nbd/server: add nbd_read_opt_name helper
[qemu/kevin.git] / block / qcow2-cluster.c
blob1aee726c6a465940deacd2fb04cc0939e083b8e7
1 /*
2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include <zlib.h>
28 #include "qapi/error.h"
29 #include "qemu-common.h"
30 #include "block/block_int.h"
31 #include "block/qcow2.h"
32 #include "qemu/bswap.h"
33 #include "trace.h"
35 int qcow2_shrink_l1_table(BlockDriverState *bs, uint64_t exact_size)
37 BDRVQcow2State *s = bs->opaque;
38 int new_l1_size, i, ret;
40 if (exact_size >= s->l1_size) {
41 return 0;
44 new_l1_size = exact_size;
46 #ifdef DEBUG_ALLOC2
47 fprintf(stderr, "shrink l1_table from %d to %d\n", s->l1_size, new_l1_size);
48 #endif
50 BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_WRITE_TABLE);
51 ret = bdrv_pwrite_zeroes(bs->file, s->l1_table_offset +
52 new_l1_size * sizeof(uint64_t),
53 (s->l1_size - new_l1_size) * sizeof(uint64_t), 0);
54 if (ret < 0) {
55 goto fail;
58 ret = bdrv_flush(bs->file->bs);
59 if (ret < 0) {
60 goto fail;
63 BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS);
64 for (i = s->l1_size - 1; i > new_l1_size - 1; i--) {
65 if ((s->l1_table[i] & L1E_OFFSET_MASK) == 0) {
66 continue;
68 qcow2_free_clusters(bs, s->l1_table[i] & L1E_OFFSET_MASK,
69 s->cluster_size, QCOW2_DISCARD_ALWAYS);
70 s->l1_table[i] = 0;
72 return 0;
74 fail:
76 * If the write in the l1_table failed the image may contain a partially
77 * overwritten l1_table. In this case it would be better to clear the
78 * l1_table in memory to avoid possible image corruption.
80 memset(s->l1_table + new_l1_size, 0,
81 (s->l1_size - new_l1_size) * sizeof(uint64_t));
82 return ret;
85 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
86 bool exact_size)
88 BDRVQcow2State *s = bs->opaque;
89 int new_l1_size2, ret, i;
90 uint64_t *new_l1_table;
91 int64_t old_l1_table_offset, old_l1_size;
92 int64_t new_l1_table_offset, new_l1_size;
93 uint8_t data[12];
95 if (min_size <= s->l1_size)
96 return 0;
98 /* Do a sanity check on min_size before trying to calculate new_l1_size
99 * (this prevents overflows during the while loop for the calculation of
100 * new_l1_size) */
101 if (min_size > INT_MAX / sizeof(uint64_t)) {
102 return -EFBIG;
105 if (exact_size) {
106 new_l1_size = min_size;
107 } else {
108 /* Bump size up to reduce the number of times we have to grow */
109 new_l1_size = s->l1_size;
110 if (new_l1_size == 0) {
111 new_l1_size = 1;
113 while (min_size > new_l1_size) {
114 new_l1_size = DIV_ROUND_UP(new_l1_size * 3, 2);
118 QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX);
119 if (new_l1_size > QCOW_MAX_L1_SIZE / sizeof(uint64_t)) {
120 return -EFBIG;
123 #ifdef DEBUG_ALLOC2
124 fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
125 s->l1_size, new_l1_size);
126 #endif
128 new_l1_size2 = sizeof(uint64_t) * new_l1_size;
129 new_l1_table = qemu_try_blockalign(bs->file->bs,
130 ROUND_UP(new_l1_size2, 512));
131 if (new_l1_table == NULL) {
132 return -ENOMEM;
134 memset(new_l1_table, 0, ROUND_UP(new_l1_size2, 512));
136 if (s->l1_size) {
137 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
140 /* write new table (align to cluster) */
141 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
142 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
143 if (new_l1_table_offset < 0) {
144 qemu_vfree(new_l1_table);
145 return new_l1_table_offset;
148 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
149 if (ret < 0) {
150 goto fail;
153 /* the L1 position has not yet been updated, so these clusters must
154 * indeed be completely free */
155 ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
156 new_l1_size2);
157 if (ret < 0) {
158 goto fail;
161 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
162 for(i = 0; i < s->l1_size; i++)
163 new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
164 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset,
165 new_l1_table, new_l1_size2);
166 if (ret < 0)
167 goto fail;
168 for(i = 0; i < s->l1_size; i++)
169 new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
171 /* set new table */
172 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
173 stl_be_p(data, new_l1_size);
174 stq_be_p(data + 4, new_l1_table_offset);
175 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size),
176 data, sizeof(data));
177 if (ret < 0) {
178 goto fail;
180 qemu_vfree(s->l1_table);
181 old_l1_table_offset = s->l1_table_offset;
182 s->l1_table_offset = new_l1_table_offset;
183 s->l1_table = new_l1_table;
184 old_l1_size = s->l1_size;
185 s->l1_size = new_l1_size;
186 qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t),
187 QCOW2_DISCARD_OTHER);
188 return 0;
189 fail:
190 qemu_vfree(new_l1_table);
191 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
192 QCOW2_DISCARD_OTHER);
193 return ret;
197 * l2_load
199 * @bs: The BlockDriverState
200 * @offset: A guest offset, used to calculate what slice of the L2
201 * table to load.
202 * @l2_offset: Offset to the L2 table in the image file.
203 * @l2_slice: Location to store the pointer to the L2 slice.
205 * Loads a L2 slice into memory (L2 slices are the parts of L2 tables
206 * that are loaded by the qcow2 cache). If the slice is in the cache,
207 * the cache is used; otherwise the L2 slice is loaded from the image
208 * file.
210 static int l2_load(BlockDriverState *bs, uint64_t offset,
211 uint64_t l2_offset, uint64_t **l2_slice)
213 BDRVQcow2State *s = bs->opaque;
214 int start_of_slice = sizeof(uint64_t) *
215 (offset_to_l2_index(s, offset) - offset_to_l2_slice_index(s, offset));
217 return qcow2_cache_get(bs, s->l2_table_cache, l2_offset + start_of_slice,
218 (void **)l2_slice);
222 * Writes one sector of the L1 table to the disk (can't update single entries
223 * and we really don't want bdrv_pread to perform a read-modify-write)
225 #define L1_ENTRIES_PER_SECTOR (512 / 8)
226 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
228 BDRVQcow2State *s = bs->opaque;
229 uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 };
230 int l1_start_index;
231 int i, ret;
233 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
234 for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size;
235 i++)
237 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
240 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
241 s->l1_table_offset + 8 * l1_start_index, sizeof(buf));
242 if (ret < 0) {
243 return ret;
246 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
247 ret = bdrv_pwrite_sync(bs->file,
248 s->l1_table_offset + 8 * l1_start_index,
249 buf, sizeof(buf));
250 if (ret < 0) {
251 return ret;
254 return 0;
258 * l2_allocate
260 * Allocate a new l2 entry in the file. If l1_index points to an already
261 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
262 * table) copy the contents of the old L2 table into the newly allocated one.
263 * Otherwise the new table is initialized with zeros.
267 static int l2_allocate(BlockDriverState *bs, int l1_index)
269 BDRVQcow2State *s = bs->opaque;
270 uint64_t old_l2_offset;
271 uint64_t *l2_slice = NULL;
272 unsigned slice, slice_size2, n_slices;
273 int64_t l2_offset;
274 int ret;
276 old_l2_offset = s->l1_table[l1_index];
278 trace_qcow2_l2_allocate(bs, l1_index);
280 /* allocate a new l2 entry */
282 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
283 if (l2_offset < 0) {
284 ret = l2_offset;
285 goto fail;
288 /* If we're allocating the table at offset 0 then something is wrong */
289 if (l2_offset == 0) {
290 qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
291 "allocation of L2 table at offset 0");
292 ret = -EIO;
293 goto fail;
296 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
297 if (ret < 0) {
298 goto fail;
301 /* allocate a new entry in the l2 cache */
303 slice_size2 = s->l2_slice_size * sizeof(uint64_t);
304 n_slices = s->cluster_size / slice_size2;
306 trace_qcow2_l2_allocate_get_empty(bs, l1_index);
307 for (slice = 0; slice < n_slices; slice++) {
308 ret = qcow2_cache_get_empty(bs, s->l2_table_cache,
309 l2_offset + slice * slice_size2,
310 (void **) &l2_slice);
311 if (ret < 0) {
312 goto fail;
315 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
316 /* if there was no old l2 table, clear the new slice */
317 memset(l2_slice, 0, slice_size2);
318 } else {
319 uint64_t *old_slice;
320 uint64_t old_l2_slice_offset =
321 (old_l2_offset & L1E_OFFSET_MASK) + slice * slice_size2;
323 /* if there was an old l2 table, read a slice from the disk */
324 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
325 ret = qcow2_cache_get(bs, s->l2_table_cache, old_l2_slice_offset,
326 (void **) &old_slice);
327 if (ret < 0) {
328 goto fail;
331 memcpy(l2_slice, old_slice, slice_size2);
333 qcow2_cache_put(s->l2_table_cache, (void **) &old_slice);
336 /* write the l2 slice to the file */
337 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
339 trace_qcow2_l2_allocate_write_l2(bs, l1_index);
340 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
341 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
344 ret = qcow2_cache_flush(bs, s->l2_table_cache);
345 if (ret < 0) {
346 goto fail;
349 /* update the L1 entry */
350 trace_qcow2_l2_allocate_write_l1(bs, l1_index);
351 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
352 ret = qcow2_write_l1_entry(bs, l1_index);
353 if (ret < 0) {
354 goto fail;
357 trace_qcow2_l2_allocate_done(bs, l1_index, 0);
358 return 0;
360 fail:
361 trace_qcow2_l2_allocate_done(bs, l1_index, ret);
362 if (l2_slice != NULL) {
363 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
365 s->l1_table[l1_index] = old_l2_offset;
366 if (l2_offset > 0) {
367 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
368 QCOW2_DISCARD_ALWAYS);
370 return ret;
374 * Checks how many clusters in a given L2 slice are contiguous in the image
375 * file. As soon as one of the flags in the bitmask stop_flags changes compared
376 * to the first cluster, the search is stopped and the cluster is not counted
377 * as contiguous. (This allows it, for example, to stop at the first compressed
378 * cluster which may require a different handling)
380 static int count_contiguous_clusters(int nb_clusters, int cluster_size,
381 uint64_t *l2_slice, uint64_t stop_flags)
383 int i;
384 QCow2ClusterType first_cluster_type;
385 uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED;
386 uint64_t first_entry = be64_to_cpu(l2_slice[0]);
387 uint64_t offset = first_entry & mask;
389 if (!offset) {
390 return 0;
393 /* must be allocated */
394 first_cluster_type = qcow2_get_cluster_type(first_entry);
395 assert(first_cluster_type == QCOW2_CLUSTER_NORMAL ||
396 first_cluster_type == QCOW2_CLUSTER_ZERO_ALLOC);
398 for (i = 0; i < nb_clusters; i++) {
399 uint64_t l2_entry = be64_to_cpu(l2_slice[i]) & mask;
400 if (offset + (uint64_t) i * cluster_size != l2_entry) {
401 break;
405 return i;
409 * Checks how many consecutive unallocated clusters in a given L2
410 * slice have the same cluster type.
412 static int count_contiguous_clusters_unallocated(int nb_clusters,
413 uint64_t *l2_slice,
414 QCow2ClusterType wanted_type)
416 int i;
418 assert(wanted_type == QCOW2_CLUSTER_ZERO_PLAIN ||
419 wanted_type == QCOW2_CLUSTER_UNALLOCATED);
420 for (i = 0; i < nb_clusters; i++) {
421 uint64_t entry = be64_to_cpu(l2_slice[i]);
422 QCow2ClusterType type = qcow2_get_cluster_type(entry);
424 if (type != wanted_type) {
425 break;
429 return i;
432 static int coroutine_fn do_perform_cow_read(BlockDriverState *bs,
433 uint64_t src_cluster_offset,
434 unsigned offset_in_cluster,
435 QEMUIOVector *qiov)
437 int ret;
439 if (qiov->size == 0) {
440 return 0;
443 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
445 if (!bs->drv) {
446 return -ENOMEDIUM;
449 /* Call .bdrv_co_readv() directly instead of using the public block-layer
450 * interface. This avoids double I/O throttling and request tracking,
451 * which can lead to deadlock when block layer copy-on-read is enabled.
453 ret = bs->drv->bdrv_co_preadv(bs, src_cluster_offset + offset_in_cluster,
454 qiov->size, qiov, 0);
455 if (ret < 0) {
456 return ret;
459 return 0;
462 static bool coroutine_fn do_perform_cow_encrypt(BlockDriverState *bs,
463 uint64_t src_cluster_offset,
464 uint64_t cluster_offset,
465 unsigned offset_in_cluster,
466 uint8_t *buffer,
467 unsigned bytes)
469 if (bytes && bs->encrypted) {
470 BDRVQcow2State *s = bs->opaque;
471 int64_t offset = (s->crypt_physical_offset ?
472 (cluster_offset + offset_in_cluster) :
473 (src_cluster_offset + offset_in_cluster));
474 assert((offset_in_cluster & ~BDRV_SECTOR_MASK) == 0);
475 assert((bytes & ~BDRV_SECTOR_MASK) == 0);
476 assert(s->crypto);
477 if (qcrypto_block_encrypt(s->crypto, offset, buffer, bytes, NULL) < 0) {
478 return false;
481 return true;
484 static int coroutine_fn do_perform_cow_write(BlockDriverState *bs,
485 uint64_t cluster_offset,
486 unsigned offset_in_cluster,
487 QEMUIOVector *qiov)
489 int ret;
491 if (qiov->size == 0) {
492 return 0;
495 ret = qcow2_pre_write_overlap_check(bs, 0,
496 cluster_offset + offset_in_cluster, qiov->size);
497 if (ret < 0) {
498 return ret;
501 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
502 ret = bdrv_co_pwritev(bs->file, cluster_offset + offset_in_cluster,
503 qiov->size, qiov, 0);
504 if (ret < 0) {
505 return ret;
508 return 0;
513 * get_cluster_offset
515 * For a given offset of the virtual disk, find the cluster type and offset in
516 * the qcow2 file. The offset is stored in *cluster_offset.
518 * On entry, *bytes is the maximum number of contiguous bytes starting at
519 * offset that we are interested in.
521 * On exit, *bytes is the number of bytes starting at offset that have the same
522 * cluster type and (if applicable) are stored contiguously in the image file.
523 * Compressed clusters are always returned one by one.
525 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
526 * cases.
528 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
529 unsigned int *bytes, uint64_t *cluster_offset)
531 BDRVQcow2State *s = bs->opaque;
532 unsigned int l2_index;
533 uint64_t l1_index, l2_offset, *l2_slice;
534 int c;
535 unsigned int offset_in_cluster;
536 uint64_t bytes_available, bytes_needed, nb_clusters;
537 QCow2ClusterType type;
538 int ret;
540 offset_in_cluster = offset_into_cluster(s, offset);
541 bytes_needed = (uint64_t) *bytes + offset_in_cluster;
543 /* compute how many bytes there are between the start of the cluster
544 * containing offset and the end of the l2 slice that contains
545 * the entry pointing to it */
546 bytes_available =
547 ((uint64_t) (s->l2_slice_size - offset_to_l2_slice_index(s, offset)))
548 << s->cluster_bits;
550 if (bytes_needed > bytes_available) {
551 bytes_needed = bytes_available;
554 *cluster_offset = 0;
556 /* seek to the l2 offset in the l1 table */
558 l1_index = offset_to_l1_index(s, offset);
559 if (l1_index >= s->l1_size) {
560 type = QCOW2_CLUSTER_UNALLOCATED;
561 goto out;
564 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
565 if (!l2_offset) {
566 type = QCOW2_CLUSTER_UNALLOCATED;
567 goto out;
570 if (offset_into_cluster(s, l2_offset)) {
571 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
572 " unaligned (L1 index: %#" PRIx64 ")",
573 l2_offset, l1_index);
574 return -EIO;
577 /* load the l2 slice in memory */
579 ret = l2_load(bs, offset, l2_offset, &l2_slice);
580 if (ret < 0) {
581 return ret;
584 /* find the cluster offset for the given disk offset */
586 l2_index = offset_to_l2_slice_index(s, offset);
587 *cluster_offset = be64_to_cpu(l2_slice[l2_index]);
589 nb_clusters = size_to_clusters(s, bytes_needed);
590 /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
591 * integers; the minimum cluster size is 512, so this assertion is always
592 * true */
593 assert(nb_clusters <= INT_MAX);
595 type = qcow2_get_cluster_type(*cluster_offset);
596 if (s->qcow_version < 3 && (type == QCOW2_CLUSTER_ZERO_PLAIN ||
597 type == QCOW2_CLUSTER_ZERO_ALLOC)) {
598 qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
599 " in pre-v3 image (L2 offset: %#" PRIx64
600 ", L2 index: %#x)", l2_offset, l2_index);
601 ret = -EIO;
602 goto fail;
604 switch (type) {
605 case QCOW2_CLUSTER_COMPRESSED:
606 /* Compressed clusters can only be processed one by one */
607 c = 1;
608 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
609 break;
610 case QCOW2_CLUSTER_ZERO_PLAIN:
611 case QCOW2_CLUSTER_UNALLOCATED:
612 /* how many empty clusters ? */
613 c = count_contiguous_clusters_unallocated(nb_clusters,
614 &l2_slice[l2_index], type);
615 *cluster_offset = 0;
616 break;
617 case QCOW2_CLUSTER_ZERO_ALLOC:
618 case QCOW2_CLUSTER_NORMAL:
619 /* how many allocated clusters ? */
620 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
621 &l2_slice[l2_index], QCOW_OFLAG_ZERO);
622 *cluster_offset &= L2E_OFFSET_MASK;
623 if (offset_into_cluster(s, *cluster_offset)) {
624 qcow2_signal_corruption(bs, true, -1, -1,
625 "Cluster allocation offset %#"
626 PRIx64 " unaligned (L2 offset: %#" PRIx64
627 ", L2 index: %#x)", *cluster_offset,
628 l2_offset, l2_index);
629 ret = -EIO;
630 goto fail;
632 break;
633 default:
634 abort();
637 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
639 bytes_available = (int64_t)c * s->cluster_size;
641 out:
642 if (bytes_available > bytes_needed) {
643 bytes_available = bytes_needed;
646 /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
647 * subtracting offset_in_cluster will therefore definitely yield something
648 * not exceeding UINT_MAX */
649 assert(bytes_available - offset_in_cluster <= UINT_MAX);
650 *bytes = bytes_available - offset_in_cluster;
652 return type;
654 fail:
655 qcow2_cache_put(s->l2_table_cache, (void **)&l2_slice);
656 return ret;
660 * get_cluster_table
662 * for a given disk offset, load (and allocate if needed)
663 * the appropriate slice of its l2 table.
665 * the cluster index in the l2 slice is given to the caller.
667 * Returns 0 on success, -errno in failure case
669 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
670 uint64_t **new_l2_slice,
671 int *new_l2_index)
673 BDRVQcow2State *s = bs->opaque;
674 unsigned int l2_index;
675 uint64_t l1_index, l2_offset;
676 uint64_t *l2_slice = NULL;
677 int ret;
679 /* seek to the l2 offset in the l1 table */
681 l1_index = offset_to_l1_index(s, offset);
682 if (l1_index >= s->l1_size) {
683 ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
684 if (ret < 0) {
685 return ret;
689 assert(l1_index < s->l1_size);
690 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
691 if (offset_into_cluster(s, l2_offset)) {
692 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
693 " unaligned (L1 index: %#" PRIx64 ")",
694 l2_offset, l1_index);
695 return -EIO;
698 if (!(s->l1_table[l1_index] & QCOW_OFLAG_COPIED)) {
699 /* First allocate a new L2 table (and do COW if needed) */
700 ret = l2_allocate(bs, l1_index);
701 if (ret < 0) {
702 return ret;
705 /* Then decrease the refcount of the old table */
706 if (l2_offset) {
707 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
708 QCOW2_DISCARD_OTHER);
711 /* Get the offset of the newly-allocated l2 table */
712 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
713 assert(offset_into_cluster(s, l2_offset) == 0);
716 /* load the l2 slice in memory */
717 ret = l2_load(bs, offset, l2_offset, &l2_slice);
718 if (ret < 0) {
719 return ret;
722 /* find the cluster offset for the given disk offset */
724 l2_index = offset_to_l2_slice_index(s, offset);
726 *new_l2_slice = l2_slice;
727 *new_l2_index = l2_index;
729 return 0;
733 * alloc_compressed_cluster_offset
735 * For a given offset of the disk image, return cluster offset in
736 * qcow2 file.
738 * If the offset is not found, allocate a new compressed cluster.
740 * Return the cluster offset if successful,
741 * Return 0, otherwise.
745 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
746 uint64_t offset,
747 int compressed_size)
749 BDRVQcow2State *s = bs->opaque;
750 int l2_index, ret;
751 uint64_t *l2_slice;
752 int64_t cluster_offset;
753 int nb_csectors;
755 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
756 if (ret < 0) {
757 return 0;
760 /* Compression can't overwrite anything. Fail if the cluster was already
761 * allocated. */
762 cluster_offset = be64_to_cpu(l2_slice[l2_index]);
763 if (cluster_offset & L2E_OFFSET_MASK) {
764 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
765 return 0;
768 cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
769 if (cluster_offset < 0) {
770 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
771 return 0;
774 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
775 (cluster_offset >> 9);
777 cluster_offset |= QCOW_OFLAG_COMPRESSED |
778 ((uint64_t)nb_csectors << s->csize_shift);
780 /* update L2 table */
782 /* compressed clusters never have the copied flag */
784 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
785 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
786 l2_slice[l2_index] = cpu_to_be64(cluster_offset);
787 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
789 return cluster_offset;
792 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m)
794 BDRVQcow2State *s = bs->opaque;
795 Qcow2COWRegion *start = &m->cow_start;
796 Qcow2COWRegion *end = &m->cow_end;
797 unsigned buffer_size;
798 unsigned data_bytes = end->offset - (start->offset + start->nb_bytes);
799 bool merge_reads;
800 uint8_t *start_buffer, *end_buffer;
801 QEMUIOVector qiov;
802 int ret;
804 assert(start->nb_bytes <= UINT_MAX - end->nb_bytes);
805 assert(start->nb_bytes + end->nb_bytes <= UINT_MAX - data_bytes);
806 assert(start->offset + start->nb_bytes <= end->offset);
807 assert(!m->data_qiov || m->data_qiov->size == data_bytes);
809 if (start->nb_bytes == 0 && end->nb_bytes == 0) {
810 return 0;
813 /* If we have to read both the start and end COW regions and the
814 * middle region is not too large then perform just one read
815 * operation */
816 merge_reads = start->nb_bytes && end->nb_bytes && data_bytes <= 16384;
817 if (merge_reads) {
818 buffer_size = start->nb_bytes + data_bytes + end->nb_bytes;
819 } else {
820 /* If we have to do two reads, add some padding in the middle
821 * if necessary to make sure that the end region is optimally
822 * aligned. */
823 size_t align = bdrv_opt_mem_align(bs);
824 assert(align > 0 && align <= UINT_MAX);
825 assert(QEMU_ALIGN_UP(start->nb_bytes, align) <=
826 UINT_MAX - end->nb_bytes);
827 buffer_size = QEMU_ALIGN_UP(start->nb_bytes, align) + end->nb_bytes;
830 /* Reserve a buffer large enough to store all the data that we're
831 * going to read */
832 start_buffer = qemu_try_blockalign(bs, buffer_size);
833 if (start_buffer == NULL) {
834 return -ENOMEM;
836 /* The part of the buffer where the end region is located */
837 end_buffer = start_buffer + buffer_size - end->nb_bytes;
839 qemu_iovec_init(&qiov, 2 + (m->data_qiov ? m->data_qiov->niov : 0));
841 qemu_co_mutex_unlock(&s->lock);
842 /* First we read the existing data from both COW regions. We
843 * either read the whole region in one go, or the start and end
844 * regions separately. */
845 if (merge_reads) {
846 qemu_iovec_add(&qiov, start_buffer, buffer_size);
847 ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
848 } else {
849 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
850 ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
851 if (ret < 0) {
852 goto fail;
855 qemu_iovec_reset(&qiov);
856 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
857 ret = do_perform_cow_read(bs, m->offset, end->offset, &qiov);
859 if (ret < 0) {
860 goto fail;
863 /* Encrypt the data if necessary before writing it */
864 if (bs->encrypted) {
865 if (!do_perform_cow_encrypt(bs, m->offset, m->alloc_offset,
866 start->offset, start_buffer,
867 start->nb_bytes) ||
868 !do_perform_cow_encrypt(bs, m->offset, m->alloc_offset,
869 end->offset, end_buffer, end->nb_bytes)) {
870 ret = -EIO;
871 goto fail;
875 /* And now we can write everything. If we have the guest data we
876 * can write everything in one single operation */
877 if (m->data_qiov) {
878 qemu_iovec_reset(&qiov);
879 if (start->nb_bytes) {
880 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
882 qemu_iovec_concat(&qiov, m->data_qiov, 0, data_bytes);
883 if (end->nb_bytes) {
884 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
886 /* NOTE: we have a write_aio blkdebug event here followed by
887 * a cow_write one in do_perform_cow_write(), but there's only
888 * one single I/O operation */
889 BLKDBG_EVENT(bs->file, BLKDBG_WRITE_AIO);
890 ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
891 } else {
892 /* If there's no guest data then write both COW regions separately */
893 qemu_iovec_reset(&qiov);
894 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
895 ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
896 if (ret < 0) {
897 goto fail;
900 qemu_iovec_reset(&qiov);
901 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
902 ret = do_perform_cow_write(bs, m->alloc_offset, end->offset, &qiov);
905 fail:
906 qemu_co_mutex_lock(&s->lock);
909 * Before we update the L2 table to actually point to the new cluster, we
910 * need to be sure that the refcounts have been increased and COW was
911 * handled.
913 if (ret == 0) {
914 qcow2_cache_depends_on_flush(s->l2_table_cache);
917 qemu_vfree(start_buffer);
918 qemu_iovec_destroy(&qiov);
919 return ret;
922 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
924 BDRVQcow2State *s = bs->opaque;
925 int i, j = 0, l2_index, ret;
926 uint64_t *old_cluster, *l2_slice;
927 uint64_t cluster_offset = m->alloc_offset;
929 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
930 assert(m->nb_clusters > 0);
932 old_cluster = g_try_new(uint64_t, m->nb_clusters);
933 if (old_cluster == NULL) {
934 ret = -ENOMEM;
935 goto err;
938 /* copy content of unmodified sectors */
939 ret = perform_cow(bs, m);
940 if (ret < 0) {
941 goto err;
944 /* Update L2 table. */
945 if (s->use_lazy_refcounts) {
946 qcow2_mark_dirty(bs);
948 if (qcow2_need_accurate_refcounts(s)) {
949 qcow2_cache_set_dependency(bs, s->l2_table_cache,
950 s->refcount_block_cache);
953 ret = get_cluster_table(bs, m->offset, &l2_slice, &l2_index);
954 if (ret < 0) {
955 goto err;
957 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
959 assert(l2_index + m->nb_clusters <= s->l2_slice_size);
960 for (i = 0; i < m->nb_clusters; i++) {
961 /* if two concurrent writes happen to the same unallocated cluster
962 * each write allocates separate cluster and writes data concurrently.
963 * The first one to complete updates l2 table with pointer to its
964 * cluster the second one has to do RMW (which is done above by
965 * perform_cow()), update l2 table with its cluster pointer and free
966 * old cluster. This is what this loop does */
967 if (l2_slice[l2_index + i] != 0) {
968 old_cluster[j++] = l2_slice[l2_index + i];
971 l2_slice[l2_index + i] = cpu_to_be64((cluster_offset +
972 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
976 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
979 * If this was a COW, we need to decrease the refcount of the old cluster.
981 * Don't discard clusters that reach a refcount of 0 (e.g. compressed
982 * clusters), the next write will reuse them anyway.
984 if (!m->keep_old_clusters && j != 0) {
985 for (i = 0; i < j; i++) {
986 qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
987 QCOW2_DISCARD_NEVER);
991 ret = 0;
992 err:
993 g_free(old_cluster);
994 return ret;
998 * Returns the number of contiguous clusters that can be used for an allocating
999 * write, but require COW to be performed (this includes yet unallocated space,
1000 * which must copy from the backing file)
1002 static int count_cow_clusters(BDRVQcow2State *s, int nb_clusters,
1003 uint64_t *l2_slice, int l2_index)
1005 int i;
1007 for (i = 0; i < nb_clusters; i++) {
1008 uint64_t l2_entry = be64_to_cpu(l2_slice[l2_index + i]);
1009 QCow2ClusterType cluster_type = qcow2_get_cluster_type(l2_entry);
1011 switch(cluster_type) {
1012 case QCOW2_CLUSTER_NORMAL:
1013 if (l2_entry & QCOW_OFLAG_COPIED) {
1014 goto out;
1016 break;
1017 case QCOW2_CLUSTER_UNALLOCATED:
1018 case QCOW2_CLUSTER_COMPRESSED:
1019 case QCOW2_CLUSTER_ZERO_PLAIN:
1020 case QCOW2_CLUSTER_ZERO_ALLOC:
1021 break;
1022 default:
1023 abort();
1027 out:
1028 assert(i <= nb_clusters);
1029 return i;
1033 * Check if there already is an AIO write request in flight which allocates
1034 * the same cluster. In this case we need to wait until the previous
1035 * request has completed and updated the L2 table accordingly.
1037 * Returns:
1038 * 0 if there was no dependency. *cur_bytes indicates the number of
1039 * bytes from guest_offset that can be read before the next
1040 * dependency must be processed (or the request is complete)
1042 * -EAGAIN if we had to wait for another request, previously gathered
1043 * information on cluster allocation may be invalid now. The caller
1044 * must start over anyway, so consider *cur_bytes undefined.
1046 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
1047 uint64_t *cur_bytes, QCowL2Meta **m)
1049 BDRVQcow2State *s = bs->opaque;
1050 QCowL2Meta *old_alloc;
1051 uint64_t bytes = *cur_bytes;
1053 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
1055 uint64_t start = guest_offset;
1056 uint64_t end = start + bytes;
1057 uint64_t old_start = l2meta_cow_start(old_alloc);
1058 uint64_t old_end = l2meta_cow_end(old_alloc);
1060 if (end <= old_start || start >= old_end) {
1061 /* No intersection */
1062 } else {
1063 if (start < old_start) {
1064 /* Stop at the start of a running allocation */
1065 bytes = old_start - start;
1066 } else {
1067 bytes = 0;
1070 /* Stop if already an l2meta exists. After yielding, it wouldn't
1071 * be valid any more, so we'd have to clean up the old L2Metas
1072 * and deal with requests depending on them before starting to
1073 * gather new ones. Not worth the trouble. */
1074 if (bytes == 0 && *m) {
1075 *cur_bytes = 0;
1076 return 0;
1079 if (bytes == 0) {
1080 /* Wait for the dependency to complete. We need to recheck
1081 * the free/allocated clusters when we continue. */
1082 qemu_co_queue_wait(&old_alloc->dependent_requests, &s->lock);
1083 return -EAGAIN;
1088 /* Make sure that existing clusters and new allocations are only used up to
1089 * the next dependency if we shortened the request above */
1090 *cur_bytes = bytes;
1092 return 0;
1096 * Checks how many already allocated clusters that don't require a copy on
1097 * write there are at the given guest_offset (up to *bytes). If
1098 * *host_offset is not zero, only physically contiguous clusters beginning at
1099 * this host offset are counted.
1101 * Note that guest_offset may not be cluster aligned. In this case, the
1102 * returned *host_offset points to exact byte referenced by guest_offset and
1103 * therefore isn't cluster aligned as well.
1105 * Returns:
1106 * 0: if no allocated clusters are available at the given offset.
1107 * *bytes is normally unchanged. It is set to 0 if the cluster
1108 * is allocated and doesn't need COW, but doesn't have the right
1109 * physical offset.
1111 * 1: if allocated clusters that don't require a COW are available at
1112 * the requested offset. *bytes may have decreased and describes
1113 * the length of the area that can be written to.
1115 * -errno: in error cases
1117 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
1118 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1120 BDRVQcow2State *s = bs->opaque;
1121 int l2_index;
1122 uint64_t cluster_offset;
1123 uint64_t *l2_slice;
1124 uint64_t nb_clusters;
1125 unsigned int keep_clusters;
1126 int ret;
1128 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
1129 *bytes);
1131 assert(*host_offset == 0 || offset_into_cluster(s, guest_offset)
1132 == offset_into_cluster(s, *host_offset));
1135 * Calculate the number of clusters to look for. We stop at L2 slice
1136 * boundaries to keep things simple.
1138 nb_clusters =
1139 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1141 l2_index = offset_to_l2_slice_index(s, guest_offset);
1142 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1143 assert(nb_clusters <= INT_MAX);
1145 /* Find L2 entry for the first involved cluster */
1146 ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1147 if (ret < 0) {
1148 return ret;
1151 cluster_offset = be64_to_cpu(l2_slice[l2_index]);
1153 /* Check how many clusters are already allocated and don't need COW */
1154 if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL
1155 && (cluster_offset & QCOW_OFLAG_COPIED))
1157 /* If a specific host_offset is required, check it */
1158 bool offset_matches =
1159 (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
1161 if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) {
1162 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1163 "%#llx unaligned (guest offset: %#" PRIx64
1164 ")", cluster_offset & L2E_OFFSET_MASK,
1165 guest_offset);
1166 ret = -EIO;
1167 goto out;
1170 if (*host_offset != 0 && !offset_matches) {
1171 *bytes = 0;
1172 ret = 0;
1173 goto out;
1176 /* We keep all QCOW_OFLAG_COPIED clusters */
1177 keep_clusters =
1178 count_contiguous_clusters(nb_clusters, s->cluster_size,
1179 &l2_slice[l2_index],
1180 QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
1181 assert(keep_clusters <= nb_clusters);
1183 *bytes = MIN(*bytes,
1184 keep_clusters * s->cluster_size
1185 - offset_into_cluster(s, guest_offset));
1187 ret = 1;
1188 } else {
1189 ret = 0;
1192 /* Cleanup */
1193 out:
1194 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1196 /* Only return a host offset if we actually made progress. Otherwise we
1197 * would make requirements for handle_alloc() that it can't fulfill */
1198 if (ret > 0) {
1199 *host_offset = (cluster_offset & L2E_OFFSET_MASK)
1200 + offset_into_cluster(s, guest_offset);
1203 return ret;
1207 * Allocates new clusters for the given guest_offset.
1209 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1210 * contain the number of clusters that have been allocated and are contiguous
1211 * in the image file.
1213 * If *host_offset is non-zero, it specifies the offset in the image file at
1214 * which the new clusters must start. *nb_clusters can be 0 on return in this
1215 * case if the cluster at host_offset is already in use. If *host_offset is
1216 * zero, the clusters can be allocated anywhere in the image file.
1218 * *host_offset is updated to contain the offset into the image file at which
1219 * the first allocated cluster starts.
1221 * Return 0 on success and -errno in error cases. -EAGAIN means that the
1222 * function has been waiting for another request and the allocation must be
1223 * restarted, but the whole request should not be failed.
1225 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
1226 uint64_t *host_offset, uint64_t *nb_clusters)
1228 BDRVQcow2State *s = bs->opaque;
1230 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1231 *host_offset, *nb_clusters);
1233 /* Allocate new clusters */
1234 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1235 if (*host_offset == 0) {
1236 int64_t cluster_offset =
1237 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1238 if (cluster_offset < 0) {
1239 return cluster_offset;
1241 *host_offset = cluster_offset;
1242 return 0;
1243 } else {
1244 int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1245 if (ret < 0) {
1246 return ret;
1248 *nb_clusters = ret;
1249 return 0;
1254 * Allocates new clusters for an area that either is yet unallocated or needs a
1255 * copy on write. If *host_offset is non-zero, clusters are only allocated if
1256 * the new allocation can match the specified host offset.
1258 * Note that guest_offset may not be cluster aligned. In this case, the
1259 * returned *host_offset points to exact byte referenced by guest_offset and
1260 * therefore isn't cluster aligned as well.
1262 * Returns:
1263 * 0: if no clusters could be allocated. *bytes is set to 0,
1264 * *host_offset is left unchanged.
1266 * 1: if new clusters were allocated. *bytes may be decreased if the
1267 * new allocation doesn't cover all of the requested area.
1268 * *host_offset is updated to contain the host offset of the first
1269 * newly allocated cluster.
1271 * -errno: in error cases
1273 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1274 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1276 BDRVQcow2State *s = bs->opaque;
1277 int l2_index;
1278 uint64_t *l2_slice;
1279 uint64_t entry;
1280 uint64_t nb_clusters;
1281 int ret;
1282 bool keep_old_clusters = false;
1284 uint64_t alloc_cluster_offset = 0;
1286 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1287 *bytes);
1288 assert(*bytes > 0);
1291 * Calculate the number of clusters to look for. We stop at L2 slice
1292 * boundaries to keep things simple.
1294 nb_clusters =
1295 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1297 l2_index = offset_to_l2_slice_index(s, guest_offset);
1298 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1299 assert(nb_clusters <= INT_MAX);
1301 /* Find L2 entry for the first involved cluster */
1302 ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1303 if (ret < 0) {
1304 return ret;
1307 entry = be64_to_cpu(l2_slice[l2_index]);
1309 /* For the moment, overwrite compressed clusters one by one */
1310 if (entry & QCOW_OFLAG_COMPRESSED) {
1311 nb_clusters = 1;
1312 } else {
1313 nb_clusters = count_cow_clusters(s, nb_clusters, l2_slice, l2_index);
1316 /* This function is only called when there were no non-COW clusters, so if
1317 * we can't find any unallocated or COW clusters either, something is
1318 * wrong with our code. */
1319 assert(nb_clusters > 0);
1321 if (qcow2_get_cluster_type(entry) == QCOW2_CLUSTER_ZERO_ALLOC &&
1322 (entry & QCOW_OFLAG_COPIED) &&
1323 (!*host_offset ||
1324 start_of_cluster(s, *host_offset) == (entry & L2E_OFFSET_MASK)))
1326 int preallocated_nb_clusters;
1328 if (offset_into_cluster(s, entry & L2E_OFFSET_MASK)) {
1329 qcow2_signal_corruption(bs, true, -1, -1, "Preallocated zero "
1330 "cluster offset %#llx unaligned (guest "
1331 "offset: %#" PRIx64 ")",
1332 entry & L2E_OFFSET_MASK, guest_offset);
1333 ret = -EIO;
1334 goto fail;
1337 /* Try to reuse preallocated zero clusters; contiguous normal clusters
1338 * would be fine, too, but count_cow_clusters() above has limited
1339 * nb_clusters already to a range of COW clusters */
1340 preallocated_nb_clusters =
1341 count_contiguous_clusters(nb_clusters, s->cluster_size,
1342 &l2_slice[l2_index], QCOW_OFLAG_COPIED);
1343 assert(preallocated_nb_clusters > 0);
1345 nb_clusters = preallocated_nb_clusters;
1346 alloc_cluster_offset = entry & L2E_OFFSET_MASK;
1348 /* We want to reuse these clusters, so qcow2_alloc_cluster_link_l2()
1349 * should not free them. */
1350 keep_old_clusters = true;
1353 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1355 if (!alloc_cluster_offset) {
1356 /* Allocate, if necessary at a given offset in the image file */
1357 alloc_cluster_offset = start_of_cluster(s, *host_offset);
1358 ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1359 &nb_clusters);
1360 if (ret < 0) {
1361 goto fail;
1364 /* Can't extend contiguous allocation */
1365 if (nb_clusters == 0) {
1366 *bytes = 0;
1367 return 0;
1370 /* !*host_offset would overwrite the image header and is reserved for
1371 * "no host offset preferred". If 0 was a valid host offset, it'd
1372 * trigger the following overlap check; do that now to avoid having an
1373 * invalid value in *host_offset. */
1374 if (!alloc_cluster_offset) {
1375 ret = qcow2_pre_write_overlap_check(bs, 0, alloc_cluster_offset,
1376 nb_clusters * s->cluster_size);
1377 assert(ret < 0);
1378 goto fail;
1383 * Save info needed for meta data update.
1385 * requested_bytes: Number of bytes from the start of the first
1386 * newly allocated cluster to the end of the (possibly shortened
1387 * before) write request.
1389 * avail_bytes: Number of bytes from the start of the first
1390 * newly allocated to the end of the last newly allocated cluster.
1392 * nb_bytes: The number of bytes from the start of the first
1393 * newly allocated cluster to the end of the area that the write
1394 * request actually writes to (excluding COW at the end)
1396 uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset);
1397 int avail_bytes = MIN(INT_MAX, nb_clusters << s->cluster_bits);
1398 int nb_bytes = MIN(requested_bytes, avail_bytes);
1399 QCowL2Meta *old_m = *m;
1401 *m = g_malloc0(sizeof(**m));
1403 **m = (QCowL2Meta) {
1404 .next = old_m,
1406 .alloc_offset = alloc_cluster_offset,
1407 .offset = start_of_cluster(s, guest_offset),
1408 .nb_clusters = nb_clusters,
1410 .keep_old_clusters = keep_old_clusters,
1412 .cow_start = {
1413 .offset = 0,
1414 .nb_bytes = offset_into_cluster(s, guest_offset),
1416 .cow_end = {
1417 .offset = nb_bytes,
1418 .nb_bytes = avail_bytes - nb_bytes,
1421 qemu_co_queue_init(&(*m)->dependent_requests);
1422 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1424 *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1425 *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset));
1426 assert(*bytes != 0);
1428 return 1;
1430 fail:
1431 if (*m && (*m)->nb_clusters > 0) {
1432 QLIST_REMOVE(*m, next_in_flight);
1434 return ret;
1438 * alloc_cluster_offset
1440 * For a given offset on the virtual disk, find the cluster offset in qcow2
1441 * file. If the offset is not found, allocate a new cluster.
1443 * If the cluster was already allocated, m->nb_clusters is set to 0 and
1444 * other fields in m are meaningless.
1446 * If the cluster is newly allocated, m->nb_clusters is set to the number of
1447 * contiguous clusters that have been allocated. In this case, the other
1448 * fields of m are valid and contain information about the first allocated
1449 * cluster.
1451 * If the request conflicts with another write request in flight, the coroutine
1452 * is queued and will be reentered when the dependency has completed.
1454 * Return 0 on success and -errno in error cases
1456 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
1457 unsigned int *bytes, uint64_t *host_offset,
1458 QCowL2Meta **m)
1460 BDRVQcow2State *s = bs->opaque;
1461 uint64_t start, remaining;
1462 uint64_t cluster_offset;
1463 uint64_t cur_bytes;
1464 int ret;
1466 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes);
1468 again:
1469 start = offset;
1470 remaining = *bytes;
1471 cluster_offset = 0;
1472 *host_offset = 0;
1473 cur_bytes = 0;
1474 *m = NULL;
1476 while (true) {
1478 if (!*host_offset) {
1479 *host_offset = start_of_cluster(s, cluster_offset);
1482 assert(remaining >= cur_bytes);
1484 start += cur_bytes;
1485 remaining -= cur_bytes;
1486 cluster_offset += cur_bytes;
1488 if (remaining == 0) {
1489 break;
1492 cur_bytes = remaining;
1495 * Now start gathering as many contiguous clusters as possible:
1497 * 1. Check for overlaps with in-flight allocations
1499 * a) Overlap not in the first cluster -> shorten this request and
1500 * let the caller handle the rest in its next loop iteration.
1502 * b) Real overlaps of two requests. Yield and restart the search
1503 * for contiguous clusters (the situation could have changed
1504 * while we were sleeping)
1506 * c) TODO: Request starts in the same cluster as the in-flight
1507 * allocation ends. Shorten the COW of the in-fight allocation,
1508 * set cluster_offset to write to the same cluster and set up
1509 * the right synchronisation between the in-flight request and
1510 * the new one.
1512 ret = handle_dependencies(bs, start, &cur_bytes, m);
1513 if (ret == -EAGAIN) {
1514 /* Currently handle_dependencies() doesn't yield if we already had
1515 * an allocation. If it did, we would have to clean up the L2Meta
1516 * structs before starting over. */
1517 assert(*m == NULL);
1518 goto again;
1519 } else if (ret < 0) {
1520 return ret;
1521 } else if (cur_bytes == 0) {
1522 break;
1523 } else {
1524 /* handle_dependencies() may have decreased cur_bytes (shortened
1525 * the allocations below) so that the next dependency is processed
1526 * correctly during the next loop iteration. */
1530 * 2. Count contiguous COPIED clusters.
1532 ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1533 if (ret < 0) {
1534 return ret;
1535 } else if (ret) {
1536 continue;
1537 } else if (cur_bytes == 0) {
1538 break;
1542 * 3. If the request still hasn't completed, allocate new clusters,
1543 * considering any cluster_offset of steps 1c or 2.
1545 ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1546 if (ret < 0) {
1547 return ret;
1548 } else if (ret) {
1549 continue;
1550 } else {
1551 assert(cur_bytes == 0);
1552 break;
1556 *bytes -= remaining;
1557 assert(*bytes > 0);
1558 assert(*host_offset != 0);
1560 return 0;
1563 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
1564 const uint8_t *buf, int buf_size)
1566 z_stream strm1, *strm = &strm1;
1567 int ret, out_len;
1569 memset(strm, 0, sizeof(*strm));
1571 strm->next_in = (uint8_t *)buf;
1572 strm->avail_in = buf_size;
1573 strm->next_out = out_buf;
1574 strm->avail_out = out_buf_size;
1576 ret = inflateInit2(strm, -12);
1577 if (ret != Z_OK)
1578 return -1;
1579 ret = inflate(strm, Z_FINISH);
1580 out_len = strm->next_out - out_buf;
1581 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
1582 out_len != out_buf_size) {
1583 inflateEnd(strm);
1584 return -1;
1586 inflateEnd(strm);
1587 return 0;
1590 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
1592 BDRVQcow2State *s = bs->opaque;
1593 int ret, csize, nb_csectors, sector_offset;
1594 uint64_t coffset;
1596 coffset = cluster_offset & s->cluster_offset_mask;
1597 if (s->cluster_cache_offset != coffset) {
1598 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1599 sector_offset = coffset & 511;
1600 csize = nb_csectors * 512 - sector_offset;
1602 /* Allocate buffers on first decompress operation, most images are
1603 * uncompressed and the memory overhead can be avoided. The buffers
1604 * are freed in .bdrv_close().
1606 if (!s->cluster_data) {
1607 /* one more sector for decompressed data alignment */
1608 s->cluster_data = qemu_try_blockalign(bs->file->bs,
1609 QCOW_MAX_CRYPT_CLUSTERS * s->cluster_size + 512);
1610 if (!s->cluster_data) {
1611 return -ENOMEM;
1614 if (!s->cluster_cache) {
1615 s->cluster_cache = g_malloc(s->cluster_size);
1618 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
1619 ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data,
1620 nb_csectors);
1621 if (ret < 0) {
1622 return ret;
1624 if (decompress_buffer(s->cluster_cache, s->cluster_size,
1625 s->cluster_data + sector_offset, csize) < 0) {
1626 return -EIO;
1628 s->cluster_cache_offset = coffset;
1630 return 0;
1634 * This discards as many clusters of nb_clusters as possible at once (i.e.
1635 * all clusters in the same L2 slice) and returns the number of discarded
1636 * clusters.
1638 static int discard_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1639 uint64_t nb_clusters,
1640 enum qcow2_discard_type type, bool full_discard)
1642 BDRVQcow2State *s = bs->opaque;
1643 uint64_t *l2_slice;
1644 int l2_index;
1645 int ret;
1646 int i;
1648 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
1649 if (ret < 0) {
1650 return ret;
1653 /* Limit nb_clusters to one L2 slice */
1654 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1655 assert(nb_clusters <= INT_MAX);
1657 for (i = 0; i < nb_clusters; i++) {
1658 uint64_t old_l2_entry;
1660 old_l2_entry = be64_to_cpu(l2_slice[l2_index + i]);
1663 * If full_discard is false, make sure that a discarded area reads back
1664 * as zeroes for v3 images (we cannot do it for v2 without actually
1665 * writing a zero-filled buffer). We can skip the operation if the
1666 * cluster is already marked as zero, or if it's unallocated and we
1667 * don't have a backing file.
1669 * TODO We might want to use bdrv_block_status(bs) here, but we're
1670 * holding s->lock, so that doesn't work today.
1672 * If full_discard is true, the sector should not read back as zeroes,
1673 * but rather fall through to the backing file.
1675 switch (qcow2_get_cluster_type(old_l2_entry)) {
1676 case QCOW2_CLUSTER_UNALLOCATED:
1677 if (full_discard || !bs->backing) {
1678 continue;
1680 break;
1682 case QCOW2_CLUSTER_ZERO_PLAIN:
1683 if (!full_discard) {
1684 continue;
1686 break;
1688 case QCOW2_CLUSTER_ZERO_ALLOC:
1689 case QCOW2_CLUSTER_NORMAL:
1690 case QCOW2_CLUSTER_COMPRESSED:
1691 break;
1693 default:
1694 abort();
1697 /* First remove L2 entries */
1698 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1699 if (!full_discard && s->qcow_version >= 3) {
1700 l2_slice[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1701 } else {
1702 l2_slice[l2_index + i] = cpu_to_be64(0);
1705 /* Then decrease the refcount */
1706 qcow2_free_any_clusters(bs, old_l2_entry, 1, type);
1709 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1711 return nb_clusters;
1714 int qcow2_cluster_discard(BlockDriverState *bs, uint64_t offset,
1715 uint64_t bytes, enum qcow2_discard_type type,
1716 bool full_discard)
1718 BDRVQcow2State *s = bs->opaque;
1719 uint64_t end_offset = offset + bytes;
1720 uint64_t nb_clusters;
1721 int64_t cleared;
1722 int ret;
1724 /* Caller must pass aligned values, except at image end */
1725 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1726 assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1727 end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1729 nb_clusters = size_to_clusters(s, bytes);
1731 s->cache_discards = true;
1733 /* Each L2 slice is handled by its own loop iteration */
1734 while (nb_clusters > 0) {
1735 cleared = discard_in_l2_slice(bs, offset, nb_clusters, type,
1736 full_discard);
1737 if (cleared < 0) {
1738 ret = cleared;
1739 goto fail;
1742 nb_clusters -= cleared;
1743 offset += (cleared * s->cluster_size);
1746 ret = 0;
1747 fail:
1748 s->cache_discards = false;
1749 qcow2_process_discards(bs, ret);
1751 return ret;
1755 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1756 * all clusters in the same L2 slice) and returns the number of zeroed
1757 * clusters.
1759 static int zero_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1760 uint64_t nb_clusters, int flags)
1762 BDRVQcow2State *s = bs->opaque;
1763 uint64_t *l2_slice;
1764 int l2_index;
1765 int ret;
1766 int i;
1767 bool unmap = !!(flags & BDRV_REQ_MAY_UNMAP);
1769 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
1770 if (ret < 0) {
1771 return ret;
1774 /* Limit nb_clusters to one L2 slice */
1775 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1776 assert(nb_clusters <= INT_MAX);
1778 for (i = 0; i < nb_clusters; i++) {
1779 uint64_t old_offset;
1780 QCow2ClusterType cluster_type;
1782 old_offset = be64_to_cpu(l2_slice[l2_index + i]);
1785 * Minimize L2 changes if the cluster already reads back as
1786 * zeroes with correct allocation.
1788 cluster_type = qcow2_get_cluster_type(old_offset);
1789 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN ||
1790 (cluster_type == QCOW2_CLUSTER_ZERO_ALLOC && !unmap)) {
1791 continue;
1794 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1795 if (cluster_type == QCOW2_CLUSTER_COMPRESSED || unmap) {
1796 l2_slice[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1797 qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
1798 } else {
1799 l2_slice[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1803 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1805 return nb_clusters;
1808 int qcow2_cluster_zeroize(BlockDriverState *bs, uint64_t offset,
1809 uint64_t bytes, int flags)
1811 BDRVQcow2State *s = bs->opaque;
1812 uint64_t end_offset = offset + bytes;
1813 uint64_t nb_clusters;
1814 int64_t cleared;
1815 int ret;
1817 /* Caller must pass aligned values, except at image end */
1818 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1819 assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1820 end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1822 /* The zero flag is only supported by version 3 and newer */
1823 if (s->qcow_version < 3) {
1824 return -ENOTSUP;
1827 /* Each L2 slice is handled by its own loop iteration */
1828 nb_clusters = size_to_clusters(s, bytes);
1830 s->cache_discards = true;
1832 while (nb_clusters > 0) {
1833 cleared = zero_in_l2_slice(bs, offset, nb_clusters, flags);
1834 if (cleared < 0) {
1835 ret = cleared;
1836 goto fail;
1839 nb_clusters -= cleared;
1840 offset += (cleared * s->cluster_size);
1843 ret = 0;
1844 fail:
1845 s->cache_discards = false;
1846 qcow2_process_discards(bs, ret);
1848 return ret;
1852 * Expands all zero clusters in a specific L1 table (or deallocates them, for
1853 * non-backed non-pre-allocated zero clusters).
1855 * l1_entries and *visited_l1_entries are used to keep track of progress for
1856 * status_cb(). l1_entries contains the total number of L1 entries and
1857 * *visited_l1_entries counts all visited L1 entries.
1859 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
1860 int l1_size, int64_t *visited_l1_entries,
1861 int64_t l1_entries,
1862 BlockDriverAmendStatusCB *status_cb,
1863 void *cb_opaque)
1865 BDRVQcow2State *s = bs->opaque;
1866 bool is_active_l1 = (l1_table == s->l1_table);
1867 uint64_t *l2_slice = NULL;
1868 unsigned slice, slice_size2, n_slices;
1869 int ret;
1870 int i, j;
1872 slice_size2 = s->l2_slice_size * sizeof(uint64_t);
1873 n_slices = s->cluster_size / slice_size2;
1875 if (!is_active_l1) {
1876 /* inactive L2 tables require a buffer to be stored in when loading
1877 * them from disk */
1878 l2_slice = qemu_try_blockalign(bs->file->bs, slice_size2);
1879 if (l2_slice == NULL) {
1880 return -ENOMEM;
1884 for (i = 0; i < l1_size; i++) {
1885 uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
1886 uint64_t l2_refcount;
1888 if (!l2_offset) {
1889 /* unallocated */
1890 (*visited_l1_entries)++;
1891 if (status_cb) {
1892 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
1894 continue;
1897 if (offset_into_cluster(s, l2_offset)) {
1898 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1899 PRIx64 " unaligned (L1 index: %#x)",
1900 l2_offset, i);
1901 ret = -EIO;
1902 goto fail;
1905 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1906 &l2_refcount);
1907 if (ret < 0) {
1908 goto fail;
1911 for (slice = 0; slice < n_slices; slice++) {
1912 uint64_t slice_offset = l2_offset + slice * slice_size2;
1913 bool l2_dirty = false;
1914 if (is_active_l1) {
1915 /* get active L2 tables from cache */
1916 ret = qcow2_cache_get(bs, s->l2_table_cache, slice_offset,
1917 (void **)&l2_slice);
1918 } else {
1919 /* load inactive L2 tables from disk */
1920 ret = bdrv_pread(bs->file, slice_offset, l2_slice, slice_size2);
1922 if (ret < 0) {
1923 goto fail;
1926 for (j = 0; j < s->l2_slice_size; j++) {
1927 uint64_t l2_entry = be64_to_cpu(l2_slice[j]);
1928 int64_t offset = l2_entry & L2E_OFFSET_MASK;
1929 QCow2ClusterType cluster_type =
1930 qcow2_get_cluster_type(l2_entry);
1932 if (cluster_type != QCOW2_CLUSTER_ZERO_PLAIN &&
1933 cluster_type != QCOW2_CLUSTER_ZERO_ALLOC) {
1934 continue;
1937 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1938 if (!bs->backing) {
1939 /* not backed; therefore we can simply deallocate the
1940 * cluster */
1941 l2_slice[j] = 0;
1942 l2_dirty = true;
1943 continue;
1946 offset = qcow2_alloc_clusters(bs, s->cluster_size);
1947 if (offset < 0) {
1948 ret = offset;
1949 goto fail;
1952 if (l2_refcount > 1) {
1953 /* For shared L2 tables, set the refcount accordingly
1954 * (it is already 1 and needs to be l2_refcount) */
1955 ret = qcow2_update_cluster_refcount(
1956 bs, offset >> s->cluster_bits,
1957 refcount_diff(1, l2_refcount), false,
1958 QCOW2_DISCARD_OTHER);
1959 if (ret < 0) {
1960 qcow2_free_clusters(bs, offset, s->cluster_size,
1961 QCOW2_DISCARD_OTHER);
1962 goto fail;
1967 if (offset_into_cluster(s, offset)) {
1968 int l2_index = slice * s->l2_slice_size + j;
1969 qcow2_signal_corruption(
1970 bs, true, -1, -1,
1971 "Cluster allocation offset "
1972 "%#" PRIx64 " unaligned (L2 offset: %#"
1973 PRIx64 ", L2 index: %#x)", offset,
1974 l2_offset, l2_index);
1975 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1976 qcow2_free_clusters(bs, offset, s->cluster_size,
1977 QCOW2_DISCARD_ALWAYS);
1979 ret = -EIO;
1980 goto fail;
1983 ret = qcow2_pre_write_overlap_check(bs, 0, offset,
1984 s->cluster_size);
1985 if (ret < 0) {
1986 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1987 qcow2_free_clusters(bs, offset, s->cluster_size,
1988 QCOW2_DISCARD_ALWAYS);
1990 goto fail;
1993 ret = bdrv_pwrite_zeroes(bs->file, offset, s->cluster_size, 0);
1994 if (ret < 0) {
1995 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1996 qcow2_free_clusters(bs, offset, s->cluster_size,
1997 QCOW2_DISCARD_ALWAYS);
1999 goto fail;
2002 if (l2_refcount == 1) {
2003 l2_slice[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED);
2004 } else {
2005 l2_slice[j] = cpu_to_be64(offset);
2007 l2_dirty = true;
2010 if (is_active_l1) {
2011 if (l2_dirty) {
2012 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
2013 qcow2_cache_depends_on_flush(s->l2_table_cache);
2015 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2016 } else {
2017 if (l2_dirty) {
2018 ret = qcow2_pre_write_overlap_check(
2019 bs, QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2,
2020 slice_offset, slice_size2);
2021 if (ret < 0) {
2022 goto fail;
2025 ret = bdrv_pwrite(bs->file, slice_offset,
2026 l2_slice, slice_size2);
2027 if (ret < 0) {
2028 goto fail;
2034 (*visited_l1_entries)++;
2035 if (status_cb) {
2036 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
2040 ret = 0;
2042 fail:
2043 if (l2_slice) {
2044 if (!is_active_l1) {
2045 qemu_vfree(l2_slice);
2046 } else {
2047 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2050 return ret;
2054 * For backed images, expands all zero clusters on the image. For non-backed
2055 * images, deallocates all non-pre-allocated zero clusters (and claims the
2056 * allocation for pre-allocated ones). This is important for downgrading to a
2057 * qcow2 version which doesn't yet support metadata zero clusters.
2059 int qcow2_expand_zero_clusters(BlockDriverState *bs,
2060 BlockDriverAmendStatusCB *status_cb,
2061 void *cb_opaque)
2063 BDRVQcow2State *s = bs->opaque;
2064 uint64_t *l1_table = NULL;
2065 int64_t l1_entries = 0, visited_l1_entries = 0;
2066 int ret;
2067 int i, j;
2069 if (status_cb) {
2070 l1_entries = s->l1_size;
2071 for (i = 0; i < s->nb_snapshots; i++) {
2072 l1_entries += s->snapshots[i].l1_size;
2076 ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
2077 &visited_l1_entries, l1_entries,
2078 status_cb, cb_opaque);
2079 if (ret < 0) {
2080 goto fail;
2083 /* Inactive L1 tables may point to active L2 tables - therefore it is
2084 * necessary to flush the L2 table cache before trying to access the L2
2085 * tables pointed to by inactive L1 entries (else we might try to expand
2086 * zero clusters that have already been expanded); furthermore, it is also
2087 * necessary to empty the L2 table cache, since it may contain tables which
2088 * are now going to be modified directly on disk, bypassing the cache.
2089 * qcow2_cache_empty() does both for us. */
2090 ret = qcow2_cache_empty(bs, s->l2_table_cache);
2091 if (ret < 0) {
2092 goto fail;
2095 for (i = 0; i < s->nb_snapshots; i++) {
2096 int l1_size2;
2097 uint64_t *new_l1_table;
2098 Error *local_err = NULL;
2100 ret = qcow2_validate_table(bs, s->snapshots[i].l1_table_offset,
2101 s->snapshots[i].l1_size, sizeof(uint64_t),
2102 QCOW_MAX_L1_SIZE, "Snapshot L1 table",
2103 &local_err);
2104 if (ret < 0) {
2105 error_report_err(local_err);
2106 goto fail;
2109 l1_size2 = s->snapshots[i].l1_size * sizeof(uint64_t);
2110 new_l1_table = g_try_realloc(l1_table, l1_size2);
2112 if (!new_l1_table) {
2113 ret = -ENOMEM;
2114 goto fail;
2117 l1_table = new_l1_table;
2119 ret = bdrv_pread(bs->file, s->snapshots[i].l1_table_offset,
2120 l1_table, l1_size2);
2121 if (ret < 0) {
2122 goto fail;
2125 for (j = 0; j < s->snapshots[i].l1_size; j++) {
2126 be64_to_cpus(&l1_table[j]);
2129 ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
2130 &visited_l1_entries, l1_entries,
2131 status_cb, cb_opaque);
2132 if (ret < 0) {
2133 goto fail;
2137 ret = 0;
2139 fail:
2140 g_free(l1_table);
2141 return ret;