4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "sysemu/sysemu.h"
29 #include "hw/pci/msi.h"
30 #include "hw/s390x/adapter.h"
31 #include "exec/gdbstub.h"
32 #include "sysemu/kvm.h"
33 #include "qemu/bswap.h"
34 #include "exec/memory.h"
35 #include "exec/ram_addr.h"
36 #include "exec/address-spaces.h"
37 #include "qemu/event_notifier.h"
40 #include "hw/boards.h"
42 /* This check must be after config-host.h is included */
44 #include <sys/eventfd.h>
47 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
48 #define PAGE_SIZE TARGET_PAGE_SIZE
53 #define DPRINTF(fmt, ...) \
54 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
56 #define DPRINTF(fmt, ...) \
60 #define KVM_MSI_HASHTAB_SIZE 256
62 typedef struct KVMSlot
65 ram_addr_t memory_size
;
71 typedef struct kvm_dirty_log KVMDirtyLog
;
80 struct kvm_coalesced_mmio_ring
*coalesced_mmio_ring
;
81 bool coalesced_flush_in_progress
;
82 int broken_set_mem_region
;
85 int robust_singlestep
;
87 #ifdef KVM_CAP_SET_GUEST_DEBUG
88 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
94 /* The man page (and posix) say ioctl numbers are signed int, but
95 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
96 * unsigned, and treating them as signed here can break things */
97 unsigned irq_set_ioctl
;
98 unsigned int sigmask_len
;
99 #ifdef KVM_CAP_IRQ_ROUTING
100 struct kvm_irq_routing
*irq_routes
;
101 int nr_allocated_irq_routes
;
102 uint32_t *used_gsi_bitmap
;
103 unsigned int gsi_count
;
104 QTAILQ_HEAD(msi_hashtab
, KVMMSIRoute
) msi_hashtab
[KVM_MSI_HASHTAB_SIZE
];
110 bool kvm_kernel_irqchip
;
111 bool kvm_async_interrupts_allowed
;
112 bool kvm_halt_in_kernel_allowed
;
113 bool kvm_eventfds_allowed
;
114 bool kvm_irqfds_allowed
;
115 bool kvm_msi_via_irqfd_allowed
;
116 bool kvm_gsi_routing_allowed
;
117 bool kvm_gsi_direct_mapping
;
119 bool kvm_readonly_mem_allowed
;
121 static const KVMCapabilityInfo kvm_required_capabilites
[] = {
122 KVM_CAP_INFO(USER_MEMORY
),
123 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS
),
127 static KVMSlot
*kvm_alloc_slot(KVMState
*s
)
131 for (i
= 0; i
< s
->nr_slots
; i
++) {
132 if (s
->slots
[i
].memory_size
== 0) {
137 fprintf(stderr
, "%s: no free slot available\n", __func__
);
141 static KVMSlot
*kvm_lookup_matching_slot(KVMState
*s
,
147 for (i
= 0; i
< s
->nr_slots
; i
++) {
148 KVMSlot
*mem
= &s
->slots
[i
];
150 if (start_addr
== mem
->start_addr
&&
151 end_addr
== mem
->start_addr
+ mem
->memory_size
) {
160 * Find overlapping slot with lowest start address
162 static KVMSlot
*kvm_lookup_overlapping_slot(KVMState
*s
,
166 KVMSlot
*found
= NULL
;
169 for (i
= 0; i
< s
->nr_slots
; i
++) {
170 KVMSlot
*mem
= &s
->slots
[i
];
172 if (mem
->memory_size
== 0 ||
173 (found
&& found
->start_addr
< mem
->start_addr
)) {
177 if (end_addr
> mem
->start_addr
&&
178 start_addr
< mem
->start_addr
+ mem
->memory_size
) {
186 int kvm_physical_memory_addr_from_host(KVMState
*s
, void *ram
,
191 for (i
= 0; i
< s
->nr_slots
; i
++) {
192 KVMSlot
*mem
= &s
->slots
[i
];
194 if (ram
>= mem
->ram
&& ram
< mem
->ram
+ mem
->memory_size
) {
195 *phys_addr
= mem
->start_addr
+ (ram
- mem
->ram
);
203 static int kvm_set_user_memory_region(KVMState
*s
, KVMSlot
*slot
)
205 struct kvm_userspace_memory_region mem
;
207 mem
.slot
= slot
->slot
;
208 mem
.guest_phys_addr
= slot
->start_addr
;
209 mem
.userspace_addr
= (unsigned long)slot
->ram
;
210 mem
.flags
= slot
->flags
;
211 if (s
->migration_log
) {
212 mem
.flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
215 if (slot
->memory_size
&& mem
.flags
& KVM_MEM_READONLY
) {
216 /* Set the slot size to 0 before setting the slot to the desired
217 * value. This is needed based on KVM commit 75d61fbc. */
219 kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
221 mem
.memory_size
= slot
->memory_size
;
222 return kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
225 int kvm_init_vcpu(CPUState
*cpu
)
227 KVMState
*s
= kvm_state
;
231 DPRINTF("kvm_init_vcpu\n");
233 ret
= kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, (void *)kvm_arch_vcpu_id(cpu
));
235 DPRINTF("kvm_create_vcpu failed\n");
241 cpu
->kvm_vcpu_dirty
= true;
243 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
246 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
250 cpu
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
252 if (cpu
->kvm_run
== MAP_FAILED
) {
254 DPRINTF("mmap'ing vcpu state failed\n");
258 if (s
->coalesced_mmio
&& !s
->coalesced_mmio_ring
) {
259 s
->coalesced_mmio_ring
=
260 (void *)cpu
->kvm_run
+ s
->coalesced_mmio
* PAGE_SIZE
;
263 ret
= kvm_arch_init_vcpu(cpu
);
269 * dirty pages logging control
272 static int kvm_mem_flags(KVMState
*s
, bool log_dirty
, bool readonly
)
275 flags
= log_dirty
? KVM_MEM_LOG_DIRTY_PAGES
: 0;
276 if (readonly
&& kvm_readonly_mem_allowed
) {
277 flags
|= KVM_MEM_READONLY
;
282 static int kvm_slot_dirty_pages_log_change(KVMSlot
*mem
, bool log_dirty
)
284 KVMState
*s
= kvm_state
;
285 int flags
, mask
= KVM_MEM_LOG_DIRTY_PAGES
;
288 old_flags
= mem
->flags
;
290 flags
= (mem
->flags
& ~mask
) | kvm_mem_flags(s
, log_dirty
, false);
293 /* If nothing changed effectively, no need to issue ioctl */
294 if (s
->migration_log
) {
295 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
298 if (flags
== old_flags
) {
302 return kvm_set_user_memory_region(s
, mem
);
305 static int kvm_dirty_pages_log_change(hwaddr phys_addr
,
306 ram_addr_t size
, bool log_dirty
)
308 KVMState
*s
= kvm_state
;
309 KVMSlot
*mem
= kvm_lookup_matching_slot(s
, phys_addr
, phys_addr
+ size
);
312 fprintf(stderr
, "BUG: %s: invalid parameters " TARGET_FMT_plx
"-"
313 TARGET_FMT_plx
"\n", __func__
, phys_addr
,
314 (hwaddr
)(phys_addr
+ size
- 1));
317 return kvm_slot_dirty_pages_log_change(mem
, log_dirty
);
320 static void kvm_log_start(MemoryListener
*listener
,
321 MemoryRegionSection
*section
)
325 r
= kvm_dirty_pages_log_change(section
->offset_within_address_space
,
326 int128_get64(section
->size
), true);
332 static void kvm_log_stop(MemoryListener
*listener
,
333 MemoryRegionSection
*section
)
337 r
= kvm_dirty_pages_log_change(section
->offset_within_address_space
,
338 int128_get64(section
->size
), false);
344 static int kvm_set_migration_log(int enable
)
346 KVMState
*s
= kvm_state
;
350 s
->migration_log
= enable
;
352 for (i
= 0; i
< s
->nr_slots
; i
++) {
355 if (!mem
->memory_size
) {
358 if (!!(mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) == enable
) {
361 err
= kvm_set_user_memory_region(s
, mem
);
369 /* get kvm's dirty pages bitmap and update qemu's */
370 static int kvm_get_dirty_pages_log_range(MemoryRegionSection
*section
,
371 unsigned long *bitmap
)
373 ram_addr_t start
= section
->offset_within_region
+ section
->mr
->ram_addr
;
374 ram_addr_t pages
= int128_get64(section
->size
) / getpagesize();
376 cpu_physical_memory_set_dirty_lebitmap(bitmap
, start
, pages
);
380 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
383 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
384 * This function updates qemu's dirty bitmap using
385 * memory_region_set_dirty(). This means all bits are set
388 * @start_add: start of logged region.
389 * @end_addr: end of logged region.
391 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection
*section
)
393 KVMState
*s
= kvm_state
;
394 unsigned long size
, allocated_size
= 0;
398 hwaddr start_addr
= section
->offset_within_address_space
;
399 hwaddr end_addr
= start_addr
+ int128_get64(section
->size
);
401 d
.dirty_bitmap
= NULL
;
402 while (start_addr
< end_addr
) {
403 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, end_addr
);
408 /* XXX bad kernel interface alert
409 * For dirty bitmap, kernel allocates array of size aligned to
410 * bits-per-long. But for case when the kernel is 64bits and
411 * the userspace is 32bits, userspace can't align to the same
412 * bits-per-long, since sizeof(long) is different between kernel
413 * and user space. This way, userspace will provide buffer which
414 * may be 4 bytes less than the kernel will use, resulting in
415 * userspace memory corruption (which is not detectable by valgrind
416 * too, in most cases).
417 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
418 * a hope that sizeof(long) wont become >8 any time soon.
420 size
= ALIGN(((mem
->memory_size
) >> TARGET_PAGE_BITS
),
421 /*HOST_LONG_BITS*/ 64) / 8;
422 if (!d
.dirty_bitmap
) {
423 d
.dirty_bitmap
= g_malloc(size
);
424 } else if (size
> allocated_size
) {
425 d
.dirty_bitmap
= g_realloc(d
.dirty_bitmap
, size
);
427 allocated_size
= size
;
428 memset(d
.dirty_bitmap
, 0, allocated_size
);
432 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
433 DPRINTF("ioctl failed %d\n", errno
);
438 kvm_get_dirty_pages_log_range(section
, d
.dirty_bitmap
);
439 start_addr
= mem
->start_addr
+ mem
->memory_size
;
441 g_free(d
.dirty_bitmap
);
446 static void kvm_coalesce_mmio_region(MemoryListener
*listener
,
447 MemoryRegionSection
*secion
,
448 hwaddr start
, hwaddr size
)
450 KVMState
*s
= kvm_state
;
452 if (s
->coalesced_mmio
) {
453 struct kvm_coalesced_mmio_zone zone
;
459 (void)kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
463 static void kvm_uncoalesce_mmio_region(MemoryListener
*listener
,
464 MemoryRegionSection
*secion
,
465 hwaddr start
, hwaddr size
)
467 KVMState
*s
= kvm_state
;
469 if (s
->coalesced_mmio
) {
470 struct kvm_coalesced_mmio_zone zone
;
476 (void)kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
480 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
484 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
492 int kvm_vm_check_extension(KVMState
*s
, unsigned int extension
)
496 ret
= kvm_vm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
498 /* VM wide version not implemented, use global one instead */
499 ret
= kvm_check_extension(s
, extension
);
505 static int kvm_set_ioeventfd_mmio(int fd
, hwaddr addr
, uint32_t val
,
506 bool assign
, uint32_t size
, bool datamatch
)
509 struct kvm_ioeventfd iofd
;
511 iofd
.datamatch
= datamatch
? val
: 0;
517 if (!kvm_enabled()) {
522 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
525 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
528 ret
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &iofd
);
537 static int kvm_set_ioeventfd_pio(int fd
, uint16_t addr
, uint16_t val
,
538 bool assign
, uint32_t size
, bool datamatch
)
540 struct kvm_ioeventfd kick
= {
541 .datamatch
= datamatch
? val
: 0,
543 .flags
= KVM_IOEVENTFD_FLAG_PIO
,
548 if (!kvm_enabled()) {
552 kick
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
555 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
557 r
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);
565 static int kvm_check_many_ioeventfds(void)
567 /* Userspace can use ioeventfd for io notification. This requires a host
568 * that supports eventfd(2) and an I/O thread; since eventfd does not
569 * support SIGIO it cannot interrupt the vcpu.
571 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
572 * can avoid creating too many ioeventfds.
574 #if defined(CONFIG_EVENTFD)
577 for (i
= 0; i
< ARRAY_SIZE(ioeventfds
); i
++) {
578 ioeventfds
[i
] = eventfd(0, EFD_CLOEXEC
);
579 if (ioeventfds
[i
] < 0) {
582 ret
= kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, true, 2, true);
584 close(ioeventfds
[i
]);
589 /* Decide whether many devices are supported or not */
590 ret
= i
== ARRAY_SIZE(ioeventfds
);
593 kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, false, 2, true);
594 close(ioeventfds
[i
]);
602 static const KVMCapabilityInfo
*
603 kvm_check_extension_list(KVMState
*s
, const KVMCapabilityInfo
*list
)
606 if (!kvm_check_extension(s
, list
->value
)) {
614 static void kvm_set_phys_mem(MemoryRegionSection
*section
, bool add
)
616 KVMState
*s
= kvm_state
;
619 MemoryRegion
*mr
= section
->mr
;
620 bool log_dirty
= memory_region_is_logging(mr
);
621 bool writeable
= !mr
->readonly
&& !mr
->rom_device
;
622 bool readonly_flag
= mr
->readonly
|| memory_region_is_romd(mr
);
623 hwaddr start_addr
= section
->offset_within_address_space
;
624 ram_addr_t size
= int128_get64(section
->size
);
628 /* kvm works in page size chunks, but the function may be called
629 with sub-page size and unaligned start address. */
630 delta
= TARGET_PAGE_ALIGN(size
) - size
;
636 size
&= TARGET_PAGE_MASK
;
637 if (!size
|| (start_addr
& ~TARGET_PAGE_MASK
)) {
641 if (!memory_region_is_ram(mr
)) {
642 if (writeable
|| !kvm_readonly_mem_allowed
) {
644 } else if (!mr
->romd_mode
) {
645 /* If the memory device is not in romd_mode, then we actually want
646 * to remove the kvm memory slot so all accesses will trap. */
651 ram
= memory_region_get_ram_ptr(mr
) + section
->offset_within_region
+ delta
;
654 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, start_addr
+ size
);
659 if (add
&& start_addr
>= mem
->start_addr
&&
660 (start_addr
+ size
<= mem
->start_addr
+ mem
->memory_size
) &&
661 (ram
- start_addr
== mem
->ram
- mem
->start_addr
)) {
662 /* The new slot fits into the existing one and comes with
663 * identical parameters - update flags and done. */
664 kvm_slot_dirty_pages_log_change(mem
, log_dirty
);
670 if (mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
671 kvm_physical_sync_dirty_bitmap(section
);
674 /* unregister the overlapping slot */
675 mem
->memory_size
= 0;
676 err
= kvm_set_user_memory_region(s
, mem
);
678 fprintf(stderr
, "%s: error unregistering overlapping slot: %s\n",
679 __func__
, strerror(-err
));
683 /* Workaround for older KVM versions: we can't join slots, even not by
684 * unregistering the previous ones and then registering the larger
685 * slot. We have to maintain the existing fragmentation. Sigh.
687 * This workaround assumes that the new slot starts at the same
688 * address as the first existing one. If not or if some overlapping
689 * slot comes around later, we will fail (not seen in practice so far)
690 * - and actually require a recent KVM version. */
691 if (s
->broken_set_mem_region
&&
692 old
.start_addr
== start_addr
&& old
.memory_size
< size
&& add
) {
693 mem
= kvm_alloc_slot(s
);
694 mem
->memory_size
= old
.memory_size
;
695 mem
->start_addr
= old
.start_addr
;
697 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
699 err
= kvm_set_user_memory_region(s
, mem
);
701 fprintf(stderr
, "%s: error updating slot: %s\n", __func__
,
706 start_addr
+= old
.memory_size
;
707 ram
+= old
.memory_size
;
708 size
-= old
.memory_size
;
712 /* register prefix slot */
713 if (old
.start_addr
< start_addr
) {
714 mem
= kvm_alloc_slot(s
);
715 mem
->memory_size
= start_addr
- old
.start_addr
;
716 mem
->start_addr
= old
.start_addr
;
718 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
720 err
= kvm_set_user_memory_region(s
, mem
);
722 fprintf(stderr
, "%s: error registering prefix slot: %s\n",
723 __func__
, strerror(-err
));
725 fprintf(stderr
, "%s: This is probably because your kernel's " \
726 "PAGE_SIZE is too big. Please try to use 4k " \
727 "PAGE_SIZE!\n", __func__
);
733 /* register suffix slot */
734 if (old
.start_addr
+ old
.memory_size
> start_addr
+ size
) {
735 ram_addr_t size_delta
;
737 mem
= kvm_alloc_slot(s
);
738 mem
->start_addr
= start_addr
+ size
;
739 size_delta
= mem
->start_addr
- old
.start_addr
;
740 mem
->memory_size
= old
.memory_size
- size_delta
;
741 mem
->ram
= old
.ram
+ size_delta
;
742 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
744 err
= kvm_set_user_memory_region(s
, mem
);
746 fprintf(stderr
, "%s: error registering suffix slot: %s\n",
747 __func__
, strerror(-err
));
753 /* in case the KVM bug workaround already "consumed" the new slot */
760 mem
= kvm_alloc_slot(s
);
761 mem
->memory_size
= size
;
762 mem
->start_addr
= start_addr
;
764 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
766 err
= kvm_set_user_memory_region(s
, mem
);
768 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
774 static void kvm_region_add(MemoryListener
*listener
,
775 MemoryRegionSection
*section
)
777 memory_region_ref(section
->mr
);
778 kvm_set_phys_mem(section
, true);
781 static void kvm_region_del(MemoryListener
*listener
,
782 MemoryRegionSection
*section
)
784 kvm_set_phys_mem(section
, false);
785 memory_region_unref(section
->mr
);
788 static void kvm_log_sync(MemoryListener
*listener
,
789 MemoryRegionSection
*section
)
793 r
= kvm_physical_sync_dirty_bitmap(section
);
799 static void kvm_log_global_start(struct MemoryListener
*listener
)
803 r
= kvm_set_migration_log(1);
807 static void kvm_log_global_stop(struct MemoryListener
*listener
)
811 r
= kvm_set_migration_log(0);
815 static void kvm_mem_ioeventfd_add(MemoryListener
*listener
,
816 MemoryRegionSection
*section
,
817 bool match_data
, uint64_t data
,
820 int fd
= event_notifier_get_fd(e
);
823 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
824 data
, true, int128_get64(section
->size
),
827 fprintf(stderr
, "%s: error adding ioeventfd: %s\n",
828 __func__
, strerror(-r
));
833 static void kvm_mem_ioeventfd_del(MemoryListener
*listener
,
834 MemoryRegionSection
*section
,
835 bool match_data
, uint64_t data
,
838 int fd
= event_notifier_get_fd(e
);
841 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
842 data
, false, int128_get64(section
->size
),
849 static void kvm_io_ioeventfd_add(MemoryListener
*listener
,
850 MemoryRegionSection
*section
,
851 bool match_data
, uint64_t data
,
854 int fd
= event_notifier_get_fd(e
);
857 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
858 data
, true, int128_get64(section
->size
),
861 fprintf(stderr
, "%s: error adding ioeventfd: %s\n",
862 __func__
, strerror(-r
));
867 static void kvm_io_ioeventfd_del(MemoryListener
*listener
,
868 MemoryRegionSection
*section
,
869 bool match_data
, uint64_t data
,
873 int fd
= event_notifier_get_fd(e
);
876 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
877 data
, false, int128_get64(section
->size
),
884 static MemoryListener kvm_memory_listener
= {
885 .region_add
= kvm_region_add
,
886 .region_del
= kvm_region_del
,
887 .log_start
= kvm_log_start
,
888 .log_stop
= kvm_log_stop
,
889 .log_sync
= kvm_log_sync
,
890 .log_global_start
= kvm_log_global_start
,
891 .log_global_stop
= kvm_log_global_stop
,
892 .eventfd_add
= kvm_mem_ioeventfd_add
,
893 .eventfd_del
= kvm_mem_ioeventfd_del
,
894 .coalesced_mmio_add
= kvm_coalesce_mmio_region
,
895 .coalesced_mmio_del
= kvm_uncoalesce_mmio_region
,
899 static MemoryListener kvm_io_listener
= {
900 .eventfd_add
= kvm_io_ioeventfd_add
,
901 .eventfd_del
= kvm_io_ioeventfd_del
,
905 static void kvm_handle_interrupt(CPUState
*cpu
, int mask
)
907 cpu
->interrupt_request
|= mask
;
909 if (!qemu_cpu_is_self(cpu
)) {
914 int kvm_set_irq(KVMState
*s
, int irq
, int level
)
916 struct kvm_irq_level event
;
919 assert(kvm_async_interrupts_enabled());
923 ret
= kvm_vm_ioctl(s
, s
->irq_set_ioctl
, &event
);
925 perror("kvm_set_irq");
929 return (s
->irq_set_ioctl
== KVM_IRQ_LINE
) ? 1 : event
.status
;
932 #ifdef KVM_CAP_IRQ_ROUTING
933 typedef struct KVMMSIRoute
{
934 struct kvm_irq_routing_entry kroute
;
935 QTAILQ_ENTRY(KVMMSIRoute
) entry
;
938 static void set_gsi(KVMState
*s
, unsigned int gsi
)
940 s
->used_gsi_bitmap
[gsi
/ 32] |= 1U << (gsi
% 32);
943 static void clear_gsi(KVMState
*s
, unsigned int gsi
)
945 s
->used_gsi_bitmap
[gsi
/ 32] &= ~(1U << (gsi
% 32));
948 void kvm_init_irq_routing(KVMState
*s
)
952 gsi_count
= kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
) - 1;
954 unsigned int gsi_bits
, i
;
956 /* Round up so we can search ints using ffs */
957 gsi_bits
= ALIGN(gsi_count
, 32);
958 s
->used_gsi_bitmap
= g_malloc0(gsi_bits
/ 8);
959 s
->gsi_count
= gsi_count
;
961 /* Mark any over-allocated bits as already in use */
962 for (i
= gsi_count
; i
< gsi_bits
; i
++) {
967 s
->irq_routes
= g_malloc0(sizeof(*s
->irq_routes
));
968 s
->nr_allocated_irq_routes
= 0;
970 if (!s
->direct_msi
) {
971 for (i
= 0; i
< KVM_MSI_HASHTAB_SIZE
; i
++) {
972 QTAILQ_INIT(&s
->msi_hashtab
[i
]);
976 kvm_arch_init_irq_routing(s
);
979 void kvm_irqchip_commit_routes(KVMState
*s
)
983 s
->irq_routes
->flags
= 0;
984 ret
= kvm_vm_ioctl(s
, KVM_SET_GSI_ROUTING
, s
->irq_routes
);
988 static void kvm_add_routing_entry(KVMState
*s
,
989 struct kvm_irq_routing_entry
*entry
)
991 struct kvm_irq_routing_entry
*new;
994 if (s
->irq_routes
->nr
== s
->nr_allocated_irq_routes
) {
995 n
= s
->nr_allocated_irq_routes
* 2;
999 size
= sizeof(struct kvm_irq_routing
);
1000 size
+= n
* sizeof(*new);
1001 s
->irq_routes
= g_realloc(s
->irq_routes
, size
);
1002 s
->nr_allocated_irq_routes
= n
;
1004 n
= s
->irq_routes
->nr
++;
1005 new = &s
->irq_routes
->entries
[n
];
1009 set_gsi(s
, entry
->gsi
);
1012 static int kvm_update_routing_entry(KVMState
*s
,
1013 struct kvm_irq_routing_entry
*new_entry
)
1015 struct kvm_irq_routing_entry
*entry
;
1018 for (n
= 0; n
< s
->irq_routes
->nr
; n
++) {
1019 entry
= &s
->irq_routes
->entries
[n
];
1020 if (entry
->gsi
!= new_entry
->gsi
) {
1024 if(!memcmp(entry
, new_entry
, sizeof *entry
)) {
1028 *entry
= *new_entry
;
1030 kvm_irqchip_commit_routes(s
);
1038 void kvm_irqchip_add_irq_route(KVMState
*s
, int irq
, int irqchip
, int pin
)
1040 struct kvm_irq_routing_entry e
= {};
1042 assert(pin
< s
->gsi_count
);
1045 e
.type
= KVM_IRQ_ROUTING_IRQCHIP
;
1047 e
.u
.irqchip
.irqchip
= irqchip
;
1048 e
.u
.irqchip
.pin
= pin
;
1049 kvm_add_routing_entry(s
, &e
);
1052 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1054 struct kvm_irq_routing_entry
*e
;
1057 if (kvm_gsi_direct_mapping()) {
1061 for (i
= 0; i
< s
->irq_routes
->nr
; i
++) {
1062 e
= &s
->irq_routes
->entries
[i
];
1063 if (e
->gsi
== virq
) {
1064 s
->irq_routes
->nr
--;
1065 *e
= s
->irq_routes
->entries
[s
->irq_routes
->nr
];
1071 static unsigned int kvm_hash_msi(uint32_t data
)
1073 /* This is optimized for IA32 MSI layout. However, no other arch shall
1074 * repeat the mistake of not providing a direct MSI injection API. */
1078 static void kvm_flush_dynamic_msi_routes(KVMState
*s
)
1080 KVMMSIRoute
*route
, *next
;
1083 for (hash
= 0; hash
< KVM_MSI_HASHTAB_SIZE
; hash
++) {
1084 QTAILQ_FOREACH_SAFE(route
, &s
->msi_hashtab
[hash
], entry
, next
) {
1085 kvm_irqchip_release_virq(s
, route
->kroute
.gsi
);
1086 QTAILQ_REMOVE(&s
->msi_hashtab
[hash
], route
, entry
);
1092 static int kvm_irqchip_get_virq(KVMState
*s
)
1094 uint32_t *word
= s
->used_gsi_bitmap
;
1095 int max_words
= ALIGN(s
->gsi_count
, 32) / 32;
1100 /* Return the lowest unused GSI in the bitmap */
1101 for (i
= 0; i
< max_words
; i
++) {
1102 bit
= ffs(~word
[i
]);
1107 return bit
- 1 + i
* 32;
1109 if (!s
->direct_msi
&& retry
) {
1111 kvm_flush_dynamic_msi_routes(s
);
1118 static KVMMSIRoute
*kvm_lookup_msi_route(KVMState
*s
, MSIMessage msg
)
1120 unsigned int hash
= kvm_hash_msi(msg
.data
);
1123 QTAILQ_FOREACH(route
, &s
->msi_hashtab
[hash
], entry
) {
1124 if (route
->kroute
.u
.msi
.address_lo
== (uint32_t)msg
.address
&&
1125 route
->kroute
.u
.msi
.address_hi
== (msg
.address
>> 32) &&
1126 route
->kroute
.u
.msi
.data
== le32_to_cpu(msg
.data
)) {
1133 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1138 if (s
->direct_msi
) {
1139 msi
.address_lo
= (uint32_t)msg
.address
;
1140 msi
.address_hi
= msg
.address
>> 32;
1141 msi
.data
= le32_to_cpu(msg
.data
);
1143 memset(msi
.pad
, 0, sizeof(msi
.pad
));
1145 return kvm_vm_ioctl(s
, KVM_SIGNAL_MSI
, &msi
);
1148 route
= kvm_lookup_msi_route(s
, msg
);
1152 virq
= kvm_irqchip_get_virq(s
);
1157 route
= g_malloc0(sizeof(KVMMSIRoute
));
1158 route
->kroute
.gsi
= virq
;
1159 route
->kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1160 route
->kroute
.flags
= 0;
1161 route
->kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1162 route
->kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1163 route
->kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1165 kvm_add_routing_entry(s
, &route
->kroute
);
1166 kvm_irqchip_commit_routes(s
);
1168 QTAILQ_INSERT_TAIL(&s
->msi_hashtab
[kvm_hash_msi(msg
.data
)], route
,
1172 assert(route
->kroute
.type
== KVM_IRQ_ROUTING_MSI
);
1174 return kvm_set_irq(s
, route
->kroute
.gsi
, 1);
1177 int kvm_irqchip_add_msi_route(KVMState
*s
, MSIMessage msg
)
1179 struct kvm_irq_routing_entry kroute
= {};
1182 if (kvm_gsi_direct_mapping()) {
1183 return msg
.data
& 0xffff;
1186 if (!kvm_gsi_routing_enabled()) {
1190 virq
= kvm_irqchip_get_virq(s
);
1196 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1198 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1199 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1200 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1202 kvm_add_routing_entry(s
, &kroute
);
1203 kvm_irqchip_commit_routes(s
);
1208 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
)
1210 struct kvm_irq_routing_entry kroute
= {};
1212 if (kvm_gsi_direct_mapping()) {
1216 if (!kvm_irqchip_in_kernel()) {
1221 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1223 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1224 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1225 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1227 return kvm_update_routing_entry(s
, &kroute
);
1230 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int rfd
, int virq
,
1233 struct kvm_irqfd irqfd
= {
1236 .flags
= assign
? 0 : KVM_IRQFD_FLAG_DEASSIGN
,
1240 irqfd
.flags
|= KVM_IRQFD_FLAG_RESAMPLE
;
1241 irqfd
.resamplefd
= rfd
;
1244 if (!kvm_irqfds_enabled()) {
1248 return kvm_vm_ioctl(s
, KVM_IRQFD
, &irqfd
);
1251 int kvm_irqchip_add_adapter_route(KVMState
*s
, AdapterInfo
*adapter
)
1253 struct kvm_irq_routing_entry kroute
;
1256 if (!kvm_gsi_routing_enabled()) {
1260 virq
= kvm_irqchip_get_virq(s
);
1266 kroute
.type
= KVM_IRQ_ROUTING_S390_ADAPTER
;
1268 kroute
.u
.adapter
.summary_addr
= adapter
->summary_addr
;
1269 kroute
.u
.adapter
.ind_addr
= adapter
->ind_addr
;
1270 kroute
.u
.adapter
.summary_offset
= adapter
->summary_offset
;
1271 kroute
.u
.adapter
.ind_offset
= adapter
->ind_offset
;
1272 kroute
.u
.adapter
.adapter_id
= adapter
->adapter_id
;
1274 kvm_add_routing_entry(s
, &kroute
);
1275 kvm_irqchip_commit_routes(s
);
1280 #else /* !KVM_CAP_IRQ_ROUTING */
1282 void kvm_init_irq_routing(KVMState
*s
)
1286 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1290 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1295 int kvm_irqchip_add_msi_route(KVMState
*s
, MSIMessage msg
)
1300 int kvm_irqchip_add_adapter_route(KVMState
*s
, AdapterInfo
*adapter
)
1305 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int virq
, bool assign
)
1310 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
)
1314 #endif /* !KVM_CAP_IRQ_ROUTING */
1316 int kvm_irqchip_add_irqfd_notifier(KVMState
*s
, EventNotifier
*n
,
1317 EventNotifier
*rn
, int virq
)
1319 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
),
1320 rn
? event_notifier_get_fd(rn
) : -1, virq
, true);
1323 int kvm_irqchip_remove_irqfd_notifier(KVMState
*s
, EventNotifier
*n
, int virq
)
1325 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
), -1, virq
,
1329 static int kvm_irqchip_create(KVMState
*s
)
1333 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "kernel_irqchip", true) ||
1334 (!kvm_check_extension(s
, KVM_CAP_IRQCHIP
) &&
1335 (kvm_vm_enable_cap(s
, KVM_CAP_S390_IRQCHIP
, 0) < 0))) {
1339 /* First probe and see if there's a arch-specific hook to create the
1340 * in-kernel irqchip for us */
1341 ret
= kvm_arch_irqchip_create(s
);
1344 } else if (ret
== 0) {
1345 ret
= kvm_vm_ioctl(s
, KVM_CREATE_IRQCHIP
);
1347 fprintf(stderr
, "Create kernel irqchip failed\n");
1352 kvm_kernel_irqchip
= true;
1353 /* If we have an in-kernel IRQ chip then we must have asynchronous
1354 * interrupt delivery (though the reverse is not necessarily true)
1356 kvm_async_interrupts_allowed
= true;
1357 kvm_halt_in_kernel_allowed
= true;
1359 kvm_init_irq_routing(s
);
1364 /* Find number of supported CPUs using the recommended
1365 * procedure from the kernel API documentation to cope with
1366 * older kernels that may be missing capabilities.
1368 static int kvm_recommended_vcpus(KVMState
*s
)
1370 int ret
= kvm_check_extension(s
, KVM_CAP_NR_VCPUS
);
1371 return (ret
) ? ret
: 4;
1374 static int kvm_max_vcpus(KVMState
*s
)
1376 int ret
= kvm_check_extension(s
, KVM_CAP_MAX_VCPUS
);
1377 return (ret
) ? ret
: kvm_recommended_vcpus(s
);
1380 int kvm_init(MachineClass
*mc
)
1382 static const char upgrade_note
[] =
1383 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1384 "(see http://sourceforge.net/projects/kvm).\n";
1389 { "SMP", smp_cpus
},
1390 { "hotpluggable", max_cpus
},
1393 int soft_vcpus_limit
, hard_vcpus_limit
;
1395 const KVMCapabilityInfo
*missing_cap
;
1398 const char *kvm_type
;
1400 s
= g_malloc0(sizeof(KVMState
));
1403 * On systems where the kernel can support different base page
1404 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1405 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1406 * page size for the system though.
1408 assert(TARGET_PAGE_SIZE
<= getpagesize());
1413 #ifdef KVM_CAP_SET_GUEST_DEBUG
1414 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
1417 s
->fd
= qemu_open("/dev/kvm", O_RDWR
);
1419 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
1424 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
1425 if (ret
< KVM_API_VERSION
) {
1429 fprintf(stderr
, "kvm version too old\n");
1433 if (ret
> KVM_API_VERSION
) {
1435 fprintf(stderr
, "kvm version not supported\n");
1439 s
->nr_slots
= kvm_check_extension(s
, KVM_CAP_NR_MEMSLOTS
);
1441 /* If unspecified, use the default value */
1446 s
->slots
= g_malloc0(s
->nr_slots
* sizeof(KVMSlot
));
1448 for (i
= 0; i
< s
->nr_slots
; i
++) {
1449 s
->slots
[i
].slot
= i
;
1452 /* check the vcpu limits */
1453 soft_vcpus_limit
= kvm_recommended_vcpus(s
);
1454 hard_vcpus_limit
= kvm_max_vcpus(s
);
1457 if (nc
->num
> soft_vcpus_limit
) {
1459 "Warning: Number of %s cpus requested (%d) exceeds "
1460 "the recommended cpus supported by KVM (%d)\n",
1461 nc
->name
, nc
->num
, soft_vcpus_limit
);
1463 if (nc
->num
> hard_vcpus_limit
) {
1464 fprintf(stderr
, "Number of %s cpus requested (%d) exceeds "
1465 "the maximum cpus supported by KVM (%d)\n",
1466 nc
->name
, nc
->num
, hard_vcpus_limit
);
1473 kvm_type
= qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1475 type
= mc
->kvm_type(kvm_type
);
1476 } else if (kvm_type
) {
1478 fprintf(stderr
, "Invalid argument kvm-type=%s\n", kvm_type
);
1483 ret
= kvm_ioctl(s
, KVM_CREATE_VM
, type
);
1484 } while (ret
== -EINTR
);
1487 fprintf(stderr
, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret
,
1491 fprintf(stderr
, "Please add the 'switch_amode' kernel parameter to "
1492 "your host kernel command line\n");
1498 missing_cap
= kvm_check_extension_list(s
, kvm_required_capabilites
);
1501 kvm_check_extension_list(s
, kvm_arch_required_capabilities
);
1505 fprintf(stderr
, "kvm does not support %s\n%s",
1506 missing_cap
->name
, upgrade_note
);
1510 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
1512 s
->broken_set_mem_region
= 1;
1513 ret
= kvm_check_extension(s
, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
);
1515 s
->broken_set_mem_region
= 0;
1518 #ifdef KVM_CAP_VCPU_EVENTS
1519 s
->vcpu_events
= kvm_check_extension(s
, KVM_CAP_VCPU_EVENTS
);
1522 s
->robust_singlestep
=
1523 kvm_check_extension(s
, KVM_CAP_X86_ROBUST_SINGLESTEP
);
1525 #ifdef KVM_CAP_DEBUGREGS
1526 s
->debugregs
= kvm_check_extension(s
, KVM_CAP_DEBUGREGS
);
1529 #ifdef KVM_CAP_XSAVE
1530 s
->xsave
= kvm_check_extension(s
, KVM_CAP_XSAVE
);
1534 s
->xcrs
= kvm_check_extension(s
, KVM_CAP_XCRS
);
1537 #ifdef KVM_CAP_PIT_STATE2
1538 s
->pit_state2
= kvm_check_extension(s
, KVM_CAP_PIT_STATE2
);
1541 #ifdef KVM_CAP_IRQ_ROUTING
1542 s
->direct_msi
= (kvm_check_extension(s
, KVM_CAP_SIGNAL_MSI
) > 0);
1545 s
->intx_set_mask
= kvm_check_extension(s
, KVM_CAP_PCI_2_3
);
1547 s
->irq_set_ioctl
= KVM_IRQ_LINE
;
1548 if (kvm_check_extension(s
, KVM_CAP_IRQ_INJECT_STATUS
)) {
1549 s
->irq_set_ioctl
= KVM_IRQ_LINE_STATUS
;
1552 #ifdef KVM_CAP_READONLY_MEM
1553 kvm_readonly_mem_allowed
=
1554 (kvm_check_extension(s
, KVM_CAP_READONLY_MEM
) > 0);
1557 kvm_eventfds_allowed
=
1558 (kvm_check_extension(s
, KVM_CAP_IOEVENTFD
) > 0);
1560 ret
= kvm_arch_init(s
);
1565 ret
= kvm_irqchip_create(s
);
1571 memory_listener_register(&kvm_memory_listener
, &address_space_memory
);
1572 memory_listener_register(&kvm_io_listener
, &address_space_io
);
1574 s
->many_ioeventfds
= kvm_check_many_ioeventfds();
1576 cpu_interrupt_handler
= kvm_handle_interrupt
;
1594 void kvm_set_sigmask_len(KVMState
*s
, unsigned int sigmask_len
)
1596 s
->sigmask_len
= sigmask_len
;
1599 static void kvm_handle_io(uint16_t port
, void *data
, int direction
, int size
,
1603 uint8_t *ptr
= data
;
1605 for (i
= 0; i
< count
; i
++) {
1606 address_space_rw(&address_space_io
, port
, ptr
, size
,
1607 direction
== KVM_EXIT_IO_OUT
);
1612 static int kvm_handle_internal_error(CPUState
*cpu
, struct kvm_run
*run
)
1614 fprintf(stderr
, "KVM internal error. Suberror: %d\n",
1615 run
->internal
.suberror
);
1617 if (kvm_check_extension(kvm_state
, KVM_CAP_INTERNAL_ERROR_DATA
)) {
1620 for (i
= 0; i
< run
->internal
.ndata
; ++i
) {
1621 fprintf(stderr
, "extra data[%d]: %"PRIx64
"\n",
1622 i
, (uint64_t)run
->internal
.data
[i
]);
1625 if (run
->internal
.suberror
== KVM_INTERNAL_ERROR_EMULATION
) {
1626 fprintf(stderr
, "emulation failure\n");
1627 if (!kvm_arch_stop_on_emulation_error(cpu
)) {
1628 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_CODE
);
1629 return EXCP_INTERRUPT
;
1632 /* FIXME: Should trigger a qmp message to let management know
1633 * something went wrong.
1638 void kvm_flush_coalesced_mmio_buffer(void)
1640 KVMState
*s
= kvm_state
;
1642 if (s
->coalesced_flush_in_progress
) {
1646 s
->coalesced_flush_in_progress
= true;
1648 if (s
->coalesced_mmio_ring
) {
1649 struct kvm_coalesced_mmio_ring
*ring
= s
->coalesced_mmio_ring
;
1650 while (ring
->first
!= ring
->last
) {
1651 struct kvm_coalesced_mmio
*ent
;
1653 ent
= &ring
->coalesced_mmio
[ring
->first
];
1655 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
1657 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
1661 s
->coalesced_flush_in_progress
= false;
1664 static void do_kvm_cpu_synchronize_state(void *arg
)
1666 CPUState
*cpu
= arg
;
1668 if (!cpu
->kvm_vcpu_dirty
) {
1669 kvm_arch_get_registers(cpu
);
1670 cpu
->kvm_vcpu_dirty
= true;
1674 void kvm_cpu_synchronize_state(CPUState
*cpu
)
1676 if (!cpu
->kvm_vcpu_dirty
) {
1677 run_on_cpu(cpu
, do_kvm_cpu_synchronize_state
, cpu
);
1681 static void do_kvm_cpu_synchronize_post_reset(void *arg
)
1683 CPUState
*cpu
= arg
;
1685 kvm_arch_put_registers(cpu
, KVM_PUT_RESET_STATE
);
1686 cpu
->kvm_vcpu_dirty
= false;
1689 void kvm_cpu_synchronize_post_reset(CPUState
*cpu
)
1691 run_on_cpu(cpu
, do_kvm_cpu_synchronize_post_reset
, cpu
);
1694 static void do_kvm_cpu_synchronize_post_init(void *arg
)
1696 CPUState
*cpu
= arg
;
1698 kvm_arch_put_registers(cpu
, KVM_PUT_FULL_STATE
);
1699 cpu
->kvm_vcpu_dirty
= false;
1702 void kvm_cpu_synchronize_post_init(CPUState
*cpu
)
1704 run_on_cpu(cpu
, do_kvm_cpu_synchronize_post_init
, cpu
);
1707 void kvm_cpu_clean_state(CPUState
*cpu
)
1709 cpu
->kvm_vcpu_dirty
= false;
1712 int kvm_cpu_exec(CPUState
*cpu
)
1714 struct kvm_run
*run
= cpu
->kvm_run
;
1717 DPRINTF("kvm_cpu_exec()\n");
1719 if (kvm_arch_process_async_events(cpu
)) {
1720 cpu
->exit_request
= 0;
1725 if (cpu
->kvm_vcpu_dirty
) {
1726 kvm_arch_put_registers(cpu
, KVM_PUT_RUNTIME_STATE
);
1727 cpu
->kvm_vcpu_dirty
= false;
1730 kvm_arch_pre_run(cpu
, run
);
1731 if (cpu
->exit_request
) {
1732 DPRINTF("interrupt exit requested\n");
1734 * KVM requires us to reenter the kernel after IO exits to complete
1735 * instruction emulation. This self-signal will ensure that we
1738 qemu_cpu_kick_self();
1740 qemu_mutex_unlock_iothread();
1742 run_ret
= kvm_vcpu_ioctl(cpu
, KVM_RUN
, 0);
1744 qemu_mutex_lock_iothread();
1745 kvm_arch_post_run(cpu
, run
);
1748 if (run_ret
== -EINTR
|| run_ret
== -EAGAIN
) {
1749 DPRINTF("io window exit\n");
1750 ret
= EXCP_INTERRUPT
;
1753 fprintf(stderr
, "error: kvm run failed %s\n",
1754 strerror(-run_ret
));
1759 trace_kvm_run_exit(cpu
->cpu_index
, run
->exit_reason
);
1760 switch (run
->exit_reason
) {
1762 DPRINTF("handle_io\n");
1763 kvm_handle_io(run
->io
.port
,
1764 (uint8_t *)run
+ run
->io
.data_offset
,
1771 DPRINTF("handle_mmio\n");
1772 cpu_physical_memory_rw(run
->mmio
.phys_addr
,
1775 run
->mmio
.is_write
);
1778 case KVM_EXIT_IRQ_WINDOW_OPEN
:
1779 DPRINTF("irq_window_open\n");
1780 ret
= EXCP_INTERRUPT
;
1782 case KVM_EXIT_SHUTDOWN
:
1783 DPRINTF("shutdown\n");
1784 qemu_system_reset_request();
1785 ret
= EXCP_INTERRUPT
;
1787 case KVM_EXIT_UNKNOWN
:
1788 fprintf(stderr
, "KVM: unknown exit, hardware reason %" PRIx64
"\n",
1789 (uint64_t)run
->hw
.hardware_exit_reason
);
1792 case KVM_EXIT_INTERNAL_ERROR
:
1793 ret
= kvm_handle_internal_error(cpu
, run
);
1795 case KVM_EXIT_SYSTEM_EVENT
:
1796 switch (run
->system_event
.type
) {
1797 case KVM_SYSTEM_EVENT_SHUTDOWN
:
1798 qemu_system_shutdown_request();
1799 ret
= EXCP_INTERRUPT
;
1801 case KVM_SYSTEM_EVENT_RESET
:
1802 qemu_system_reset_request();
1803 ret
= EXCP_INTERRUPT
;
1806 DPRINTF("kvm_arch_handle_exit\n");
1807 ret
= kvm_arch_handle_exit(cpu
, run
);
1812 DPRINTF("kvm_arch_handle_exit\n");
1813 ret
= kvm_arch_handle_exit(cpu
, run
);
1819 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_CODE
);
1820 vm_stop(RUN_STATE_INTERNAL_ERROR
);
1823 cpu
->exit_request
= 0;
1827 int kvm_ioctl(KVMState
*s
, int type
, ...)
1834 arg
= va_arg(ap
, void *);
1837 trace_kvm_ioctl(type
, arg
);
1838 ret
= ioctl(s
->fd
, type
, arg
);
1845 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
1852 arg
= va_arg(ap
, void *);
1855 trace_kvm_vm_ioctl(type
, arg
);
1856 ret
= ioctl(s
->vmfd
, type
, arg
);
1863 int kvm_vcpu_ioctl(CPUState
*cpu
, int type
, ...)
1870 arg
= va_arg(ap
, void *);
1873 trace_kvm_vcpu_ioctl(cpu
->cpu_index
, type
, arg
);
1874 ret
= ioctl(cpu
->kvm_fd
, type
, arg
);
1881 int kvm_device_ioctl(int fd
, int type
, ...)
1888 arg
= va_arg(ap
, void *);
1891 trace_kvm_device_ioctl(fd
, type
, arg
);
1892 ret
= ioctl(fd
, type
, arg
);
1899 int kvm_has_sync_mmu(void)
1901 return kvm_check_extension(kvm_state
, KVM_CAP_SYNC_MMU
);
1904 int kvm_has_vcpu_events(void)
1906 return kvm_state
->vcpu_events
;
1909 int kvm_has_robust_singlestep(void)
1911 return kvm_state
->robust_singlestep
;
1914 int kvm_has_debugregs(void)
1916 return kvm_state
->debugregs
;
1919 int kvm_has_xsave(void)
1921 return kvm_state
->xsave
;
1924 int kvm_has_xcrs(void)
1926 return kvm_state
->xcrs
;
1929 int kvm_has_pit_state2(void)
1931 return kvm_state
->pit_state2
;
1934 int kvm_has_many_ioeventfds(void)
1936 if (!kvm_enabled()) {
1939 return kvm_state
->many_ioeventfds
;
1942 int kvm_has_gsi_routing(void)
1944 #ifdef KVM_CAP_IRQ_ROUTING
1945 return kvm_check_extension(kvm_state
, KVM_CAP_IRQ_ROUTING
);
1951 int kvm_has_intx_set_mask(void)
1953 return kvm_state
->intx_set_mask
;
1956 void kvm_setup_guest_memory(void *start
, size_t size
)
1958 if (!kvm_has_sync_mmu()) {
1959 int ret
= qemu_madvise(start
, size
, QEMU_MADV_DONTFORK
);
1962 perror("qemu_madvise");
1964 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1970 #ifdef KVM_CAP_SET_GUEST_DEBUG
1971 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*cpu
,
1974 struct kvm_sw_breakpoint
*bp
;
1976 QTAILQ_FOREACH(bp
, &cpu
->kvm_state
->kvm_sw_breakpoints
, entry
) {
1984 int kvm_sw_breakpoints_active(CPUState
*cpu
)
1986 return !QTAILQ_EMPTY(&cpu
->kvm_state
->kvm_sw_breakpoints
);
1989 struct kvm_set_guest_debug_data
{
1990 struct kvm_guest_debug dbg
;
1995 static void kvm_invoke_set_guest_debug(void *data
)
1997 struct kvm_set_guest_debug_data
*dbg_data
= data
;
1999 dbg_data
->err
= kvm_vcpu_ioctl(dbg_data
->cpu
, KVM_SET_GUEST_DEBUG
,
2003 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
2005 struct kvm_set_guest_debug_data data
;
2007 data
.dbg
.control
= reinject_trap
;
2009 if (cpu
->singlestep_enabled
) {
2010 data
.dbg
.control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
2012 kvm_arch_update_guest_debug(cpu
, &data
.dbg
);
2015 run_on_cpu(cpu
, kvm_invoke_set_guest_debug
, &data
);
2019 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
2020 target_ulong len
, int type
)
2022 struct kvm_sw_breakpoint
*bp
;
2025 if (type
== GDB_BREAKPOINT_SW
) {
2026 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
2032 bp
= g_malloc(sizeof(struct kvm_sw_breakpoint
));
2039 err
= kvm_arch_insert_sw_breakpoint(cpu
, bp
);
2045 QTAILQ_INSERT_HEAD(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
2047 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
2054 err
= kvm_update_guest_debug(cpu
, 0);
2062 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
2063 target_ulong len
, int type
)
2065 struct kvm_sw_breakpoint
*bp
;
2068 if (type
== GDB_BREAKPOINT_SW
) {
2069 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
2074 if (bp
->use_count
> 1) {
2079 err
= kvm_arch_remove_sw_breakpoint(cpu
, bp
);
2084 QTAILQ_REMOVE(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
2087 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
2094 err
= kvm_update_guest_debug(cpu
, 0);
2102 void kvm_remove_all_breakpoints(CPUState
*cpu
)
2104 struct kvm_sw_breakpoint
*bp
, *next
;
2105 KVMState
*s
= cpu
->kvm_state
;
2108 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
2109 if (kvm_arch_remove_sw_breakpoint(cpu
, bp
) != 0) {
2110 /* Try harder to find a CPU that currently sees the breakpoint. */
2111 CPU_FOREACH(tmpcpu
) {
2112 if (kvm_arch_remove_sw_breakpoint(tmpcpu
, bp
) == 0) {
2117 QTAILQ_REMOVE(&s
->kvm_sw_breakpoints
, bp
, entry
);
2120 kvm_arch_remove_all_hw_breakpoints();
2123 kvm_update_guest_debug(cpu
, 0);
2127 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2129 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
2134 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
2135 target_ulong len
, int type
)
2140 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
2141 target_ulong len
, int type
)
2146 void kvm_remove_all_breakpoints(CPUState
*cpu
)
2149 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2151 int kvm_set_signal_mask(CPUState
*cpu
, const sigset_t
*sigset
)
2153 KVMState
*s
= kvm_state
;
2154 struct kvm_signal_mask
*sigmask
;
2158 return kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, NULL
);
2161 sigmask
= g_malloc(sizeof(*sigmask
) + sizeof(*sigset
));
2163 sigmask
->len
= s
->sigmask_len
;
2164 memcpy(sigmask
->sigset
, sigset
, sizeof(*sigset
));
2165 r
= kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, sigmask
);
2170 int kvm_on_sigbus_vcpu(CPUState
*cpu
, int code
, void *addr
)
2172 return kvm_arch_on_sigbus_vcpu(cpu
, code
, addr
);
2175 int kvm_on_sigbus(int code
, void *addr
)
2177 return kvm_arch_on_sigbus(code
, addr
);
2180 int kvm_create_device(KVMState
*s
, uint64_t type
, bool test
)
2183 struct kvm_create_device create_dev
;
2185 create_dev
.type
= type
;
2187 create_dev
.flags
= test
? KVM_CREATE_DEVICE_TEST
: 0;
2189 if (!kvm_check_extension(s
, KVM_CAP_DEVICE_CTRL
)) {
2193 ret
= kvm_vm_ioctl(s
, KVM_CREATE_DEVICE
, &create_dev
);
2198 return test
? 0 : create_dev
.fd
;
2201 int kvm_set_one_reg(CPUState
*cs
, uint64_t id
, void *source
)
2203 struct kvm_one_reg reg
;
2207 reg
.addr
= (uintptr_t) source
;
2208 r
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
2210 trace_kvm_failed_reg_set(id
, strerror(r
));
2215 int kvm_get_one_reg(CPUState
*cs
, uint64_t id
, void *target
)
2217 struct kvm_one_reg reg
;
2221 reg
.addr
= (uintptr_t) target
;
2222 r
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
2224 trace_kvm_failed_reg_get(id
, strerror(r
));