Merge remote-tracking branch 'qemu-kvm/memory/core' into staging
[qemu/kevin.git] / kvm-all.c
blob71197519563404bacb35dfbf324305e2ce9d3a2c
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "sysemu.h"
26 #include "hw/hw.h"
27 #include "gdbstub.h"
28 #include "kvm.h"
29 #include "bswap.h"
30 #include "memory.h"
31 #include "exec-memory.h"
33 /* This check must be after config-host.h is included */
34 #ifdef CONFIG_EVENTFD
35 #include <sys/eventfd.h>
36 #endif
38 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
39 #define PAGE_SIZE TARGET_PAGE_SIZE
41 //#define DEBUG_KVM
43 #ifdef DEBUG_KVM
44 #define DPRINTF(fmt, ...) \
45 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
46 #else
47 #define DPRINTF(fmt, ...) \
48 do { } while (0)
49 #endif
51 typedef struct KVMSlot
53 target_phys_addr_t start_addr;
54 ram_addr_t memory_size;
55 void *ram;
56 int slot;
57 int flags;
58 } KVMSlot;
60 typedef struct kvm_dirty_log KVMDirtyLog;
62 struct KVMState
64 KVMSlot slots[32];
65 int fd;
66 int vmfd;
67 int coalesced_mmio;
68 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
69 bool coalesced_flush_in_progress;
70 int broken_set_mem_region;
71 int migration_log;
72 int vcpu_events;
73 int robust_singlestep;
74 int debugregs;
75 #ifdef KVM_CAP_SET_GUEST_DEBUG
76 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
77 #endif
78 int pit_in_kernel;
79 int xsave, xcrs;
80 int many_ioeventfds;
81 int irqchip_inject_ioctl;
82 #ifdef KVM_CAP_IRQ_ROUTING
83 struct kvm_irq_routing *irq_routes;
84 int nr_allocated_irq_routes;
85 uint32_t *used_gsi_bitmap;
86 unsigned int max_gsi;
87 #endif
90 KVMState *kvm_state;
91 bool kvm_kernel_irqchip;
93 static const KVMCapabilityInfo kvm_required_capabilites[] = {
94 KVM_CAP_INFO(USER_MEMORY),
95 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
96 KVM_CAP_LAST_INFO
99 static KVMSlot *kvm_alloc_slot(KVMState *s)
101 int i;
103 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
104 if (s->slots[i].memory_size == 0) {
105 return &s->slots[i];
109 fprintf(stderr, "%s: no free slot available\n", __func__);
110 abort();
113 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
114 target_phys_addr_t start_addr,
115 target_phys_addr_t end_addr)
117 int i;
119 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
120 KVMSlot *mem = &s->slots[i];
122 if (start_addr == mem->start_addr &&
123 end_addr == mem->start_addr + mem->memory_size) {
124 return mem;
128 return NULL;
132 * Find overlapping slot with lowest start address
134 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
135 target_phys_addr_t start_addr,
136 target_phys_addr_t end_addr)
138 KVMSlot *found = NULL;
139 int i;
141 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
142 KVMSlot *mem = &s->slots[i];
144 if (mem->memory_size == 0 ||
145 (found && found->start_addr < mem->start_addr)) {
146 continue;
149 if (end_addr > mem->start_addr &&
150 start_addr < mem->start_addr + mem->memory_size) {
151 found = mem;
155 return found;
158 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
159 target_phys_addr_t *phys_addr)
161 int i;
163 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
164 KVMSlot *mem = &s->slots[i];
166 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
167 *phys_addr = mem->start_addr + (ram - mem->ram);
168 return 1;
172 return 0;
175 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
177 struct kvm_userspace_memory_region mem;
179 mem.slot = slot->slot;
180 mem.guest_phys_addr = slot->start_addr;
181 mem.memory_size = slot->memory_size;
182 mem.userspace_addr = (unsigned long)slot->ram;
183 mem.flags = slot->flags;
184 if (s->migration_log) {
185 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
187 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
190 static void kvm_reset_vcpu(void *opaque)
192 CPUState *env = opaque;
194 kvm_arch_reset_vcpu(env);
197 int kvm_pit_in_kernel(void)
199 return kvm_state->pit_in_kernel;
202 int kvm_init_vcpu(CPUState *env)
204 KVMState *s = kvm_state;
205 long mmap_size;
206 int ret;
208 DPRINTF("kvm_init_vcpu\n");
210 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
211 if (ret < 0) {
212 DPRINTF("kvm_create_vcpu failed\n");
213 goto err;
216 env->kvm_fd = ret;
217 env->kvm_state = s;
218 env->kvm_vcpu_dirty = 1;
220 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
221 if (mmap_size < 0) {
222 ret = mmap_size;
223 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
224 goto err;
227 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
228 env->kvm_fd, 0);
229 if (env->kvm_run == MAP_FAILED) {
230 ret = -errno;
231 DPRINTF("mmap'ing vcpu state failed\n");
232 goto err;
235 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
236 s->coalesced_mmio_ring =
237 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
240 ret = kvm_arch_init_vcpu(env);
241 if (ret == 0) {
242 qemu_register_reset(kvm_reset_vcpu, env);
243 kvm_arch_reset_vcpu(env);
245 err:
246 return ret;
250 * dirty pages logging control
253 static int kvm_mem_flags(KVMState *s, bool log_dirty)
255 return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
258 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
260 KVMState *s = kvm_state;
261 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
262 int old_flags;
264 old_flags = mem->flags;
266 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
267 mem->flags = flags;
269 /* If nothing changed effectively, no need to issue ioctl */
270 if (s->migration_log) {
271 flags |= KVM_MEM_LOG_DIRTY_PAGES;
274 if (flags == old_flags) {
275 return 0;
278 return kvm_set_user_memory_region(s, mem);
281 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
282 ram_addr_t size, bool log_dirty)
284 KVMState *s = kvm_state;
285 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
287 if (mem == NULL) {
288 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
289 TARGET_FMT_plx "\n", __func__, phys_addr,
290 (target_phys_addr_t)(phys_addr + size - 1));
291 return -EINVAL;
293 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
296 static void kvm_log_start(MemoryListener *listener,
297 MemoryRegionSection *section)
299 int r;
301 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
302 section->size, true);
303 if (r < 0) {
304 abort();
308 static void kvm_log_stop(MemoryListener *listener,
309 MemoryRegionSection *section)
311 int r;
313 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
314 section->size, false);
315 if (r < 0) {
316 abort();
320 static int kvm_set_migration_log(int enable)
322 KVMState *s = kvm_state;
323 KVMSlot *mem;
324 int i, err;
326 s->migration_log = enable;
328 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
329 mem = &s->slots[i];
331 if (!mem->memory_size) {
332 continue;
334 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
335 continue;
337 err = kvm_set_user_memory_region(s, mem);
338 if (err) {
339 return err;
342 return 0;
345 /* get kvm's dirty pages bitmap and update qemu's */
346 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
347 unsigned long *bitmap)
349 unsigned int i, j;
350 unsigned long page_number, c;
351 target_phys_addr_t addr, addr1;
352 unsigned int len = ((section->size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
355 * bitmap-traveling is faster than memory-traveling (for addr...)
356 * especially when most of the memory is not dirty.
358 for (i = 0; i < len; i++) {
359 if (bitmap[i] != 0) {
360 c = leul_to_cpu(bitmap[i]);
361 do {
362 j = ffsl(c) - 1;
363 c &= ~(1ul << j);
364 page_number = i * HOST_LONG_BITS + j;
365 addr1 = page_number * TARGET_PAGE_SIZE;
366 addr = section->offset_within_region + addr1;
367 memory_region_set_dirty(section->mr, addr, TARGET_PAGE_SIZE);
368 } while (c != 0);
371 return 0;
374 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
377 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
378 * This function updates qemu's dirty bitmap using
379 * memory_region_set_dirty(). This means all bits are set
380 * to dirty.
382 * @start_add: start of logged region.
383 * @end_addr: end of logged region.
385 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
387 KVMState *s = kvm_state;
388 unsigned long size, allocated_size = 0;
389 KVMDirtyLog d;
390 KVMSlot *mem;
391 int ret = 0;
392 target_phys_addr_t start_addr = section->offset_within_address_space;
393 target_phys_addr_t end_addr = start_addr + section->size;
395 d.dirty_bitmap = NULL;
396 while (start_addr < end_addr) {
397 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
398 if (mem == NULL) {
399 break;
402 /* XXX bad kernel interface alert
403 * For dirty bitmap, kernel allocates array of size aligned to
404 * bits-per-long. But for case when the kernel is 64bits and
405 * the userspace is 32bits, userspace can't align to the same
406 * bits-per-long, since sizeof(long) is different between kernel
407 * and user space. This way, userspace will provide buffer which
408 * may be 4 bytes less than the kernel will use, resulting in
409 * userspace memory corruption (which is not detectable by valgrind
410 * too, in most cases).
411 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
412 * a hope that sizeof(long) wont become >8 any time soon.
414 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
415 /*HOST_LONG_BITS*/ 64) / 8;
416 if (!d.dirty_bitmap) {
417 d.dirty_bitmap = g_malloc(size);
418 } else if (size > allocated_size) {
419 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
421 allocated_size = size;
422 memset(d.dirty_bitmap, 0, allocated_size);
424 d.slot = mem->slot;
426 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
427 DPRINTF("ioctl failed %d\n", errno);
428 ret = -1;
429 break;
432 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
433 start_addr = mem->start_addr + mem->memory_size;
435 g_free(d.dirty_bitmap);
437 return ret;
440 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
442 int ret = -ENOSYS;
443 KVMState *s = kvm_state;
445 if (s->coalesced_mmio) {
446 struct kvm_coalesced_mmio_zone zone;
448 zone.addr = start;
449 zone.size = size;
451 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
454 return ret;
457 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
459 int ret = -ENOSYS;
460 KVMState *s = kvm_state;
462 if (s->coalesced_mmio) {
463 struct kvm_coalesced_mmio_zone zone;
465 zone.addr = start;
466 zone.size = size;
468 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
471 return ret;
474 int kvm_check_extension(KVMState *s, unsigned int extension)
476 int ret;
478 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
479 if (ret < 0) {
480 ret = 0;
483 return ret;
486 static int kvm_check_many_ioeventfds(void)
488 /* Userspace can use ioeventfd for io notification. This requires a host
489 * that supports eventfd(2) and an I/O thread; since eventfd does not
490 * support SIGIO it cannot interrupt the vcpu.
492 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
493 * can avoid creating too many ioeventfds.
495 #if defined(CONFIG_EVENTFD)
496 int ioeventfds[7];
497 int i, ret = 0;
498 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
499 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
500 if (ioeventfds[i] < 0) {
501 break;
503 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
504 if (ret < 0) {
505 close(ioeventfds[i]);
506 break;
510 /* Decide whether many devices are supported or not */
511 ret = i == ARRAY_SIZE(ioeventfds);
513 while (i-- > 0) {
514 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
515 close(ioeventfds[i]);
517 return ret;
518 #else
519 return 0;
520 #endif
523 static const KVMCapabilityInfo *
524 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
526 while (list->name) {
527 if (!kvm_check_extension(s, list->value)) {
528 return list;
530 list++;
532 return NULL;
535 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
537 KVMState *s = kvm_state;
538 KVMSlot *mem, old;
539 int err;
540 MemoryRegion *mr = section->mr;
541 bool log_dirty = memory_region_is_logging(mr);
542 target_phys_addr_t start_addr = section->offset_within_address_space;
543 ram_addr_t size = section->size;
544 void *ram = NULL;
546 /* kvm works in page size chunks, but the function may be called
547 with sub-page size and unaligned start address. */
548 size = TARGET_PAGE_ALIGN(size);
549 start_addr = TARGET_PAGE_ALIGN(start_addr);
551 if (!memory_region_is_ram(mr)) {
552 return;
555 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region;
557 while (1) {
558 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
559 if (!mem) {
560 break;
563 if (add && start_addr >= mem->start_addr &&
564 (start_addr + size <= mem->start_addr + mem->memory_size) &&
565 (ram - start_addr == mem->ram - mem->start_addr)) {
566 /* The new slot fits into the existing one and comes with
567 * identical parameters - update flags and done. */
568 kvm_slot_dirty_pages_log_change(mem, log_dirty);
569 return;
572 old = *mem;
574 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
575 kvm_physical_sync_dirty_bitmap(section);
578 /* unregister the overlapping slot */
579 mem->memory_size = 0;
580 err = kvm_set_user_memory_region(s, mem);
581 if (err) {
582 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
583 __func__, strerror(-err));
584 abort();
587 /* Workaround for older KVM versions: we can't join slots, even not by
588 * unregistering the previous ones and then registering the larger
589 * slot. We have to maintain the existing fragmentation. Sigh.
591 * This workaround assumes that the new slot starts at the same
592 * address as the first existing one. If not or if some overlapping
593 * slot comes around later, we will fail (not seen in practice so far)
594 * - and actually require a recent KVM version. */
595 if (s->broken_set_mem_region &&
596 old.start_addr == start_addr && old.memory_size < size && add) {
597 mem = kvm_alloc_slot(s);
598 mem->memory_size = old.memory_size;
599 mem->start_addr = old.start_addr;
600 mem->ram = old.ram;
601 mem->flags = kvm_mem_flags(s, log_dirty);
603 err = kvm_set_user_memory_region(s, mem);
604 if (err) {
605 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
606 strerror(-err));
607 abort();
610 start_addr += old.memory_size;
611 ram += old.memory_size;
612 size -= old.memory_size;
613 continue;
616 /* register prefix slot */
617 if (old.start_addr < start_addr) {
618 mem = kvm_alloc_slot(s);
619 mem->memory_size = start_addr - old.start_addr;
620 mem->start_addr = old.start_addr;
621 mem->ram = old.ram;
622 mem->flags = kvm_mem_flags(s, log_dirty);
624 err = kvm_set_user_memory_region(s, mem);
625 if (err) {
626 fprintf(stderr, "%s: error registering prefix slot: %s\n",
627 __func__, strerror(-err));
628 #ifdef TARGET_PPC
629 fprintf(stderr, "%s: This is probably because your kernel's " \
630 "PAGE_SIZE is too big. Please try to use 4k " \
631 "PAGE_SIZE!\n", __func__);
632 #endif
633 abort();
637 /* register suffix slot */
638 if (old.start_addr + old.memory_size > start_addr + size) {
639 ram_addr_t size_delta;
641 mem = kvm_alloc_slot(s);
642 mem->start_addr = start_addr + size;
643 size_delta = mem->start_addr - old.start_addr;
644 mem->memory_size = old.memory_size - size_delta;
645 mem->ram = old.ram + size_delta;
646 mem->flags = kvm_mem_flags(s, log_dirty);
648 err = kvm_set_user_memory_region(s, mem);
649 if (err) {
650 fprintf(stderr, "%s: error registering suffix slot: %s\n",
651 __func__, strerror(-err));
652 abort();
657 /* in case the KVM bug workaround already "consumed" the new slot */
658 if (!size) {
659 return;
661 if (!add) {
662 return;
664 mem = kvm_alloc_slot(s);
665 mem->memory_size = size;
666 mem->start_addr = start_addr;
667 mem->ram = ram;
668 mem->flags = kvm_mem_flags(s, log_dirty);
670 err = kvm_set_user_memory_region(s, mem);
671 if (err) {
672 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
673 strerror(-err));
674 abort();
678 static void kvm_begin(MemoryListener *listener)
682 static void kvm_commit(MemoryListener *listener)
686 static void kvm_region_add(MemoryListener *listener,
687 MemoryRegionSection *section)
689 kvm_set_phys_mem(section, true);
692 static void kvm_region_del(MemoryListener *listener,
693 MemoryRegionSection *section)
695 kvm_set_phys_mem(section, false);
698 static void kvm_region_nop(MemoryListener *listener,
699 MemoryRegionSection *section)
703 static void kvm_log_sync(MemoryListener *listener,
704 MemoryRegionSection *section)
706 int r;
708 r = kvm_physical_sync_dirty_bitmap(section);
709 if (r < 0) {
710 abort();
714 static void kvm_log_global_start(struct MemoryListener *listener)
716 int r;
718 r = kvm_set_migration_log(1);
719 assert(r >= 0);
722 static void kvm_log_global_stop(struct MemoryListener *listener)
724 int r;
726 r = kvm_set_migration_log(0);
727 assert(r >= 0);
730 static void kvm_mem_ioeventfd_add(MemoryRegionSection *section,
731 bool match_data, uint64_t data, int fd)
733 int r;
735 assert(match_data && section->size == 4);
737 r = kvm_set_ioeventfd_mmio_long(fd, section->offset_within_address_space,
738 data, true);
739 if (r < 0) {
740 abort();
744 static void kvm_mem_ioeventfd_del(MemoryRegionSection *section,
745 bool match_data, uint64_t data, int fd)
747 int r;
749 r = kvm_set_ioeventfd_mmio_long(fd, section->offset_within_address_space,
750 data, false);
751 if (r < 0) {
752 abort();
756 static void kvm_io_ioeventfd_add(MemoryRegionSection *section,
757 bool match_data, uint64_t data, int fd)
759 int r;
761 assert(match_data && section->size == 2);
763 r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
764 data, true);
765 if (r < 0) {
766 abort();
770 static void kvm_io_ioeventfd_del(MemoryRegionSection *section,
771 bool match_data, uint64_t data, int fd)
774 int r;
776 r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
777 data, false);
778 if (r < 0) {
779 abort();
783 static void kvm_eventfd_add(MemoryListener *listener,
784 MemoryRegionSection *section,
785 bool match_data, uint64_t data, int fd)
787 if (section->address_space == get_system_memory()) {
788 kvm_mem_ioeventfd_add(section, match_data, data, fd);
789 } else {
790 kvm_io_ioeventfd_add(section, match_data, data, fd);
794 static void kvm_eventfd_del(MemoryListener *listener,
795 MemoryRegionSection *section,
796 bool match_data, uint64_t data, int fd)
798 if (section->address_space == get_system_memory()) {
799 kvm_mem_ioeventfd_del(section, match_data, data, fd);
800 } else {
801 kvm_io_ioeventfd_del(section, match_data, data, fd);
805 static MemoryListener kvm_memory_listener = {
806 .begin = kvm_begin,
807 .commit = kvm_commit,
808 .region_add = kvm_region_add,
809 .region_del = kvm_region_del,
810 .region_nop = kvm_region_nop,
811 .log_start = kvm_log_start,
812 .log_stop = kvm_log_stop,
813 .log_sync = kvm_log_sync,
814 .log_global_start = kvm_log_global_start,
815 .log_global_stop = kvm_log_global_stop,
816 .eventfd_add = kvm_eventfd_add,
817 .eventfd_del = kvm_eventfd_del,
818 .priority = 10,
821 static void kvm_handle_interrupt(CPUState *env, int mask)
823 env->interrupt_request |= mask;
825 if (!qemu_cpu_is_self(env)) {
826 qemu_cpu_kick(env);
830 int kvm_irqchip_set_irq(KVMState *s, int irq, int level)
832 struct kvm_irq_level event;
833 int ret;
835 assert(kvm_irqchip_in_kernel());
837 event.level = level;
838 event.irq = irq;
839 ret = kvm_vm_ioctl(s, s->irqchip_inject_ioctl, &event);
840 if (ret < 0) {
841 perror("kvm_set_irqchip_line");
842 abort();
845 return (s->irqchip_inject_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
848 #ifdef KVM_CAP_IRQ_ROUTING
849 static void set_gsi(KVMState *s, unsigned int gsi)
851 assert(gsi < s->max_gsi);
853 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
856 static void kvm_init_irq_routing(KVMState *s)
858 int gsi_count;
860 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
861 if (gsi_count > 0) {
862 unsigned int gsi_bits, i;
864 /* Round up so we can search ints using ffs */
865 gsi_bits = (gsi_count + 31) / 32;
866 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
867 s->max_gsi = gsi_bits;
869 /* Mark any over-allocated bits as already in use */
870 for (i = gsi_count; i < gsi_bits; i++) {
871 set_gsi(s, i);
875 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
876 s->nr_allocated_irq_routes = 0;
878 kvm_arch_init_irq_routing(s);
881 static void kvm_add_routing_entry(KVMState *s,
882 struct kvm_irq_routing_entry *entry)
884 struct kvm_irq_routing_entry *new;
885 int n, size;
887 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
888 n = s->nr_allocated_irq_routes * 2;
889 if (n < 64) {
890 n = 64;
892 size = sizeof(struct kvm_irq_routing);
893 size += n * sizeof(*new);
894 s->irq_routes = g_realloc(s->irq_routes, size);
895 s->nr_allocated_irq_routes = n;
897 n = s->irq_routes->nr++;
898 new = &s->irq_routes->entries[n];
899 memset(new, 0, sizeof(*new));
900 new->gsi = entry->gsi;
901 new->type = entry->type;
902 new->flags = entry->flags;
903 new->u = entry->u;
905 set_gsi(s, entry->gsi);
908 void kvm_irqchip_add_route(KVMState *s, int irq, int irqchip, int pin)
910 struct kvm_irq_routing_entry e;
912 e.gsi = irq;
913 e.type = KVM_IRQ_ROUTING_IRQCHIP;
914 e.flags = 0;
915 e.u.irqchip.irqchip = irqchip;
916 e.u.irqchip.pin = pin;
917 kvm_add_routing_entry(s, &e);
920 int kvm_irqchip_commit_routes(KVMState *s)
922 s->irq_routes->flags = 0;
923 return kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
926 #else /* !KVM_CAP_IRQ_ROUTING */
928 static void kvm_init_irq_routing(KVMState *s)
931 #endif /* !KVM_CAP_IRQ_ROUTING */
933 static int kvm_irqchip_create(KVMState *s)
935 QemuOptsList *list = qemu_find_opts("machine");
936 int ret;
938 if (QTAILQ_EMPTY(&list->head) ||
939 !qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
940 "kernel_irqchip", false) ||
941 !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
942 return 0;
945 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
946 if (ret < 0) {
947 fprintf(stderr, "Create kernel irqchip failed\n");
948 return ret;
951 s->irqchip_inject_ioctl = KVM_IRQ_LINE;
952 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
953 s->irqchip_inject_ioctl = KVM_IRQ_LINE_STATUS;
955 kvm_kernel_irqchip = true;
957 kvm_init_irq_routing(s);
959 return 0;
962 int kvm_init(void)
964 static const char upgrade_note[] =
965 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
966 "(see http://sourceforge.net/projects/kvm).\n";
967 KVMState *s;
968 const KVMCapabilityInfo *missing_cap;
969 int ret;
970 int i;
972 s = g_malloc0(sizeof(KVMState));
974 #ifdef KVM_CAP_SET_GUEST_DEBUG
975 QTAILQ_INIT(&s->kvm_sw_breakpoints);
976 #endif
977 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
978 s->slots[i].slot = i;
980 s->vmfd = -1;
981 s->fd = qemu_open("/dev/kvm", O_RDWR);
982 if (s->fd == -1) {
983 fprintf(stderr, "Could not access KVM kernel module: %m\n");
984 ret = -errno;
985 goto err;
988 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
989 if (ret < KVM_API_VERSION) {
990 if (ret > 0) {
991 ret = -EINVAL;
993 fprintf(stderr, "kvm version too old\n");
994 goto err;
997 if (ret > KVM_API_VERSION) {
998 ret = -EINVAL;
999 fprintf(stderr, "kvm version not supported\n");
1000 goto err;
1003 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
1004 if (s->vmfd < 0) {
1005 #ifdef TARGET_S390X
1006 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1007 "your host kernel command line\n");
1008 #endif
1009 ret = s->vmfd;
1010 goto err;
1013 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1014 if (!missing_cap) {
1015 missing_cap =
1016 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1018 if (missing_cap) {
1019 ret = -EINVAL;
1020 fprintf(stderr, "kvm does not support %s\n%s",
1021 missing_cap->name, upgrade_note);
1022 goto err;
1025 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1027 s->broken_set_mem_region = 1;
1028 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1029 if (ret > 0) {
1030 s->broken_set_mem_region = 0;
1033 #ifdef KVM_CAP_VCPU_EVENTS
1034 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1035 #endif
1037 s->robust_singlestep =
1038 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1040 #ifdef KVM_CAP_DEBUGREGS
1041 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1042 #endif
1044 #ifdef KVM_CAP_XSAVE
1045 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1046 #endif
1048 #ifdef KVM_CAP_XCRS
1049 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1050 #endif
1052 ret = kvm_arch_init(s);
1053 if (ret < 0) {
1054 goto err;
1057 ret = kvm_irqchip_create(s);
1058 if (ret < 0) {
1059 goto err;
1062 kvm_state = s;
1063 memory_listener_register(&kvm_memory_listener, NULL);
1065 s->many_ioeventfds = kvm_check_many_ioeventfds();
1067 cpu_interrupt_handler = kvm_handle_interrupt;
1069 return 0;
1071 err:
1072 if (s) {
1073 if (s->vmfd >= 0) {
1074 close(s->vmfd);
1076 if (s->fd != -1) {
1077 close(s->fd);
1080 g_free(s);
1082 return ret;
1085 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1086 uint32_t count)
1088 int i;
1089 uint8_t *ptr = data;
1091 for (i = 0; i < count; i++) {
1092 if (direction == KVM_EXIT_IO_IN) {
1093 switch (size) {
1094 case 1:
1095 stb_p(ptr, cpu_inb(port));
1096 break;
1097 case 2:
1098 stw_p(ptr, cpu_inw(port));
1099 break;
1100 case 4:
1101 stl_p(ptr, cpu_inl(port));
1102 break;
1104 } else {
1105 switch (size) {
1106 case 1:
1107 cpu_outb(port, ldub_p(ptr));
1108 break;
1109 case 2:
1110 cpu_outw(port, lduw_p(ptr));
1111 break;
1112 case 4:
1113 cpu_outl(port, ldl_p(ptr));
1114 break;
1118 ptr += size;
1122 static int kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
1124 fprintf(stderr, "KVM internal error.");
1125 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1126 int i;
1128 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
1129 for (i = 0; i < run->internal.ndata; ++i) {
1130 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1131 i, (uint64_t)run->internal.data[i]);
1133 } else {
1134 fprintf(stderr, "\n");
1136 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1137 fprintf(stderr, "emulation failure\n");
1138 if (!kvm_arch_stop_on_emulation_error(env)) {
1139 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1140 return EXCP_INTERRUPT;
1143 /* FIXME: Should trigger a qmp message to let management know
1144 * something went wrong.
1146 return -1;
1149 void kvm_flush_coalesced_mmio_buffer(void)
1151 KVMState *s = kvm_state;
1153 if (s->coalesced_flush_in_progress) {
1154 return;
1157 s->coalesced_flush_in_progress = true;
1159 if (s->coalesced_mmio_ring) {
1160 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1161 while (ring->first != ring->last) {
1162 struct kvm_coalesced_mmio *ent;
1164 ent = &ring->coalesced_mmio[ring->first];
1166 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1167 smp_wmb();
1168 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1172 s->coalesced_flush_in_progress = false;
1175 static void do_kvm_cpu_synchronize_state(void *_env)
1177 CPUState *env = _env;
1179 if (!env->kvm_vcpu_dirty) {
1180 kvm_arch_get_registers(env);
1181 env->kvm_vcpu_dirty = 1;
1185 void kvm_cpu_synchronize_state(CPUState *env)
1187 if (!env->kvm_vcpu_dirty) {
1188 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
1192 void kvm_cpu_synchronize_post_reset(CPUState *env)
1194 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
1195 env->kvm_vcpu_dirty = 0;
1198 void kvm_cpu_synchronize_post_init(CPUState *env)
1200 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
1201 env->kvm_vcpu_dirty = 0;
1204 int kvm_cpu_exec(CPUState *env)
1206 struct kvm_run *run = env->kvm_run;
1207 int ret, run_ret;
1209 DPRINTF("kvm_cpu_exec()\n");
1211 if (kvm_arch_process_async_events(env)) {
1212 env->exit_request = 0;
1213 return EXCP_HLT;
1216 do {
1217 if (env->kvm_vcpu_dirty) {
1218 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
1219 env->kvm_vcpu_dirty = 0;
1222 kvm_arch_pre_run(env, run);
1223 if (env->exit_request) {
1224 DPRINTF("interrupt exit requested\n");
1226 * KVM requires us to reenter the kernel after IO exits to complete
1227 * instruction emulation. This self-signal will ensure that we
1228 * leave ASAP again.
1230 qemu_cpu_kick_self();
1232 qemu_mutex_unlock_iothread();
1234 run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
1236 qemu_mutex_lock_iothread();
1237 kvm_arch_post_run(env, run);
1239 kvm_flush_coalesced_mmio_buffer();
1241 if (run_ret < 0) {
1242 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1243 DPRINTF("io window exit\n");
1244 ret = EXCP_INTERRUPT;
1245 break;
1247 fprintf(stderr, "error: kvm run failed %s\n",
1248 strerror(-run_ret));
1249 abort();
1252 switch (run->exit_reason) {
1253 case KVM_EXIT_IO:
1254 DPRINTF("handle_io\n");
1255 kvm_handle_io(run->io.port,
1256 (uint8_t *)run + run->io.data_offset,
1257 run->io.direction,
1258 run->io.size,
1259 run->io.count);
1260 ret = 0;
1261 break;
1262 case KVM_EXIT_MMIO:
1263 DPRINTF("handle_mmio\n");
1264 cpu_physical_memory_rw(run->mmio.phys_addr,
1265 run->mmio.data,
1266 run->mmio.len,
1267 run->mmio.is_write);
1268 ret = 0;
1269 break;
1270 case KVM_EXIT_IRQ_WINDOW_OPEN:
1271 DPRINTF("irq_window_open\n");
1272 ret = EXCP_INTERRUPT;
1273 break;
1274 case KVM_EXIT_SHUTDOWN:
1275 DPRINTF("shutdown\n");
1276 qemu_system_reset_request();
1277 ret = EXCP_INTERRUPT;
1278 break;
1279 case KVM_EXIT_UNKNOWN:
1280 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1281 (uint64_t)run->hw.hardware_exit_reason);
1282 ret = -1;
1283 break;
1284 case KVM_EXIT_INTERNAL_ERROR:
1285 ret = kvm_handle_internal_error(env, run);
1286 break;
1287 default:
1288 DPRINTF("kvm_arch_handle_exit\n");
1289 ret = kvm_arch_handle_exit(env, run);
1290 break;
1292 } while (ret == 0);
1294 if (ret < 0) {
1295 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1296 vm_stop(RUN_STATE_INTERNAL_ERROR);
1299 env->exit_request = 0;
1300 return ret;
1303 int kvm_ioctl(KVMState *s, int type, ...)
1305 int ret;
1306 void *arg;
1307 va_list ap;
1309 va_start(ap, type);
1310 arg = va_arg(ap, void *);
1311 va_end(ap);
1313 ret = ioctl(s->fd, type, arg);
1314 if (ret == -1) {
1315 ret = -errno;
1317 return ret;
1320 int kvm_vm_ioctl(KVMState *s, int type, ...)
1322 int ret;
1323 void *arg;
1324 va_list ap;
1326 va_start(ap, type);
1327 arg = va_arg(ap, void *);
1328 va_end(ap);
1330 ret = ioctl(s->vmfd, type, arg);
1331 if (ret == -1) {
1332 ret = -errno;
1334 return ret;
1337 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
1339 int ret;
1340 void *arg;
1341 va_list ap;
1343 va_start(ap, type);
1344 arg = va_arg(ap, void *);
1345 va_end(ap);
1347 ret = ioctl(env->kvm_fd, type, arg);
1348 if (ret == -1) {
1349 ret = -errno;
1351 return ret;
1354 int kvm_has_sync_mmu(void)
1356 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1359 int kvm_has_vcpu_events(void)
1361 return kvm_state->vcpu_events;
1364 int kvm_has_robust_singlestep(void)
1366 return kvm_state->robust_singlestep;
1369 int kvm_has_debugregs(void)
1371 return kvm_state->debugregs;
1374 int kvm_has_xsave(void)
1376 return kvm_state->xsave;
1379 int kvm_has_xcrs(void)
1381 return kvm_state->xcrs;
1384 int kvm_has_many_ioeventfds(void)
1386 if (!kvm_enabled()) {
1387 return 0;
1389 return kvm_state->many_ioeventfds;
1392 int kvm_has_gsi_routing(void)
1394 #ifdef KVM_CAP_IRQ_ROUTING
1395 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1396 #else
1397 return false;
1398 #endif
1401 int kvm_allows_irq0_override(void)
1403 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
1406 void kvm_setup_guest_memory(void *start, size_t size)
1408 if (!kvm_has_sync_mmu()) {
1409 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1411 if (ret) {
1412 perror("qemu_madvise");
1413 fprintf(stderr,
1414 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1415 exit(1);
1420 #ifdef KVM_CAP_SET_GUEST_DEBUG
1421 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1422 target_ulong pc)
1424 struct kvm_sw_breakpoint *bp;
1426 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1427 if (bp->pc == pc) {
1428 return bp;
1431 return NULL;
1434 int kvm_sw_breakpoints_active(CPUState *env)
1436 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1439 struct kvm_set_guest_debug_data {
1440 struct kvm_guest_debug dbg;
1441 CPUState *env;
1442 int err;
1445 static void kvm_invoke_set_guest_debug(void *data)
1447 struct kvm_set_guest_debug_data *dbg_data = data;
1448 CPUState *env = dbg_data->env;
1450 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1453 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1455 struct kvm_set_guest_debug_data data;
1457 data.dbg.control = reinject_trap;
1459 if (env->singlestep_enabled) {
1460 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1462 kvm_arch_update_guest_debug(env, &data.dbg);
1463 data.env = env;
1465 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1466 return data.err;
1469 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1470 target_ulong len, int type)
1472 struct kvm_sw_breakpoint *bp;
1473 CPUState *env;
1474 int err;
1476 if (type == GDB_BREAKPOINT_SW) {
1477 bp = kvm_find_sw_breakpoint(current_env, addr);
1478 if (bp) {
1479 bp->use_count++;
1480 return 0;
1483 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1484 if (!bp) {
1485 return -ENOMEM;
1488 bp->pc = addr;
1489 bp->use_count = 1;
1490 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1491 if (err) {
1492 g_free(bp);
1493 return err;
1496 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1497 bp, entry);
1498 } else {
1499 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1500 if (err) {
1501 return err;
1505 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1506 err = kvm_update_guest_debug(env, 0);
1507 if (err) {
1508 return err;
1511 return 0;
1514 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1515 target_ulong len, int type)
1517 struct kvm_sw_breakpoint *bp;
1518 CPUState *env;
1519 int err;
1521 if (type == GDB_BREAKPOINT_SW) {
1522 bp = kvm_find_sw_breakpoint(current_env, addr);
1523 if (!bp) {
1524 return -ENOENT;
1527 if (bp->use_count > 1) {
1528 bp->use_count--;
1529 return 0;
1532 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1533 if (err) {
1534 return err;
1537 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1538 g_free(bp);
1539 } else {
1540 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1541 if (err) {
1542 return err;
1546 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1547 err = kvm_update_guest_debug(env, 0);
1548 if (err) {
1549 return err;
1552 return 0;
1555 void kvm_remove_all_breakpoints(CPUState *current_env)
1557 struct kvm_sw_breakpoint *bp, *next;
1558 KVMState *s = current_env->kvm_state;
1559 CPUState *env;
1561 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1562 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1563 /* Try harder to find a CPU that currently sees the breakpoint. */
1564 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1565 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1566 break;
1571 kvm_arch_remove_all_hw_breakpoints();
1573 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1574 kvm_update_guest_debug(env, 0);
1578 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1580 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1582 return -EINVAL;
1585 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1586 target_ulong len, int type)
1588 return -EINVAL;
1591 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1592 target_ulong len, int type)
1594 return -EINVAL;
1597 void kvm_remove_all_breakpoints(CPUState *current_env)
1600 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1602 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1604 struct kvm_signal_mask *sigmask;
1605 int r;
1607 if (!sigset) {
1608 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1611 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
1613 sigmask->len = 8;
1614 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1615 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1616 g_free(sigmask);
1618 return r;
1621 int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1623 int ret;
1624 struct kvm_ioeventfd iofd;
1626 iofd.datamatch = val;
1627 iofd.addr = addr;
1628 iofd.len = 4;
1629 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1630 iofd.fd = fd;
1632 if (!kvm_enabled()) {
1633 return -ENOSYS;
1636 if (!assign) {
1637 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1640 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1642 if (ret < 0) {
1643 return -errno;
1646 return 0;
1649 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1651 struct kvm_ioeventfd kick = {
1652 .datamatch = val,
1653 .addr = addr,
1654 .len = 2,
1655 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1656 .fd = fd,
1658 int r;
1659 if (!kvm_enabled()) {
1660 return -ENOSYS;
1662 if (!assign) {
1663 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1665 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1666 if (r < 0) {
1667 return r;
1669 return 0;
1672 int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1674 return kvm_arch_on_sigbus_vcpu(env, code, addr);
1677 int kvm_on_sigbus(int code, void *addr)
1679 return kvm_arch_on_sigbus(code, addr);