2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/hostmem.h"
33 #include "sysemu/numa.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/reset.h"
36 #include "sysemu/runstate.h"
38 #include "hw/fw-path-provider.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/cpus.h"
43 #include "sysemu/hw_accel.h"
45 #include "migration/misc.h"
46 #include "migration/qemu-file-types.h"
47 #include "migration/global_state.h"
48 #include "migration/register.h"
49 #include "mmu-hash64.h"
50 #include "mmu-book3s-v3.h"
51 #include "cpu-models.h"
52 #include "hw/core/cpu.h"
54 #include "hw/boards.h"
55 #include "hw/ppc/ppc.h"
56 #include "hw/loader.h"
58 #include "hw/ppc/fdt.h"
59 #include "hw/ppc/spapr.h"
60 #include "hw/ppc/spapr_vio.h"
61 #include "hw/qdev-properties.h"
62 #include "hw/pci-host/spapr.h"
63 #include "hw/pci/msi.h"
65 #include "hw/pci/pci.h"
66 #include "hw/scsi/scsi.h"
67 #include "hw/virtio/virtio-scsi.h"
68 #include "hw/virtio/vhost-scsi-common.h"
70 #include "exec/address-spaces.h"
71 #include "exec/ram_addr.h"
73 #include "qemu/config-file.h"
74 #include "qemu/error-report.h"
77 #include "hw/intc/intc.h"
79 #include "hw/ppc/spapr_cpu_core.h"
80 #include "hw/mem/memory-device.h"
81 #include "hw/ppc/spapr_tpm_proxy.h"
83 #include "monitor/monitor.h"
87 /* SLOF memory layout:
89 * SLOF raw image loaded at 0, copies its romfs right below the flat
90 * device-tree, then position SLOF itself 31M below that
92 * So we set FW_OVERHEAD to 40MB which should account for all of that
95 * We load our kernel at 4M, leaving space for SLOF initial image
97 #define FDT_MAX_SIZE 0x100000
98 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
99 #define FW_MAX_SIZE 0x400000
100 #define FW_FILE_NAME "slof.bin"
101 #define FW_OVERHEAD 0x2800000
102 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
104 #define MIN_RMA_SLOF 128UL
106 #define PHANDLE_INTC 0x00001111
108 /* These two functions implement the VCPU id numbering: one to compute them
109 * all and one to identify thread 0 of a VCORE. Any change to the first one
110 * is likely to have an impact on the second one, so let's keep them close.
112 static int spapr_vcpu_id(SpaprMachineState
*spapr
, int cpu_index
)
114 MachineState
*ms
= MACHINE(spapr
);
115 unsigned int smp_threads
= ms
->smp
.threads
;
119 (cpu_index
/ smp_threads
) * spapr
->vsmt
+ cpu_index
% smp_threads
;
121 static bool spapr_is_thread0_in_vcore(SpaprMachineState
*spapr
,
125 return spapr_get_vcpu_id(cpu
) % spapr
->vsmt
== 0;
128 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque
)
130 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
131 * and newer QEMUs don't even have them. In both cases, we don't want
132 * to send anything on the wire.
137 static const VMStateDescription pre_2_10_vmstate_dummy_icp
= {
138 .name
= "icp/server",
140 .minimum_version_id
= 1,
141 .needed
= pre_2_10_vmstate_dummy_icp_needed
,
142 .fields
= (VMStateField
[]) {
143 VMSTATE_UNUSED(4), /* uint32_t xirr */
144 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
145 VMSTATE_UNUSED(1), /* uint8_t mfrr */
146 VMSTATE_END_OF_LIST()
150 static void pre_2_10_vmstate_register_dummy_icp(int i
)
152 vmstate_register(NULL
, i
, &pre_2_10_vmstate_dummy_icp
,
153 (void *)(uintptr_t) i
);
156 static void pre_2_10_vmstate_unregister_dummy_icp(int i
)
158 vmstate_unregister(NULL
, &pre_2_10_vmstate_dummy_icp
,
159 (void *)(uintptr_t) i
);
162 int spapr_max_server_number(SpaprMachineState
*spapr
)
164 MachineState
*ms
= MACHINE(spapr
);
167 return DIV_ROUND_UP(ms
->smp
.max_cpus
* spapr
->vsmt
, ms
->smp
.threads
);
170 static int spapr_fixup_cpu_smt_dt(void *fdt
, int offset
, PowerPCCPU
*cpu
,
174 uint32_t servers_prop
[smt_threads
];
175 uint32_t gservers_prop
[smt_threads
* 2];
176 int index
= spapr_get_vcpu_id(cpu
);
178 if (cpu
->compat_pvr
) {
179 ret
= fdt_setprop_cell(fdt
, offset
, "cpu-version", cpu
->compat_pvr
);
185 /* Build interrupt servers and gservers properties */
186 for (i
= 0; i
< smt_threads
; i
++) {
187 servers_prop
[i
] = cpu_to_be32(index
+ i
);
188 /* Hack, direct the group queues back to cpu 0 */
189 gservers_prop
[i
*2] = cpu_to_be32(index
+ i
);
190 gservers_prop
[i
*2 + 1] = 0;
192 ret
= fdt_setprop(fdt
, offset
, "ibm,ppc-interrupt-server#s",
193 servers_prop
, sizeof(servers_prop
));
197 ret
= fdt_setprop(fdt
, offset
, "ibm,ppc-interrupt-gserver#s",
198 gservers_prop
, sizeof(gservers_prop
));
203 static int spapr_fixup_cpu_numa_dt(void *fdt
, int offset
, PowerPCCPU
*cpu
)
205 int index
= spapr_get_vcpu_id(cpu
);
206 uint32_t associativity
[] = {cpu_to_be32(0x5),
210 cpu_to_be32(cpu
->node_id
),
213 /* Advertise NUMA via ibm,associativity */
214 return fdt_setprop(fdt
, offset
, "ibm,associativity", associativity
,
215 sizeof(associativity
));
218 /* Populate the "ibm,pa-features" property */
219 static void spapr_populate_pa_features(SpaprMachineState
*spapr
,
221 void *fdt
, int offset
)
223 uint8_t pa_features_206
[] = { 6, 0,
224 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
225 uint8_t pa_features_207
[] = { 24, 0,
226 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
227 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
228 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
229 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
230 uint8_t pa_features_300
[] = { 66, 0,
231 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
232 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
233 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
235 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
237 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
238 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
239 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
240 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
242 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
243 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
244 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
245 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
246 /* 42: PM, 44: PC RA, 46: SC vec'd */
247 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
248 /* 48: SIMD, 50: QP BFP, 52: String */
249 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
250 /* 54: DecFP, 56: DecI, 58: SHA */
251 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
252 /* 60: NM atomic, 62: RNG */
253 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
255 uint8_t *pa_features
= NULL
;
258 if (ppc_check_compat(cpu
, CPU_POWERPC_LOGICAL_2_06
, 0, cpu
->compat_pvr
)) {
259 pa_features
= pa_features_206
;
260 pa_size
= sizeof(pa_features_206
);
262 if (ppc_check_compat(cpu
, CPU_POWERPC_LOGICAL_2_07
, 0, cpu
->compat_pvr
)) {
263 pa_features
= pa_features_207
;
264 pa_size
= sizeof(pa_features_207
);
266 if (ppc_check_compat(cpu
, CPU_POWERPC_LOGICAL_3_00
, 0, cpu
->compat_pvr
)) {
267 pa_features
= pa_features_300
;
268 pa_size
= sizeof(pa_features_300
);
274 if (ppc_hash64_has(cpu
, PPC_HASH64_CI_LARGEPAGE
)) {
276 * Note: we keep CI large pages off by default because a 64K capable
277 * guest provisioned with large pages might otherwise try to map a qemu
278 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
279 * even if that qemu runs on a 4k host.
280 * We dd this bit back here if we are confident this is not an issue
282 pa_features
[3] |= 0x20;
284 if ((spapr_get_cap(spapr
, SPAPR_CAP_HTM
) != 0) && pa_size
> 24) {
285 pa_features
[24] |= 0x80; /* Transactional memory support */
287 if (spapr
->cas_pre_isa3_guest
&& pa_size
> 40) {
288 /* Workaround for broken kernels that attempt (guest) radix
289 * mode when they can't handle it, if they see the radix bit set
290 * in pa-features. So hide it from them. */
291 pa_features
[40 + 2] &= ~0x80; /* Radix MMU */
294 _FDT((fdt_setprop(fdt
, offset
, "ibm,pa-features", pa_features
, pa_size
)));
297 static hwaddr
spapr_node0_size(MachineState
*machine
)
299 if (machine
->numa_state
->num_nodes
) {
301 for (i
= 0; i
< machine
->numa_state
->num_nodes
; ++i
) {
302 if (machine
->numa_state
->nodes
[i
].node_mem
) {
303 return MIN(pow2floor(machine
->numa_state
->nodes
[i
].node_mem
),
308 return machine
->ram_size
;
311 static void add_str(GString
*s
, const gchar
*s1
)
313 g_string_append_len(s
, s1
, strlen(s1
) + 1);
316 static int spapr_populate_memory_node(void *fdt
, int nodeid
, hwaddr start
,
319 uint32_t associativity
[] = {
320 cpu_to_be32(0x4), /* length */
321 cpu_to_be32(0x0), cpu_to_be32(0x0),
322 cpu_to_be32(0x0), cpu_to_be32(nodeid
)
325 uint64_t mem_reg_property
[2];
328 mem_reg_property
[0] = cpu_to_be64(start
);
329 mem_reg_property
[1] = cpu_to_be64(size
);
331 sprintf(mem_name
, "memory@%" HWADDR_PRIx
, start
);
332 off
= fdt_add_subnode(fdt
, 0, mem_name
);
334 _FDT((fdt_setprop_string(fdt
, off
, "device_type", "memory")));
335 _FDT((fdt_setprop(fdt
, off
, "reg", mem_reg_property
,
336 sizeof(mem_reg_property
))));
337 _FDT((fdt_setprop(fdt
, off
, "ibm,associativity", associativity
,
338 sizeof(associativity
))));
342 static int spapr_populate_memory(SpaprMachineState
*spapr
, void *fdt
)
344 MachineState
*machine
= MACHINE(spapr
);
345 hwaddr mem_start
, node_size
;
346 int i
, nb_nodes
= machine
->numa_state
->num_nodes
;
347 NodeInfo
*nodes
= machine
->numa_state
->nodes
;
349 for (i
= 0, mem_start
= 0; i
< nb_nodes
; ++i
) {
350 if (!nodes
[i
].node_mem
) {
353 if (mem_start
>= machine
->ram_size
) {
356 node_size
= nodes
[i
].node_mem
;
357 if (node_size
> machine
->ram_size
- mem_start
) {
358 node_size
= machine
->ram_size
- mem_start
;
362 /* spapr_machine_init() checks for rma_size <= node0_size
364 spapr_populate_memory_node(fdt
, i
, 0, spapr
->rma_size
);
365 mem_start
+= spapr
->rma_size
;
366 node_size
-= spapr
->rma_size
;
368 for ( ; node_size
; ) {
369 hwaddr sizetmp
= pow2floor(node_size
);
371 /* mem_start != 0 here */
372 if (ctzl(mem_start
) < ctzl(sizetmp
)) {
373 sizetmp
= 1ULL << ctzl(mem_start
);
376 spapr_populate_memory_node(fdt
, i
, mem_start
, sizetmp
);
377 node_size
-= sizetmp
;
378 mem_start
+= sizetmp
;
385 static void spapr_populate_cpu_dt(CPUState
*cs
, void *fdt
, int offset
,
386 SpaprMachineState
*spapr
)
388 MachineState
*ms
= MACHINE(spapr
);
389 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
390 CPUPPCState
*env
= &cpu
->env
;
391 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cs
);
392 int index
= spapr_get_vcpu_id(cpu
);
393 uint32_t segs
[] = {cpu_to_be32(28), cpu_to_be32(40),
394 0xffffffff, 0xffffffff};
395 uint32_t tbfreq
= kvm_enabled() ? kvmppc_get_tbfreq()
396 : SPAPR_TIMEBASE_FREQ
;
397 uint32_t cpufreq
= kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
398 uint32_t page_sizes_prop
[64];
399 size_t page_sizes_prop_size
;
400 unsigned int smp_threads
= ms
->smp
.threads
;
401 uint32_t vcpus_per_socket
= smp_threads
* ms
->smp
.cores
;
402 uint32_t pft_size_prop
[] = {0, cpu_to_be32(spapr
->htab_shift
)};
403 int compat_smt
= MIN(smp_threads
, ppc_compat_max_vthreads(cpu
));
406 uint32_t radix_AP_encodings
[PPC_PAGE_SIZES_MAX_SZ
];
409 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_CPU
, index
);
411 drc_index
= spapr_drc_index(drc
);
412 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,my-drc-index", drc_index
)));
415 _FDT((fdt_setprop_cell(fdt
, offset
, "reg", index
)));
416 _FDT((fdt_setprop_string(fdt
, offset
, "device_type", "cpu")));
418 _FDT((fdt_setprop_cell(fdt
, offset
, "cpu-version", env
->spr
[SPR_PVR
])));
419 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-block-size",
420 env
->dcache_line_size
)));
421 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-line-size",
422 env
->dcache_line_size
)));
423 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-block-size",
424 env
->icache_line_size
)));
425 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-line-size",
426 env
->icache_line_size
)));
428 if (pcc
->l1_dcache_size
) {
429 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-size",
430 pcc
->l1_dcache_size
)));
432 warn_report("Unknown L1 dcache size for cpu");
434 if (pcc
->l1_icache_size
) {
435 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-size",
436 pcc
->l1_icache_size
)));
438 warn_report("Unknown L1 icache size for cpu");
441 _FDT((fdt_setprop_cell(fdt
, offset
, "timebase-frequency", tbfreq
)));
442 _FDT((fdt_setprop_cell(fdt
, offset
, "clock-frequency", cpufreq
)));
443 _FDT((fdt_setprop_cell(fdt
, offset
, "slb-size", cpu
->hash64_opts
->slb_size
)));
444 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,slb-size", cpu
->hash64_opts
->slb_size
)));
445 _FDT((fdt_setprop_string(fdt
, offset
, "status", "okay")));
446 _FDT((fdt_setprop(fdt
, offset
, "64-bit", NULL
, 0)));
448 if (env
->spr_cb
[SPR_PURR
].oea_read
) {
449 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,purr", 1)));
451 if (env
->spr_cb
[SPR_SPURR
].oea_read
) {
452 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,spurr", 1)));
455 if (ppc_hash64_has(cpu
, PPC_HASH64_1TSEG
)) {
456 _FDT((fdt_setprop(fdt
, offset
, "ibm,processor-segment-sizes",
457 segs
, sizeof(segs
))));
460 /* Advertise VSX (vector extensions) if available
461 * 1 == VMX / Altivec available
464 * Only CPUs for which we create core types in spapr_cpu_core.c
465 * are possible, and all of those have VMX */
466 if (spapr_get_cap(spapr
, SPAPR_CAP_VSX
) != 0) {
467 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,vmx", 2)));
469 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,vmx", 1)));
472 /* Advertise DFP (Decimal Floating Point) if available
473 * 0 / no property == no DFP
474 * 1 == DFP available */
475 if (spapr_get_cap(spapr
, SPAPR_CAP_DFP
) != 0) {
476 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,dfp", 1)));
479 page_sizes_prop_size
= ppc_create_page_sizes_prop(cpu
, page_sizes_prop
,
480 sizeof(page_sizes_prop
));
481 if (page_sizes_prop_size
) {
482 _FDT((fdt_setprop(fdt
, offset
, "ibm,segment-page-sizes",
483 page_sizes_prop
, page_sizes_prop_size
)));
486 spapr_populate_pa_features(spapr
, cpu
, fdt
, offset
);
488 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,chip-id",
489 cs
->cpu_index
/ vcpus_per_socket
)));
491 _FDT((fdt_setprop(fdt
, offset
, "ibm,pft-size",
492 pft_size_prop
, sizeof(pft_size_prop
))));
494 if (ms
->numa_state
->num_nodes
> 1) {
495 _FDT(spapr_fixup_cpu_numa_dt(fdt
, offset
, cpu
));
498 _FDT(spapr_fixup_cpu_smt_dt(fdt
, offset
, cpu
, compat_smt
));
500 if (pcc
->radix_page_info
) {
501 for (i
= 0; i
< pcc
->radix_page_info
->count
; i
++) {
502 radix_AP_encodings
[i
] =
503 cpu_to_be32(pcc
->radix_page_info
->entries
[i
]);
505 _FDT((fdt_setprop(fdt
, offset
, "ibm,processor-radix-AP-encodings",
507 pcc
->radix_page_info
->count
*
508 sizeof(radix_AP_encodings
[0]))));
512 * We set this property to let the guest know that it can use the large
513 * decrementer and its width in bits.
515 if (spapr_get_cap(spapr
, SPAPR_CAP_LARGE_DECREMENTER
) != SPAPR_CAP_OFF
)
516 _FDT((fdt_setprop_u32(fdt
, offset
, "ibm,dec-bits",
517 pcc
->lrg_decr_bits
)));
520 static void spapr_populate_cpus_dt_node(void *fdt
, SpaprMachineState
*spapr
)
529 cpus_offset
= fdt_add_subnode(fdt
, 0, "cpus");
531 _FDT((fdt_setprop_cell(fdt
, cpus_offset
, "#address-cells", 0x1)));
532 _FDT((fdt_setprop_cell(fdt
, cpus_offset
, "#size-cells", 0x0)));
535 * We walk the CPUs in reverse order to ensure that CPU DT nodes
536 * created by fdt_add_subnode() end up in the right order in FDT
537 * for the guest kernel the enumerate the CPUs correctly.
539 * The CPU list cannot be traversed in reverse order, so we need
545 rev
= g_renew(CPUState
*, rev
, n_cpus
+ 1);
549 for (i
= n_cpus
- 1; i
>= 0; i
--) {
550 CPUState
*cs
= rev
[i
];
551 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
552 int index
= spapr_get_vcpu_id(cpu
);
553 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
556 if (!spapr_is_thread0_in_vcore(spapr
, cpu
)) {
560 nodename
= g_strdup_printf("%s@%x", dc
->fw_name
, index
);
561 offset
= fdt_add_subnode(fdt
, cpus_offset
, nodename
);
564 spapr_populate_cpu_dt(cs
, fdt
, offset
, spapr
);
570 static int spapr_rng_populate_dt(void *fdt
)
575 node
= qemu_fdt_add_subnode(fdt
, "/ibm,platform-facilities");
579 ret
= fdt_setprop_string(fdt
, node
, "device_type",
580 "ibm,platform-facilities");
581 ret
|= fdt_setprop_cell(fdt
, node
, "#address-cells", 0x1);
582 ret
|= fdt_setprop_cell(fdt
, node
, "#size-cells", 0x0);
584 node
= fdt_add_subnode(fdt
, node
, "ibm,random-v1");
588 ret
|= fdt_setprop_string(fdt
, node
, "compatible", "ibm,random");
593 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList
*list
, ram_addr_t addr
)
595 MemoryDeviceInfoList
*info
;
597 for (info
= list
; info
; info
= info
->next
) {
598 MemoryDeviceInfo
*value
= info
->value
;
600 if (value
&& value
->type
== MEMORY_DEVICE_INFO_KIND_DIMM
) {
601 PCDIMMDeviceInfo
*pcdimm_info
= value
->u
.dimm
.data
;
603 if (addr
>= pcdimm_info
->addr
&&
604 addr
< (pcdimm_info
->addr
+ pcdimm_info
->size
)) {
605 return pcdimm_info
->node
;
613 struct sPAPRDrconfCellV2
{
621 typedef struct DrconfCellQueue
{
622 struct sPAPRDrconfCellV2 cell
;
623 QSIMPLEQ_ENTRY(DrconfCellQueue
) entry
;
626 static DrconfCellQueue
*
627 spapr_get_drconf_cell(uint32_t seq_lmbs
, uint64_t base_addr
,
628 uint32_t drc_index
, uint32_t aa_index
,
631 DrconfCellQueue
*elem
;
633 elem
= g_malloc0(sizeof(*elem
));
634 elem
->cell
.seq_lmbs
= cpu_to_be32(seq_lmbs
);
635 elem
->cell
.base_addr
= cpu_to_be64(base_addr
);
636 elem
->cell
.drc_index
= cpu_to_be32(drc_index
);
637 elem
->cell
.aa_index
= cpu_to_be32(aa_index
);
638 elem
->cell
.flags
= cpu_to_be32(flags
);
643 /* ibm,dynamic-memory-v2 */
644 static int spapr_populate_drmem_v2(SpaprMachineState
*spapr
, void *fdt
,
645 int offset
, MemoryDeviceInfoList
*dimms
)
647 MachineState
*machine
= MACHINE(spapr
);
648 uint8_t *int_buf
, *cur_index
;
650 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
651 uint64_t addr
, cur_addr
, size
;
652 uint32_t nr_boot_lmbs
= (machine
->device_memory
->base
/ lmb_size
);
653 uint64_t mem_end
= machine
->device_memory
->base
+
654 memory_region_size(&machine
->device_memory
->mr
);
655 uint32_t node
, buf_len
, nr_entries
= 0;
657 DrconfCellQueue
*elem
, *next
;
658 MemoryDeviceInfoList
*info
;
659 QSIMPLEQ_HEAD(, DrconfCellQueue
) drconf_queue
660 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue
);
662 /* Entry to cover RAM and the gap area */
663 elem
= spapr_get_drconf_cell(nr_boot_lmbs
, 0, 0, -1,
664 SPAPR_LMB_FLAGS_RESERVED
|
665 SPAPR_LMB_FLAGS_DRC_INVALID
);
666 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
669 cur_addr
= machine
->device_memory
->base
;
670 for (info
= dimms
; info
; info
= info
->next
) {
671 PCDIMMDeviceInfo
*di
= info
->value
->u
.dimm
.data
;
677 /* Entry for hot-pluggable area */
678 if (cur_addr
< addr
) {
679 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, cur_addr
/ lmb_size
);
681 elem
= spapr_get_drconf_cell((addr
- cur_addr
) / lmb_size
,
682 cur_addr
, spapr_drc_index(drc
), -1, 0);
683 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
688 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, addr
/ lmb_size
);
690 elem
= spapr_get_drconf_cell(size
/ lmb_size
, addr
,
691 spapr_drc_index(drc
), node
,
692 SPAPR_LMB_FLAGS_ASSIGNED
);
693 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
695 cur_addr
= addr
+ size
;
698 /* Entry for remaining hotpluggable area */
699 if (cur_addr
< mem_end
) {
700 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, cur_addr
/ lmb_size
);
702 elem
= spapr_get_drconf_cell((mem_end
- cur_addr
) / lmb_size
,
703 cur_addr
, spapr_drc_index(drc
), -1, 0);
704 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
708 buf_len
= nr_entries
* sizeof(struct sPAPRDrconfCellV2
) + sizeof(uint32_t);
709 int_buf
= cur_index
= g_malloc0(buf_len
);
710 *(uint32_t *)int_buf
= cpu_to_be32(nr_entries
);
711 cur_index
+= sizeof(nr_entries
);
713 QSIMPLEQ_FOREACH_SAFE(elem
, &drconf_queue
, entry
, next
) {
714 memcpy(cur_index
, &elem
->cell
, sizeof(elem
->cell
));
715 cur_index
+= sizeof(elem
->cell
);
716 QSIMPLEQ_REMOVE(&drconf_queue
, elem
, DrconfCellQueue
, entry
);
720 ret
= fdt_setprop(fdt
, offset
, "ibm,dynamic-memory-v2", int_buf
, buf_len
);
728 /* ibm,dynamic-memory */
729 static int spapr_populate_drmem_v1(SpaprMachineState
*spapr
, void *fdt
,
730 int offset
, MemoryDeviceInfoList
*dimms
)
732 MachineState
*machine
= MACHINE(spapr
);
734 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
735 uint32_t device_lmb_start
= machine
->device_memory
->base
/ lmb_size
;
736 uint32_t nr_lmbs
= (machine
->device_memory
->base
+
737 memory_region_size(&machine
->device_memory
->mr
)) /
739 uint32_t *int_buf
, *cur_index
, buf_len
;
742 * Allocate enough buffer size to fit in ibm,dynamic-memory
744 buf_len
= (nr_lmbs
* SPAPR_DR_LMB_LIST_ENTRY_SIZE
+ 1) * sizeof(uint32_t);
745 cur_index
= int_buf
= g_malloc0(buf_len
);
746 int_buf
[0] = cpu_to_be32(nr_lmbs
);
748 for (i
= 0; i
< nr_lmbs
; i
++) {
749 uint64_t addr
= i
* lmb_size
;
750 uint32_t *dynamic_memory
= cur_index
;
752 if (i
>= device_lmb_start
) {
755 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, i
);
758 dynamic_memory
[0] = cpu_to_be32(addr
>> 32);
759 dynamic_memory
[1] = cpu_to_be32(addr
& 0xffffffff);
760 dynamic_memory
[2] = cpu_to_be32(spapr_drc_index(drc
));
761 dynamic_memory
[3] = cpu_to_be32(0); /* reserved */
762 dynamic_memory
[4] = cpu_to_be32(spapr_pc_dimm_node(dimms
, addr
));
763 if (memory_region_present(get_system_memory(), addr
)) {
764 dynamic_memory
[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED
);
766 dynamic_memory
[5] = cpu_to_be32(0);
770 * LMB information for RMA, boot time RAM and gap b/n RAM and
771 * device memory region -- all these are marked as reserved
772 * and as having no valid DRC.
774 dynamic_memory
[0] = cpu_to_be32(addr
>> 32);
775 dynamic_memory
[1] = cpu_to_be32(addr
& 0xffffffff);
776 dynamic_memory
[2] = cpu_to_be32(0);
777 dynamic_memory
[3] = cpu_to_be32(0); /* reserved */
778 dynamic_memory
[4] = cpu_to_be32(-1);
779 dynamic_memory
[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED
|
780 SPAPR_LMB_FLAGS_DRC_INVALID
);
783 cur_index
+= SPAPR_DR_LMB_LIST_ENTRY_SIZE
;
785 ret
= fdt_setprop(fdt
, offset
, "ibm,dynamic-memory", int_buf
, buf_len
);
794 * Adds ibm,dynamic-reconfiguration-memory node.
795 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
796 * of this device tree node.
798 static int spapr_populate_drconf_memory(SpaprMachineState
*spapr
, void *fdt
)
800 MachineState
*machine
= MACHINE(spapr
);
801 int nb_numa_nodes
= machine
->numa_state
->num_nodes
;
803 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
804 uint32_t prop_lmb_size
[] = {0, cpu_to_be32(lmb_size
)};
805 uint32_t *int_buf
, *cur_index
, buf_len
;
806 int nr_nodes
= nb_numa_nodes
? nb_numa_nodes
: 1;
807 MemoryDeviceInfoList
*dimms
= NULL
;
810 * Don't create the node if there is no device memory
812 if (machine
->ram_size
== machine
->maxram_size
) {
816 offset
= fdt_add_subnode(fdt
, 0, "ibm,dynamic-reconfiguration-memory");
818 ret
= fdt_setprop(fdt
, offset
, "ibm,lmb-size", prop_lmb_size
,
819 sizeof(prop_lmb_size
));
824 ret
= fdt_setprop_cell(fdt
, offset
, "ibm,memory-flags-mask", 0xff);
829 ret
= fdt_setprop_cell(fdt
, offset
, "ibm,memory-preservation-time", 0x0);
834 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
835 dimms
= qmp_memory_device_list();
836 if (spapr_ovec_test(spapr
->ov5_cas
, OV5_DRMEM_V2
)) {
837 ret
= spapr_populate_drmem_v2(spapr
, fdt
, offset
, dimms
);
839 ret
= spapr_populate_drmem_v1(spapr
, fdt
, offset
, dimms
);
841 qapi_free_MemoryDeviceInfoList(dimms
);
847 /* ibm,associativity-lookup-arrays */
848 buf_len
= (nr_nodes
* 4 + 2) * sizeof(uint32_t);
849 cur_index
= int_buf
= g_malloc0(buf_len
);
850 int_buf
[0] = cpu_to_be32(nr_nodes
);
851 int_buf
[1] = cpu_to_be32(4); /* Number of entries per associativity list */
853 for (i
= 0; i
< nr_nodes
; i
++) {
854 uint32_t associativity
[] = {
860 memcpy(cur_index
, associativity
, sizeof(associativity
));
863 ret
= fdt_setprop(fdt
, offset
, "ibm,associativity-lookup-arrays", int_buf
,
864 (cur_index
- int_buf
) * sizeof(uint32_t));
870 static int spapr_dt_cas_updates(SpaprMachineState
*spapr
, void *fdt
,
871 SpaprOptionVector
*ov5_updates
)
873 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
876 /* Generate ibm,dynamic-reconfiguration-memory node if required */
877 if (spapr_ovec_test(ov5_updates
, OV5_DRCONF_MEMORY
)) {
878 g_assert(smc
->dr_lmb_enabled
);
879 ret
= spapr_populate_drconf_memory(spapr
, fdt
);
885 offset
= fdt_path_offset(fdt
, "/chosen");
887 offset
= fdt_add_subnode(fdt
, 0, "chosen");
892 ret
= spapr_ovec_populate_dt(fdt
, offset
, spapr
->ov5_cas
,
893 "ibm,architecture-vec-5");
899 static void spapr_dt_rtas(SpaprMachineState
*spapr
, void *fdt
)
901 MachineState
*ms
= MACHINE(spapr
);
903 GString
*hypertas
= g_string_sized_new(256);
904 GString
*qemu_hypertas
= g_string_sized_new(256);
905 uint32_t refpoints
[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
906 uint64_t max_device_addr
= MACHINE(spapr
)->device_memory
->base
+
907 memory_region_size(&MACHINE(spapr
)->device_memory
->mr
);
908 uint32_t lrdr_capacity
[] = {
909 cpu_to_be32(max_device_addr
>> 32),
910 cpu_to_be32(max_device_addr
& 0xffffffff),
911 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE
),
912 cpu_to_be32(ms
->smp
.max_cpus
/ ms
->smp
.threads
),
914 uint32_t maxdomain
= cpu_to_be32(spapr
->gpu_numa_id
> 1 ? 1 : 0);
915 uint32_t maxdomains
[] = {
920 cpu_to_be32(spapr
->gpu_numa_id
),
923 _FDT(rtas
= fdt_add_subnode(fdt
, 0, "rtas"));
926 add_str(hypertas
, "hcall-pft");
927 add_str(hypertas
, "hcall-term");
928 add_str(hypertas
, "hcall-dabr");
929 add_str(hypertas
, "hcall-interrupt");
930 add_str(hypertas
, "hcall-tce");
931 add_str(hypertas
, "hcall-vio");
932 add_str(hypertas
, "hcall-splpar");
933 add_str(hypertas
, "hcall-join");
934 add_str(hypertas
, "hcall-bulk");
935 add_str(hypertas
, "hcall-set-mode");
936 add_str(hypertas
, "hcall-sprg0");
937 add_str(hypertas
, "hcall-copy");
938 add_str(hypertas
, "hcall-debug");
939 add_str(hypertas
, "hcall-vphn");
940 add_str(qemu_hypertas
, "hcall-memop1");
942 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
943 add_str(hypertas
, "hcall-multi-tce");
946 if (spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DISABLED
) {
947 add_str(hypertas
, "hcall-hpt-resize");
950 _FDT(fdt_setprop(fdt
, rtas
, "ibm,hypertas-functions",
951 hypertas
->str
, hypertas
->len
));
952 g_string_free(hypertas
, TRUE
);
953 _FDT(fdt_setprop(fdt
, rtas
, "qemu,hypertas-functions",
954 qemu_hypertas
->str
, qemu_hypertas
->len
));
955 g_string_free(qemu_hypertas
, TRUE
);
957 _FDT(fdt_setprop(fdt
, rtas
, "ibm,associativity-reference-points",
958 refpoints
, sizeof(refpoints
)));
960 _FDT(fdt_setprop(fdt
, rtas
, "ibm,max-associativity-domains",
961 maxdomains
, sizeof(maxdomains
)));
963 _FDT(fdt_setprop_cell(fdt
, rtas
, "rtas-error-log-max",
964 RTAS_ERROR_LOG_MAX
));
965 _FDT(fdt_setprop_cell(fdt
, rtas
, "rtas-event-scan-rate",
966 RTAS_EVENT_SCAN_RATE
));
968 g_assert(msi_nonbroken
);
969 _FDT(fdt_setprop(fdt
, rtas
, "ibm,change-msix-capable", NULL
, 0));
972 * According to PAPR, rtas ibm,os-term does not guarantee a return
973 * back to the guest cpu.
975 * While an additional ibm,extended-os-term property indicates
976 * that rtas call return will always occur. Set this property.
978 _FDT(fdt_setprop(fdt
, rtas
, "ibm,extended-os-term", NULL
, 0));
980 _FDT(fdt_setprop(fdt
, rtas
, "ibm,lrdr-capacity",
981 lrdr_capacity
, sizeof(lrdr_capacity
)));
983 spapr_dt_rtas_tokens(fdt
, rtas
);
987 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
988 * and the XIVE features that the guest may request and thus the valid
989 * values for bytes 23..26 of option vector 5:
991 static void spapr_dt_ov5_platform_support(SpaprMachineState
*spapr
, void *fdt
,
994 PowerPCCPU
*first_ppc_cpu
= POWERPC_CPU(first_cpu
);
997 23, 0x00, /* XICS / XIVE mode */
998 24, 0x00, /* Hash/Radix, filled in below. */
999 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1000 26, 0x40, /* Radix options: GTSE == yes. */
1003 if (spapr
->irq
->xics
&& spapr
->irq
->xive
) {
1004 val
[1] = SPAPR_OV5_XIVE_BOTH
;
1005 } else if (spapr
->irq
->xive
) {
1006 val
[1] = SPAPR_OV5_XIVE_EXPLOIT
;
1008 assert(spapr
->irq
->xics
);
1009 val
[1] = SPAPR_OV5_XIVE_LEGACY
;
1012 if (!ppc_check_compat(first_ppc_cpu
, CPU_POWERPC_LOGICAL_3_00
, 0,
1013 first_ppc_cpu
->compat_pvr
)) {
1015 * If we're in a pre POWER9 compat mode then the guest should
1016 * do hash and use the legacy interrupt mode
1018 val
[1] = SPAPR_OV5_XIVE_LEGACY
; /* XICS */
1019 val
[3] = 0x00; /* Hash */
1020 } else if (kvm_enabled()) {
1021 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1022 val
[3] = 0x80; /* OV5_MMU_BOTH */
1023 } else if (kvmppc_has_cap_mmu_radix()) {
1024 val
[3] = 0x40; /* OV5_MMU_RADIX_300 */
1026 val
[3] = 0x00; /* Hash */
1029 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1032 _FDT(fdt_setprop(fdt
, chosen
, "ibm,arch-vec-5-platform-support",
1036 static void spapr_dt_chosen(SpaprMachineState
*spapr
, void *fdt
)
1038 MachineState
*machine
= MACHINE(spapr
);
1039 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
1041 const char *boot_device
= machine
->boot_order
;
1042 char *stdout_path
= spapr_vio_stdout_path(spapr
->vio_bus
);
1044 char *bootlist
= get_boot_devices_list(&cb
);
1046 _FDT(chosen
= fdt_add_subnode(fdt
, 0, "chosen"));
1048 if (machine
->kernel_cmdline
&& machine
->kernel_cmdline
[0]) {
1049 _FDT(fdt_setprop_string(fdt
, chosen
, "bootargs",
1050 machine
->kernel_cmdline
));
1052 if (spapr
->initrd_size
) {
1053 _FDT(fdt_setprop_cell(fdt
, chosen
, "linux,initrd-start",
1054 spapr
->initrd_base
));
1055 _FDT(fdt_setprop_cell(fdt
, chosen
, "linux,initrd-end",
1056 spapr
->initrd_base
+ spapr
->initrd_size
));
1059 if (spapr
->kernel_size
) {
1060 uint64_t kprop
[2] = { cpu_to_be64(KERNEL_LOAD_ADDR
),
1061 cpu_to_be64(spapr
->kernel_size
) };
1063 _FDT(fdt_setprop(fdt
, chosen
, "qemu,boot-kernel",
1064 &kprop
, sizeof(kprop
)));
1065 if (spapr
->kernel_le
) {
1066 _FDT(fdt_setprop(fdt
, chosen
, "qemu,boot-kernel-le", NULL
, 0));
1070 _FDT((fdt_setprop_cell(fdt
, chosen
, "qemu,boot-menu", boot_menu
)));
1072 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-width", graphic_width
));
1073 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-height", graphic_height
));
1074 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-depth", graphic_depth
));
1076 if (cb
&& bootlist
) {
1079 for (i
= 0; i
< cb
; i
++) {
1080 if (bootlist
[i
] == '\n') {
1084 _FDT(fdt_setprop_string(fdt
, chosen
, "qemu,boot-list", bootlist
));
1087 if (boot_device
&& strlen(boot_device
)) {
1088 _FDT(fdt_setprop_string(fdt
, chosen
, "qemu,boot-device", boot_device
));
1091 if (!spapr
->has_graphics
&& stdout_path
) {
1093 * "linux,stdout-path" and "stdout" properties are deprecated by linux
1094 * kernel. New platforms should only use the "stdout-path" property. Set
1095 * the new property and continue using older property to remain
1096 * compatible with the existing firmware.
1098 _FDT(fdt_setprop_string(fdt
, chosen
, "linux,stdout-path", stdout_path
));
1099 _FDT(fdt_setprop_string(fdt
, chosen
, "stdout-path", stdout_path
));
1102 /* We can deal with BAR reallocation just fine, advertise it to the guest */
1103 if (smc
->linux_pci_probe
) {
1104 _FDT(fdt_setprop_cell(fdt
, chosen
, "linux,pci-probe-only", 0));
1107 spapr_dt_ov5_platform_support(spapr
, fdt
, chosen
);
1109 g_free(stdout_path
);
1113 static void spapr_dt_hypervisor(SpaprMachineState
*spapr
, void *fdt
)
1115 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1116 * KVM to work under pHyp with some guest co-operation */
1118 uint8_t hypercall
[16];
1120 _FDT(hypervisor
= fdt_add_subnode(fdt
, 0, "hypervisor"));
1121 /* indicate KVM hypercall interface */
1122 _FDT(fdt_setprop_string(fdt
, hypervisor
, "compatible", "linux,kvm"));
1123 if (kvmppc_has_cap_fixup_hcalls()) {
1125 * Older KVM versions with older guest kernels were broken
1126 * with the magic page, don't allow the guest to map it.
1128 if (!kvmppc_get_hypercall(first_cpu
->env_ptr
, hypercall
,
1129 sizeof(hypercall
))) {
1130 _FDT(fdt_setprop(fdt
, hypervisor
, "hcall-instructions",
1131 hypercall
, sizeof(hypercall
)));
1136 void *spapr_build_fdt(SpaprMachineState
*spapr
, bool reset
, size_t space
)
1138 MachineState
*machine
= MACHINE(spapr
);
1139 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
1140 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
1146 fdt
= g_malloc0(space
);
1147 _FDT((fdt_create_empty_tree(fdt
, space
)));
1150 _FDT(fdt_setprop_string(fdt
, 0, "device_type", "chrp"));
1151 _FDT(fdt_setprop_string(fdt
, 0, "model", "IBM pSeries (emulated by qemu)"));
1152 _FDT(fdt_setprop_string(fdt
, 0, "compatible", "qemu,pseries"));
1154 /* Guest UUID & Name*/
1155 buf
= qemu_uuid_unparse_strdup(&qemu_uuid
);
1156 _FDT(fdt_setprop_string(fdt
, 0, "vm,uuid", buf
));
1157 if (qemu_uuid_set
) {
1158 _FDT(fdt_setprop_string(fdt
, 0, "system-id", buf
));
1162 if (qemu_get_vm_name()) {
1163 _FDT(fdt_setprop_string(fdt
, 0, "ibm,partition-name",
1164 qemu_get_vm_name()));
1167 /* Host Model & Serial Number */
1168 if (spapr
->host_model
) {
1169 _FDT(fdt_setprop_string(fdt
, 0, "host-model", spapr
->host_model
));
1170 } else if (smc
->broken_host_serial_model
&& kvmppc_get_host_model(&buf
)) {
1171 _FDT(fdt_setprop_string(fdt
, 0, "host-model", buf
));
1175 if (spapr
->host_serial
) {
1176 _FDT(fdt_setprop_string(fdt
, 0, "host-serial", spapr
->host_serial
));
1177 } else if (smc
->broken_host_serial_model
&& kvmppc_get_host_serial(&buf
)) {
1178 _FDT(fdt_setprop_string(fdt
, 0, "host-serial", buf
));
1182 _FDT(fdt_setprop_cell(fdt
, 0, "#address-cells", 2));
1183 _FDT(fdt_setprop_cell(fdt
, 0, "#size-cells", 2));
1185 /* /interrupt controller */
1186 spapr_irq_dt(spapr
, spapr_max_server_number(spapr
), fdt
, PHANDLE_INTC
);
1188 ret
= spapr_populate_memory(spapr
, fdt
);
1190 error_report("couldn't setup memory nodes in fdt");
1195 spapr_dt_vdevice(spapr
->vio_bus
, fdt
);
1197 if (object_resolve_path_type("", TYPE_SPAPR_RNG
, NULL
)) {
1198 ret
= spapr_rng_populate_dt(fdt
);
1200 error_report("could not set up rng device in the fdt");
1205 QLIST_FOREACH(phb
, &spapr
->phbs
, list
) {
1206 ret
= spapr_dt_phb(spapr
, phb
, PHANDLE_INTC
, fdt
, NULL
);
1208 error_report("couldn't setup PCI devices in fdt");
1214 spapr_populate_cpus_dt_node(fdt
, spapr
);
1216 if (smc
->dr_lmb_enabled
) {
1217 _FDT(spapr_dt_drc(fdt
, 0, NULL
, SPAPR_DR_CONNECTOR_TYPE_LMB
));
1220 if (mc
->has_hotpluggable_cpus
) {
1221 int offset
= fdt_path_offset(fdt
, "/cpus");
1222 ret
= spapr_dt_drc(fdt
, offset
, NULL
, SPAPR_DR_CONNECTOR_TYPE_CPU
);
1224 error_report("Couldn't set up CPU DR device tree properties");
1229 /* /event-sources */
1230 spapr_dt_events(spapr
, fdt
);
1233 spapr_dt_rtas(spapr
, fdt
);
1237 spapr_dt_chosen(spapr
, fdt
);
1241 if (kvm_enabled()) {
1242 spapr_dt_hypervisor(spapr
, fdt
);
1245 /* Build memory reserve map */
1247 if (spapr
->kernel_size
) {
1248 _FDT((fdt_add_mem_rsv(fdt
, KERNEL_LOAD_ADDR
, spapr
->kernel_size
)));
1250 if (spapr
->initrd_size
) {
1251 _FDT((fdt_add_mem_rsv(fdt
, spapr
->initrd_base
,
1252 spapr
->initrd_size
)));
1256 /* ibm,client-architecture-support updates */
1257 ret
= spapr_dt_cas_updates(spapr
, fdt
, spapr
->ov5_cas
);
1259 error_report("couldn't setup CAS properties fdt");
1263 if (smc
->dr_phb_enabled
) {
1264 ret
= spapr_dt_drc(fdt
, 0, NULL
, SPAPR_DR_CONNECTOR_TYPE_PHB
);
1266 error_report("Couldn't set up PHB DR device tree properties");
1274 static uint64_t translate_kernel_address(void *opaque
, uint64_t addr
)
1276 return (addr
& 0x0fffffff) + KERNEL_LOAD_ADDR
;
1279 static void emulate_spapr_hypercall(PPCVirtualHypervisor
*vhyp
,
1282 CPUPPCState
*env
= &cpu
->env
;
1284 /* The TCG path should also be holding the BQL at this point */
1285 g_assert(qemu_mutex_iothread_locked());
1288 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1289 env
->gpr
[3] = H_PRIVILEGE
;
1291 env
->gpr
[3] = spapr_hypercall(cpu
, env
->gpr
[3], &env
->gpr
[4]);
1295 struct LPCRSyncState
{
1300 static void do_lpcr_sync(CPUState
*cs
, run_on_cpu_data arg
)
1302 struct LPCRSyncState
*s
= arg
.host_ptr
;
1303 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
1304 CPUPPCState
*env
= &cpu
->env
;
1307 cpu_synchronize_state(cs
);
1308 lpcr
= env
->spr
[SPR_LPCR
];
1311 ppc_store_lpcr(cpu
, lpcr
);
1314 void spapr_set_all_lpcrs(target_ulong value
, target_ulong mask
)
1317 struct LPCRSyncState s
= {
1322 run_on_cpu(cs
, do_lpcr_sync
, RUN_ON_CPU_HOST_PTR(&s
));
1326 static void spapr_get_pate(PPCVirtualHypervisor
*vhyp
, ppc_v3_pate_t
*entry
)
1328 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1330 /* Copy PATE1:GR into PATE0:HR */
1331 entry
->dw0
= spapr
->patb_entry
& PATE0_HR
;
1332 entry
->dw1
= spapr
->patb_entry
;
1335 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1336 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1337 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1338 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1339 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1342 * Get the fd to access the kernel htab, re-opening it if necessary
1344 static int get_htab_fd(SpaprMachineState
*spapr
)
1346 Error
*local_err
= NULL
;
1348 if (spapr
->htab_fd
>= 0) {
1349 return spapr
->htab_fd
;
1352 spapr
->htab_fd
= kvmppc_get_htab_fd(false, 0, &local_err
);
1353 if (spapr
->htab_fd
< 0) {
1354 error_report_err(local_err
);
1357 return spapr
->htab_fd
;
1360 void close_htab_fd(SpaprMachineState
*spapr
)
1362 if (spapr
->htab_fd
>= 0) {
1363 close(spapr
->htab_fd
);
1365 spapr
->htab_fd
= -1;
1368 static hwaddr
spapr_hpt_mask(PPCVirtualHypervisor
*vhyp
)
1370 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1372 return HTAB_SIZE(spapr
) / HASH_PTEG_SIZE_64
- 1;
1375 static target_ulong
spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor
*vhyp
)
1377 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1379 assert(kvm_enabled());
1385 return (target_ulong
)(uintptr_t)spapr
->htab
| (spapr
->htab_shift
- 18);
1388 static const ppc_hash_pte64_t
*spapr_map_hptes(PPCVirtualHypervisor
*vhyp
,
1391 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1392 hwaddr pte_offset
= ptex
* HASH_PTE_SIZE_64
;
1396 * HTAB is controlled by KVM. Fetch into temporary buffer
1398 ppc_hash_pte64_t
*hptes
= g_malloc(n
* HASH_PTE_SIZE_64
);
1399 kvmppc_read_hptes(hptes
, ptex
, n
);
1404 * HTAB is controlled by QEMU. Just point to the internally
1407 return (const ppc_hash_pte64_t
*)(spapr
->htab
+ pte_offset
);
1410 static void spapr_unmap_hptes(PPCVirtualHypervisor
*vhyp
,
1411 const ppc_hash_pte64_t
*hptes
,
1414 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1417 g_free((void *)hptes
);
1420 /* Nothing to do for qemu managed HPT */
1423 void spapr_store_hpte(PowerPCCPU
*cpu
, hwaddr ptex
,
1424 uint64_t pte0
, uint64_t pte1
)
1426 SpaprMachineState
*spapr
= SPAPR_MACHINE(cpu
->vhyp
);
1427 hwaddr offset
= ptex
* HASH_PTE_SIZE_64
;
1430 kvmppc_write_hpte(ptex
, pte0
, pte1
);
1432 if (pte0
& HPTE64_V_VALID
) {
1433 stq_p(spapr
->htab
+ offset
+ HASH_PTE_SIZE_64
/ 2, pte1
);
1435 * When setting valid, we write PTE1 first. This ensures
1436 * proper synchronization with the reading code in
1437 * ppc_hash64_pteg_search()
1440 stq_p(spapr
->htab
+ offset
, pte0
);
1442 stq_p(spapr
->htab
+ offset
, pte0
);
1444 * When clearing it we set PTE0 first. This ensures proper
1445 * synchronization with the reading code in
1446 * ppc_hash64_pteg_search()
1449 stq_p(spapr
->htab
+ offset
+ HASH_PTE_SIZE_64
/ 2, pte1
);
1454 static void spapr_hpte_set_c(PPCVirtualHypervisor
*vhyp
, hwaddr ptex
,
1457 hwaddr offset
= ptex
* HASH_PTE_SIZE_64
+ 15;
1458 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1461 /* There should always be a hash table when this is called */
1462 error_report("spapr_hpte_set_c called with no hash table !");
1466 /* The HW performs a non-atomic byte update */
1467 stb_p(spapr
->htab
+ offset
, (pte1
& 0xff) | 0x80);
1470 static void spapr_hpte_set_r(PPCVirtualHypervisor
*vhyp
, hwaddr ptex
,
1473 hwaddr offset
= ptex
* HASH_PTE_SIZE_64
+ 14;
1474 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1477 /* There should always be a hash table when this is called */
1478 error_report("spapr_hpte_set_r called with no hash table !");
1482 /* The HW performs a non-atomic byte update */
1483 stb_p(spapr
->htab
+ offset
, ((pte1
>> 8) & 0xff) | 0x01);
1486 int spapr_hpt_shift_for_ramsize(uint64_t ramsize
)
1490 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1491 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1492 * that's much more than is needed for Linux guests */
1493 shift
= ctz64(pow2ceil(ramsize
)) - 7;
1494 shift
= MAX(shift
, 18); /* Minimum architected size */
1495 shift
= MIN(shift
, 46); /* Maximum architected size */
1499 void spapr_free_hpt(SpaprMachineState
*spapr
)
1501 g_free(spapr
->htab
);
1503 spapr
->htab_shift
= 0;
1504 close_htab_fd(spapr
);
1507 void spapr_reallocate_hpt(SpaprMachineState
*spapr
, int shift
,
1512 /* Clean up any HPT info from a previous boot */
1513 spapr_free_hpt(spapr
);
1515 rc
= kvmppc_reset_htab(shift
);
1517 /* kernel-side HPT needed, but couldn't allocate one */
1518 error_setg_errno(errp
, errno
,
1519 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1521 /* This is almost certainly fatal, but if the caller really
1522 * wants to carry on with shift == 0, it's welcome to try */
1523 } else if (rc
> 0) {
1524 /* kernel-side HPT allocated */
1527 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1531 spapr
->htab_shift
= shift
;
1534 /* kernel-side HPT not needed, allocate in userspace instead */
1535 size_t size
= 1ULL << shift
;
1538 spapr
->htab
= qemu_memalign(size
, size
);
1540 error_setg_errno(errp
, errno
,
1541 "Could not allocate HPT of order %d", shift
);
1545 memset(spapr
->htab
, 0, size
);
1546 spapr
->htab_shift
= shift
;
1548 for (i
= 0; i
< size
/ HASH_PTE_SIZE_64
; i
++) {
1549 DIRTY_HPTE(HPTE(spapr
->htab
, i
));
1552 /* We're setting up a hash table, so that means we're not radix */
1553 spapr
->patb_entry
= 0;
1554 spapr_set_all_lpcrs(0, LPCR_HR
| LPCR_UPRT
);
1557 void spapr_setup_hpt_and_vrma(SpaprMachineState
*spapr
)
1561 if ((spapr
->resize_hpt
== SPAPR_RESIZE_HPT_DISABLED
)
1562 || (spapr
->cas_reboot
1563 && !spapr_ovec_test(spapr
->ov5_cas
, OV5_HPT_RESIZE
))) {
1564 hpt_shift
= spapr_hpt_shift_for_ramsize(MACHINE(spapr
)->maxram_size
);
1566 uint64_t current_ram_size
;
1568 current_ram_size
= MACHINE(spapr
)->ram_size
+ get_plugged_memory_size();
1569 hpt_shift
= spapr_hpt_shift_for_ramsize(current_ram_size
);
1571 spapr_reallocate_hpt(spapr
, hpt_shift
, &error_fatal
);
1573 if (spapr
->vrma_adjust
) {
1574 spapr
->rma_size
= kvmppc_rma_size(spapr_node0_size(MACHINE(spapr
)),
1579 static int spapr_reset_drcs(Object
*child
, void *opaque
)
1582 (SpaprDrc
*) object_dynamic_cast(child
,
1583 TYPE_SPAPR_DR_CONNECTOR
);
1586 spapr_drc_reset(drc
);
1592 static void spapr_machine_reset(MachineState
*machine
)
1594 SpaprMachineState
*spapr
= SPAPR_MACHINE(machine
);
1595 PowerPCCPU
*first_ppc_cpu
;
1600 spapr_caps_apply(spapr
);
1602 first_ppc_cpu
= POWERPC_CPU(first_cpu
);
1603 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1604 ppc_type_check_compat(machine
->cpu_type
, CPU_POWERPC_LOGICAL_3_00
, 0,
1605 spapr
->max_compat_pvr
)) {
1607 * If using KVM with radix mode available, VCPUs can be started
1608 * without a HPT because KVM will start them in radix mode.
1609 * Set the GR bit in PATE so that we know there is no HPT.
1611 spapr
->patb_entry
= PATE1_GR
;
1612 spapr_set_all_lpcrs(LPCR_HR
| LPCR_UPRT
, LPCR_HR
| LPCR_UPRT
);
1614 spapr_setup_hpt_and_vrma(spapr
);
1617 qemu_devices_reset();
1620 * If this reset wasn't generated by CAS, we should reset our
1621 * negotiated options and start from scratch
1623 if (!spapr
->cas_reboot
) {
1624 spapr_ovec_cleanup(spapr
->ov5_cas
);
1625 spapr
->ov5_cas
= spapr_ovec_new();
1627 ppc_set_compat_all(spapr
->max_compat_pvr
, &error_fatal
);
1631 * This is fixing some of the default configuration of the XIVE
1632 * devices. To be called after the reset of the machine devices.
1634 spapr_irq_reset(spapr
, &error_fatal
);
1637 * There is no CAS under qtest. Simulate one to please the code that
1638 * depends on spapr->ov5_cas. This is especially needed to test device
1639 * unplug, so we do that before resetting the DRCs.
1641 if (qtest_enabled()) {
1642 spapr_ovec_cleanup(spapr
->ov5_cas
);
1643 spapr
->ov5_cas
= spapr_ovec_clone(spapr
->ov5
);
1646 /* DRC reset may cause a device to be unplugged. This will cause troubles
1647 * if this device is used by another device (eg, a running vhost backend
1648 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1649 * situations, we reset DRCs after all devices have been reset.
1651 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs
, NULL
);
1653 spapr_clear_pending_events(spapr
);
1656 * We place the device tree and RTAS just below either the top of the RMA,
1657 * or just below 2GB, whichever is lower, so that it can be
1658 * processed with 32-bit real mode code if necessary
1660 fdt_addr
= MIN(spapr
->rma_size
, RTAS_MAX_ADDR
) - FDT_MAX_SIZE
;
1662 fdt
= spapr_build_fdt(spapr
, true, FDT_MAX_SIZE
);
1666 /* Should only fail if we've built a corrupted tree */
1670 qemu_fdt_dumpdtb(fdt
, fdt_totalsize(fdt
));
1671 cpu_physical_memory_write(fdt_addr
, fdt
, fdt_totalsize(fdt
));
1672 g_free(spapr
->fdt_blob
);
1673 spapr
->fdt_size
= fdt_totalsize(fdt
);
1674 spapr
->fdt_initial_size
= spapr
->fdt_size
;
1675 spapr
->fdt_blob
= fdt
;
1677 /* Set up the entry state */
1678 spapr_cpu_set_entry_state(first_ppc_cpu
, SPAPR_ENTRY_POINT
, fdt_addr
);
1679 first_ppc_cpu
->env
.gpr
[5] = 0;
1681 spapr
->cas_reboot
= false;
1684 static void spapr_create_nvram(SpaprMachineState
*spapr
)
1686 DeviceState
*dev
= qdev_create(&spapr
->vio_bus
->bus
, "spapr-nvram");
1687 DriveInfo
*dinfo
= drive_get(IF_PFLASH
, 0, 0);
1690 qdev_prop_set_drive(dev
, "drive", blk_by_legacy_dinfo(dinfo
),
1694 qdev_init_nofail(dev
);
1696 spapr
->nvram
= (struct SpaprNvram
*)dev
;
1699 static void spapr_rtc_create(SpaprMachineState
*spapr
)
1701 object_initialize_child(OBJECT(spapr
), "rtc",
1702 &spapr
->rtc
, sizeof(spapr
->rtc
), TYPE_SPAPR_RTC
,
1703 &error_fatal
, NULL
);
1704 object_property_set_bool(OBJECT(&spapr
->rtc
), true, "realized",
1706 object_property_add_alias(OBJECT(spapr
), "rtc-time", OBJECT(&spapr
->rtc
),
1707 "date", &error_fatal
);
1710 /* Returns whether we want to use VGA or not */
1711 static bool spapr_vga_init(PCIBus
*pci_bus
, Error
**errp
)
1713 switch (vga_interface_type
) {
1721 return pci_vga_init(pci_bus
) != NULL
;
1724 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1729 static int spapr_pre_load(void *opaque
)
1733 rc
= spapr_caps_pre_load(opaque
);
1741 static int spapr_post_load(void *opaque
, int version_id
)
1743 SpaprMachineState
*spapr
= (SpaprMachineState
*)opaque
;
1746 err
= spapr_caps_post_migration(spapr
);
1752 * In earlier versions, there was no separate qdev for the PAPR
1753 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1754 * So when migrating from those versions, poke the incoming offset
1755 * value into the RTC device
1757 if (version_id
< 3) {
1758 err
= spapr_rtc_import_offset(&spapr
->rtc
, spapr
->rtc_offset
);
1764 if (kvm_enabled() && spapr
->patb_entry
) {
1765 PowerPCCPU
*cpu
= POWERPC_CPU(first_cpu
);
1766 bool radix
= !!(spapr
->patb_entry
& PATE1_GR
);
1767 bool gtse
= !!(cpu
->env
.spr
[SPR_LPCR
] & LPCR_GTSE
);
1770 * Update LPCR:HR and UPRT as they may not be set properly in
1773 spapr_set_all_lpcrs(radix
? (LPCR_HR
| LPCR_UPRT
) : 0,
1774 LPCR_HR
| LPCR_UPRT
);
1776 err
= kvmppc_configure_v3_mmu(cpu
, radix
, gtse
, spapr
->patb_entry
);
1778 error_report("Process table config unsupported by the host");
1783 err
= spapr_irq_post_load(spapr
, version_id
);
1791 static int spapr_pre_save(void *opaque
)
1795 rc
= spapr_caps_pre_save(opaque
);
1803 static bool version_before_3(void *opaque
, int version_id
)
1805 return version_id
< 3;
1808 static bool spapr_pending_events_needed(void *opaque
)
1810 SpaprMachineState
*spapr
= (SpaprMachineState
*)opaque
;
1811 return !QTAILQ_EMPTY(&spapr
->pending_events
);
1814 static const VMStateDescription vmstate_spapr_event_entry
= {
1815 .name
= "spapr_event_log_entry",
1817 .minimum_version_id
= 1,
1818 .fields
= (VMStateField
[]) {
1819 VMSTATE_UINT32(summary
, SpaprEventLogEntry
),
1820 VMSTATE_UINT32(extended_length
, SpaprEventLogEntry
),
1821 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log
, SpaprEventLogEntry
, 0,
1822 NULL
, extended_length
),
1823 VMSTATE_END_OF_LIST()
1827 static const VMStateDescription vmstate_spapr_pending_events
= {
1828 .name
= "spapr_pending_events",
1830 .minimum_version_id
= 1,
1831 .needed
= spapr_pending_events_needed
,
1832 .fields
= (VMStateField
[]) {
1833 VMSTATE_QTAILQ_V(pending_events
, SpaprMachineState
, 1,
1834 vmstate_spapr_event_entry
, SpaprEventLogEntry
, next
),
1835 VMSTATE_END_OF_LIST()
1839 static bool spapr_ov5_cas_needed(void *opaque
)
1841 SpaprMachineState
*spapr
= opaque
;
1842 SpaprOptionVector
*ov5_mask
= spapr_ovec_new();
1843 SpaprOptionVector
*ov5_legacy
= spapr_ovec_new();
1844 SpaprOptionVector
*ov5_removed
= spapr_ovec_new();
1847 /* Prior to the introduction of SpaprOptionVector, we had two option
1848 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1849 * Both of these options encode machine topology into the device-tree
1850 * in such a way that the now-booted OS should still be able to interact
1851 * appropriately with QEMU regardless of what options were actually
1852 * negotiatied on the source side.
1854 * As such, we can avoid migrating the CAS-negotiated options if these
1855 * are the only options available on the current machine/platform.
1856 * Since these are the only options available for pseries-2.7 and
1857 * earlier, this allows us to maintain old->new/new->old migration
1860 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1861 * via default pseries-2.8 machines and explicit command-line parameters.
1862 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1863 * of the actual CAS-negotiated values to continue working properly. For
1864 * example, availability of memory unplug depends on knowing whether
1865 * OV5_HP_EVT was negotiated via CAS.
1867 * Thus, for any cases where the set of available CAS-negotiatable
1868 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1869 * include the CAS-negotiated options in the migration stream, unless
1870 * if they affect boot time behaviour only.
1872 spapr_ovec_set(ov5_mask
, OV5_FORM1_AFFINITY
);
1873 spapr_ovec_set(ov5_mask
, OV5_DRCONF_MEMORY
);
1874 spapr_ovec_set(ov5_mask
, OV5_DRMEM_V2
);
1876 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1877 * the mask itself since in the future it's possible "legacy" bits may be
1878 * removed via machine options, which could generate a false positive
1879 * that breaks migration.
1881 spapr_ovec_intersect(ov5_legacy
, spapr
->ov5
, ov5_mask
);
1882 cas_needed
= spapr_ovec_diff(ov5_removed
, spapr
->ov5
, ov5_legacy
);
1884 spapr_ovec_cleanup(ov5_mask
);
1885 spapr_ovec_cleanup(ov5_legacy
);
1886 spapr_ovec_cleanup(ov5_removed
);
1891 static const VMStateDescription vmstate_spapr_ov5_cas
= {
1892 .name
= "spapr_option_vector_ov5_cas",
1894 .minimum_version_id
= 1,
1895 .needed
= spapr_ov5_cas_needed
,
1896 .fields
= (VMStateField
[]) {
1897 VMSTATE_STRUCT_POINTER_V(ov5_cas
, SpaprMachineState
, 1,
1898 vmstate_spapr_ovec
, SpaprOptionVector
),
1899 VMSTATE_END_OF_LIST()
1903 static bool spapr_patb_entry_needed(void *opaque
)
1905 SpaprMachineState
*spapr
= opaque
;
1907 return !!spapr
->patb_entry
;
1910 static const VMStateDescription vmstate_spapr_patb_entry
= {
1911 .name
= "spapr_patb_entry",
1913 .minimum_version_id
= 1,
1914 .needed
= spapr_patb_entry_needed
,
1915 .fields
= (VMStateField
[]) {
1916 VMSTATE_UINT64(patb_entry
, SpaprMachineState
),
1917 VMSTATE_END_OF_LIST()
1921 static bool spapr_irq_map_needed(void *opaque
)
1923 SpaprMachineState
*spapr
= opaque
;
1925 return spapr
->irq_map
&& !bitmap_empty(spapr
->irq_map
, spapr
->irq_map_nr
);
1928 static const VMStateDescription vmstate_spapr_irq_map
= {
1929 .name
= "spapr_irq_map",
1931 .minimum_version_id
= 1,
1932 .needed
= spapr_irq_map_needed
,
1933 .fields
= (VMStateField
[]) {
1934 VMSTATE_BITMAP(irq_map
, SpaprMachineState
, 0, irq_map_nr
),
1935 VMSTATE_END_OF_LIST()
1939 static bool spapr_dtb_needed(void *opaque
)
1941 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(opaque
);
1943 return smc
->update_dt_enabled
;
1946 static int spapr_dtb_pre_load(void *opaque
)
1948 SpaprMachineState
*spapr
= (SpaprMachineState
*)opaque
;
1950 g_free(spapr
->fdt_blob
);
1951 spapr
->fdt_blob
= NULL
;
1952 spapr
->fdt_size
= 0;
1957 static const VMStateDescription vmstate_spapr_dtb
= {
1958 .name
= "spapr_dtb",
1960 .minimum_version_id
= 1,
1961 .needed
= spapr_dtb_needed
,
1962 .pre_load
= spapr_dtb_pre_load
,
1963 .fields
= (VMStateField
[]) {
1964 VMSTATE_UINT32(fdt_initial_size
, SpaprMachineState
),
1965 VMSTATE_UINT32(fdt_size
, SpaprMachineState
),
1966 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob
, SpaprMachineState
, 0, NULL
,
1968 VMSTATE_END_OF_LIST()
1972 static const VMStateDescription vmstate_spapr
= {
1975 .minimum_version_id
= 1,
1976 .pre_load
= spapr_pre_load
,
1977 .post_load
= spapr_post_load
,
1978 .pre_save
= spapr_pre_save
,
1979 .fields
= (VMStateField
[]) {
1980 /* used to be @next_irq */
1981 VMSTATE_UNUSED_BUFFER(version_before_3
, 0, 4),
1984 VMSTATE_UINT64_TEST(rtc_offset
, SpaprMachineState
, version_before_3
),
1986 VMSTATE_PPC_TIMEBASE_V(tb
, SpaprMachineState
, 2),
1987 VMSTATE_END_OF_LIST()
1989 .subsections
= (const VMStateDescription
*[]) {
1990 &vmstate_spapr_ov5_cas
,
1991 &vmstate_spapr_patb_entry
,
1992 &vmstate_spapr_pending_events
,
1993 &vmstate_spapr_cap_htm
,
1994 &vmstate_spapr_cap_vsx
,
1995 &vmstate_spapr_cap_dfp
,
1996 &vmstate_spapr_cap_cfpc
,
1997 &vmstate_spapr_cap_sbbc
,
1998 &vmstate_spapr_cap_ibs
,
1999 &vmstate_spapr_cap_hpt_maxpagesize
,
2000 &vmstate_spapr_irq_map
,
2001 &vmstate_spapr_cap_nested_kvm_hv
,
2003 &vmstate_spapr_cap_large_decr
,
2004 &vmstate_spapr_cap_ccf_assist
,
2009 static int htab_save_setup(QEMUFile
*f
, void *opaque
)
2011 SpaprMachineState
*spapr
= opaque
;
2013 /* "Iteration" header */
2014 if (!spapr
->htab_shift
) {
2015 qemu_put_be32(f
, -1);
2017 qemu_put_be32(f
, spapr
->htab_shift
);
2021 spapr
->htab_save_index
= 0;
2022 spapr
->htab_first_pass
= true;
2024 if (spapr
->htab_shift
) {
2025 assert(kvm_enabled());
2033 static void htab_save_chunk(QEMUFile
*f
, SpaprMachineState
*spapr
,
2034 int chunkstart
, int n_valid
, int n_invalid
)
2036 qemu_put_be32(f
, chunkstart
);
2037 qemu_put_be16(f
, n_valid
);
2038 qemu_put_be16(f
, n_invalid
);
2039 qemu_put_buffer(f
, HPTE(spapr
->htab
, chunkstart
),
2040 HASH_PTE_SIZE_64
* n_valid
);
2043 static void htab_save_end_marker(QEMUFile
*f
)
2045 qemu_put_be32(f
, 0);
2046 qemu_put_be16(f
, 0);
2047 qemu_put_be16(f
, 0);
2050 static void htab_save_first_pass(QEMUFile
*f
, SpaprMachineState
*spapr
,
2053 bool has_timeout
= max_ns
!= -1;
2054 int htabslots
= HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
;
2055 int index
= spapr
->htab_save_index
;
2056 int64_t starttime
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
2058 assert(spapr
->htab_first_pass
);
2063 /* Consume invalid HPTEs */
2064 while ((index
< htabslots
)
2065 && !HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2066 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2070 /* Consume valid HPTEs */
2072 while ((index
< htabslots
) && (index
- chunkstart
< USHRT_MAX
)
2073 && HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2074 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2078 if (index
> chunkstart
) {
2079 int n_valid
= index
- chunkstart
;
2081 htab_save_chunk(f
, spapr
, chunkstart
, n_valid
, 0);
2084 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - starttime
) > max_ns
) {
2088 } while ((index
< htabslots
) && !qemu_file_rate_limit(f
));
2090 if (index
>= htabslots
) {
2091 assert(index
== htabslots
);
2093 spapr
->htab_first_pass
= false;
2095 spapr
->htab_save_index
= index
;
2098 static int htab_save_later_pass(QEMUFile
*f
, SpaprMachineState
*spapr
,
2101 bool final
= max_ns
< 0;
2102 int htabslots
= HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
;
2103 int examined
= 0, sent
= 0;
2104 int index
= spapr
->htab_save_index
;
2105 int64_t starttime
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
2107 assert(!spapr
->htab_first_pass
);
2110 int chunkstart
, invalidstart
;
2112 /* Consume non-dirty HPTEs */
2113 while ((index
< htabslots
)
2114 && !HPTE_DIRTY(HPTE(spapr
->htab
, index
))) {
2120 /* Consume valid dirty HPTEs */
2121 while ((index
< htabslots
) && (index
- chunkstart
< USHRT_MAX
)
2122 && HPTE_DIRTY(HPTE(spapr
->htab
, index
))
2123 && HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2124 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2129 invalidstart
= index
;
2130 /* Consume invalid dirty HPTEs */
2131 while ((index
< htabslots
) && (index
- invalidstart
< USHRT_MAX
)
2132 && HPTE_DIRTY(HPTE(spapr
->htab
, index
))
2133 && !HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2134 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2139 if (index
> chunkstart
) {
2140 int n_valid
= invalidstart
- chunkstart
;
2141 int n_invalid
= index
- invalidstart
;
2143 htab_save_chunk(f
, spapr
, chunkstart
, n_valid
, n_invalid
);
2144 sent
+= index
- chunkstart
;
2146 if (!final
&& (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - starttime
) > max_ns
) {
2151 if (examined
>= htabslots
) {
2155 if (index
>= htabslots
) {
2156 assert(index
== htabslots
);
2159 } while ((examined
< htabslots
) && (!qemu_file_rate_limit(f
) || final
));
2161 if (index
>= htabslots
) {
2162 assert(index
== htabslots
);
2166 spapr
->htab_save_index
= index
;
2168 return (examined
>= htabslots
) && (sent
== 0) ? 1 : 0;
2171 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2172 #define MAX_KVM_BUF_SIZE 2048
2174 static int htab_save_iterate(QEMUFile
*f
, void *opaque
)
2176 SpaprMachineState
*spapr
= opaque
;
2180 /* Iteration header */
2181 if (!spapr
->htab_shift
) {
2182 qemu_put_be32(f
, -1);
2185 qemu_put_be32(f
, 0);
2189 assert(kvm_enabled());
2191 fd
= get_htab_fd(spapr
);
2196 rc
= kvmppc_save_htab(f
, fd
, MAX_KVM_BUF_SIZE
, MAX_ITERATION_NS
);
2200 } else if (spapr
->htab_first_pass
) {
2201 htab_save_first_pass(f
, spapr
, MAX_ITERATION_NS
);
2203 rc
= htab_save_later_pass(f
, spapr
, MAX_ITERATION_NS
);
2206 htab_save_end_marker(f
);
2211 static int htab_save_complete(QEMUFile
*f
, void *opaque
)
2213 SpaprMachineState
*spapr
= opaque
;
2216 /* Iteration header */
2217 if (!spapr
->htab_shift
) {
2218 qemu_put_be32(f
, -1);
2221 qemu_put_be32(f
, 0);
2227 assert(kvm_enabled());
2229 fd
= get_htab_fd(spapr
);
2234 rc
= kvmppc_save_htab(f
, fd
, MAX_KVM_BUF_SIZE
, -1);
2239 if (spapr
->htab_first_pass
) {
2240 htab_save_first_pass(f
, spapr
, -1);
2242 htab_save_later_pass(f
, spapr
, -1);
2246 htab_save_end_marker(f
);
2251 static int htab_load(QEMUFile
*f
, void *opaque
, int version_id
)
2253 SpaprMachineState
*spapr
= opaque
;
2254 uint32_t section_hdr
;
2256 Error
*local_err
= NULL
;
2258 if (version_id
< 1 || version_id
> 1) {
2259 error_report("htab_load() bad version");
2263 section_hdr
= qemu_get_be32(f
);
2265 if (section_hdr
== -1) {
2266 spapr_free_hpt(spapr
);
2271 /* First section gives the htab size */
2272 spapr_reallocate_hpt(spapr
, section_hdr
, &local_err
);
2274 error_report_err(local_err
);
2281 assert(kvm_enabled());
2283 fd
= kvmppc_get_htab_fd(true, 0, &local_err
);
2285 error_report_err(local_err
);
2292 uint16_t n_valid
, n_invalid
;
2294 index
= qemu_get_be32(f
);
2295 n_valid
= qemu_get_be16(f
);
2296 n_invalid
= qemu_get_be16(f
);
2298 if ((index
== 0) && (n_valid
== 0) && (n_invalid
== 0)) {
2303 if ((index
+ n_valid
+ n_invalid
) >
2304 (HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
)) {
2305 /* Bad index in stream */
2307 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2308 index
, n_valid
, n_invalid
, spapr
->htab_shift
);
2314 qemu_get_buffer(f
, HPTE(spapr
->htab
, index
),
2315 HASH_PTE_SIZE_64
* n_valid
);
2318 memset(HPTE(spapr
->htab
, index
+ n_valid
), 0,
2319 HASH_PTE_SIZE_64
* n_invalid
);
2326 rc
= kvmppc_load_htab_chunk(f
, fd
, index
, n_valid
, n_invalid
);
2341 static void htab_save_cleanup(void *opaque
)
2343 SpaprMachineState
*spapr
= opaque
;
2345 close_htab_fd(spapr
);
2348 static SaveVMHandlers savevm_htab_handlers
= {
2349 .save_setup
= htab_save_setup
,
2350 .save_live_iterate
= htab_save_iterate
,
2351 .save_live_complete_precopy
= htab_save_complete
,
2352 .save_cleanup
= htab_save_cleanup
,
2353 .load_state
= htab_load
,
2356 static void spapr_boot_set(void *opaque
, const char *boot_device
,
2359 MachineState
*machine
= MACHINE(opaque
);
2360 machine
->boot_order
= g_strdup(boot_device
);
2363 static void spapr_create_lmb_dr_connectors(SpaprMachineState
*spapr
)
2365 MachineState
*machine
= MACHINE(spapr
);
2366 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
2367 uint32_t nr_lmbs
= (machine
->maxram_size
- machine
->ram_size
)/lmb_size
;
2370 for (i
= 0; i
< nr_lmbs
; i
++) {
2373 addr
= i
* lmb_size
+ machine
->device_memory
->base
;
2374 spapr_dr_connector_new(OBJECT(spapr
), TYPE_SPAPR_DRC_LMB
,
2380 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2381 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2382 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2384 static void spapr_validate_node_memory(MachineState
*machine
, Error
**errp
)
2388 if (machine
->ram_size
% SPAPR_MEMORY_BLOCK_SIZE
) {
2389 error_setg(errp
, "Memory size 0x" RAM_ADDR_FMT
2390 " is not aligned to %" PRIu64
" MiB",
2392 SPAPR_MEMORY_BLOCK_SIZE
/ MiB
);
2396 if (machine
->maxram_size
% SPAPR_MEMORY_BLOCK_SIZE
) {
2397 error_setg(errp
, "Maximum memory size 0x" RAM_ADDR_FMT
2398 " is not aligned to %" PRIu64
" MiB",
2400 SPAPR_MEMORY_BLOCK_SIZE
/ MiB
);
2404 for (i
= 0; i
< machine
->numa_state
->num_nodes
; i
++) {
2405 if (machine
->numa_state
->nodes
[i
].node_mem
% SPAPR_MEMORY_BLOCK_SIZE
) {
2407 "Node %d memory size 0x%" PRIx64
2408 " is not aligned to %" PRIu64
" MiB",
2409 i
, machine
->numa_state
->nodes
[i
].node_mem
,
2410 SPAPR_MEMORY_BLOCK_SIZE
/ MiB
);
2416 /* find cpu slot in machine->possible_cpus by core_id */
2417 static CPUArchId
*spapr_find_cpu_slot(MachineState
*ms
, uint32_t id
, int *idx
)
2419 int index
= id
/ ms
->smp
.threads
;
2421 if (index
>= ms
->possible_cpus
->len
) {
2427 return &ms
->possible_cpus
->cpus
[index
];
2430 static void spapr_set_vsmt_mode(SpaprMachineState
*spapr
, Error
**errp
)
2432 MachineState
*ms
= MACHINE(spapr
);
2433 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
2434 Error
*local_err
= NULL
;
2435 bool vsmt_user
= !!spapr
->vsmt
;
2436 int kvm_smt
= kvmppc_smt_threads();
2438 unsigned int smp_threads
= ms
->smp
.threads
;
2440 if (!kvm_enabled() && (smp_threads
> 1)) {
2441 error_setg(&local_err
, "TCG cannot support more than 1 thread/core "
2442 "on a pseries machine");
2445 if (!is_power_of_2(smp_threads
)) {
2446 error_setg(&local_err
, "Cannot support %d threads/core on a pseries "
2447 "machine because it must be a power of 2", smp_threads
);
2451 /* Detemine the VSMT mode to use: */
2453 if (spapr
->vsmt
< smp_threads
) {
2454 error_setg(&local_err
, "Cannot support VSMT mode %d"
2455 " because it must be >= threads/core (%d)",
2456 spapr
->vsmt
, smp_threads
);
2459 /* In this case, spapr->vsmt has been set by the command line */
2460 } else if (!smc
->smp_threads_vsmt
) {
2462 * Default VSMT value is tricky, because we need it to be as
2463 * consistent as possible (for migration), but this requires
2464 * changing it for at least some existing cases. We pick 8 as
2465 * the value that we'd get with KVM on POWER8, the
2466 * overwhelmingly common case in production systems.
2468 spapr
->vsmt
= MAX(8, smp_threads
);
2470 spapr
->vsmt
= smp_threads
;
2473 /* KVM: If necessary, set the SMT mode: */
2474 if (kvm_enabled() && (spapr
->vsmt
!= kvm_smt
)) {
2475 ret
= kvmppc_set_smt_threads(spapr
->vsmt
);
2477 /* Looks like KVM isn't able to change VSMT mode */
2478 error_setg(&local_err
,
2479 "Failed to set KVM's VSMT mode to %d (errno %d)",
2481 /* We can live with that if the default one is big enough
2482 * for the number of threads, and a submultiple of the one
2483 * we want. In this case we'll waste some vcpu ids, but
2484 * behaviour will be correct */
2485 if ((kvm_smt
>= smp_threads
) && ((spapr
->vsmt
% kvm_smt
) == 0)) {
2486 warn_report_err(local_err
);
2491 error_append_hint(&local_err
,
2492 "On PPC, a VM with %d threads/core"
2493 " on a host with %d threads/core"
2494 " requires the use of VSMT mode %d.\n",
2495 smp_threads
, kvm_smt
, spapr
->vsmt
);
2497 kvmppc_error_append_smt_possible_hint(&local_err
);
2502 /* else TCG: nothing to do currently */
2504 error_propagate(errp
, local_err
);
2507 static void spapr_init_cpus(SpaprMachineState
*spapr
)
2509 MachineState
*machine
= MACHINE(spapr
);
2510 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
2511 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
2512 const char *type
= spapr_get_cpu_core_type(machine
->cpu_type
);
2513 const CPUArchIdList
*possible_cpus
;
2514 unsigned int smp_cpus
= machine
->smp
.cpus
;
2515 unsigned int smp_threads
= machine
->smp
.threads
;
2516 unsigned int max_cpus
= machine
->smp
.max_cpus
;
2517 int boot_cores_nr
= smp_cpus
/ smp_threads
;
2520 possible_cpus
= mc
->possible_cpu_arch_ids(machine
);
2521 if (mc
->has_hotpluggable_cpus
) {
2522 if (smp_cpus
% smp_threads
) {
2523 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2524 smp_cpus
, smp_threads
);
2527 if (max_cpus
% smp_threads
) {
2528 error_report("max_cpus (%u) must be multiple of threads (%u)",
2529 max_cpus
, smp_threads
);
2533 if (max_cpus
!= smp_cpus
) {
2534 error_report("This machine version does not support CPU hotplug");
2537 boot_cores_nr
= possible_cpus
->len
;
2540 if (smc
->pre_2_10_has_unused_icps
) {
2543 for (i
= 0; i
< spapr_max_server_number(spapr
); i
++) {
2544 /* Dummy entries get deregistered when real ICPState objects
2545 * are registered during CPU core hotplug.
2547 pre_2_10_vmstate_register_dummy_icp(i
);
2551 for (i
= 0; i
< possible_cpus
->len
; i
++) {
2552 int core_id
= i
* smp_threads
;
2554 if (mc
->has_hotpluggable_cpus
) {
2555 spapr_dr_connector_new(OBJECT(spapr
), TYPE_SPAPR_DRC_CPU
,
2556 spapr_vcpu_id(spapr
, core_id
));
2559 if (i
< boot_cores_nr
) {
2560 Object
*core
= object_new(type
);
2561 int nr_threads
= smp_threads
;
2563 /* Handle the partially filled core for older machine types */
2564 if ((i
+ 1) * smp_threads
>= smp_cpus
) {
2565 nr_threads
= smp_cpus
- i
* smp_threads
;
2568 object_property_set_int(core
, nr_threads
, "nr-threads",
2570 object_property_set_int(core
, core_id
, CPU_CORE_PROP_CORE_ID
,
2572 object_property_set_bool(core
, true, "realized", &error_fatal
);
2579 static PCIHostState
*spapr_create_default_phb(void)
2583 dev
= qdev_create(NULL
, TYPE_SPAPR_PCI_HOST_BRIDGE
);
2584 qdev_prop_set_uint32(dev
, "index", 0);
2585 qdev_init_nofail(dev
);
2587 return PCI_HOST_BRIDGE(dev
);
2590 /* pSeries LPAR / sPAPR hardware init */
2591 static void spapr_machine_init(MachineState
*machine
)
2593 SpaprMachineState
*spapr
= SPAPR_MACHINE(machine
);
2594 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
2595 const char *kernel_filename
= machine
->kernel_filename
;
2596 const char *initrd_filename
= machine
->initrd_filename
;
2599 MemoryRegion
*sysmem
= get_system_memory();
2600 MemoryRegion
*ram
= g_new(MemoryRegion
, 1);
2601 hwaddr node0_size
= spapr_node0_size(machine
);
2602 long load_limit
, fw_size
;
2604 Error
*resize_hpt_err
= NULL
;
2606 msi_nonbroken
= true;
2608 QLIST_INIT(&spapr
->phbs
);
2609 QTAILQ_INIT(&spapr
->pending_dimm_unplugs
);
2611 /* Determine capabilities to run with */
2612 spapr_caps_init(spapr
);
2614 kvmppc_check_papr_resize_hpt(&resize_hpt_err
);
2615 if (spapr
->resize_hpt
== SPAPR_RESIZE_HPT_DEFAULT
) {
2617 * If the user explicitly requested a mode we should either
2618 * supply it, or fail completely (which we do below). But if
2619 * it's not set explicitly, we reset our mode to something
2622 if (resize_hpt_err
) {
2623 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_DISABLED
;
2624 error_free(resize_hpt_err
);
2625 resize_hpt_err
= NULL
;
2627 spapr
->resize_hpt
= smc
->resize_hpt_default
;
2631 assert(spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DEFAULT
);
2633 if ((spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DISABLED
) && resize_hpt_err
) {
2635 * User requested HPT resize, but this host can't supply it. Bail out
2637 error_report_err(resize_hpt_err
);
2641 spapr
->rma_size
= node0_size
;
2643 /* With KVM, we don't actually know whether KVM supports an
2644 * unbounded RMA (PR KVM) or is limited by the hash table size
2645 * (HV KVM using VRMA), so we always assume the latter
2647 * In that case, we also limit the initial allocations for RTAS
2648 * etc... to 256M since we have no way to know what the VRMA size
2649 * is going to be as it depends on the size of the hash table
2650 * which isn't determined yet.
2652 if (kvm_enabled()) {
2653 spapr
->vrma_adjust
= 1;
2654 spapr
->rma_size
= MIN(spapr
->rma_size
, 0x10000000);
2657 /* Actually we don't support unbounded RMA anymore since we added
2658 * proper emulation of HV mode. The max we can get is 16G which
2659 * also happens to be what we configure for PAPR mode so make sure
2660 * we don't do anything bigger than that
2662 spapr
->rma_size
= MIN(spapr
->rma_size
, 0x400000000ull
);
2664 if (spapr
->rma_size
> node0_size
) {
2665 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx
")",
2670 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2671 load_limit
= MIN(spapr
->rma_size
, RTAS_MAX_ADDR
) - FW_OVERHEAD
;
2674 * VSMT must be set in order to be able to compute VCPU ids, ie to
2675 * call spapr_max_server_number() or spapr_vcpu_id().
2677 spapr_set_vsmt_mode(spapr
, &error_fatal
);
2679 /* Set up Interrupt Controller before we create the VCPUs */
2680 spapr_irq_init(spapr
, &error_fatal
);
2682 /* Set up containers for ibm,client-architecture-support negotiated options
2684 spapr
->ov5
= spapr_ovec_new();
2685 spapr
->ov5_cas
= spapr_ovec_new();
2687 if (smc
->dr_lmb_enabled
) {
2688 spapr_ovec_set(spapr
->ov5
, OV5_DRCONF_MEMORY
);
2689 spapr_validate_node_memory(machine
, &error_fatal
);
2692 spapr_ovec_set(spapr
->ov5
, OV5_FORM1_AFFINITY
);
2694 /* advertise support for dedicated HP event source to guests */
2695 if (spapr
->use_hotplug_event_source
) {
2696 spapr_ovec_set(spapr
->ov5
, OV5_HP_EVT
);
2699 /* advertise support for HPT resizing */
2700 if (spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DISABLED
) {
2701 spapr_ovec_set(spapr
->ov5
, OV5_HPT_RESIZE
);
2704 /* advertise support for ibm,dyamic-memory-v2 */
2705 spapr_ovec_set(spapr
->ov5
, OV5_DRMEM_V2
);
2707 /* advertise XIVE on POWER9 machines */
2708 if (spapr
->irq
->xive
) {
2709 spapr_ovec_set(spapr
->ov5
, OV5_XIVE_EXPLOIT
);
2713 spapr_init_cpus(spapr
);
2716 * check we don't have a memory-less/cpu-less NUMA node
2717 * Firmware relies on the existing memory/cpu topology to provide the
2718 * NUMA topology to the kernel.
2719 * And the linux kernel needs to know the NUMA topology at start
2720 * to be able to hotplug CPUs later.
2722 if (machine
->numa_state
->num_nodes
) {
2723 for (i
= 0; i
< machine
->numa_state
->num_nodes
; ++i
) {
2724 /* check for memory-less node */
2725 if (machine
->numa_state
->nodes
[i
].node_mem
== 0) {
2728 /* check for cpu-less node */
2730 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
2731 if (cpu
->node_id
== i
) {
2736 /* memory-less and cpu-less node */
2739 "Memory-less/cpu-less nodes are not supported (node %d)",
2749 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
2750 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
2751 * called from vPHB reset handler so we initialize the counter here.
2752 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
2753 * must be equally distant from any other node.
2754 * The final value of spapr->gpu_numa_id is going to be written to
2755 * max-associativity-domains in spapr_build_fdt().
2757 spapr
->gpu_numa_id
= MAX(1, machine
->numa_state
->num_nodes
);
2759 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2760 ppc_type_check_compat(machine
->cpu_type
, CPU_POWERPC_LOGICAL_3_00
, 0,
2761 spapr
->max_compat_pvr
)) {
2762 /* KVM and TCG always allow GTSE with radix... */
2763 spapr_ovec_set(spapr
->ov5
, OV5_MMU_RADIX_GTSE
);
2765 /* ... but not with hash (currently). */
2767 if (kvm_enabled()) {
2768 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2769 kvmppc_enable_logical_ci_hcalls();
2770 kvmppc_enable_set_mode_hcall();
2772 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2773 kvmppc_enable_clear_ref_mod_hcalls();
2775 /* Enable H_PAGE_INIT */
2776 kvmppc_enable_h_page_init();
2780 memory_region_allocate_system_memory(ram
, NULL
, "ppc_spapr.ram",
2782 memory_region_add_subregion(sysmem
, 0, ram
);
2784 /* always allocate the device memory information */
2785 machine
->device_memory
= g_malloc0(sizeof(*machine
->device_memory
));
2787 /* initialize hotplug memory address space */
2788 if (machine
->ram_size
< machine
->maxram_size
) {
2789 ram_addr_t device_mem_size
= machine
->maxram_size
- machine
->ram_size
;
2791 * Limit the number of hotpluggable memory slots to half the number
2792 * slots that KVM supports, leaving the other half for PCI and other
2793 * devices. However ensure that number of slots doesn't drop below 32.
2795 int max_memslots
= kvm_enabled() ? kvm_get_max_memslots() / 2 :
2796 SPAPR_MAX_RAM_SLOTS
;
2798 if (max_memslots
< SPAPR_MAX_RAM_SLOTS
) {
2799 max_memslots
= SPAPR_MAX_RAM_SLOTS
;
2801 if (machine
->ram_slots
> max_memslots
) {
2802 error_report("Specified number of memory slots %"
2803 PRIu64
" exceeds max supported %d",
2804 machine
->ram_slots
, max_memslots
);
2808 machine
->device_memory
->base
= ROUND_UP(machine
->ram_size
,
2809 SPAPR_DEVICE_MEM_ALIGN
);
2810 memory_region_init(&machine
->device_memory
->mr
, OBJECT(spapr
),
2811 "device-memory", device_mem_size
);
2812 memory_region_add_subregion(sysmem
, machine
->device_memory
->base
,
2813 &machine
->device_memory
->mr
);
2816 if (smc
->dr_lmb_enabled
) {
2817 spapr_create_lmb_dr_connectors(spapr
);
2820 /* Set up RTAS event infrastructure */
2821 spapr_events_init(spapr
);
2823 /* Set up the RTC RTAS interfaces */
2824 spapr_rtc_create(spapr
);
2826 /* Set up VIO bus */
2827 spapr
->vio_bus
= spapr_vio_bus_init();
2829 for (i
= 0; i
< serial_max_hds(); i
++) {
2831 spapr_vty_create(spapr
->vio_bus
, serial_hd(i
));
2835 /* We always have at least the nvram device on VIO */
2836 spapr_create_nvram(spapr
);
2839 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2840 * connectors (described in root DT node's "ibm,drc-types" property)
2841 * are pre-initialized here. additional child connectors (such as
2842 * connectors for a PHBs PCI slots) are added as needed during their
2843 * parent's realization.
2845 if (smc
->dr_phb_enabled
) {
2846 for (i
= 0; i
< SPAPR_MAX_PHBS
; i
++) {
2847 spapr_dr_connector_new(OBJECT(machine
), TYPE_SPAPR_DRC_PHB
, i
);
2852 spapr_pci_rtas_init();
2854 phb
= spapr_create_default_phb();
2856 for (i
= 0; i
< nb_nics
; i
++) {
2857 NICInfo
*nd
= &nd_table
[i
];
2860 nd
->model
= g_strdup("spapr-vlan");
2863 if (g_str_equal(nd
->model
, "spapr-vlan") ||
2864 g_str_equal(nd
->model
, "ibmveth")) {
2865 spapr_vlan_create(spapr
->vio_bus
, nd
);
2867 pci_nic_init_nofail(&nd_table
[i
], phb
->bus
, nd
->model
, NULL
);
2871 for (i
= 0; i
<= drive_get_max_bus(IF_SCSI
); i
++) {
2872 spapr_vscsi_create(spapr
->vio_bus
);
2876 if (spapr_vga_init(phb
->bus
, &error_fatal
)) {
2877 spapr
->has_graphics
= true;
2878 machine
->usb
|= defaults_enabled() && !machine
->usb_disabled
;
2882 if (smc
->use_ohci_by_default
) {
2883 pci_create_simple(phb
->bus
, -1, "pci-ohci");
2885 pci_create_simple(phb
->bus
, -1, "nec-usb-xhci");
2888 if (spapr
->has_graphics
) {
2889 USBBus
*usb_bus
= usb_bus_find(-1);
2891 usb_create_simple(usb_bus
, "usb-kbd");
2892 usb_create_simple(usb_bus
, "usb-mouse");
2896 if (spapr
->rma_size
< (MIN_RMA_SLOF
* MiB
)) {
2898 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2903 if (kernel_filename
) {
2904 uint64_t lowaddr
= 0;
2906 spapr
->kernel_size
= load_elf(kernel_filename
, NULL
,
2907 translate_kernel_address
, NULL
,
2908 NULL
, &lowaddr
, NULL
, 1,
2909 PPC_ELF_MACHINE
, 0, 0);
2910 if (spapr
->kernel_size
== ELF_LOAD_WRONG_ENDIAN
) {
2911 spapr
->kernel_size
= load_elf(kernel_filename
, NULL
,
2912 translate_kernel_address
, NULL
, NULL
,
2913 &lowaddr
, NULL
, 0, PPC_ELF_MACHINE
,
2915 spapr
->kernel_le
= spapr
->kernel_size
> 0;
2917 if (spapr
->kernel_size
< 0) {
2918 error_report("error loading %s: %s", kernel_filename
,
2919 load_elf_strerror(spapr
->kernel_size
));
2924 if (initrd_filename
) {
2925 /* Try to locate the initrd in the gap between the kernel
2926 * and the firmware. Add a bit of space just in case
2928 spapr
->initrd_base
= (KERNEL_LOAD_ADDR
+ spapr
->kernel_size
2929 + 0x1ffff) & ~0xffff;
2930 spapr
->initrd_size
= load_image_targphys(initrd_filename
,
2933 - spapr
->initrd_base
);
2934 if (spapr
->initrd_size
< 0) {
2935 error_report("could not load initial ram disk '%s'",
2942 if (bios_name
== NULL
) {
2943 bios_name
= FW_FILE_NAME
;
2945 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, bios_name
);
2947 error_report("Could not find LPAR firmware '%s'", bios_name
);
2950 fw_size
= load_image_targphys(filename
, 0, FW_MAX_SIZE
);
2952 error_report("Could not load LPAR firmware '%s'", filename
);
2957 /* FIXME: Should register things through the MachineState's qdev
2958 * interface, this is a legacy from the sPAPREnvironment structure
2959 * which predated MachineState but had a similar function */
2960 vmstate_register(NULL
, 0, &vmstate_spapr
, spapr
);
2961 register_savevm_live("spapr/htab", -1, 1,
2962 &savevm_htab_handlers
, spapr
);
2964 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine
),
2967 qemu_register_boot_set(spapr_boot_set
, spapr
);
2970 * Nothing needs to be done to resume a suspended guest because
2971 * suspending does not change the machine state, so no need for
2972 * a ->wakeup method.
2974 qemu_register_wakeup_support();
2976 if (kvm_enabled()) {
2977 /* to stop and start vmclock */
2978 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change
,
2981 kvmppc_spapr_enable_inkernel_multitce();
2985 static int spapr_kvm_type(MachineState
*machine
, const char *vm_type
)
2991 if (!strcmp(vm_type
, "HV")) {
2995 if (!strcmp(vm_type
, "PR")) {
2999 error_report("Unknown kvm-type specified '%s'", vm_type
);
3004 * Implementation of an interface to adjust firmware path
3005 * for the bootindex property handling.
3007 static char *spapr_get_fw_dev_path(FWPathProvider
*p
, BusState
*bus
,
3010 #define CAST(type, obj, name) \
3011 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3012 SCSIDevice
*d
= CAST(SCSIDevice
, dev
, TYPE_SCSI_DEVICE
);
3013 SpaprPhbState
*phb
= CAST(SpaprPhbState
, dev
, TYPE_SPAPR_PCI_HOST_BRIDGE
);
3014 VHostSCSICommon
*vsc
= CAST(VHostSCSICommon
, dev
, TYPE_VHOST_SCSI_COMMON
);
3017 void *spapr
= CAST(void, bus
->parent
, "spapr-vscsi");
3018 VirtIOSCSI
*virtio
= CAST(VirtIOSCSI
, bus
->parent
, TYPE_VIRTIO_SCSI
);
3019 USBDevice
*usb
= CAST(USBDevice
, bus
->parent
, TYPE_USB_DEVICE
);
3023 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3024 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3025 * 0x8000 | (target << 8) | (bus << 5) | lun
3026 * (see the "Logical unit addressing format" table in SAM5)
3028 unsigned id
= 0x8000 | (d
->id
<< 8) | (d
->channel
<< 5) | d
->lun
;
3029 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
3030 (uint64_t)id
<< 48);
3031 } else if (virtio
) {
3033 * We use SRP luns of the form 01000000 | (target << 8) | lun
3034 * in the top 32 bits of the 64-bit LUN
3035 * Note: the quote above is from SLOF and it is wrong,
3036 * the actual binding is:
3037 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3039 unsigned id
= 0x1000000 | (d
->id
<< 16) | d
->lun
;
3040 if (d
->lun
>= 256) {
3041 /* Use the LUN "flat space addressing method" */
3044 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
3045 (uint64_t)id
<< 32);
3048 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3049 * in the top 32 bits of the 64-bit LUN
3051 unsigned usb_port
= atoi(usb
->port
->path
);
3052 unsigned id
= 0x1000000 | (usb_port
<< 16) | d
->lun
;
3053 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
3054 (uint64_t)id
<< 32);
3059 * SLOF probes the USB devices, and if it recognizes that the device is a
3060 * storage device, it changes its name to "storage" instead of "usb-host",
3061 * and additionally adds a child node for the SCSI LUN, so the correct
3062 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3064 if (strcmp("usb-host", qdev_fw_name(dev
)) == 0) {
3065 USBDevice
*usbdev
= CAST(USBDevice
, dev
, TYPE_USB_DEVICE
);
3066 if (usb_host_dev_is_scsi_storage(usbdev
)) {
3067 return g_strdup_printf("storage@%s/disk", usbdev
->port
->path
);
3072 /* Replace "pci" with "pci@800000020000000" */
3073 return g_strdup_printf("pci@%"PRIX64
, phb
->buid
);
3077 /* Same logic as virtio above */
3078 unsigned id
= 0x1000000 | (vsc
->target
<< 16) | vsc
->lun
;
3079 return g_strdup_printf("disk@%"PRIX64
, (uint64_t)id
<< 32);
3082 if (g_str_equal("pci-bridge", qdev_fw_name(dev
))) {
3083 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3084 PCIDevice
*pcidev
= CAST(PCIDevice
, dev
, TYPE_PCI_DEVICE
);
3085 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev
->devfn
));
3091 static char *spapr_get_kvm_type(Object
*obj
, Error
**errp
)
3093 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3095 return g_strdup(spapr
->kvm_type
);
3098 static void spapr_set_kvm_type(Object
*obj
, const char *value
, Error
**errp
)
3100 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3102 g_free(spapr
->kvm_type
);
3103 spapr
->kvm_type
= g_strdup(value
);
3106 static bool spapr_get_modern_hotplug_events(Object
*obj
, Error
**errp
)
3108 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3110 return spapr
->use_hotplug_event_source
;
3113 static void spapr_set_modern_hotplug_events(Object
*obj
, bool value
,
3116 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3118 spapr
->use_hotplug_event_source
= value
;
3121 static bool spapr_get_msix_emulation(Object
*obj
, Error
**errp
)
3126 static char *spapr_get_resize_hpt(Object
*obj
, Error
**errp
)
3128 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3130 switch (spapr
->resize_hpt
) {
3131 case SPAPR_RESIZE_HPT_DEFAULT
:
3132 return g_strdup("default");
3133 case SPAPR_RESIZE_HPT_DISABLED
:
3134 return g_strdup("disabled");
3135 case SPAPR_RESIZE_HPT_ENABLED
:
3136 return g_strdup("enabled");
3137 case SPAPR_RESIZE_HPT_REQUIRED
:
3138 return g_strdup("required");
3140 g_assert_not_reached();
3143 static void spapr_set_resize_hpt(Object
*obj
, const char *value
, Error
**errp
)
3145 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3147 if (strcmp(value
, "default") == 0) {
3148 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_DEFAULT
;
3149 } else if (strcmp(value
, "disabled") == 0) {
3150 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_DISABLED
;
3151 } else if (strcmp(value
, "enabled") == 0) {
3152 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_ENABLED
;
3153 } else if (strcmp(value
, "required") == 0) {
3154 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_REQUIRED
;
3156 error_setg(errp
, "Bad value for \"resize-hpt\" property");
3160 static void spapr_get_vsmt(Object
*obj
, Visitor
*v
, const char *name
,
3161 void *opaque
, Error
**errp
)
3163 visit_type_uint32(v
, name
, (uint32_t *)opaque
, errp
);
3166 static void spapr_set_vsmt(Object
*obj
, Visitor
*v
, const char *name
,
3167 void *opaque
, Error
**errp
)
3169 visit_type_uint32(v
, name
, (uint32_t *)opaque
, errp
);
3172 static char *spapr_get_ic_mode(Object
*obj
, Error
**errp
)
3174 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3176 if (spapr
->irq
== &spapr_irq_xics_legacy
) {
3177 return g_strdup("legacy");
3178 } else if (spapr
->irq
== &spapr_irq_xics
) {
3179 return g_strdup("xics");
3180 } else if (spapr
->irq
== &spapr_irq_xive
) {
3181 return g_strdup("xive");
3182 } else if (spapr
->irq
== &spapr_irq_dual
) {
3183 return g_strdup("dual");
3185 g_assert_not_reached();
3188 static void spapr_set_ic_mode(Object
*obj
, const char *value
, Error
**errp
)
3190 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3192 if (SPAPR_MACHINE_GET_CLASS(spapr
)->legacy_irq_allocation
) {
3193 error_setg(errp
, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3197 /* The legacy IRQ backend can not be set */
3198 if (strcmp(value
, "xics") == 0) {
3199 spapr
->irq
= &spapr_irq_xics
;
3200 } else if (strcmp(value
, "xive") == 0) {
3201 spapr
->irq
= &spapr_irq_xive
;
3202 } else if (strcmp(value
, "dual") == 0) {
3203 spapr
->irq
= &spapr_irq_dual
;
3205 error_setg(errp
, "Bad value for \"ic-mode\" property");
3209 static char *spapr_get_host_model(Object
*obj
, Error
**errp
)
3211 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3213 return g_strdup(spapr
->host_model
);
3216 static void spapr_set_host_model(Object
*obj
, const char *value
, Error
**errp
)
3218 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3220 g_free(spapr
->host_model
);
3221 spapr
->host_model
= g_strdup(value
);
3224 static char *spapr_get_host_serial(Object
*obj
, Error
**errp
)
3226 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3228 return g_strdup(spapr
->host_serial
);
3231 static void spapr_set_host_serial(Object
*obj
, const char *value
, Error
**errp
)
3233 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3235 g_free(spapr
->host_serial
);
3236 spapr
->host_serial
= g_strdup(value
);
3239 static void spapr_instance_init(Object
*obj
)
3241 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3242 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
3244 spapr
->htab_fd
= -1;
3245 spapr
->use_hotplug_event_source
= true;
3246 object_property_add_str(obj
, "kvm-type",
3247 spapr_get_kvm_type
, spapr_set_kvm_type
, NULL
);
3248 object_property_set_description(obj
, "kvm-type",
3249 "Specifies the KVM virtualization mode (HV, PR)",
3251 object_property_add_bool(obj
, "modern-hotplug-events",
3252 spapr_get_modern_hotplug_events
,
3253 spapr_set_modern_hotplug_events
,
3255 object_property_set_description(obj
, "modern-hotplug-events",
3256 "Use dedicated hotplug event mechanism in"
3257 " place of standard EPOW events when possible"
3258 " (required for memory hot-unplug support)",
3260 ppc_compat_add_property(obj
, "max-cpu-compat", &spapr
->max_compat_pvr
,
3261 "Maximum permitted CPU compatibility mode",
3264 object_property_add_str(obj
, "resize-hpt",
3265 spapr_get_resize_hpt
, spapr_set_resize_hpt
, NULL
);
3266 object_property_set_description(obj
, "resize-hpt",
3267 "Resizing of the Hash Page Table (enabled, disabled, required)",
3269 object_property_add(obj
, "vsmt", "uint32", spapr_get_vsmt
,
3270 spapr_set_vsmt
, NULL
, &spapr
->vsmt
, &error_abort
);
3271 object_property_set_description(obj
, "vsmt",
3272 "Virtual SMT: KVM behaves as if this were"
3273 " the host's SMT mode", &error_abort
);
3274 object_property_add_bool(obj
, "vfio-no-msix-emulation",
3275 spapr_get_msix_emulation
, NULL
, NULL
);
3277 /* The machine class defines the default interrupt controller mode */
3278 spapr
->irq
= smc
->irq
;
3279 object_property_add_str(obj
, "ic-mode", spapr_get_ic_mode
,
3280 spapr_set_ic_mode
, NULL
);
3281 object_property_set_description(obj
, "ic-mode",
3282 "Specifies the interrupt controller mode (xics, xive, dual)",
3285 object_property_add_str(obj
, "host-model",
3286 spapr_get_host_model
, spapr_set_host_model
,
3288 object_property_set_description(obj
, "host-model",
3289 "Host model to advertise in guest device tree", &error_abort
);
3290 object_property_add_str(obj
, "host-serial",
3291 spapr_get_host_serial
, spapr_set_host_serial
,
3293 object_property_set_description(obj
, "host-serial",
3294 "Host serial number to advertise in guest device tree", &error_abort
);
3297 static void spapr_machine_finalizefn(Object
*obj
)
3299 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3301 g_free(spapr
->kvm_type
);
3304 void spapr_do_system_reset_on_cpu(CPUState
*cs
, run_on_cpu_data arg
)
3306 cpu_synchronize_state(cs
);
3307 ppc_cpu_do_system_reset(cs
);
3310 static void spapr_nmi(NMIState
*n
, int cpu_index
, Error
**errp
)
3315 async_run_on_cpu(cs
, spapr_do_system_reset_on_cpu
, RUN_ON_CPU_NULL
);
3319 int spapr_lmb_dt_populate(SpaprDrc
*drc
, SpaprMachineState
*spapr
,
3320 void *fdt
, int *fdt_start_offset
, Error
**errp
)
3325 addr
= spapr_drc_index(drc
) * SPAPR_MEMORY_BLOCK_SIZE
;
3326 node
= object_property_get_uint(OBJECT(drc
->dev
), PC_DIMM_NODE_PROP
,
3328 *fdt_start_offset
= spapr_populate_memory_node(fdt
, node
, addr
,
3329 SPAPR_MEMORY_BLOCK_SIZE
);
3333 static void spapr_add_lmbs(DeviceState
*dev
, uint64_t addr_start
, uint64_t size
,
3334 bool dedicated_hp_event_source
, Error
**errp
)
3337 uint32_t nr_lmbs
= size
/SPAPR_MEMORY_BLOCK_SIZE
;
3339 uint64_t addr
= addr_start
;
3340 bool hotplugged
= spapr_drc_hotplugged(dev
);
3341 Error
*local_err
= NULL
;
3343 for (i
= 0; i
< nr_lmbs
; i
++) {
3344 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3345 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3348 spapr_drc_attach(drc
, dev
, &local_err
);
3350 while (addr
> addr_start
) {
3351 addr
-= SPAPR_MEMORY_BLOCK_SIZE
;
3352 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3353 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3354 spapr_drc_detach(drc
);
3356 error_propagate(errp
, local_err
);
3360 spapr_drc_reset(drc
);
3362 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
3364 /* send hotplug notification to the
3365 * guest only in case of hotplugged memory
3368 if (dedicated_hp_event_source
) {
3369 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3370 addr_start
/ SPAPR_MEMORY_BLOCK_SIZE
);
3371 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB
,
3373 spapr_drc_index(drc
));
3375 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB
,
3381 static void spapr_memory_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3384 Error
*local_err
= NULL
;
3385 SpaprMachineState
*ms
= SPAPR_MACHINE(hotplug_dev
);
3386 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
3387 uint64_t size
, addr
;
3389 size
= memory_device_get_region_size(MEMORY_DEVICE(dev
), &error_abort
);
3391 pc_dimm_plug(dimm
, MACHINE(ms
), &local_err
);
3396 addr
= object_property_get_uint(OBJECT(dimm
),
3397 PC_DIMM_ADDR_PROP
, &local_err
);
3402 spapr_add_lmbs(dev
, addr
, size
, spapr_ovec_test(ms
->ov5_cas
, OV5_HP_EVT
),
3411 pc_dimm_unplug(dimm
, MACHINE(ms
));
3413 error_propagate(errp
, local_err
);
3416 static void spapr_memory_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3419 const SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(hotplug_dev
);
3420 SpaprMachineState
*spapr
= SPAPR_MACHINE(hotplug_dev
);
3421 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
3422 Error
*local_err
= NULL
;
3427 if (!smc
->dr_lmb_enabled
) {
3428 error_setg(errp
, "Memory hotplug not supported for this machine");
3432 size
= memory_device_get_region_size(MEMORY_DEVICE(dimm
), &local_err
);
3434 error_propagate(errp
, local_err
);
3438 if (size
% SPAPR_MEMORY_BLOCK_SIZE
) {
3439 error_setg(errp
, "Hotplugged memory size must be a multiple of "
3440 "%" PRIu64
" MB", SPAPR_MEMORY_BLOCK_SIZE
/ MiB
);
3444 memdev
= object_property_get_link(OBJECT(dimm
), PC_DIMM_MEMDEV_PROP
,
3446 pagesize
= host_memory_backend_pagesize(MEMORY_BACKEND(memdev
));
3447 spapr_check_pagesize(spapr
, pagesize
, &local_err
);
3449 error_propagate(errp
, local_err
);
3453 pc_dimm_pre_plug(dimm
, MACHINE(hotplug_dev
), NULL
, errp
);
3456 struct SpaprDimmState
{
3459 QTAILQ_ENTRY(SpaprDimmState
) next
;
3462 static SpaprDimmState
*spapr_pending_dimm_unplugs_find(SpaprMachineState
*s
,
3465 SpaprDimmState
*dimm_state
= NULL
;
3467 QTAILQ_FOREACH(dimm_state
, &s
->pending_dimm_unplugs
, next
) {
3468 if (dimm_state
->dimm
== dimm
) {
3475 static SpaprDimmState
*spapr_pending_dimm_unplugs_add(SpaprMachineState
*spapr
,
3479 SpaprDimmState
*ds
= NULL
;
3482 * If this request is for a DIMM whose removal had failed earlier
3483 * (due to guest's refusal to remove the LMBs), we would have this
3484 * dimm already in the pending_dimm_unplugs list. In that
3485 * case don't add again.
3487 ds
= spapr_pending_dimm_unplugs_find(spapr
, dimm
);
3489 ds
= g_malloc0(sizeof(SpaprDimmState
));
3490 ds
->nr_lmbs
= nr_lmbs
;
3492 QTAILQ_INSERT_HEAD(&spapr
->pending_dimm_unplugs
, ds
, next
);
3497 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState
*spapr
,
3498 SpaprDimmState
*dimm_state
)
3500 QTAILQ_REMOVE(&spapr
->pending_dimm_unplugs
, dimm_state
, next
);
3504 static SpaprDimmState
*spapr_recover_pending_dimm_state(SpaprMachineState
*ms
,
3508 uint64_t size
= memory_device_get_region_size(MEMORY_DEVICE(dimm
),
3510 uint32_t nr_lmbs
= size
/ SPAPR_MEMORY_BLOCK_SIZE
;
3511 uint32_t avail_lmbs
= 0;
3512 uint64_t addr_start
, addr
;
3515 addr_start
= object_property_get_int(OBJECT(dimm
), PC_DIMM_ADDR_PROP
,
3519 for (i
= 0; i
< nr_lmbs
; i
++) {
3520 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3521 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3526 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
3529 return spapr_pending_dimm_unplugs_add(ms
, avail_lmbs
, dimm
);
3532 /* Callback to be called during DRC release. */
3533 void spapr_lmb_release(DeviceState
*dev
)
3535 HotplugHandler
*hotplug_ctrl
= qdev_get_hotplug_handler(dev
);
3536 SpaprMachineState
*spapr
= SPAPR_MACHINE(hotplug_ctrl
);
3537 SpaprDimmState
*ds
= spapr_pending_dimm_unplugs_find(spapr
, PC_DIMM(dev
));
3539 /* This information will get lost if a migration occurs
3540 * during the unplug process. In this case recover it. */
3542 ds
= spapr_recover_pending_dimm_state(spapr
, PC_DIMM(dev
));
3544 /* The DRC being examined by the caller at least must be counted */
3545 g_assert(ds
->nr_lmbs
);
3548 if (--ds
->nr_lmbs
) {
3553 * Now that all the LMBs have been removed by the guest, call the
3554 * unplug handler chain. This can never fail.
3556 hotplug_handler_unplug(hotplug_ctrl
, dev
, &error_abort
);
3557 object_unparent(OBJECT(dev
));
3560 static void spapr_memory_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
3562 SpaprMachineState
*spapr
= SPAPR_MACHINE(hotplug_dev
);
3563 SpaprDimmState
*ds
= spapr_pending_dimm_unplugs_find(spapr
, PC_DIMM(dev
));
3565 pc_dimm_unplug(PC_DIMM(dev
), MACHINE(hotplug_dev
));
3566 object_property_set_bool(OBJECT(dev
), false, "realized", NULL
);
3567 spapr_pending_dimm_unplugs_remove(spapr
, ds
);
3570 static void spapr_memory_unplug_request(HotplugHandler
*hotplug_dev
,
3571 DeviceState
*dev
, Error
**errp
)
3573 SpaprMachineState
*spapr
= SPAPR_MACHINE(hotplug_dev
);
3574 Error
*local_err
= NULL
;
3575 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
3577 uint64_t size
, addr_start
, addr
;
3581 size
= memory_device_get_region_size(MEMORY_DEVICE(dimm
), &error_abort
);
3582 nr_lmbs
= size
/ SPAPR_MEMORY_BLOCK_SIZE
;
3584 addr_start
= object_property_get_uint(OBJECT(dimm
), PC_DIMM_ADDR_PROP
,
3591 * An existing pending dimm state for this DIMM means that there is an
3592 * unplug operation in progress, waiting for the spapr_lmb_release
3593 * callback to complete the job (BQL can't cover that far). In this case,
3594 * bail out to avoid detaching DRCs that were already released.
3596 if (spapr_pending_dimm_unplugs_find(spapr
, dimm
)) {
3597 error_setg(&local_err
,
3598 "Memory unplug already in progress for device %s",
3603 spapr_pending_dimm_unplugs_add(spapr
, nr_lmbs
, dimm
);
3606 for (i
= 0; i
< nr_lmbs
; i
++) {
3607 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3608 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3611 spapr_drc_detach(drc
);
3612 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
3615 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3616 addr_start
/ SPAPR_MEMORY_BLOCK_SIZE
);
3617 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB
,
3618 nr_lmbs
, spapr_drc_index(drc
));
3620 error_propagate(errp
, local_err
);
3623 /* Callback to be called during DRC release. */
3624 void spapr_core_release(DeviceState
*dev
)
3626 HotplugHandler
*hotplug_ctrl
= qdev_get_hotplug_handler(dev
);
3628 /* Call the unplug handler chain. This can never fail. */
3629 hotplug_handler_unplug(hotplug_ctrl
, dev
, &error_abort
);
3630 object_unparent(OBJECT(dev
));
3633 static void spapr_core_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
3635 MachineState
*ms
= MACHINE(hotplug_dev
);
3636 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(ms
);
3637 CPUCore
*cc
= CPU_CORE(dev
);
3638 CPUArchId
*core_slot
= spapr_find_cpu_slot(ms
, cc
->core_id
, NULL
);
3640 if (smc
->pre_2_10_has_unused_icps
) {
3641 SpaprCpuCore
*sc
= SPAPR_CPU_CORE(OBJECT(dev
));
3644 for (i
= 0; i
< cc
->nr_threads
; i
++) {
3645 CPUState
*cs
= CPU(sc
->threads
[i
]);
3647 pre_2_10_vmstate_register_dummy_icp(cs
->cpu_index
);
3652 core_slot
->cpu
= NULL
;
3653 object_property_set_bool(OBJECT(dev
), false, "realized", NULL
);
3657 void spapr_core_unplug_request(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3660 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
3663 CPUCore
*cc
= CPU_CORE(dev
);
3665 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
)) {
3666 error_setg(errp
, "Unable to find CPU core with core-id: %d",
3671 error_setg(errp
, "Boot CPU core may not be unplugged");
3675 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_CPU
,
3676 spapr_vcpu_id(spapr
, cc
->core_id
));
3679 if (!spapr_drc_unplug_requested(drc
)) {
3680 spapr_drc_detach(drc
);
3681 spapr_hotplug_req_remove_by_index(drc
);
3685 int spapr_core_dt_populate(SpaprDrc
*drc
, SpaprMachineState
*spapr
,
3686 void *fdt
, int *fdt_start_offset
, Error
**errp
)
3688 SpaprCpuCore
*core
= SPAPR_CPU_CORE(drc
->dev
);
3689 CPUState
*cs
= CPU(core
->threads
[0]);
3690 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
3691 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
3692 int id
= spapr_get_vcpu_id(cpu
);
3696 nodename
= g_strdup_printf("%s@%x", dc
->fw_name
, id
);
3697 offset
= fdt_add_subnode(fdt
, 0, nodename
);
3700 spapr_populate_cpu_dt(cs
, fdt
, offset
, spapr
);
3702 *fdt_start_offset
= offset
;
3706 static void spapr_core_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3709 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
3710 MachineClass
*mc
= MACHINE_GET_CLASS(spapr
);
3711 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
3712 SpaprCpuCore
*core
= SPAPR_CPU_CORE(OBJECT(dev
));
3713 CPUCore
*cc
= CPU_CORE(dev
);
3716 Error
*local_err
= NULL
;
3717 CPUArchId
*core_slot
;
3719 bool hotplugged
= spapr_drc_hotplugged(dev
);
3722 core_slot
= spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
);
3724 error_setg(errp
, "Unable to find CPU core with core-id: %d",
3728 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_CPU
,
3729 spapr_vcpu_id(spapr
, cc
->core_id
));
3731 g_assert(drc
|| !mc
->has_hotpluggable_cpus
);
3734 spapr_drc_attach(drc
, dev
, &local_err
);
3736 error_propagate(errp
, local_err
);
3742 * Send hotplug notification interrupt to the guest only
3743 * in case of hotplugged CPUs.
3745 spapr_hotplug_req_add_by_index(drc
);
3747 spapr_drc_reset(drc
);
3751 core_slot
->cpu
= OBJECT(dev
);
3753 if (smc
->pre_2_10_has_unused_icps
) {
3754 for (i
= 0; i
< cc
->nr_threads
; i
++) {
3755 cs
= CPU(core
->threads
[i
]);
3756 pre_2_10_vmstate_unregister_dummy_icp(cs
->cpu_index
);
3761 * Set compatibility mode to match the boot CPU, which was either set
3762 * by the machine reset code or by CAS.
3765 for (i
= 0; i
< cc
->nr_threads
; i
++) {
3766 ppc_set_compat(core
->threads
[i
], POWERPC_CPU(first_cpu
)->compat_pvr
,
3769 error_propagate(errp
, local_err
);
3776 static void spapr_core_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3779 MachineState
*machine
= MACHINE(OBJECT(hotplug_dev
));
3780 MachineClass
*mc
= MACHINE_GET_CLASS(hotplug_dev
);
3781 Error
*local_err
= NULL
;
3782 CPUCore
*cc
= CPU_CORE(dev
);
3783 const char *base_core_type
= spapr_get_cpu_core_type(machine
->cpu_type
);
3784 const char *type
= object_get_typename(OBJECT(dev
));
3785 CPUArchId
*core_slot
;
3787 unsigned int smp_threads
= machine
->smp
.threads
;
3789 if (dev
->hotplugged
&& !mc
->has_hotpluggable_cpus
) {
3790 error_setg(&local_err
, "CPU hotplug not supported for this machine");
3794 if (strcmp(base_core_type
, type
)) {
3795 error_setg(&local_err
, "CPU core type should be %s", base_core_type
);
3799 if (cc
->core_id
% smp_threads
) {
3800 error_setg(&local_err
, "invalid core id %d", cc
->core_id
);
3805 * In general we should have homogeneous threads-per-core, but old
3806 * (pre hotplug support) machine types allow the last core to have
3807 * reduced threads as a compatibility hack for when we allowed
3808 * total vcpus not a multiple of threads-per-core.
3810 if (mc
->has_hotpluggable_cpus
&& (cc
->nr_threads
!= smp_threads
)) {
3811 error_setg(&local_err
, "invalid nr-threads %d, must be %d",
3812 cc
->nr_threads
, smp_threads
);
3816 core_slot
= spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
);
3818 error_setg(&local_err
, "core id %d out of range", cc
->core_id
);
3822 if (core_slot
->cpu
) {
3823 error_setg(&local_err
, "core %d already populated", cc
->core_id
);
3827 numa_cpu_pre_plug(core_slot
, dev
, &local_err
);
3830 error_propagate(errp
, local_err
);
3833 int spapr_phb_dt_populate(SpaprDrc
*drc
, SpaprMachineState
*spapr
,
3834 void *fdt
, int *fdt_start_offset
, Error
**errp
)
3836 SpaprPhbState
*sphb
= SPAPR_PCI_HOST_BRIDGE(drc
->dev
);
3839 intc_phandle
= spapr_irq_get_phandle(spapr
, spapr
->fdt_blob
, errp
);
3840 if (intc_phandle
<= 0) {
3844 if (spapr_dt_phb(spapr
, sphb
, intc_phandle
, fdt
, fdt_start_offset
)) {
3845 error_setg(errp
, "unable to create FDT node for PHB %d", sphb
->index
);
3849 /* generally SLOF creates these, for hotplug it's up to QEMU */
3850 _FDT(fdt_setprop_string(fdt
, *fdt_start_offset
, "name", "pci"));
3855 static void spapr_phb_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3858 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
3859 SpaprPhbState
*sphb
= SPAPR_PCI_HOST_BRIDGE(dev
);
3860 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
3861 const unsigned windows_supported
= spapr_phb_windows_supported(sphb
);
3863 if (dev
->hotplugged
&& !smc
->dr_phb_enabled
) {
3864 error_setg(errp
, "PHB hotplug not supported for this machine");
3868 if (sphb
->index
== (uint32_t)-1) {
3869 error_setg(errp
, "\"index\" for PAPR PHB is mandatory");
3874 * This will check that sphb->index doesn't exceed the maximum number of
3875 * PHBs for the current machine type.
3877 smc
->phb_placement(spapr
, sphb
->index
,
3878 &sphb
->buid
, &sphb
->io_win_addr
,
3879 &sphb
->mem_win_addr
, &sphb
->mem64_win_addr
,
3880 windows_supported
, sphb
->dma_liobn
,
3881 &sphb
->nv2_gpa_win_addr
, &sphb
->nv2_atsd_win_addr
,
3885 static void spapr_phb_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3888 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
3889 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
3890 SpaprPhbState
*sphb
= SPAPR_PCI_HOST_BRIDGE(dev
);
3892 bool hotplugged
= spapr_drc_hotplugged(dev
);
3893 Error
*local_err
= NULL
;
3895 if (!smc
->dr_phb_enabled
) {
3899 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_PHB
, sphb
->index
);
3900 /* hotplug hooks should check it's enabled before getting this far */
3903 spapr_drc_attach(drc
, DEVICE(dev
), &local_err
);
3905 error_propagate(errp
, local_err
);
3910 spapr_hotplug_req_add_by_index(drc
);
3912 spapr_drc_reset(drc
);
3916 void spapr_phb_release(DeviceState
*dev
)
3918 HotplugHandler
*hotplug_ctrl
= qdev_get_hotplug_handler(dev
);
3920 hotplug_handler_unplug(hotplug_ctrl
, dev
, &error_abort
);
3921 object_unparent(OBJECT(dev
));
3924 static void spapr_phb_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
3926 object_property_set_bool(OBJECT(dev
), false, "realized", NULL
);
3929 static void spapr_phb_unplug_request(HotplugHandler
*hotplug_dev
,
3930 DeviceState
*dev
, Error
**errp
)
3932 SpaprPhbState
*sphb
= SPAPR_PCI_HOST_BRIDGE(dev
);
3935 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_PHB
, sphb
->index
);
3938 if (!spapr_drc_unplug_requested(drc
)) {
3939 spapr_drc_detach(drc
);
3940 spapr_hotplug_req_remove_by_index(drc
);
3944 static void spapr_tpm_proxy_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3947 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
3948 SpaprTpmProxy
*tpm_proxy
= SPAPR_TPM_PROXY(dev
);
3950 if (spapr
->tpm_proxy
!= NULL
) {
3951 error_setg(errp
, "Only one TPM proxy can be specified for this machine");
3955 spapr
->tpm_proxy
= tpm_proxy
;
3958 static void spapr_tpm_proxy_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
3960 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
3962 object_property_set_bool(OBJECT(dev
), false, "realized", NULL
);
3963 object_unparent(OBJECT(dev
));
3964 spapr
->tpm_proxy
= NULL
;
3967 static void spapr_machine_device_plug(HotplugHandler
*hotplug_dev
,
3968 DeviceState
*dev
, Error
**errp
)
3970 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
3971 spapr_memory_plug(hotplug_dev
, dev
, errp
);
3972 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
3973 spapr_core_plug(hotplug_dev
, dev
, errp
);
3974 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_PCI_HOST_BRIDGE
)) {
3975 spapr_phb_plug(hotplug_dev
, dev
, errp
);
3976 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_TPM_PROXY
)) {
3977 spapr_tpm_proxy_plug(hotplug_dev
, dev
, errp
);
3981 static void spapr_machine_device_unplug(HotplugHandler
*hotplug_dev
,
3982 DeviceState
*dev
, Error
**errp
)
3984 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
3985 spapr_memory_unplug(hotplug_dev
, dev
);
3986 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
3987 spapr_core_unplug(hotplug_dev
, dev
);
3988 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_PCI_HOST_BRIDGE
)) {
3989 spapr_phb_unplug(hotplug_dev
, dev
);
3990 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_TPM_PROXY
)) {
3991 spapr_tpm_proxy_unplug(hotplug_dev
, dev
);
3995 static void spapr_machine_device_unplug_request(HotplugHandler
*hotplug_dev
,
3996 DeviceState
*dev
, Error
**errp
)
3998 SpaprMachineState
*sms
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
3999 MachineClass
*mc
= MACHINE_GET_CLASS(sms
);
4000 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4002 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
4003 if (spapr_ovec_test(sms
->ov5_cas
, OV5_HP_EVT
)) {
4004 spapr_memory_unplug_request(hotplug_dev
, dev
, errp
);
4006 /* NOTE: this means there is a window after guest reset, prior to
4007 * CAS negotiation, where unplug requests will fail due to the
4008 * capability not being detected yet. This is a bit different than
4009 * the case with PCI unplug, where the events will be queued and
4010 * eventually handled by the guest after boot
4012 error_setg(errp
, "Memory hot unplug not supported for this guest");
4014 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
4015 if (!mc
->has_hotpluggable_cpus
) {
4016 error_setg(errp
, "CPU hot unplug not supported on this machine");
4019 spapr_core_unplug_request(hotplug_dev
, dev
, errp
);
4020 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_PCI_HOST_BRIDGE
)) {
4021 if (!smc
->dr_phb_enabled
) {
4022 error_setg(errp
, "PHB hot unplug not supported on this machine");
4025 spapr_phb_unplug_request(hotplug_dev
, dev
, errp
);
4026 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_TPM_PROXY
)) {
4027 spapr_tpm_proxy_unplug(hotplug_dev
, dev
);
4031 static void spapr_machine_device_pre_plug(HotplugHandler
*hotplug_dev
,
4032 DeviceState
*dev
, Error
**errp
)
4034 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
4035 spapr_memory_pre_plug(hotplug_dev
, dev
, errp
);
4036 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
4037 spapr_core_pre_plug(hotplug_dev
, dev
, errp
);
4038 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_PCI_HOST_BRIDGE
)) {
4039 spapr_phb_pre_plug(hotplug_dev
, dev
, errp
);
4043 static HotplugHandler
*spapr_get_hotplug_handler(MachineState
*machine
,
4046 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
) ||
4047 object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
) ||
4048 object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_PCI_HOST_BRIDGE
) ||
4049 object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_TPM_PROXY
)) {
4050 return HOTPLUG_HANDLER(machine
);
4052 if (object_dynamic_cast(OBJECT(dev
), TYPE_PCI_DEVICE
)) {
4053 PCIDevice
*pcidev
= PCI_DEVICE(dev
);
4054 PCIBus
*root
= pci_device_root_bus(pcidev
);
4055 SpaprPhbState
*phb
=
4056 (SpaprPhbState
*)object_dynamic_cast(OBJECT(BUS(root
)->parent
),
4057 TYPE_SPAPR_PCI_HOST_BRIDGE
);
4060 return HOTPLUG_HANDLER(phb
);
4066 static CpuInstanceProperties
4067 spapr_cpu_index_to_props(MachineState
*machine
, unsigned cpu_index
)
4069 CPUArchId
*core_slot
;
4070 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
4072 /* make sure possible_cpu are intialized */
4073 mc
->possible_cpu_arch_ids(machine
);
4074 /* get CPU core slot containing thread that matches cpu_index */
4075 core_slot
= spapr_find_cpu_slot(machine
, cpu_index
, NULL
);
4077 return core_slot
->props
;
4080 static int64_t spapr_get_default_cpu_node_id(const MachineState
*ms
, int idx
)
4082 return idx
/ ms
->smp
.cores
% ms
->numa_state
->num_nodes
;
4085 static const CPUArchIdList
*spapr_possible_cpu_arch_ids(MachineState
*machine
)
4088 unsigned int smp_threads
= machine
->smp
.threads
;
4089 unsigned int smp_cpus
= machine
->smp
.cpus
;
4090 const char *core_type
;
4091 int spapr_max_cores
= machine
->smp
.max_cpus
/ smp_threads
;
4092 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
4094 if (!mc
->has_hotpluggable_cpus
) {
4095 spapr_max_cores
= QEMU_ALIGN_UP(smp_cpus
, smp_threads
) / smp_threads
;
4097 if (machine
->possible_cpus
) {
4098 assert(machine
->possible_cpus
->len
== spapr_max_cores
);
4099 return machine
->possible_cpus
;
4102 core_type
= spapr_get_cpu_core_type(machine
->cpu_type
);
4104 error_report("Unable to find sPAPR CPU Core definition");
4108 machine
->possible_cpus
= g_malloc0(sizeof(CPUArchIdList
) +
4109 sizeof(CPUArchId
) * spapr_max_cores
);
4110 machine
->possible_cpus
->len
= spapr_max_cores
;
4111 for (i
= 0; i
< machine
->possible_cpus
->len
; i
++) {
4112 int core_id
= i
* smp_threads
;
4114 machine
->possible_cpus
->cpus
[i
].type
= core_type
;
4115 machine
->possible_cpus
->cpus
[i
].vcpus_count
= smp_threads
;
4116 machine
->possible_cpus
->cpus
[i
].arch_id
= core_id
;
4117 machine
->possible_cpus
->cpus
[i
].props
.has_core_id
= true;
4118 machine
->possible_cpus
->cpus
[i
].props
.core_id
= core_id
;
4120 return machine
->possible_cpus
;
4123 static void spapr_phb_placement(SpaprMachineState
*spapr
, uint32_t index
,
4124 uint64_t *buid
, hwaddr
*pio
,
4125 hwaddr
*mmio32
, hwaddr
*mmio64
,
4126 unsigned n_dma
, uint32_t *liobns
,
4127 hwaddr
*nv2gpa
, hwaddr
*nv2atsd
, Error
**errp
)
4130 * New-style PHB window placement.
4132 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4133 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4136 * Some guest kernels can't work with MMIO windows above 1<<46
4137 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4139 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4140 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4141 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4142 * 1TiB 64-bit MMIO windows for each PHB.
4144 const uint64_t base_buid
= 0x800000020000000ULL
;
4147 /* Sanity check natural alignments */
4148 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE
% SPAPR_PCI_MEM64_WIN_SIZE
) != 0);
4149 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT
% SPAPR_PCI_MEM64_WIN_SIZE
) != 0);
4150 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE
% SPAPR_PCI_MEM32_WIN_SIZE
) != 0);
4151 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE
% SPAPR_PCI_IO_WIN_SIZE
) != 0);
4152 /* Sanity check bounds */
4153 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS
* SPAPR_PCI_IO_WIN_SIZE
) >
4154 SPAPR_PCI_MEM32_WIN_SIZE
);
4155 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS
* SPAPR_PCI_MEM32_WIN_SIZE
) >
4156 SPAPR_PCI_MEM64_WIN_SIZE
);
4158 if (index
>= SPAPR_MAX_PHBS
) {
4159 error_setg(errp
, "\"index\" for PAPR PHB is too large (max %llu)",
4160 SPAPR_MAX_PHBS
- 1);
4164 *buid
= base_buid
+ index
;
4165 for (i
= 0; i
< n_dma
; ++i
) {
4166 liobns
[i
] = SPAPR_PCI_LIOBN(index
, i
);
4169 *pio
= SPAPR_PCI_BASE
+ index
* SPAPR_PCI_IO_WIN_SIZE
;
4170 *mmio32
= SPAPR_PCI_BASE
+ (index
+ 1) * SPAPR_PCI_MEM32_WIN_SIZE
;
4171 *mmio64
= SPAPR_PCI_BASE
+ (index
+ 1) * SPAPR_PCI_MEM64_WIN_SIZE
;
4173 *nv2gpa
= SPAPR_PCI_NV2RAM64_WIN_BASE
+ index
* SPAPR_PCI_NV2RAM64_WIN_SIZE
;
4174 *nv2atsd
= SPAPR_PCI_NV2ATSD_WIN_BASE
+ index
* SPAPR_PCI_NV2ATSD_WIN_SIZE
;
4177 static ICSState
*spapr_ics_get(XICSFabric
*dev
, int irq
)
4179 SpaprMachineState
*spapr
= SPAPR_MACHINE(dev
);
4181 return ics_valid_irq(spapr
->ics
, irq
) ? spapr
->ics
: NULL
;
4184 static void spapr_ics_resend(XICSFabric
*dev
)
4186 SpaprMachineState
*spapr
= SPAPR_MACHINE(dev
);
4188 ics_resend(spapr
->ics
);
4191 static ICPState
*spapr_icp_get(XICSFabric
*xi
, int vcpu_id
)
4193 PowerPCCPU
*cpu
= spapr_find_cpu(vcpu_id
);
4195 return cpu
? spapr_cpu_state(cpu
)->icp
: NULL
;
4198 static void spapr_pic_print_info(InterruptStatsProvider
*obj
,
4201 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
4203 spapr_irq_print_info(spapr
, mon
);
4204 monitor_printf(mon
, "irqchip: %s\n",
4205 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4208 static int spapr_match_nvt(XiveFabric
*xfb
, uint8_t format
,
4209 uint8_t nvt_blk
, uint32_t nvt_idx
,
4210 bool cam_ignore
, uint8_t priority
,
4211 uint32_t logic_serv
, XiveTCTXMatch
*match
)
4213 SpaprMachineState
*spapr
= SPAPR_MACHINE(xfb
);
4214 XivePresenter
*xptr
= XIVE_PRESENTER(spapr
->xive
);
4215 XivePresenterClass
*xpc
= XIVE_PRESENTER_GET_CLASS(xptr
);
4218 /* This is a XIVE only operation */
4219 assert(spapr
->active_intc
== SPAPR_INTC(spapr
->xive
));
4221 count
= xpc
->match_nvt(xptr
, format
, nvt_blk
, nvt_idx
, cam_ignore
,
4222 priority
, logic_serv
, match
);
4228 * When we implement the save and restore of the thread interrupt
4229 * contexts in the enter/exit CPU handlers of the machine and the
4230 * escalations in QEMU, we should be able to handle non dispatched
4233 * Until this is done, the sPAPR machine should find at least one
4234 * matching context always.
4237 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: NVT %x/%x is not dispatched\n",
4244 int spapr_get_vcpu_id(PowerPCCPU
*cpu
)
4246 return cpu
->vcpu_id
;
4249 void spapr_set_vcpu_id(PowerPCCPU
*cpu
, int cpu_index
, Error
**errp
)
4251 SpaprMachineState
*spapr
= SPAPR_MACHINE(qdev_get_machine());
4252 MachineState
*ms
= MACHINE(spapr
);
4255 vcpu_id
= spapr_vcpu_id(spapr
, cpu_index
);
4257 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id
)) {
4258 error_setg(errp
, "Can't create CPU with id %d in KVM", vcpu_id
);
4259 error_append_hint(errp
, "Adjust the number of cpus to %d "
4260 "or try to raise the number of threads per core\n",
4261 vcpu_id
* ms
->smp
.threads
/ spapr
->vsmt
);
4265 cpu
->vcpu_id
= vcpu_id
;
4268 PowerPCCPU
*spapr_find_cpu(int vcpu_id
)
4273 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
4275 if (spapr_get_vcpu_id(cpu
) == vcpu_id
) {
4283 static void spapr_cpu_exec_enter(PPCVirtualHypervisor
*vhyp
, PowerPCCPU
*cpu
)
4285 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
4287 /* These are only called by TCG, KVM maintains dispatch state */
4289 spapr_cpu
->prod
= false;
4290 if (spapr_cpu
->vpa_addr
) {
4291 CPUState
*cs
= CPU(cpu
);
4294 dispatch
= ldl_be_phys(cs
->as
,
4295 spapr_cpu
->vpa_addr
+ VPA_DISPATCH_COUNTER
);
4297 if ((dispatch
& 1) != 0) {
4298 qemu_log_mask(LOG_GUEST_ERROR
,
4299 "VPA: incorrect dispatch counter value for "
4300 "dispatched partition %u, correcting.\n", dispatch
);
4304 spapr_cpu
->vpa_addr
+ VPA_DISPATCH_COUNTER
, dispatch
);
4308 static void spapr_cpu_exec_exit(PPCVirtualHypervisor
*vhyp
, PowerPCCPU
*cpu
)
4310 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
4312 if (spapr_cpu
->vpa_addr
) {
4313 CPUState
*cs
= CPU(cpu
);
4316 dispatch
= ldl_be_phys(cs
->as
,
4317 spapr_cpu
->vpa_addr
+ VPA_DISPATCH_COUNTER
);
4319 if ((dispatch
& 1) != 1) {
4320 qemu_log_mask(LOG_GUEST_ERROR
,
4321 "VPA: incorrect dispatch counter value for "
4322 "preempted partition %u, correcting.\n", dispatch
);
4326 spapr_cpu
->vpa_addr
+ VPA_DISPATCH_COUNTER
, dispatch
);
4330 static void spapr_machine_class_init(ObjectClass
*oc
, void *data
)
4332 MachineClass
*mc
= MACHINE_CLASS(oc
);
4333 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(oc
);
4334 FWPathProviderClass
*fwc
= FW_PATH_PROVIDER_CLASS(oc
);
4335 NMIClass
*nc
= NMI_CLASS(oc
);
4336 HotplugHandlerClass
*hc
= HOTPLUG_HANDLER_CLASS(oc
);
4337 PPCVirtualHypervisorClass
*vhc
= PPC_VIRTUAL_HYPERVISOR_CLASS(oc
);
4338 XICSFabricClass
*xic
= XICS_FABRIC_CLASS(oc
);
4339 InterruptStatsProviderClass
*ispc
= INTERRUPT_STATS_PROVIDER_CLASS(oc
);
4340 XiveFabricClass
*xfc
= XIVE_FABRIC_CLASS(oc
);
4342 mc
->desc
= "pSeries Logical Partition (PAPR compliant)";
4343 mc
->ignore_boot_device_suffixes
= true;
4346 * We set up the default / latest behaviour here. The class_init
4347 * functions for the specific versioned machine types can override
4348 * these details for backwards compatibility
4350 mc
->init
= spapr_machine_init
;
4351 mc
->reset
= spapr_machine_reset
;
4352 mc
->block_default_type
= IF_SCSI
;
4353 mc
->max_cpus
= 1024;
4354 mc
->no_parallel
= 1;
4355 mc
->default_boot_order
= "";
4356 mc
->default_ram_size
= 512 * MiB
;
4357 mc
->default_display
= "std";
4358 mc
->kvm_type
= spapr_kvm_type
;
4359 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_SPAPR_PCI_HOST_BRIDGE
);
4360 mc
->pci_allow_0_address
= true;
4361 assert(!mc
->get_hotplug_handler
);
4362 mc
->get_hotplug_handler
= spapr_get_hotplug_handler
;
4363 hc
->pre_plug
= spapr_machine_device_pre_plug
;
4364 hc
->plug
= spapr_machine_device_plug
;
4365 mc
->cpu_index_to_instance_props
= spapr_cpu_index_to_props
;
4366 mc
->get_default_cpu_node_id
= spapr_get_default_cpu_node_id
;
4367 mc
->possible_cpu_arch_ids
= spapr_possible_cpu_arch_ids
;
4368 hc
->unplug_request
= spapr_machine_device_unplug_request
;
4369 hc
->unplug
= spapr_machine_device_unplug
;
4371 smc
->dr_lmb_enabled
= true;
4372 smc
->update_dt_enabled
= true;
4373 mc
->default_cpu_type
= POWERPC_CPU_TYPE_NAME("power9_v2.0");
4374 mc
->has_hotpluggable_cpus
= true;
4375 smc
->resize_hpt_default
= SPAPR_RESIZE_HPT_ENABLED
;
4376 fwc
->get_dev_path
= spapr_get_fw_dev_path
;
4377 nc
->nmi_monitor_handler
= spapr_nmi
;
4378 smc
->phb_placement
= spapr_phb_placement
;
4379 vhc
->hypercall
= emulate_spapr_hypercall
;
4380 vhc
->hpt_mask
= spapr_hpt_mask
;
4381 vhc
->map_hptes
= spapr_map_hptes
;
4382 vhc
->unmap_hptes
= spapr_unmap_hptes
;
4383 vhc
->hpte_set_c
= spapr_hpte_set_c
;
4384 vhc
->hpte_set_r
= spapr_hpte_set_r
;
4385 vhc
->get_pate
= spapr_get_pate
;
4386 vhc
->encode_hpt_for_kvm_pr
= spapr_encode_hpt_for_kvm_pr
;
4387 vhc
->cpu_exec_enter
= spapr_cpu_exec_enter
;
4388 vhc
->cpu_exec_exit
= spapr_cpu_exec_exit
;
4389 xic
->ics_get
= spapr_ics_get
;
4390 xic
->ics_resend
= spapr_ics_resend
;
4391 xic
->icp_get
= spapr_icp_get
;
4392 ispc
->print_info
= spapr_pic_print_info
;
4393 /* Force NUMA node memory size to be a multiple of
4394 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4395 * in which LMBs are represented and hot-added
4397 mc
->numa_mem_align_shift
= 28;
4398 mc
->numa_mem_supported
= true;
4399 mc
->auto_enable_numa
= true;
4401 smc
->default_caps
.caps
[SPAPR_CAP_HTM
] = SPAPR_CAP_OFF
;
4402 smc
->default_caps
.caps
[SPAPR_CAP_VSX
] = SPAPR_CAP_ON
;
4403 smc
->default_caps
.caps
[SPAPR_CAP_DFP
] = SPAPR_CAP_ON
;
4404 smc
->default_caps
.caps
[SPAPR_CAP_CFPC
] = SPAPR_CAP_WORKAROUND
;
4405 smc
->default_caps
.caps
[SPAPR_CAP_SBBC
] = SPAPR_CAP_WORKAROUND
;
4406 smc
->default_caps
.caps
[SPAPR_CAP_IBS
] = SPAPR_CAP_WORKAROUND
;
4407 smc
->default_caps
.caps
[SPAPR_CAP_HPT_MAXPAGESIZE
] = 16; /* 64kiB */
4408 smc
->default_caps
.caps
[SPAPR_CAP_NESTED_KVM_HV
] = SPAPR_CAP_OFF
;
4409 smc
->default_caps
.caps
[SPAPR_CAP_LARGE_DECREMENTER
] = SPAPR_CAP_ON
;
4410 smc
->default_caps
.caps
[SPAPR_CAP_CCF_ASSIST
] = SPAPR_CAP_OFF
;
4411 spapr_caps_add_properties(smc
, &error_abort
);
4412 smc
->irq
= &spapr_irq_dual
;
4413 smc
->dr_phb_enabled
= true;
4414 smc
->linux_pci_probe
= true;
4415 smc
->smp_threads_vsmt
= true;
4416 smc
->nr_xirqs
= SPAPR_NR_XIRQS
;
4417 xfc
->match_nvt
= spapr_match_nvt
;
4420 static const TypeInfo spapr_machine_info
= {
4421 .name
= TYPE_SPAPR_MACHINE
,
4422 .parent
= TYPE_MACHINE
,
4424 .instance_size
= sizeof(SpaprMachineState
),
4425 .instance_init
= spapr_instance_init
,
4426 .instance_finalize
= spapr_machine_finalizefn
,
4427 .class_size
= sizeof(SpaprMachineClass
),
4428 .class_init
= spapr_machine_class_init
,
4429 .interfaces
= (InterfaceInfo
[]) {
4430 { TYPE_FW_PATH_PROVIDER
},
4432 { TYPE_HOTPLUG_HANDLER
},
4433 { TYPE_PPC_VIRTUAL_HYPERVISOR
},
4434 { TYPE_XICS_FABRIC
},
4435 { TYPE_INTERRUPT_STATS_PROVIDER
},
4436 { TYPE_XIVE_FABRIC
},
4441 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4442 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4445 MachineClass *mc = MACHINE_CLASS(oc); \
4446 spapr_machine_##suffix##_class_options(mc); \
4448 mc->alias = "pseries"; \
4449 mc->is_default = 1; \
4452 static const TypeInfo spapr_machine_##suffix##_info = { \
4453 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4454 .parent = TYPE_SPAPR_MACHINE, \
4455 .class_init = spapr_machine_##suffix##_class_init, \
4457 static void spapr_machine_register_##suffix(void) \
4459 type_register(&spapr_machine_##suffix##_info); \
4461 type_init(spapr_machine_register_##suffix)
4466 static void spapr_machine_5_0_class_options(MachineClass
*mc
)
4468 /* Defaults for the latest behaviour inherited from the base class */
4471 DEFINE_SPAPR_MACHINE(5_0
, "5.0", true);
4476 static void spapr_machine_4_2_class_options(MachineClass
*mc
)
4478 spapr_machine_5_0_class_options(mc
);
4479 compat_props_add(mc
->compat_props
, hw_compat_4_2
, hw_compat_4_2_len
);
4482 DEFINE_SPAPR_MACHINE(4_2
, "4.2", false);
4487 static void spapr_machine_4_1_class_options(MachineClass
*mc
)
4489 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4490 static GlobalProperty compat
[] = {
4491 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4492 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "pgsz", "0x11000" },
4495 spapr_machine_4_2_class_options(mc
);
4496 smc
->linux_pci_probe
= false;
4497 smc
->smp_threads_vsmt
= false;
4498 compat_props_add(mc
->compat_props
, hw_compat_4_1
, hw_compat_4_1_len
);
4499 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4502 DEFINE_SPAPR_MACHINE(4_1
, "4.1", false);
4507 static void phb_placement_4_0(SpaprMachineState
*spapr
, uint32_t index
,
4508 uint64_t *buid
, hwaddr
*pio
,
4509 hwaddr
*mmio32
, hwaddr
*mmio64
,
4510 unsigned n_dma
, uint32_t *liobns
,
4511 hwaddr
*nv2gpa
, hwaddr
*nv2atsd
, Error
**errp
)
4513 spapr_phb_placement(spapr
, index
, buid
, pio
, mmio32
, mmio64
, n_dma
, liobns
,
4514 nv2gpa
, nv2atsd
, errp
);
4519 static void spapr_machine_4_0_class_options(MachineClass
*mc
)
4521 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4523 spapr_machine_4_1_class_options(mc
);
4524 compat_props_add(mc
->compat_props
, hw_compat_4_0
, hw_compat_4_0_len
);
4525 smc
->phb_placement
= phb_placement_4_0
;
4526 smc
->irq
= &spapr_irq_xics
;
4527 smc
->pre_4_1_migration
= true;
4530 DEFINE_SPAPR_MACHINE(4_0
, "4.0", false);
4535 static void spapr_machine_3_1_class_options(MachineClass
*mc
)
4537 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4539 spapr_machine_4_0_class_options(mc
);
4540 compat_props_add(mc
->compat_props
, hw_compat_3_1
, hw_compat_3_1_len
);
4542 mc
->default_cpu_type
= POWERPC_CPU_TYPE_NAME("power8_v2.0");
4543 smc
->update_dt_enabled
= false;
4544 smc
->dr_phb_enabled
= false;
4545 smc
->broken_host_serial_model
= true;
4546 smc
->default_caps
.caps
[SPAPR_CAP_CFPC
] = SPAPR_CAP_BROKEN
;
4547 smc
->default_caps
.caps
[SPAPR_CAP_SBBC
] = SPAPR_CAP_BROKEN
;
4548 smc
->default_caps
.caps
[SPAPR_CAP_IBS
] = SPAPR_CAP_BROKEN
;
4549 smc
->default_caps
.caps
[SPAPR_CAP_LARGE_DECREMENTER
] = SPAPR_CAP_OFF
;
4552 DEFINE_SPAPR_MACHINE(3_1
, "3.1", false);
4558 static void spapr_machine_3_0_class_options(MachineClass
*mc
)
4560 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4562 spapr_machine_3_1_class_options(mc
);
4563 compat_props_add(mc
->compat_props
, hw_compat_3_0
, hw_compat_3_0_len
);
4565 smc
->legacy_irq_allocation
= true;
4566 smc
->nr_xirqs
= 0x400;
4567 smc
->irq
= &spapr_irq_xics_legacy
;
4570 DEFINE_SPAPR_MACHINE(3_0
, "3.0", false);
4575 static void spapr_machine_2_12_class_options(MachineClass
*mc
)
4577 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4578 static GlobalProperty compat
[] = {
4579 { TYPE_POWERPC_CPU
, "pre-3.0-migration", "on" },
4580 { TYPE_SPAPR_CPU_CORE
, "pre-3.0-migration", "on" },
4583 spapr_machine_3_0_class_options(mc
);
4584 compat_props_add(mc
->compat_props
, hw_compat_2_12
, hw_compat_2_12_len
);
4585 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4587 /* We depend on kvm_enabled() to choose a default value for the
4588 * hpt-max-page-size capability. Of course we can't do it here
4589 * because this is too early and the HW accelerator isn't initialzed
4590 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4592 smc
->default_caps
.caps
[SPAPR_CAP_HPT_MAXPAGESIZE
] = 0;
4595 DEFINE_SPAPR_MACHINE(2_12
, "2.12", false);
4597 static void spapr_machine_2_12_sxxm_class_options(MachineClass
*mc
)
4599 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4601 spapr_machine_2_12_class_options(mc
);
4602 smc
->default_caps
.caps
[SPAPR_CAP_CFPC
] = SPAPR_CAP_WORKAROUND
;
4603 smc
->default_caps
.caps
[SPAPR_CAP_SBBC
] = SPAPR_CAP_WORKAROUND
;
4604 smc
->default_caps
.caps
[SPAPR_CAP_IBS
] = SPAPR_CAP_FIXED_CCD
;
4607 DEFINE_SPAPR_MACHINE(2_12_sxxm
, "2.12-sxxm", false);
4613 static void spapr_machine_2_11_class_options(MachineClass
*mc
)
4615 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4617 spapr_machine_2_12_class_options(mc
);
4618 smc
->default_caps
.caps
[SPAPR_CAP_HTM
] = SPAPR_CAP_ON
;
4619 compat_props_add(mc
->compat_props
, hw_compat_2_11
, hw_compat_2_11_len
);
4622 DEFINE_SPAPR_MACHINE(2_11
, "2.11", false);
4628 static void spapr_machine_2_10_class_options(MachineClass
*mc
)
4630 spapr_machine_2_11_class_options(mc
);
4631 compat_props_add(mc
->compat_props
, hw_compat_2_10
, hw_compat_2_10_len
);
4634 DEFINE_SPAPR_MACHINE(2_10
, "2.10", false);
4640 static void spapr_machine_2_9_class_options(MachineClass
*mc
)
4642 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4643 static GlobalProperty compat
[] = {
4644 { TYPE_POWERPC_CPU
, "pre-2.10-migration", "on" },
4647 spapr_machine_2_10_class_options(mc
);
4648 compat_props_add(mc
->compat_props
, hw_compat_2_9
, hw_compat_2_9_len
);
4649 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4650 mc
->numa_auto_assign_ram
= numa_legacy_auto_assign_ram
;
4651 smc
->pre_2_10_has_unused_icps
= true;
4652 smc
->resize_hpt_default
= SPAPR_RESIZE_HPT_DISABLED
;
4655 DEFINE_SPAPR_MACHINE(2_9
, "2.9", false);
4661 static void spapr_machine_2_8_class_options(MachineClass
*mc
)
4663 static GlobalProperty compat
[] = {
4664 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "pcie-extended-configuration-space", "off" },
4667 spapr_machine_2_9_class_options(mc
);
4668 compat_props_add(mc
->compat_props
, hw_compat_2_8
, hw_compat_2_8_len
);
4669 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4670 mc
->numa_mem_align_shift
= 23;
4673 DEFINE_SPAPR_MACHINE(2_8
, "2.8", false);
4679 static void phb_placement_2_7(SpaprMachineState
*spapr
, uint32_t index
,
4680 uint64_t *buid
, hwaddr
*pio
,
4681 hwaddr
*mmio32
, hwaddr
*mmio64
,
4682 unsigned n_dma
, uint32_t *liobns
,
4683 hwaddr
*nv2gpa
, hwaddr
*nv2atsd
, Error
**errp
)
4685 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4686 const uint64_t base_buid
= 0x800000020000000ULL
;
4687 const hwaddr phb_spacing
= 0x1000000000ULL
; /* 64 GiB */
4688 const hwaddr mmio_offset
= 0xa0000000; /* 2 GiB + 512 MiB */
4689 const hwaddr pio_offset
= 0x80000000; /* 2 GiB */
4690 const uint32_t max_index
= 255;
4691 const hwaddr phb0_alignment
= 0x10000000000ULL
; /* 1 TiB */
4693 uint64_t ram_top
= MACHINE(spapr
)->ram_size
;
4694 hwaddr phb0_base
, phb_base
;
4697 /* Do we have device memory? */
4698 if (MACHINE(spapr
)->maxram_size
> ram_top
) {
4699 /* Can't just use maxram_size, because there may be an
4700 * alignment gap between normal and device memory regions
4702 ram_top
= MACHINE(spapr
)->device_memory
->base
+
4703 memory_region_size(&MACHINE(spapr
)->device_memory
->mr
);
4706 phb0_base
= QEMU_ALIGN_UP(ram_top
, phb0_alignment
);
4708 if (index
> max_index
) {
4709 error_setg(errp
, "\"index\" for PAPR PHB is too large (max %u)",
4714 *buid
= base_buid
+ index
;
4715 for (i
= 0; i
< n_dma
; ++i
) {
4716 liobns
[i
] = SPAPR_PCI_LIOBN(index
, i
);
4719 phb_base
= phb0_base
+ index
* phb_spacing
;
4720 *pio
= phb_base
+ pio_offset
;
4721 *mmio32
= phb_base
+ mmio_offset
;
4723 * We don't set the 64-bit MMIO window, relying on the PHB's
4724 * fallback behaviour of automatically splitting a large "32-bit"
4725 * window into contiguous 32-bit and 64-bit windows
4732 static void spapr_machine_2_7_class_options(MachineClass
*mc
)
4734 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4735 static GlobalProperty compat
[] = {
4736 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "mem_win_size", "0xf80000000", },
4737 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "mem64_win_size", "0", },
4738 { TYPE_POWERPC_CPU
, "pre-2.8-migration", "on", },
4739 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "pre-2.8-migration", "on", },
4742 spapr_machine_2_8_class_options(mc
);
4743 mc
->default_cpu_type
= POWERPC_CPU_TYPE_NAME("power7_v2.3");
4744 mc
->default_machine_opts
= "modern-hotplug-events=off";
4745 compat_props_add(mc
->compat_props
, hw_compat_2_7
, hw_compat_2_7_len
);
4746 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4747 smc
->phb_placement
= phb_placement_2_7
;
4750 DEFINE_SPAPR_MACHINE(2_7
, "2.7", false);
4756 static void spapr_machine_2_6_class_options(MachineClass
*mc
)
4758 static GlobalProperty compat
[] = {
4759 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "ddw", "off" },
4762 spapr_machine_2_7_class_options(mc
);
4763 mc
->has_hotpluggable_cpus
= false;
4764 compat_props_add(mc
->compat_props
, hw_compat_2_6
, hw_compat_2_6_len
);
4765 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4768 DEFINE_SPAPR_MACHINE(2_6
, "2.6", false);
4774 static void spapr_machine_2_5_class_options(MachineClass
*mc
)
4776 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4777 static GlobalProperty compat
[] = {
4778 { "spapr-vlan", "use-rx-buffer-pools", "off" },
4781 spapr_machine_2_6_class_options(mc
);
4782 smc
->use_ohci_by_default
= true;
4783 compat_props_add(mc
->compat_props
, hw_compat_2_5
, hw_compat_2_5_len
);
4784 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4787 DEFINE_SPAPR_MACHINE(2_5
, "2.5", false);
4793 static void spapr_machine_2_4_class_options(MachineClass
*mc
)
4795 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4797 spapr_machine_2_5_class_options(mc
);
4798 smc
->dr_lmb_enabled
= false;
4799 compat_props_add(mc
->compat_props
, hw_compat_2_4
, hw_compat_2_4_len
);
4802 DEFINE_SPAPR_MACHINE(2_4
, "2.4", false);
4808 static void spapr_machine_2_3_class_options(MachineClass
*mc
)
4810 static GlobalProperty compat
[] = {
4811 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4813 spapr_machine_2_4_class_options(mc
);
4814 compat_props_add(mc
->compat_props
, hw_compat_2_3
, hw_compat_2_3_len
);
4815 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4817 DEFINE_SPAPR_MACHINE(2_3
, "2.3", false);
4823 static void spapr_machine_2_2_class_options(MachineClass
*mc
)
4825 static GlobalProperty compat
[] = {
4826 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "mem_win_size", "0x20000000" },
4829 spapr_machine_2_3_class_options(mc
);
4830 compat_props_add(mc
->compat_props
, hw_compat_2_2
, hw_compat_2_2_len
);
4831 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4832 mc
->default_machine_opts
= "modern-hotplug-events=off,suppress-vmdesc=on";
4834 DEFINE_SPAPR_MACHINE(2_2
, "2.2", false);
4840 static void spapr_machine_2_1_class_options(MachineClass
*mc
)
4842 spapr_machine_2_2_class_options(mc
);
4843 compat_props_add(mc
->compat_props
, hw_compat_2_1
, hw_compat_2_1_len
);
4845 DEFINE_SPAPR_MACHINE(2_1
, "2.1", false);
4847 static void spapr_machine_register_types(void)
4849 type_register_static(&spapr_machine_info
);
4852 type_init(spapr_machine_register_types
)