2 * QEMU MC146818 RTC emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu/timer.h"
26 #include "sysemu/sysemu.h"
27 #include "hw/timer/mc146818rtc.h"
28 #include "qapi/visitor.h"
29 #include "qapi-event.h"
30 #include "qmp-commands.h"
33 #include "hw/i386/apic.h"
37 //#define DEBUG_COALESCED
40 # define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__)
42 # define CMOS_DPRINTF(format, ...) do { } while (0)
45 #ifdef DEBUG_COALESCED
46 # define DPRINTF_C(format, ...) printf(format, ## __VA_ARGS__)
48 # define DPRINTF_C(format, ...) do { } while (0)
51 #define NSEC_PER_SEC 1000000000LL
52 #define SEC_PER_MIN 60
53 #define MIN_PER_HOUR 60
54 #define SEC_PER_HOUR 3600
55 #define HOUR_PER_DAY 24
56 #define SEC_PER_DAY 86400
58 #define RTC_REINJECT_ON_ACK_COUNT 20
59 #define RTC_CLOCK_RATE 32768
60 #define UIP_HOLD_LENGTH (8 * NSEC_PER_SEC / 32768)
62 #define MC146818_RTC(obj) OBJECT_CHECK(RTCState, (obj), TYPE_MC146818_RTC)
64 typedef struct RTCState
{
68 uint8_t cmos_data
[128];
77 QEMUTimer
*periodic_timer
;
78 int64_t next_periodic_time
;
79 /* update-ended timer */
80 QEMUTimer
*update_timer
;
81 uint64_t next_alarm_time
;
82 uint16_t irq_reinject_on_ack_count
;
83 uint32_t irq_coalesced
;
85 QEMUTimer
*coalesced_timer
;
86 Notifier clock_reset_notifier
;
87 LostTickPolicy lost_tick_policy
;
88 Notifier suspend_notifier
;
89 QLIST_ENTRY(RTCState
) link
;
92 static void rtc_set_time(RTCState
*s
);
93 static void rtc_update_time(RTCState
*s
);
94 static void rtc_set_cmos(RTCState
*s
, const struct tm
*tm
);
95 static inline int rtc_from_bcd(RTCState
*s
, int a
);
96 static uint64_t get_next_alarm(RTCState
*s
);
98 static inline bool rtc_running(RTCState
*s
)
100 return (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
) &&
101 (s
->cmos_data
[RTC_REG_A
] & 0x70) <= 0x20);
104 static uint64_t get_guest_rtc_ns(RTCState
*s
)
107 uint64_t guest_clock
= qemu_clock_get_ns(rtc_clock
);
109 guest_rtc
= s
->base_rtc
* NSEC_PER_SEC
110 + guest_clock
- s
->last_update
+ s
->offset
;
115 static void rtc_coalesced_timer_update(RTCState
*s
)
117 if (s
->irq_coalesced
== 0) {
118 timer_del(s
->coalesced_timer
);
120 /* divide each RTC interval to 2 - 8 smaller intervals */
121 int c
= MIN(s
->irq_coalesced
, 7) + 1;
122 int64_t next_clock
= qemu_clock_get_ns(rtc_clock
) +
123 muldiv64(s
->period
/ c
, get_ticks_per_sec(), RTC_CLOCK_RATE
);
124 timer_mod(s
->coalesced_timer
, next_clock
);
128 static void rtc_coalesced_timer(void *opaque
)
130 RTCState
*s
= opaque
;
132 if (s
->irq_coalesced
!= 0) {
133 apic_reset_irq_delivered();
134 s
->cmos_data
[RTC_REG_C
] |= 0xc0;
135 DPRINTF_C("cmos: injecting from timer\n");
136 qemu_irq_raise(s
->irq
);
137 if (apic_get_irq_delivered()) {
139 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
144 rtc_coalesced_timer_update(s
);
148 /* handle periodic timer */
149 static void periodic_timer_update(RTCState
*s
, int64_t current_time
)
151 int period_code
, period
;
152 int64_t cur_clock
, next_irq_clock
;
154 period_code
= s
->cmos_data
[RTC_REG_A
] & 0x0f;
156 && (s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
)) {
157 if (period_code
<= 2)
159 /* period in 32 Khz cycles */
160 period
= 1 << (period_code
- 1);
162 if (period
!= s
->period
) {
163 s
->irq_coalesced
= (s
->irq_coalesced
* s
->period
) / period
;
164 DPRINTF_C("cmos: coalesced irqs scaled to %d\n", s
->irq_coalesced
);
168 /* compute 32 khz clock */
169 cur_clock
= muldiv64(current_time
, RTC_CLOCK_RATE
, get_ticks_per_sec());
170 next_irq_clock
= (cur_clock
& ~(period
- 1)) + period
;
171 s
->next_periodic_time
=
172 muldiv64(next_irq_clock
, get_ticks_per_sec(), RTC_CLOCK_RATE
) + 1;
173 timer_mod(s
->periodic_timer
, s
->next_periodic_time
);
176 s
->irq_coalesced
= 0;
178 timer_del(s
->periodic_timer
);
182 static void rtc_periodic_timer(void *opaque
)
184 RTCState
*s
= opaque
;
186 periodic_timer_update(s
, s
->next_periodic_time
);
187 s
->cmos_data
[RTC_REG_C
] |= REG_C_PF
;
188 if (s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
) {
189 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
;
191 if (s
->lost_tick_policy
== LOST_TICK_POLICY_SLEW
) {
192 if (s
->irq_reinject_on_ack_count
>= RTC_REINJECT_ON_ACK_COUNT
)
193 s
->irq_reinject_on_ack_count
= 0;
194 apic_reset_irq_delivered();
195 qemu_irq_raise(s
->irq
);
196 if (!apic_get_irq_delivered()) {
198 rtc_coalesced_timer_update(s
);
199 DPRINTF_C("cmos: coalesced irqs increased to %d\n",
204 qemu_irq_raise(s
->irq
);
208 /* handle update-ended timer */
209 static void check_update_timer(RTCState
*s
)
211 uint64_t next_update_time
;
215 /* From the data sheet: "Holding the dividers in reset prevents
216 * interrupts from operating, while setting the SET bit allows"
217 * them to occur. However, it will prevent an alarm interrupt
218 * from occurring, because the time of day is not updated.
220 if ((s
->cmos_data
[RTC_REG_A
] & 0x60) == 0x60) {
221 timer_del(s
->update_timer
);
224 if ((s
->cmos_data
[RTC_REG_C
] & REG_C_UF
) &&
225 (s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
226 timer_del(s
->update_timer
);
229 if ((s
->cmos_data
[RTC_REG_C
] & REG_C_UF
) &&
230 (s
->cmos_data
[RTC_REG_C
] & REG_C_AF
)) {
231 timer_del(s
->update_timer
);
235 guest_nsec
= get_guest_rtc_ns(s
) % NSEC_PER_SEC
;
236 /* if UF is clear, reprogram to next second */
237 next_update_time
= qemu_clock_get_ns(rtc_clock
)
238 + NSEC_PER_SEC
- guest_nsec
;
240 /* Compute time of next alarm. One second is already accounted
241 * for in next_update_time.
243 next_alarm_sec
= get_next_alarm(s
);
244 s
->next_alarm_time
= next_update_time
+ (next_alarm_sec
- 1) * NSEC_PER_SEC
;
246 if (s
->cmos_data
[RTC_REG_C
] & REG_C_UF
) {
247 /* UF is set, but AF is clear. Program the timer to target
249 next_update_time
= s
->next_alarm_time
;
251 if (next_update_time
!= timer_expire_time_ns(s
->update_timer
)) {
252 timer_mod(s
->update_timer
, next_update_time
);
256 static inline uint8_t convert_hour(RTCState
*s
, uint8_t hour
)
258 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_24H
)) {
260 if (s
->cmos_data
[RTC_HOURS
] & 0x80) {
267 static uint64_t get_next_alarm(RTCState
*s
)
269 int32_t alarm_sec
, alarm_min
, alarm_hour
, cur_hour
, cur_min
, cur_sec
;
270 int32_t hour
, min
, sec
;
274 alarm_sec
= rtc_from_bcd(s
, s
->cmos_data
[RTC_SECONDS_ALARM
]);
275 alarm_min
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MINUTES_ALARM
]);
276 alarm_hour
= rtc_from_bcd(s
, s
->cmos_data
[RTC_HOURS_ALARM
]);
277 alarm_hour
= alarm_hour
== -1 ? -1 : convert_hour(s
, alarm_hour
);
279 cur_sec
= rtc_from_bcd(s
, s
->cmos_data
[RTC_SECONDS
]);
280 cur_min
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MINUTES
]);
281 cur_hour
= rtc_from_bcd(s
, s
->cmos_data
[RTC_HOURS
]);
282 cur_hour
= convert_hour(s
, cur_hour
);
284 if (alarm_hour
== -1) {
285 alarm_hour
= cur_hour
;
286 if (alarm_min
== -1) {
288 if (alarm_sec
== -1) {
289 alarm_sec
= cur_sec
+ 1;
290 } else if (cur_sec
> alarm_sec
) {
293 } else if (cur_min
== alarm_min
) {
294 if (alarm_sec
== -1) {
295 alarm_sec
= cur_sec
+ 1;
297 if (cur_sec
> alarm_sec
) {
301 if (alarm_sec
== SEC_PER_MIN
) {
302 /* wrap to next hour, minutes is not in don't care mode */
306 } else if (cur_min
> alarm_min
) {
309 } else if (cur_hour
== alarm_hour
) {
310 if (alarm_min
== -1) {
312 if (alarm_sec
== -1) {
313 alarm_sec
= cur_sec
+ 1;
314 } else if (cur_sec
> alarm_sec
) {
318 if (alarm_sec
== SEC_PER_MIN
) {
322 /* wrap to next day, hour is not in don't care mode */
323 alarm_min
%= MIN_PER_HOUR
;
324 } else if (cur_min
== alarm_min
) {
325 if (alarm_sec
== -1) {
326 alarm_sec
= cur_sec
+ 1;
328 /* wrap to next day, hours+minutes not in don't care mode */
329 alarm_sec
%= SEC_PER_MIN
;
333 /* values that are still don't care fire at the next min/sec */
334 if (alarm_min
== -1) {
337 if (alarm_sec
== -1) {
341 /* keep values in range */
342 if (alarm_sec
== SEC_PER_MIN
) {
346 if (alarm_min
== MIN_PER_HOUR
) {
350 alarm_hour
%= HOUR_PER_DAY
;
352 hour
= alarm_hour
- cur_hour
;
353 min
= hour
* MIN_PER_HOUR
+ alarm_min
- cur_min
;
354 sec
= min
* SEC_PER_MIN
+ alarm_sec
- cur_sec
;
355 return sec
<= 0 ? sec
+ SEC_PER_DAY
: sec
;
358 static void rtc_update_timer(void *opaque
)
360 RTCState
*s
= opaque
;
361 int32_t irqs
= REG_C_UF
;
364 assert((s
->cmos_data
[RTC_REG_A
] & 0x60) != 0x60);
366 /* UIP might have been latched, update time and clear it. */
368 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
370 if (qemu_clock_get_ns(rtc_clock
) >= s
->next_alarm_time
) {
372 if (s
->cmos_data
[RTC_REG_B
] & REG_B_AIE
) {
373 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC
);
377 new_irqs
= irqs
& ~s
->cmos_data
[RTC_REG_C
];
378 s
->cmos_data
[RTC_REG_C
] |= irqs
;
379 if ((new_irqs
& s
->cmos_data
[RTC_REG_B
]) != 0) {
380 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
;
381 qemu_irq_raise(s
->irq
);
383 check_update_timer(s
);
386 static void cmos_ioport_write(void *opaque
, hwaddr addr
,
387 uint64_t data
, unsigned size
)
389 RTCState
*s
= opaque
;
391 if ((addr
& 1) == 0) {
392 s
->cmos_index
= data
& 0x7f;
394 CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02" PRIx64
"\n",
395 s
->cmos_index
, data
);
396 switch(s
->cmos_index
) {
397 case RTC_SECONDS_ALARM
:
398 case RTC_MINUTES_ALARM
:
399 case RTC_HOURS_ALARM
:
400 s
->cmos_data
[s
->cmos_index
] = data
;
401 check_update_timer(s
);
403 case RTC_IBM_PS2_CENTURY_BYTE
:
404 s
->cmos_index
= RTC_CENTURY
;
410 case RTC_DAY_OF_WEEK
:
411 case RTC_DAY_OF_MONTH
:
414 s
->cmos_data
[s
->cmos_index
] = data
;
415 /* if in set mode, do not update the time */
416 if (rtc_running(s
)) {
418 check_update_timer(s
);
422 if ((data
& 0x60) == 0x60) {
423 if (rtc_running(s
)) {
426 /* What happens to UIP when divider reset is enabled is
427 * unclear from the datasheet. Shouldn't matter much
430 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
431 } else if (((s
->cmos_data
[RTC_REG_A
] & 0x60) == 0x60) &&
432 (data
& 0x70) <= 0x20) {
433 /* when the divider reset is removed, the first update cycle
434 * begins one-half second later*/
435 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
436 s
->offset
= 500000000;
439 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
441 /* UIP bit is read only */
442 s
->cmos_data
[RTC_REG_A
] = (data
& ~REG_A_UIP
) |
443 (s
->cmos_data
[RTC_REG_A
] & REG_A_UIP
);
444 periodic_timer_update(s
, qemu_clock_get_ns(rtc_clock
));
445 check_update_timer(s
);
448 if (data
& REG_B_SET
) {
449 /* update cmos to when the rtc was stopping */
450 if (rtc_running(s
)) {
453 /* set mode: reset UIP mode */
454 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
457 /* if disabling set mode, update the time */
458 if ((s
->cmos_data
[RTC_REG_B
] & REG_B_SET
) &&
459 (s
->cmos_data
[RTC_REG_A
] & 0x70) <= 0x20) {
460 s
->offset
= get_guest_rtc_ns(s
) % NSEC_PER_SEC
;
464 /* if an interrupt flag is already set when the interrupt
465 * becomes enabled, raise an interrupt immediately. */
466 if (data
& s
->cmos_data
[RTC_REG_C
] & REG_C_MASK
) {
467 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
;
468 qemu_irq_raise(s
->irq
);
470 s
->cmos_data
[RTC_REG_C
] &= ~REG_C_IRQF
;
471 qemu_irq_lower(s
->irq
);
473 s
->cmos_data
[RTC_REG_B
] = data
;
474 periodic_timer_update(s
, qemu_clock_get_ns(rtc_clock
));
475 check_update_timer(s
);
479 /* cannot write to them */
482 s
->cmos_data
[s
->cmos_index
] = data
;
488 static inline int rtc_to_bcd(RTCState
*s
, int a
)
490 if (s
->cmos_data
[RTC_REG_B
] & REG_B_DM
) {
493 return ((a
/ 10) << 4) | (a
% 10);
497 static inline int rtc_from_bcd(RTCState
*s
, int a
)
499 if ((a
& 0xc0) == 0xc0) {
502 if (s
->cmos_data
[RTC_REG_B
] & REG_B_DM
) {
505 return ((a
>> 4) * 10) + (a
& 0x0f);
509 static void rtc_get_time(RTCState
*s
, struct tm
*tm
)
511 tm
->tm_sec
= rtc_from_bcd(s
, s
->cmos_data
[RTC_SECONDS
]);
512 tm
->tm_min
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MINUTES
]);
513 tm
->tm_hour
= rtc_from_bcd(s
, s
->cmos_data
[RTC_HOURS
] & 0x7f);
514 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_24H
)) {
516 if (s
->cmos_data
[RTC_HOURS
] & 0x80) {
520 tm
->tm_wday
= rtc_from_bcd(s
, s
->cmos_data
[RTC_DAY_OF_WEEK
]) - 1;
521 tm
->tm_mday
= rtc_from_bcd(s
, s
->cmos_data
[RTC_DAY_OF_MONTH
]);
522 tm
->tm_mon
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MONTH
]) - 1;
524 rtc_from_bcd(s
, s
->cmos_data
[RTC_YEAR
]) + s
->base_year
+
525 rtc_from_bcd(s
, s
->cmos_data
[RTC_CENTURY
]) * 100 - 1900;
528 static QLIST_HEAD(, RTCState
) rtc_devices
=
529 QLIST_HEAD_INITIALIZER(rtc_devices
);
532 void qmp_rtc_reset_reinjection(Error
**errp
)
536 QLIST_FOREACH(s
, &rtc_devices
, link
) {
537 s
->irq_coalesced
= 0;
542 static void rtc_set_time(RTCState
*s
)
546 rtc_get_time(s
, &tm
);
547 s
->base_rtc
= mktimegm(&tm
);
548 s
->last_update
= qemu_clock_get_ns(rtc_clock
);
550 qapi_event_send_rtc_change(qemu_timedate_diff(&tm
), &error_abort
);
553 static void rtc_set_cmos(RTCState
*s
, const struct tm
*tm
)
557 s
->cmos_data
[RTC_SECONDS
] = rtc_to_bcd(s
, tm
->tm_sec
);
558 s
->cmos_data
[RTC_MINUTES
] = rtc_to_bcd(s
, tm
->tm_min
);
559 if (s
->cmos_data
[RTC_REG_B
] & REG_B_24H
) {
561 s
->cmos_data
[RTC_HOURS
] = rtc_to_bcd(s
, tm
->tm_hour
);
564 int h
= (tm
->tm_hour
% 12) ? tm
->tm_hour
% 12 : 12;
565 s
->cmos_data
[RTC_HOURS
] = rtc_to_bcd(s
, h
);
566 if (tm
->tm_hour
>= 12)
567 s
->cmos_data
[RTC_HOURS
] |= 0x80;
569 s
->cmos_data
[RTC_DAY_OF_WEEK
] = rtc_to_bcd(s
, tm
->tm_wday
+ 1);
570 s
->cmos_data
[RTC_DAY_OF_MONTH
] = rtc_to_bcd(s
, tm
->tm_mday
);
571 s
->cmos_data
[RTC_MONTH
] = rtc_to_bcd(s
, tm
->tm_mon
+ 1);
572 year
= tm
->tm_year
+ 1900 - s
->base_year
;
573 s
->cmos_data
[RTC_YEAR
] = rtc_to_bcd(s
, year
% 100);
574 s
->cmos_data
[RTC_CENTURY
] = rtc_to_bcd(s
, year
/ 100);
577 static void rtc_update_time(RTCState
*s
)
583 guest_nsec
= get_guest_rtc_ns(s
);
584 guest_sec
= guest_nsec
/ NSEC_PER_SEC
;
585 gmtime_r(&guest_sec
, &ret
);
587 /* Is SET flag of Register B disabled? */
588 if ((s
->cmos_data
[RTC_REG_B
] & REG_B_SET
) == 0) {
589 rtc_set_cmos(s
, &ret
);
593 static int update_in_progress(RTCState
*s
)
597 if (!rtc_running(s
)) {
600 if (timer_pending(s
->update_timer
)) {
601 int64_t next_update_time
= timer_expire_time_ns(s
->update_timer
);
602 /* Latch UIP until the timer expires. */
603 if (qemu_clock_get_ns(rtc_clock
) >=
604 (next_update_time
- UIP_HOLD_LENGTH
)) {
605 s
->cmos_data
[RTC_REG_A
] |= REG_A_UIP
;
610 guest_nsec
= get_guest_rtc_ns(s
);
611 /* UIP bit will be set at last 244us of every second. */
612 if ((guest_nsec
% NSEC_PER_SEC
) >= (NSEC_PER_SEC
- UIP_HOLD_LENGTH
)) {
618 static uint64_t cmos_ioport_read(void *opaque
, hwaddr addr
,
621 RTCState
*s
= opaque
;
623 if ((addr
& 1) == 0) {
626 switch(s
->cmos_index
) {
627 case RTC_IBM_PS2_CENTURY_BYTE
:
628 s
->cmos_index
= RTC_CENTURY
;
634 case RTC_DAY_OF_WEEK
:
635 case RTC_DAY_OF_MONTH
:
638 /* if not in set mode, calibrate cmos before
640 if (rtc_running(s
)) {
643 ret
= s
->cmos_data
[s
->cmos_index
];
646 if (update_in_progress(s
)) {
647 s
->cmos_data
[s
->cmos_index
] |= REG_A_UIP
;
649 s
->cmos_data
[s
->cmos_index
] &= ~REG_A_UIP
;
651 ret
= s
->cmos_data
[s
->cmos_index
];
654 ret
= s
->cmos_data
[s
->cmos_index
];
655 qemu_irq_lower(s
->irq
);
656 s
->cmos_data
[RTC_REG_C
] = 0x00;
657 if (ret
& (REG_C_UF
| REG_C_AF
)) {
658 check_update_timer(s
);
661 if(s
->irq_coalesced
&&
662 (s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
) &&
663 s
->irq_reinject_on_ack_count
< RTC_REINJECT_ON_ACK_COUNT
) {
664 s
->irq_reinject_on_ack_count
++;
665 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
| REG_C_PF
;
666 apic_reset_irq_delivered();
667 DPRINTF_C("cmos: injecting on ack\n");
668 qemu_irq_raise(s
->irq
);
669 if (apic_get_irq_delivered()) {
671 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
678 ret
= s
->cmos_data
[s
->cmos_index
];
681 CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
687 void rtc_set_memory(ISADevice
*dev
, int addr
, int val
)
689 RTCState
*s
= MC146818_RTC(dev
);
690 if (addr
>= 0 && addr
<= 127)
691 s
->cmos_data
[addr
] = val
;
694 int rtc_get_memory(ISADevice
*dev
, int addr
)
696 RTCState
*s
= MC146818_RTC(dev
);
697 assert(addr
>= 0 && addr
<= 127);
698 return s
->cmos_data
[addr
];
701 static void rtc_set_date_from_host(ISADevice
*dev
)
703 RTCState
*s
= MC146818_RTC(dev
);
706 qemu_get_timedate(&tm
, 0);
708 s
->base_rtc
= mktimegm(&tm
);
709 s
->last_update
= qemu_clock_get_ns(rtc_clock
);
712 /* set the CMOS date */
713 rtc_set_cmos(s
, &tm
);
716 static int rtc_post_load(void *opaque
, int version_id
)
718 RTCState
*s
= opaque
;
720 if (version_id
<= 2) {
723 check_update_timer(s
);
727 if (version_id
>= 2) {
728 if (s
->lost_tick_policy
== LOST_TICK_POLICY_SLEW
) {
729 rtc_coalesced_timer_update(s
);
736 static const VMStateDescription vmstate_rtc_irq_reinject_on_ack_count
= {
737 .name
= "irq_reinject_on_ack_count",
739 .minimum_version_id
= 1,
740 .fields
= (VMStateField
[]) {
741 VMSTATE_UINT16(irq_reinject_on_ack_count
, RTCState
),
742 VMSTATE_END_OF_LIST()
746 static bool rtc_irq_reinject_on_ack_count_needed(void *opaque
)
748 RTCState
*s
= (RTCState
*)opaque
;
749 return s
->irq_reinject_on_ack_count
!= 0;
752 static const VMStateDescription vmstate_rtc
= {
753 .name
= "mc146818rtc",
755 .minimum_version_id
= 1,
756 .post_load
= rtc_post_load
,
757 .fields
= (VMStateField
[]) {
758 VMSTATE_BUFFER(cmos_data
, RTCState
),
759 VMSTATE_UINT8(cmos_index
, RTCState
),
761 VMSTATE_TIMER(periodic_timer
, RTCState
),
762 VMSTATE_INT64(next_periodic_time
, RTCState
),
764 VMSTATE_UINT32_V(irq_coalesced
, RTCState
, 2),
765 VMSTATE_UINT32_V(period
, RTCState
, 2),
766 VMSTATE_UINT64_V(base_rtc
, RTCState
, 3),
767 VMSTATE_UINT64_V(last_update
, RTCState
, 3),
768 VMSTATE_INT64_V(offset
, RTCState
, 3),
769 VMSTATE_TIMER_V(update_timer
, RTCState
, 3),
770 VMSTATE_UINT64_V(next_alarm_time
, RTCState
, 3),
771 VMSTATE_END_OF_LIST()
773 .subsections
= (VMStateSubsection
[]) {
775 .vmsd
= &vmstate_rtc_irq_reinject_on_ack_count
,
776 .needed
= rtc_irq_reinject_on_ack_count_needed
,
783 static void rtc_notify_clock_reset(Notifier
*notifier
, void *data
)
785 RTCState
*s
= container_of(notifier
, RTCState
, clock_reset_notifier
);
786 int64_t now
= *(int64_t *)data
;
788 rtc_set_date_from_host(ISA_DEVICE(s
));
789 periodic_timer_update(s
, now
);
790 check_update_timer(s
);
792 if (s
->lost_tick_policy
== LOST_TICK_POLICY_SLEW
) {
793 rtc_coalesced_timer_update(s
);
798 /* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
799 BIOS will read it and start S3 resume at POST Entry */
800 static void rtc_notify_suspend(Notifier
*notifier
, void *data
)
802 RTCState
*s
= container_of(notifier
, RTCState
, suspend_notifier
);
803 rtc_set_memory(ISA_DEVICE(s
), 0xF, 0xFE);
806 static void rtc_reset(void *opaque
)
808 RTCState
*s
= opaque
;
810 s
->cmos_data
[RTC_REG_B
] &= ~(REG_B_PIE
| REG_B_AIE
| REG_B_SQWE
);
811 s
->cmos_data
[RTC_REG_C
] &= ~(REG_C_UF
| REG_C_IRQF
| REG_C_PF
| REG_C_AF
);
812 check_update_timer(s
);
814 qemu_irq_lower(s
->irq
);
817 if (s
->lost_tick_policy
== LOST_TICK_POLICY_SLEW
) {
818 s
->irq_coalesced
= 0;
819 s
->irq_reinject_on_ack_count
= 0;
824 static const MemoryRegionOps cmos_ops
= {
825 .read
= cmos_ioport_read
,
826 .write
= cmos_ioport_write
,
828 .min_access_size
= 1,
829 .max_access_size
= 1,
831 .endianness
= DEVICE_LITTLE_ENDIAN
,
834 static void rtc_get_date(Object
*obj
, Visitor
*v
, void *opaque
,
835 const char *name
, Error
**errp
)
838 RTCState
*s
= MC146818_RTC(obj
);
839 struct tm current_tm
;
842 rtc_get_time(s
, ¤t_tm
);
843 visit_start_struct(v
, NULL
, "struct tm", name
, 0, &err
);
847 visit_type_int32(v
, ¤t_tm
.tm_year
, "tm_year", &err
);
851 visit_type_int32(v
, ¤t_tm
.tm_mon
, "tm_mon", &err
);
855 visit_type_int32(v
, ¤t_tm
.tm_mday
, "tm_mday", &err
);
859 visit_type_int32(v
, ¤t_tm
.tm_hour
, "tm_hour", &err
);
863 visit_type_int32(v
, ¤t_tm
.tm_min
, "tm_min", &err
);
867 visit_type_int32(v
, ¤t_tm
.tm_sec
, "tm_sec", &err
);
872 error_propagate(errp
, err
);
874 visit_end_struct(v
, errp
);
876 error_propagate(errp
, err
);
879 static void rtc_realizefn(DeviceState
*dev
, Error
**errp
)
881 ISADevice
*isadev
= ISA_DEVICE(dev
);
882 RTCState
*s
= MC146818_RTC(dev
);
885 s
->cmos_data
[RTC_REG_A
] = 0x26;
886 s
->cmos_data
[RTC_REG_B
] = 0x02;
887 s
->cmos_data
[RTC_REG_C
] = 0x00;
888 s
->cmos_data
[RTC_REG_D
] = 0x80;
890 /* This is for historical reasons. The default base year qdev property
891 * was set to 2000 for most machine types before the century byte was
894 * This if statement means that the century byte will be always 0
895 * (at least until 2079...) for base_year = 1980, but will be set
896 * correctly for base_year = 2000.
898 if (s
->base_year
== 2000) {
902 rtc_set_date_from_host(isadev
);
905 switch (s
->lost_tick_policy
) {
906 case LOST_TICK_POLICY_SLEW
:
908 timer_new_ns(rtc_clock
, rtc_coalesced_timer
, s
);
910 case LOST_TICK_POLICY_DISCARD
:
913 error_setg(errp
, "Invalid lost tick policy.");
918 s
->periodic_timer
= timer_new_ns(rtc_clock
, rtc_periodic_timer
, s
);
919 s
->update_timer
= timer_new_ns(rtc_clock
, rtc_update_timer
, s
);
920 check_update_timer(s
);
922 s
->clock_reset_notifier
.notify
= rtc_notify_clock_reset
;
923 qemu_clock_register_reset_notifier(rtc_clock
,
924 &s
->clock_reset_notifier
);
926 s
->suspend_notifier
.notify
= rtc_notify_suspend
;
927 qemu_register_suspend_notifier(&s
->suspend_notifier
);
929 memory_region_init_io(&s
->io
, OBJECT(s
), &cmos_ops
, s
, "rtc", 2);
930 isa_register_ioport(isadev
, &s
->io
, base
);
932 qdev_set_legacy_instance_id(dev
, base
, 3);
933 qemu_register_reset(rtc_reset
, s
);
935 object_property_add(OBJECT(s
), "date", "struct tm",
936 rtc_get_date
, NULL
, NULL
, s
, NULL
);
938 object_property_add_alias(qdev_get_machine(), "rtc-time",
939 OBJECT(s
), "date", NULL
);
942 ISADevice
*rtc_init(ISABus
*bus
, int base_year
, qemu_irq intercept_irq
)
948 isadev
= isa_create(bus
, TYPE_MC146818_RTC
);
949 dev
= DEVICE(isadev
);
950 s
= MC146818_RTC(isadev
);
951 qdev_prop_set_int32(dev
, "base_year", base_year
);
952 qdev_init_nofail(dev
);
954 s
->irq
= intercept_irq
;
956 isa_init_irq(isadev
, &s
->irq
, RTC_ISA_IRQ
);
958 QLIST_INSERT_HEAD(&rtc_devices
, s
, link
);
963 static Property mc146818rtc_properties
[] = {
964 DEFINE_PROP_INT32("base_year", RTCState
, base_year
, 1980),
965 DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState
,
966 lost_tick_policy
, LOST_TICK_POLICY_DISCARD
),
967 DEFINE_PROP_END_OF_LIST(),
970 static void rtc_class_initfn(ObjectClass
*klass
, void *data
)
972 DeviceClass
*dc
= DEVICE_CLASS(klass
);
974 dc
->realize
= rtc_realizefn
;
975 dc
->vmsd
= &vmstate_rtc
;
976 dc
->props
= mc146818rtc_properties
;
977 /* Reason: needs to be wired up by rtc_init() */
978 dc
->cannot_instantiate_with_device_add_yet
= true;
981 static void rtc_finalize(Object
*obj
)
983 object_property_del(qdev_get_machine(), "rtc", NULL
);
986 static const TypeInfo mc146818rtc_info
= {
987 .name
= TYPE_MC146818_RTC
,
988 .parent
= TYPE_ISA_DEVICE
,
989 .instance_size
= sizeof(RTCState
),
990 .class_init
= rtc_class_initfn
,
991 .instance_finalize
= rtc_finalize
,
994 static void mc146818rtc_register_types(void)
996 type_register_static(&mc146818rtc_info
);
999 type_init(mc146818rtc_register_types
)