va_size - tsz - 4) / granule_sz;
5359 /* Clear the vaddr bits which aren't part of the within-region address,
5360 * so that we don't have to special case things when calculating the
5361 * first descriptor address.
5363 if (tsz) {
5364 address &= (1ULL << (va_size - tsz)) - 1;
5367 descmask = (1ULL << (granule_sz + 3)) - 1;
5369 /* Now we can extract the actual base address from the TTBR */
5370 descaddr = extract64(ttbr, 0, 48);
5371 descaddr &= ~((1ULL << (va_size - tsz - (granule_sz * (4 - level)))) - 1);
5373 tableattrs = 0;
5374 for (;;) {
5375 uint64_t descriptor;
5377 descaddr |= (address >> (granule_sz * (4 - level))) & descmask;
5378 descaddr &= ~7ULL;
5379 descriptor = ldq_phys(cs->as, descaddr);
5380 if (!(descriptor & 1) ||
5381 (!(descriptor & 2) && (level == 3))) {
5382 /* Invalid, or the Reserved level 3 encoding */
5383 goto do_fault;
5385 descaddr = descriptor & 0xfffffff000ULL;
5387 if ((descriptor & 2) && (level < 3)) {
5388 /* Table entry. The top five bits are attributes which may
5389 * propagate down through lower levels of the table (and
5390 * which are all arranged so that 0 means "no effect", so
5391 * we can gather them up by ORing in the bits at each level).
5393 tableattrs |= extract64(descriptor, 59, 5);
5394 level++;
5395 continue;
5397 /* Block entry at level 1 or 2, or page entry at level 3.
5398 * These are basically the same thing, although the number
5399 * of bits we pull in from the vaddr varies.
5401 page_size = (1ULL << ((granule_sz * (4 - level)) + 3));
5402 descaddr |= (address & (page_size - 1));
5403 /* Extract attributes from the descriptor and merge with table attrs */
5404 attrs = extract64(descriptor, 2, 10)
5405 | (extract64(descriptor, 52, 12) << 10);
5406 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
5407 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
5408 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
5409 * means "force PL1 access only", which means forcing AP[1] to 0.
5411 if (extract32(tableattrs, 2, 1)) {
5412 attrs &= ~(1 << 4);
5414 /* Since we're always in the Non-secure state, NSTable is ignored. */
5415 break;
5417 /* Here descaddr is the final physical address, and attributes
5418 * are all in attrs.
5420 fault_type = access_fault;
5421 if ((attrs & (1 << 8)) == 0) {
5422 /* Access flag */
5423 goto do_fault;
5425 fault_type = permission_fault;
5426 is_user = regime_is_user(env, mmu_idx);
5427 if (is_user && !(attrs & (1 << 4))) {
5428 /* Unprivileged access not enabled */
5429 goto do_fault;
5431 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
5432 if ((arm_feature(env, ARM_FEATURE_V8) && is_user && (attrs & (1 << 12))) ||
5433 (!arm_feature(env, ARM_FEATURE_V8) && (attrs & (1 << 12))) ||
5434 (!is_user && (attrs & (1 << 11)))) {
5435 /* XN/UXN or PXN. Since we only implement EL0/EL1 we unconditionally
5436 * treat XN/UXN as UXN for v8.
5438 if (access_type == 2) {
5439 goto do_fault;
5441 *prot &= ~PAGE_EXEC;
5443 if (attrs & (1 << 5)) {
5444 /* Write access forbidden */
5445 if (access_type == 1) {
5446 goto do_fault;
5448 *prot &= ~PAGE_WRITE;
5451 *phys_ptr = descaddr;
5452 *page_size_ptr = page_size;
5453 return 0;
5455 do_fault:
5456 /* Long-descriptor format IFSR/DFSR value */
5457 return (1 << 9) | (fault_type << 2) | level;
5460 static int get_phys_addr_mpu(CPUARMState *env, uint32_t address,
5461 int access_type, ARMMMUIdx mmu_idx,
5462 hwaddr *phys_ptr, int *prot)
5464 int n;
5465 uint32_t mask;
5466 uint32_t base;
5467 bool is_user = regime_is_user(env, mmu_idx);
5469 *phys_ptr = address;
5470 for (n = 7; n >= 0; n--) {
5471 base = env->cp15.c6_region[n];
5472 if ((base & 1) == 0) {
5473 continue;
5475 mask = 1 << ((base >> 1) & 0x1f);
5476 /* Keep this shift separate from the above to avoid an
5477 (undefined) << 32. */
5478 mask = (mask << 1) - 1;
5479 if (((base ^ address) & ~mask) == 0) {
5480 break;
5483 if (n < 0) {
5484 return 2;
5487 if (access_type == 2) {
5488 mask = env->cp15.pmsav5_insn_ap;
5489 } else {
5490 mask = env->cp15.pmsav5_data_ap;
5492 mask = (mask >> (n * 4)) & 0xf;
5493 switch (mask) {
5494 case 0:
5495 return 1;
5496 case 1:
5497 if (is_user) {
5498 return 1;
5500 *prot = PAGE_READ | PAGE_WRITE;
5501 break;
5502 case 2:
5503 *prot = PAGE_READ;
5504 if (!is_user) {
5505 *prot |= PAGE_WRITE;
5507 break;
5508 case 3:
5509 *prot = PAGE_READ | PAGE_WRITE;
5510 break;
5511 case 5:
5512 if (is_user) {
5513 return 1;
5515 *prot = PAGE_READ;
5516 break;
5517 case 6:
5518 *prot = PAGE_READ;
5519 break;
5520 default:
5521 /* Bad permission. */
5522 return 1;
5524 *prot |= PAGE_EXEC;
5525 return 0;
5528 /* get_phys_addr - get the physical address for this virtual address
5530 * Find the physical address corresponding to the given virtual address,
5531 * by doing a translation table walk on MMU based systems or using the
5532 * MPU state on MPU based systems.
5534 * Returns 0 if the translation was successful. Otherwise, phys_ptr,
5535 * prot and page_size are not filled in, and the return value provides
5536 * information on why the translation aborted, in the format of a
5537 * DFSR/IFSR fault register, with the following caveats:
5538 * * we honour the short vs long DFSR format differences.
5539 * * the WnR bit is never set (the caller must do this).
5540 * * for MPU based systems we don't bother to return a full FSR format
5541 * value.
5543 * @env: CPUARMState
5544 * @address: virtual address to get physical address for
5545 * @access_type: 0 for read, 1 for write, 2 for execute
5546 * @mmu_idx: MMU index indicating required translation regime
5547 * @phys_ptr: set to the physical address corresponding to the virtual address
5548 * @prot: set to the permissions for the page containing phys_ptr
5549 * @page_size: set to the size of the page containing phys_ptr
5551 static inline int get_phys_addr(CPUARMState *env, target_ulong address,
5552 int access_type, ARMMMUIdx mmu_idx,
5553 hwaddr *phys_ptr, int *prot,
5554 target_ulong *page_size)
5556 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
5557 /* TODO: when we support EL2 we should here call ourselves recursively
5558 * to do the stage 1 and then stage 2 translations. The ldl_phys
5559 * calls for stage 1 will also need changing.
5560 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
5562 assert(!arm_feature(env, ARM_FEATURE_EL2));
5563 mmu_idx += ARMMMUIdx_S1NSE0;
5566 /* Fast Context Switch Extension. This doesn't exist at all in v8.
5567 * In v7 and earlier it affects all stage 1 translations.
5569 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
5570 && !arm_feature(env, ARM_FEATURE_V8)) {
5571 if (regime_el(env, mmu_idx) == 3) {
5572 address += env->cp15.fcseidr_s;
5573 } else {
5574 address += env->cp15.fcseidr_ns;
5578 if (regime_translation_disabled(env, mmu_idx)) {
5579 /* MMU/MPU disabled. */
5580 *phys_ptr = address;
5581 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
5582 *page_size = TARGET_PAGE_SIZE;
5583 return 0;
5586 if (arm_feature(env, ARM_FEATURE_MPU)) {
5587 *page_size = TARGET_PAGE_SIZE;
5588 return get_phys_addr_mpu(env, address, access_type, mmu_idx, phys_ptr,
5589 prot);
5592 if (regime_using_lpae_format(env, mmu_idx)) {
5593 return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
5594 prot, page_size);
5595 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
5596 return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
5597 prot, page_size);
5598 } else {
5599 return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
5600 prot, page_size);
5604 int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address,
5605 int access_type, int mmu_idx)
5607 ARMCPU *cpu = ARM_CPU(cs);
5608 CPUARMState *env = &cpu->env;
5609 hwaddr phys_addr;
5610 target_ulong page_size;
5611 int prot;
5612 int ret;
5613 uint32_t syn;
5614 bool same_el = (arm_current_el(env) != 0);
5616 ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr, &prot,
5617 &page_size);
5618 if (ret == 0) {
5619 /* Map a single [sub]page. */
5620 phys_addr &= TARGET_PAGE_MASK;
5621 address &= TARGET_PAGE_MASK;
5622 tlb_set_page(cs, address, phys_addr, prot, mmu_idx, page_size);
5623 return 0;
5626 /* AArch64 syndrome does not have an LPAE bit */
5627 syn = ret & ~(1 << 9);
5629 /* For insn and data aborts we assume there is no instruction syndrome
5630 * information; this is always true for exceptions reported to EL1.
5632 if (access_type == 2) {
5633 syn = syn_insn_abort(same_el, 0, 0, syn);
5634 cs->exception_index = EXCP_PREFETCH_ABORT;
5635 } else {
5636 syn = syn_data_abort(same_el, 0, 0, 0, access_type == 1, syn);
5637 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6)) {
5638 ret |= (1 << 11);
5640 cs->exception_index = EXCP_DATA_ABORT;
5643 env->exception.syndrome = syn;
5644 env->exception.vaddress = address;
5645 env->exception.fsr = ret;
5646 return 1;
5649 hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
5651 ARMCPU *cpu = ARM_CPU(cs);
5652 CPUARMState *env = &cpu->env;
5653 hwaddr phys_addr;
5654 target_ulong page_size;
5655 int prot;
5656 int ret;
5658 ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env), &phys_addr,
5659 &prot, &page_size);
5661 if (ret != 0) {
5662 return -1;
5665 return phys_addr;
5668 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
5670 if ((env->uncached_cpsr & CPSR_M) == mode) {
5671 env->regs[13] = val;
5672 } else {
5673 env->banked_r13[bank_number(mode)] = val;
5677 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
5679 if ((env->uncached_cpsr & CPSR_M) == mode) {
5680 return env->regs[13];
5681 } else {
5682 return env->banked_r13[bank_number(mode)];
5686 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
5688 ARMCPU *cpu = arm_env_get_cpu(env);
5690 switch (reg) {
5691 case 0: /* APSR */
5692 return xpsr_read(env) & 0xf8000000;
5693 case 1: /* IAPSR */
5694 return xpsr_read(env) & 0xf80001ff;
5695 case 2: /* EAPSR */
5696 return xpsr_read(env) & 0xff00fc00;
5697 case 3: /* xPSR */
5698 return xpsr_read(env) & 0xff00fdff;
5699 case 5: /* IPSR */
5700 return xpsr_read(env) & 0x000001ff;
5701 case 6: /* EPSR */
5702 return xpsr_read(env) & 0x0700fc00;
5703 case 7: /* IEPSR */
5704 return xpsr_read(env) & 0x0700edff;
5705 case 8: /* MSP */
5706 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
5707 case 9: /* PSP */
5708 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
5709 case 16: /* PRIMASK */
5710 return (env->daif & PSTATE_I) != 0;
5711 case 17: /* BASEPRI */
5712 case 18: /* BASEPRI_MAX */
5713 return env->v7m.basepri;
5714 case 19: /* FAULTMASK */
5715 return (env->daif & PSTATE_F) != 0;
5716 case 20: /* CONTROL */
5717 return env->v7m.control;
5718 default:
5719 /* ??? For debugging only. */
5720 cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg);
5721 return 0;
5725 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
5727 ARMCPU *cpu = arm_env_get_cpu(env);
5729 switch (reg) {
5730 case 0: /* APSR */
5731 xpsr_write(env, val, 0xf8000000);
5732 break;
5733 case 1: /* IAPSR */
5734 xpsr_write(env, val, 0xf8000000);
5735 break;
5736 case 2: /* EAPSR */
5737 xpsr_write(env, val, 0xfe00fc00);
5738 break;
5739 case 3: /* xPSR */
5740 xpsr_write(env, val, 0xfe00fc00);
5741 break;
5742 case 5: /* IPSR */
5743 /* IPSR bits are readonly. */
5744 break;
5745 case 6: /* EPSR */
5746 xpsr_write(env, val, 0x0600fc00);
5747 break;
5748 case 7: /* IEPSR */
5749 xpsr_write(env, val, 0x0600fc00);
5750 break;
5751 case 8: /* MSP */
5752 if (env->v7m.current_sp)
5753 env->v7m.other_sp = val;
5754 else
5755 env->regs[13] = val;
5756 break;
5757 case 9: /* PSP */
5758 if (env->v7m.current_sp)
5759 env->regs[13] = val;
5760 else
5761 env->v7m.other_sp = val;
5762 break;
5763 case 16: /* PRIMASK */
5764 if (val & 1) {
5765 env->daif |= PSTATE_I;
5766 } else {
5767 env->daif &= ~PSTATE_I;
5769 break;
5770 case 17: /* BASEPRI */
5771 env->v7m.basepri = val & 0xff;
5772 break;
5773 case 18: /* BASEPRI_MAX */
5774 val &= 0xff;
5775 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
5776 env->v7m.basepri = val;
5777 break;
5778 case 19: /* FAULTMASK */
5779 if (val & 1) {
5780 env->daif |= PSTATE_F;
5781 } else {
5782 env->daif &= ~PSTATE_F;
5784 break;
5785 case 20: /* CONTROL */
5786 env->v7m.control = val & 3;
5787 switch_v7m_sp(env, (val & 2) != 0);
5788 break;
5789 default:
5790 /* ??? For debugging only. */
5791 cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg);
5792 return;
5796 #endif
5798 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
5800 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
5801 * Note that we do not implement the (architecturally mandated)
5802 * alignment fault for attempts to use this on Device memory
5803 * (which matches the usual QEMU behaviour of not implementing either
5804 * alignment faults or any memory attribute handling).
5807 ARMCPU *cpu = arm_env_get_cpu(env);
5808 uint64_t blocklen = 4 << cpu->dcz_blocksize;
5809 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
5811 #ifndef CONFIG_USER_ONLY
5813 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
5814 * the block size so we might have to do more than one TLB lookup.
5815 * We know that in fact for any v8 CPU the page size is at least 4K
5816 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
5817 * 1K as an artefact of legacy v5 subpage support being present in the
5818 * same QEMU executable.
5820 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
5821 void *hostaddr[maxidx];
5822 int try, i;
5824 for (try = 0; try < 2; try++) {
5826 for (i = 0; i < maxidx; i++) {
5827 hostaddr[i] = tlb_vaddr_to_host(env,
5828 vaddr + TARGET_PAGE_SIZE * i,
5829 1, cpu_mmu_index(env));
5830 if (!hostaddr[i]) {
5831 break;
5834 if (i == maxidx) {
5835 /* If it's all in the TLB it's fair game for just writing to;
5836 * we know we don't need to update dirty status, etc.
5838 for (i = 0; i < maxidx - 1; i++) {
5839 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
5841 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
5842 return;
5844 /* OK, try a store and see if we can populate the tlb. This
5845 * might cause an exception if the memory isn't writable,
5846 * in which case we will longjmp out of here. We must for
5847 * this purpose use the actual register value passed to us
5848 * so that we get the fault address right.
5850 helper_ret_stb_mmu(env, vaddr_in, 0, cpu_mmu_index(env), GETRA());
5851 /* Now we can populate the other TLB entries, if any */
5852 for (i = 0; i < maxidx; i++) {
5853 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
5854 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
5855 helper_ret_stb_mmu(env, va, 0, cpu_mmu_index(env), GETRA());
5860 /* Slow path (probably attempt to do this to an I/O device or
5861 * similar, or clearing of a block of code we have translations
5862 * cached for). Just do a series of byte writes as the architecture
5863 * demands. It's not worth trying to use a cpu_physical_memory_map(),
5864 * memset(), unmap() sequence here because:
5865 * + we'd need to account for the blocksize being larger than a page
5866 * + the direct-RAM access case is almost always going to be dealt
5867 * with in the fastpath code above, so there's no speed benefit
5868 * + we would have to deal with the map returning NULL because the
5869 * bounce buffer was in use
5871 for (i = 0; i < blocklen; i++) {
5872 helper_ret_stb_mmu(env, vaddr + i, 0, cpu_mmu_index(env), GETRA());
5875 #else
5876 memset(g2h(vaddr), 0, blocklen);
5877 #endif
5880 /* Note that signed overflow is undefined in C. The following routines are
5881 careful to use unsigned types where modulo arithmetic is required.
5882 Failure to do so _will_ break on newer gcc. */
5884 /* Signed saturating arithmetic. */
5886 /* Perform 16-bit signed saturating addition. */
5887 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
5889 uint16_t res;
5891 res = a + b;
5892 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
5893 if (a & 0x8000)
5894 res = 0x8000;
5895 else
5896 res = 0x7fff;
5898 return res;
5901 /* Perform 8-bit signed saturating addition. */
5902 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
5904 uint8_t res;
5906 res = a + b;
5907 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
5908 if (a & 0x80)
5909 res = 0x80;
5910 else
5911 res = 0x7f;
5913 return res;
5916 /* Perform 16-bit signed saturating subtraction. */
5917 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
5919 uint16_t res;
5921 res = a - b;
5922 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
5923 if (a & 0x8000)
5924 res = 0x8000;
5925 else
5926 res = 0x7fff;
5928 return res;
5931 /* Perform 8-bit signed saturating subtraction. */
5932 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
5934 uint8_t res;
5936 res = a - b;
5937 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
5938 if (a & 0x80)
5939 res = 0x80;
5940 else
5941 res = 0x7f;
5943 return res;
5946 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
5947 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
5948 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
5949 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
5950 #define PFX q
5952 #include "op_addsub.h"
5954 /* Unsigned saturating arithmetic. */
5955 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
5957 uint16_t res;
5958 res = a + b;
5959 if (res < a)
5960 res = 0xffff;
5961 return res;
5964 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
5966 if (a > b)
5967 return a - b;
5968 else
5969 return 0;
5972 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
5974 uint8_t res;
5975 res = a + b;
5976 if (res < a)
5977 res = 0xff;
5978 return res;
5981 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
5983 if (a > b)
5984 return a - b;
5985 else
5986 return 0;
5989 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
5990 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
5991 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
5992 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
5993 #define PFX uq
5995 #include "op_addsub.h"
5997 /* Signed modulo arithmetic. */
5998 #define SARITH16(a, b, n, op) do { \
5999 int32_t sum; \
6000 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
6001 RESULT(sum, n, 16); \
6002 if (sum >= 0) \
6003 ge |= 3 << (n * 2); \
6004 } while(0)
6006 #define SARITH8(a, b, n, op) do { \
6007 int32_t sum; \
6008 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
6009 RESULT(sum, n, 8); \
6010 if (sum >= 0) \
6011 ge |= 1 << n; \
6012 } while(0)
6015 #define ADD16(a, b, n) SARITH16(a, b, n, +)
6016 #define SUB16(a, b, n) SARITH16(a, b, n, -)
6017 #define ADD8(a, b, n) SARITH8(a, b, n, +)
6018 #define SUB8(a, b, n) SARITH8(a, b, n, -)
6019 #define PFX s
6020 #define ARITH_GE
6022 #include "op_addsub.h"
6024 /* Unsigned modulo arithmetic. */
6025 #define ADD16(a, b, n) do { \
6026 uint32_t sum; \
6027 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
6028 RESULT(sum, n, 16); \
6029 if ((sum >> 16) == 1) \
6030 ge |= 3 << (n * 2); \
6031 } while(0)
6033 #define ADD8(a, b, n) do { \
6034 uint32_t sum; \
6035 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
6036 RESULT(sum, n, 8); \
6037 if ((sum >> 8) == 1) \
6038 ge |= 1 << n; \
6039 } while(0)
6041 #define SUB16(a, b, n) do { \
6042 uint32_t sum; \
6043 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
6044 RESULT(sum, n, 16); \
6045 if ((sum >> 16) == 0) \
6046 ge |= 3 << (n * 2); \
6047 } while(0)
6049 #define SUB8(a, b, n) do { \
6050 uint32_t sum; \
6051 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
6052 RESULT(sum, n, 8); \
6053 if ((sum >> 8) == 0) \
6054 ge |= 1 << n; \
6055 } while(0)
6057 #define PFX u
6058 #define ARITH_GE
6060 #include "op_addsub.h"
6062 /* Halved signed arithmetic. */
6063 #define ADD16(a, b, n) \
6064 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
6065 #define SUB16(a, b, n) \
6066 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
6067 #define ADD8(a, b, n) \
6068 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
6069 #define SUB8(a, b, n) \
6070 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
6071 #define PFX sh
6073 #include "op_addsub.h"
6075 /* Halved unsigned arithmetic. */
6076 #define ADD16(a, b, n) \
6077 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
6078 #define SUB16(a, b, n) \
6079 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
6080 #define ADD8(a, b, n) \
6081 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
6082 #define SUB8(a, b, n) \
6083 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
6084 #define PFX uh
6086 #include "op_addsub.h"
6088 static inline uint8_t do_usad(uint8_t a, uint8_t b)
6090 if (a > b)
6091 return a - b;
6092 else
6093 return b - a;
6096 /* Unsigned sum of absolute byte differences. */
6097 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
6099 uint32_t sum;
6100 sum = do_usad(a, b);
6101 sum += do_usad(a >> 8, b >> 8);
6102 sum += do_usad(a >> 16, b >>16);
6103 sum += do_usad(a >> 24, b >> 24);
6104 return sum;
6107 /* For ARMv6 SEL instruction. */
6108 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
6110 uint32_t mask;
6112 mask = 0;
6113 if (flags & 1)
6114 mask |= 0xff;
6115 if (flags & 2)
6116 mask |= 0xff00;
6117 if (flags & 4)
6118 mask |= 0xff0000;
6119 if (flags & 8)
6120 mask |= 0xff000000;
6121 return (a & mask) | (b & ~mask);
6124 /* VFP support. We follow the convention used for VFP instructions:
6125 Single precision routines have a "s" suffix, double precision a
6126 "d" suffix. */
6128 /* Convert host exception flags to vfp form. */
6129 static inline int vfp_exceptbits_from_host(int host_bits)
6131 int target_bits = 0;
6133 if (host_bits & float_flag_invalid)
6134 target_bits |= 1;
6135 if (host_bits & float_flag_divbyzero)
6136 target_bits |= 2;
6137 if (host_bits & float_flag_overflow)
6138 target_bits |= 4;
6139 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
6140 target_bits |= 8;
6141 if (host_bits & float_flag_inexact)
6142 target_bits |= 0x10;
6143 if (host_bits & float_flag_input_denormal)
6144 target_bits |= 0x80;
6145 return target_bits;
6148 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
6150 int i;
6151 uint32_t fpscr;
6153 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
6154 | (env->vfp.vec_len << 16)
6155 | (env->vfp.vec_stride << 20);
6156 i = get_float_exception_flags(&env->vfp.fp_status);
6157 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
6158 fpscr |= vfp_exceptbits_from_host(i);
6159 return fpscr;
6162 uint32_t vfp_get_fpscr(CPUARMState *env)
6164 return HELPER(vfp_get_fpscr)(env);
6167 /* Convert vfp exception flags to target form. */
6168 static inline int vfp_exceptbits_to_host(int target_bits)
6170 int host_bits = 0;
6172 if (target_bits & 1)
6173 host_bits |= float_flag_invalid;
6174 if (target_bits & 2)
6175 host_bits |= float_flag_divbyzero;
6176 if (target_bits & 4)
6177 host_bits |= float_flag_overflow;
6178 if (target_bits & 8)
6179 host_bits |= float_flag_underflow;
6180 if (target_bits & 0x10)
6181 host_bits |= float_flag_inexact;
6182 if (target_bits & 0x80)
6183 host_bits |= float_flag_input_denormal;
6184 return host_bits;
6187 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
6189 int i;
6190 uint32_t changed;
6192 changed = env->vfp.xregs[ARM_VFP_FPSCR];
6193 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
6194 env->vfp.vec_len = (val >> 16) & 7;
6195 env->vfp.vec_stride = (val >> 20) & 3;
6197 changed ^= val;
6198 if (changed & (3 << 22)) {
6199 i = (val >> 22) & 3;
6200 switch (i) {
6201 case FPROUNDING_TIEEVEN:
6202 i = float_round_nearest_even;
6203 break;
6204 case FPROUNDING_POSINF:
6205 i = float_round_up;
6206 break;
6207 case FPROUNDING_NEGINF:
6208 i = float_round_down;
6209 break;
6210 case FPROUNDING_ZERO:
6211 i = float_round_to_zero;
6212 break;
6214 set_float_rounding_mode(i, &env->vfp.fp_status);
6216 if (changed & (1 << 24)) {
6217 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
6218 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
6220 if (changed & (1 << 25))
6221 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
6223 i = vfp_exceptbits_to_host(val);
6224 set_float_exception_flags(i, &env->vfp.fp_status);
6225 set_float_exception_flags(0, &env->vfp.standard_fp_status);
6228 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
6230 HELPER(vfp_set_fpscr)(env, val);
6233 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
6235 #define VFP_BINOP(name) \
6236 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
6238 float_status *fpst = fpstp; \
6239 return float32_ ## name(a, b, fpst); \
6241 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
6243 float_status *fpst = fpstp; \
6244 return float64_ ## name(a, b, fpst); \
6246 VFP_BINOP(add)
6247 VFP_BINOP(sub)
6248 VFP_BINOP(mul)
6249 VFP_BINOP(div)
6250 VFP_BINOP(min)
6251 VFP_BINOP(max)
6252 VFP_BINOP(minnum)
6253 VFP_BINOP(maxnum)
6254 #undef VFP_BINOP
6256 float32 VFP_HELPER(neg, s)(float32 a)
6258 return float32_chs(a);
6261 float64 VFP_HELPER(neg, d)(float64 a)
6263 return float64_chs(a);
6266 float32 VFP_HELPER(abs, s)(float32 a)
6268 return float32_abs(a);
6271 float64 VFP_HELPER(abs, d)(float64 a)
6273 return float64_abs(a);
6276 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
6278 return float32_sqrt(a, &env->vfp.fp_status);
6281 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
6283 return float64_sqrt(a, &env->vfp.fp_status);
6286 /* XXX: check quiet/signaling case */
6287 #define DO_VFP_cmp(p, type) \
6288 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
6290 uint32_t flags; \
6291 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
6292 case 0: flags = 0x6; break; \
6293 case -1: flags = 0x8; break; \
6294 case 1: flags = 0x2; break; \
6295 default: case 2: flags = 0x3; break; \
6297 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
6298 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
6300 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
6302 uint32_t flags; \
6303 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
6304 case 0: flags = 0x6; break; \
6305 case -1: flags = 0x8; break; \
6306 case 1: flags = 0x2; break; \
6307 default: case 2: flags = 0x3; break; \
6309 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
6310 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
6312 DO_VFP_cmp(s, float32)
6313 DO_VFP_cmp(d, float64)
6314 #undef DO_VFP_cmp
6316 /* Integer to float and float to integer conversions */
6318 #define CONV_ITOF(name, fsz, sign) \
6319 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
6321 float_status *fpst = fpstp; \
6322 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
6325 #define CONV_FTOI(name, fsz, sign, round) \
6326 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
6328 float_status *fpst = fpstp; \
6329 if (float##fsz##_is_any_nan(x)) { \
6330 float_raise(float_flag_invalid, fpst); \
6331 return 0; \
6333 return float##fsz##_to_##sign##int32##round(x, fpst); \
6336 #define FLOAT_CONVS(name, p, fsz, sign) \
6337 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
6338 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
6339 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
6341 FLOAT_CONVS(si, s, 32, )
6342 FLOAT_CONVS(si, d, 64, )
6343 FLOAT_CONVS(ui, s, 32, u)
6344 FLOAT_CONVS(ui, d, 64, u)
6346 #undef CONV_ITOF
6347 #undef CONV_FTOI
6348 #undef FLOAT_CONVS
6350 /* floating point conversion */
6351 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
6353 float64 r = float32_to_float64(x, &env->vfp.fp_status);
6354 /* ARM requires that S<->D conversion of any kind of NaN generates
6355 * a quiet NaN by forcing the most significant frac bit to 1.
6357 return float64_maybe_silence_nan(r);
6360 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
6362 float32 r = float64_to_float32(x, &env->vfp.fp_status);
6363 /* ARM requires that S<->D conversion of any kind of NaN generates
6364 * a quiet NaN by forcing the most significant frac bit to 1.
6366 return float32_maybe_silence_nan(r);
6369 /* VFP3 fixed point conversion. */
6370 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
6371 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
6372 void *fpstp) \
6374 float_status *fpst = fpstp; \
6375 float##fsz tmp; \
6376 tmp = itype##_to_##float##fsz(x, fpst); \
6377 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
6380 /* Notice that we want only input-denormal exception flags from the
6381 * scalbn operation: the other possible flags (overflow+inexact if
6382 * we overflow to infinity, output-denormal) aren't correct for the
6383 * complete scale-and-convert operation.
6385 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
6386 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
6387 uint32_t shift, \
6388 void *fpstp) \
6390 float_status *fpst = fpstp; \
6391 int old_exc_flags = get_float_exception_flags(fpst); \
6392 float##fsz tmp; \
6393 if (float##fsz##_is_any_nan(x)) { \
6394 float_raise(float_flag_invalid, fpst); \
6395 return 0; \
6397 tmp = float##fsz##_scalbn(x, shift, fpst); \
6398 old_exc_flags |= get_float_exception_flags(fpst) \
6399 & float_flag_input_denormal; \
6400 set_float_exception_flags(old_exc_flags, fpst); \
6401 return float##fsz##_to_##itype##round(tmp, fpst); \
6404 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
6405 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
6406 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
6407 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
6409 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
6410 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
6411 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
6413 VFP_CONV_FIX(sh, d, 64, 64, int16)
6414 VFP_CONV_FIX(sl, d, 64, 64, int32)
6415 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
6416 VFP_CONV_FIX(uh, d, 64, 64, uint16)
6417 VFP_CONV_FIX(ul, d, 64, 64, uint32)
6418 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
6419 VFP_CONV_FIX(sh, s, 32, 32, int16)
6420 VFP_CONV_FIX(sl, s, 32, 32, int32)
6421 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
6422 VFP_CONV_FIX(uh, s, 32, 32, uint16)
6423 VFP_CONV_FIX(ul, s, 32, 32, uint32)
6424 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
6425 #undef VFP_CONV_FIX
6426 #undef VFP_CONV_FIX_FLOAT
6427 #undef VFP_CONV_FLOAT_FIX_ROUND
6429 /* Set the current fp rounding mode and return the old one.
6430 * The argument is a softfloat float_round_ value.
6432 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
6434 float_status *fp_status = &env->vfp.fp_status;
6436 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
6437 set_float_rounding_mode(rmode, fp_status);
6439 return prev_rmode;
6442 /* Set the current fp rounding mode in the standard fp status and return
6443 * the old one. This is for NEON instructions that need to change the
6444 * rounding mode but wish to use the standard FPSCR values for everything
6445 * else. Always set the rounding mode back to the correct value after
6446 * modifying it.
6447 * The argument is a softfloat float_round_ value.
6449 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
6451 float_status *fp_status = &env->vfp.standard_fp_status;
6453 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
6454 set_float_rounding_mode(rmode, fp_status);
6456 return prev_rmode;
6459 /* Half precision conversions. */
6460 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
6462 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
6463 float32 r = float16_to_float32(make_float16(a), ieee, s);
6464 if (ieee) {
6465 return float32_maybe_silence_nan(r);
6467 return r;
6470 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
6472 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
6473 float16 r = float32_to_float16(a, ieee, s);
6474 if (ieee) {
6475 r = float16_maybe_silence_nan(r);
6477 return float16_val(r);
6480 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
6482 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
6485 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
6487 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
6490 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
6492 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
6495 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
6497 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
6500 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
6502 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
6503 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
6504 if (ieee) {
6505 return float64_maybe_silence_nan(r);
6507 return r;
6510 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
6512 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
6513 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
6514 if (ieee) {
6515 r = float16_maybe_silence_nan(r);
6517 return float16_val(r);
6520 #define float32_two make_float32(0x40000000)
6521 #define float32_three make_float32(0x40400000)
6522 #define float32_one_point_five make_float32(0x3fc00000)
6524 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
6526 float_status *s = &env->vfp.standard_fp_status;
6527 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
6528 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
6529 if (!(float32_is_zero(a) || float32_is_zero(b))) {
6530 float_raise(float_flag_input_denormal, s);
6532 return float32_two;
6534 return float32_sub(float32_two, float32_mul(a, b, s), s);
6537 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
6539 float_status *s = &env->vfp.standard_fp_status;
6540 float32 product;
6541 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
6542 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
6543 if (!(float32_is_zero(a) || float32_is_zero(b))) {
6544 float_raise(float_flag_input_denormal, s);
6546 return float32_one_point_five;
6548 product = float32_mul(a, b, s);
6549 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
6552 /* NEON helpers. */
6554 /* Constants 256 and 512 are used in some helpers; we avoid relying on
6555 * int->float conversions at run-time. */
6556 #define float64_256 make_float64(0x4070000000000000LL)
6557 #define float64_512 make_float64(0x4080000000000000LL)
6558 #define float32_maxnorm make_float32(0x7f7fffff)
6559 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
6561 /* Reciprocal functions
6563 * The algorithm that must be used to calculate the estimate
6564 * is specified by the ARM ARM, see FPRecipEstimate()
6567 static float64 recip_estimate(float64 a, float_status *real_fp_status)
6569 /* These calculations mustn't set any fp exception flags,
6570 * so we use a local copy of the fp_status.
6572 float_status dummy_status = *real_fp_status;
6573 float_status *s = &dummy_status;
6574 /* q = (int)(a * 512.0) */
6575 float64 q = float64_mul(float64_512, a, s);
6576 int64_t q_int = float64_to_int64_round_to_zero(q, s);
6578 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
6579 q = int64_to_float64(q_int, s);
6580 q = float64_add(q, float64_half, s);
6581 q = float64_div(q, float64_512, s);
6582 q = float64_div(float64_one, q, s);
6584 /* s = (int)(256.0 * r + 0.5) */
6585 q = float64_mul(q, float64_256, s);
6586 q = float64_add(q, float64_half, s);
6587 q_int = float64_to_int64_round_to_zero(q, s);
6589 /* return (double)s / 256.0 */
6590 return float64_div(int64_to_float64(q_int, s), float64_256, s);
6593 /* Common wrapper to call recip_estimate */
6594 static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
6596 uint64_t val64 = float64_val(num);
6597 uint64_t frac = extract64(val64, 0, 52);
6598 int64_t exp = extract64(val64, 52, 11);
6599 uint64_t sbit;
6600 float64 scaled, estimate;
6602 /* Generate the scaled number for the estimate function */
6603 if (exp == 0) {
6604 if (extract64(frac, 51, 1) == 0) {
6605 exp = -1;
6606 frac = extract64(frac, 0, 50) << 2;
6607 } else {
6608 frac = extract64(frac, 0, 51) << 1;
6612 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
6613 scaled = make_float64((0x3feULL << 52)
6614 | extract64(frac, 44, 8) << 44);
6616 estimate = recip_estimate(scaled, fpst);
6618 /* Build new result */
6619 val64 = float64_val(estimate);
6620 sbit = 0x8000000000000000ULL & val64;
6621 exp = off - exp;
6622 frac = extract64(val64, 0, 52);
6624 if (exp == 0) {
6625 frac = 1ULL << 51 | extract64(frac, 1, 51);
6626 } else if (exp == -1) {
6627 frac = 1ULL << 50 | extract64(frac, 2, 50);
6628 exp = 0;
6631 return make_float64(sbit | (exp << 52) | frac);
6634 static bool round_to_inf(float_status *fpst, bool sign_bit)
6636 switch (fpst->float_rounding_mode) {
6637 case float_round_nearest_even: /* Round to Nearest */
6638 return true;
6639 case float_round_up: /* Round to +Inf */
6640 return !sign_bit;
6641 case float_round_down: /* Round to -Inf */
6642 return sign_bit;
6643 case float_round_to_zero: /* Round to Zero */
6644 return false;
6647 g_assert_not_reached();
6650 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
6652 float_status *fpst = fpstp;
6653 float32 f32 = float32_squash_input_denormal(input, fpst);
6654 uint32_t f32_val = float32_val(f32);
6655 uint32_t f32_sbit = 0x80000000ULL & f32_val;
6656 int32_t f32_exp = extract32(f32_val, 23, 8);
6657 uint32_t f32_frac = extract32(f32_val, 0, 23);
6658 float64 f64, r64;
6659 uint64_t r64_val;
6660 int64_t r64_exp;
6661 uint64_t r64_frac;
6663 if (float32_is_any_nan(f32)) {
6664 float32 nan = f32;
6665 if (float32_is_signaling_nan(f32)) {
6666 float_raise(float_flag_invalid, fpst);
6667 nan = float32_maybe_silence_nan(f32);
6669 if (fpst->default_nan_mode) {
6670 nan = float32_default_nan;
6672 return nan;
6673 } else if (float32_is_infinity(f32)) {
6674 return float32_set_sign(float32_zero, float32_is_neg(f32));
6675 } else if (float32_is_zero(f32)) {
6676 float_raise(float_flag_divbyzero, fpst);
6677 return float32_set_sign(float32_infinity, float32_is_neg(f32));
6678 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
6679 /* Abs(value) < 2.0^-128 */
6680 float_raise(float_flag_overflow | float_flag_inexact, fpst);
6681 if (round_to_inf(fpst, f32_sbit)) {
6682 return float32_set_sign(float32_infinity, float32_is_neg(f32));
6683 } else {
6684 return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
6686 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
6687 float_raise(float_flag_underflow, fpst);
6688 return float32_set_sign(float32_zero, float32_is_neg(f32));
6692 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
6693 r64 = call_recip_estimate(f64, 253, fpst);
6694 r64_val = float64_val(r64);
6695 r64_exp = extract64(r64_val, 52, 11);
6696 r64_frac = extract64(r64_val, 0, 52);
6698 /* result = sign : result_exp<7:0> : fraction<51:29>; */
6699 return make_float32(f32_sbit |
6700 (r64_exp & 0xff) << 23 |
6701 extract64(r64_frac, 29, 24));
6704 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
6706 float_status *fpst = fpstp;
6707 float64 f64 = float64_squash_input_denormal(input, fpst);
6708 uint64_t f64_val = float64_val(f64);
6709 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
6710 int64_t f64_exp = extract64(f64_val, 52, 11);
6711 float64 r64;
6712 uint64_t r64_val;
6713 int64_t r64_exp;
6714 uint64_t r64_frac;
6716 /* Deal with any special cases */
6717 if (float64_is_any_nan(f64)) {
6718 float64 nan = f64;
6719 if (float64_is_signaling_nan(f64)) {
6720 float_raise(float_flag_invalid, fpst);
6721 nan = float64_maybe_silence_nan(f64);
6723 if (fpst->default_nan_mode) {
6724 nan = float64_default_nan;
6726 return nan;
6727 } else if (float64_is_infinity(f64)) {
6728 return float64_set_sign(float64_zero, float64_is_neg(f64));
6729 } else if (float64_is_zero(f64)) {
6730 float_raise(float_flag_divbyzero, fpst);
6731 return float64_set_sign(float64_infinity, float64_is_neg(f64));
6732 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
6733 /* Abs(value) < 2.0^-1024 */
6734 float_raise(float_flag_overflow | float_flag_inexact, fpst);
6735 if (round_to_inf(fpst, f64_sbit)) {
6736 return float64_set_sign(float64_infinity, float64_is_neg(f64));
6737 } else {
6738 return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
6740 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
6741 float_raise(float_flag_underflow, fpst);
6742 return float64_set_sign(float64_zero, float64_is_neg(f64));
6745 r64 = call_recip_estimate(f64, 2045, fpst);
6746 r64_val = float64_val(r64);
6747 r64_exp = extract64(r64_val, 52, 11);
6748 r64_frac = extract64(r64_val, 0, 52);
6750 /* result = sign : result_exp<10:0> : fraction<51:0> */
6751 return make_float64(f64_sbit |
6752 ((r64_exp & 0x7ff) << 52) |
6753 r64_frac);
6756 /* The algorithm that must be used to calculate the estimate
6757 * is specified by the ARM ARM.
6759 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
6761 /* These calculations mustn't set any fp exception flags,
6762 * so we use a local copy of the fp_status.
6764 float_status dummy_status = *real_fp_status;
6765 float_status *s = &dummy_status;
6766 float64 q;
6767 int64_t q_int;
6769 if (float64_lt(a, float64_half, s)) {
6770 /* range 0.25 <= a < 0.5 */
6772 /* a in units of 1/512 rounded down */
6773 /* q0 = (int)(a * 512.0); */
6774 q = float64_mul(float64_512, a, s);
6775 q_int = float64_to_int64_round_to_zero(q, s);
6777 /* reciprocal root r */
6778 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
6779 q = int64_to_float64(q_int, s);
6780 q = float64_add(q, float64_half, s);
6781 q = float64_div(q, float64_512, s);
6782 q = float64_sqrt(q, s);
6783 q = float64_div(float64_one, q, s);
6784 } else {
6785 /* range 0.5 <= a < 1.0 */
6787 /* a in units of 1/256 rounded down */
6788 /* q1 = (int)(a * 256.0); */
6789 q = float64_mul(float64_256, a, s);
6790 int64_t q_int = float64_to_int64_round_to_zero(q, s);
6792 /* reciprocal root r */
6793 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
6794 q = int64_to_float64(q_int, s);
6795 q = float64_add(q, float64_half, s);
6796 q = float64_div(q, float64_256, s);
6797 q = float64_sqrt(q, s);
6798 q = float64_div(float64_one, q, s);
6800 /* r in units of 1/256 rounded to nearest */
6801 /* s = (int)(256.0 * r + 0.5); */
6803 q = float64_mul(q, float64_256,s );
6804 q = float64_add(q, float64_half, s);
6805 q_int = float64_to_int64_round_to_zero(q, s);
6807 /* return (double)s / 256.0;*/
6808 return float64_div(int64_to_float64(q_int, s), float64_256, s);
6811 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
6813 float_status *s = fpstp;
6814 float32 f32 = float32_squash_input_denormal(input, s);
6815 uint32_t val = float32_val(f32);
6816 uint32_t f32_sbit = 0x80000000 & val;
6817 int32_t f32_exp = extract32(val, 23, 8);
6818 uint32_t f32_frac = extract32(val, 0, 23);
6819 uint64_t f64_frac;
6820 uint64_t val64;
6821 int result_exp;
6822 float64 f64;
6824 if (float32_is_any_nan(f32)) {
6825 float32 nan = f32;
6826 if (float32_is_signaling_nan(f32)) {
6827 float_raise(float_flag_invalid, s);
6828 nan = float32_maybe_silence_nan(f32);
6830 if (s->default_nan_mode) {
6831 nan = float32_default_nan;
6833 return nan;
6834 } else if (float32_is_zero(f32)) {
6835 float_raise(float_flag_divbyzero, s);
6836 return float32_set_sign(float32_infinity, float32_is_neg(f32));
6837 } else if (float32_is_neg(f32)) {
6838 float_raise(float_flag_invalid, s);
6839 return float32_default_nan;
6840 } else if (float32_is_infinity(f32)) {
6841 return float32_zero;
6844 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
6845 * preserving the parity of the exponent. */
6847 f64_frac = ((uint64_t) f32_frac) << 29;
6848 if (f32_exp == 0) {
6849 while (extract64(f64_frac, 51, 1) == 0) {
6850 f64_frac = f64_frac << 1;
6851 f32_exp = f32_exp-1;
6853 f64_frac = extract64(f64_frac, 0, 51) << 1;
6856 if (extract64(f32_exp, 0, 1) == 0) {
6857 f64 = make_float64(((uint64_t) f32_sbit) << 32
6858 | (0x3feULL << 52)
6859 | f64_frac);
6860 } else {
6861 f64 = make_float64(((uint64_t) f32_sbit) << 32
6862 | (0x3fdULL << 52)
6863 | f64_frac);
6866 result_exp = (380 - f32_exp) / 2;
6868 f64 = recip_sqrt_estimate(f64, s);
6870 val64 = float64_val(f64);
6872 val = ((result_exp & 0xff) << 23)
6873 | ((val64 >> 29) & 0x7fffff);
6874 return make_float32(val);
6877 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
6879 float_status *s = fpstp;
6880 float64 f64 = float64_squash_input_denormal(input, s);
6881 uint64_t val = float64_val(f64);
6882 uint64_t f64_sbit = 0x8000000000000000ULL & val;
6883 int64_t f64_exp = extract64(val, 52, 11);
6884 uint64_t f64_frac = extract64(val, 0, 52);
6885 int64_t result_exp;
6886 uint64_t result_frac;
6888 if (float64_is_any_nan(f64)) {
6889 float64 nan = f64;
6890 if (float64_is_signaling_nan(f64)) {
6891 float_raise(float_flag_invalid, s);
6892 nan = float64_maybe_silence_nan(f64);
6894 if (s->default_nan_mode) {
6895 nan = float64_default_nan;
6897 return nan;
6898 } else if (float64_is_zero(f64)) {
6899 float_raise(float_flag_divbyzero, s);
6900 return float64_set_sign(float64_infinity, float64_is_neg(f64));
6901 } else if (float64_is_neg(f64)) {
6902 float_raise(float_flag_invalid, s);
6903 return float64_default_nan;
6904 } else if (float64_is_infinity(f64)) {
6905 return float64_zero;
6908 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
6909 * preserving the parity of the exponent. */
6911 if (f64_exp == 0) {
6912 while (extract64(f64_frac, 51, 1) == 0) {
6913 f64_frac = f64_frac << 1;
6914 f64_exp = f64_exp - 1;
6916 f64_frac = extract64(f64_frac, 0, 51) << 1;
6919 if (extract64(f64_exp, 0, 1) == 0) {
6920 f64 = make_float64(f64_sbit
6921 | (0x3feULL << 52)
6922 | f64_frac);
6923 } else {
6924 f64 = make_float64(f64_sbit
6925 | (0x3fdULL << 52)
6926 | f64_frac);
6929 result_exp = (3068 - f64_exp) / 2;
6931 f64 = recip_sqrt_estimate(f64, s);
6933 result_frac = extract64(float64_val(f64), 0, 52);
6935 return make_float64(f64_sbit |
6936 ((result_exp & 0x7ff) << 52) |
6937 result_frac);
6940 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
6942 float_status *s = fpstp;
6943 float64 f64;
6945 if ((a & 0x80000000) == 0) {
6946 return 0xffffffff;
6949 f64 = make_float64((0x3feULL << 52)
6950 | ((int64_t)(a & 0x7fffffff) << 21));
6952 f64 = recip_estimate(f64, s);
6954 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
6957 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
6959 float_status *fpst = fpstp;
6960 float64 f64;
6962 if ((a & 0xc0000000) == 0) {
6963 return 0xffffffff;
6966 if (a & 0x80000000) {
6967 f64 = make_float64((0x3feULL << 52)
6968 | ((uint64_t)(a & 0x7fffffff) << 21));
6969 } else { /* bits 31-30 == '01' */
6970 f64 = make_float64((0x3fdULL << 52)
6971 | ((uint64_t)(a & 0x3fffffff) << 22));
6974 f64 = recip_sqrt_estimate(f64, fpst);
6976 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
6979 /* VFPv4 fused multiply-accumulate */
6980 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
6982 float_status *fpst = fpstp;
6983 return float32_muladd(a, b, c, 0, fpst);
6986 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
6988 float_status *fpst = fpstp;
6989 return float64_muladd(a, b, c, 0, fpst);
6992 /* ARMv8 round to integral */
6993 float32 HELPER(rints_exact)(float32 x, void *fp_status)
6995 return float32_round_to_int(x, fp_status);
6998 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
7000 return float64_round_to_int(x, fp_status);
7003 float32 HELPER(rints)(float32 x, void *fp_status)
7005 int old_flags = get_float_exception_flags(fp_status), new_flags;
7006 float32 ret;
7008 ret = float32_round_to_int(x, fp_status);
7010 /* Suppress any inexact exceptions the conversion produced */
7011 if (!(old_flags & float_flag_inexact)) {
7012 new_flags = get_float_exception_flags(fp_status);
7013 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
7016 return ret;
7019 float64 HELPER(rintd)(float64 x, void *fp_status)
7021 int old_flags = get_float_exception_flags(fp_status), new_flags;
7022 float64 ret;
7024 ret = float64_round_to_int(x, fp_status);
7026 new_flags = get_float_exception_flags(fp_status);
7028 /* Suppress any inexact exceptions the conversion produced */
7029 if (!(old_flags & float_flag_inexact)) {
7030 new_flags = get_float_exception_flags(fp_status);
7031 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
7034 return ret;
7037 /* Convert ARM rounding mode to softfloat */
7038 int arm_rmode_to_sf(int rmode)
7040 switch (rmode) {
7041 case FPROUNDING_TIEAWAY:
7042 rmode = float_round_ties_away;
7043 break;
7044 case FPROUNDING_ODD:
7045 /* FIXME: add support for TIEAWAY and ODD */
7046 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
7047 rmode);
7048 case FPROUNDING_TIEEVEN:
7049 default:
7050 rmode = float_round_nearest_even;
7051 break;
7052 case FPROUNDING_POSINF:
7053 rmode = float_round_up;
7054 break;
7055 case FPROUNDING_NEGINF:
7056 rmode = float_round_down;
7057 break;
7058 case FPROUNDING_ZERO:
7059 rmode = float_round_to_zero;
7060 break;
7062 return rmode;
7065 /* CRC helpers.
7066 * The upper bytes of val (above the number specified by 'bytes') must have
7067 * been zeroed out by the caller.
7069 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
7071 uint8_t buf[4];
7073 stl_le_p(buf, val);
7075 /* zlib crc32 converts the accumulator and output to one's complement. */
7076 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
7079 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
7081 uint8_t buf[4];
7083 stl_le_p(buf, val);
7085 /* Linux crc32c converts the output to one's complement. */
7086 return crc32c(acc, buf, bytes) ^ 0xffffffff;