hw/block/nvme: replace nvme_ns_status
[qemu/kevin.git] / hw / block / nvme.c
blob710af6a7147cce3ed78f6028fad6605c9b44d40f
1 /*
2 * QEMU NVM Express Controller
4 * Copyright (c) 2012, Intel Corporation
6 * Written by Keith Busch <keith.busch@intel.com>
8 * This code is licensed under the GNU GPL v2 or later.
9 */
11 /**
12 * Reference Specs: http://www.nvmexpress.org, 1.4, 1.3, 1.2, 1.1, 1.0e
14 * https://nvmexpress.org/developers/nvme-specification/
17 * Notes on coding style
18 * ---------------------
19 * While QEMU coding style prefers lowercase hexadecimals in constants, the
20 * NVMe subsystem use thes format from the NVMe specifications in the comments
21 * (i.e. 'h' suffix instead of '0x' prefix).
23 * Usage
24 * -----
25 * See docs/system/nvme.rst for extensive documentation.
27 * Add options:
28 * -drive file=<file>,if=none,id=<drive_id>
29 * -device nvme-subsys,id=<subsys_id>,nqn=<nqn_id>
30 * -device nvme,serial=<serial>,id=<bus_name>, \
31 * cmb_size_mb=<cmb_size_mb[optional]>, \
32 * [pmrdev=<mem_backend_file_id>,] \
33 * max_ioqpairs=<N[optional]>, \
34 * aerl=<N[optional]>,aer_max_queued=<N[optional]>, \
35 * mdts=<N[optional]>,vsl=<N[optional]>, \
36 * zoned.zasl=<N[optional]>, \
37 * subsys=<subsys_id>
38 * -device nvme-ns,drive=<drive_id>,bus=<bus_name>,nsid=<nsid>,\
39 * zoned=<true|false[optional]>, \
40 * subsys=<subsys_id>,detached=<true|false[optional]>
42 * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
43 * offset 0 in BAR2 and supports only WDS, RDS and SQS for now. By default, the
44 * device will use the "v1.4 CMB scheme" - use the `legacy-cmb` parameter to
45 * always enable the CMBLOC and CMBSZ registers (v1.3 behavior).
47 * Enabling pmr emulation can be achieved by pointing to memory-backend-file.
48 * For example:
49 * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \
50 * size=<size> .... -device nvme,...,pmrdev=<mem_id>
52 * The PMR will use BAR 4/5 exclusively.
54 * To place controller(s) and namespace(s) to a subsystem, then provide
55 * nvme-subsys device as above.
57 * nvme subsystem device parameters
58 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
59 * - `nqn`
60 * This parameter provides the `<nqn_id>` part of the string
61 * `nqn.2019-08.org.qemu:<nqn_id>` which will be reported in the SUBNQN field
62 * of subsystem controllers. Note that `<nqn_id>` should be unique per
63 * subsystem, but this is not enforced by QEMU. If not specified, it will
64 * default to the value of the `id` parameter (`<subsys_id>`).
66 * nvme device parameters
67 * ~~~~~~~~~~~~~~~~~~~~~~
68 * - `subsys`
69 * Specifying this parameter attaches the controller to the subsystem and
70 * the SUBNQN field in the controller will report the NQN of the subsystem
71 * device. This also enables multi controller capability represented in
72 * Identify Controller data structure in CMIC (Controller Multi-path I/O and
73 * Namesapce Sharing Capabilities).
75 * - `aerl`
76 * The Asynchronous Event Request Limit (AERL). Indicates the maximum number
77 * of concurrently outstanding Asynchronous Event Request commands support
78 * by the controller. This is a 0's based value.
80 * - `aer_max_queued`
81 * This is the maximum number of events that the device will enqueue for
82 * completion when there are no outstanding AERs. When the maximum number of
83 * enqueued events are reached, subsequent events will be dropped.
85 * - `mdts`
86 * Indicates the maximum data transfer size for a command that transfers data
87 * between host-accessible memory and the controller. The value is specified
88 * as a power of two (2^n) and is in units of the minimum memory page size
89 * (CAP.MPSMIN). The default value is 7 (i.e. 512 KiB).
91 * - `vsl`
92 * Indicates the maximum data size limit for the Verify command. Like `mdts`,
93 * this value is specified as a power of two (2^n) and is in units of the
94 * minimum memory page size (CAP.MPSMIN). The default value is 7 (i.e. 512
95 * KiB).
97 * - `zoned.zasl`
98 * Indicates the maximum data transfer size for the Zone Append command. Like
99 * `mdts`, the value is specified as a power of two (2^n) and is in units of
100 * the minimum memory page size (CAP.MPSMIN). The default value is 0 (i.e.
101 * defaulting to the value of `mdts`).
103 * nvme namespace device parameters
104 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
105 * - `shared`
106 * When the parent nvme device (as defined explicitly by the 'bus' parameter
107 * or implicitly by the most recently defined NvmeBus) is linked to an
108 * nvme-subsys device, the namespace will be attached to all controllers in
109 * the subsystem. If set to 'off' (the default), the namespace will remain a
110 * private namespace and may only be attached to a single controller at a
111 * time.
113 * - `detached`
114 * This parameter is only valid together with the `subsys` parameter. If left
115 * at the default value (`false/off`), the namespace will be attached to all
116 * controllers in the NVMe subsystem at boot-up. If set to `true/on`, the
117 * namespace will be be available in the subsystem not not attached to any
118 * controllers.
120 * Setting `zoned` to true selects Zoned Command Set at the namespace.
121 * In this case, the following namespace properties are available to configure
122 * zoned operation:
123 * zoned.zone_size=<zone size in bytes, default: 128MiB>
124 * The number may be followed by K, M, G as in kilo-, mega- or giga-.
126 * zoned.zone_capacity=<zone capacity in bytes, default: zone size>
127 * The value 0 (default) forces zone capacity to be the same as zone
128 * size. The value of this property may not exceed zone size.
130 * zoned.descr_ext_size=<zone descriptor extension size, default 0>
131 * This value needs to be specified in 64B units. If it is zero,
132 * namespace(s) will not support zone descriptor extensions.
134 * zoned.max_active=<Maximum Active Resources (zones), default: 0>
135 * The default value means there is no limit to the number of
136 * concurrently active zones.
138 * zoned.max_open=<Maximum Open Resources (zones), default: 0>
139 * The default value means there is no limit to the number of
140 * concurrently open zones.
142 * zoned.cross_read=<enable RAZB, default: false>
143 * Setting this property to true enables Read Across Zone Boundaries.
146 #include "qemu/osdep.h"
147 #include "qemu/cutils.h"
148 #include "qemu/error-report.h"
149 #include "qemu/log.h"
150 #include "qemu/units.h"
151 #include "qapi/error.h"
152 #include "qapi/visitor.h"
153 #include "sysemu/sysemu.h"
154 #include "sysemu/block-backend.h"
155 #include "sysemu/hostmem.h"
156 #include "hw/pci/msix.h"
157 #include "migration/vmstate.h"
159 #include "nvme.h"
160 #include "trace.h"
162 #define NVME_MAX_IOQPAIRS 0xffff
163 #define NVME_DB_SIZE 4
164 #define NVME_SPEC_VER 0x00010400
165 #define NVME_CMB_BIR 2
166 #define NVME_PMR_BIR 4
167 #define NVME_TEMPERATURE 0x143
168 #define NVME_TEMPERATURE_WARNING 0x157
169 #define NVME_TEMPERATURE_CRITICAL 0x175
170 #define NVME_NUM_FW_SLOTS 1
171 #define NVME_DEFAULT_MAX_ZA_SIZE (128 * KiB)
173 #define NVME_GUEST_ERR(trace, fmt, ...) \
174 do { \
175 (trace_##trace)(__VA_ARGS__); \
176 qemu_log_mask(LOG_GUEST_ERROR, #trace \
177 " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
178 } while (0)
180 static const bool nvme_feature_support[NVME_FID_MAX] = {
181 [NVME_ARBITRATION] = true,
182 [NVME_POWER_MANAGEMENT] = true,
183 [NVME_TEMPERATURE_THRESHOLD] = true,
184 [NVME_ERROR_RECOVERY] = true,
185 [NVME_VOLATILE_WRITE_CACHE] = true,
186 [NVME_NUMBER_OF_QUEUES] = true,
187 [NVME_INTERRUPT_COALESCING] = true,
188 [NVME_INTERRUPT_VECTOR_CONF] = true,
189 [NVME_WRITE_ATOMICITY] = true,
190 [NVME_ASYNCHRONOUS_EVENT_CONF] = true,
191 [NVME_TIMESTAMP] = true,
192 [NVME_COMMAND_SET_PROFILE] = true,
195 static const uint32_t nvme_feature_cap[NVME_FID_MAX] = {
196 [NVME_TEMPERATURE_THRESHOLD] = NVME_FEAT_CAP_CHANGE,
197 [NVME_ERROR_RECOVERY] = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS,
198 [NVME_VOLATILE_WRITE_CACHE] = NVME_FEAT_CAP_CHANGE,
199 [NVME_NUMBER_OF_QUEUES] = NVME_FEAT_CAP_CHANGE,
200 [NVME_ASYNCHRONOUS_EVENT_CONF] = NVME_FEAT_CAP_CHANGE,
201 [NVME_TIMESTAMP] = NVME_FEAT_CAP_CHANGE,
202 [NVME_COMMAND_SET_PROFILE] = NVME_FEAT_CAP_CHANGE,
205 static const uint32_t nvme_cse_acs[256] = {
206 [NVME_ADM_CMD_DELETE_SQ] = NVME_CMD_EFF_CSUPP,
207 [NVME_ADM_CMD_CREATE_SQ] = NVME_CMD_EFF_CSUPP,
208 [NVME_ADM_CMD_GET_LOG_PAGE] = NVME_CMD_EFF_CSUPP,
209 [NVME_ADM_CMD_DELETE_CQ] = NVME_CMD_EFF_CSUPP,
210 [NVME_ADM_CMD_CREATE_CQ] = NVME_CMD_EFF_CSUPP,
211 [NVME_ADM_CMD_IDENTIFY] = NVME_CMD_EFF_CSUPP,
212 [NVME_ADM_CMD_ABORT] = NVME_CMD_EFF_CSUPP,
213 [NVME_ADM_CMD_SET_FEATURES] = NVME_CMD_EFF_CSUPP,
214 [NVME_ADM_CMD_GET_FEATURES] = NVME_CMD_EFF_CSUPP,
215 [NVME_ADM_CMD_ASYNC_EV_REQ] = NVME_CMD_EFF_CSUPP,
216 [NVME_ADM_CMD_NS_ATTACHMENT] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_NIC,
217 [NVME_ADM_CMD_FORMAT_NVM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
220 static const uint32_t nvme_cse_iocs_none[256];
222 static const uint32_t nvme_cse_iocs_nvm[256] = {
223 [NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
224 [NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
225 [NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
226 [NVME_CMD_READ] = NVME_CMD_EFF_CSUPP,
227 [NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
228 [NVME_CMD_VERIFY] = NVME_CMD_EFF_CSUPP,
229 [NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
230 [NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP,
233 static const uint32_t nvme_cse_iocs_zoned[256] = {
234 [NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
235 [NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
236 [NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
237 [NVME_CMD_READ] = NVME_CMD_EFF_CSUPP,
238 [NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
239 [NVME_CMD_VERIFY] = NVME_CMD_EFF_CSUPP,
240 [NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
241 [NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP,
242 [NVME_CMD_ZONE_APPEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
243 [NVME_CMD_ZONE_MGMT_SEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
244 [NVME_CMD_ZONE_MGMT_RECV] = NVME_CMD_EFF_CSUPP,
247 static void nvme_process_sq(void *opaque);
249 static uint16_t nvme_sqid(NvmeRequest *req)
251 return le16_to_cpu(req->sq->sqid);
254 static void nvme_assign_zone_state(NvmeNamespace *ns, NvmeZone *zone,
255 NvmeZoneState state)
257 if (QTAILQ_IN_USE(zone, entry)) {
258 switch (nvme_get_zone_state(zone)) {
259 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
260 QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry);
261 break;
262 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
263 QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
264 break;
265 case NVME_ZONE_STATE_CLOSED:
266 QTAILQ_REMOVE(&ns->closed_zones, zone, entry);
267 break;
268 case NVME_ZONE_STATE_FULL:
269 QTAILQ_REMOVE(&ns->full_zones, zone, entry);
270 default:
275 nvme_set_zone_state(zone, state);
277 switch (state) {
278 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
279 QTAILQ_INSERT_TAIL(&ns->exp_open_zones, zone, entry);
280 break;
281 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
282 QTAILQ_INSERT_TAIL(&ns->imp_open_zones, zone, entry);
283 break;
284 case NVME_ZONE_STATE_CLOSED:
285 QTAILQ_INSERT_TAIL(&ns->closed_zones, zone, entry);
286 break;
287 case NVME_ZONE_STATE_FULL:
288 QTAILQ_INSERT_TAIL(&ns->full_zones, zone, entry);
289 case NVME_ZONE_STATE_READ_ONLY:
290 break;
291 default:
292 zone->d.za = 0;
297 * Check if we can open a zone without exceeding open/active limits.
298 * AOR stands for "Active and Open Resources" (see TP 4053 section 2.5).
300 static int nvme_aor_check(NvmeNamespace *ns, uint32_t act, uint32_t opn)
302 if (ns->params.max_active_zones != 0 &&
303 ns->nr_active_zones + act > ns->params.max_active_zones) {
304 trace_pci_nvme_err_insuff_active_res(ns->params.max_active_zones);
305 return NVME_ZONE_TOO_MANY_ACTIVE | NVME_DNR;
307 if (ns->params.max_open_zones != 0 &&
308 ns->nr_open_zones + opn > ns->params.max_open_zones) {
309 trace_pci_nvme_err_insuff_open_res(ns->params.max_open_zones);
310 return NVME_ZONE_TOO_MANY_OPEN | NVME_DNR;
313 return NVME_SUCCESS;
316 static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr)
318 hwaddr hi, lo;
320 if (!n->cmb.cmse) {
321 return false;
324 lo = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
325 hi = lo + int128_get64(n->cmb.mem.size);
327 return addr >= lo && addr < hi;
330 static inline void *nvme_addr_to_cmb(NvmeCtrl *n, hwaddr addr)
332 hwaddr base = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
333 return &n->cmb.buf[addr - base];
336 static bool nvme_addr_is_pmr(NvmeCtrl *n, hwaddr addr)
338 hwaddr hi;
340 if (!n->pmr.cmse) {
341 return false;
344 hi = n->pmr.cba + int128_get64(n->pmr.dev->mr.size);
346 return addr >= n->pmr.cba && addr < hi;
349 static inline void *nvme_addr_to_pmr(NvmeCtrl *n, hwaddr addr)
351 return memory_region_get_ram_ptr(&n->pmr.dev->mr) + (addr - n->pmr.cba);
354 static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
356 hwaddr hi = addr + size - 1;
357 if (hi < addr) {
358 return 1;
361 if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
362 memcpy(buf, nvme_addr_to_cmb(n, addr), size);
363 return 0;
366 if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
367 memcpy(buf, nvme_addr_to_pmr(n, addr), size);
368 return 0;
371 return pci_dma_read(&n->parent_obj, addr, buf, size);
374 static int nvme_addr_write(NvmeCtrl *n, hwaddr addr, void *buf, int size)
376 hwaddr hi = addr + size - 1;
377 if (hi < addr) {
378 return 1;
381 if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
382 memcpy(nvme_addr_to_cmb(n, addr), buf, size);
383 return 0;
386 if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
387 memcpy(nvme_addr_to_pmr(n, addr), buf, size);
388 return 0;
391 return pci_dma_write(&n->parent_obj, addr, buf, size);
394 static bool nvme_nsid_valid(NvmeCtrl *n, uint32_t nsid)
396 return nsid && (nsid == NVME_NSID_BROADCAST || nsid <= n->num_namespaces);
399 static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
401 return sqid < n->params.max_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1;
404 static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
406 return cqid < n->params.max_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1;
409 static void nvme_inc_cq_tail(NvmeCQueue *cq)
411 cq->tail++;
412 if (cq->tail >= cq->size) {
413 cq->tail = 0;
414 cq->phase = !cq->phase;
418 static void nvme_inc_sq_head(NvmeSQueue *sq)
420 sq->head = (sq->head + 1) % sq->size;
423 static uint8_t nvme_cq_full(NvmeCQueue *cq)
425 return (cq->tail + 1) % cq->size == cq->head;
428 static uint8_t nvme_sq_empty(NvmeSQueue *sq)
430 return sq->head == sq->tail;
433 static void nvme_irq_check(NvmeCtrl *n)
435 if (msix_enabled(&(n->parent_obj))) {
436 return;
438 if (~n->bar.intms & n->irq_status) {
439 pci_irq_assert(&n->parent_obj);
440 } else {
441 pci_irq_deassert(&n->parent_obj);
445 static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
447 if (cq->irq_enabled) {
448 if (msix_enabled(&(n->parent_obj))) {
449 trace_pci_nvme_irq_msix(cq->vector);
450 msix_notify(&(n->parent_obj), cq->vector);
451 } else {
452 trace_pci_nvme_irq_pin();
453 assert(cq->vector < 32);
454 n->irq_status |= 1 << cq->vector;
455 nvme_irq_check(n);
457 } else {
458 trace_pci_nvme_irq_masked();
462 static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
464 if (cq->irq_enabled) {
465 if (msix_enabled(&(n->parent_obj))) {
466 return;
467 } else {
468 assert(cq->vector < 32);
469 n->irq_status &= ~(1 << cq->vector);
470 nvme_irq_check(n);
475 static void nvme_req_clear(NvmeRequest *req)
477 req->ns = NULL;
478 req->opaque = NULL;
479 req->aiocb = NULL;
480 memset(&req->cqe, 0x0, sizeof(req->cqe));
481 req->status = NVME_SUCCESS;
484 static inline void nvme_sg_init(NvmeCtrl *n, NvmeSg *sg, bool dma)
486 if (dma) {
487 pci_dma_sglist_init(&sg->qsg, &n->parent_obj, 0);
488 sg->flags = NVME_SG_DMA;
489 } else {
490 qemu_iovec_init(&sg->iov, 0);
493 sg->flags |= NVME_SG_ALLOC;
496 static inline void nvme_sg_unmap(NvmeSg *sg)
498 if (!(sg->flags & NVME_SG_ALLOC)) {
499 return;
502 if (sg->flags & NVME_SG_DMA) {
503 qemu_sglist_destroy(&sg->qsg);
504 } else {
505 qemu_iovec_destroy(&sg->iov);
508 memset(sg, 0x0, sizeof(*sg));
512 * When metadata is transfered as extended LBAs, the DPTR mapped into `sg`
513 * holds both data and metadata. This function splits the data and metadata
514 * into two separate QSG/IOVs.
516 static void nvme_sg_split(NvmeSg *sg, NvmeNamespace *ns, NvmeSg *data,
517 NvmeSg *mdata)
519 NvmeSg *dst = data;
520 size_t size = nvme_lsize(ns);
521 size_t msize = nvme_msize(ns);
522 uint32_t trans_len, count = size;
523 uint64_t offset = 0;
524 bool dma = sg->flags & NVME_SG_DMA;
525 size_t sge_len;
526 size_t sg_len = dma ? sg->qsg.size : sg->iov.size;
527 int sg_idx = 0;
529 assert(sg->flags & NVME_SG_ALLOC);
531 while (sg_len) {
532 sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
534 trans_len = MIN(sg_len, count);
535 trans_len = MIN(trans_len, sge_len - offset);
537 if (dst) {
538 if (dma) {
539 qemu_sglist_add(&dst->qsg, sg->qsg.sg[sg_idx].base + offset,
540 trans_len);
541 } else {
542 qemu_iovec_add(&dst->iov,
543 sg->iov.iov[sg_idx].iov_base + offset,
544 trans_len);
548 sg_len -= trans_len;
549 count -= trans_len;
550 offset += trans_len;
552 if (count == 0) {
553 dst = (dst == data) ? mdata : data;
554 count = (dst == data) ? size : msize;
557 if (sge_len == offset) {
558 offset = 0;
559 sg_idx++;
564 static uint16_t nvme_map_addr_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
565 size_t len)
567 if (!len) {
568 return NVME_SUCCESS;
571 trace_pci_nvme_map_addr_cmb(addr, len);
573 if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, addr + len - 1)) {
574 return NVME_DATA_TRAS_ERROR;
577 qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len);
579 return NVME_SUCCESS;
582 static uint16_t nvme_map_addr_pmr(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
583 size_t len)
585 if (!len) {
586 return NVME_SUCCESS;
589 if (!nvme_addr_is_pmr(n, addr) || !nvme_addr_is_pmr(n, addr + len - 1)) {
590 return NVME_DATA_TRAS_ERROR;
593 qemu_iovec_add(iov, nvme_addr_to_pmr(n, addr), len);
595 return NVME_SUCCESS;
598 static uint16_t nvme_map_addr(NvmeCtrl *n, NvmeSg *sg, hwaddr addr, size_t len)
600 bool cmb = false, pmr = false;
602 if (!len) {
603 return NVME_SUCCESS;
606 trace_pci_nvme_map_addr(addr, len);
608 if (nvme_addr_is_cmb(n, addr)) {
609 cmb = true;
610 } else if (nvme_addr_is_pmr(n, addr)) {
611 pmr = true;
614 if (cmb || pmr) {
615 if (sg->flags & NVME_SG_DMA) {
616 return NVME_INVALID_USE_OF_CMB | NVME_DNR;
619 if (cmb) {
620 return nvme_map_addr_cmb(n, &sg->iov, addr, len);
621 } else {
622 return nvme_map_addr_pmr(n, &sg->iov, addr, len);
626 if (!(sg->flags & NVME_SG_DMA)) {
627 return NVME_INVALID_USE_OF_CMB | NVME_DNR;
630 qemu_sglist_add(&sg->qsg, addr, len);
632 return NVME_SUCCESS;
635 static inline bool nvme_addr_is_dma(NvmeCtrl *n, hwaddr addr)
637 return !(nvme_addr_is_cmb(n, addr) || nvme_addr_is_pmr(n, addr));
640 static uint16_t nvme_map_prp(NvmeCtrl *n, NvmeSg *sg, uint64_t prp1,
641 uint64_t prp2, uint32_t len)
643 hwaddr trans_len = n->page_size - (prp1 % n->page_size);
644 trans_len = MIN(len, trans_len);
645 int num_prps = (len >> n->page_bits) + 1;
646 uint16_t status;
647 int ret;
649 trace_pci_nvme_map_prp(trans_len, len, prp1, prp2, num_prps);
651 nvme_sg_init(n, sg, nvme_addr_is_dma(n, prp1));
653 status = nvme_map_addr(n, sg, prp1, trans_len);
654 if (status) {
655 goto unmap;
658 len -= trans_len;
659 if (len) {
660 if (len > n->page_size) {
661 uint64_t prp_list[n->max_prp_ents];
662 uint32_t nents, prp_trans;
663 int i = 0;
666 * The first PRP list entry, pointed to by PRP2 may contain offset.
667 * Hence, we need to calculate the number of entries in based on
668 * that offset.
670 nents = (n->page_size - (prp2 & (n->page_size - 1))) >> 3;
671 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
672 ret = nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
673 if (ret) {
674 trace_pci_nvme_err_addr_read(prp2);
675 status = NVME_DATA_TRAS_ERROR;
676 goto unmap;
678 while (len != 0) {
679 uint64_t prp_ent = le64_to_cpu(prp_list[i]);
681 if (i == nents - 1 && len > n->page_size) {
682 if (unlikely(prp_ent & (n->page_size - 1))) {
683 trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
684 status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
685 goto unmap;
688 i = 0;
689 nents = (len + n->page_size - 1) >> n->page_bits;
690 nents = MIN(nents, n->max_prp_ents);
691 prp_trans = nents * sizeof(uint64_t);
692 ret = nvme_addr_read(n, prp_ent, (void *)prp_list,
693 prp_trans);
694 if (ret) {
695 trace_pci_nvme_err_addr_read(prp_ent);
696 status = NVME_DATA_TRAS_ERROR;
697 goto unmap;
699 prp_ent = le64_to_cpu(prp_list[i]);
702 if (unlikely(prp_ent & (n->page_size - 1))) {
703 trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
704 status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
705 goto unmap;
708 trans_len = MIN(len, n->page_size);
709 status = nvme_map_addr(n, sg, prp_ent, trans_len);
710 if (status) {
711 goto unmap;
714 len -= trans_len;
715 i++;
717 } else {
718 if (unlikely(prp2 & (n->page_size - 1))) {
719 trace_pci_nvme_err_invalid_prp2_align(prp2);
720 status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
721 goto unmap;
723 status = nvme_map_addr(n, sg, prp2, len);
724 if (status) {
725 goto unmap;
730 return NVME_SUCCESS;
732 unmap:
733 nvme_sg_unmap(sg);
734 return status;
738 * Map 'nsgld' data descriptors from 'segment'. The function will subtract the
739 * number of bytes mapped in len.
741 static uint16_t nvme_map_sgl_data(NvmeCtrl *n, NvmeSg *sg,
742 NvmeSglDescriptor *segment, uint64_t nsgld,
743 size_t *len, NvmeCmd *cmd)
745 dma_addr_t addr, trans_len;
746 uint32_t dlen;
747 uint16_t status;
749 for (int i = 0; i < nsgld; i++) {
750 uint8_t type = NVME_SGL_TYPE(segment[i].type);
752 switch (type) {
753 case NVME_SGL_DESCR_TYPE_BIT_BUCKET:
754 if (cmd->opcode == NVME_CMD_WRITE) {
755 continue;
757 case NVME_SGL_DESCR_TYPE_DATA_BLOCK:
758 break;
759 case NVME_SGL_DESCR_TYPE_SEGMENT:
760 case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
761 return NVME_INVALID_NUM_SGL_DESCRS | NVME_DNR;
762 default:
763 return NVME_SGL_DESCR_TYPE_INVALID | NVME_DNR;
766 dlen = le32_to_cpu(segment[i].len);
768 if (!dlen) {
769 continue;
772 if (*len == 0) {
774 * All data has been mapped, but the SGL contains additional
775 * segments and/or descriptors. The controller might accept
776 * ignoring the rest of the SGL.
778 uint32_t sgls = le32_to_cpu(n->id_ctrl.sgls);
779 if (sgls & NVME_CTRL_SGLS_EXCESS_LENGTH) {
780 break;
783 trace_pci_nvme_err_invalid_sgl_excess_length(dlen);
784 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
787 trans_len = MIN(*len, dlen);
789 if (type == NVME_SGL_DESCR_TYPE_BIT_BUCKET) {
790 goto next;
793 addr = le64_to_cpu(segment[i].addr);
795 if (UINT64_MAX - addr < dlen) {
796 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
799 status = nvme_map_addr(n, sg, addr, trans_len);
800 if (status) {
801 return status;
804 next:
805 *len -= trans_len;
808 return NVME_SUCCESS;
811 static uint16_t nvme_map_sgl(NvmeCtrl *n, NvmeSg *sg, NvmeSglDescriptor sgl,
812 size_t len, NvmeCmd *cmd)
815 * Read the segment in chunks of 256 descriptors (one 4k page) to avoid
816 * dynamically allocating a potentially huge SGL. The spec allows the SGL
817 * to be larger (as in number of bytes required to describe the SGL
818 * descriptors and segment chain) than the command transfer size, so it is
819 * not bounded by MDTS.
821 const int SEG_CHUNK_SIZE = 256;
823 NvmeSglDescriptor segment[SEG_CHUNK_SIZE], *sgld, *last_sgld;
824 uint64_t nsgld;
825 uint32_t seg_len;
826 uint16_t status;
827 hwaddr addr;
828 int ret;
830 sgld = &sgl;
831 addr = le64_to_cpu(sgl.addr);
833 trace_pci_nvme_map_sgl(NVME_SGL_TYPE(sgl.type), len);
835 nvme_sg_init(n, sg, nvme_addr_is_dma(n, addr));
838 * If the entire transfer can be described with a single data block it can
839 * be mapped directly.
841 if (NVME_SGL_TYPE(sgl.type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
842 status = nvme_map_sgl_data(n, sg, sgld, 1, &len, cmd);
843 if (status) {
844 goto unmap;
847 goto out;
850 for (;;) {
851 switch (NVME_SGL_TYPE(sgld->type)) {
852 case NVME_SGL_DESCR_TYPE_SEGMENT:
853 case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
854 break;
855 default:
856 return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
859 seg_len = le32_to_cpu(sgld->len);
861 /* check the length of the (Last) Segment descriptor */
862 if ((!seg_len || seg_len & 0xf) &&
863 (NVME_SGL_TYPE(sgld->type) != NVME_SGL_DESCR_TYPE_BIT_BUCKET)) {
864 return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
867 if (UINT64_MAX - addr < seg_len) {
868 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
871 nsgld = seg_len / sizeof(NvmeSglDescriptor);
873 while (nsgld > SEG_CHUNK_SIZE) {
874 if (nvme_addr_read(n, addr, segment, sizeof(segment))) {
875 trace_pci_nvme_err_addr_read(addr);
876 status = NVME_DATA_TRAS_ERROR;
877 goto unmap;
880 status = nvme_map_sgl_data(n, sg, segment, SEG_CHUNK_SIZE,
881 &len, cmd);
882 if (status) {
883 goto unmap;
886 nsgld -= SEG_CHUNK_SIZE;
887 addr += SEG_CHUNK_SIZE * sizeof(NvmeSglDescriptor);
890 ret = nvme_addr_read(n, addr, segment, nsgld *
891 sizeof(NvmeSglDescriptor));
892 if (ret) {
893 trace_pci_nvme_err_addr_read(addr);
894 status = NVME_DATA_TRAS_ERROR;
895 goto unmap;
898 last_sgld = &segment[nsgld - 1];
901 * If the segment ends with a Data Block or Bit Bucket Descriptor Type,
902 * then we are done.
904 switch (NVME_SGL_TYPE(last_sgld->type)) {
905 case NVME_SGL_DESCR_TYPE_DATA_BLOCK:
906 case NVME_SGL_DESCR_TYPE_BIT_BUCKET:
907 status = nvme_map_sgl_data(n, sg, segment, nsgld, &len, cmd);
908 if (status) {
909 goto unmap;
912 goto out;
914 default:
915 break;
919 * If the last descriptor was not a Data Block or Bit Bucket, then the
920 * current segment must not be a Last Segment.
922 if (NVME_SGL_TYPE(sgld->type) == NVME_SGL_DESCR_TYPE_LAST_SEGMENT) {
923 status = NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
924 goto unmap;
927 sgld = last_sgld;
928 addr = le64_to_cpu(sgld->addr);
931 * Do not map the last descriptor; it will be a Segment or Last Segment
932 * descriptor and is handled by the next iteration.
934 status = nvme_map_sgl_data(n, sg, segment, nsgld - 1, &len, cmd);
935 if (status) {
936 goto unmap;
940 out:
941 /* if there is any residual left in len, the SGL was too short */
942 if (len) {
943 status = NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
944 goto unmap;
947 return NVME_SUCCESS;
949 unmap:
950 nvme_sg_unmap(sg);
951 return status;
954 uint16_t nvme_map_dptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
955 NvmeCmd *cmd)
957 uint64_t prp1, prp2;
959 switch (NVME_CMD_FLAGS_PSDT(cmd->flags)) {
960 case NVME_PSDT_PRP:
961 prp1 = le64_to_cpu(cmd->dptr.prp1);
962 prp2 = le64_to_cpu(cmd->dptr.prp2);
964 return nvme_map_prp(n, sg, prp1, prp2, len);
965 case NVME_PSDT_SGL_MPTR_CONTIGUOUS:
966 case NVME_PSDT_SGL_MPTR_SGL:
967 return nvme_map_sgl(n, sg, cmd->dptr.sgl, len, cmd);
968 default:
969 return NVME_INVALID_FIELD;
973 static uint16_t nvme_map_mptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
974 NvmeCmd *cmd)
976 int psdt = NVME_CMD_FLAGS_PSDT(cmd->flags);
977 hwaddr mptr = le64_to_cpu(cmd->mptr);
978 uint16_t status;
980 if (psdt == NVME_PSDT_SGL_MPTR_SGL) {
981 NvmeSglDescriptor sgl;
983 if (nvme_addr_read(n, mptr, &sgl, sizeof(sgl))) {
984 return NVME_DATA_TRAS_ERROR;
987 status = nvme_map_sgl(n, sg, sgl, len, cmd);
988 if (status && (status & 0x7ff) == NVME_DATA_SGL_LEN_INVALID) {
989 status = NVME_MD_SGL_LEN_INVALID | NVME_DNR;
992 return status;
995 nvme_sg_init(n, sg, nvme_addr_is_dma(n, mptr));
996 status = nvme_map_addr(n, sg, mptr, len);
997 if (status) {
998 nvme_sg_unmap(sg);
1001 return status;
1004 static uint16_t nvme_map_data(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
1006 NvmeNamespace *ns = req->ns;
1007 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1008 uint16_t ctrl = le16_to_cpu(rw->control);
1009 size_t len = nvme_l2b(ns, nlb);
1010 uint16_t status;
1012 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) &&
1013 (ctrl & NVME_RW_PRINFO_PRACT && nvme_msize(ns) == 8)) {
1014 goto out;
1017 if (nvme_ns_ext(ns)) {
1018 NvmeSg sg;
1020 len += nvme_m2b(ns, nlb);
1022 status = nvme_map_dptr(n, &sg, len, &req->cmd);
1023 if (status) {
1024 return status;
1027 nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
1028 nvme_sg_split(&sg, ns, &req->sg, NULL);
1029 nvme_sg_unmap(&sg);
1031 return NVME_SUCCESS;
1034 out:
1035 return nvme_map_dptr(n, &req->sg, len, &req->cmd);
1038 static uint16_t nvme_map_mdata(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
1040 NvmeNamespace *ns = req->ns;
1041 size_t len = nvme_m2b(ns, nlb);
1042 uint16_t status;
1044 if (nvme_ns_ext(ns)) {
1045 NvmeSg sg;
1047 len += nvme_l2b(ns, nlb);
1049 status = nvme_map_dptr(n, &sg, len, &req->cmd);
1050 if (status) {
1051 return status;
1054 nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
1055 nvme_sg_split(&sg, ns, NULL, &req->sg);
1056 nvme_sg_unmap(&sg);
1058 return NVME_SUCCESS;
1061 return nvme_map_mptr(n, &req->sg, len, &req->cmd);
1064 static uint16_t nvme_tx_interleaved(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr,
1065 uint32_t len, uint32_t bytes,
1066 int32_t skip_bytes, int64_t offset,
1067 NvmeTxDirection dir)
1069 hwaddr addr;
1070 uint32_t trans_len, count = bytes;
1071 bool dma = sg->flags & NVME_SG_DMA;
1072 int64_t sge_len;
1073 int sg_idx = 0;
1074 int ret;
1076 assert(sg->flags & NVME_SG_ALLOC);
1078 while (len) {
1079 sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
1081 if (sge_len - offset < 0) {
1082 offset -= sge_len;
1083 sg_idx++;
1084 continue;
1087 if (sge_len == offset) {
1088 offset = 0;
1089 sg_idx++;
1090 continue;
1093 trans_len = MIN(len, count);
1094 trans_len = MIN(trans_len, sge_len - offset);
1096 if (dma) {
1097 addr = sg->qsg.sg[sg_idx].base + offset;
1098 } else {
1099 addr = (hwaddr)(uintptr_t)sg->iov.iov[sg_idx].iov_base + offset;
1102 if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1103 ret = nvme_addr_read(n, addr, ptr, trans_len);
1104 } else {
1105 ret = nvme_addr_write(n, addr, ptr, trans_len);
1108 if (ret) {
1109 return NVME_DATA_TRAS_ERROR;
1112 ptr += trans_len;
1113 len -= trans_len;
1114 count -= trans_len;
1115 offset += trans_len;
1117 if (count == 0) {
1118 count = bytes;
1119 offset += skip_bytes;
1123 return NVME_SUCCESS;
1126 static uint16_t nvme_tx(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr, uint32_t len,
1127 NvmeTxDirection dir)
1129 assert(sg->flags & NVME_SG_ALLOC);
1131 if (sg->flags & NVME_SG_DMA) {
1132 uint64_t residual;
1134 if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1135 residual = dma_buf_write(ptr, len, &sg->qsg);
1136 } else {
1137 residual = dma_buf_read(ptr, len, &sg->qsg);
1140 if (unlikely(residual)) {
1141 trace_pci_nvme_err_invalid_dma();
1142 return NVME_INVALID_FIELD | NVME_DNR;
1144 } else {
1145 size_t bytes;
1147 if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1148 bytes = qemu_iovec_to_buf(&sg->iov, 0, ptr, len);
1149 } else {
1150 bytes = qemu_iovec_from_buf(&sg->iov, 0, ptr, len);
1153 if (unlikely(bytes != len)) {
1154 trace_pci_nvme_err_invalid_dma();
1155 return NVME_INVALID_FIELD | NVME_DNR;
1159 return NVME_SUCCESS;
1162 static inline uint16_t nvme_c2h(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
1163 NvmeRequest *req)
1165 uint16_t status;
1167 status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
1168 if (status) {
1169 return status;
1172 return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_FROM_DEVICE);
1175 static inline uint16_t nvme_h2c(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
1176 NvmeRequest *req)
1178 uint16_t status;
1180 status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
1181 if (status) {
1182 return status;
1185 return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_TO_DEVICE);
1188 uint16_t nvme_bounce_data(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
1189 NvmeTxDirection dir, NvmeRequest *req)
1191 NvmeNamespace *ns = req->ns;
1192 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1193 uint16_t ctrl = le16_to_cpu(rw->control);
1195 if (nvme_ns_ext(ns) &&
1196 !(ctrl & NVME_RW_PRINFO_PRACT && nvme_msize(ns) == 8)) {
1197 size_t lsize = nvme_lsize(ns);
1198 size_t msize = nvme_msize(ns);
1200 return nvme_tx_interleaved(n, &req->sg, ptr, len, lsize, msize, 0,
1201 dir);
1204 return nvme_tx(n, &req->sg, ptr, len, dir);
1207 uint16_t nvme_bounce_mdata(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
1208 NvmeTxDirection dir, NvmeRequest *req)
1210 NvmeNamespace *ns = req->ns;
1211 uint16_t status;
1213 if (nvme_ns_ext(ns)) {
1214 size_t lsize = nvme_lsize(ns);
1215 size_t msize = nvme_msize(ns);
1217 return nvme_tx_interleaved(n, &req->sg, ptr, len, msize, lsize, lsize,
1218 dir);
1221 nvme_sg_unmap(&req->sg);
1223 status = nvme_map_mptr(n, &req->sg, len, &req->cmd);
1224 if (status) {
1225 return status;
1228 return nvme_tx(n, &req->sg, ptr, len, dir);
1231 static inline void nvme_blk_read(BlockBackend *blk, int64_t offset,
1232 BlockCompletionFunc *cb, NvmeRequest *req)
1234 assert(req->sg.flags & NVME_SG_ALLOC);
1236 if (req->sg.flags & NVME_SG_DMA) {
1237 req->aiocb = dma_blk_read(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE,
1238 cb, req);
1239 } else {
1240 req->aiocb = blk_aio_preadv(blk, offset, &req->sg.iov, 0, cb, req);
1244 static inline void nvme_blk_write(BlockBackend *blk, int64_t offset,
1245 BlockCompletionFunc *cb, NvmeRequest *req)
1247 assert(req->sg.flags & NVME_SG_ALLOC);
1249 if (req->sg.flags & NVME_SG_DMA) {
1250 req->aiocb = dma_blk_write(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE,
1251 cb, req);
1252 } else {
1253 req->aiocb = blk_aio_pwritev(blk, offset, &req->sg.iov, 0, cb, req);
1257 static void nvme_post_cqes(void *opaque)
1259 NvmeCQueue *cq = opaque;
1260 NvmeCtrl *n = cq->ctrl;
1261 NvmeRequest *req, *next;
1262 int ret;
1264 QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
1265 NvmeSQueue *sq;
1266 hwaddr addr;
1268 if (nvme_cq_full(cq)) {
1269 break;
1272 sq = req->sq;
1273 req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
1274 req->cqe.sq_id = cpu_to_le16(sq->sqid);
1275 req->cqe.sq_head = cpu_to_le16(sq->head);
1276 addr = cq->dma_addr + cq->tail * n->cqe_size;
1277 ret = pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
1278 sizeof(req->cqe));
1279 if (ret) {
1280 trace_pci_nvme_err_addr_write(addr);
1281 trace_pci_nvme_err_cfs();
1282 n->bar.csts = NVME_CSTS_FAILED;
1283 break;
1285 QTAILQ_REMOVE(&cq->req_list, req, entry);
1286 nvme_inc_cq_tail(cq);
1287 nvme_sg_unmap(&req->sg);
1288 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
1290 if (cq->tail != cq->head) {
1291 nvme_irq_assert(n, cq);
1295 static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
1297 assert(cq->cqid == req->sq->cqid);
1298 trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid,
1299 req->status);
1301 if (req->status) {
1302 trace_pci_nvme_err_req_status(nvme_cid(req), nvme_nsid(req->ns),
1303 req->status, req->cmd.opcode);
1306 QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
1307 QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
1308 timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1311 static void nvme_process_aers(void *opaque)
1313 NvmeCtrl *n = opaque;
1314 NvmeAsyncEvent *event, *next;
1316 trace_pci_nvme_process_aers(n->aer_queued);
1318 QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) {
1319 NvmeRequest *req;
1320 NvmeAerResult *result;
1322 /* can't post cqe if there is nothing to complete */
1323 if (!n->outstanding_aers) {
1324 trace_pci_nvme_no_outstanding_aers();
1325 break;
1328 /* ignore if masked (cqe posted, but event not cleared) */
1329 if (n->aer_mask & (1 << event->result.event_type)) {
1330 trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask);
1331 continue;
1334 QTAILQ_REMOVE(&n->aer_queue, event, entry);
1335 n->aer_queued--;
1337 n->aer_mask |= 1 << event->result.event_type;
1338 n->outstanding_aers--;
1340 req = n->aer_reqs[n->outstanding_aers];
1342 result = (NvmeAerResult *) &req->cqe.result;
1343 result->event_type = event->result.event_type;
1344 result->event_info = event->result.event_info;
1345 result->log_page = event->result.log_page;
1346 g_free(event);
1348 trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info,
1349 result->log_page);
1351 nvme_enqueue_req_completion(&n->admin_cq, req);
1355 static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type,
1356 uint8_t event_info, uint8_t log_page)
1358 NvmeAsyncEvent *event;
1360 trace_pci_nvme_enqueue_event(event_type, event_info, log_page);
1362 if (n->aer_queued == n->params.aer_max_queued) {
1363 trace_pci_nvme_enqueue_event_noqueue(n->aer_queued);
1364 return;
1367 event = g_new(NvmeAsyncEvent, 1);
1368 event->result = (NvmeAerResult) {
1369 .event_type = event_type,
1370 .event_info = event_info,
1371 .log_page = log_page,
1374 QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry);
1375 n->aer_queued++;
1377 nvme_process_aers(n);
1380 static void nvme_smart_event(NvmeCtrl *n, uint8_t event)
1382 uint8_t aer_info;
1384 /* Ref SPEC <Asynchronous Event Information 0x2013 SMART / Health Status> */
1385 if (!(NVME_AEC_SMART(n->features.async_config) & event)) {
1386 return;
1389 switch (event) {
1390 case NVME_SMART_SPARE:
1391 aer_info = NVME_AER_INFO_SMART_SPARE_THRESH;
1392 break;
1393 case NVME_SMART_TEMPERATURE:
1394 aer_info = NVME_AER_INFO_SMART_TEMP_THRESH;
1395 break;
1396 case NVME_SMART_RELIABILITY:
1397 case NVME_SMART_MEDIA_READ_ONLY:
1398 case NVME_SMART_FAILED_VOLATILE_MEDIA:
1399 case NVME_SMART_PMR_UNRELIABLE:
1400 aer_info = NVME_AER_INFO_SMART_RELIABILITY;
1401 break;
1402 default:
1403 return;
1406 nvme_enqueue_event(n, NVME_AER_TYPE_SMART, aer_info, NVME_LOG_SMART_INFO);
1409 static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type)
1411 n->aer_mask &= ~(1 << event_type);
1412 if (!QTAILQ_EMPTY(&n->aer_queue)) {
1413 nvme_process_aers(n);
1417 static inline uint16_t nvme_check_mdts(NvmeCtrl *n, size_t len)
1419 uint8_t mdts = n->params.mdts;
1421 if (mdts && len > n->page_size << mdts) {
1422 trace_pci_nvme_err_mdts(len);
1423 return NVME_INVALID_FIELD | NVME_DNR;
1426 return NVME_SUCCESS;
1429 static inline uint16_t nvme_check_bounds(NvmeNamespace *ns, uint64_t slba,
1430 uint32_t nlb)
1432 uint64_t nsze = le64_to_cpu(ns->id_ns.nsze);
1434 if (unlikely(UINT64_MAX - slba < nlb || slba + nlb > nsze)) {
1435 trace_pci_nvme_err_invalid_lba_range(slba, nlb, nsze);
1436 return NVME_LBA_RANGE | NVME_DNR;
1439 return NVME_SUCCESS;
1442 static uint16_t nvme_check_dulbe(NvmeNamespace *ns, uint64_t slba,
1443 uint32_t nlb)
1445 BlockDriverState *bs = blk_bs(ns->blkconf.blk);
1447 int64_t pnum = 0, bytes = nvme_l2b(ns, nlb);
1448 int64_t offset = nvme_l2b(ns, slba);
1449 bool zeroed;
1450 int ret;
1452 Error *local_err = NULL;
1455 * `pnum` holds the number of bytes after offset that shares the same
1456 * allocation status as the byte at offset. If `pnum` is different from
1457 * `bytes`, we should check the allocation status of the next range and
1458 * continue this until all bytes have been checked.
1460 do {
1461 bytes -= pnum;
1463 ret = bdrv_block_status(bs, offset, bytes, &pnum, NULL, NULL);
1464 if (ret < 0) {
1465 error_setg_errno(&local_err, -ret, "unable to get block status");
1466 error_report_err(local_err);
1468 return NVME_INTERNAL_DEV_ERROR;
1471 zeroed = !!(ret & BDRV_BLOCK_ZERO);
1473 trace_pci_nvme_block_status(offset, bytes, pnum, ret, zeroed);
1475 if (zeroed) {
1476 return NVME_DULB;
1479 offset += pnum;
1480 } while (pnum != bytes);
1482 return NVME_SUCCESS;
1485 static void nvme_aio_err(NvmeRequest *req, int ret)
1487 uint16_t status = NVME_SUCCESS;
1488 Error *local_err = NULL;
1490 switch (req->cmd.opcode) {
1491 case NVME_CMD_READ:
1492 status = NVME_UNRECOVERED_READ;
1493 break;
1494 case NVME_CMD_FLUSH:
1495 case NVME_CMD_WRITE:
1496 case NVME_CMD_WRITE_ZEROES:
1497 case NVME_CMD_ZONE_APPEND:
1498 status = NVME_WRITE_FAULT;
1499 break;
1500 default:
1501 status = NVME_INTERNAL_DEV_ERROR;
1502 break;
1505 trace_pci_nvme_err_aio(nvme_cid(req), strerror(-ret), status);
1507 error_setg_errno(&local_err, -ret, "aio failed");
1508 error_report_err(local_err);
1511 * Set the command status code to the first encountered error but allow a
1512 * subsequent Internal Device Error to trump it.
1514 if (req->status && status != NVME_INTERNAL_DEV_ERROR) {
1515 return;
1518 req->status = status;
1521 static inline uint32_t nvme_zone_idx(NvmeNamespace *ns, uint64_t slba)
1523 return ns->zone_size_log2 > 0 ? slba >> ns->zone_size_log2 :
1524 slba / ns->zone_size;
1527 static inline NvmeZone *nvme_get_zone_by_slba(NvmeNamespace *ns, uint64_t slba)
1529 uint32_t zone_idx = nvme_zone_idx(ns, slba);
1531 assert(zone_idx < ns->num_zones);
1532 return &ns->zone_array[zone_idx];
1535 static uint16_t nvme_check_zone_state_for_write(NvmeZone *zone)
1537 uint64_t zslba = zone->d.zslba;
1539 switch (nvme_get_zone_state(zone)) {
1540 case NVME_ZONE_STATE_EMPTY:
1541 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1542 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1543 case NVME_ZONE_STATE_CLOSED:
1544 return NVME_SUCCESS;
1545 case NVME_ZONE_STATE_FULL:
1546 trace_pci_nvme_err_zone_is_full(zslba);
1547 return NVME_ZONE_FULL;
1548 case NVME_ZONE_STATE_OFFLINE:
1549 trace_pci_nvme_err_zone_is_offline(zslba);
1550 return NVME_ZONE_OFFLINE;
1551 case NVME_ZONE_STATE_READ_ONLY:
1552 trace_pci_nvme_err_zone_is_read_only(zslba);
1553 return NVME_ZONE_READ_ONLY;
1554 default:
1555 assert(false);
1558 return NVME_INTERNAL_DEV_ERROR;
1561 static uint16_t nvme_check_zone_write(NvmeNamespace *ns, NvmeZone *zone,
1562 uint64_t slba, uint32_t nlb)
1564 uint64_t zcap = nvme_zone_wr_boundary(zone);
1565 uint16_t status;
1567 status = nvme_check_zone_state_for_write(zone);
1568 if (status) {
1569 return status;
1572 if (unlikely(slba != zone->w_ptr)) {
1573 trace_pci_nvme_err_write_not_at_wp(slba, zone->d.zslba, zone->w_ptr);
1574 return NVME_ZONE_INVALID_WRITE;
1577 if (unlikely((slba + nlb) > zcap)) {
1578 trace_pci_nvme_err_zone_boundary(slba, nlb, zcap);
1579 return NVME_ZONE_BOUNDARY_ERROR;
1582 return NVME_SUCCESS;
1585 static uint16_t nvme_check_zone_state_for_read(NvmeZone *zone)
1587 switch (nvme_get_zone_state(zone)) {
1588 case NVME_ZONE_STATE_EMPTY:
1589 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1590 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1591 case NVME_ZONE_STATE_FULL:
1592 case NVME_ZONE_STATE_CLOSED:
1593 case NVME_ZONE_STATE_READ_ONLY:
1594 return NVME_SUCCESS;
1595 case NVME_ZONE_STATE_OFFLINE:
1596 trace_pci_nvme_err_zone_is_offline(zone->d.zslba);
1597 return NVME_ZONE_OFFLINE;
1598 default:
1599 assert(false);
1602 return NVME_INTERNAL_DEV_ERROR;
1605 static uint16_t nvme_check_zone_read(NvmeNamespace *ns, uint64_t slba,
1606 uint32_t nlb)
1608 NvmeZone *zone = nvme_get_zone_by_slba(ns, slba);
1609 uint64_t bndry = nvme_zone_rd_boundary(ns, zone);
1610 uint64_t end = slba + nlb;
1611 uint16_t status;
1613 status = nvme_check_zone_state_for_read(zone);
1614 if (status) {
1616 } else if (unlikely(end > bndry)) {
1617 if (!ns->params.cross_zone_read) {
1618 status = NVME_ZONE_BOUNDARY_ERROR;
1619 } else {
1621 * Read across zone boundary - check that all subsequent
1622 * zones that are being read have an appropriate state.
1624 do {
1625 zone++;
1626 status = nvme_check_zone_state_for_read(zone);
1627 if (status) {
1628 break;
1630 } while (end > nvme_zone_rd_boundary(ns, zone));
1634 return status;
1637 static uint16_t nvme_zrm_finish(NvmeNamespace *ns, NvmeZone *zone)
1639 switch (nvme_get_zone_state(zone)) {
1640 case NVME_ZONE_STATE_FULL:
1641 return NVME_SUCCESS;
1643 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1644 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1645 nvme_aor_dec_open(ns);
1646 /* fallthrough */
1647 case NVME_ZONE_STATE_CLOSED:
1648 nvme_aor_dec_active(ns);
1649 /* fallthrough */
1650 case NVME_ZONE_STATE_EMPTY:
1651 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_FULL);
1652 return NVME_SUCCESS;
1654 default:
1655 return NVME_ZONE_INVAL_TRANSITION;
1659 static uint16_t nvme_zrm_close(NvmeNamespace *ns, NvmeZone *zone)
1661 switch (nvme_get_zone_state(zone)) {
1662 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1663 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1664 nvme_aor_dec_open(ns);
1665 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
1666 /* fall through */
1667 case NVME_ZONE_STATE_CLOSED:
1668 return NVME_SUCCESS;
1670 default:
1671 return NVME_ZONE_INVAL_TRANSITION;
1675 static void nvme_zrm_auto_transition_zone(NvmeNamespace *ns)
1677 NvmeZone *zone;
1679 if (ns->params.max_open_zones &&
1680 ns->nr_open_zones == ns->params.max_open_zones) {
1681 zone = QTAILQ_FIRST(&ns->imp_open_zones);
1682 if (zone) {
1684 * Automatically close this implicitly open zone.
1686 QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
1687 nvme_zrm_close(ns, zone);
1692 enum {
1693 NVME_ZRM_AUTO = 1 << 0,
1696 static uint16_t nvme_zrm_open_flags(NvmeNamespace *ns, NvmeZone *zone,
1697 int flags)
1699 int act = 0;
1700 uint16_t status;
1702 switch (nvme_get_zone_state(zone)) {
1703 case NVME_ZONE_STATE_EMPTY:
1704 act = 1;
1706 /* fallthrough */
1708 case NVME_ZONE_STATE_CLOSED:
1709 nvme_zrm_auto_transition_zone(ns);
1710 status = nvme_aor_check(ns, act, 1);
1711 if (status) {
1712 return status;
1715 if (act) {
1716 nvme_aor_inc_active(ns);
1719 nvme_aor_inc_open(ns);
1721 if (flags & NVME_ZRM_AUTO) {
1722 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_IMPLICITLY_OPEN);
1723 return NVME_SUCCESS;
1726 /* fallthrough */
1728 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1729 if (flags & NVME_ZRM_AUTO) {
1730 return NVME_SUCCESS;
1733 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EXPLICITLY_OPEN);
1735 /* fallthrough */
1737 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1738 return NVME_SUCCESS;
1740 default:
1741 return NVME_ZONE_INVAL_TRANSITION;
1745 static inline uint16_t nvme_zrm_auto(NvmeNamespace *ns, NvmeZone *zone)
1747 return nvme_zrm_open_flags(ns, zone, NVME_ZRM_AUTO);
1750 static inline uint16_t nvme_zrm_open(NvmeNamespace *ns, NvmeZone *zone)
1752 return nvme_zrm_open_flags(ns, zone, 0);
1755 static void nvme_advance_zone_wp(NvmeNamespace *ns, NvmeZone *zone,
1756 uint32_t nlb)
1758 zone->d.wp += nlb;
1760 if (zone->d.wp == nvme_zone_wr_boundary(zone)) {
1761 nvme_zrm_finish(ns, zone);
1765 static void nvme_finalize_zoned_write(NvmeNamespace *ns, NvmeRequest *req)
1767 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1768 NvmeZone *zone;
1769 uint64_t slba;
1770 uint32_t nlb;
1772 slba = le64_to_cpu(rw->slba);
1773 nlb = le16_to_cpu(rw->nlb) + 1;
1774 zone = nvme_get_zone_by_slba(ns, slba);
1776 nvme_advance_zone_wp(ns, zone, nlb);
1779 static inline bool nvme_is_write(NvmeRequest *req)
1781 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1783 return rw->opcode == NVME_CMD_WRITE ||
1784 rw->opcode == NVME_CMD_ZONE_APPEND ||
1785 rw->opcode == NVME_CMD_WRITE_ZEROES;
1788 static void nvme_misc_cb(void *opaque, int ret)
1790 NvmeRequest *req = opaque;
1791 NvmeNamespace *ns = req->ns;
1793 BlockBackend *blk = ns->blkconf.blk;
1794 BlockAcctCookie *acct = &req->acct;
1795 BlockAcctStats *stats = blk_get_stats(blk);
1797 trace_pci_nvme_misc_cb(nvme_cid(req), blk_name(blk));
1799 if (ret) {
1800 block_acct_failed(stats, acct);
1801 nvme_aio_err(req, ret);
1802 } else {
1803 block_acct_done(stats, acct);
1806 nvme_enqueue_req_completion(nvme_cq(req), req);
1809 void nvme_rw_complete_cb(void *opaque, int ret)
1811 NvmeRequest *req = opaque;
1812 NvmeNamespace *ns = req->ns;
1813 BlockBackend *blk = ns->blkconf.blk;
1814 BlockAcctCookie *acct = &req->acct;
1815 BlockAcctStats *stats = blk_get_stats(blk);
1817 trace_pci_nvme_rw_complete_cb(nvme_cid(req), blk_name(blk));
1819 if (ret) {
1820 block_acct_failed(stats, acct);
1821 nvme_aio_err(req, ret);
1822 } else {
1823 block_acct_done(stats, acct);
1826 if (ns->params.zoned && nvme_is_write(req)) {
1827 nvme_finalize_zoned_write(ns, req);
1830 nvme_enqueue_req_completion(nvme_cq(req), req);
1833 static void nvme_rw_cb(void *opaque, int ret)
1835 NvmeRequest *req = opaque;
1836 NvmeNamespace *ns = req->ns;
1838 BlockBackend *blk = ns->blkconf.blk;
1840 trace_pci_nvme_rw_cb(nvme_cid(req), blk_name(blk));
1842 if (ret) {
1843 goto out;
1846 if (nvme_msize(ns)) {
1847 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1848 uint64_t slba = le64_to_cpu(rw->slba);
1849 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
1850 uint64_t offset = ns->mdata_offset + nvme_m2b(ns, slba);
1852 if (req->cmd.opcode == NVME_CMD_WRITE_ZEROES) {
1853 size_t mlen = nvme_m2b(ns, nlb);
1855 req->aiocb = blk_aio_pwrite_zeroes(blk, offset, mlen,
1856 BDRV_REQ_MAY_UNMAP,
1857 nvme_rw_complete_cb, req);
1858 return;
1861 if (nvme_ns_ext(ns) || req->cmd.mptr) {
1862 uint16_t status;
1864 nvme_sg_unmap(&req->sg);
1865 status = nvme_map_mdata(nvme_ctrl(req), nlb, req);
1866 if (status) {
1867 ret = -EFAULT;
1868 goto out;
1871 if (req->cmd.opcode == NVME_CMD_READ) {
1872 return nvme_blk_read(blk, offset, nvme_rw_complete_cb, req);
1875 return nvme_blk_write(blk, offset, nvme_rw_complete_cb, req);
1879 out:
1880 nvme_rw_complete_cb(req, ret);
1883 struct nvme_aio_format_ctx {
1884 NvmeRequest *req;
1885 NvmeNamespace *ns;
1887 /* number of outstanding write zeroes for this namespace */
1888 int *count;
1891 static void nvme_aio_format_cb(void *opaque, int ret)
1893 struct nvme_aio_format_ctx *ctx = opaque;
1894 NvmeRequest *req = ctx->req;
1895 NvmeNamespace *ns = ctx->ns;
1896 uintptr_t *num_formats = (uintptr_t *)&req->opaque;
1897 int *count = ctx->count;
1899 g_free(ctx);
1901 if (ret) {
1902 nvme_aio_err(req, ret);
1905 if (--(*count)) {
1906 return;
1909 g_free(count);
1910 ns->status = 0x0;
1912 if (--(*num_formats)) {
1913 return;
1916 nvme_enqueue_req_completion(nvme_cq(req), req);
1919 struct nvme_aio_flush_ctx {
1920 NvmeRequest *req;
1921 NvmeNamespace *ns;
1922 BlockAcctCookie acct;
1925 static void nvme_aio_flush_cb(void *opaque, int ret)
1927 struct nvme_aio_flush_ctx *ctx = opaque;
1928 NvmeRequest *req = ctx->req;
1929 uintptr_t *num_flushes = (uintptr_t *)&req->opaque;
1931 BlockBackend *blk = ctx->ns->blkconf.blk;
1932 BlockAcctCookie *acct = &ctx->acct;
1933 BlockAcctStats *stats = blk_get_stats(blk);
1935 trace_pci_nvme_aio_flush_cb(nvme_cid(req), blk_name(blk));
1937 if (!ret) {
1938 block_acct_done(stats, acct);
1939 } else {
1940 block_acct_failed(stats, acct);
1941 nvme_aio_err(req, ret);
1944 (*num_flushes)--;
1945 g_free(ctx);
1947 if (*num_flushes) {
1948 return;
1951 nvme_enqueue_req_completion(nvme_cq(req), req);
1954 static void nvme_verify_cb(void *opaque, int ret)
1956 NvmeBounceContext *ctx = opaque;
1957 NvmeRequest *req = ctx->req;
1958 NvmeNamespace *ns = req->ns;
1959 BlockBackend *blk = ns->blkconf.blk;
1960 BlockAcctCookie *acct = &req->acct;
1961 BlockAcctStats *stats = blk_get_stats(blk);
1962 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1963 uint64_t slba = le64_to_cpu(rw->slba);
1964 uint16_t ctrl = le16_to_cpu(rw->control);
1965 uint16_t apptag = le16_to_cpu(rw->apptag);
1966 uint16_t appmask = le16_to_cpu(rw->appmask);
1967 uint32_t reftag = le32_to_cpu(rw->reftag);
1968 uint16_t status;
1970 trace_pci_nvme_verify_cb(nvme_cid(req), NVME_RW_PRINFO(ctrl), apptag,
1971 appmask, reftag);
1973 if (ret) {
1974 block_acct_failed(stats, acct);
1975 nvme_aio_err(req, ret);
1976 goto out;
1979 block_acct_done(stats, acct);
1981 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
1982 status = nvme_dif_mangle_mdata(ns, ctx->mdata.bounce,
1983 ctx->mdata.iov.size, slba);
1984 if (status) {
1985 req->status = status;
1986 goto out;
1989 req->status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
1990 ctx->mdata.bounce, ctx->mdata.iov.size,
1991 ctrl, slba, apptag, appmask, reftag);
1994 out:
1995 qemu_iovec_destroy(&ctx->data.iov);
1996 g_free(ctx->data.bounce);
1998 qemu_iovec_destroy(&ctx->mdata.iov);
1999 g_free(ctx->mdata.bounce);
2001 g_free(ctx);
2003 nvme_enqueue_req_completion(nvme_cq(req), req);
2007 static void nvme_verify_mdata_in_cb(void *opaque, int ret)
2009 NvmeBounceContext *ctx = opaque;
2010 NvmeRequest *req = ctx->req;
2011 NvmeNamespace *ns = req->ns;
2012 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2013 uint64_t slba = le64_to_cpu(rw->slba);
2014 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2015 size_t mlen = nvme_m2b(ns, nlb);
2016 uint64_t offset = ns->mdata_offset + nvme_m2b(ns, slba);
2017 BlockBackend *blk = ns->blkconf.blk;
2019 trace_pci_nvme_verify_mdata_in_cb(nvme_cid(req), blk_name(blk));
2021 if (ret) {
2022 goto out;
2025 ctx->mdata.bounce = g_malloc(mlen);
2027 qemu_iovec_reset(&ctx->mdata.iov);
2028 qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
2030 req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
2031 nvme_verify_cb, ctx);
2032 return;
2034 out:
2035 nvme_verify_cb(ctx, ret);
2038 static void nvme_aio_discard_cb(void *opaque, int ret)
2040 NvmeRequest *req = opaque;
2041 uintptr_t *discards = (uintptr_t *)&req->opaque;
2043 trace_pci_nvme_aio_discard_cb(nvme_cid(req));
2045 if (ret) {
2046 nvme_aio_err(req, ret);
2049 (*discards)--;
2051 if (*discards) {
2052 return;
2055 nvme_enqueue_req_completion(nvme_cq(req), req);
2058 struct nvme_zone_reset_ctx {
2059 NvmeRequest *req;
2060 NvmeZone *zone;
2063 static void nvme_aio_zone_reset_complete_cb(void *opaque, int ret)
2065 struct nvme_zone_reset_ctx *ctx = opaque;
2066 NvmeRequest *req = ctx->req;
2067 NvmeNamespace *ns = req->ns;
2068 NvmeZone *zone = ctx->zone;
2069 uintptr_t *resets = (uintptr_t *)&req->opaque;
2071 if (ret) {
2072 nvme_aio_err(req, ret);
2073 goto out;
2076 switch (nvme_get_zone_state(zone)) {
2077 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
2078 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
2079 nvme_aor_dec_open(ns);
2080 /* fall through */
2081 case NVME_ZONE_STATE_CLOSED:
2082 nvme_aor_dec_active(ns);
2083 /* fall through */
2084 case NVME_ZONE_STATE_FULL:
2085 zone->w_ptr = zone->d.zslba;
2086 zone->d.wp = zone->w_ptr;
2087 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EMPTY);
2088 /* fall through */
2089 default:
2090 break;
2093 out:
2094 g_free(ctx);
2096 (*resets)--;
2098 if (*resets) {
2099 return;
2102 nvme_enqueue_req_completion(nvme_cq(req), req);
2105 static void nvme_aio_zone_reset_cb(void *opaque, int ret)
2107 struct nvme_zone_reset_ctx *ctx = opaque;
2108 NvmeRequest *req = ctx->req;
2109 NvmeNamespace *ns = req->ns;
2110 NvmeZone *zone = ctx->zone;
2112 trace_pci_nvme_aio_zone_reset_cb(nvme_cid(req), zone->d.zslba);
2114 if (ret) {
2115 goto out;
2118 if (nvme_msize(ns)) {
2119 int64_t offset = ns->mdata_offset + nvme_m2b(ns, zone->d.zslba);
2121 blk_aio_pwrite_zeroes(ns->blkconf.blk, offset,
2122 nvme_m2b(ns, ns->zone_size), BDRV_REQ_MAY_UNMAP,
2123 nvme_aio_zone_reset_complete_cb, ctx);
2124 return;
2127 out:
2128 nvme_aio_zone_reset_complete_cb(opaque, ret);
2131 struct nvme_copy_ctx {
2132 int copies;
2133 uint8_t *bounce;
2134 uint8_t *mbounce;
2135 uint32_t nlb;
2136 NvmeCopySourceRange *ranges;
2139 struct nvme_copy_in_ctx {
2140 NvmeRequest *req;
2141 QEMUIOVector iov;
2142 NvmeCopySourceRange *range;
2145 static void nvme_copy_complete_cb(void *opaque, int ret)
2147 NvmeRequest *req = opaque;
2148 NvmeNamespace *ns = req->ns;
2149 struct nvme_copy_ctx *ctx = req->opaque;
2151 if (ret) {
2152 block_acct_failed(blk_get_stats(ns->blkconf.blk), &req->acct);
2153 nvme_aio_err(req, ret);
2154 goto out;
2157 block_acct_done(blk_get_stats(ns->blkconf.blk), &req->acct);
2159 out:
2160 if (ns->params.zoned) {
2161 NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
2162 uint64_t sdlba = le64_to_cpu(copy->sdlba);
2163 NvmeZone *zone = nvme_get_zone_by_slba(ns, sdlba);
2165 nvme_advance_zone_wp(ns, zone, ctx->nlb);
2168 g_free(ctx->bounce);
2169 g_free(ctx->mbounce);
2170 g_free(ctx);
2172 nvme_enqueue_req_completion(nvme_cq(req), req);
2175 static void nvme_copy_cb(void *opaque, int ret)
2177 NvmeRequest *req = opaque;
2178 NvmeNamespace *ns = req->ns;
2179 struct nvme_copy_ctx *ctx = req->opaque;
2181 trace_pci_nvme_copy_cb(nvme_cid(req));
2183 if (ret) {
2184 goto out;
2187 if (nvme_msize(ns)) {
2188 NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
2189 uint64_t sdlba = le64_to_cpu(copy->sdlba);
2190 int64_t offset = ns->mdata_offset + nvme_m2b(ns, sdlba);
2192 qemu_iovec_reset(&req->sg.iov);
2193 qemu_iovec_add(&req->sg.iov, ctx->mbounce, nvme_m2b(ns, ctx->nlb));
2195 req->aiocb = blk_aio_pwritev(ns->blkconf.blk, offset, &req->sg.iov, 0,
2196 nvme_copy_complete_cb, req);
2197 return;
2200 out:
2201 nvme_copy_complete_cb(opaque, ret);
2204 static void nvme_copy_in_complete(NvmeRequest *req)
2206 NvmeNamespace *ns = req->ns;
2207 NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
2208 struct nvme_copy_ctx *ctx = req->opaque;
2209 uint64_t sdlba = le64_to_cpu(copy->sdlba);
2210 uint16_t status;
2212 trace_pci_nvme_copy_in_complete(nvme_cid(req));
2214 block_acct_done(blk_get_stats(ns->blkconf.blk), &req->acct);
2216 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2217 uint16_t prinfor = (copy->control[0] >> 4) & 0xf;
2218 uint16_t prinfow = (copy->control[2] >> 2) & 0xf;
2219 uint16_t nr = copy->nr + 1;
2220 NvmeCopySourceRange *range;
2221 uint64_t slba;
2222 uint32_t nlb;
2223 uint16_t apptag, appmask;
2224 uint32_t reftag;
2225 uint8_t *buf = ctx->bounce, *mbuf = ctx->mbounce;
2226 size_t len, mlen;
2227 int i;
2230 * The dif helpers expects prinfo to be similar to the control field of
2231 * the NvmeRwCmd, so shift by 10 to fake it.
2233 prinfor = prinfor << 10;
2234 prinfow = prinfow << 10;
2236 for (i = 0; i < nr; i++) {
2237 range = &ctx->ranges[i];
2238 slba = le64_to_cpu(range->slba);
2239 nlb = le16_to_cpu(range->nlb) + 1;
2240 len = nvme_l2b(ns, nlb);
2241 mlen = nvme_m2b(ns, nlb);
2242 apptag = le16_to_cpu(range->apptag);
2243 appmask = le16_to_cpu(range->appmask);
2244 reftag = le32_to_cpu(range->reftag);
2246 status = nvme_dif_check(ns, buf, len, mbuf, mlen, prinfor, slba,
2247 apptag, appmask, reftag);
2248 if (status) {
2249 goto invalid;
2252 buf += len;
2253 mbuf += mlen;
2256 apptag = le16_to_cpu(copy->apptag);
2257 appmask = le16_to_cpu(copy->appmask);
2258 reftag = le32_to_cpu(copy->reftag);
2260 if (prinfow & NVME_RW_PRINFO_PRACT) {
2261 size_t len = nvme_l2b(ns, ctx->nlb);
2262 size_t mlen = nvme_m2b(ns, ctx->nlb);
2264 status = nvme_check_prinfo(ns, prinfow, sdlba, reftag);
2265 if (status) {
2266 goto invalid;
2269 nvme_dif_pract_generate_dif(ns, ctx->bounce, len, ctx->mbounce,
2270 mlen, apptag, reftag);
2271 } else {
2272 status = nvme_dif_check(ns, ctx->bounce, len, ctx->mbounce, mlen,
2273 prinfow, sdlba, apptag, appmask, reftag);
2274 if (status) {
2275 goto invalid;
2280 status = nvme_check_bounds(ns, sdlba, ctx->nlb);
2281 if (status) {
2282 goto invalid;
2285 if (ns->params.zoned) {
2286 NvmeZone *zone = nvme_get_zone_by_slba(ns, sdlba);
2288 status = nvme_check_zone_write(ns, zone, sdlba, ctx->nlb);
2289 if (status) {
2290 goto invalid;
2293 status = nvme_zrm_auto(ns, zone);
2294 if (status) {
2295 goto invalid;
2298 zone->w_ptr += ctx->nlb;
2301 qemu_iovec_init(&req->sg.iov, 1);
2302 qemu_iovec_add(&req->sg.iov, ctx->bounce, nvme_l2b(ns, ctx->nlb));
2304 block_acct_start(blk_get_stats(ns->blkconf.blk), &req->acct, 0,
2305 BLOCK_ACCT_WRITE);
2307 req->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_l2b(ns, sdlba),
2308 &req->sg.iov, 0, nvme_copy_cb, req);
2310 return;
2312 invalid:
2313 req->status = status;
2315 g_free(ctx->bounce);
2316 g_free(ctx);
2318 nvme_enqueue_req_completion(nvme_cq(req), req);
2321 static void nvme_aio_copy_in_cb(void *opaque, int ret)
2323 struct nvme_copy_in_ctx *in_ctx = opaque;
2324 NvmeRequest *req = in_ctx->req;
2325 NvmeNamespace *ns = req->ns;
2326 struct nvme_copy_ctx *ctx = req->opaque;
2328 qemu_iovec_destroy(&in_ctx->iov);
2329 g_free(in_ctx);
2331 trace_pci_nvme_aio_copy_in_cb(nvme_cid(req));
2333 if (ret) {
2334 nvme_aio_err(req, ret);
2337 ctx->copies--;
2339 if (ctx->copies) {
2340 return;
2343 if (req->status) {
2344 block_acct_failed(blk_get_stats(ns->blkconf.blk), &req->acct);
2346 g_free(ctx->bounce);
2347 g_free(ctx->mbounce);
2348 g_free(ctx);
2350 nvme_enqueue_req_completion(nvme_cq(req), req);
2352 return;
2355 nvme_copy_in_complete(req);
2358 struct nvme_compare_ctx {
2359 struct {
2360 QEMUIOVector iov;
2361 uint8_t *bounce;
2362 } data;
2364 struct {
2365 QEMUIOVector iov;
2366 uint8_t *bounce;
2367 } mdata;
2370 static void nvme_compare_mdata_cb(void *opaque, int ret)
2372 NvmeRequest *req = opaque;
2373 NvmeNamespace *ns = req->ns;
2374 NvmeCtrl *n = nvme_ctrl(req);
2375 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2376 uint16_t ctrl = le16_to_cpu(rw->control);
2377 uint16_t apptag = le16_to_cpu(rw->apptag);
2378 uint16_t appmask = le16_to_cpu(rw->appmask);
2379 uint32_t reftag = le32_to_cpu(rw->reftag);
2380 struct nvme_compare_ctx *ctx = req->opaque;
2381 g_autofree uint8_t *buf = NULL;
2382 BlockBackend *blk = ns->blkconf.blk;
2383 BlockAcctCookie *acct = &req->acct;
2384 BlockAcctStats *stats = blk_get_stats(blk);
2385 uint16_t status = NVME_SUCCESS;
2387 trace_pci_nvme_compare_mdata_cb(nvme_cid(req));
2389 if (ret) {
2390 block_acct_failed(stats, acct);
2391 nvme_aio_err(req, ret);
2392 goto out;
2395 buf = g_malloc(ctx->mdata.iov.size);
2397 status = nvme_bounce_mdata(n, buf, ctx->mdata.iov.size,
2398 NVME_TX_DIRECTION_TO_DEVICE, req);
2399 if (status) {
2400 req->status = status;
2401 goto out;
2404 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2405 uint64_t slba = le64_to_cpu(rw->slba);
2406 uint8_t *bufp;
2407 uint8_t *mbufp = ctx->mdata.bounce;
2408 uint8_t *end = mbufp + ctx->mdata.iov.size;
2409 size_t msize = nvme_msize(ns);
2410 int16_t pil = 0;
2412 status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
2413 ctx->mdata.bounce, ctx->mdata.iov.size, ctrl,
2414 slba, apptag, appmask, reftag);
2415 if (status) {
2416 req->status = status;
2417 goto out;
2421 * When formatted with protection information, do not compare the DIF
2422 * tuple.
2424 if (!(ns->id_ns.dps & NVME_ID_NS_DPS_FIRST_EIGHT)) {
2425 pil = nvme_msize(ns) - sizeof(NvmeDifTuple);
2428 for (bufp = buf; mbufp < end; bufp += msize, mbufp += msize) {
2429 if (memcmp(bufp + pil, mbufp + pil, msize - pil)) {
2430 req->status = NVME_CMP_FAILURE;
2431 goto out;
2435 goto out;
2438 if (memcmp(buf, ctx->mdata.bounce, ctx->mdata.iov.size)) {
2439 req->status = NVME_CMP_FAILURE;
2440 goto out;
2443 block_acct_done(stats, acct);
2445 out:
2446 qemu_iovec_destroy(&ctx->data.iov);
2447 g_free(ctx->data.bounce);
2449 qemu_iovec_destroy(&ctx->mdata.iov);
2450 g_free(ctx->mdata.bounce);
2452 g_free(ctx);
2454 nvme_enqueue_req_completion(nvme_cq(req), req);
2457 static void nvme_compare_data_cb(void *opaque, int ret)
2459 NvmeRequest *req = opaque;
2460 NvmeCtrl *n = nvme_ctrl(req);
2461 NvmeNamespace *ns = req->ns;
2462 BlockBackend *blk = ns->blkconf.blk;
2463 BlockAcctCookie *acct = &req->acct;
2464 BlockAcctStats *stats = blk_get_stats(blk);
2466 struct nvme_compare_ctx *ctx = req->opaque;
2467 g_autofree uint8_t *buf = NULL;
2468 uint16_t status;
2470 trace_pci_nvme_compare_data_cb(nvme_cid(req));
2472 if (ret) {
2473 block_acct_failed(stats, acct);
2474 nvme_aio_err(req, ret);
2475 goto out;
2478 buf = g_malloc(ctx->data.iov.size);
2480 status = nvme_bounce_data(n, buf, ctx->data.iov.size,
2481 NVME_TX_DIRECTION_TO_DEVICE, req);
2482 if (status) {
2483 req->status = status;
2484 goto out;
2487 if (memcmp(buf, ctx->data.bounce, ctx->data.iov.size)) {
2488 req->status = NVME_CMP_FAILURE;
2489 goto out;
2492 if (nvme_msize(ns)) {
2493 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2494 uint64_t slba = le64_to_cpu(rw->slba);
2495 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2496 size_t mlen = nvme_m2b(ns, nlb);
2497 uint64_t offset = ns->mdata_offset + nvme_m2b(ns, slba);
2499 ctx->mdata.bounce = g_malloc(mlen);
2501 qemu_iovec_init(&ctx->mdata.iov, 1);
2502 qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
2504 req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
2505 nvme_compare_mdata_cb, req);
2506 return;
2509 block_acct_done(stats, acct);
2511 out:
2512 qemu_iovec_destroy(&ctx->data.iov);
2513 g_free(ctx->data.bounce);
2514 g_free(ctx);
2516 nvme_enqueue_req_completion(nvme_cq(req), req);
2519 static uint16_t nvme_dsm(NvmeCtrl *n, NvmeRequest *req)
2521 NvmeNamespace *ns = req->ns;
2522 NvmeDsmCmd *dsm = (NvmeDsmCmd *) &req->cmd;
2524 uint32_t attr = le32_to_cpu(dsm->attributes);
2525 uint32_t nr = (le32_to_cpu(dsm->nr) & 0xff) + 1;
2527 uint16_t status = NVME_SUCCESS;
2529 trace_pci_nvme_dsm(nvme_cid(req), nvme_nsid(ns), nr, attr);
2531 if (attr & NVME_DSMGMT_AD) {
2532 int64_t offset;
2533 size_t len;
2534 NvmeDsmRange range[nr];
2535 uintptr_t *discards = (uintptr_t *)&req->opaque;
2537 status = nvme_h2c(n, (uint8_t *)range, sizeof(range), req);
2538 if (status) {
2539 return status;
2543 * AIO callbacks may be called immediately, so initialize discards to 1
2544 * to make sure the the callback does not complete the request before
2545 * all discards have been issued.
2547 *discards = 1;
2549 for (int i = 0; i < nr; i++) {
2550 uint64_t slba = le64_to_cpu(range[i].slba);
2551 uint32_t nlb = le32_to_cpu(range[i].nlb);
2553 if (nvme_check_bounds(ns, slba, nlb)) {
2554 continue;
2557 trace_pci_nvme_dsm_deallocate(nvme_cid(req), nvme_nsid(ns), slba,
2558 nlb);
2560 if (nlb > n->dmrsl) {
2561 trace_pci_nvme_dsm_single_range_limit_exceeded(nlb, n->dmrsl);
2564 offset = nvme_l2b(ns, slba);
2565 len = nvme_l2b(ns, nlb);
2567 while (len) {
2568 size_t bytes = MIN(BDRV_REQUEST_MAX_BYTES, len);
2570 (*discards)++;
2572 blk_aio_pdiscard(ns->blkconf.blk, offset, bytes,
2573 nvme_aio_discard_cb, req);
2575 offset += bytes;
2576 len -= bytes;
2580 /* account for the 1-initialization */
2581 (*discards)--;
2583 if (*discards) {
2584 status = NVME_NO_COMPLETE;
2585 } else {
2586 status = req->status;
2590 return status;
2593 static uint16_t nvme_verify(NvmeCtrl *n, NvmeRequest *req)
2595 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2596 NvmeNamespace *ns = req->ns;
2597 BlockBackend *blk = ns->blkconf.blk;
2598 uint64_t slba = le64_to_cpu(rw->slba);
2599 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2600 size_t len = nvme_l2b(ns, nlb);
2601 int64_t offset = nvme_l2b(ns, slba);
2602 uint16_t ctrl = le16_to_cpu(rw->control);
2603 uint32_t reftag = le32_to_cpu(rw->reftag);
2604 NvmeBounceContext *ctx = NULL;
2605 uint16_t status;
2607 trace_pci_nvme_verify(nvme_cid(req), nvme_nsid(ns), slba, nlb);
2609 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2610 status = nvme_check_prinfo(ns, ctrl, slba, reftag);
2611 if (status) {
2612 return status;
2615 if (ctrl & NVME_RW_PRINFO_PRACT) {
2616 return NVME_INVALID_PROT_INFO | NVME_DNR;
2620 if (len > n->page_size << n->params.vsl) {
2621 return NVME_INVALID_FIELD | NVME_DNR;
2624 status = nvme_check_bounds(ns, slba, nlb);
2625 if (status) {
2626 return status;
2629 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
2630 status = nvme_check_dulbe(ns, slba, nlb);
2631 if (status) {
2632 return status;
2636 ctx = g_new0(NvmeBounceContext, 1);
2637 ctx->req = req;
2639 ctx->data.bounce = g_malloc(len);
2641 qemu_iovec_init(&ctx->data.iov, 1);
2642 qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, len);
2644 block_acct_start(blk_get_stats(blk), &req->acct, ctx->data.iov.size,
2645 BLOCK_ACCT_READ);
2647 req->aiocb = blk_aio_preadv(ns->blkconf.blk, offset, &ctx->data.iov, 0,
2648 nvme_verify_mdata_in_cb, ctx);
2649 return NVME_NO_COMPLETE;
2652 static uint16_t nvme_copy(NvmeCtrl *n, NvmeRequest *req)
2654 NvmeNamespace *ns = req->ns;
2655 NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
2657 uint16_t nr = copy->nr + 1;
2658 uint8_t format = copy->control[0] & 0xf;
2661 * Shift the PRINFOR/PRINFOW values by 10 to allow reusing the
2662 * NVME_RW_PRINFO constants.
2664 uint16_t prinfor = ((copy->control[0] >> 4) & 0xf) << 10;
2665 uint16_t prinfow = ((copy->control[2] >> 2) & 0xf) << 10;
2667 uint32_t nlb = 0;
2668 uint8_t *bounce = NULL, *bouncep = NULL;
2669 uint8_t *mbounce = NULL, *mbouncep = NULL;
2670 struct nvme_copy_ctx *ctx;
2671 uint16_t status;
2672 int i;
2674 trace_pci_nvme_copy(nvme_cid(req), nvme_nsid(ns), nr, format);
2676 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) &&
2677 ((prinfor & NVME_RW_PRINFO_PRACT) != (prinfow & NVME_RW_PRINFO_PRACT))) {
2678 return NVME_INVALID_FIELD | NVME_DNR;
2681 if (!(n->id_ctrl.ocfs & (1 << format))) {
2682 trace_pci_nvme_err_copy_invalid_format(format);
2683 return NVME_INVALID_FIELD | NVME_DNR;
2686 if (nr > ns->id_ns.msrc + 1) {
2687 return NVME_CMD_SIZE_LIMIT | NVME_DNR;
2690 ctx = g_new(struct nvme_copy_ctx, 1);
2691 ctx->ranges = g_new(NvmeCopySourceRange, nr);
2693 status = nvme_h2c(n, (uint8_t *)ctx->ranges,
2694 nr * sizeof(NvmeCopySourceRange), req);
2695 if (status) {
2696 goto out;
2699 for (i = 0; i < nr; i++) {
2700 uint64_t slba = le64_to_cpu(ctx->ranges[i].slba);
2701 uint32_t _nlb = le16_to_cpu(ctx->ranges[i].nlb) + 1;
2703 if (_nlb > le16_to_cpu(ns->id_ns.mssrl)) {
2704 status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
2705 goto out;
2708 status = nvme_check_bounds(ns, slba, _nlb);
2709 if (status) {
2710 goto out;
2713 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
2714 status = nvme_check_dulbe(ns, slba, _nlb);
2715 if (status) {
2716 goto out;
2720 if (ns->params.zoned) {
2721 status = nvme_check_zone_read(ns, slba, _nlb);
2722 if (status) {
2723 goto out;
2727 nlb += _nlb;
2730 if (nlb > le32_to_cpu(ns->id_ns.mcl)) {
2731 status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
2732 goto out;
2735 bounce = bouncep = g_malloc(nvme_l2b(ns, nlb));
2736 if (nvme_msize(ns)) {
2737 mbounce = mbouncep = g_malloc(nvme_m2b(ns, nlb));
2740 block_acct_start(blk_get_stats(ns->blkconf.blk), &req->acct, 0,
2741 BLOCK_ACCT_READ);
2743 ctx->bounce = bounce;
2744 ctx->mbounce = mbounce;
2745 ctx->nlb = nlb;
2746 ctx->copies = 1;
2748 req->opaque = ctx;
2750 for (i = 0; i < nr; i++) {
2751 uint64_t slba = le64_to_cpu(ctx->ranges[i].slba);
2752 uint32_t nlb = le16_to_cpu(ctx->ranges[i].nlb) + 1;
2754 size_t len = nvme_l2b(ns, nlb);
2755 int64_t offset = nvme_l2b(ns, slba);
2757 trace_pci_nvme_copy_source_range(slba, nlb);
2759 struct nvme_copy_in_ctx *in_ctx = g_new(struct nvme_copy_in_ctx, 1);
2760 in_ctx->req = req;
2762 qemu_iovec_init(&in_ctx->iov, 1);
2763 qemu_iovec_add(&in_ctx->iov, bouncep, len);
2765 ctx->copies++;
2767 blk_aio_preadv(ns->blkconf.blk, offset, &in_ctx->iov, 0,
2768 nvme_aio_copy_in_cb, in_ctx);
2770 bouncep += len;
2772 if (nvme_msize(ns)) {
2773 len = nvme_m2b(ns, nlb);
2774 offset = ns->mdata_offset + nvme_m2b(ns, slba);
2776 in_ctx = g_new(struct nvme_copy_in_ctx, 1);
2777 in_ctx->req = req;
2779 qemu_iovec_init(&in_ctx->iov, 1);
2780 qemu_iovec_add(&in_ctx->iov, mbouncep, len);
2782 ctx->copies++;
2784 blk_aio_preadv(ns->blkconf.blk, offset, &in_ctx->iov, 0,
2785 nvme_aio_copy_in_cb, in_ctx);
2787 mbouncep += len;
2791 /* account for the 1-initialization */
2792 ctx->copies--;
2794 if (!ctx->copies) {
2795 nvme_copy_in_complete(req);
2798 return NVME_NO_COMPLETE;
2800 out:
2801 g_free(ctx->ranges);
2802 g_free(ctx);
2804 return status;
2807 static uint16_t nvme_compare(NvmeCtrl *n, NvmeRequest *req)
2809 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2810 NvmeNamespace *ns = req->ns;
2811 BlockBackend *blk = ns->blkconf.blk;
2812 uint64_t slba = le64_to_cpu(rw->slba);
2813 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2814 uint16_t ctrl = le16_to_cpu(rw->control);
2815 size_t data_len = nvme_l2b(ns, nlb);
2816 size_t len = data_len;
2817 int64_t offset = nvme_l2b(ns, slba);
2818 struct nvme_compare_ctx *ctx = NULL;
2819 uint16_t status;
2821 trace_pci_nvme_compare(nvme_cid(req), nvme_nsid(ns), slba, nlb);
2823 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) && (ctrl & NVME_RW_PRINFO_PRACT)) {
2824 return NVME_INVALID_PROT_INFO | NVME_DNR;
2827 if (nvme_ns_ext(ns)) {
2828 len += nvme_m2b(ns, nlb);
2831 status = nvme_check_mdts(n, len);
2832 if (status) {
2833 return status;
2836 status = nvme_check_bounds(ns, slba, nlb);
2837 if (status) {
2838 return status;
2841 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
2842 status = nvme_check_dulbe(ns, slba, nlb);
2843 if (status) {
2844 return status;
2848 status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
2849 if (status) {
2850 return status;
2853 ctx = g_new(struct nvme_compare_ctx, 1);
2854 ctx->data.bounce = g_malloc(data_len);
2856 req->opaque = ctx;
2858 qemu_iovec_init(&ctx->data.iov, 1);
2859 qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, data_len);
2861 block_acct_start(blk_get_stats(blk), &req->acct, data_len,
2862 BLOCK_ACCT_READ);
2863 req->aiocb = blk_aio_preadv(blk, offset, &ctx->data.iov, 0,
2864 nvme_compare_data_cb, req);
2866 return NVME_NO_COMPLETE;
2869 static uint16_t nvme_flush(NvmeCtrl *n, NvmeRequest *req)
2871 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
2872 uintptr_t *num_flushes = (uintptr_t *)&req->opaque;
2873 uint16_t status;
2874 struct nvme_aio_flush_ctx *ctx;
2875 NvmeNamespace *ns;
2877 trace_pci_nvme_flush(nvme_cid(req), nsid);
2879 if (nsid != NVME_NSID_BROADCAST) {
2880 req->ns = nvme_ns(n, nsid);
2881 if (unlikely(!req->ns)) {
2882 return NVME_INVALID_FIELD | NVME_DNR;
2885 block_acct_start(blk_get_stats(req->ns->blkconf.blk), &req->acct, 0,
2886 BLOCK_ACCT_FLUSH);
2887 req->aiocb = blk_aio_flush(req->ns->blkconf.blk, nvme_misc_cb, req);
2888 return NVME_NO_COMPLETE;
2891 /* 1-initialize; see comment in nvme_dsm */
2892 *num_flushes = 1;
2894 for (int i = 1; i <= n->num_namespaces; i++) {
2895 ns = nvme_ns(n, i);
2896 if (!ns) {
2897 continue;
2900 ctx = g_new(struct nvme_aio_flush_ctx, 1);
2901 ctx->req = req;
2902 ctx->ns = ns;
2904 (*num_flushes)++;
2906 block_acct_start(blk_get_stats(ns->blkconf.blk), &ctx->acct, 0,
2907 BLOCK_ACCT_FLUSH);
2908 blk_aio_flush(ns->blkconf.blk, nvme_aio_flush_cb, ctx);
2911 /* account for the 1-initialization */
2912 (*num_flushes)--;
2914 if (*num_flushes) {
2915 status = NVME_NO_COMPLETE;
2916 } else {
2917 status = req->status;
2920 return status;
2923 static uint16_t nvme_read(NvmeCtrl *n, NvmeRequest *req)
2925 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2926 NvmeNamespace *ns = req->ns;
2927 uint64_t slba = le64_to_cpu(rw->slba);
2928 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
2929 uint16_t ctrl = le16_to_cpu(rw->control);
2930 uint64_t data_size = nvme_l2b(ns, nlb);
2931 uint64_t mapped_size = data_size;
2932 uint64_t data_offset;
2933 BlockBackend *blk = ns->blkconf.blk;
2934 uint16_t status;
2936 if (nvme_ns_ext(ns)) {
2937 mapped_size += nvme_m2b(ns, nlb);
2939 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2940 bool pract = ctrl & NVME_RW_PRINFO_PRACT;
2942 if (pract && nvme_msize(ns) == 8) {
2943 mapped_size = data_size;
2948 trace_pci_nvme_read(nvme_cid(req), nvme_nsid(ns), nlb, mapped_size, slba);
2950 status = nvme_check_mdts(n, mapped_size);
2951 if (status) {
2952 goto invalid;
2955 status = nvme_check_bounds(ns, slba, nlb);
2956 if (status) {
2957 goto invalid;
2960 if (ns->params.zoned) {
2961 status = nvme_check_zone_read(ns, slba, nlb);
2962 if (status) {
2963 trace_pci_nvme_err_zone_read_not_ok(slba, nlb, status);
2964 goto invalid;
2968 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
2969 status = nvme_check_dulbe(ns, slba, nlb);
2970 if (status) {
2971 goto invalid;
2975 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2976 return nvme_dif_rw(n, req);
2979 status = nvme_map_data(n, nlb, req);
2980 if (status) {
2981 goto invalid;
2984 data_offset = nvme_l2b(ns, slba);
2986 block_acct_start(blk_get_stats(blk), &req->acct, data_size,
2987 BLOCK_ACCT_READ);
2988 nvme_blk_read(blk, data_offset, nvme_rw_cb, req);
2989 return NVME_NO_COMPLETE;
2991 invalid:
2992 block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_READ);
2993 return status | NVME_DNR;
2996 static uint16_t nvme_do_write(NvmeCtrl *n, NvmeRequest *req, bool append,
2997 bool wrz)
2999 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3000 NvmeNamespace *ns = req->ns;
3001 uint64_t slba = le64_to_cpu(rw->slba);
3002 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
3003 uint16_t ctrl = le16_to_cpu(rw->control);
3004 uint64_t data_size = nvme_l2b(ns, nlb);
3005 uint64_t mapped_size = data_size;
3006 uint64_t data_offset;
3007 NvmeZone *zone;
3008 NvmeZonedResult *res = (NvmeZonedResult *)&req->cqe;
3009 BlockBackend *blk = ns->blkconf.blk;
3010 uint16_t status;
3012 if (nvme_ns_ext(ns)) {
3013 mapped_size += nvme_m2b(ns, nlb);
3015 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3016 bool pract = ctrl & NVME_RW_PRINFO_PRACT;
3018 if (pract && nvme_msize(ns) == 8) {
3019 mapped_size -= nvme_m2b(ns, nlb);
3024 trace_pci_nvme_write(nvme_cid(req), nvme_io_opc_str(rw->opcode),
3025 nvme_nsid(ns), nlb, mapped_size, slba);
3027 if (!wrz) {
3028 status = nvme_check_mdts(n, mapped_size);
3029 if (status) {
3030 goto invalid;
3034 status = nvme_check_bounds(ns, slba, nlb);
3035 if (status) {
3036 goto invalid;
3039 if (ns->params.zoned) {
3040 zone = nvme_get_zone_by_slba(ns, slba);
3042 if (append) {
3043 bool piremap = !!(ctrl & NVME_RW_PIREMAP);
3045 if (unlikely(slba != zone->d.zslba)) {
3046 trace_pci_nvme_err_append_not_at_start(slba, zone->d.zslba);
3047 status = NVME_INVALID_FIELD;
3048 goto invalid;
3051 if (n->params.zasl &&
3052 data_size > (uint64_t)n->page_size << n->params.zasl) {
3053 trace_pci_nvme_err_zasl(data_size);
3054 return NVME_INVALID_FIELD | NVME_DNR;
3057 slba = zone->w_ptr;
3058 rw->slba = cpu_to_le64(slba);
3059 res->slba = cpu_to_le64(slba);
3061 switch (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3062 case NVME_ID_NS_DPS_TYPE_1:
3063 if (!piremap) {
3064 return NVME_INVALID_PROT_INFO | NVME_DNR;
3067 /* fallthrough */
3069 case NVME_ID_NS_DPS_TYPE_2:
3070 if (piremap) {
3071 uint32_t reftag = le32_to_cpu(rw->reftag);
3072 rw->reftag = cpu_to_le32(reftag + (slba - zone->d.zslba));
3075 break;
3077 case NVME_ID_NS_DPS_TYPE_3:
3078 if (piremap) {
3079 return NVME_INVALID_PROT_INFO | NVME_DNR;
3082 break;
3086 status = nvme_check_zone_write(ns, zone, slba, nlb);
3087 if (status) {
3088 goto invalid;
3091 status = nvme_zrm_auto(ns, zone);
3092 if (status) {
3093 goto invalid;
3096 zone->w_ptr += nlb;
3099 data_offset = nvme_l2b(ns, slba);
3101 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3102 return nvme_dif_rw(n, req);
3105 if (!wrz) {
3106 status = nvme_map_data(n, nlb, req);
3107 if (status) {
3108 goto invalid;
3111 block_acct_start(blk_get_stats(blk), &req->acct, data_size,
3112 BLOCK_ACCT_WRITE);
3113 nvme_blk_write(blk, data_offset, nvme_rw_cb, req);
3114 } else {
3115 req->aiocb = blk_aio_pwrite_zeroes(blk, data_offset, data_size,
3116 BDRV_REQ_MAY_UNMAP, nvme_rw_cb,
3117 req);
3120 return NVME_NO_COMPLETE;
3122 invalid:
3123 block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_WRITE);
3124 return status | NVME_DNR;
3127 static inline uint16_t nvme_write(NvmeCtrl *n, NvmeRequest *req)
3129 return nvme_do_write(n, req, false, false);
3132 static inline uint16_t nvme_write_zeroes(NvmeCtrl *n, NvmeRequest *req)
3134 return nvme_do_write(n, req, false, true);
3137 static inline uint16_t nvme_zone_append(NvmeCtrl *n, NvmeRequest *req)
3139 return nvme_do_write(n, req, true, false);
3142 static uint16_t nvme_get_mgmt_zone_slba_idx(NvmeNamespace *ns, NvmeCmd *c,
3143 uint64_t *slba, uint32_t *zone_idx)
3145 uint32_t dw10 = le32_to_cpu(c->cdw10);
3146 uint32_t dw11 = le32_to_cpu(c->cdw11);
3148 if (!ns->params.zoned) {
3149 trace_pci_nvme_err_invalid_opc(c->opcode);
3150 return NVME_INVALID_OPCODE | NVME_DNR;
3153 *slba = ((uint64_t)dw11) << 32 | dw10;
3154 if (unlikely(*slba >= ns->id_ns.nsze)) {
3155 trace_pci_nvme_err_invalid_lba_range(*slba, 0, ns->id_ns.nsze);
3156 *slba = 0;
3157 return NVME_LBA_RANGE | NVME_DNR;
3160 *zone_idx = nvme_zone_idx(ns, *slba);
3161 assert(*zone_idx < ns->num_zones);
3163 return NVME_SUCCESS;
3166 typedef uint16_t (*op_handler_t)(NvmeNamespace *, NvmeZone *, NvmeZoneState,
3167 NvmeRequest *);
3169 enum NvmeZoneProcessingMask {
3170 NVME_PROC_CURRENT_ZONE = 0,
3171 NVME_PROC_OPENED_ZONES = 1 << 0,
3172 NVME_PROC_CLOSED_ZONES = 1 << 1,
3173 NVME_PROC_READ_ONLY_ZONES = 1 << 2,
3174 NVME_PROC_FULL_ZONES = 1 << 3,
3177 static uint16_t nvme_open_zone(NvmeNamespace *ns, NvmeZone *zone,
3178 NvmeZoneState state, NvmeRequest *req)
3180 return nvme_zrm_open(ns, zone);
3183 static uint16_t nvme_close_zone(NvmeNamespace *ns, NvmeZone *zone,
3184 NvmeZoneState state, NvmeRequest *req)
3186 return nvme_zrm_close(ns, zone);
3189 static uint16_t nvme_finish_zone(NvmeNamespace *ns, NvmeZone *zone,
3190 NvmeZoneState state, NvmeRequest *req)
3192 return nvme_zrm_finish(ns, zone);
3195 static uint16_t nvme_reset_zone(NvmeNamespace *ns, NvmeZone *zone,
3196 NvmeZoneState state, NvmeRequest *req)
3198 uintptr_t *resets = (uintptr_t *)&req->opaque;
3199 struct nvme_zone_reset_ctx *ctx;
3201 switch (state) {
3202 case NVME_ZONE_STATE_EMPTY:
3203 return NVME_SUCCESS;
3204 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
3205 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
3206 case NVME_ZONE_STATE_CLOSED:
3207 case NVME_ZONE_STATE_FULL:
3208 break;
3209 default:
3210 return NVME_ZONE_INVAL_TRANSITION;
3214 * The zone reset aio callback needs to know the zone that is being reset
3215 * in order to transition the zone on completion.
3217 ctx = g_new(struct nvme_zone_reset_ctx, 1);
3218 ctx->req = req;
3219 ctx->zone = zone;
3221 (*resets)++;
3223 blk_aio_pwrite_zeroes(ns->blkconf.blk, nvme_l2b(ns, zone->d.zslba),
3224 nvme_l2b(ns, ns->zone_size), BDRV_REQ_MAY_UNMAP,
3225 nvme_aio_zone_reset_cb, ctx);
3227 return NVME_NO_COMPLETE;
3230 static uint16_t nvme_offline_zone(NvmeNamespace *ns, NvmeZone *zone,
3231 NvmeZoneState state, NvmeRequest *req)
3233 switch (state) {
3234 case NVME_ZONE_STATE_READ_ONLY:
3235 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_OFFLINE);
3236 /* fall through */
3237 case NVME_ZONE_STATE_OFFLINE:
3238 return NVME_SUCCESS;
3239 default:
3240 return NVME_ZONE_INVAL_TRANSITION;
3244 static uint16_t nvme_set_zd_ext(NvmeNamespace *ns, NvmeZone *zone)
3246 uint16_t status;
3247 uint8_t state = nvme_get_zone_state(zone);
3249 if (state == NVME_ZONE_STATE_EMPTY) {
3250 status = nvme_aor_check(ns, 1, 0);
3251 if (status) {
3252 return status;
3254 nvme_aor_inc_active(ns);
3255 zone->d.za |= NVME_ZA_ZD_EXT_VALID;
3256 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
3257 return NVME_SUCCESS;
3260 return NVME_ZONE_INVAL_TRANSITION;
3263 static uint16_t nvme_bulk_proc_zone(NvmeNamespace *ns, NvmeZone *zone,
3264 enum NvmeZoneProcessingMask proc_mask,
3265 op_handler_t op_hndlr, NvmeRequest *req)
3267 uint16_t status = NVME_SUCCESS;
3268 NvmeZoneState zs = nvme_get_zone_state(zone);
3269 bool proc_zone;
3271 switch (zs) {
3272 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
3273 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
3274 proc_zone = proc_mask & NVME_PROC_OPENED_ZONES;
3275 break;
3276 case NVME_ZONE_STATE_CLOSED:
3277 proc_zone = proc_mask & NVME_PROC_CLOSED_ZONES;
3278 break;
3279 case NVME_ZONE_STATE_READ_ONLY:
3280 proc_zone = proc_mask & NVME_PROC_READ_ONLY_ZONES;
3281 break;
3282 case NVME_ZONE_STATE_FULL:
3283 proc_zone = proc_mask & NVME_PROC_FULL_ZONES;
3284 break;
3285 default:
3286 proc_zone = false;
3289 if (proc_zone) {
3290 status = op_hndlr(ns, zone, zs, req);
3293 return status;
3296 static uint16_t nvme_do_zone_op(NvmeNamespace *ns, NvmeZone *zone,
3297 enum NvmeZoneProcessingMask proc_mask,
3298 op_handler_t op_hndlr, NvmeRequest *req)
3300 NvmeZone *next;
3301 uint16_t status = NVME_SUCCESS;
3302 int i;
3304 if (!proc_mask) {
3305 status = op_hndlr(ns, zone, nvme_get_zone_state(zone), req);
3306 } else {
3307 if (proc_mask & NVME_PROC_CLOSED_ZONES) {
3308 QTAILQ_FOREACH_SAFE(zone, &ns->closed_zones, entry, next) {
3309 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3310 req);
3311 if (status && status != NVME_NO_COMPLETE) {
3312 goto out;
3316 if (proc_mask & NVME_PROC_OPENED_ZONES) {
3317 QTAILQ_FOREACH_SAFE(zone, &ns->imp_open_zones, entry, next) {
3318 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3319 req);
3320 if (status && status != NVME_NO_COMPLETE) {
3321 goto out;
3325 QTAILQ_FOREACH_SAFE(zone, &ns->exp_open_zones, entry, next) {
3326 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3327 req);
3328 if (status && status != NVME_NO_COMPLETE) {
3329 goto out;
3333 if (proc_mask & NVME_PROC_FULL_ZONES) {
3334 QTAILQ_FOREACH_SAFE(zone, &ns->full_zones, entry, next) {
3335 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3336 req);
3337 if (status && status != NVME_NO_COMPLETE) {
3338 goto out;
3343 if (proc_mask & NVME_PROC_READ_ONLY_ZONES) {
3344 for (i = 0; i < ns->num_zones; i++, zone++) {
3345 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3346 req);
3347 if (status && status != NVME_NO_COMPLETE) {
3348 goto out;
3354 out:
3355 return status;
3358 static uint16_t nvme_zone_mgmt_send(NvmeCtrl *n, NvmeRequest *req)
3360 NvmeCmd *cmd = (NvmeCmd *)&req->cmd;
3361 NvmeNamespace *ns = req->ns;
3362 NvmeZone *zone;
3363 uintptr_t *resets;
3364 uint8_t *zd_ext;
3365 uint32_t dw13 = le32_to_cpu(cmd->cdw13);
3366 uint64_t slba = 0;
3367 uint32_t zone_idx = 0;
3368 uint16_t status;
3369 uint8_t action;
3370 bool all;
3371 enum NvmeZoneProcessingMask proc_mask = NVME_PROC_CURRENT_ZONE;
3373 action = dw13 & 0xff;
3374 all = dw13 & 0x100;
3376 req->status = NVME_SUCCESS;
3378 if (!all) {
3379 status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx);
3380 if (status) {
3381 return status;
3385 zone = &ns->zone_array[zone_idx];
3386 if (slba != zone->d.zslba) {
3387 trace_pci_nvme_err_unaligned_zone_cmd(action, slba, zone->d.zslba);
3388 return NVME_INVALID_FIELD | NVME_DNR;
3391 switch (action) {
3393 case NVME_ZONE_ACTION_OPEN:
3394 if (all) {
3395 proc_mask = NVME_PROC_CLOSED_ZONES;
3397 trace_pci_nvme_open_zone(slba, zone_idx, all);
3398 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_open_zone, req);
3399 break;
3401 case NVME_ZONE_ACTION_CLOSE:
3402 if (all) {
3403 proc_mask = NVME_PROC_OPENED_ZONES;
3405 trace_pci_nvme_close_zone(slba, zone_idx, all);
3406 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_close_zone, req);
3407 break;
3409 case NVME_ZONE_ACTION_FINISH:
3410 if (all) {
3411 proc_mask = NVME_PROC_OPENED_ZONES | NVME_PROC_CLOSED_ZONES;
3413 trace_pci_nvme_finish_zone(slba, zone_idx, all);
3414 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_finish_zone, req);
3415 break;
3417 case NVME_ZONE_ACTION_RESET:
3418 resets = (uintptr_t *)&req->opaque;
3420 if (all) {
3421 proc_mask = NVME_PROC_OPENED_ZONES | NVME_PROC_CLOSED_ZONES |
3422 NVME_PROC_FULL_ZONES;
3424 trace_pci_nvme_reset_zone(slba, zone_idx, all);
3426 *resets = 1;
3428 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_reset_zone, req);
3430 (*resets)--;
3432 return *resets ? NVME_NO_COMPLETE : req->status;
3434 case NVME_ZONE_ACTION_OFFLINE:
3435 if (all) {
3436 proc_mask = NVME_PROC_READ_ONLY_ZONES;
3438 trace_pci_nvme_offline_zone(slba, zone_idx, all);
3439 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_offline_zone, req);
3440 break;
3442 case NVME_ZONE_ACTION_SET_ZD_EXT:
3443 trace_pci_nvme_set_descriptor_extension(slba, zone_idx);
3444 if (all || !ns->params.zd_extension_size) {
3445 return NVME_INVALID_FIELD | NVME_DNR;
3447 zd_ext = nvme_get_zd_extension(ns, zone_idx);
3448 status = nvme_h2c(n, zd_ext, ns->params.zd_extension_size, req);
3449 if (status) {
3450 trace_pci_nvme_err_zd_extension_map_error(zone_idx);
3451 return status;
3454 status = nvme_set_zd_ext(ns, zone);
3455 if (status == NVME_SUCCESS) {
3456 trace_pci_nvme_zd_extension_set(zone_idx);
3457 return status;
3459 break;
3461 default:
3462 trace_pci_nvme_err_invalid_mgmt_action(action);
3463 status = NVME_INVALID_FIELD;
3466 if (status == NVME_ZONE_INVAL_TRANSITION) {
3467 trace_pci_nvme_err_invalid_zone_state_transition(action, slba,
3468 zone->d.za);
3470 if (status) {
3471 status |= NVME_DNR;
3474 return status;
3477 static bool nvme_zone_matches_filter(uint32_t zafs, NvmeZone *zl)
3479 NvmeZoneState zs = nvme_get_zone_state(zl);
3481 switch (zafs) {
3482 case NVME_ZONE_REPORT_ALL:
3483 return true;
3484 case NVME_ZONE_REPORT_EMPTY:
3485 return zs == NVME_ZONE_STATE_EMPTY;
3486 case NVME_ZONE_REPORT_IMPLICITLY_OPEN:
3487 return zs == NVME_ZONE_STATE_IMPLICITLY_OPEN;
3488 case NVME_ZONE_REPORT_EXPLICITLY_OPEN:
3489 return zs == NVME_ZONE_STATE_EXPLICITLY_OPEN;
3490 case NVME_ZONE_REPORT_CLOSED:
3491 return zs == NVME_ZONE_STATE_CLOSED;
3492 case NVME_ZONE_REPORT_FULL:
3493 return zs == NVME_ZONE_STATE_FULL;
3494 case NVME_ZONE_REPORT_READ_ONLY:
3495 return zs == NVME_ZONE_STATE_READ_ONLY;
3496 case NVME_ZONE_REPORT_OFFLINE:
3497 return zs == NVME_ZONE_STATE_OFFLINE;
3498 default:
3499 return false;
3503 static uint16_t nvme_zone_mgmt_recv(NvmeCtrl *n, NvmeRequest *req)
3505 NvmeCmd *cmd = (NvmeCmd *)&req->cmd;
3506 NvmeNamespace *ns = req->ns;
3507 /* cdw12 is zero-based number of dwords to return. Convert to bytes */
3508 uint32_t data_size = (le32_to_cpu(cmd->cdw12) + 1) << 2;
3509 uint32_t dw13 = le32_to_cpu(cmd->cdw13);
3510 uint32_t zone_idx, zra, zrasf, partial;
3511 uint64_t max_zones, nr_zones = 0;
3512 uint16_t status;
3513 uint64_t slba;
3514 NvmeZoneDescr *z;
3515 NvmeZone *zone;
3516 NvmeZoneReportHeader *header;
3517 void *buf, *buf_p;
3518 size_t zone_entry_sz;
3519 int i;
3521 req->status = NVME_SUCCESS;
3523 status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx);
3524 if (status) {
3525 return status;
3528 zra = dw13 & 0xff;
3529 if (zra != NVME_ZONE_REPORT && zra != NVME_ZONE_REPORT_EXTENDED) {
3530 return NVME_INVALID_FIELD | NVME_DNR;
3532 if (zra == NVME_ZONE_REPORT_EXTENDED && !ns->params.zd_extension_size) {
3533 return NVME_INVALID_FIELD | NVME_DNR;
3536 zrasf = (dw13 >> 8) & 0xff;
3537 if (zrasf > NVME_ZONE_REPORT_OFFLINE) {
3538 return NVME_INVALID_FIELD | NVME_DNR;
3541 if (data_size < sizeof(NvmeZoneReportHeader)) {
3542 return NVME_INVALID_FIELD | NVME_DNR;
3545 status = nvme_check_mdts(n, data_size);
3546 if (status) {
3547 return status;
3550 partial = (dw13 >> 16) & 0x01;
3552 zone_entry_sz = sizeof(NvmeZoneDescr);
3553 if (zra == NVME_ZONE_REPORT_EXTENDED) {
3554 zone_entry_sz += ns->params.zd_extension_size;
3557 max_zones = (data_size - sizeof(NvmeZoneReportHeader)) / zone_entry_sz;
3558 buf = g_malloc0(data_size);
3560 zone = &ns->zone_array[zone_idx];
3561 for (i = zone_idx; i < ns->num_zones; i++) {
3562 if (partial && nr_zones >= max_zones) {
3563 break;
3565 if (nvme_zone_matches_filter(zrasf, zone++)) {
3566 nr_zones++;
3569 header = (NvmeZoneReportHeader *)buf;
3570 header->nr_zones = cpu_to_le64(nr_zones);
3572 buf_p = buf + sizeof(NvmeZoneReportHeader);
3573 for (; zone_idx < ns->num_zones && max_zones > 0; zone_idx++) {
3574 zone = &ns->zone_array[zone_idx];
3575 if (nvme_zone_matches_filter(zrasf, zone)) {
3576 z = (NvmeZoneDescr *)buf_p;
3577 buf_p += sizeof(NvmeZoneDescr);
3579 z->zt = zone->d.zt;
3580 z->zs = zone->d.zs;
3581 z->zcap = cpu_to_le64(zone->d.zcap);
3582 z->zslba = cpu_to_le64(zone->d.zslba);
3583 z->za = zone->d.za;
3585 if (nvme_wp_is_valid(zone)) {
3586 z->wp = cpu_to_le64(zone->d.wp);
3587 } else {
3588 z->wp = cpu_to_le64(~0ULL);
3591 if (zra == NVME_ZONE_REPORT_EXTENDED) {
3592 if (zone->d.za & NVME_ZA_ZD_EXT_VALID) {
3593 memcpy(buf_p, nvme_get_zd_extension(ns, zone_idx),
3594 ns->params.zd_extension_size);
3596 buf_p += ns->params.zd_extension_size;
3599 max_zones--;
3603 status = nvme_c2h(n, (uint8_t *)buf, data_size, req);
3605 g_free(buf);
3607 return status;
3610 static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeRequest *req)
3612 NvmeNamespace *ns;
3613 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
3615 trace_pci_nvme_io_cmd(nvme_cid(req), nsid, nvme_sqid(req),
3616 req->cmd.opcode, nvme_io_opc_str(req->cmd.opcode));
3618 if (!nvme_nsid_valid(n, nsid)) {
3619 return NVME_INVALID_NSID | NVME_DNR;
3623 * In the base NVM command set, Flush may apply to all namespaces
3624 * (indicated by NSID being set to FFFFFFFFh). But if that feature is used
3625 * along with TP 4056 (Namespace Types), it may be pretty screwed up.
3627 * If NSID is indeed set to FFFFFFFFh, we simply cannot associate the
3628 * opcode with a specific command since we cannot determine a unique I/O
3629 * command set. Opcode 0h could have any other meaning than something
3630 * equivalent to flushing and say it DOES have completely different
3631 * semantics in some other command set - does an NSID of FFFFFFFFh then
3632 * mean "for all namespaces, apply whatever command set specific command
3633 * that uses the 0h opcode?" Or does it mean "for all namespaces, apply
3634 * whatever command that uses the 0h opcode if, and only if, it allows NSID
3635 * to be FFFFFFFFh"?
3637 * Anyway (and luckily), for now, we do not care about this since the
3638 * device only supports namespace types that includes the NVM Flush command
3639 * (NVM and Zoned), so always do an NVM Flush.
3641 if (req->cmd.opcode == NVME_CMD_FLUSH) {
3642 return nvme_flush(n, req);
3645 ns = nvme_ns(n, nsid);
3646 if (unlikely(!ns)) {
3647 return NVME_INVALID_FIELD | NVME_DNR;
3650 if (!(ns->iocs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
3651 trace_pci_nvme_err_invalid_opc(req->cmd.opcode);
3652 return NVME_INVALID_OPCODE | NVME_DNR;
3655 if (ns->status) {
3656 return ns->status;
3659 req->ns = ns;
3661 switch (req->cmd.opcode) {
3662 case NVME_CMD_WRITE_ZEROES:
3663 return nvme_write_zeroes(n, req);
3664 case NVME_CMD_ZONE_APPEND:
3665 return nvme_zone_append(n, req);
3666 case NVME_CMD_WRITE:
3667 return nvme_write(n, req);
3668 case NVME_CMD_READ:
3669 return nvme_read(n, req);
3670 case NVME_CMD_COMPARE:
3671 return nvme_compare(n, req);
3672 case NVME_CMD_DSM:
3673 return nvme_dsm(n, req);
3674 case NVME_CMD_VERIFY:
3675 return nvme_verify(n, req);
3676 case NVME_CMD_COPY:
3677 return nvme_copy(n, req);
3678 case NVME_CMD_ZONE_MGMT_SEND:
3679 return nvme_zone_mgmt_send(n, req);
3680 case NVME_CMD_ZONE_MGMT_RECV:
3681 return nvme_zone_mgmt_recv(n, req);
3682 default:
3683 assert(false);
3686 return NVME_INVALID_OPCODE | NVME_DNR;
3689 static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
3691 n->sq[sq->sqid] = NULL;
3692 timer_free(sq->timer);
3693 g_free(sq->io_req);
3694 if (sq->sqid) {
3695 g_free(sq);
3699 static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeRequest *req)
3701 NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
3702 NvmeRequest *r, *next;
3703 NvmeSQueue *sq;
3704 NvmeCQueue *cq;
3705 uint16_t qid = le16_to_cpu(c->qid);
3706 uint32_t nsid;
3708 if (unlikely(!qid || nvme_check_sqid(n, qid))) {
3709 trace_pci_nvme_err_invalid_del_sq(qid);
3710 return NVME_INVALID_QID | NVME_DNR;
3713 trace_pci_nvme_del_sq(qid);
3715 sq = n->sq[qid];
3716 while (!QTAILQ_EMPTY(&sq->out_req_list)) {
3717 r = QTAILQ_FIRST(&sq->out_req_list);
3718 if (r->aiocb) {
3719 blk_aio_cancel(r->aiocb);
3724 * Drain all namespaces if there are still outstanding requests that we
3725 * could not cancel explicitly.
3727 if (!QTAILQ_EMPTY(&sq->out_req_list)) {
3728 for (nsid = 1; nsid <= NVME_MAX_NAMESPACES; nsid++) {
3729 NvmeNamespace *ns = nvme_ns(n, nsid);
3730 if (ns) {
3731 nvme_ns_drain(ns);
3736 assert(QTAILQ_EMPTY(&sq->out_req_list));
3738 if (!nvme_check_cqid(n, sq->cqid)) {
3739 cq = n->cq[sq->cqid];
3740 QTAILQ_REMOVE(&cq->sq_list, sq, entry);
3742 nvme_post_cqes(cq);
3743 QTAILQ_FOREACH_SAFE(r, &cq->req_list, entry, next) {
3744 if (r->sq == sq) {
3745 QTAILQ_REMOVE(&cq->req_list, r, entry);
3746 QTAILQ_INSERT_TAIL(&sq->req_list, r, entry);
3751 nvme_free_sq(sq, n);
3752 return NVME_SUCCESS;
3755 static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
3756 uint16_t sqid, uint16_t cqid, uint16_t size)
3758 int i;
3759 NvmeCQueue *cq;
3761 sq->ctrl = n;
3762 sq->dma_addr = dma_addr;
3763 sq->sqid = sqid;
3764 sq->size = size;
3765 sq->cqid = cqid;
3766 sq->head = sq->tail = 0;
3767 sq->io_req = g_new0(NvmeRequest, sq->size);
3769 QTAILQ_INIT(&sq->req_list);
3770 QTAILQ_INIT(&sq->out_req_list);
3771 for (i = 0; i < sq->size; i++) {
3772 sq->io_req[i].sq = sq;
3773 QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
3775 sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq);
3777 assert(n->cq[cqid]);
3778 cq = n->cq[cqid];
3779 QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
3780 n->sq[sqid] = sq;
3783 static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeRequest *req)
3785 NvmeSQueue *sq;
3786 NvmeCreateSq *c = (NvmeCreateSq *)&req->cmd;
3788 uint16_t cqid = le16_to_cpu(c->cqid);
3789 uint16_t sqid = le16_to_cpu(c->sqid);
3790 uint16_t qsize = le16_to_cpu(c->qsize);
3791 uint16_t qflags = le16_to_cpu(c->sq_flags);
3792 uint64_t prp1 = le64_to_cpu(c->prp1);
3794 trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
3796 if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
3797 trace_pci_nvme_err_invalid_create_sq_cqid(cqid);
3798 return NVME_INVALID_CQID | NVME_DNR;
3800 if (unlikely(!sqid || sqid > n->params.max_ioqpairs ||
3801 n->sq[sqid] != NULL)) {
3802 trace_pci_nvme_err_invalid_create_sq_sqid(sqid);
3803 return NVME_INVALID_QID | NVME_DNR;
3805 if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
3806 trace_pci_nvme_err_invalid_create_sq_size(qsize);
3807 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
3809 if (unlikely(prp1 & (n->page_size - 1))) {
3810 trace_pci_nvme_err_invalid_create_sq_addr(prp1);
3811 return NVME_INVALID_PRP_OFFSET | NVME_DNR;
3813 if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
3814 trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
3815 return NVME_INVALID_FIELD | NVME_DNR;
3817 sq = g_malloc0(sizeof(*sq));
3818 nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
3819 return NVME_SUCCESS;
3822 struct nvme_stats {
3823 uint64_t units_read;
3824 uint64_t units_written;
3825 uint64_t read_commands;
3826 uint64_t write_commands;
3829 static void nvme_set_blk_stats(NvmeNamespace *ns, struct nvme_stats *stats)
3831 BlockAcctStats *s = blk_get_stats(ns->blkconf.blk);
3833 stats->units_read += s->nr_bytes[BLOCK_ACCT_READ] >> BDRV_SECTOR_BITS;
3834 stats->units_written += s->nr_bytes[BLOCK_ACCT_WRITE] >> BDRV_SECTOR_BITS;
3835 stats->read_commands += s->nr_ops[BLOCK_ACCT_READ];
3836 stats->write_commands += s->nr_ops[BLOCK_ACCT_WRITE];
3839 static uint16_t nvme_smart_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
3840 uint64_t off, NvmeRequest *req)
3842 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
3843 struct nvme_stats stats = { 0 };
3844 NvmeSmartLog smart = { 0 };
3845 uint32_t trans_len;
3846 NvmeNamespace *ns;
3847 time_t current_ms;
3849 if (off >= sizeof(smart)) {
3850 return NVME_INVALID_FIELD | NVME_DNR;
3853 if (nsid != 0xffffffff) {
3854 ns = nvme_ns(n, nsid);
3855 if (!ns) {
3856 return NVME_INVALID_NSID | NVME_DNR;
3858 nvme_set_blk_stats(ns, &stats);
3859 } else {
3860 int i;
3862 for (i = 1; i <= n->num_namespaces; i++) {
3863 ns = nvme_ns(n, i);
3864 if (!ns) {
3865 continue;
3867 nvme_set_blk_stats(ns, &stats);
3871 trans_len = MIN(sizeof(smart) - off, buf_len);
3872 smart.critical_warning = n->smart_critical_warning;
3874 smart.data_units_read[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_read,
3875 1000));
3876 smart.data_units_written[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_written,
3877 1000));
3878 smart.host_read_commands[0] = cpu_to_le64(stats.read_commands);
3879 smart.host_write_commands[0] = cpu_to_le64(stats.write_commands);
3881 smart.temperature = cpu_to_le16(n->temperature);
3883 if ((n->temperature >= n->features.temp_thresh_hi) ||
3884 (n->temperature <= n->features.temp_thresh_low)) {
3885 smart.critical_warning |= NVME_SMART_TEMPERATURE;
3888 current_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
3889 smart.power_on_hours[0] =
3890 cpu_to_le64((((current_ms - n->starttime_ms) / 1000) / 60) / 60);
3892 if (!rae) {
3893 nvme_clear_events(n, NVME_AER_TYPE_SMART);
3896 return nvme_c2h(n, (uint8_t *) &smart + off, trans_len, req);
3899 static uint16_t nvme_fw_log_info(NvmeCtrl *n, uint32_t buf_len, uint64_t off,
3900 NvmeRequest *req)
3902 uint32_t trans_len;
3903 NvmeFwSlotInfoLog fw_log = {
3904 .afi = 0x1,
3907 if (off >= sizeof(fw_log)) {
3908 return NVME_INVALID_FIELD | NVME_DNR;
3911 strpadcpy((char *)&fw_log.frs1, sizeof(fw_log.frs1), "1.0", ' ');
3912 trans_len = MIN(sizeof(fw_log) - off, buf_len);
3914 return nvme_c2h(n, (uint8_t *) &fw_log + off, trans_len, req);
3917 static uint16_t nvme_error_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
3918 uint64_t off, NvmeRequest *req)
3920 uint32_t trans_len;
3921 NvmeErrorLog errlog;
3923 if (off >= sizeof(errlog)) {
3924 return NVME_INVALID_FIELD | NVME_DNR;
3927 if (!rae) {
3928 nvme_clear_events(n, NVME_AER_TYPE_ERROR);
3931 memset(&errlog, 0x0, sizeof(errlog));
3932 trans_len = MIN(sizeof(errlog) - off, buf_len);
3934 return nvme_c2h(n, (uint8_t *)&errlog, trans_len, req);
3937 static uint16_t nvme_changed_nslist(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
3938 uint64_t off, NvmeRequest *req)
3940 uint32_t nslist[1024];
3941 uint32_t trans_len;
3942 int i = 0;
3943 uint32_t nsid;
3945 memset(nslist, 0x0, sizeof(nslist));
3946 trans_len = MIN(sizeof(nslist) - off, buf_len);
3948 while ((nsid = find_first_bit(n->changed_nsids, NVME_CHANGED_NSID_SIZE)) !=
3949 NVME_CHANGED_NSID_SIZE) {
3951 * If more than 1024 namespaces, the first entry in the log page should
3952 * be set to FFFFFFFFh and the others to 0 as spec.
3954 if (i == ARRAY_SIZE(nslist)) {
3955 memset(nslist, 0x0, sizeof(nslist));
3956 nslist[0] = 0xffffffff;
3957 break;
3960 nslist[i++] = nsid;
3961 clear_bit(nsid, n->changed_nsids);
3965 * Remove all the remaining list entries in case returns directly due to
3966 * more than 1024 namespaces.
3968 if (nslist[0] == 0xffffffff) {
3969 bitmap_zero(n->changed_nsids, NVME_CHANGED_NSID_SIZE);
3972 if (!rae) {
3973 nvme_clear_events(n, NVME_AER_TYPE_NOTICE);
3976 return nvme_c2h(n, ((uint8_t *)nslist) + off, trans_len, req);
3979 static uint16_t nvme_cmd_effects(NvmeCtrl *n, uint8_t csi, uint32_t buf_len,
3980 uint64_t off, NvmeRequest *req)
3982 NvmeEffectsLog log = {};
3983 const uint32_t *src_iocs = NULL;
3984 uint32_t trans_len;
3986 if (off >= sizeof(log)) {
3987 trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(log));
3988 return NVME_INVALID_FIELD | NVME_DNR;
3991 switch (NVME_CC_CSS(n->bar.cc)) {
3992 case NVME_CC_CSS_NVM:
3993 src_iocs = nvme_cse_iocs_nvm;
3994 /* fall through */
3995 case NVME_CC_CSS_ADMIN_ONLY:
3996 break;
3997 case NVME_CC_CSS_CSI:
3998 switch (csi) {
3999 case NVME_CSI_NVM:
4000 src_iocs = nvme_cse_iocs_nvm;
4001 break;
4002 case NVME_CSI_ZONED:
4003 src_iocs = nvme_cse_iocs_zoned;
4004 break;
4008 memcpy(log.acs, nvme_cse_acs, sizeof(nvme_cse_acs));
4010 if (src_iocs) {
4011 memcpy(log.iocs, src_iocs, sizeof(log.iocs));
4014 trans_len = MIN(sizeof(log) - off, buf_len);
4016 return nvme_c2h(n, ((uint8_t *)&log) + off, trans_len, req);
4019 static uint16_t nvme_get_log(NvmeCtrl *n, NvmeRequest *req)
4021 NvmeCmd *cmd = &req->cmd;
4023 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
4024 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
4025 uint32_t dw12 = le32_to_cpu(cmd->cdw12);
4026 uint32_t dw13 = le32_to_cpu(cmd->cdw13);
4027 uint8_t lid = dw10 & 0xff;
4028 uint8_t lsp = (dw10 >> 8) & 0xf;
4029 uint8_t rae = (dw10 >> 15) & 0x1;
4030 uint8_t csi = le32_to_cpu(cmd->cdw14) >> 24;
4031 uint32_t numdl, numdu;
4032 uint64_t off, lpol, lpou;
4033 size_t len;
4034 uint16_t status;
4036 numdl = (dw10 >> 16);
4037 numdu = (dw11 & 0xffff);
4038 lpol = dw12;
4039 lpou = dw13;
4041 len = (((numdu << 16) | numdl) + 1) << 2;
4042 off = (lpou << 32ULL) | lpol;
4044 if (off & 0x3) {
4045 return NVME_INVALID_FIELD | NVME_DNR;
4048 trace_pci_nvme_get_log(nvme_cid(req), lid, lsp, rae, len, off);
4050 status = nvme_check_mdts(n, len);
4051 if (status) {
4052 return status;
4055 switch (lid) {
4056 case NVME_LOG_ERROR_INFO:
4057 return nvme_error_info(n, rae, len, off, req);
4058 case NVME_LOG_SMART_INFO:
4059 return nvme_smart_info(n, rae, len, off, req);
4060 case NVME_LOG_FW_SLOT_INFO:
4061 return nvme_fw_log_info(n, len, off, req);
4062 case NVME_LOG_CHANGED_NSLIST:
4063 return nvme_changed_nslist(n, rae, len, off, req);
4064 case NVME_LOG_CMD_EFFECTS:
4065 return nvme_cmd_effects(n, csi, len, off, req);
4066 default:
4067 trace_pci_nvme_err_invalid_log_page(nvme_cid(req), lid);
4068 return NVME_INVALID_FIELD | NVME_DNR;
4072 static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
4074 n->cq[cq->cqid] = NULL;
4075 timer_free(cq->timer);
4076 if (msix_enabled(&n->parent_obj)) {
4077 msix_vector_unuse(&n->parent_obj, cq->vector);
4079 if (cq->cqid) {
4080 g_free(cq);
4084 static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeRequest *req)
4086 NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
4087 NvmeCQueue *cq;
4088 uint16_t qid = le16_to_cpu(c->qid);
4090 if (unlikely(!qid || nvme_check_cqid(n, qid))) {
4091 trace_pci_nvme_err_invalid_del_cq_cqid(qid);
4092 return NVME_INVALID_CQID | NVME_DNR;
4095 cq = n->cq[qid];
4096 if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
4097 trace_pci_nvme_err_invalid_del_cq_notempty(qid);
4098 return NVME_INVALID_QUEUE_DEL;
4100 nvme_irq_deassert(n, cq);
4101 trace_pci_nvme_del_cq(qid);
4102 nvme_free_cq(cq, n);
4103 return NVME_SUCCESS;
4106 static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
4107 uint16_t cqid, uint16_t vector, uint16_t size,
4108 uint16_t irq_enabled)
4110 int ret;
4112 if (msix_enabled(&n->parent_obj)) {
4113 ret = msix_vector_use(&n->parent_obj, vector);
4114 assert(ret == 0);
4116 cq->ctrl = n;
4117 cq->cqid = cqid;
4118 cq->size = size;
4119 cq->dma_addr = dma_addr;
4120 cq->phase = 1;
4121 cq->irq_enabled = irq_enabled;
4122 cq->vector = vector;
4123 cq->head = cq->tail = 0;
4124 QTAILQ_INIT(&cq->req_list);
4125 QTAILQ_INIT(&cq->sq_list);
4126 n->cq[cqid] = cq;
4127 cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq);
4130 static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeRequest *req)
4132 NvmeCQueue *cq;
4133 NvmeCreateCq *c = (NvmeCreateCq *)&req->cmd;
4134 uint16_t cqid = le16_to_cpu(c->cqid);
4135 uint16_t vector = le16_to_cpu(c->irq_vector);
4136 uint16_t qsize = le16_to_cpu(c->qsize);
4137 uint16_t qflags = le16_to_cpu(c->cq_flags);
4138 uint64_t prp1 = le64_to_cpu(c->prp1);
4140 trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
4141 NVME_CQ_FLAGS_IEN(qflags) != 0);
4143 if (unlikely(!cqid || cqid > n->params.max_ioqpairs ||
4144 n->cq[cqid] != NULL)) {
4145 trace_pci_nvme_err_invalid_create_cq_cqid(cqid);
4146 return NVME_INVALID_QID | NVME_DNR;
4148 if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
4149 trace_pci_nvme_err_invalid_create_cq_size(qsize);
4150 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
4152 if (unlikely(prp1 & (n->page_size - 1))) {
4153 trace_pci_nvme_err_invalid_create_cq_addr(prp1);
4154 return NVME_INVALID_PRP_OFFSET | NVME_DNR;
4156 if (unlikely(!msix_enabled(&n->parent_obj) && vector)) {
4157 trace_pci_nvme_err_invalid_create_cq_vector(vector);
4158 return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
4160 if (unlikely(vector >= n->params.msix_qsize)) {
4161 trace_pci_nvme_err_invalid_create_cq_vector(vector);
4162 return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
4164 if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
4165 trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
4166 return NVME_INVALID_FIELD | NVME_DNR;
4169 cq = g_malloc0(sizeof(*cq));
4170 nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
4171 NVME_CQ_FLAGS_IEN(qflags));
4174 * It is only required to set qs_created when creating a completion queue;
4175 * creating a submission queue without a matching completion queue will
4176 * fail.
4178 n->qs_created = true;
4179 return NVME_SUCCESS;
4182 static uint16_t nvme_rpt_empty_id_struct(NvmeCtrl *n, NvmeRequest *req)
4184 uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
4186 return nvme_c2h(n, id, sizeof(id), req);
4189 static inline bool nvme_csi_has_nvm_support(NvmeNamespace *ns)
4191 switch (ns->csi) {
4192 case NVME_CSI_NVM:
4193 case NVME_CSI_ZONED:
4194 return true;
4196 return false;
4199 static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeRequest *req)
4201 trace_pci_nvme_identify_ctrl();
4203 return nvme_c2h(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl), req);
4206 static uint16_t nvme_identify_ctrl_csi(NvmeCtrl *n, NvmeRequest *req)
4208 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4209 uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
4210 NvmeIdCtrlNvm *id_nvm = (NvmeIdCtrlNvm *)&id;
4212 trace_pci_nvme_identify_ctrl_csi(c->csi);
4214 switch (c->csi) {
4215 case NVME_CSI_NVM:
4216 id_nvm->vsl = n->params.vsl;
4217 id_nvm->dmrsl = cpu_to_le32(n->dmrsl);
4218 break;
4220 case NVME_CSI_ZONED:
4221 ((NvmeIdCtrlZoned *)&id)->zasl = n->params.zasl;
4222 break;
4224 default:
4225 return NVME_INVALID_FIELD | NVME_DNR;
4228 return nvme_c2h(n, id, sizeof(id), req);
4231 static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeRequest *req, bool active)
4233 NvmeNamespace *ns;
4234 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4235 uint32_t nsid = le32_to_cpu(c->nsid);
4237 trace_pci_nvme_identify_ns(nsid);
4239 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
4240 return NVME_INVALID_NSID | NVME_DNR;
4243 ns = nvme_ns(n, nsid);
4244 if (unlikely(!ns)) {
4245 if (!active) {
4246 ns = nvme_subsys_ns(n->subsys, nsid);
4247 if (!ns) {
4248 return nvme_rpt_empty_id_struct(n, req);
4250 } else {
4251 return nvme_rpt_empty_id_struct(n, req);
4255 if (c->csi == NVME_CSI_NVM && nvme_csi_has_nvm_support(ns)) {
4256 return nvme_c2h(n, (uint8_t *)&ns->id_ns, sizeof(NvmeIdNs), req);
4259 return NVME_INVALID_CMD_SET | NVME_DNR;
4262 static uint16_t nvme_identify_ns_attached_list(NvmeCtrl *n, NvmeRequest *req)
4264 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4265 uint16_t min_id = le16_to_cpu(c->ctrlid);
4266 uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
4267 uint16_t *ids = &list[1];
4268 NvmeNamespace *ns;
4269 NvmeCtrl *ctrl;
4270 int cntlid, nr_ids = 0;
4272 trace_pci_nvme_identify_ns_attached_list(min_id);
4274 if (c->nsid == NVME_NSID_BROADCAST) {
4275 return NVME_INVALID_FIELD | NVME_DNR;
4278 ns = nvme_subsys_ns(n->subsys, c->nsid);
4279 if (!ns) {
4280 return NVME_INVALID_FIELD | NVME_DNR;
4283 for (cntlid = min_id; cntlid < ARRAY_SIZE(n->subsys->ctrls); cntlid++) {
4284 ctrl = nvme_subsys_ctrl(n->subsys, cntlid);
4285 if (!ctrl) {
4286 continue;
4289 if (!nvme_ns(ctrl, c->nsid)) {
4290 continue;
4293 ids[nr_ids++] = cntlid;
4296 list[0] = nr_ids;
4298 return nvme_c2h(n, (uint8_t *)list, sizeof(list), req);
4301 static uint16_t nvme_identify_ns_csi(NvmeCtrl *n, NvmeRequest *req,
4302 bool active)
4304 NvmeNamespace *ns;
4305 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4306 uint32_t nsid = le32_to_cpu(c->nsid);
4308 trace_pci_nvme_identify_ns_csi(nsid, c->csi);
4310 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
4311 return NVME_INVALID_NSID | NVME_DNR;
4314 ns = nvme_ns(n, nsid);
4315 if (unlikely(!ns)) {
4316 if (!active) {
4317 ns = nvme_subsys_ns(n->subsys, nsid);
4318 if (!ns) {
4319 return nvme_rpt_empty_id_struct(n, req);
4321 } else {
4322 return nvme_rpt_empty_id_struct(n, req);
4326 if (c->csi == NVME_CSI_NVM && nvme_csi_has_nvm_support(ns)) {
4327 return nvme_rpt_empty_id_struct(n, req);
4328 } else if (c->csi == NVME_CSI_ZONED && ns->csi == NVME_CSI_ZONED) {
4329 return nvme_c2h(n, (uint8_t *)ns->id_ns_zoned, sizeof(NvmeIdNsZoned),
4330 req);
4333 return NVME_INVALID_FIELD | NVME_DNR;
4336 static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeRequest *req,
4337 bool active)
4339 NvmeNamespace *ns;
4340 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4341 uint32_t min_nsid = le32_to_cpu(c->nsid);
4342 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
4343 static const int data_len = sizeof(list);
4344 uint32_t *list_ptr = (uint32_t *)list;
4345 int i, j = 0;
4347 trace_pci_nvme_identify_nslist(min_nsid);
4350 * Both FFFFFFFFh (NVME_NSID_BROADCAST) and FFFFFFFFEh are invalid values
4351 * since the Active Namespace ID List should return namespaces with ids
4352 * *higher* than the NSID specified in the command. This is also specified
4353 * in the spec (NVM Express v1.3d, Section 5.15.4).
4355 if (min_nsid >= NVME_NSID_BROADCAST - 1) {
4356 return NVME_INVALID_NSID | NVME_DNR;
4359 for (i = 1; i <= n->num_namespaces; i++) {
4360 ns = nvme_ns(n, i);
4361 if (!ns) {
4362 if (!active) {
4363 ns = nvme_subsys_ns(n->subsys, i);
4364 if (!ns) {
4365 continue;
4367 } else {
4368 continue;
4371 if (ns->params.nsid <= min_nsid) {
4372 continue;
4374 list_ptr[j++] = cpu_to_le32(ns->params.nsid);
4375 if (j == data_len / sizeof(uint32_t)) {
4376 break;
4380 return nvme_c2h(n, list, data_len, req);
4383 static uint16_t nvme_identify_nslist_csi(NvmeCtrl *n, NvmeRequest *req,
4384 bool active)
4386 NvmeNamespace *ns;
4387 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4388 uint32_t min_nsid = le32_to_cpu(c->nsid);
4389 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
4390 static const int data_len = sizeof(list);
4391 uint32_t *list_ptr = (uint32_t *)list;
4392 int i, j = 0;
4394 trace_pci_nvme_identify_nslist_csi(min_nsid, c->csi);
4397 * Same as in nvme_identify_nslist(), FFFFFFFFh/FFFFFFFFEh are invalid.
4399 if (min_nsid >= NVME_NSID_BROADCAST - 1) {
4400 return NVME_INVALID_NSID | NVME_DNR;
4403 if (c->csi != NVME_CSI_NVM && c->csi != NVME_CSI_ZONED) {
4404 return NVME_INVALID_FIELD | NVME_DNR;
4407 for (i = 1; i <= n->num_namespaces; i++) {
4408 ns = nvme_ns(n, i);
4409 if (!ns) {
4410 if (!active) {
4411 ns = nvme_subsys_ns(n->subsys, i);
4412 if (!ns) {
4413 continue;
4415 } else {
4416 continue;
4419 if (ns->params.nsid <= min_nsid || c->csi != ns->csi) {
4420 continue;
4422 list_ptr[j++] = cpu_to_le32(ns->params.nsid);
4423 if (j == data_len / sizeof(uint32_t)) {
4424 break;
4428 return nvme_c2h(n, list, data_len, req);
4431 static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeRequest *req)
4433 NvmeNamespace *ns;
4434 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4435 uint32_t nsid = le32_to_cpu(c->nsid);
4436 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
4438 struct data {
4439 struct {
4440 NvmeIdNsDescr hdr;
4441 uint8_t v[NVME_NIDL_UUID];
4442 } uuid;
4443 struct {
4444 NvmeIdNsDescr hdr;
4445 uint8_t v;
4446 } csi;
4449 struct data *ns_descrs = (struct data *)list;
4451 trace_pci_nvme_identify_ns_descr_list(nsid);
4453 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
4454 return NVME_INVALID_NSID | NVME_DNR;
4457 ns = nvme_ns(n, nsid);
4458 if (unlikely(!ns)) {
4459 return NVME_INVALID_FIELD | NVME_DNR;
4463 * Because the NGUID and EUI64 fields are 0 in the Identify Namespace data
4464 * structure, a Namespace UUID (nidt = 3h) must be reported in the
4465 * Namespace Identification Descriptor. Add the namespace UUID here.
4467 ns_descrs->uuid.hdr.nidt = NVME_NIDT_UUID;
4468 ns_descrs->uuid.hdr.nidl = NVME_NIDL_UUID;
4469 memcpy(&ns_descrs->uuid.v, ns->params.uuid.data, NVME_NIDL_UUID);
4471 ns_descrs->csi.hdr.nidt = NVME_NIDT_CSI;
4472 ns_descrs->csi.hdr.nidl = NVME_NIDL_CSI;
4473 ns_descrs->csi.v = ns->csi;
4475 return nvme_c2h(n, list, sizeof(list), req);
4478 static uint16_t nvme_identify_cmd_set(NvmeCtrl *n, NvmeRequest *req)
4480 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
4481 static const int data_len = sizeof(list);
4483 trace_pci_nvme_identify_cmd_set();
4485 NVME_SET_CSI(*list, NVME_CSI_NVM);
4486 NVME_SET_CSI(*list, NVME_CSI_ZONED);
4488 return nvme_c2h(n, list, data_len, req);
4491 static uint16_t nvme_identify(NvmeCtrl *n, NvmeRequest *req)
4493 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4495 trace_pci_nvme_identify(nvme_cid(req), c->cns, le16_to_cpu(c->ctrlid),
4496 c->csi);
4498 switch (c->cns) {
4499 case NVME_ID_CNS_NS:
4500 return nvme_identify_ns(n, req, true);
4501 case NVME_ID_CNS_NS_PRESENT:
4502 return nvme_identify_ns(n, req, false);
4503 case NVME_ID_CNS_NS_ATTACHED_CTRL_LIST:
4504 return nvme_identify_ns_attached_list(n, req);
4505 case NVME_ID_CNS_CS_NS:
4506 return nvme_identify_ns_csi(n, req, true);
4507 case NVME_ID_CNS_CS_NS_PRESENT:
4508 return nvme_identify_ns_csi(n, req, false);
4509 case NVME_ID_CNS_CTRL:
4510 return nvme_identify_ctrl(n, req);
4511 case NVME_ID_CNS_CS_CTRL:
4512 return nvme_identify_ctrl_csi(n, req);
4513 case NVME_ID_CNS_NS_ACTIVE_LIST:
4514 return nvme_identify_nslist(n, req, true);
4515 case NVME_ID_CNS_NS_PRESENT_LIST:
4516 return nvme_identify_nslist(n, req, false);
4517 case NVME_ID_CNS_CS_NS_ACTIVE_LIST:
4518 return nvme_identify_nslist_csi(n, req, true);
4519 case NVME_ID_CNS_CS_NS_PRESENT_LIST:
4520 return nvme_identify_nslist_csi(n, req, false);
4521 case NVME_ID_CNS_NS_DESCR_LIST:
4522 return nvme_identify_ns_descr_list(n, req);
4523 case NVME_ID_CNS_IO_COMMAND_SET:
4524 return nvme_identify_cmd_set(n, req);
4525 default:
4526 trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
4527 return NVME_INVALID_FIELD | NVME_DNR;
4531 static uint16_t nvme_abort(NvmeCtrl *n, NvmeRequest *req)
4533 uint16_t sqid = le32_to_cpu(req->cmd.cdw10) & 0xffff;
4535 req->cqe.result = 1;
4536 if (nvme_check_sqid(n, sqid)) {
4537 return NVME_INVALID_FIELD | NVME_DNR;
4540 return NVME_SUCCESS;
4543 static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts)
4545 trace_pci_nvme_setfeat_timestamp(ts);
4547 n->host_timestamp = le64_to_cpu(ts);
4548 n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
4551 static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n)
4553 uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
4554 uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms;
4556 union nvme_timestamp {
4557 struct {
4558 uint64_t timestamp:48;
4559 uint64_t sync:1;
4560 uint64_t origin:3;
4561 uint64_t rsvd1:12;
4563 uint64_t all;
4566 union nvme_timestamp ts;
4567 ts.all = 0;
4568 ts.timestamp = n->host_timestamp + elapsed_time;
4570 /* If the host timestamp is non-zero, set the timestamp origin */
4571 ts.origin = n->host_timestamp ? 0x01 : 0x00;
4573 trace_pci_nvme_getfeat_timestamp(ts.all);
4575 return cpu_to_le64(ts.all);
4578 static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
4580 uint64_t timestamp = nvme_get_timestamp(n);
4582 return nvme_c2h(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
4585 static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeRequest *req)
4587 NvmeCmd *cmd = &req->cmd;
4588 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
4589 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
4590 uint32_t nsid = le32_to_cpu(cmd->nsid);
4591 uint32_t result;
4592 uint8_t fid = NVME_GETSETFEAT_FID(dw10);
4593 NvmeGetFeatureSelect sel = NVME_GETFEAT_SELECT(dw10);
4594 uint16_t iv;
4595 NvmeNamespace *ns;
4596 int i;
4598 static const uint32_t nvme_feature_default[NVME_FID_MAX] = {
4599 [NVME_ARBITRATION] = NVME_ARB_AB_NOLIMIT,
4602 trace_pci_nvme_getfeat(nvme_cid(req), nsid, fid, sel, dw11);
4604 if (!nvme_feature_support[fid]) {
4605 return NVME_INVALID_FIELD | NVME_DNR;
4608 if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
4609 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
4611 * The Reservation Notification Mask and Reservation Persistence
4612 * features require a status code of Invalid Field in Command when
4613 * NSID is FFFFFFFFh. Since the device does not support those
4614 * features we can always return Invalid Namespace or Format as we
4615 * should do for all other features.
4617 return NVME_INVALID_NSID | NVME_DNR;
4620 if (!nvme_ns(n, nsid)) {
4621 return NVME_INVALID_FIELD | NVME_DNR;
4625 switch (sel) {
4626 case NVME_GETFEAT_SELECT_CURRENT:
4627 break;
4628 case NVME_GETFEAT_SELECT_SAVED:
4629 /* no features are saveable by the controller; fallthrough */
4630 case NVME_GETFEAT_SELECT_DEFAULT:
4631 goto defaults;
4632 case NVME_GETFEAT_SELECT_CAP:
4633 result = nvme_feature_cap[fid];
4634 goto out;
4637 switch (fid) {
4638 case NVME_TEMPERATURE_THRESHOLD:
4639 result = 0;
4642 * The controller only implements the Composite Temperature sensor, so
4643 * return 0 for all other sensors.
4645 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
4646 goto out;
4649 switch (NVME_TEMP_THSEL(dw11)) {
4650 case NVME_TEMP_THSEL_OVER:
4651 result = n->features.temp_thresh_hi;
4652 goto out;
4653 case NVME_TEMP_THSEL_UNDER:
4654 result = n->features.temp_thresh_low;
4655 goto out;
4658 return NVME_INVALID_FIELD | NVME_DNR;
4659 case NVME_ERROR_RECOVERY:
4660 if (!nvme_nsid_valid(n, nsid)) {
4661 return NVME_INVALID_NSID | NVME_DNR;
4664 ns = nvme_ns(n, nsid);
4665 if (unlikely(!ns)) {
4666 return NVME_INVALID_FIELD | NVME_DNR;
4669 result = ns->features.err_rec;
4670 goto out;
4671 case NVME_VOLATILE_WRITE_CACHE:
4672 result = 0;
4673 for (i = 1; i <= n->num_namespaces; i++) {
4674 ns = nvme_ns(n, i);
4675 if (!ns) {
4676 continue;
4679 result = blk_enable_write_cache(ns->blkconf.blk);
4680 if (result) {
4681 break;
4684 trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
4685 goto out;
4686 case NVME_ASYNCHRONOUS_EVENT_CONF:
4687 result = n->features.async_config;
4688 goto out;
4689 case NVME_TIMESTAMP:
4690 return nvme_get_feature_timestamp(n, req);
4691 default:
4692 break;
4695 defaults:
4696 switch (fid) {
4697 case NVME_TEMPERATURE_THRESHOLD:
4698 result = 0;
4700 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
4701 break;
4704 if (NVME_TEMP_THSEL(dw11) == NVME_TEMP_THSEL_OVER) {
4705 result = NVME_TEMPERATURE_WARNING;
4708 break;
4709 case NVME_NUMBER_OF_QUEUES:
4710 result = (n->params.max_ioqpairs - 1) |
4711 ((n->params.max_ioqpairs - 1) << 16);
4712 trace_pci_nvme_getfeat_numq(result);
4713 break;
4714 case NVME_INTERRUPT_VECTOR_CONF:
4715 iv = dw11 & 0xffff;
4716 if (iv >= n->params.max_ioqpairs + 1) {
4717 return NVME_INVALID_FIELD | NVME_DNR;
4720 result = iv;
4721 if (iv == n->admin_cq.vector) {
4722 result |= NVME_INTVC_NOCOALESCING;
4724 break;
4725 default:
4726 result = nvme_feature_default[fid];
4727 break;
4730 out:
4731 req->cqe.result = cpu_to_le32(result);
4732 return NVME_SUCCESS;
4735 static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
4737 uint16_t ret;
4738 uint64_t timestamp;
4740 ret = nvme_h2c(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
4741 if (ret) {
4742 return ret;
4745 nvme_set_timestamp(n, timestamp);
4747 return NVME_SUCCESS;
4750 static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeRequest *req)
4752 NvmeNamespace *ns = NULL;
4754 NvmeCmd *cmd = &req->cmd;
4755 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
4756 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
4757 uint32_t nsid = le32_to_cpu(cmd->nsid);
4758 uint8_t fid = NVME_GETSETFEAT_FID(dw10);
4759 uint8_t save = NVME_SETFEAT_SAVE(dw10);
4760 int i;
4762 trace_pci_nvme_setfeat(nvme_cid(req), nsid, fid, save, dw11);
4764 if (save && !(nvme_feature_cap[fid] & NVME_FEAT_CAP_SAVE)) {
4765 return NVME_FID_NOT_SAVEABLE | NVME_DNR;
4768 if (!nvme_feature_support[fid]) {
4769 return NVME_INVALID_FIELD | NVME_DNR;
4772 if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
4773 if (nsid != NVME_NSID_BROADCAST) {
4774 if (!nvme_nsid_valid(n, nsid)) {
4775 return NVME_INVALID_NSID | NVME_DNR;
4778 ns = nvme_ns(n, nsid);
4779 if (unlikely(!ns)) {
4780 return NVME_INVALID_FIELD | NVME_DNR;
4783 } else if (nsid && nsid != NVME_NSID_BROADCAST) {
4784 if (!nvme_nsid_valid(n, nsid)) {
4785 return NVME_INVALID_NSID | NVME_DNR;
4788 return NVME_FEAT_NOT_NS_SPEC | NVME_DNR;
4791 if (!(nvme_feature_cap[fid] & NVME_FEAT_CAP_CHANGE)) {
4792 return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
4795 switch (fid) {
4796 case NVME_TEMPERATURE_THRESHOLD:
4797 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
4798 break;
4801 switch (NVME_TEMP_THSEL(dw11)) {
4802 case NVME_TEMP_THSEL_OVER:
4803 n->features.temp_thresh_hi = NVME_TEMP_TMPTH(dw11);
4804 break;
4805 case NVME_TEMP_THSEL_UNDER:
4806 n->features.temp_thresh_low = NVME_TEMP_TMPTH(dw11);
4807 break;
4808 default:
4809 return NVME_INVALID_FIELD | NVME_DNR;
4812 if ((n->temperature >= n->features.temp_thresh_hi) ||
4813 (n->temperature <= n->features.temp_thresh_low)) {
4814 nvme_smart_event(n, NVME_AER_INFO_SMART_TEMP_THRESH);
4817 break;
4818 case NVME_ERROR_RECOVERY:
4819 if (nsid == NVME_NSID_BROADCAST) {
4820 for (i = 1; i <= n->num_namespaces; i++) {
4821 ns = nvme_ns(n, i);
4823 if (!ns) {
4824 continue;
4827 if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) {
4828 ns->features.err_rec = dw11;
4832 break;
4835 assert(ns);
4836 if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) {
4837 ns->features.err_rec = dw11;
4839 break;
4840 case NVME_VOLATILE_WRITE_CACHE:
4841 for (i = 1; i <= n->num_namespaces; i++) {
4842 ns = nvme_ns(n, i);
4843 if (!ns) {
4844 continue;
4847 if (!(dw11 & 0x1) && blk_enable_write_cache(ns->blkconf.blk)) {
4848 blk_flush(ns->blkconf.blk);
4851 blk_set_enable_write_cache(ns->blkconf.blk, dw11 & 1);
4854 break;
4856 case NVME_NUMBER_OF_QUEUES:
4857 if (n->qs_created) {
4858 return NVME_CMD_SEQ_ERROR | NVME_DNR;
4862 * NVMe v1.3, Section 5.21.1.7: FFFFh is not an allowed value for NCQR
4863 * and NSQR.
4865 if ((dw11 & 0xffff) == 0xffff || ((dw11 >> 16) & 0xffff) == 0xffff) {
4866 return NVME_INVALID_FIELD | NVME_DNR;
4869 trace_pci_nvme_setfeat_numq((dw11 & 0xffff) + 1,
4870 ((dw11 >> 16) & 0xffff) + 1,
4871 n->params.max_ioqpairs,
4872 n->params.max_ioqpairs);
4873 req->cqe.result = cpu_to_le32((n->params.max_ioqpairs - 1) |
4874 ((n->params.max_ioqpairs - 1) << 16));
4875 break;
4876 case NVME_ASYNCHRONOUS_EVENT_CONF:
4877 n->features.async_config = dw11;
4878 break;
4879 case NVME_TIMESTAMP:
4880 return nvme_set_feature_timestamp(n, req);
4881 case NVME_COMMAND_SET_PROFILE:
4882 if (dw11 & 0x1ff) {
4883 trace_pci_nvme_err_invalid_iocsci(dw11 & 0x1ff);
4884 return NVME_CMD_SET_CMB_REJECTED | NVME_DNR;
4886 break;
4887 default:
4888 return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
4890 return NVME_SUCCESS;
4893 static uint16_t nvme_aer(NvmeCtrl *n, NvmeRequest *req)
4895 trace_pci_nvme_aer(nvme_cid(req));
4897 if (n->outstanding_aers > n->params.aerl) {
4898 trace_pci_nvme_aer_aerl_exceeded();
4899 return NVME_AER_LIMIT_EXCEEDED;
4902 n->aer_reqs[n->outstanding_aers] = req;
4903 n->outstanding_aers++;
4905 if (!QTAILQ_EMPTY(&n->aer_queue)) {
4906 nvme_process_aers(n);
4909 return NVME_NO_COMPLETE;
4912 static void nvme_update_dmrsl(NvmeCtrl *n)
4914 int nsid;
4916 for (nsid = 1; nsid <= NVME_MAX_NAMESPACES; nsid++) {
4917 NvmeNamespace *ns = nvme_ns(n, nsid);
4918 if (!ns) {
4919 continue;
4922 n->dmrsl = MIN_NON_ZERO(n->dmrsl,
4923 BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
4927 static void nvme_select_iocs_ns(NvmeCtrl *n, NvmeNamespace *ns)
4929 ns->iocs = nvme_cse_iocs_none;
4930 switch (ns->csi) {
4931 case NVME_CSI_NVM:
4932 if (NVME_CC_CSS(n->bar.cc) != NVME_CC_CSS_ADMIN_ONLY) {
4933 ns->iocs = nvme_cse_iocs_nvm;
4935 break;
4936 case NVME_CSI_ZONED:
4937 if (NVME_CC_CSS(n->bar.cc) == NVME_CC_CSS_CSI) {
4938 ns->iocs = nvme_cse_iocs_zoned;
4939 } else if (NVME_CC_CSS(n->bar.cc) == NVME_CC_CSS_NVM) {
4940 ns->iocs = nvme_cse_iocs_nvm;
4942 break;
4946 static uint16_t nvme_ns_attachment(NvmeCtrl *n, NvmeRequest *req)
4948 NvmeNamespace *ns;
4949 NvmeCtrl *ctrl;
4950 uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
4951 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
4952 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
4953 bool attach = !(dw10 & 0xf);
4954 uint16_t *nr_ids = &list[0];
4955 uint16_t *ids = &list[1];
4956 uint16_t ret;
4957 int i;
4959 trace_pci_nvme_ns_attachment(nvme_cid(req), dw10 & 0xf);
4961 if (!nvme_nsid_valid(n, nsid)) {
4962 return NVME_INVALID_NSID | NVME_DNR;
4965 ns = nvme_subsys_ns(n->subsys, nsid);
4966 if (!ns) {
4967 return NVME_INVALID_FIELD | NVME_DNR;
4970 ret = nvme_h2c(n, (uint8_t *)list, 4096, req);
4971 if (ret) {
4972 return ret;
4975 if (!*nr_ids) {
4976 return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
4979 *nr_ids = MIN(*nr_ids, NVME_CONTROLLER_LIST_SIZE - 1);
4980 for (i = 0; i < *nr_ids; i++) {
4981 ctrl = nvme_subsys_ctrl(n->subsys, ids[i]);
4982 if (!ctrl) {
4983 return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
4986 if (attach) {
4987 if (nvme_ns(ctrl, nsid)) {
4988 return NVME_NS_ALREADY_ATTACHED | NVME_DNR;
4991 if (ns->attached && !ns->params.shared) {
4992 return NVME_NS_PRIVATE | NVME_DNR;
4995 nvme_attach_ns(ctrl, ns);
4996 nvme_select_iocs_ns(ctrl, ns);
4997 } else {
4998 if (!nvme_ns(ctrl, nsid)) {
4999 return NVME_NS_NOT_ATTACHED | NVME_DNR;
5002 ctrl->namespaces[nsid - 1] = NULL;
5003 ns->attached--;
5005 nvme_update_dmrsl(ctrl);
5009 * Add namespace id to the changed namespace id list for event clearing
5010 * via Get Log Page command.
5012 if (!test_and_set_bit(nsid, ctrl->changed_nsids)) {
5013 nvme_enqueue_event(ctrl, NVME_AER_TYPE_NOTICE,
5014 NVME_AER_INFO_NOTICE_NS_ATTR_CHANGED,
5015 NVME_LOG_CHANGED_NSLIST);
5019 return NVME_SUCCESS;
5022 static uint16_t nvme_format_ns(NvmeCtrl *n, NvmeNamespace *ns, uint8_t lbaf,
5023 uint8_t mset, uint8_t pi, uint8_t pil,
5024 NvmeRequest *req)
5026 int64_t len, offset;
5027 struct nvme_aio_format_ctx *ctx;
5028 BlockBackend *blk = ns->blkconf.blk;
5029 uint16_t ms;
5030 uintptr_t *num_formats = (uintptr_t *)&req->opaque;
5031 int *count;
5033 if (ns->params.zoned) {
5034 return NVME_INVALID_FORMAT | NVME_DNR;
5037 trace_pci_nvme_format_ns(nvme_cid(req), nvme_nsid(ns), lbaf, mset, pi, pil);
5039 if (lbaf > ns->id_ns.nlbaf) {
5040 return NVME_INVALID_FORMAT | NVME_DNR;
5043 ms = ns->id_ns.lbaf[lbaf].ms;
5045 if (pi && (ms < sizeof(NvmeDifTuple))) {
5046 return NVME_INVALID_FORMAT | NVME_DNR;
5049 if (pi && pi > NVME_ID_NS_DPS_TYPE_3) {
5050 return NVME_INVALID_FIELD | NVME_DNR;
5053 nvme_ns_drain(ns);
5054 nvme_ns_shutdown(ns);
5055 nvme_ns_cleanup(ns);
5057 ns->id_ns.dps = (pil << 3) | pi;
5058 ns->id_ns.flbas = lbaf | (mset << 4);
5060 nvme_ns_init_format(ns);
5062 ns->status = NVME_FORMAT_IN_PROGRESS;
5064 len = ns->size;
5065 offset = 0;
5067 count = g_new(int, 1);
5068 *count = 1;
5070 (*num_formats)++;
5072 while (len) {
5073 ctx = g_new(struct nvme_aio_format_ctx, 1);
5074 ctx->req = req;
5075 ctx->ns = ns;
5076 ctx->count = count;
5078 size_t bytes = MIN(BDRV_REQUEST_MAX_BYTES, len);
5080 (*count)++;
5082 blk_aio_pwrite_zeroes(blk, offset, bytes, BDRV_REQ_MAY_UNMAP,
5083 nvme_aio_format_cb, ctx);
5085 offset += bytes;
5086 len -= bytes;
5090 if (--(*count)) {
5091 return NVME_NO_COMPLETE;
5094 g_free(count);
5095 ns->status = 0x0;
5096 (*num_formats)--;
5098 return NVME_SUCCESS;
5101 static uint16_t nvme_format(NvmeCtrl *n, NvmeRequest *req)
5103 NvmeNamespace *ns;
5104 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
5105 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
5106 uint8_t lbaf = dw10 & 0xf;
5107 uint8_t mset = (dw10 >> 4) & 0x1;
5108 uint8_t pi = (dw10 >> 5) & 0x7;
5109 uint8_t pil = (dw10 >> 8) & 0x1;
5110 uintptr_t *num_formats = (uintptr_t *)&req->opaque;
5111 uint16_t status;
5112 int i;
5114 trace_pci_nvme_format(nvme_cid(req), nsid, lbaf, mset, pi, pil);
5116 /* 1-initialize; see the comment in nvme_dsm */
5117 *num_formats = 1;
5119 if (nsid != NVME_NSID_BROADCAST) {
5120 if (!nvme_nsid_valid(n, nsid)) {
5121 return NVME_INVALID_NSID | NVME_DNR;
5124 ns = nvme_ns(n, nsid);
5125 if (!ns) {
5126 return NVME_INVALID_FIELD | NVME_DNR;
5129 status = nvme_format_ns(n, ns, lbaf, mset, pi, pil, req);
5130 if (status && status != NVME_NO_COMPLETE) {
5131 req->status = status;
5133 } else {
5134 for (i = 1; i <= n->num_namespaces; i++) {
5135 ns = nvme_ns(n, i);
5136 if (!ns) {
5137 continue;
5140 status = nvme_format_ns(n, ns, lbaf, mset, pi, pil, req);
5141 if (status && status != NVME_NO_COMPLETE) {
5142 req->status = status;
5143 break;
5148 /* account for the 1-initialization */
5149 if (--(*num_formats)) {
5150 return NVME_NO_COMPLETE;
5153 return req->status;
5156 static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeRequest *req)
5158 trace_pci_nvme_admin_cmd(nvme_cid(req), nvme_sqid(req), req->cmd.opcode,
5159 nvme_adm_opc_str(req->cmd.opcode));
5161 if (!(nvme_cse_acs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
5162 trace_pci_nvme_err_invalid_admin_opc(req->cmd.opcode);
5163 return NVME_INVALID_OPCODE | NVME_DNR;
5166 /* SGLs shall not be used for Admin commands in NVMe over PCIe */
5167 if (NVME_CMD_FLAGS_PSDT(req->cmd.flags) != NVME_PSDT_PRP) {
5168 return NVME_INVALID_FIELD | NVME_DNR;
5171 switch (req->cmd.opcode) {
5172 case NVME_ADM_CMD_DELETE_SQ:
5173 return nvme_del_sq(n, req);
5174 case NVME_ADM_CMD_CREATE_SQ:
5175 return nvme_create_sq(n, req);
5176 case NVME_ADM_CMD_GET_LOG_PAGE:
5177 return nvme_get_log(n, req);
5178 case NVME_ADM_CMD_DELETE_CQ:
5179 return nvme_del_cq(n, req);
5180 case NVME_ADM_CMD_CREATE_CQ:
5181 return nvme_create_cq(n, req);
5182 case NVME_ADM_CMD_IDENTIFY:
5183 return nvme_identify(n, req);
5184 case NVME_ADM_CMD_ABORT:
5185 return nvme_abort(n, req);
5186 case NVME_ADM_CMD_SET_FEATURES:
5187 return nvme_set_feature(n, req);
5188 case NVME_ADM_CMD_GET_FEATURES:
5189 return nvme_get_feature(n, req);
5190 case NVME_ADM_CMD_ASYNC_EV_REQ:
5191 return nvme_aer(n, req);
5192 case NVME_ADM_CMD_NS_ATTACHMENT:
5193 return nvme_ns_attachment(n, req);
5194 case NVME_ADM_CMD_FORMAT_NVM:
5195 return nvme_format(n, req);
5196 default:
5197 assert(false);
5200 return NVME_INVALID_OPCODE | NVME_DNR;
5203 static void nvme_process_sq(void *opaque)
5205 NvmeSQueue *sq = opaque;
5206 NvmeCtrl *n = sq->ctrl;
5207 NvmeCQueue *cq = n->cq[sq->cqid];
5209 uint16_t status;
5210 hwaddr addr;
5211 NvmeCmd cmd;
5212 NvmeRequest *req;
5214 while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
5215 addr = sq->dma_addr + sq->head * n->sqe_size;
5216 if (nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd))) {
5217 trace_pci_nvme_err_addr_read(addr);
5218 trace_pci_nvme_err_cfs();
5219 n->bar.csts = NVME_CSTS_FAILED;
5220 break;
5222 nvme_inc_sq_head(sq);
5224 req = QTAILQ_FIRST(&sq->req_list);
5225 QTAILQ_REMOVE(&sq->req_list, req, entry);
5226 QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
5227 nvme_req_clear(req);
5228 req->cqe.cid = cmd.cid;
5229 memcpy(&req->cmd, &cmd, sizeof(NvmeCmd));
5231 status = sq->sqid ? nvme_io_cmd(n, req) :
5232 nvme_admin_cmd(n, req);
5233 if (status != NVME_NO_COMPLETE) {
5234 req->status = status;
5235 nvme_enqueue_req_completion(cq, req);
5240 static void nvme_ctrl_reset(NvmeCtrl *n)
5242 NvmeNamespace *ns;
5243 int i;
5245 for (i = 1; i <= n->num_namespaces; i++) {
5246 ns = nvme_ns(n, i);
5247 if (!ns) {
5248 continue;
5251 nvme_ns_drain(ns);
5254 for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
5255 if (n->sq[i] != NULL) {
5256 nvme_free_sq(n->sq[i], n);
5259 for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
5260 if (n->cq[i] != NULL) {
5261 nvme_free_cq(n->cq[i], n);
5265 while (!QTAILQ_EMPTY(&n->aer_queue)) {
5266 NvmeAsyncEvent *event = QTAILQ_FIRST(&n->aer_queue);
5267 QTAILQ_REMOVE(&n->aer_queue, event, entry);
5268 g_free(event);
5271 n->aer_queued = 0;
5272 n->outstanding_aers = 0;
5273 n->qs_created = false;
5275 n->bar.cc = 0;
5278 static void nvme_ctrl_shutdown(NvmeCtrl *n)
5280 NvmeNamespace *ns;
5281 int i;
5283 if (n->pmr.dev) {
5284 memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
5287 for (i = 1; i <= n->num_namespaces; i++) {
5288 ns = nvme_ns(n, i);
5289 if (!ns) {
5290 continue;
5293 nvme_ns_shutdown(ns);
5297 static void nvme_select_iocs(NvmeCtrl *n)
5299 NvmeNamespace *ns;
5300 int i;
5302 for (i = 1; i <= n->num_namespaces; i++) {
5303 ns = nvme_ns(n, i);
5304 if (!ns) {
5305 continue;
5308 nvme_select_iocs_ns(n, ns);
5312 static int nvme_start_ctrl(NvmeCtrl *n)
5314 uint32_t page_bits = NVME_CC_MPS(n->bar.cc) + 12;
5315 uint32_t page_size = 1 << page_bits;
5317 if (unlikely(n->cq[0])) {
5318 trace_pci_nvme_err_startfail_cq();
5319 return -1;
5321 if (unlikely(n->sq[0])) {
5322 trace_pci_nvme_err_startfail_sq();
5323 return -1;
5325 if (unlikely(!n->bar.asq)) {
5326 trace_pci_nvme_err_startfail_nbarasq();
5327 return -1;
5329 if (unlikely(!n->bar.acq)) {
5330 trace_pci_nvme_err_startfail_nbaracq();
5331 return -1;
5333 if (unlikely(n->bar.asq & (page_size - 1))) {
5334 trace_pci_nvme_err_startfail_asq_misaligned(n->bar.asq);
5335 return -1;
5337 if (unlikely(n->bar.acq & (page_size - 1))) {
5338 trace_pci_nvme_err_startfail_acq_misaligned(n->bar.acq);
5339 return -1;
5341 if (unlikely(!(NVME_CAP_CSS(n->bar.cap) & (1 << NVME_CC_CSS(n->bar.cc))))) {
5342 trace_pci_nvme_err_startfail_css(NVME_CC_CSS(n->bar.cc));
5343 return -1;
5345 if (unlikely(NVME_CC_MPS(n->bar.cc) <
5346 NVME_CAP_MPSMIN(n->bar.cap))) {
5347 trace_pci_nvme_err_startfail_page_too_small(
5348 NVME_CC_MPS(n->bar.cc),
5349 NVME_CAP_MPSMIN(n->bar.cap));
5350 return -1;
5352 if (unlikely(NVME_CC_MPS(n->bar.cc) >
5353 NVME_CAP_MPSMAX(n->bar.cap))) {
5354 trace_pci_nvme_err_startfail_page_too_large(
5355 NVME_CC_MPS(n->bar.cc),
5356 NVME_CAP_MPSMAX(n->bar.cap));
5357 return -1;
5359 if (unlikely(NVME_CC_IOCQES(n->bar.cc) <
5360 NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) {
5361 trace_pci_nvme_err_startfail_cqent_too_small(
5362 NVME_CC_IOCQES(n->bar.cc),
5363 NVME_CTRL_CQES_MIN(n->bar.cap));
5364 return -1;
5366 if (unlikely(NVME_CC_IOCQES(n->bar.cc) >
5367 NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) {
5368 trace_pci_nvme_err_startfail_cqent_too_large(
5369 NVME_CC_IOCQES(n->bar.cc),
5370 NVME_CTRL_CQES_MAX(n->bar.cap));
5371 return -1;
5373 if (unlikely(NVME_CC_IOSQES(n->bar.cc) <
5374 NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) {
5375 trace_pci_nvme_err_startfail_sqent_too_small(
5376 NVME_CC_IOSQES(n->bar.cc),
5377 NVME_CTRL_SQES_MIN(n->bar.cap));
5378 return -1;
5380 if (unlikely(NVME_CC_IOSQES(n->bar.cc) >
5381 NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) {
5382 trace_pci_nvme_err_startfail_sqent_too_large(
5383 NVME_CC_IOSQES(n->bar.cc),
5384 NVME_CTRL_SQES_MAX(n->bar.cap));
5385 return -1;
5387 if (unlikely(!NVME_AQA_ASQS(n->bar.aqa))) {
5388 trace_pci_nvme_err_startfail_asqent_sz_zero();
5389 return -1;
5391 if (unlikely(!NVME_AQA_ACQS(n->bar.aqa))) {
5392 trace_pci_nvme_err_startfail_acqent_sz_zero();
5393 return -1;
5396 n->page_bits = page_bits;
5397 n->page_size = page_size;
5398 n->max_prp_ents = n->page_size / sizeof(uint64_t);
5399 n->cqe_size = 1 << NVME_CC_IOCQES(n->bar.cc);
5400 n->sqe_size = 1 << NVME_CC_IOSQES(n->bar.cc);
5401 nvme_init_cq(&n->admin_cq, n, n->bar.acq, 0, 0,
5402 NVME_AQA_ACQS(n->bar.aqa) + 1, 1);
5403 nvme_init_sq(&n->admin_sq, n, n->bar.asq, 0, 0,
5404 NVME_AQA_ASQS(n->bar.aqa) + 1);
5406 nvme_set_timestamp(n, 0ULL);
5408 QTAILQ_INIT(&n->aer_queue);
5410 nvme_select_iocs(n);
5412 return 0;
5415 static void nvme_cmb_enable_regs(NvmeCtrl *n)
5417 NVME_CMBLOC_SET_CDPCILS(n->bar.cmbloc, 1);
5418 NVME_CMBLOC_SET_CDPMLS(n->bar.cmbloc, 1);
5419 NVME_CMBLOC_SET_BIR(n->bar.cmbloc, NVME_CMB_BIR);
5421 NVME_CMBSZ_SET_SQS(n->bar.cmbsz, 1);
5422 NVME_CMBSZ_SET_CQS(n->bar.cmbsz, 0);
5423 NVME_CMBSZ_SET_LISTS(n->bar.cmbsz, 1);
5424 NVME_CMBSZ_SET_RDS(n->bar.cmbsz, 1);
5425 NVME_CMBSZ_SET_WDS(n->bar.cmbsz, 1);
5426 NVME_CMBSZ_SET_SZU(n->bar.cmbsz, 2); /* MBs */
5427 NVME_CMBSZ_SET_SZ(n->bar.cmbsz, n->params.cmb_size_mb);
5430 static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
5431 unsigned size)
5433 if (unlikely(offset & (sizeof(uint32_t) - 1))) {
5434 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32,
5435 "MMIO write not 32-bit aligned,"
5436 " offset=0x%"PRIx64"", offset);
5437 /* should be ignored, fall through for now */
5440 if (unlikely(size < sizeof(uint32_t))) {
5441 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall,
5442 "MMIO write smaller than 32-bits,"
5443 " offset=0x%"PRIx64", size=%u",
5444 offset, size);
5445 /* should be ignored, fall through for now */
5448 switch (offset) {
5449 case 0xc: /* INTMS */
5450 if (unlikely(msix_enabled(&(n->parent_obj)))) {
5451 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
5452 "undefined access to interrupt mask set"
5453 " when MSI-X is enabled");
5454 /* should be ignored, fall through for now */
5456 n->bar.intms |= data & 0xffffffff;
5457 n->bar.intmc = n->bar.intms;
5458 trace_pci_nvme_mmio_intm_set(data & 0xffffffff, n->bar.intmc);
5459 nvme_irq_check(n);
5460 break;
5461 case 0x10: /* INTMC */
5462 if (unlikely(msix_enabled(&(n->parent_obj)))) {
5463 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
5464 "undefined access to interrupt mask clr"
5465 " when MSI-X is enabled");
5466 /* should be ignored, fall through for now */
5468 n->bar.intms &= ~(data & 0xffffffff);
5469 n->bar.intmc = n->bar.intms;
5470 trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, n->bar.intmc);
5471 nvme_irq_check(n);
5472 break;
5473 case 0x14: /* CC */
5474 trace_pci_nvme_mmio_cfg(data & 0xffffffff);
5475 /* Windows first sends data, then sends enable bit */
5476 if (!NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc) &&
5477 !NVME_CC_SHN(data) && !NVME_CC_SHN(n->bar.cc))
5479 n->bar.cc = data;
5482 if (NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc)) {
5483 n->bar.cc = data;
5484 if (unlikely(nvme_start_ctrl(n))) {
5485 trace_pci_nvme_err_startfail();
5486 n->bar.csts = NVME_CSTS_FAILED;
5487 } else {
5488 trace_pci_nvme_mmio_start_success();
5489 n->bar.csts = NVME_CSTS_READY;
5491 } else if (!NVME_CC_EN(data) && NVME_CC_EN(n->bar.cc)) {
5492 trace_pci_nvme_mmio_stopped();
5493 nvme_ctrl_reset(n);
5494 n->bar.csts &= ~NVME_CSTS_READY;
5496 if (NVME_CC_SHN(data) && !(NVME_CC_SHN(n->bar.cc))) {
5497 trace_pci_nvme_mmio_shutdown_set();
5498 nvme_ctrl_shutdown(n);
5499 n->bar.cc = data;
5500 n->bar.csts |= NVME_CSTS_SHST_COMPLETE;
5501 } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(n->bar.cc)) {
5502 trace_pci_nvme_mmio_shutdown_cleared();
5503 n->bar.csts &= ~NVME_CSTS_SHST_COMPLETE;
5504 n->bar.cc = data;
5506 break;
5507 case 0x1c: /* CSTS */
5508 if (data & (1 << 4)) {
5509 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported,
5510 "attempted to W1C CSTS.NSSRO"
5511 " but CAP.NSSRS is zero (not supported)");
5512 } else if (data != 0) {
5513 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts,
5514 "attempted to set a read only bit"
5515 " of controller status");
5517 break;
5518 case 0x20: /* NSSR */
5519 if (data == 0x4e564d65) {
5520 trace_pci_nvme_ub_mmiowr_ssreset_unsupported();
5521 } else {
5522 /* The spec says that writes of other values have no effect */
5523 return;
5525 break;
5526 case 0x24: /* AQA */
5527 n->bar.aqa = data & 0xffffffff;
5528 trace_pci_nvme_mmio_aqattr(data & 0xffffffff);
5529 break;
5530 case 0x28: /* ASQ */
5531 n->bar.asq = size == 8 ? data :
5532 (n->bar.asq & ~0xffffffffULL) | (data & 0xffffffff);
5533 trace_pci_nvme_mmio_asqaddr(data);
5534 break;
5535 case 0x2c: /* ASQ hi */
5536 n->bar.asq = (n->bar.asq & 0xffffffff) | (data << 32);
5537 trace_pci_nvme_mmio_asqaddr_hi(data, n->bar.asq);
5538 break;
5539 case 0x30: /* ACQ */
5540 trace_pci_nvme_mmio_acqaddr(data);
5541 n->bar.acq = size == 8 ? data :
5542 (n->bar.acq & ~0xffffffffULL) | (data & 0xffffffff);
5543 break;
5544 case 0x34: /* ACQ hi */
5545 n->bar.acq = (n->bar.acq & 0xffffffff) | (data << 32);
5546 trace_pci_nvme_mmio_acqaddr_hi(data, n->bar.acq);
5547 break;
5548 case 0x38: /* CMBLOC */
5549 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved,
5550 "invalid write to reserved CMBLOC"
5551 " when CMBSZ is zero, ignored");
5552 return;
5553 case 0x3C: /* CMBSZ */
5554 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly,
5555 "invalid write to read only CMBSZ, ignored");
5556 return;
5557 case 0x50: /* CMBMSC */
5558 if (!NVME_CAP_CMBS(n->bar.cap)) {
5559 return;
5562 n->bar.cmbmsc = size == 8 ? data :
5563 (n->bar.cmbmsc & ~0xffffffff) | (data & 0xffffffff);
5564 n->cmb.cmse = false;
5566 if (NVME_CMBMSC_CRE(data)) {
5567 nvme_cmb_enable_regs(n);
5569 if (NVME_CMBMSC_CMSE(data)) {
5570 hwaddr cba = NVME_CMBMSC_CBA(data) << CMBMSC_CBA_SHIFT;
5571 if (cba + int128_get64(n->cmb.mem.size) < cba) {
5572 NVME_CMBSTS_SET_CBAI(n->bar.cmbsts, 1);
5573 return;
5576 n->cmb.cba = cba;
5577 n->cmb.cmse = true;
5579 } else {
5580 n->bar.cmbsz = 0;
5581 n->bar.cmbloc = 0;
5584 return;
5585 case 0x54: /* CMBMSC hi */
5586 n->bar.cmbmsc = (n->bar.cmbmsc & 0xffffffff) | (data << 32);
5587 return;
5589 case 0xe00: /* PMRCAP */
5590 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly,
5591 "invalid write to PMRCAP register, ignored");
5592 return;
5593 case 0xe04: /* PMRCTL */
5594 n->bar.pmrctl = data;
5595 if (NVME_PMRCTL_EN(data)) {
5596 memory_region_set_enabled(&n->pmr.dev->mr, true);
5597 n->bar.pmrsts = 0;
5598 } else {
5599 memory_region_set_enabled(&n->pmr.dev->mr, false);
5600 NVME_PMRSTS_SET_NRDY(n->bar.pmrsts, 1);
5601 n->pmr.cmse = false;
5603 return;
5604 case 0xe08: /* PMRSTS */
5605 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly,
5606 "invalid write to PMRSTS register, ignored");
5607 return;
5608 case 0xe0C: /* PMREBS */
5609 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly,
5610 "invalid write to PMREBS register, ignored");
5611 return;
5612 case 0xe10: /* PMRSWTP */
5613 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly,
5614 "invalid write to PMRSWTP register, ignored");
5615 return;
5616 case 0xe14: /* PMRMSCL */
5617 if (!NVME_CAP_PMRS(n->bar.cap)) {
5618 return;
5621 n->bar.pmrmsc = (n->bar.pmrmsc & ~0xffffffff) | (data & 0xffffffff);
5622 n->pmr.cmse = false;
5624 if (NVME_PMRMSC_CMSE(n->bar.pmrmsc)) {
5625 hwaddr cba = NVME_PMRMSC_CBA(n->bar.pmrmsc) << PMRMSC_CBA_SHIFT;
5626 if (cba + int128_get64(n->pmr.dev->mr.size) < cba) {
5627 NVME_PMRSTS_SET_CBAI(n->bar.pmrsts, 1);
5628 return;
5631 n->pmr.cmse = true;
5632 n->pmr.cba = cba;
5635 return;
5636 case 0xe18: /* PMRMSCU */
5637 if (!NVME_CAP_PMRS(n->bar.cap)) {
5638 return;
5641 n->bar.pmrmsc = (n->bar.pmrmsc & 0xffffffff) | (data << 32);
5642 return;
5643 default:
5644 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid,
5645 "invalid MMIO write,"
5646 " offset=0x%"PRIx64", data=%"PRIx64"",
5647 offset, data);
5648 break;
5652 static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
5654 NvmeCtrl *n = (NvmeCtrl *)opaque;
5655 uint8_t *ptr = (uint8_t *)&n->bar;
5656 uint64_t val = 0;
5658 trace_pci_nvme_mmio_read(addr, size);
5660 if (unlikely(addr & (sizeof(uint32_t) - 1))) {
5661 NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32,
5662 "MMIO read not 32-bit aligned,"
5663 " offset=0x%"PRIx64"", addr);
5664 /* should RAZ, fall through for now */
5665 } else if (unlikely(size < sizeof(uint32_t))) {
5666 NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall,
5667 "MMIO read smaller than 32-bits,"
5668 " offset=0x%"PRIx64"", addr);
5669 /* should RAZ, fall through for now */
5672 if (addr < sizeof(n->bar)) {
5674 * When PMRWBM bit 1 is set then read from
5675 * from PMRSTS should ensure prior writes
5676 * made it to persistent media
5678 if (addr == 0xe08 &&
5679 (NVME_PMRCAP_PMRWBM(n->bar.pmrcap) & 0x02)) {
5680 memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
5682 memcpy(&val, ptr + addr, size);
5683 } else {
5684 NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs,
5685 "MMIO read beyond last register,"
5686 " offset=0x%"PRIx64", returning 0", addr);
5689 return val;
5692 static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
5694 uint32_t qid;
5696 if (unlikely(addr & ((1 << 2) - 1))) {
5697 NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned,
5698 "doorbell write not 32-bit aligned,"
5699 " offset=0x%"PRIx64", ignoring", addr);
5700 return;
5703 if (((addr - 0x1000) >> 2) & 1) {
5704 /* Completion queue doorbell write */
5706 uint16_t new_head = val & 0xffff;
5707 int start_sqs;
5708 NvmeCQueue *cq;
5710 qid = (addr - (0x1000 + (1 << 2))) >> 3;
5711 if (unlikely(nvme_check_cqid(n, qid))) {
5712 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq,
5713 "completion queue doorbell write"
5714 " for nonexistent queue,"
5715 " sqid=%"PRIu32", ignoring", qid);
5718 * NVM Express v1.3d, Section 4.1 state: "If host software writes
5719 * an invalid value to the Submission Queue Tail Doorbell or
5720 * Completion Queue Head Doorbell regiter and an Asynchronous Event
5721 * Request command is outstanding, then an asynchronous event is
5722 * posted to the Admin Completion Queue with a status code of
5723 * Invalid Doorbell Write Value."
5725 * Also note that the spec includes the "Invalid Doorbell Register"
5726 * status code, but nowhere does it specify when to use it.
5727 * However, it seems reasonable to use it here in a similar
5728 * fashion.
5730 if (n->outstanding_aers) {
5731 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
5732 NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
5733 NVME_LOG_ERROR_INFO);
5736 return;
5739 cq = n->cq[qid];
5740 if (unlikely(new_head >= cq->size)) {
5741 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead,
5742 "completion queue doorbell write value"
5743 " beyond queue size, sqid=%"PRIu32","
5744 " new_head=%"PRIu16", ignoring",
5745 qid, new_head);
5747 if (n->outstanding_aers) {
5748 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
5749 NVME_AER_INFO_ERR_INVALID_DB_VALUE,
5750 NVME_LOG_ERROR_INFO);
5753 return;
5756 trace_pci_nvme_mmio_doorbell_cq(cq->cqid, new_head);
5758 start_sqs = nvme_cq_full(cq) ? 1 : 0;
5759 cq->head = new_head;
5760 if (start_sqs) {
5761 NvmeSQueue *sq;
5762 QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
5763 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
5765 timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
5768 if (cq->tail == cq->head) {
5769 nvme_irq_deassert(n, cq);
5771 } else {
5772 /* Submission queue doorbell write */
5774 uint16_t new_tail = val & 0xffff;
5775 NvmeSQueue *sq;
5777 qid = (addr - 0x1000) >> 3;
5778 if (unlikely(nvme_check_sqid(n, qid))) {
5779 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq,
5780 "submission queue doorbell write"
5781 " for nonexistent queue,"
5782 " sqid=%"PRIu32", ignoring", qid);
5784 if (n->outstanding_aers) {
5785 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
5786 NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
5787 NVME_LOG_ERROR_INFO);
5790 return;
5793 sq = n->sq[qid];
5794 if (unlikely(new_tail >= sq->size)) {
5795 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail,
5796 "submission queue doorbell write value"
5797 " beyond queue size, sqid=%"PRIu32","
5798 " new_tail=%"PRIu16", ignoring",
5799 qid, new_tail);
5801 if (n->outstanding_aers) {
5802 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
5803 NVME_AER_INFO_ERR_INVALID_DB_VALUE,
5804 NVME_LOG_ERROR_INFO);
5807 return;
5810 trace_pci_nvme_mmio_doorbell_sq(sq->sqid, new_tail);
5812 sq->tail = new_tail;
5813 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
5817 static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
5818 unsigned size)
5820 NvmeCtrl *n = (NvmeCtrl *)opaque;
5822 trace_pci_nvme_mmio_write(addr, data, size);
5824 if (addr < sizeof(n->bar)) {
5825 nvme_write_bar(n, addr, data, size);
5826 } else {
5827 nvme_process_db(n, addr, data);
5831 static const MemoryRegionOps nvme_mmio_ops = {
5832 .read = nvme_mmio_read,
5833 .write = nvme_mmio_write,
5834 .endianness = DEVICE_LITTLE_ENDIAN,
5835 .impl = {
5836 .min_access_size = 2,
5837 .max_access_size = 8,
5841 static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
5842 unsigned size)
5844 NvmeCtrl *n = (NvmeCtrl *)opaque;
5845 stn_le_p(&n->cmb.buf[addr], size, data);
5848 static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
5850 NvmeCtrl *n = (NvmeCtrl *)opaque;
5851 return ldn_le_p(&n->cmb.buf[addr], size);
5854 static const MemoryRegionOps nvme_cmb_ops = {
5855 .read = nvme_cmb_read,
5856 .write = nvme_cmb_write,
5857 .endianness = DEVICE_LITTLE_ENDIAN,
5858 .impl = {
5859 .min_access_size = 1,
5860 .max_access_size = 8,
5864 static void nvme_check_constraints(NvmeCtrl *n, Error **errp)
5866 NvmeParams *params = &n->params;
5868 if (params->num_queues) {
5869 warn_report("num_queues is deprecated; please use max_ioqpairs "
5870 "instead");
5872 params->max_ioqpairs = params->num_queues - 1;
5875 if (n->namespace.blkconf.blk && n->subsys) {
5876 error_setg(errp, "subsystem support is unavailable with legacy "
5877 "namespace ('drive' property)");
5878 return;
5881 if (params->max_ioqpairs < 1 ||
5882 params->max_ioqpairs > NVME_MAX_IOQPAIRS) {
5883 error_setg(errp, "max_ioqpairs must be between 1 and %d",
5884 NVME_MAX_IOQPAIRS);
5885 return;
5888 if (params->msix_qsize < 1 ||
5889 params->msix_qsize > PCI_MSIX_FLAGS_QSIZE + 1) {
5890 error_setg(errp, "msix_qsize must be between 1 and %d",
5891 PCI_MSIX_FLAGS_QSIZE + 1);
5892 return;
5895 if (!params->serial) {
5896 error_setg(errp, "serial property not set");
5897 return;
5900 if (n->pmr.dev) {
5901 if (host_memory_backend_is_mapped(n->pmr.dev)) {
5902 error_setg(errp, "can't use already busy memdev: %s",
5903 object_get_canonical_path_component(OBJECT(n->pmr.dev)));
5904 return;
5907 if (!is_power_of_2(n->pmr.dev->size)) {
5908 error_setg(errp, "pmr backend size needs to be power of 2 in size");
5909 return;
5912 host_memory_backend_set_mapped(n->pmr.dev, true);
5915 if (n->params.zasl > n->params.mdts) {
5916 error_setg(errp, "zoned.zasl (Zone Append Size Limit) must be less "
5917 "than or equal to mdts (Maximum Data Transfer Size)");
5918 return;
5921 if (!n->params.vsl) {
5922 error_setg(errp, "vsl must be non-zero");
5923 return;
5927 static void nvme_init_state(NvmeCtrl *n)
5929 n->num_namespaces = NVME_MAX_NAMESPACES;
5930 /* add one to max_ioqpairs to account for the admin queue pair */
5931 n->reg_size = pow2ceil(sizeof(NvmeBar) +
5932 2 * (n->params.max_ioqpairs + 1) * NVME_DB_SIZE);
5933 n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1);
5934 n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1);
5935 n->temperature = NVME_TEMPERATURE;
5936 n->features.temp_thresh_hi = NVME_TEMPERATURE_WARNING;
5937 n->starttime_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
5938 n->aer_reqs = g_new0(NvmeRequest *, n->params.aerl + 1);
5941 static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev)
5943 uint64_t cmb_size = n->params.cmb_size_mb * MiB;
5945 n->cmb.buf = g_malloc0(cmb_size);
5946 memory_region_init_io(&n->cmb.mem, OBJECT(n), &nvme_cmb_ops, n,
5947 "nvme-cmb", cmb_size);
5948 pci_register_bar(pci_dev, NVME_CMB_BIR,
5949 PCI_BASE_ADDRESS_SPACE_MEMORY |
5950 PCI_BASE_ADDRESS_MEM_TYPE_64 |
5951 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->cmb.mem);
5953 NVME_CAP_SET_CMBS(n->bar.cap, 1);
5955 if (n->params.legacy_cmb) {
5956 nvme_cmb_enable_regs(n);
5957 n->cmb.cmse = true;
5961 static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev)
5963 NVME_PMRCAP_SET_RDS(n->bar.pmrcap, 1);
5964 NVME_PMRCAP_SET_WDS(n->bar.pmrcap, 1);
5965 NVME_PMRCAP_SET_BIR(n->bar.pmrcap, NVME_PMR_BIR);
5966 /* Turn on bit 1 support */
5967 NVME_PMRCAP_SET_PMRWBM(n->bar.pmrcap, 0x02);
5968 NVME_PMRCAP_SET_CMSS(n->bar.pmrcap, 1);
5970 pci_register_bar(pci_dev, NVME_PMRCAP_BIR(n->bar.pmrcap),
5971 PCI_BASE_ADDRESS_SPACE_MEMORY |
5972 PCI_BASE_ADDRESS_MEM_TYPE_64 |
5973 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmr.dev->mr);
5975 memory_region_set_enabled(&n->pmr.dev->mr, false);
5978 static int nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev, Error **errp)
5980 uint8_t *pci_conf = pci_dev->config;
5981 uint64_t bar_size, msix_table_size, msix_pba_size;
5982 unsigned msix_table_offset, msix_pba_offset;
5983 int ret;
5985 Error *err = NULL;
5987 pci_conf[PCI_INTERRUPT_PIN] = 1;
5988 pci_config_set_prog_interface(pci_conf, 0x2);
5990 if (n->params.use_intel_id) {
5991 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
5992 pci_config_set_device_id(pci_conf, 0x5845);
5993 } else {
5994 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REDHAT);
5995 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REDHAT_NVME);
5998 pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS);
5999 pcie_endpoint_cap_init(pci_dev, 0x80);
6001 bar_size = QEMU_ALIGN_UP(n->reg_size, 4 * KiB);
6002 msix_table_offset = bar_size;
6003 msix_table_size = PCI_MSIX_ENTRY_SIZE * n->params.msix_qsize;
6005 bar_size += msix_table_size;
6006 bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB);
6007 msix_pba_offset = bar_size;
6008 msix_pba_size = QEMU_ALIGN_UP(n->params.msix_qsize, 64) / 8;
6010 bar_size += msix_pba_size;
6011 bar_size = pow2ceil(bar_size);
6013 memory_region_init(&n->bar0, OBJECT(n), "nvme-bar0", bar_size);
6014 memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme",
6015 n->reg_size);
6016 memory_region_add_subregion(&n->bar0, 0, &n->iomem);
6018 pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
6019 PCI_BASE_ADDRESS_MEM_TYPE_64, &n->bar0);
6020 ret = msix_init(pci_dev, n->params.msix_qsize,
6021 &n->bar0, 0, msix_table_offset,
6022 &n->bar0, 0, msix_pba_offset, 0, &err);
6023 if (ret < 0) {
6024 if (ret == -ENOTSUP) {
6025 warn_report_err(err);
6026 } else {
6027 error_propagate(errp, err);
6028 return ret;
6032 if (n->params.cmb_size_mb) {
6033 nvme_init_cmb(n, pci_dev);
6036 if (n->pmr.dev) {
6037 nvme_init_pmr(n, pci_dev);
6040 return 0;
6043 static void nvme_init_subnqn(NvmeCtrl *n)
6045 NvmeSubsystem *subsys = n->subsys;
6046 NvmeIdCtrl *id = &n->id_ctrl;
6048 if (!subsys) {
6049 snprintf((char *)id->subnqn, sizeof(id->subnqn),
6050 "nqn.2019-08.org.qemu:%s", n->params.serial);
6051 } else {
6052 pstrcpy((char *)id->subnqn, sizeof(id->subnqn), (char*)subsys->subnqn);
6056 static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev)
6058 NvmeIdCtrl *id = &n->id_ctrl;
6059 uint8_t *pci_conf = pci_dev->config;
6061 id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
6062 id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
6063 strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
6064 strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' ');
6065 strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' ');
6067 id->cntlid = cpu_to_le16(n->cntlid);
6069 id->oaes = cpu_to_le32(NVME_OAES_NS_ATTR);
6071 id->rab = 6;
6073 if (n->params.use_intel_id) {
6074 id->ieee[0] = 0xb3;
6075 id->ieee[1] = 0x02;
6076 id->ieee[2] = 0x00;
6077 } else {
6078 id->ieee[0] = 0x00;
6079 id->ieee[1] = 0x54;
6080 id->ieee[2] = 0x52;
6083 id->mdts = n->params.mdts;
6084 id->ver = cpu_to_le32(NVME_SPEC_VER);
6085 id->oacs = cpu_to_le16(NVME_OACS_NS_MGMT | NVME_OACS_FORMAT);
6086 id->cntrltype = 0x1;
6089 * Because the controller always completes the Abort command immediately,
6090 * there can never be more than one concurrently executing Abort command,
6091 * so this value is never used for anything. Note that there can easily be
6092 * many Abort commands in the queues, but they are not considered
6093 * "executing" until processed by nvme_abort.
6095 * The specification recommends a value of 3 for Abort Command Limit (four
6096 * concurrently outstanding Abort commands), so lets use that though it is
6097 * inconsequential.
6099 id->acl = 3;
6100 id->aerl = n->params.aerl;
6101 id->frmw = (NVME_NUM_FW_SLOTS << 1) | NVME_FRMW_SLOT1_RO;
6102 id->lpa = NVME_LPA_NS_SMART | NVME_LPA_CSE | NVME_LPA_EXTENDED;
6104 /* recommended default value (~70 C) */
6105 id->wctemp = cpu_to_le16(NVME_TEMPERATURE_WARNING);
6106 id->cctemp = cpu_to_le16(NVME_TEMPERATURE_CRITICAL);
6108 id->sqes = (0x6 << 4) | 0x6;
6109 id->cqes = (0x4 << 4) | 0x4;
6110 id->nn = cpu_to_le32(n->num_namespaces);
6111 id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROES | NVME_ONCS_TIMESTAMP |
6112 NVME_ONCS_FEATURES | NVME_ONCS_DSM |
6113 NVME_ONCS_COMPARE | NVME_ONCS_COPY);
6116 * NOTE: If this device ever supports a command set that does NOT use 0x0
6117 * as a Flush-equivalent operation, support for the broadcast NSID in Flush
6118 * should probably be removed.
6120 * See comment in nvme_io_cmd.
6122 id->vwc = NVME_VWC_NSID_BROADCAST_SUPPORT | NVME_VWC_PRESENT;
6124 id->ocfs = cpu_to_le16(NVME_OCFS_COPY_FORMAT_0);
6125 id->sgls = cpu_to_le32(NVME_CTRL_SGLS_SUPPORT_NO_ALIGN |
6126 NVME_CTRL_SGLS_BITBUCKET);
6128 nvme_init_subnqn(n);
6130 id->psd[0].mp = cpu_to_le16(0x9c4);
6131 id->psd[0].enlat = cpu_to_le32(0x10);
6132 id->psd[0].exlat = cpu_to_le32(0x4);
6134 if (n->subsys) {
6135 id->cmic |= NVME_CMIC_MULTI_CTRL;
6138 NVME_CAP_SET_MQES(n->bar.cap, 0x7ff);
6139 NVME_CAP_SET_CQR(n->bar.cap, 1);
6140 NVME_CAP_SET_TO(n->bar.cap, 0xf);
6141 NVME_CAP_SET_CSS(n->bar.cap, NVME_CAP_CSS_NVM);
6142 NVME_CAP_SET_CSS(n->bar.cap, NVME_CAP_CSS_CSI_SUPP);
6143 NVME_CAP_SET_CSS(n->bar.cap, NVME_CAP_CSS_ADMIN_ONLY);
6144 NVME_CAP_SET_MPSMAX(n->bar.cap, 4);
6145 NVME_CAP_SET_CMBS(n->bar.cap, n->params.cmb_size_mb ? 1 : 0);
6146 NVME_CAP_SET_PMRS(n->bar.cap, n->pmr.dev ? 1 : 0);
6148 n->bar.vs = NVME_SPEC_VER;
6149 n->bar.intmc = n->bar.intms = 0;
6152 static int nvme_init_subsys(NvmeCtrl *n, Error **errp)
6154 int cntlid;
6156 if (!n->subsys) {
6157 return 0;
6160 cntlid = nvme_subsys_register_ctrl(n, errp);
6161 if (cntlid < 0) {
6162 return -1;
6165 n->cntlid = cntlid;
6167 return 0;
6170 void nvme_attach_ns(NvmeCtrl *n, NvmeNamespace *ns)
6172 uint32_t nsid = ns->params.nsid;
6173 assert(nsid && nsid <= NVME_MAX_NAMESPACES);
6175 n->namespaces[nsid - 1] = ns;
6176 ns->attached++;
6178 n->dmrsl = MIN_NON_ZERO(n->dmrsl,
6179 BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
6182 static void nvme_realize(PCIDevice *pci_dev, Error **errp)
6184 NvmeCtrl *n = NVME(pci_dev);
6185 NvmeNamespace *ns;
6186 Error *local_err = NULL;
6188 nvme_check_constraints(n, &local_err);
6189 if (local_err) {
6190 error_propagate(errp, local_err);
6191 return;
6194 qbus_create_inplace(&n->bus, sizeof(NvmeBus), TYPE_NVME_BUS,
6195 &pci_dev->qdev, n->parent_obj.qdev.id);
6197 nvme_init_state(n);
6198 if (nvme_init_pci(n, pci_dev, errp)) {
6199 return;
6202 if (nvme_init_subsys(n, errp)) {
6203 error_propagate(errp, local_err);
6204 return;
6206 nvme_init_ctrl(n, pci_dev);
6208 /* setup a namespace if the controller drive property was given */
6209 if (n->namespace.blkconf.blk) {
6210 ns = &n->namespace;
6211 ns->params.nsid = 1;
6213 if (nvme_ns_setup(n, ns, errp)) {
6214 return;
6217 nvme_attach_ns(n, ns);
6221 static void nvme_exit(PCIDevice *pci_dev)
6223 NvmeCtrl *n = NVME(pci_dev);
6224 NvmeNamespace *ns;
6225 int i;
6227 nvme_ctrl_reset(n);
6229 for (i = 1; i <= n->num_namespaces; i++) {
6230 ns = nvme_ns(n, i);
6231 if (!ns) {
6232 continue;
6235 nvme_ns_cleanup(ns);
6238 g_free(n->cq);
6239 g_free(n->sq);
6240 g_free(n->aer_reqs);
6242 if (n->params.cmb_size_mb) {
6243 g_free(n->cmb.buf);
6246 if (n->pmr.dev) {
6247 host_memory_backend_set_mapped(n->pmr.dev, false);
6249 msix_uninit(pci_dev, &n->bar0, &n->bar0);
6250 memory_region_del_subregion(&n->bar0, &n->iomem);
6253 static Property nvme_props[] = {
6254 DEFINE_BLOCK_PROPERTIES(NvmeCtrl, namespace.blkconf),
6255 DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmr.dev, TYPE_MEMORY_BACKEND,
6256 HostMemoryBackend *),
6257 DEFINE_PROP_LINK("subsys", NvmeCtrl, subsys, TYPE_NVME_SUBSYS,
6258 NvmeSubsystem *),
6259 DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial),
6260 DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0),
6261 DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0),
6262 DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64),
6263 DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl, params.msix_qsize, 65),
6264 DEFINE_PROP_UINT8("aerl", NvmeCtrl, params.aerl, 3),
6265 DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl, params.aer_max_queued, 64),
6266 DEFINE_PROP_UINT8("mdts", NvmeCtrl, params.mdts, 7),
6267 DEFINE_PROP_UINT8("vsl", NvmeCtrl, params.vsl, 7),
6268 DEFINE_PROP_BOOL("use-intel-id", NvmeCtrl, params.use_intel_id, false),
6269 DEFINE_PROP_BOOL("legacy-cmb", NvmeCtrl, params.legacy_cmb, false),
6270 DEFINE_PROP_UINT8("zoned.zasl", NvmeCtrl, params.zasl, 0),
6271 DEFINE_PROP_END_OF_LIST(),
6274 static void nvme_get_smart_warning(Object *obj, Visitor *v, const char *name,
6275 void *opaque, Error **errp)
6277 NvmeCtrl *n = NVME(obj);
6278 uint8_t value = n->smart_critical_warning;
6280 visit_type_uint8(v, name, &value, errp);
6283 static void nvme_set_smart_warning(Object *obj, Visitor *v, const char *name,
6284 void *opaque, Error **errp)
6286 NvmeCtrl *n = NVME(obj);
6287 uint8_t value, old_value, cap = 0, index, event;
6289 if (!visit_type_uint8(v, name, &value, errp)) {
6290 return;
6293 cap = NVME_SMART_SPARE | NVME_SMART_TEMPERATURE | NVME_SMART_RELIABILITY
6294 | NVME_SMART_MEDIA_READ_ONLY | NVME_SMART_FAILED_VOLATILE_MEDIA;
6295 if (NVME_CAP_PMRS(n->bar.cap)) {
6296 cap |= NVME_SMART_PMR_UNRELIABLE;
6299 if ((value & cap) != value) {
6300 error_setg(errp, "unsupported smart critical warning bits: 0x%x",
6301 value & ~cap);
6302 return;
6305 old_value = n->smart_critical_warning;
6306 n->smart_critical_warning = value;
6308 /* only inject new bits of smart critical warning */
6309 for (index = 0; index < NVME_SMART_WARN_MAX; index++) {
6310 event = 1 << index;
6311 if (value & ~old_value & event)
6312 nvme_smart_event(n, event);
6316 static const VMStateDescription nvme_vmstate = {
6317 .name = "nvme",
6318 .unmigratable = 1,
6321 static void nvme_class_init(ObjectClass *oc, void *data)
6323 DeviceClass *dc = DEVICE_CLASS(oc);
6324 PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
6326 pc->realize = nvme_realize;
6327 pc->exit = nvme_exit;
6328 pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
6329 pc->revision = 2;
6331 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
6332 dc->desc = "Non-Volatile Memory Express";
6333 device_class_set_props(dc, nvme_props);
6334 dc->vmsd = &nvme_vmstate;
6337 static void nvme_instance_init(Object *obj)
6339 NvmeCtrl *n = NVME(obj);
6341 device_add_bootindex_property(obj, &n->namespace.blkconf.bootindex,
6342 "bootindex", "/namespace@1,0",
6343 DEVICE(obj));
6345 object_property_add(obj, "smart_critical_warning", "uint8",
6346 nvme_get_smart_warning,
6347 nvme_set_smart_warning, NULL, NULL);
6350 static const TypeInfo nvme_info = {
6351 .name = TYPE_NVME,
6352 .parent = TYPE_PCI_DEVICE,
6353 .instance_size = sizeof(NvmeCtrl),
6354 .instance_init = nvme_instance_init,
6355 .class_init = nvme_class_init,
6356 .interfaces = (InterfaceInfo[]) {
6357 { INTERFACE_PCIE_DEVICE },
6362 static const TypeInfo nvme_bus_info = {
6363 .name = TYPE_NVME_BUS,
6364 .parent = TYPE_BUS,
6365 .instance_size = sizeof(NvmeBus),
6368 static void nvme_register_types(void)
6370 type_register_static(&nvme_info);
6371 type_register_static(&nvme_bus_info);
6374 type_init(nvme_register_types)