2 * PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 * Copyright (c) 2013 David Gibson, IBM Corporation
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qapi/error.h"
23 #include "exec/helper-proto.h"
24 #include "qemu/error-report.h"
25 #include "sysemu/kvm.h"
26 #include "qemu/error-report.h"
28 #include "mmu-hash64.h"
34 # define LOG_SLB(...) qemu_log_mask(CPU_LOG_MMU, __VA_ARGS__)
36 # define LOG_SLB(...) do { } while (0)
40 * Used to indicate that a CPU has its hash page table (HPT) managed
41 * within the host kernel
43 #define MMU_HASH64_KVM_MANAGED_HPT ((void *)-1)
49 static ppc_slb_t
*slb_lookup(PowerPCCPU
*cpu
, target_ulong eaddr
)
51 CPUPPCState
*env
= &cpu
->env
;
52 uint64_t esid_256M
, esid_1T
;
55 LOG_SLB("%s: eaddr " TARGET_FMT_lx
"\n", __func__
, eaddr
);
57 esid_256M
= (eaddr
& SEGMENT_MASK_256M
) | SLB_ESID_V
;
58 esid_1T
= (eaddr
& SEGMENT_MASK_1T
) | SLB_ESID_V
;
60 for (n
= 0; n
< env
->slb_nr
; n
++) {
61 ppc_slb_t
*slb
= &env
->slb
[n
];
63 LOG_SLB("%s: slot %d %016" PRIx64
" %016"
64 PRIx64
"\n", __func__
, n
, slb
->esid
, slb
->vsid
);
65 /* We check for 1T matches on all MMUs here - if the MMU
66 * doesn't have 1T segment support, we will have prevented 1T
67 * entries from being inserted in the slbmte code. */
68 if (((slb
->esid
== esid_256M
) &&
69 ((slb
->vsid
& SLB_VSID_B
) == SLB_VSID_B_256M
))
70 || ((slb
->esid
== esid_1T
) &&
71 ((slb
->vsid
& SLB_VSID_B
) == SLB_VSID_B_1T
))) {
79 void dump_slb(FILE *f
, fprintf_function cpu_fprintf
, PowerPCCPU
*cpu
)
81 CPUPPCState
*env
= &cpu
->env
;
85 cpu_synchronize_state(CPU(cpu
));
87 cpu_fprintf(f
, "SLB\tESID\t\t\tVSID\n");
88 for (i
= 0; i
< env
->slb_nr
; i
++) {
89 slbe
= env
->slb
[i
].esid
;
90 slbv
= env
->slb
[i
].vsid
;
91 if (slbe
== 0 && slbv
== 0) {
94 cpu_fprintf(f
, "%d\t0x%016" PRIx64
"\t0x%016" PRIx64
"\n",
99 void helper_slbia(CPUPPCState
*env
)
101 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
102 int n
, do_invalidate
;
105 /* XXX: Warning: slbia never invalidates the first segment */
106 for (n
= 1; n
< env
->slb_nr
; n
++) {
107 ppc_slb_t
*slb
= &env
->slb
[n
];
109 if (slb
->esid
& SLB_ESID_V
) {
110 slb
->esid
&= ~SLB_ESID_V
;
111 /* XXX: given the fact that segment size is 256 MB or 1TB,
112 * and we still don't have a tlb_flush_mask(env, n, mask)
113 * in QEMU, we just invalidate all TLBs
119 tlb_flush(CPU(cpu
), 1);
123 void helper_slbie(CPUPPCState
*env
, target_ulong addr
)
125 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
128 slb
= slb_lookup(cpu
, addr
);
133 if (slb
->esid
& SLB_ESID_V
) {
134 slb
->esid
&= ~SLB_ESID_V
;
136 /* XXX: given the fact that segment size is 256 MB or 1TB,
137 * and we still don't have a tlb_flush_mask(env, n, mask)
138 * in QEMU, we just invalidate all TLBs
140 tlb_flush(CPU(cpu
), 1);
144 int ppc_store_slb(PowerPCCPU
*cpu
, target_ulong slot
,
145 target_ulong esid
, target_ulong vsid
)
147 CPUPPCState
*env
= &cpu
->env
;
148 ppc_slb_t
*slb
= &env
->slb
[slot
];
149 const struct ppc_one_seg_page_size
*sps
= NULL
;
152 if (slot
>= env
->slb_nr
) {
153 return -1; /* Bad slot number */
155 if (esid
& ~(SLB_ESID_ESID
| SLB_ESID_V
)) {
156 return -1; /* Reserved bits set */
158 if (vsid
& (SLB_VSID_B
& ~SLB_VSID_B_1T
)) {
159 return -1; /* Bad segment size */
161 if ((vsid
& SLB_VSID_B
) && !(env
->mmu_model
& POWERPC_MMU_1TSEG
)) {
162 return -1; /* 1T segment on MMU that doesn't support it */
165 for (i
= 0; i
< PPC_PAGE_SIZES_MAX_SZ
; i
++) {
166 const struct ppc_one_seg_page_size
*sps1
= &env
->sps
.sps
[i
];
168 if (!sps1
->page_shift
) {
172 if ((vsid
& SLB_VSID_LLP_MASK
) == sps1
->slb_enc
) {
179 error_report("Bad page size encoding in SLB store: slot "TARGET_FMT_lu
180 " esid 0x"TARGET_FMT_lx
" vsid 0x"TARGET_FMT_lx
,
189 LOG_SLB("%s: %d " TARGET_FMT_lx
" - " TARGET_FMT_lx
" => %016" PRIx64
190 " %016" PRIx64
"\n", __func__
, slot
, esid
, vsid
,
191 slb
->esid
, slb
->vsid
);
196 static int ppc_load_slb_esid(PowerPCCPU
*cpu
, target_ulong rb
,
199 CPUPPCState
*env
= &cpu
->env
;
200 int slot
= rb
& 0xfff;
201 ppc_slb_t
*slb
= &env
->slb
[slot
];
203 if (slot
>= env
->slb_nr
) {
211 static int ppc_load_slb_vsid(PowerPCCPU
*cpu
, target_ulong rb
,
214 CPUPPCState
*env
= &cpu
->env
;
215 int slot
= rb
& 0xfff;
216 ppc_slb_t
*slb
= &env
->slb
[slot
];
218 if (slot
>= env
->slb_nr
) {
226 void helper_store_slb(CPUPPCState
*env
, target_ulong rb
, target_ulong rs
)
228 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
230 if (ppc_store_slb(cpu
, rb
& 0xfff, rb
& ~0xfffULL
, rs
) < 0) {
231 helper_raise_exception_err(env
, POWERPC_EXCP_PROGRAM
,
236 target_ulong
helper_load_slb_esid(CPUPPCState
*env
, target_ulong rb
)
238 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
241 if (ppc_load_slb_esid(cpu
, rb
, &rt
) < 0) {
242 helper_raise_exception_err(env
, POWERPC_EXCP_PROGRAM
,
248 target_ulong
helper_load_slb_vsid(CPUPPCState
*env
, target_ulong rb
)
250 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
253 if (ppc_load_slb_vsid(cpu
, rb
, &rt
) < 0) {
254 helper_raise_exception_err(env
, POWERPC_EXCP_PROGRAM
,
261 * 64-bit hash table MMU handling
263 void ppc_hash64_set_sdr1(PowerPCCPU
*cpu
, target_ulong value
,
266 CPUPPCState
*env
= &cpu
->env
;
267 target_ulong htabsize
= value
& SDR_64_HTABSIZE
;
269 env
->spr
[SPR_SDR1
] = value
;
272 "Invalid HTABSIZE 0x" TARGET_FMT_lx
" stored in SDR1",
276 env
->htab_mask
= (1ULL << (htabsize
+ 18 - 7)) - 1;
277 env
->htab_base
= value
& SDR_64_HTABORG
;
280 void ppc_hash64_set_external_hpt(PowerPCCPU
*cpu
, void *hpt
, int shift
,
283 CPUPPCState
*env
= &cpu
->env
;
284 Error
*local_err
= NULL
;
286 cpu_synchronize_state(CPU(cpu
));
289 env
->external_htab
= hpt
;
291 env
->external_htab
= MMU_HASH64_KVM_MANAGED_HPT
;
293 ppc_hash64_set_sdr1(cpu
, (target_ulong
)(uintptr_t)hpt
| (shift
- 18),
296 error_propagate(errp
, local_err
);
300 /* Not strictly necessary, but makes it clearer that an external
301 * htab is in use when debugging */
305 if (kvmppc_put_books_sregs(cpu
) < 0) {
306 error_setg(errp
, "Unable to update SDR1 in KVM");
311 static int ppc_hash64_pte_prot(PowerPCCPU
*cpu
,
312 ppc_slb_t
*slb
, ppc_hash_pte64_t pte
)
314 CPUPPCState
*env
= &cpu
->env
;
316 /* Some pp bit combinations have undefined behaviour, so default
317 * to no access in those cases */
320 key
= !!(msr_pr
? (slb
->vsid
& SLB_VSID_KP
)
321 : (slb
->vsid
& SLB_VSID_KS
));
322 pp
= (pte
.pte1
& HPTE64_R_PP
) | ((pte
.pte1
& HPTE64_R_PP0
) >> 61);
329 prot
= PAGE_READ
| PAGE_WRITE
;
350 prot
= PAGE_READ
| PAGE_WRITE
;
355 /* No execute if either noexec or guarded bits set */
356 if (!(pte
.pte1
& HPTE64_R_N
) || (pte
.pte1
& HPTE64_R_G
)
357 || (slb
->vsid
& SLB_VSID_N
)) {
364 static int ppc_hash64_amr_prot(PowerPCCPU
*cpu
, ppc_hash_pte64_t pte
)
366 CPUPPCState
*env
= &cpu
->env
;
368 int prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
370 /* Only recent MMUs implement Virtual Page Class Key Protection */
371 if (!(env
->mmu_model
& POWERPC_MMU_AMR
)) {
375 key
= HPTE64_R_KEY(pte
.pte1
);
376 amrbits
= (env
->spr
[SPR_AMR
] >> 2*(31 - key
)) & 0x3;
378 /* fprintf(stderr, "AMR protection: key=%d AMR=0x%" PRIx64 "\n", key, */
379 /* env->spr[SPR_AMR]); */
382 * A store is permitted if the AMR bit is 0. Remove write
383 * protection if it is set.
389 * A load is permitted if the AMR bit is 0. Remove read
390 * protection if it is set.
399 uint64_t ppc_hash64_start_access(PowerPCCPU
*cpu
, target_ulong pte_index
)
404 pte_offset
= pte_index
* HASH_PTE_SIZE_64
;
405 if (cpu
->env
.external_htab
== MMU_HASH64_KVM_MANAGED_HPT
) {
407 * HTAB is controlled by KVM. Fetch the PTEG into a new buffer.
409 token
= kvmppc_hash64_read_pteg(cpu
, pte_index
);
410 } else if (cpu
->env
.external_htab
) {
412 * HTAB is controlled by QEMU. Just point to the internally
415 token
= (uint64_t)(uintptr_t) cpu
->env
.external_htab
+ pte_offset
;
416 } else if (cpu
->env
.htab_base
) {
417 token
= cpu
->env
.htab_base
+ pte_offset
;
422 void ppc_hash64_stop_access(PowerPCCPU
*cpu
, uint64_t token
)
424 if (cpu
->env
.external_htab
== MMU_HASH64_KVM_MANAGED_HPT
) {
425 kvmppc_hash64_free_pteg(token
);
429 static hwaddr
ppc_hash64_pteg_search(PowerPCCPU
*cpu
, hwaddr hash
,
430 bool secondary
, target_ulong ptem
,
431 ppc_hash_pte64_t
*pte
)
433 CPUPPCState
*env
= &cpu
->env
;
436 target_ulong pte0
, pte1
;
437 target_ulong pte_index
;
439 pte_index
= (hash
& env
->htab_mask
) * HPTES_PER_GROUP
;
440 token
= ppc_hash64_start_access(cpu
, pte_index
);
444 for (i
= 0; i
< HPTES_PER_GROUP
; i
++) {
445 pte0
= ppc_hash64_load_hpte0(cpu
, token
, i
);
446 pte1
= ppc_hash64_load_hpte1(cpu
, token
, i
);
448 if ((pte0
& HPTE64_V_VALID
)
449 && (secondary
== !!(pte0
& HPTE64_V_SECONDARY
))
450 && HPTE64_V_COMPARE(pte0
, ptem
)) {
453 ppc_hash64_stop_access(cpu
, token
);
454 return (pte_index
+ i
) * HASH_PTE_SIZE_64
;
457 ppc_hash64_stop_access(cpu
, token
);
459 * We didn't find a valid entry.
464 static hwaddr
ppc_hash64_htab_lookup(PowerPCCPU
*cpu
,
465 ppc_slb_t
*slb
, target_ulong eaddr
,
466 ppc_hash_pte64_t
*pte
)
468 CPUPPCState
*env
= &cpu
->env
;
471 uint64_t vsid
, epnmask
, epn
, ptem
;
473 /* The SLB store path should prevent any bad page size encodings
474 * getting in there, so: */
477 epnmask
= ~((1ULL << slb
->sps
->page_shift
) - 1);
479 if (slb
->vsid
& SLB_VSID_B
) {
481 vsid
= (slb
->vsid
& SLB_VSID_VSID
) >> SLB_VSID_SHIFT_1T
;
482 epn
= (eaddr
& ~SEGMENT_MASK_1T
) & epnmask
;
483 hash
= vsid
^ (vsid
<< 25) ^ (epn
>> slb
->sps
->page_shift
);
486 vsid
= (slb
->vsid
& SLB_VSID_VSID
) >> SLB_VSID_SHIFT
;
487 epn
= (eaddr
& ~SEGMENT_MASK_256M
) & epnmask
;
488 hash
= vsid
^ (epn
>> slb
->sps
->page_shift
);
490 ptem
= (slb
->vsid
& SLB_VSID_PTEM
) | ((epn
>> 16) & HPTE64_V_AVPN
);
492 /* Page address translation */
493 qemu_log_mask(CPU_LOG_MMU
,
494 "htab_base " TARGET_FMT_plx
" htab_mask " TARGET_FMT_plx
495 " hash " TARGET_FMT_plx
"\n",
496 env
->htab_base
, env
->htab_mask
, hash
);
498 /* Primary PTEG lookup */
499 qemu_log_mask(CPU_LOG_MMU
,
500 "0 htab=" TARGET_FMT_plx
"/" TARGET_FMT_plx
501 " vsid=" TARGET_FMT_lx
" ptem=" TARGET_FMT_lx
502 " hash=" TARGET_FMT_plx
"\n",
503 env
->htab_base
, env
->htab_mask
, vsid
, ptem
, hash
);
504 pte_offset
= ppc_hash64_pteg_search(cpu
, hash
, 0, ptem
, pte
);
506 if (pte_offset
== -1) {
507 /* Secondary PTEG lookup */
508 qemu_log_mask(CPU_LOG_MMU
,
509 "1 htab=" TARGET_FMT_plx
"/" TARGET_FMT_plx
510 " vsid=" TARGET_FMT_lx
" api=" TARGET_FMT_lx
511 " hash=" TARGET_FMT_plx
"\n", env
->htab_base
,
512 env
->htab_mask
, vsid
, ptem
, ~hash
);
514 pte_offset
= ppc_hash64_pteg_search(cpu
, ~hash
, 1, ptem
, pte
);
520 static unsigned hpte_page_shift(const struct ppc_one_seg_page_size
*sps
,
521 uint64_t pte0
, uint64_t pte1
)
525 if (!(pte0
& HPTE64_V_LARGE
)) {
526 if (sps
->page_shift
!= 12) {
527 /* 4kiB page in a non 4kiB segment */
530 /* Normal 4kiB page */
534 for (i
= 0; i
< PPC_PAGE_SIZES_MAX_SZ
; i
++) {
535 const struct ppc_one_page_size
*ps
= &sps
->enc
[i
];
538 if (!ps
->page_shift
) {
542 if (ps
->page_shift
== 12) {
543 /* L bit is set so this can't be a 4kiB page */
547 mask
= ((1ULL << ps
->page_shift
) - 1) & HPTE64_R_RPN
;
549 if ((pte1
& mask
) == (ps
->pte_enc
<< HPTE64_R_RPN_SHIFT
)) {
550 return ps
->page_shift
;
554 return 0; /* Bad page size encoding */
557 unsigned ppc_hash64_hpte_page_shift_noslb(PowerPCCPU
*cpu
,
558 uint64_t pte0
, uint64_t pte1
,
559 unsigned *seg_page_shift
)
561 CPUPPCState
*env
= &cpu
->env
;
564 if (!(pte0
& HPTE64_V_LARGE
)) {
565 *seg_page_shift
= 12;
570 * The encodings in env->sps need to be carefully chosen so that
571 * this gives an unambiguous result.
573 for (i
= 0; i
< PPC_PAGE_SIZES_MAX_SZ
; i
++) {
574 const struct ppc_one_seg_page_size
*sps
= &env
->sps
.sps
[i
];
577 if (!sps
->page_shift
) {
581 shift
= hpte_page_shift(sps
, pte0
, pte1
);
583 *seg_page_shift
= sps
->page_shift
;
592 int ppc_hash64_handle_mmu_fault(PowerPCCPU
*cpu
, target_ulong eaddr
,
593 int rwx
, int mmu_idx
)
595 CPUState
*cs
= CPU(cpu
);
596 CPUPPCState
*env
= &cpu
->env
;
600 ppc_hash_pte64_t pte
;
601 int pp_prot
, amr_prot
, prot
;
603 const int need_prot
[] = {PAGE_READ
, PAGE_WRITE
, PAGE_EXEC
};
606 assert((rwx
== 0) || (rwx
== 1) || (rwx
== 2));
608 /* 1. Handle real mode accesses */
609 if (((rwx
== 2) && (msr_ir
== 0)) || ((rwx
!= 2) && (msr_dr
== 0))) {
610 /* Translation is off */
611 /* In real mode the top 4 effective address bits are ignored */
612 raddr
= eaddr
& 0x0FFFFFFFFFFFFFFFULL
;
613 tlb_set_page(cs
, eaddr
& TARGET_PAGE_MASK
, raddr
& TARGET_PAGE_MASK
,
614 PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
, mmu_idx
,
619 /* 2. Translation is on, so look up the SLB */
620 slb
= slb_lookup(cpu
, eaddr
);
624 cs
->exception_index
= POWERPC_EXCP_ISEG
;
627 cs
->exception_index
= POWERPC_EXCP_DSEG
;
629 env
->spr
[SPR_DAR
] = eaddr
;
634 /* 3. Check for segment level no-execute violation */
635 if ((rwx
== 2) && (slb
->vsid
& SLB_VSID_N
)) {
636 cs
->exception_index
= POWERPC_EXCP_ISI
;
637 env
->error_code
= 0x10000000;
641 /* 4. Locate the PTE in the hash table */
642 pte_offset
= ppc_hash64_htab_lookup(cpu
, slb
, eaddr
, &pte
);
643 if (pte_offset
== -1) {
645 cs
->exception_index
= POWERPC_EXCP_ISI
;
646 env
->error_code
= 0x40000000;
648 cs
->exception_index
= POWERPC_EXCP_DSI
;
650 env
->spr
[SPR_DAR
] = eaddr
;
652 env
->spr
[SPR_DSISR
] = 0x42000000;
654 env
->spr
[SPR_DSISR
] = 0x40000000;
659 qemu_log_mask(CPU_LOG_MMU
,
660 "found PTE at offset %08" HWADDR_PRIx
"\n", pte_offset
);
662 /* Validate page size encoding */
663 apshift
= hpte_page_shift(slb
->sps
, pte
.pte0
, pte
.pte1
);
665 error_report("Bad page size encoding in HPTE 0x%"PRIx64
" - 0x%"PRIx64
666 " @ 0x%"HWADDR_PRIx
, pte
.pte0
, pte
.pte1
, pte_offset
);
667 /* Not entirely sure what the right action here, but machine
668 * check seems reasonable */
669 cs
->exception_index
= POWERPC_EXCP_MCHECK
;
674 /* 5. Check access permissions */
676 pp_prot
= ppc_hash64_pte_prot(cpu
, slb
, pte
);
677 amr_prot
= ppc_hash64_amr_prot(cpu
, pte
);
678 prot
= pp_prot
& amr_prot
;
680 if ((need_prot
[rwx
] & ~prot
) != 0) {
681 /* Access right violation */
682 qemu_log_mask(CPU_LOG_MMU
, "PTE access rejected\n");
684 cs
->exception_index
= POWERPC_EXCP_ISI
;
685 env
->error_code
= 0x08000000;
687 target_ulong dsisr
= 0;
689 cs
->exception_index
= POWERPC_EXCP_DSI
;
691 env
->spr
[SPR_DAR
] = eaddr
;
692 if (need_prot
[rwx
] & ~pp_prot
) {
698 if (need_prot
[rwx
] & ~amr_prot
) {
701 env
->spr
[SPR_DSISR
] = dsisr
;
706 qemu_log_mask(CPU_LOG_MMU
, "PTE access granted !\n");
708 /* 6. Update PTE referenced and changed bits if necessary */
710 new_pte1
= pte
.pte1
| HPTE64_R_R
; /* set referenced bit */
712 new_pte1
|= HPTE64_R_C
; /* set changed (dirty) bit */
714 /* Treat the page as read-only for now, so that a later write
715 * will pass through this function again to set the C bit */
719 if (new_pte1
!= pte
.pte1
) {
720 ppc_hash64_store_hpte(cpu
, pte_offset
/ HASH_PTE_SIZE_64
,
724 /* 7. Determine the real address from the PTE */
726 raddr
= deposit64(pte
.pte1
& HPTE64_R_RPN
, 0, apshift
, eaddr
);
728 tlb_set_page(cs
, eaddr
& TARGET_PAGE_MASK
, raddr
& TARGET_PAGE_MASK
,
729 prot
, mmu_idx
, 1ULL << apshift
);
734 hwaddr
ppc_hash64_get_phys_page_debug(PowerPCCPU
*cpu
, target_ulong addr
)
736 CPUPPCState
*env
= &cpu
->env
;
739 ppc_hash_pte64_t pte
;
743 /* In real mode the top 4 effective address bits are ignored */
744 return addr
& 0x0FFFFFFFFFFFFFFFULL
;
747 slb
= slb_lookup(cpu
, addr
);
752 pte_offset
= ppc_hash64_htab_lookup(cpu
, slb
, addr
, &pte
);
753 if (pte_offset
== -1) {
757 apshift
= hpte_page_shift(slb
->sps
, pte
.pte0
, pte
.pte1
);
762 return deposit64(pte
.pte1
& HPTE64_R_RPN
, 0, apshift
, addr
)
766 void ppc_hash64_store_hpte(PowerPCCPU
*cpu
,
767 target_ulong pte_index
,
768 target_ulong pte0
, target_ulong pte1
)
770 CPUPPCState
*env
= &cpu
->env
;
772 if (env
->external_htab
== MMU_HASH64_KVM_MANAGED_HPT
) {
773 kvmppc_hash64_write_pte(env
, pte_index
, pte0
, pte1
);
777 pte_index
*= HASH_PTE_SIZE_64
;
778 if (env
->external_htab
) {
779 stq_p(env
->external_htab
+ pte_index
, pte0
);
780 stq_p(env
->external_htab
+ pte_index
+ HASH_PTE_SIZE_64
/ 2, pte1
);
782 stq_phys(CPU(cpu
)->as
, env
->htab_base
+ pte_index
, pte0
);
783 stq_phys(CPU(cpu
)->as
,
784 env
->htab_base
+ pte_index
+ HASH_PTE_SIZE_64
/ 2, pte1
);
788 void ppc_hash64_tlb_flush_hpte(PowerPCCPU
*cpu
,
789 target_ulong pte_index
,
790 target_ulong pte0
, target_ulong pte1
)
793 * XXX: given the fact that there are too many segments to
794 * invalidate, and we still don't have a tlb_flush_mask(env, n,
795 * mask) in QEMU, we just invalidate all TLBs
797 tlb_flush(CPU(cpu
), 1);