s390x/pci: bypass vfio DMA counting when using cdev
[qemu/kevin.git] / hw / arm / virt.c
blob85e3c5ba9d2be10edd16b19aee9a21262e06f29a
1 /*
2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "qemu/osdep.h"
32 #include "qemu/datadir.h"
33 #include "qemu/units.h"
34 #include "qemu/option.h"
35 #include "monitor/qdev.h"
36 #include "hw/sysbus.h"
37 #include "hw/arm/boot.h"
38 #include "hw/arm/primecell.h"
39 #include "hw/arm/virt.h"
40 #include "hw/block/flash.h"
41 #include "hw/vfio/vfio-calxeda-xgmac.h"
42 #include "hw/vfio/vfio-amd-xgbe.h"
43 #include "hw/display/ramfb.h"
44 #include "net/net.h"
45 #include "sysemu/device_tree.h"
46 #include "sysemu/numa.h"
47 #include "sysemu/runstate.h"
48 #include "sysemu/tpm.h"
49 #include "sysemu/tcg.h"
50 #include "sysemu/kvm.h"
51 #include "sysemu/hvf.h"
52 #include "sysemu/qtest.h"
53 #include "hw/loader.h"
54 #include "qapi/error.h"
55 #include "qemu/bitops.h"
56 #include "qemu/error-report.h"
57 #include "qemu/module.h"
58 #include "hw/pci-host/gpex.h"
59 #include "hw/virtio/virtio-pci.h"
60 #include "hw/core/sysbus-fdt.h"
61 #include "hw/platform-bus.h"
62 #include "hw/qdev-properties.h"
63 #include "hw/arm/fdt.h"
64 #include "hw/intc/arm_gic.h"
65 #include "hw/intc/arm_gicv3_common.h"
66 #include "hw/intc/arm_gicv3_its_common.h"
67 #include "hw/irq.h"
68 #include "kvm_arm.h"
69 #include "hw/firmware/smbios.h"
70 #include "qapi/visitor.h"
71 #include "qapi/qapi-visit-common.h"
72 #include "qapi/qmp/qlist.h"
73 #include "standard-headers/linux/input.h"
74 #include "hw/arm/smmuv3.h"
75 #include "hw/acpi/acpi.h"
76 #include "target/arm/internals.h"
77 #include "hw/mem/pc-dimm.h"
78 #include "hw/mem/nvdimm.h"
79 #include "hw/acpi/generic_event_device.h"
80 #include "hw/virtio/virtio-md-pci.h"
81 #include "hw/virtio/virtio-iommu.h"
82 #include "hw/char/pl011.h"
83 #include "qemu/guest-random.h"
85 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
86 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
87 void *data) \
88 { \
89 MachineClass *mc = MACHINE_CLASS(oc); \
90 virt_machine_##major##_##minor##_options(mc); \
91 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
92 if (latest) { \
93 mc->alias = "virt"; \
94 } \
95 } \
96 static const TypeInfo machvirt_##major##_##minor##_info = { \
97 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
98 .parent = TYPE_VIRT_MACHINE, \
99 .class_init = virt_##major##_##minor##_class_init, \
100 }; \
101 static void machvirt_machine_##major##_##minor##_init(void) \
103 type_register_static(&machvirt_##major##_##minor##_info); \
105 type_init(machvirt_machine_##major##_##minor##_init);
107 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
108 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
109 #define DEFINE_VIRT_MACHINE(major, minor) \
110 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
113 /* Number of external interrupt lines to configure the GIC with */
114 #define NUM_IRQS 256
116 #define PLATFORM_BUS_NUM_IRQS 64
118 /* Legacy RAM limit in GB (< version 4.0) */
119 #define LEGACY_RAMLIMIT_GB 255
120 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
122 /* Addresses and sizes of our components.
123 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
124 * 128MB..256MB is used for miscellaneous device I/O.
125 * 256MB..1GB is reserved for possible future PCI support (ie where the
126 * PCI memory window will go if we add a PCI host controller).
127 * 1GB and up is RAM (which may happily spill over into the
128 * high memory region beyond 4GB).
129 * This represents a compromise between how much RAM can be given to
130 * a 32 bit VM and leaving space for expansion and in particular for PCI.
131 * Note that devices should generally be placed at multiples of 0x10000,
132 * to accommodate guests using 64K pages.
134 static const MemMapEntry base_memmap[] = {
135 /* Space up to 0x8000000 is reserved for a boot ROM */
136 [VIRT_FLASH] = { 0, 0x08000000 },
137 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
138 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
139 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
140 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
141 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
142 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 },
143 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 },
144 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
145 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
146 /* This redistributor space allows up to 2*64kB*123 CPUs */
147 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
148 [VIRT_UART] = { 0x09000000, 0x00001000 },
149 [VIRT_RTC] = { 0x09010000, 0x00001000 },
150 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
151 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
152 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
153 [VIRT_SMMU] = { 0x09050000, 0x00020000 },
154 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
155 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN },
156 [VIRT_NVDIMM_ACPI] = { 0x09090000, NVDIMM_ACPI_IO_LEN},
157 [VIRT_PVTIME] = { 0x090a0000, 0x00010000 },
158 [VIRT_SECURE_GPIO] = { 0x090b0000, 0x00001000 },
159 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
160 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
161 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
162 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
163 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
164 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
165 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
166 /* Actual RAM size depends on initial RAM and device memory settings */
167 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES },
171 * Highmem IO Regions: This memory map is floating, located after the RAM.
172 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
173 * top of the RAM, so that its base get the same alignment as the size,
174 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
175 * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
176 * Note the extended_memmap is sized so that it eventually also includes the
177 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
178 * index of base_memmap).
180 * The memory map for these Highmem IO Regions can be in legacy or compact
181 * layout, depending on 'compact-highmem' property. With legacy layout, the
182 * PA space for one specific region is always reserved, even if the region
183 * has been disabled or doesn't fit into the PA space. However, the PA space
184 * for the region won't be reserved in these circumstances with compact layout.
186 static MemMapEntry extended_memmap[] = {
187 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
188 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB },
189 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB },
190 /* Second PCIe window */
191 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB },
194 static const int a15irqmap[] = {
195 [VIRT_UART] = 1,
196 [VIRT_RTC] = 2,
197 [VIRT_PCIE] = 3, /* ... to 6 */
198 [VIRT_GPIO] = 7,
199 [VIRT_SECURE_UART] = 8,
200 [VIRT_ACPI_GED] = 9,
201 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
202 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
203 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
204 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
207 static const char *valid_cpus[] = {
208 #ifdef CONFIG_TCG
209 ARM_CPU_TYPE_NAME("cortex-a7"),
210 ARM_CPU_TYPE_NAME("cortex-a15"),
211 ARM_CPU_TYPE_NAME("cortex-a35"),
212 ARM_CPU_TYPE_NAME("cortex-a55"),
213 ARM_CPU_TYPE_NAME("cortex-a72"),
214 ARM_CPU_TYPE_NAME("cortex-a76"),
215 ARM_CPU_TYPE_NAME("cortex-a710"),
216 ARM_CPU_TYPE_NAME("a64fx"),
217 ARM_CPU_TYPE_NAME("neoverse-n1"),
218 ARM_CPU_TYPE_NAME("neoverse-v1"),
219 ARM_CPU_TYPE_NAME("neoverse-n2"),
220 #endif
221 ARM_CPU_TYPE_NAME("cortex-a53"),
222 ARM_CPU_TYPE_NAME("cortex-a57"),
223 ARM_CPU_TYPE_NAME("host"),
224 ARM_CPU_TYPE_NAME("max"),
227 static bool cpu_type_valid(const char *cpu)
229 int i;
231 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
232 if (strcmp(cpu, valid_cpus[i]) == 0) {
233 return true;
236 return false;
239 static void create_randomness(MachineState *ms, const char *node)
241 struct {
242 uint64_t kaslr;
243 uint8_t rng[32];
244 } seed;
246 if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) {
247 return;
249 qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed.kaslr);
250 qemu_fdt_setprop(ms->fdt, node, "rng-seed", seed.rng, sizeof(seed.rng));
253 static void create_fdt(VirtMachineState *vms)
255 MachineState *ms = MACHINE(vms);
256 int nb_numa_nodes = ms->numa_state->num_nodes;
257 void *fdt = create_device_tree(&vms->fdt_size);
259 if (!fdt) {
260 error_report("create_device_tree() failed");
261 exit(1);
264 ms->fdt = fdt;
266 /* Header */
267 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
268 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
269 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
270 qemu_fdt_setprop_string(fdt, "/", "model", "linux,dummy-virt");
272 /* /chosen must exist for load_dtb to fill in necessary properties later */
273 qemu_fdt_add_subnode(fdt, "/chosen");
274 if (vms->dtb_randomness) {
275 create_randomness(ms, "/chosen");
278 if (vms->secure) {
279 qemu_fdt_add_subnode(fdt, "/secure-chosen");
280 if (vms->dtb_randomness) {
281 create_randomness(ms, "/secure-chosen");
285 /* Clock node, for the benefit of the UART. The kernel device tree
286 * binding documentation claims the PL011 node clock properties are
287 * optional but in practice if you omit them the kernel refuses to
288 * probe for the device.
290 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
291 qemu_fdt_add_subnode(fdt, "/apb-pclk");
292 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
293 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
294 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
295 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
296 "clk24mhz");
297 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
299 if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
300 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
301 uint32_t *matrix = g_malloc0(size);
302 int idx, i, j;
304 for (i = 0; i < nb_numa_nodes; i++) {
305 for (j = 0; j < nb_numa_nodes; j++) {
306 idx = (i * nb_numa_nodes + j) * 3;
307 matrix[idx + 0] = cpu_to_be32(i);
308 matrix[idx + 1] = cpu_to_be32(j);
309 matrix[idx + 2] =
310 cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
314 qemu_fdt_add_subnode(fdt, "/distance-map");
315 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
316 "numa-distance-map-v1");
317 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
318 matrix, size);
319 g_free(matrix);
323 static void fdt_add_timer_nodes(const VirtMachineState *vms)
325 /* On real hardware these interrupts are level-triggered.
326 * On KVM they were edge-triggered before host kernel version 4.4,
327 * and level-triggered afterwards.
328 * On emulated QEMU they are level-triggered.
330 * Getting the DTB info about them wrong is awkward for some
331 * guest kernels:
332 * pre-4.8 ignore the DT and leave the interrupt configured
333 * with whatever the GIC reset value (or the bootloader) left it at
334 * 4.8 before rc6 honour the incorrect data by programming it back
335 * into the GIC, causing problems
336 * 4.8rc6 and later ignore the DT and always write "level triggered"
337 * into the GIC
339 * For backwards-compatibility, virt-2.8 and earlier will continue
340 * to say these are edge-triggered, but later machines will report
341 * the correct information.
343 ARMCPU *armcpu;
344 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
345 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
346 MachineState *ms = MACHINE(vms);
348 if (vmc->claim_edge_triggered_timers) {
349 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
352 if (vms->gic_version == VIRT_GIC_VERSION_2) {
353 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
354 GIC_FDT_IRQ_PPI_CPU_WIDTH,
355 (1 << MACHINE(vms)->smp.cpus) - 1);
358 qemu_fdt_add_subnode(ms->fdt, "/timer");
360 armcpu = ARM_CPU(qemu_get_cpu(0));
361 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
362 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
363 qemu_fdt_setprop(ms->fdt, "/timer", "compatible",
364 compat, sizeof(compat));
365 } else {
366 qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible",
367 "arm,armv7-timer");
369 qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0);
370 qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
371 GIC_FDT_IRQ_TYPE_PPI,
372 INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags,
373 GIC_FDT_IRQ_TYPE_PPI,
374 INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags,
375 GIC_FDT_IRQ_TYPE_PPI,
376 INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags,
377 GIC_FDT_IRQ_TYPE_PPI,
378 INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags);
381 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
383 int cpu;
384 int addr_cells = 1;
385 const MachineState *ms = MACHINE(vms);
386 const VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
387 int smp_cpus = ms->smp.cpus;
390 * See Linux Documentation/devicetree/bindings/arm/cpus.yaml
391 * On ARM v8 64-bit systems value should be set to 2,
392 * that corresponds to the MPIDR_EL1 register size.
393 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
394 * in the system, #address-cells can be set to 1, since
395 * MPIDR_EL1[63:32] bits are not used for CPUs
396 * identification.
398 * Here we actually don't know whether our system is 32- or 64-bit one.
399 * The simplest way to go is to examine affinity IDs of all our CPUs. If
400 * at least one of them has Aff3 populated, we set #address-cells to 2.
402 for (cpu = 0; cpu < smp_cpus; cpu++) {
403 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
405 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
406 addr_cells = 2;
407 break;
411 qemu_fdt_add_subnode(ms->fdt, "/cpus");
412 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells);
413 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0);
415 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
416 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
417 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
418 CPUState *cs = CPU(armcpu);
420 qemu_fdt_add_subnode(ms->fdt, nodename);
421 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu");
422 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
423 armcpu->dtb_compatible);
425 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) {
426 qemu_fdt_setprop_string(ms->fdt, nodename,
427 "enable-method", "psci");
430 if (addr_cells == 2) {
431 qemu_fdt_setprop_u64(ms->fdt, nodename, "reg",
432 armcpu->mp_affinity);
433 } else {
434 qemu_fdt_setprop_cell(ms->fdt, nodename, "reg",
435 armcpu->mp_affinity);
438 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
439 qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id",
440 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
443 if (!vmc->no_cpu_topology) {
444 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle",
445 qemu_fdt_alloc_phandle(ms->fdt));
448 g_free(nodename);
451 if (!vmc->no_cpu_topology) {
453 * Add vCPU topology description through fdt node cpu-map.
455 * See Linux Documentation/devicetree/bindings/cpu/cpu-topology.txt
456 * In a SMP system, the hierarchy of CPUs can be defined through
457 * four entities that are used to describe the layout of CPUs in
458 * the system: socket/cluster/core/thread.
460 * A socket node represents the boundary of system physical package
461 * and its child nodes must be one or more cluster nodes. A system
462 * can contain several layers of clustering within a single physical
463 * package and cluster nodes can be contained in parent cluster nodes.
465 * Note: currently we only support one layer of clustering within
466 * each physical package.
468 qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map");
470 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
471 char *cpu_path = g_strdup_printf("/cpus/cpu@%d", cpu);
472 char *map_path;
474 if (ms->smp.threads > 1) {
475 map_path = g_strdup_printf(
476 "/cpus/cpu-map/socket%d/cluster%d/core%d/thread%d",
477 cpu / (ms->smp.clusters * ms->smp.cores * ms->smp.threads),
478 (cpu / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters,
479 (cpu / ms->smp.threads) % ms->smp.cores,
480 cpu % ms->smp.threads);
481 } else {
482 map_path = g_strdup_printf(
483 "/cpus/cpu-map/socket%d/cluster%d/core%d",
484 cpu / (ms->smp.clusters * ms->smp.cores),
485 (cpu / ms->smp.cores) % ms->smp.clusters,
486 cpu % ms->smp.cores);
488 qemu_fdt_add_path(ms->fdt, map_path);
489 qemu_fdt_setprop_phandle(ms->fdt, map_path, "cpu", cpu_path);
491 g_free(map_path);
492 g_free(cpu_path);
497 static void fdt_add_its_gic_node(VirtMachineState *vms)
499 char *nodename;
500 MachineState *ms = MACHINE(vms);
502 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
503 nodename = g_strdup_printf("/intc/its@%" PRIx64,
504 vms->memmap[VIRT_GIC_ITS].base);
505 qemu_fdt_add_subnode(ms->fdt, nodename);
506 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
507 "arm,gic-v3-its");
508 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
509 qemu_fdt_setprop_cell(ms->fdt, nodename, "#msi-cells", 1);
510 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
511 2, vms->memmap[VIRT_GIC_ITS].base,
512 2, vms->memmap[VIRT_GIC_ITS].size);
513 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
514 g_free(nodename);
517 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
519 MachineState *ms = MACHINE(vms);
520 char *nodename;
522 nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
523 vms->memmap[VIRT_GIC_V2M].base);
524 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
525 qemu_fdt_add_subnode(ms->fdt, nodename);
526 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
527 "arm,gic-v2m-frame");
528 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
529 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
530 2, vms->memmap[VIRT_GIC_V2M].base,
531 2, vms->memmap[VIRT_GIC_V2M].size);
532 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
533 g_free(nodename);
536 static void fdt_add_gic_node(VirtMachineState *vms)
538 MachineState *ms = MACHINE(vms);
539 char *nodename;
541 vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt);
542 qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle);
544 nodename = g_strdup_printf("/intc@%" PRIx64,
545 vms->memmap[VIRT_GIC_DIST].base);
546 qemu_fdt_add_subnode(ms->fdt, nodename);
547 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3);
548 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0);
549 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2);
550 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2);
551 qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0);
552 if (vms->gic_version != VIRT_GIC_VERSION_2) {
553 int nb_redist_regions = virt_gicv3_redist_region_count(vms);
555 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
556 "arm,gic-v3");
558 qemu_fdt_setprop_cell(ms->fdt, nodename,
559 "#redistributor-regions", nb_redist_regions);
561 if (nb_redist_regions == 1) {
562 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
563 2, vms->memmap[VIRT_GIC_DIST].base,
564 2, vms->memmap[VIRT_GIC_DIST].size,
565 2, vms->memmap[VIRT_GIC_REDIST].base,
566 2, vms->memmap[VIRT_GIC_REDIST].size);
567 } else {
568 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
569 2, vms->memmap[VIRT_GIC_DIST].base,
570 2, vms->memmap[VIRT_GIC_DIST].size,
571 2, vms->memmap[VIRT_GIC_REDIST].base,
572 2, vms->memmap[VIRT_GIC_REDIST].size,
573 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
574 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
577 if (vms->virt) {
578 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
579 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
580 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
582 } else {
583 /* 'cortex-a15-gic' means 'GIC v2' */
584 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
585 "arm,cortex-a15-gic");
586 if (!vms->virt) {
587 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
588 2, vms->memmap[VIRT_GIC_DIST].base,
589 2, vms->memmap[VIRT_GIC_DIST].size,
590 2, vms->memmap[VIRT_GIC_CPU].base,
591 2, vms->memmap[VIRT_GIC_CPU].size);
592 } else {
593 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
594 2, vms->memmap[VIRT_GIC_DIST].base,
595 2, vms->memmap[VIRT_GIC_DIST].size,
596 2, vms->memmap[VIRT_GIC_CPU].base,
597 2, vms->memmap[VIRT_GIC_CPU].size,
598 2, vms->memmap[VIRT_GIC_HYP].base,
599 2, vms->memmap[VIRT_GIC_HYP].size,
600 2, vms->memmap[VIRT_GIC_VCPU].base,
601 2, vms->memmap[VIRT_GIC_VCPU].size);
602 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
603 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
604 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
608 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle);
609 g_free(nodename);
612 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
614 ARMCPU *armcpu = ARM_CPU(first_cpu);
615 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
616 MachineState *ms = MACHINE(vms);
618 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
619 assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL));
620 return;
623 if (vms->gic_version == VIRT_GIC_VERSION_2) {
624 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
625 GIC_FDT_IRQ_PPI_CPU_WIDTH,
626 (1 << MACHINE(vms)->smp.cpus) - 1);
629 qemu_fdt_add_subnode(ms->fdt, "/pmu");
630 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
631 const char compat[] = "arm,armv8-pmuv3";
632 qemu_fdt_setprop(ms->fdt, "/pmu", "compatible",
633 compat, sizeof(compat));
634 qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts",
635 GIC_FDT_IRQ_TYPE_PPI,
636 INTID_TO_PPI(VIRTUAL_PMU_IRQ), irqflags);
640 static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
642 DeviceState *dev;
643 MachineState *ms = MACHINE(vms);
644 int irq = vms->irqmap[VIRT_ACPI_GED];
645 uint32_t event = ACPI_GED_PWR_DOWN_EVT;
647 if (ms->ram_slots) {
648 event |= ACPI_GED_MEM_HOTPLUG_EVT;
651 if (ms->nvdimms_state->is_enabled) {
652 event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
655 dev = qdev_new(TYPE_ACPI_GED);
656 qdev_prop_set_uint32(dev, "ged-event", event);
657 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
659 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
660 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
661 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
663 return dev;
666 static void create_its(VirtMachineState *vms)
668 const char *itsclass = its_class_name();
669 DeviceState *dev;
671 if (!strcmp(itsclass, "arm-gicv3-its")) {
672 if (!vms->tcg_its) {
673 itsclass = NULL;
677 if (!itsclass) {
678 /* Do nothing if not supported */
679 return;
682 dev = qdev_new(itsclass);
684 object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic),
685 &error_abort);
686 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
687 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
689 fdt_add_its_gic_node(vms);
690 vms->msi_controller = VIRT_MSI_CTRL_ITS;
693 static void create_v2m(VirtMachineState *vms)
695 int i;
696 int irq = vms->irqmap[VIRT_GIC_V2M];
697 DeviceState *dev;
699 dev = qdev_new("arm-gicv2m");
700 qdev_prop_set_uint32(dev, "base-spi", irq);
701 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
702 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
703 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
705 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
706 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
707 qdev_get_gpio_in(vms->gic, irq + i));
710 fdt_add_v2m_gic_node(vms);
711 vms->msi_controller = VIRT_MSI_CTRL_GICV2M;
714 static void create_gic(VirtMachineState *vms, MemoryRegion *mem)
716 MachineState *ms = MACHINE(vms);
717 /* We create a standalone GIC */
718 SysBusDevice *gicbusdev;
719 const char *gictype;
720 int i;
721 unsigned int smp_cpus = ms->smp.cpus;
722 uint32_t nb_redist_regions = 0;
723 int revision;
725 if (vms->gic_version == VIRT_GIC_VERSION_2) {
726 gictype = gic_class_name();
727 } else {
728 gictype = gicv3_class_name();
731 switch (vms->gic_version) {
732 case VIRT_GIC_VERSION_2:
733 revision = 2;
734 break;
735 case VIRT_GIC_VERSION_3:
736 revision = 3;
737 break;
738 case VIRT_GIC_VERSION_4:
739 revision = 4;
740 break;
741 default:
742 g_assert_not_reached();
744 vms->gic = qdev_new(gictype);
745 qdev_prop_set_uint32(vms->gic, "revision", revision);
746 qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
747 /* Note that the num-irq property counts both internal and external
748 * interrupts; there are always 32 of the former (mandated by GIC spec).
750 qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
751 if (!kvm_irqchip_in_kernel()) {
752 qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
755 if (vms->gic_version != VIRT_GIC_VERSION_2) {
756 QList *redist_region_count;
757 uint32_t redist0_capacity = virt_redist_capacity(vms, VIRT_GIC_REDIST);
758 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
760 nb_redist_regions = virt_gicv3_redist_region_count(vms);
762 redist_region_count = qlist_new();
763 qlist_append_int(redist_region_count, redist0_count);
764 if (nb_redist_regions == 2) {
765 uint32_t redist1_capacity =
766 virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
768 qlist_append_int(redist_region_count,
769 MIN(smp_cpus - redist0_count, redist1_capacity));
771 qdev_prop_set_array(vms->gic, "redist-region-count",
772 redist_region_count);
774 if (!kvm_irqchip_in_kernel()) {
775 if (vms->tcg_its) {
776 object_property_set_link(OBJECT(vms->gic), "sysmem",
777 OBJECT(mem), &error_fatal);
778 qdev_prop_set_bit(vms->gic, "has-lpi", true);
781 } else {
782 if (!kvm_irqchip_in_kernel()) {
783 qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
784 vms->virt);
787 gicbusdev = SYS_BUS_DEVICE(vms->gic);
788 sysbus_realize_and_unref(gicbusdev, &error_fatal);
789 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
790 if (vms->gic_version != VIRT_GIC_VERSION_2) {
791 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
792 if (nb_redist_regions == 2) {
793 sysbus_mmio_map(gicbusdev, 2,
794 vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
796 } else {
797 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
798 if (vms->virt) {
799 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
800 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
804 /* Wire the outputs from each CPU's generic timer and the GICv3
805 * maintenance interrupt signal to the appropriate GIC PPI inputs,
806 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
808 for (i = 0; i < smp_cpus; i++) {
809 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
810 int intidbase = NUM_IRQS + i * GIC_INTERNAL;
811 /* Mapping from the output timer irq lines from the CPU to the
812 * GIC PPI inputs we use for the virt board.
814 const int timer_irq[] = {
815 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
816 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
817 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
818 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
821 for (unsigned irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
822 qdev_connect_gpio_out(cpudev, irq,
823 qdev_get_gpio_in(vms->gic,
824 intidbase + timer_irq[irq]));
827 if (vms->gic_version != VIRT_GIC_VERSION_2) {
828 qemu_irq irq = qdev_get_gpio_in(vms->gic,
829 intidbase + ARCH_GIC_MAINT_IRQ);
830 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
831 0, irq);
832 } else if (vms->virt) {
833 qemu_irq irq = qdev_get_gpio_in(vms->gic,
834 intidbase + ARCH_GIC_MAINT_IRQ);
835 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
838 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
839 qdev_get_gpio_in(vms->gic, intidbase
840 + VIRTUAL_PMU_IRQ));
842 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
843 sysbus_connect_irq(gicbusdev, i + smp_cpus,
844 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
845 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
846 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
847 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
848 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
851 fdt_add_gic_node(vms);
853 if (vms->gic_version != VIRT_GIC_VERSION_2 && vms->its) {
854 create_its(vms);
855 } else if (vms->gic_version == VIRT_GIC_VERSION_2) {
856 create_v2m(vms);
860 static void create_uart(const VirtMachineState *vms, int uart,
861 MemoryRegion *mem, Chardev *chr)
863 char *nodename;
864 hwaddr base = vms->memmap[uart].base;
865 hwaddr size = vms->memmap[uart].size;
866 int irq = vms->irqmap[uart];
867 const char compat[] = "arm,pl011\0arm,primecell";
868 const char clocknames[] = "uartclk\0apb_pclk";
869 DeviceState *dev = qdev_new(TYPE_PL011);
870 SysBusDevice *s = SYS_BUS_DEVICE(dev);
871 MachineState *ms = MACHINE(vms);
873 qdev_prop_set_chr(dev, "chardev", chr);
874 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
875 memory_region_add_subregion(mem, base,
876 sysbus_mmio_get_region(s, 0));
877 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
879 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
880 qemu_fdt_add_subnode(ms->fdt, nodename);
881 /* Note that we can't use setprop_string because of the embedded NUL */
882 qemu_fdt_setprop(ms->fdt, nodename, "compatible",
883 compat, sizeof(compat));
884 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
885 2, base, 2, size);
886 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
887 GIC_FDT_IRQ_TYPE_SPI, irq,
888 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
889 qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks",
890 vms->clock_phandle, vms->clock_phandle);
891 qemu_fdt_setprop(ms->fdt, nodename, "clock-names",
892 clocknames, sizeof(clocknames));
894 if (uart == VIRT_UART) {
895 qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename);
896 } else {
897 /* Mark as not usable by the normal world */
898 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
899 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
901 qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path",
902 nodename);
905 g_free(nodename);
908 static void create_rtc(const VirtMachineState *vms)
910 char *nodename;
911 hwaddr base = vms->memmap[VIRT_RTC].base;
912 hwaddr size = vms->memmap[VIRT_RTC].size;
913 int irq = vms->irqmap[VIRT_RTC];
914 const char compat[] = "arm,pl031\0arm,primecell";
915 MachineState *ms = MACHINE(vms);
917 sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
919 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
920 qemu_fdt_add_subnode(ms->fdt, nodename);
921 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
922 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
923 2, base, 2, size);
924 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
925 GIC_FDT_IRQ_TYPE_SPI, irq,
926 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
927 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
928 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
929 g_free(nodename);
932 static DeviceState *gpio_key_dev;
933 static void virt_powerdown_req(Notifier *n, void *opaque)
935 VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
937 if (s->acpi_dev) {
938 acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
939 } else {
940 /* use gpio Pin 3 for power button event */
941 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
945 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev,
946 uint32_t phandle)
948 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
949 qdev_get_gpio_in(pl061_dev, 3));
951 qemu_fdt_add_subnode(fdt, "/gpio-keys");
952 qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys");
954 qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff");
955 qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff",
956 "label", "GPIO Key Poweroff");
957 qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code",
958 KEY_POWER);
959 qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff",
960 "gpios", phandle, 3, 0);
963 #define SECURE_GPIO_POWEROFF 0
964 #define SECURE_GPIO_RESET 1
966 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev,
967 uint32_t phandle)
969 DeviceState *gpio_pwr_dev;
971 /* gpio-pwr */
972 gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL);
974 /* connect secure pl061 to gpio-pwr */
975 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET,
976 qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0));
977 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF,
978 qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0));
980 qemu_fdt_add_subnode(fdt, "/gpio-poweroff");
981 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible",
982 "gpio-poweroff");
983 qemu_fdt_setprop_cells(fdt, "/gpio-poweroff",
984 "gpios", phandle, SECURE_GPIO_POWEROFF, 0);
985 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled");
986 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status",
987 "okay");
989 qemu_fdt_add_subnode(fdt, "/gpio-restart");
990 qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible",
991 "gpio-restart");
992 qemu_fdt_setprop_cells(fdt, "/gpio-restart",
993 "gpios", phandle, SECURE_GPIO_RESET, 0);
994 qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled");
995 qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status",
996 "okay");
999 static void create_gpio_devices(const VirtMachineState *vms, int gpio,
1000 MemoryRegion *mem)
1002 char *nodename;
1003 DeviceState *pl061_dev;
1004 hwaddr base = vms->memmap[gpio].base;
1005 hwaddr size = vms->memmap[gpio].size;
1006 int irq = vms->irqmap[gpio];
1007 const char compat[] = "arm,pl061\0arm,primecell";
1008 SysBusDevice *s;
1009 MachineState *ms = MACHINE(vms);
1011 pl061_dev = qdev_new("pl061");
1012 /* Pull lines down to 0 if not driven by the PL061 */
1013 qdev_prop_set_uint32(pl061_dev, "pullups", 0);
1014 qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff);
1015 s = SYS_BUS_DEVICE(pl061_dev);
1016 sysbus_realize_and_unref(s, &error_fatal);
1017 memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0));
1018 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
1020 uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt);
1021 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
1022 qemu_fdt_add_subnode(ms->fdt, nodename);
1023 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1024 2, base, 2, size);
1025 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
1026 qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2);
1027 qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0);
1028 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1029 GIC_FDT_IRQ_TYPE_SPI, irq,
1030 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
1031 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
1032 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
1033 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle);
1035 if (gpio != VIRT_GPIO) {
1036 /* Mark as not usable by the normal world */
1037 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1038 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1040 g_free(nodename);
1042 /* Child gpio devices */
1043 if (gpio == VIRT_GPIO) {
1044 create_gpio_keys(ms->fdt, pl061_dev, phandle);
1045 } else {
1046 create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle);
1050 static void create_virtio_devices(const VirtMachineState *vms)
1052 int i;
1053 hwaddr size = vms->memmap[VIRT_MMIO].size;
1054 MachineState *ms = MACHINE(vms);
1056 /* We create the transports in forwards order. Since qbus_realize()
1057 * prepends (not appends) new child buses, the incrementing loop below will
1058 * create a list of virtio-mmio buses with decreasing base addresses.
1060 * When a -device option is processed from the command line,
1061 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
1062 * order. The upshot is that -device options in increasing command line
1063 * order are mapped to virtio-mmio buses with decreasing base addresses.
1065 * When this code was originally written, that arrangement ensured that the
1066 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
1067 * the first -device on the command line. (The end-to-end order is a
1068 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
1069 * guest kernel's name-to-address assignment strategy.)
1071 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
1072 * the message, if not necessarily the code, of commit 70161ff336.
1073 * Therefore the loop now establishes the inverse of the original intent.
1075 * Unfortunately, we can't counteract the kernel change by reversing the
1076 * loop; it would break existing command lines.
1078 * In any case, the kernel makes no guarantee about the stability of
1079 * enumeration order of virtio devices (as demonstrated by it changing
1080 * between kernel versions). For reliable and stable identification
1081 * of disks users must use UUIDs or similar mechanisms.
1083 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
1084 int irq = vms->irqmap[VIRT_MMIO] + i;
1085 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1087 sysbus_create_simple("virtio-mmio", base,
1088 qdev_get_gpio_in(vms->gic, irq));
1091 /* We add dtb nodes in reverse order so that they appear in the finished
1092 * device tree lowest address first.
1094 * Note that this mapping is independent of the loop above. The previous
1095 * loop influences virtio device to virtio transport assignment, whereas
1096 * this loop controls how virtio transports are laid out in the dtb.
1098 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
1099 char *nodename;
1100 int irq = vms->irqmap[VIRT_MMIO] + i;
1101 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1103 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
1104 qemu_fdt_add_subnode(ms->fdt, nodename);
1105 qemu_fdt_setprop_string(ms->fdt, nodename,
1106 "compatible", "virtio,mmio");
1107 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1108 2, base, 2, size);
1109 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1110 GIC_FDT_IRQ_TYPE_SPI, irq,
1111 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1112 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1113 g_free(nodename);
1117 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
1119 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
1120 const char *name,
1121 const char *alias_prop_name)
1124 * Create a single flash device. We use the same parameters as
1125 * the flash devices on the Versatile Express board.
1127 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
1129 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
1130 qdev_prop_set_uint8(dev, "width", 4);
1131 qdev_prop_set_uint8(dev, "device-width", 2);
1132 qdev_prop_set_bit(dev, "big-endian", false);
1133 qdev_prop_set_uint16(dev, "id0", 0x89);
1134 qdev_prop_set_uint16(dev, "id1", 0x18);
1135 qdev_prop_set_uint16(dev, "id2", 0x00);
1136 qdev_prop_set_uint16(dev, "id3", 0x00);
1137 qdev_prop_set_string(dev, "name", name);
1138 object_property_add_child(OBJECT(vms), name, OBJECT(dev));
1139 object_property_add_alias(OBJECT(vms), alias_prop_name,
1140 OBJECT(dev), "drive");
1141 return PFLASH_CFI01(dev);
1144 static void virt_flash_create(VirtMachineState *vms)
1146 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
1147 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
1150 static void virt_flash_map1(PFlashCFI01 *flash,
1151 hwaddr base, hwaddr size,
1152 MemoryRegion *sysmem)
1154 DeviceState *dev = DEVICE(flash);
1156 assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
1157 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
1158 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
1159 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1161 memory_region_add_subregion(sysmem, base,
1162 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
1163 0));
1166 static void virt_flash_map(VirtMachineState *vms,
1167 MemoryRegion *sysmem,
1168 MemoryRegion *secure_sysmem)
1171 * Map two flash devices to fill the VIRT_FLASH space in the memmap.
1172 * sysmem is the system memory space. secure_sysmem is the secure view
1173 * of the system, and the first flash device should be made visible only
1174 * there. The second flash device is visible to both secure and nonsecure.
1175 * If sysmem == secure_sysmem this means there is no separate Secure
1176 * address space and both flash devices are generally visible.
1178 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1179 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1181 virt_flash_map1(vms->flash[0], flashbase, flashsize,
1182 secure_sysmem);
1183 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
1184 sysmem);
1187 static void virt_flash_fdt(VirtMachineState *vms,
1188 MemoryRegion *sysmem,
1189 MemoryRegion *secure_sysmem)
1191 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1192 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1193 MachineState *ms = MACHINE(vms);
1194 char *nodename;
1196 if (sysmem == secure_sysmem) {
1197 /* Report both flash devices as a single node in the DT */
1198 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1199 qemu_fdt_add_subnode(ms->fdt, nodename);
1200 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1201 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1202 2, flashbase, 2, flashsize,
1203 2, flashbase + flashsize, 2, flashsize);
1204 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1205 g_free(nodename);
1206 } else {
1208 * Report the devices as separate nodes so we can mark one as
1209 * only visible to the secure world.
1211 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
1212 qemu_fdt_add_subnode(ms->fdt, nodename);
1213 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1214 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1215 2, flashbase, 2, flashsize);
1216 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1217 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1218 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1219 g_free(nodename);
1221 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase + flashsize);
1222 qemu_fdt_add_subnode(ms->fdt, nodename);
1223 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1224 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1225 2, flashbase + flashsize, 2, flashsize);
1226 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1227 g_free(nodename);
1231 static bool virt_firmware_init(VirtMachineState *vms,
1232 MemoryRegion *sysmem,
1233 MemoryRegion *secure_sysmem)
1235 int i;
1236 const char *bios_name;
1237 BlockBackend *pflash_blk0;
1239 /* Map legacy -drive if=pflash to machine properties */
1240 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1241 pflash_cfi01_legacy_drive(vms->flash[i],
1242 drive_get(IF_PFLASH, 0, i));
1245 virt_flash_map(vms, sysmem, secure_sysmem);
1247 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1249 bios_name = MACHINE(vms)->firmware;
1250 if (bios_name) {
1251 char *fname;
1252 MemoryRegion *mr;
1253 int image_size;
1255 if (pflash_blk0) {
1256 error_report("The contents of the first flash device may be "
1257 "specified with -bios or with -drive if=pflash... "
1258 "but you cannot use both options at once");
1259 exit(1);
1262 /* Fall back to -bios */
1264 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1265 if (!fname) {
1266 error_report("Could not find ROM image '%s'", bios_name);
1267 exit(1);
1269 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1270 image_size = load_image_mr(fname, mr);
1271 g_free(fname);
1272 if (image_size < 0) {
1273 error_report("Could not load ROM image '%s'", bios_name);
1274 exit(1);
1278 return pflash_blk0 || bios_name;
1281 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1283 MachineState *ms = MACHINE(vms);
1284 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1285 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1286 FWCfgState *fw_cfg;
1287 char *nodename;
1289 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1290 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1292 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1293 qemu_fdt_add_subnode(ms->fdt, nodename);
1294 qemu_fdt_setprop_string(ms->fdt, nodename,
1295 "compatible", "qemu,fw-cfg-mmio");
1296 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1297 2, base, 2, size);
1298 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1299 g_free(nodename);
1300 return fw_cfg;
1303 static void create_pcie_irq_map(const MachineState *ms,
1304 uint32_t gic_phandle,
1305 int first_irq, const char *nodename)
1307 int devfn, pin;
1308 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1309 uint32_t *irq_map = full_irq_map;
1311 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1312 for (pin = 0; pin < 4; pin++) {
1313 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1314 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1315 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1316 int i;
1318 uint32_t map[] = {
1319 devfn << 8, 0, 0, /* devfn */
1320 pin + 1, /* PCI pin */
1321 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1323 /* Convert map to big endian */
1324 for (i = 0; i < 10; i++) {
1325 irq_map[i] = cpu_to_be32(map[i]);
1327 irq_map += 10;
1331 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map",
1332 full_irq_map, sizeof(full_irq_map));
1334 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask",
1335 cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */
1336 0, 0,
1337 0x7 /* PCI irq */);
1340 static void create_smmu(const VirtMachineState *vms,
1341 PCIBus *bus)
1343 char *node;
1344 const char compat[] = "arm,smmu-v3";
1345 int irq = vms->irqmap[VIRT_SMMU];
1346 int i;
1347 hwaddr base = vms->memmap[VIRT_SMMU].base;
1348 hwaddr size = vms->memmap[VIRT_SMMU].size;
1349 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1350 DeviceState *dev;
1351 MachineState *ms = MACHINE(vms);
1353 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1354 return;
1357 dev = qdev_new(TYPE_ARM_SMMUV3);
1359 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
1360 &error_abort);
1361 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1362 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1363 for (i = 0; i < NUM_SMMU_IRQS; i++) {
1364 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1365 qdev_get_gpio_in(vms->gic, irq + i));
1368 node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1369 qemu_fdt_add_subnode(ms->fdt, node);
1370 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1371 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size);
1373 qemu_fdt_setprop_cells(ms->fdt, node, "interrupts",
1374 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1375 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1376 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1377 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1379 qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names,
1380 sizeof(irq_names));
1382 qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0);
1384 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1386 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1387 g_free(node);
1390 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
1392 const char compat[] = "virtio,pci-iommu\0pci1af4,1057";
1393 uint16_t bdf = vms->virtio_iommu_bdf;
1394 MachineState *ms = MACHINE(vms);
1395 char *node;
1397 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1399 node = g_strdup_printf("%s/virtio_iommu@%x,%x", vms->pciehb_nodename,
1400 PCI_SLOT(bdf), PCI_FUNC(bdf));
1401 qemu_fdt_add_subnode(ms->fdt, node);
1402 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1403 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg",
1404 1, bdf << 8, 1, 0, 1, 0,
1405 1, 0, 1, 0);
1407 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1408 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1409 g_free(node);
1411 qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map",
1412 0x0, vms->iommu_phandle, 0x0, bdf,
1413 bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
1416 static void create_pcie(VirtMachineState *vms)
1418 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1419 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1420 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1421 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1422 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1423 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1424 hwaddr base_ecam, size_ecam;
1425 hwaddr base = base_mmio;
1426 int nr_pcie_buses;
1427 int irq = vms->irqmap[VIRT_PCIE];
1428 MemoryRegion *mmio_alias;
1429 MemoryRegion *mmio_reg;
1430 MemoryRegion *ecam_alias;
1431 MemoryRegion *ecam_reg;
1432 DeviceState *dev;
1433 char *nodename;
1434 int i, ecam_id;
1435 PCIHostState *pci;
1436 MachineState *ms = MACHINE(vms);
1437 MachineClass *mc = MACHINE_GET_CLASS(ms);
1439 dev = qdev_new(TYPE_GPEX_HOST);
1440 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1442 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1443 base_ecam = vms->memmap[ecam_id].base;
1444 size_ecam = vms->memmap[ecam_id].size;
1445 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1446 /* Map only the first size_ecam bytes of ECAM space */
1447 ecam_alias = g_new0(MemoryRegion, 1);
1448 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1449 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1450 ecam_reg, 0, size_ecam);
1451 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1453 /* Map the MMIO window into system address space so as to expose
1454 * the section of PCI MMIO space which starts at the same base address
1455 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1456 * the window).
1458 mmio_alias = g_new0(MemoryRegion, 1);
1459 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1460 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1461 mmio_reg, base_mmio, size_mmio);
1462 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1464 if (vms->highmem_mmio) {
1465 /* Map high MMIO space */
1466 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1468 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1469 mmio_reg, base_mmio_high, size_mmio_high);
1470 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1471 high_mmio_alias);
1474 /* Map IO port space */
1475 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1477 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1478 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1479 qdev_get_gpio_in(vms->gic, irq + i));
1480 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1483 pci = PCI_HOST_BRIDGE(dev);
1484 pci->bypass_iommu = vms->default_bus_bypass_iommu;
1485 vms->bus = pci->bus;
1486 if (vms->bus) {
1487 for (i = 0; i < nb_nics; i++) {
1488 pci_nic_init_nofail(&nd_table[i], pci->bus, mc->default_nic, NULL);
1492 nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1493 qemu_fdt_add_subnode(ms->fdt, nodename);
1494 qemu_fdt_setprop_string(ms->fdt, nodename,
1495 "compatible", "pci-host-ecam-generic");
1496 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci");
1497 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3);
1498 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2);
1499 qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0);
1500 qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0,
1501 nr_pcie_buses - 1);
1502 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1504 if (vms->msi_phandle) {
1505 qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-map",
1506 0, vms->msi_phandle, 0, 0x10000);
1509 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1510 2, base_ecam, 2, size_ecam);
1512 if (vms->highmem_mmio) {
1513 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1514 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1515 2, base_pio, 2, size_pio,
1516 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1517 2, base_mmio, 2, size_mmio,
1518 1, FDT_PCI_RANGE_MMIO_64BIT,
1519 2, base_mmio_high,
1520 2, base_mmio_high, 2, size_mmio_high);
1521 } else {
1522 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1523 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1524 2, base_pio, 2, size_pio,
1525 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1526 2, base_mmio, 2, size_mmio);
1529 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1);
1530 create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename);
1532 if (vms->iommu) {
1533 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1535 switch (vms->iommu) {
1536 case VIRT_IOMMU_SMMUV3:
1537 create_smmu(vms, vms->bus);
1538 qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map",
1539 0x0, vms->iommu_phandle, 0x0, 0x10000);
1540 break;
1541 default:
1542 g_assert_not_reached();
1547 static void create_platform_bus(VirtMachineState *vms)
1549 DeviceState *dev;
1550 SysBusDevice *s;
1551 int i;
1552 MemoryRegion *sysmem = get_system_memory();
1554 dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
1555 dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE);
1556 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1557 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1558 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1559 vms->platform_bus_dev = dev;
1561 s = SYS_BUS_DEVICE(dev);
1562 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1563 int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1564 sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
1567 memory_region_add_subregion(sysmem,
1568 vms->memmap[VIRT_PLATFORM_BUS].base,
1569 sysbus_mmio_get_region(s, 0));
1572 static void create_tag_ram(MemoryRegion *tag_sysmem,
1573 hwaddr base, hwaddr size,
1574 const char *name)
1576 MemoryRegion *tagram = g_new(MemoryRegion, 1);
1578 memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal);
1579 memory_region_add_subregion(tag_sysmem, base / 32, tagram);
1582 static void create_secure_ram(VirtMachineState *vms,
1583 MemoryRegion *secure_sysmem,
1584 MemoryRegion *secure_tag_sysmem)
1586 MemoryRegion *secram = g_new(MemoryRegion, 1);
1587 char *nodename;
1588 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1589 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1590 MachineState *ms = MACHINE(vms);
1592 memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1593 &error_fatal);
1594 memory_region_add_subregion(secure_sysmem, base, secram);
1596 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1597 qemu_fdt_add_subnode(ms->fdt, nodename);
1598 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory");
1599 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size);
1600 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1601 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1603 if (secure_tag_sysmem) {
1604 create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag");
1607 g_free(nodename);
1610 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1612 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1613 bootinfo);
1614 MachineState *ms = MACHINE(board);
1617 *fdt_size = board->fdt_size;
1618 return ms->fdt;
1621 static void virt_build_smbios(VirtMachineState *vms)
1623 MachineClass *mc = MACHINE_GET_CLASS(vms);
1624 MachineState *ms = MACHINE(vms);
1625 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1626 uint8_t *smbios_tables, *smbios_anchor;
1627 size_t smbios_tables_len, smbios_anchor_len;
1628 struct smbios_phys_mem_area mem_array;
1629 const char *product = "QEMU Virtual Machine";
1631 if (kvm_enabled()) {
1632 product = "KVM Virtual Machine";
1635 smbios_set_defaults("QEMU", product,
1636 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1637 true, SMBIOS_ENTRY_POINT_TYPE_64);
1639 /* build the array of physical mem area from base_memmap */
1640 mem_array.address = vms->memmap[VIRT_MEM].base;
1641 mem_array.length = ms->ram_size;
1643 smbios_get_tables(ms, &mem_array, 1,
1644 &smbios_tables, &smbios_tables_len,
1645 &smbios_anchor, &smbios_anchor_len,
1646 &error_fatal);
1648 if (smbios_anchor) {
1649 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1650 smbios_tables, smbios_tables_len);
1651 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1652 smbios_anchor, smbios_anchor_len);
1656 static
1657 void virt_machine_done(Notifier *notifier, void *data)
1659 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1660 machine_done);
1661 MachineState *ms = MACHINE(vms);
1662 ARMCPU *cpu = ARM_CPU(first_cpu);
1663 struct arm_boot_info *info = &vms->bootinfo;
1664 AddressSpace *as = arm_boot_address_space(cpu, info);
1667 * If the user provided a dtb, we assume the dynamic sysbus nodes
1668 * already are integrated there. This corresponds to a use case where
1669 * the dynamic sysbus nodes are complex and their generation is not yet
1670 * supported. In that case the user can take charge of the guest dt
1671 * while qemu takes charge of the qom stuff.
1673 if (info->dtb_filename == NULL) {
1674 platform_bus_add_all_fdt_nodes(ms->fdt, "/intc",
1675 vms->memmap[VIRT_PLATFORM_BUS].base,
1676 vms->memmap[VIRT_PLATFORM_BUS].size,
1677 vms->irqmap[VIRT_PLATFORM_BUS]);
1679 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1680 exit(1);
1683 fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg);
1685 virt_acpi_setup(vms);
1686 virt_build_smbios(vms);
1689 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1691 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1692 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1694 if (!vmc->disallow_affinity_adjustment) {
1695 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1696 * GIC's target-list limitations. 32-bit KVM hosts currently
1697 * always create clusters of 4 CPUs, but that is expected to
1698 * change when they gain support for gicv3. When KVM is enabled
1699 * it will override the changes we make here, therefore our
1700 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1701 * and to improve SGI efficiency.
1703 if (vms->gic_version == VIRT_GIC_VERSION_2) {
1704 clustersz = GIC_TARGETLIST_BITS;
1705 } else {
1706 clustersz = GICV3_TARGETLIST_BITS;
1709 return arm_cpu_mp_affinity(idx, clustersz);
1712 static inline bool *virt_get_high_memmap_enabled(VirtMachineState *vms,
1713 int index)
1715 bool *enabled_array[] = {
1716 &vms->highmem_redists,
1717 &vms->highmem_ecam,
1718 &vms->highmem_mmio,
1721 assert(ARRAY_SIZE(extended_memmap) - VIRT_LOWMEMMAP_LAST ==
1722 ARRAY_SIZE(enabled_array));
1723 assert(index - VIRT_LOWMEMMAP_LAST < ARRAY_SIZE(enabled_array));
1725 return enabled_array[index - VIRT_LOWMEMMAP_LAST];
1728 static void virt_set_high_memmap(VirtMachineState *vms,
1729 hwaddr base, int pa_bits)
1731 hwaddr region_base, region_size;
1732 bool *region_enabled, fits;
1733 int i;
1735 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1736 region_enabled = virt_get_high_memmap_enabled(vms, i);
1737 region_base = ROUND_UP(base, extended_memmap[i].size);
1738 region_size = extended_memmap[i].size;
1740 vms->memmap[i].base = region_base;
1741 vms->memmap[i].size = region_size;
1744 * Check each device to see if it fits in the PA space,
1745 * moving highest_gpa as we go. For compatibility, move
1746 * highest_gpa for disabled fitting devices as well, if
1747 * the compact layout has been disabled.
1749 * For each device that doesn't fit, disable it.
1751 fits = (region_base + region_size) <= BIT_ULL(pa_bits);
1752 *region_enabled &= fits;
1753 if (vms->highmem_compact && !*region_enabled) {
1754 continue;
1757 base = region_base + region_size;
1758 if (fits) {
1759 vms->highest_gpa = base - 1;
1764 static void virt_set_memmap(VirtMachineState *vms, int pa_bits)
1766 MachineState *ms = MACHINE(vms);
1767 hwaddr base, device_memory_base, device_memory_size, memtop;
1768 int i;
1770 vms->memmap = extended_memmap;
1772 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1773 vms->memmap[i] = base_memmap[i];
1776 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1777 error_report("unsupported number of memory slots: %"PRIu64,
1778 ms->ram_slots);
1779 exit(EXIT_FAILURE);
1783 * !highmem is exactly the same as limiting the PA space to 32bit,
1784 * irrespective of the underlying capabilities of the HW.
1786 if (!vms->highmem) {
1787 pa_bits = 32;
1791 * We compute the base of the high IO region depending on the
1792 * amount of initial and device memory. The device memory start/size
1793 * is aligned on 1GiB. We never put the high IO region below 256GiB
1794 * so that if maxram_size is < 255GiB we keep the legacy memory map.
1795 * The device region size assumes 1GiB page max alignment per slot.
1797 device_memory_base =
1798 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1799 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1801 /* Base address of the high IO region */
1802 memtop = base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1803 if (memtop > BIT_ULL(pa_bits)) {
1804 error_report("Addressing limited to %d bits, but memory exceeds it by %llu bytes\n",
1805 pa_bits, memtop - BIT_ULL(pa_bits));
1806 exit(EXIT_FAILURE);
1808 if (base < device_memory_base) {
1809 error_report("maxmem/slots too huge");
1810 exit(EXIT_FAILURE);
1812 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1813 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1816 /* We know for sure that at least the memory fits in the PA space */
1817 vms->highest_gpa = memtop - 1;
1819 virt_set_high_memmap(vms, base, pa_bits);
1821 if (device_memory_size > 0) {
1822 machine_memory_devices_init(ms, device_memory_base, device_memory_size);
1826 static VirtGICType finalize_gic_version_do(const char *accel_name,
1827 VirtGICType gic_version,
1828 int gics_supported,
1829 unsigned int max_cpus)
1831 /* Convert host/max/nosel to GIC version number */
1832 switch (gic_version) {
1833 case VIRT_GIC_VERSION_HOST:
1834 if (!kvm_enabled()) {
1835 error_report("gic-version=host requires KVM");
1836 exit(1);
1839 /* For KVM, gic-version=host means gic-version=max */
1840 return finalize_gic_version_do(accel_name, VIRT_GIC_VERSION_MAX,
1841 gics_supported, max_cpus);
1842 case VIRT_GIC_VERSION_MAX:
1843 if (gics_supported & VIRT_GIC_VERSION_4_MASK) {
1844 gic_version = VIRT_GIC_VERSION_4;
1845 } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
1846 gic_version = VIRT_GIC_VERSION_3;
1847 } else {
1848 gic_version = VIRT_GIC_VERSION_2;
1850 break;
1851 case VIRT_GIC_VERSION_NOSEL:
1852 if ((gics_supported & VIRT_GIC_VERSION_2_MASK) &&
1853 max_cpus <= GIC_NCPU) {
1854 gic_version = VIRT_GIC_VERSION_2;
1855 } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
1857 * in case the host does not support v2 emulation or
1858 * the end-user requested more than 8 VCPUs we now default
1859 * to v3. In any case defaulting to v2 would be broken.
1861 gic_version = VIRT_GIC_VERSION_3;
1862 } else if (max_cpus > GIC_NCPU) {
1863 error_report("%s only supports GICv2 emulation but more than 8 "
1864 "vcpus are requested", accel_name);
1865 exit(1);
1867 break;
1868 case VIRT_GIC_VERSION_2:
1869 case VIRT_GIC_VERSION_3:
1870 case VIRT_GIC_VERSION_4:
1871 break;
1874 /* Check chosen version is effectively supported */
1875 switch (gic_version) {
1876 case VIRT_GIC_VERSION_2:
1877 if (!(gics_supported & VIRT_GIC_VERSION_2_MASK)) {
1878 error_report("%s does not support GICv2 emulation", accel_name);
1879 exit(1);
1881 break;
1882 case VIRT_GIC_VERSION_3:
1883 if (!(gics_supported & VIRT_GIC_VERSION_3_MASK)) {
1884 error_report("%s does not support GICv3 emulation", accel_name);
1885 exit(1);
1887 break;
1888 case VIRT_GIC_VERSION_4:
1889 if (!(gics_supported & VIRT_GIC_VERSION_4_MASK)) {
1890 error_report("%s does not support GICv4 emulation, is virtualization=on?",
1891 accel_name);
1892 exit(1);
1894 break;
1895 default:
1896 error_report("logic error in finalize_gic_version");
1897 exit(1);
1898 break;
1901 return gic_version;
1905 * finalize_gic_version - Determines the final gic_version
1906 * according to the gic-version property
1908 * Default GIC type is v2
1910 static void finalize_gic_version(VirtMachineState *vms)
1912 const char *accel_name = current_accel_name();
1913 unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
1914 int gics_supported = 0;
1916 /* Determine which GIC versions the current environment supports */
1917 if (kvm_enabled() && kvm_irqchip_in_kernel()) {
1918 int probe_bitmap = kvm_arm_vgic_probe();
1920 if (!probe_bitmap) {
1921 error_report("Unable to determine GIC version supported by host");
1922 exit(1);
1925 if (probe_bitmap & KVM_ARM_VGIC_V2) {
1926 gics_supported |= VIRT_GIC_VERSION_2_MASK;
1928 if (probe_bitmap & KVM_ARM_VGIC_V3) {
1929 gics_supported |= VIRT_GIC_VERSION_3_MASK;
1931 } else if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
1932 /* KVM w/o kernel irqchip can only deal with GICv2 */
1933 gics_supported |= VIRT_GIC_VERSION_2_MASK;
1934 accel_name = "KVM with kernel-irqchip=off";
1935 } else if (tcg_enabled() || hvf_enabled() || qtest_enabled()) {
1936 gics_supported |= VIRT_GIC_VERSION_2_MASK;
1937 if (module_object_class_by_name("arm-gicv3")) {
1938 gics_supported |= VIRT_GIC_VERSION_3_MASK;
1939 if (vms->virt) {
1940 /* GICv4 only makes sense if CPU has EL2 */
1941 gics_supported |= VIRT_GIC_VERSION_4_MASK;
1944 } else {
1945 error_report("Unsupported accelerator, can not determine GIC support");
1946 exit(1);
1950 * Then convert helpers like host/max to concrete GIC versions and ensure
1951 * the desired version is supported
1953 vms->gic_version = finalize_gic_version_do(accel_name, vms->gic_version,
1954 gics_supported, max_cpus);
1958 * virt_cpu_post_init() must be called after the CPUs have
1959 * been realized and the GIC has been created.
1961 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem)
1963 int max_cpus = MACHINE(vms)->smp.max_cpus;
1964 bool aarch64, pmu, steal_time;
1965 CPUState *cpu;
1967 aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL);
1968 pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL);
1969 steal_time = object_property_get_bool(OBJECT(first_cpu),
1970 "kvm-steal-time", NULL);
1972 if (kvm_enabled()) {
1973 hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base;
1974 hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size;
1976 if (steal_time) {
1977 MemoryRegion *pvtime = g_new(MemoryRegion, 1);
1978 hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU;
1980 /* The memory region size must be a multiple of host page size. */
1981 pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size);
1983 if (pvtime_size > pvtime_reg_size) {
1984 error_report("pvtime requires a %" HWADDR_PRId
1985 " byte memory region for %d CPUs,"
1986 " but only %" HWADDR_PRId " has been reserved",
1987 pvtime_size, max_cpus, pvtime_reg_size);
1988 exit(1);
1991 memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL);
1992 memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime);
1995 CPU_FOREACH(cpu) {
1996 if (pmu) {
1997 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
1998 if (kvm_irqchip_in_kernel()) {
1999 kvm_arm_pmu_set_irq(cpu, VIRTUAL_PMU_IRQ);
2001 kvm_arm_pmu_init(cpu);
2003 if (steal_time) {
2004 kvm_arm_pvtime_init(cpu, pvtime_reg_base +
2005 cpu->cpu_index * PVTIME_SIZE_PER_CPU);
2008 } else {
2009 if (aarch64 && vms->highmem) {
2010 int requested_pa_size = 64 - clz64(vms->highest_gpa);
2011 int pamax = arm_pamax(ARM_CPU(first_cpu));
2013 if (pamax < requested_pa_size) {
2014 error_report("VCPU supports less PA bits (%d) than "
2015 "requested by the memory map (%d)",
2016 pamax, requested_pa_size);
2017 exit(1);
2023 static void machvirt_init(MachineState *machine)
2025 VirtMachineState *vms = VIRT_MACHINE(machine);
2026 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
2027 MachineClass *mc = MACHINE_GET_CLASS(machine);
2028 const CPUArchIdList *possible_cpus;
2029 MemoryRegion *sysmem = get_system_memory();
2030 MemoryRegion *secure_sysmem = NULL;
2031 MemoryRegion *tag_sysmem = NULL;
2032 MemoryRegion *secure_tag_sysmem = NULL;
2033 int n, virt_max_cpus;
2034 bool firmware_loaded;
2035 bool aarch64 = true;
2036 bool has_ged = !vmc->no_ged;
2037 unsigned int smp_cpus = machine->smp.cpus;
2038 unsigned int max_cpus = machine->smp.max_cpus;
2040 if (!cpu_type_valid(machine->cpu_type)) {
2041 error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
2042 exit(1);
2045 possible_cpus = mc->possible_cpu_arch_ids(machine);
2048 * In accelerated mode, the memory map is computed earlier in kvm_type()
2049 * to create a VM with the right number of IPA bits.
2051 if (!vms->memmap) {
2052 Object *cpuobj;
2053 ARMCPU *armcpu;
2054 int pa_bits;
2057 * Instantiate a temporary CPU object to find out about what
2058 * we are about to deal with. Once this is done, get rid of
2059 * the object.
2061 cpuobj = object_new(possible_cpus->cpus[0].type);
2062 armcpu = ARM_CPU(cpuobj);
2064 pa_bits = arm_pamax(armcpu);
2066 object_unref(cpuobj);
2068 virt_set_memmap(vms, pa_bits);
2071 /* We can probe only here because during property set
2072 * KVM is not available yet
2074 finalize_gic_version(vms);
2076 if (vms->secure) {
2078 * The Secure view of the world is the same as the NonSecure,
2079 * but with a few extra devices. Create it as a container region
2080 * containing the system memory at low priority; any secure-only
2081 * devices go in at higher priority and take precedence.
2083 secure_sysmem = g_new(MemoryRegion, 1);
2084 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
2085 UINT64_MAX);
2086 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
2089 firmware_loaded = virt_firmware_init(vms, sysmem,
2090 secure_sysmem ?: sysmem);
2092 /* If we have an EL3 boot ROM then the assumption is that it will
2093 * implement PSCI itself, so disable QEMU's internal implementation
2094 * so it doesn't get in the way. Instead of starting secondary
2095 * CPUs in PSCI powerdown state we will start them all running and
2096 * let the boot ROM sort them out.
2097 * The usual case is that we do use QEMU's PSCI implementation;
2098 * if the guest has EL2 then we will use SMC as the conduit,
2099 * and otherwise we will use HVC (for backwards compatibility and
2100 * because if we're using KVM then we must use HVC).
2102 if (vms->secure && firmware_loaded) {
2103 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
2104 } else if (vms->virt) {
2105 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
2106 } else {
2107 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
2111 * The maximum number of CPUs depends on the GIC version, or on how
2112 * many redistributors we can fit into the memory map (which in turn
2113 * depends on whether this is a GICv3 or v4).
2115 if (vms->gic_version == VIRT_GIC_VERSION_2) {
2116 virt_max_cpus = GIC_NCPU;
2117 } else {
2118 virt_max_cpus = virt_redist_capacity(vms, VIRT_GIC_REDIST);
2119 if (vms->highmem_redists) {
2120 virt_max_cpus += virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
2124 if (max_cpus > virt_max_cpus) {
2125 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
2126 "supported by machine 'mach-virt' (%d)",
2127 max_cpus, virt_max_cpus);
2128 if (vms->gic_version != VIRT_GIC_VERSION_2 && !vms->highmem_redists) {
2129 error_printf("Try 'highmem-redists=on' for more CPUs\n");
2132 exit(1);
2135 if (vms->secure && (kvm_enabled() || hvf_enabled())) {
2136 error_report("mach-virt: %s does not support providing "
2137 "Security extensions (TrustZone) to the guest CPU",
2138 current_accel_name());
2139 exit(1);
2142 if (vms->virt && (kvm_enabled() || hvf_enabled())) {
2143 error_report("mach-virt: %s does not support providing "
2144 "Virtualization extensions to the guest CPU",
2145 current_accel_name());
2146 exit(1);
2149 if (vms->mte && (kvm_enabled() || hvf_enabled())) {
2150 error_report("mach-virt: %s does not support providing "
2151 "MTE to the guest CPU",
2152 current_accel_name());
2153 exit(1);
2156 create_fdt(vms);
2158 assert(possible_cpus->len == max_cpus);
2159 for (n = 0; n < possible_cpus->len; n++) {
2160 Object *cpuobj;
2161 CPUState *cs;
2163 if (n >= smp_cpus) {
2164 break;
2167 cpuobj = object_new(possible_cpus->cpus[n].type);
2168 object_property_set_int(cpuobj, "mp-affinity",
2169 possible_cpus->cpus[n].arch_id, NULL);
2171 cs = CPU(cpuobj);
2172 cs->cpu_index = n;
2174 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
2175 &error_fatal);
2177 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
2179 if (!vms->secure) {
2180 object_property_set_bool(cpuobj, "has_el3", false, NULL);
2183 if (!vms->virt && object_property_find(cpuobj, "has_el2")) {
2184 object_property_set_bool(cpuobj, "has_el2", false, NULL);
2187 if (vmc->kvm_no_adjvtime &&
2188 object_property_find(cpuobj, "kvm-no-adjvtime")) {
2189 object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL);
2192 if (vmc->no_kvm_steal_time &&
2193 object_property_find(cpuobj, "kvm-steal-time")) {
2194 object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL);
2197 if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) {
2198 object_property_set_bool(cpuobj, "pmu", false, NULL);
2201 if (vmc->no_tcg_lpa2 && object_property_find(cpuobj, "lpa2")) {
2202 object_property_set_bool(cpuobj, "lpa2", false, NULL);
2205 if (object_property_find(cpuobj, "reset-cbar")) {
2206 object_property_set_int(cpuobj, "reset-cbar",
2207 vms->memmap[VIRT_CPUPERIPHS].base,
2208 &error_abort);
2211 object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
2212 &error_abort);
2213 if (vms->secure) {
2214 object_property_set_link(cpuobj, "secure-memory",
2215 OBJECT(secure_sysmem), &error_abort);
2218 if (vms->mte) {
2219 /* Create the memory region only once, but link to all cpus. */
2220 if (!tag_sysmem) {
2222 * The property exists only if MemTag is supported.
2223 * If it is, we must allocate the ram to back that up.
2225 if (!object_property_find(cpuobj, "tag-memory")) {
2226 error_report("MTE requested, but not supported "
2227 "by the guest CPU");
2228 exit(1);
2231 tag_sysmem = g_new(MemoryRegion, 1);
2232 memory_region_init(tag_sysmem, OBJECT(machine),
2233 "tag-memory", UINT64_MAX / 32);
2235 if (vms->secure) {
2236 secure_tag_sysmem = g_new(MemoryRegion, 1);
2237 memory_region_init(secure_tag_sysmem, OBJECT(machine),
2238 "secure-tag-memory", UINT64_MAX / 32);
2240 /* As with ram, secure-tag takes precedence over tag. */
2241 memory_region_add_subregion_overlap(secure_tag_sysmem, 0,
2242 tag_sysmem, -1);
2246 object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem),
2247 &error_abort);
2248 if (vms->secure) {
2249 object_property_set_link(cpuobj, "secure-tag-memory",
2250 OBJECT(secure_tag_sysmem),
2251 &error_abort);
2255 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
2256 object_unref(cpuobj);
2258 fdt_add_timer_nodes(vms);
2259 fdt_add_cpu_nodes(vms);
2261 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
2262 machine->ram);
2264 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
2266 create_gic(vms, sysmem);
2268 virt_cpu_post_init(vms, sysmem);
2270 fdt_add_pmu_nodes(vms);
2272 create_uart(vms, VIRT_UART, sysmem, serial_hd(0));
2274 if (vms->secure) {
2275 create_secure_ram(vms, secure_sysmem, secure_tag_sysmem);
2276 create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
2279 if (tag_sysmem) {
2280 create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base,
2281 machine->ram_size, "mach-virt.tag");
2284 vms->highmem_ecam &= (!firmware_loaded || aarch64);
2286 create_rtc(vms);
2288 create_pcie(vms);
2290 if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
2291 vms->acpi_dev = create_acpi_ged(vms);
2292 } else {
2293 create_gpio_devices(vms, VIRT_GPIO, sysmem);
2296 if (vms->secure && !vmc->no_secure_gpio) {
2297 create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem);
2300 /* connect powerdown request */
2301 vms->powerdown_notifier.notify = virt_powerdown_req;
2302 qemu_register_powerdown_notifier(&vms->powerdown_notifier);
2304 /* Create mmio transports, so the user can create virtio backends
2305 * (which will be automatically plugged in to the transports). If
2306 * no backend is created the transport will just sit harmlessly idle.
2308 create_virtio_devices(vms);
2310 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
2311 rom_set_fw(vms->fw_cfg);
2313 create_platform_bus(vms);
2315 if (machine->nvdimms_state->is_enabled) {
2316 const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
2317 .space_id = AML_AS_SYSTEM_MEMORY,
2318 .address = vms->memmap[VIRT_NVDIMM_ACPI].base,
2319 .bit_width = NVDIMM_ACPI_IO_LEN << 3
2322 nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
2323 arm_virt_nvdimm_acpi_dsmio,
2324 vms->fw_cfg, OBJECT(vms));
2327 vms->bootinfo.ram_size = machine->ram_size;
2328 vms->bootinfo.board_id = -1;
2329 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
2330 vms->bootinfo.get_dtb = machvirt_dtb;
2331 vms->bootinfo.skip_dtb_autoload = true;
2332 vms->bootinfo.firmware_loaded = firmware_loaded;
2333 vms->bootinfo.psci_conduit = vms->psci_conduit;
2334 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
2336 vms->machine_done.notify = virt_machine_done;
2337 qemu_add_machine_init_done_notifier(&vms->machine_done);
2340 static bool virt_get_secure(Object *obj, Error **errp)
2342 VirtMachineState *vms = VIRT_MACHINE(obj);
2344 return vms->secure;
2347 static void virt_set_secure(Object *obj, bool value, Error **errp)
2349 VirtMachineState *vms = VIRT_MACHINE(obj);
2351 vms->secure = value;
2354 static bool virt_get_virt(Object *obj, Error **errp)
2356 VirtMachineState *vms = VIRT_MACHINE(obj);
2358 return vms->virt;
2361 static void virt_set_virt(Object *obj, bool value, Error **errp)
2363 VirtMachineState *vms = VIRT_MACHINE(obj);
2365 vms->virt = value;
2368 static bool virt_get_highmem(Object *obj, Error **errp)
2370 VirtMachineState *vms = VIRT_MACHINE(obj);
2372 return vms->highmem;
2375 static void virt_set_highmem(Object *obj, bool value, Error **errp)
2377 VirtMachineState *vms = VIRT_MACHINE(obj);
2379 vms->highmem = value;
2382 static bool virt_get_compact_highmem(Object *obj, Error **errp)
2384 VirtMachineState *vms = VIRT_MACHINE(obj);
2386 return vms->highmem_compact;
2389 static void virt_set_compact_highmem(Object *obj, bool value, Error **errp)
2391 VirtMachineState *vms = VIRT_MACHINE(obj);
2393 vms->highmem_compact = value;
2396 static bool virt_get_highmem_redists(Object *obj, Error **errp)
2398 VirtMachineState *vms = VIRT_MACHINE(obj);
2400 return vms->highmem_redists;
2403 static void virt_set_highmem_redists(Object *obj, bool value, Error **errp)
2405 VirtMachineState *vms = VIRT_MACHINE(obj);
2407 vms->highmem_redists = value;
2410 static bool virt_get_highmem_ecam(Object *obj, Error **errp)
2412 VirtMachineState *vms = VIRT_MACHINE(obj);
2414 return vms->highmem_ecam;
2417 static void virt_set_highmem_ecam(Object *obj, bool value, Error **errp)
2419 VirtMachineState *vms = VIRT_MACHINE(obj);
2421 vms->highmem_ecam = value;
2424 static bool virt_get_highmem_mmio(Object *obj, Error **errp)
2426 VirtMachineState *vms = VIRT_MACHINE(obj);
2428 return vms->highmem_mmio;
2431 static void virt_set_highmem_mmio(Object *obj, bool value, Error **errp)
2433 VirtMachineState *vms = VIRT_MACHINE(obj);
2435 vms->highmem_mmio = value;
2439 static bool virt_get_its(Object *obj, Error **errp)
2441 VirtMachineState *vms = VIRT_MACHINE(obj);
2443 return vms->its;
2446 static void virt_set_its(Object *obj, bool value, Error **errp)
2448 VirtMachineState *vms = VIRT_MACHINE(obj);
2450 vms->its = value;
2453 static bool virt_get_dtb_randomness(Object *obj, Error **errp)
2455 VirtMachineState *vms = VIRT_MACHINE(obj);
2457 return vms->dtb_randomness;
2460 static void virt_set_dtb_randomness(Object *obj, bool value, Error **errp)
2462 VirtMachineState *vms = VIRT_MACHINE(obj);
2464 vms->dtb_randomness = value;
2467 static char *virt_get_oem_id(Object *obj, Error **errp)
2469 VirtMachineState *vms = VIRT_MACHINE(obj);
2471 return g_strdup(vms->oem_id);
2474 static void virt_set_oem_id(Object *obj, const char *value, Error **errp)
2476 VirtMachineState *vms = VIRT_MACHINE(obj);
2477 size_t len = strlen(value);
2479 if (len > 6) {
2480 error_setg(errp,
2481 "User specified oem-id value is bigger than 6 bytes in size");
2482 return;
2485 strncpy(vms->oem_id, value, 6);
2488 static char *virt_get_oem_table_id(Object *obj, Error **errp)
2490 VirtMachineState *vms = VIRT_MACHINE(obj);
2492 return g_strdup(vms->oem_table_id);
2495 static void virt_set_oem_table_id(Object *obj, const char *value,
2496 Error **errp)
2498 VirtMachineState *vms = VIRT_MACHINE(obj);
2499 size_t len = strlen(value);
2501 if (len > 8) {
2502 error_setg(errp,
2503 "User specified oem-table-id value is bigger than 8 bytes in size");
2504 return;
2506 strncpy(vms->oem_table_id, value, 8);
2510 bool virt_is_acpi_enabled(VirtMachineState *vms)
2512 if (vms->acpi == ON_OFF_AUTO_OFF) {
2513 return false;
2515 return true;
2518 static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
2519 void *opaque, Error **errp)
2521 VirtMachineState *vms = VIRT_MACHINE(obj);
2522 OnOffAuto acpi = vms->acpi;
2524 visit_type_OnOffAuto(v, name, &acpi, errp);
2527 static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
2528 void *opaque, Error **errp)
2530 VirtMachineState *vms = VIRT_MACHINE(obj);
2532 visit_type_OnOffAuto(v, name, &vms->acpi, errp);
2535 static bool virt_get_ras(Object *obj, Error **errp)
2537 VirtMachineState *vms = VIRT_MACHINE(obj);
2539 return vms->ras;
2542 static void virt_set_ras(Object *obj, bool value, Error **errp)
2544 VirtMachineState *vms = VIRT_MACHINE(obj);
2546 vms->ras = value;
2549 static bool virt_get_mte(Object *obj, Error **errp)
2551 VirtMachineState *vms = VIRT_MACHINE(obj);
2553 return vms->mte;
2556 static void virt_set_mte(Object *obj, bool value, Error **errp)
2558 VirtMachineState *vms = VIRT_MACHINE(obj);
2560 vms->mte = value;
2563 static char *virt_get_gic_version(Object *obj, Error **errp)
2565 VirtMachineState *vms = VIRT_MACHINE(obj);
2566 const char *val;
2568 switch (vms->gic_version) {
2569 case VIRT_GIC_VERSION_4:
2570 val = "4";
2571 break;
2572 case VIRT_GIC_VERSION_3:
2573 val = "3";
2574 break;
2575 default:
2576 val = "2";
2577 break;
2579 return g_strdup(val);
2582 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
2584 VirtMachineState *vms = VIRT_MACHINE(obj);
2586 if (!strcmp(value, "4")) {
2587 vms->gic_version = VIRT_GIC_VERSION_4;
2588 } else if (!strcmp(value, "3")) {
2589 vms->gic_version = VIRT_GIC_VERSION_3;
2590 } else if (!strcmp(value, "2")) {
2591 vms->gic_version = VIRT_GIC_VERSION_2;
2592 } else if (!strcmp(value, "host")) {
2593 vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
2594 } else if (!strcmp(value, "max")) {
2595 vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
2596 } else {
2597 error_setg(errp, "Invalid gic-version value");
2598 error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
2602 static char *virt_get_iommu(Object *obj, Error **errp)
2604 VirtMachineState *vms = VIRT_MACHINE(obj);
2606 switch (vms->iommu) {
2607 case VIRT_IOMMU_NONE:
2608 return g_strdup("none");
2609 case VIRT_IOMMU_SMMUV3:
2610 return g_strdup("smmuv3");
2611 default:
2612 g_assert_not_reached();
2616 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
2618 VirtMachineState *vms = VIRT_MACHINE(obj);
2620 if (!strcmp(value, "smmuv3")) {
2621 vms->iommu = VIRT_IOMMU_SMMUV3;
2622 } else if (!strcmp(value, "none")) {
2623 vms->iommu = VIRT_IOMMU_NONE;
2624 } else {
2625 error_setg(errp, "Invalid iommu value");
2626 error_append_hint(errp, "Valid values are none, smmuv3.\n");
2630 static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp)
2632 VirtMachineState *vms = VIRT_MACHINE(obj);
2634 return vms->default_bus_bypass_iommu;
2637 static void virt_set_default_bus_bypass_iommu(Object *obj, bool value,
2638 Error **errp)
2640 VirtMachineState *vms = VIRT_MACHINE(obj);
2642 vms->default_bus_bypass_iommu = value;
2645 static CpuInstanceProperties
2646 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2648 MachineClass *mc = MACHINE_GET_CLASS(ms);
2649 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2651 assert(cpu_index < possible_cpus->len);
2652 return possible_cpus->cpus[cpu_index].props;
2655 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
2657 int64_t socket_id = ms->possible_cpus->cpus[idx].props.socket_id;
2659 return socket_id % ms->numa_state->num_nodes;
2662 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
2664 int n;
2665 unsigned int max_cpus = ms->smp.max_cpus;
2666 VirtMachineState *vms = VIRT_MACHINE(ms);
2667 MachineClass *mc = MACHINE_GET_CLASS(vms);
2669 if (ms->possible_cpus) {
2670 assert(ms->possible_cpus->len == max_cpus);
2671 return ms->possible_cpus;
2674 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2675 sizeof(CPUArchId) * max_cpus);
2676 ms->possible_cpus->len = max_cpus;
2677 for (n = 0; n < ms->possible_cpus->len; n++) {
2678 ms->possible_cpus->cpus[n].type = ms->cpu_type;
2679 ms->possible_cpus->cpus[n].arch_id =
2680 virt_cpu_mp_affinity(vms, n);
2682 assert(!mc->smp_props.dies_supported);
2683 ms->possible_cpus->cpus[n].props.has_socket_id = true;
2684 ms->possible_cpus->cpus[n].props.socket_id =
2685 n / (ms->smp.clusters * ms->smp.cores * ms->smp.threads);
2686 ms->possible_cpus->cpus[n].props.has_cluster_id = true;
2687 ms->possible_cpus->cpus[n].props.cluster_id =
2688 (n / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters;
2689 ms->possible_cpus->cpus[n].props.has_core_id = true;
2690 ms->possible_cpus->cpus[n].props.core_id =
2691 (n / ms->smp.threads) % ms->smp.cores;
2692 ms->possible_cpus->cpus[n].props.has_thread_id = true;
2693 ms->possible_cpus->cpus[n].props.thread_id =
2694 n % ms->smp.threads;
2696 return ms->possible_cpus;
2699 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2700 Error **errp)
2702 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2703 const MachineState *ms = MACHINE(hotplug_dev);
2704 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2706 if (!vms->acpi_dev) {
2707 error_setg(errp,
2708 "memory hotplug is not enabled: missing acpi-ged device");
2709 return;
2712 if (vms->mte) {
2713 error_setg(errp, "memory hotplug is not enabled: MTE is enabled");
2714 return;
2717 if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2718 error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
2719 return;
2722 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp);
2725 static void virt_memory_plug(HotplugHandler *hotplug_dev,
2726 DeviceState *dev, Error **errp)
2728 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2729 MachineState *ms = MACHINE(hotplug_dev);
2730 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2732 pc_dimm_plug(PC_DIMM(dev), MACHINE(vms));
2734 if (is_nvdimm) {
2735 nvdimm_plug(ms->nvdimms_state);
2738 hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
2739 dev, &error_abort);
2742 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2743 DeviceState *dev, Error **errp)
2745 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2747 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2748 virt_memory_pre_plug(hotplug_dev, dev, errp);
2749 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2750 virtio_md_pci_pre_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2751 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2752 hwaddr db_start = 0, db_end = 0;
2753 QList *reserved_regions;
2754 char *resv_prop_str;
2756 if (vms->iommu != VIRT_IOMMU_NONE) {
2757 error_setg(errp, "virt machine does not support multiple IOMMUs");
2758 return;
2761 switch (vms->msi_controller) {
2762 case VIRT_MSI_CTRL_NONE:
2763 return;
2764 case VIRT_MSI_CTRL_ITS:
2765 /* GITS_TRANSLATER page */
2766 db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000;
2767 db_end = base_memmap[VIRT_GIC_ITS].base +
2768 base_memmap[VIRT_GIC_ITS].size - 1;
2769 break;
2770 case VIRT_MSI_CTRL_GICV2M:
2771 /* MSI_SETSPI_NS page */
2772 db_start = base_memmap[VIRT_GIC_V2M].base;
2773 db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1;
2774 break;
2776 resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u",
2777 db_start, db_end,
2778 VIRTIO_IOMMU_RESV_MEM_T_MSI);
2780 reserved_regions = qlist_new();
2781 qlist_append_str(reserved_regions, resv_prop_str);
2782 qdev_prop_set_array(dev, "reserved-regions", reserved_regions);
2783 g_free(resv_prop_str);
2787 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2788 DeviceState *dev, Error **errp)
2790 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2792 if (vms->platform_bus_dev) {
2793 MachineClass *mc = MACHINE_GET_CLASS(vms);
2795 if (device_is_dynamic_sysbus(mc, dev)) {
2796 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
2797 SYS_BUS_DEVICE(dev));
2801 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2802 virt_memory_plug(hotplug_dev, dev, errp);
2803 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2804 virtio_md_pci_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2807 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2808 PCIDevice *pdev = PCI_DEVICE(dev);
2810 vms->iommu = VIRT_IOMMU_VIRTIO;
2811 vms->virtio_iommu_bdf = pci_get_bdf(pdev);
2812 create_virtio_iommu_dt_bindings(vms);
2816 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev,
2817 DeviceState *dev, Error **errp)
2819 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2821 if (!vms->acpi_dev) {
2822 error_setg(errp,
2823 "memory hotplug is not enabled: missing acpi-ged device");
2824 return;
2827 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2828 error_setg(errp, "nvdimm device hot unplug is not supported yet.");
2829 return;
2832 hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev,
2833 errp);
2836 static void virt_dimm_unplug(HotplugHandler *hotplug_dev,
2837 DeviceState *dev, Error **errp)
2839 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2840 Error *local_err = NULL;
2842 hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err);
2843 if (local_err) {
2844 goto out;
2847 pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms));
2848 qdev_unrealize(dev);
2850 out:
2851 error_propagate(errp, local_err);
2854 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2855 DeviceState *dev, Error **errp)
2857 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2858 virt_dimm_unplug_request(hotplug_dev, dev, errp);
2859 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2860 virtio_md_pci_unplug_request(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev),
2861 errp);
2862 } else {
2863 error_setg(errp, "device unplug request for unsupported device"
2864 " type: %s", object_get_typename(OBJECT(dev)));
2868 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2869 DeviceState *dev, Error **errp)
2871 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2872 virt_dimm_unplug(hotplug_dev, dev, errp);
2873 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2874 virtio_md_pci_unplug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2875 } else {
2876 error_setg(errp, "virt: device unplug for unsupported device"
2877 " type: %s", object_get_typename(OBJECT(dev)));
2881 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
2882 DeviceState *dev)
2884 MachineClass *mc = MACHINE_GET_CLASS(machine);
2886 if (device_is_dynamic_sysbus(mc, dev) ||
2887 object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2888 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI) ||
2889 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2890 return HOTPLUG_HANDLER(machine);
2892 return NULL;
2896 * for arm64 kvm_type [7-0] encodes the requested number of bits
2897 * in the IPA address space
2899 static int virt_kvm_type(MachineState *ms, const char *type_str)
2901 VirtMachineState *vms = VIRT_MACHINE(ms);
2902 int max_vm_pa_size, requested_pa_size;
2903 bool fixed_ipa;
2905 max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
2907 /* we freeze the memory map to compute the highest gpa */
2908 virt_set_memmap(vms, max_vm_pa_size);
2910 requested_pa_size = 64 - clz64(vms->highest_gpa);
2913 * KVM requires the IPA size to be at least 32 bits.
2915 if (requested_pa_size < 32) {
2916 requested_pa_size = 32;
2919 if (requested_pa_size > max_vm_pa_size) {
2920 error_report("-m and ,maxmem option values "
2921 "require an IPA range (%d bits) larger than "
2922 "the one supported by the host (%d bits)",
2923 requested_pa_size, max_vm_pa_size);
2924 return -1;
2927 * We return the requested PA log size, unless KVM only supports
2928 * the implicit legacy 40b IPA setting, in which case the kvm_type
2929 * must be 0.
2931 return fixed_ipa ? 0 : requested_pa_size;
2934 static void virt_machine_class_init(ObjectClass *oc, void *data)
2936 MachineClass *mc = MACHINE_CLASS(oc);
2937 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2939 mc->init = machvirt_init;
2940 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
2941 * The value may be reduced later when we have more information about the
2942 * configuration of the particular instance.
2944 mc->max_cpus = 512;
2945 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
2946 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
2947 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
2948 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
2949 #ifdef CONFIG_TPM
2950 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
2951 #endif
2952 mc->block_default_type = IF_VIRTIO;
2953 mc->no_cdrom = 1;
2954 mc->pci_allow_0_address = true;
2955 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
2956 mc->minimum_page_bits = 12;
2957 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
2958 mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
2959 #ifdef CONFIG_TCG
2960 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
2961 #else
2962 mc->default_cpu_type = ARM_CPU_TYPE_NAME("max");
2963 #endif
2964 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
2965 mc->kvm_type = virt_kvm_type;
2966 assert(!mc->get_hotplug_handler);
2967 mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
2968 hc->pre_plug = virt_machine_device_pre_plug_cb;
2969 hc->plug = virt_machine_device_plug_cb;
2970 hc->unplug_request = virt_machine_device_unplug_request_cb;
2971 hc->unplug = virt_machine_device_unplug_cb;
2972 mc->nvdimm_supported = true;
2973 mc->smp_props.clusters_supported = true;
2974 mc->auto_enable_numa_with_memhp = true;
2975 mc->auto_enable_numa_with_memdev = true;
2976 /* platform instead of architectural choice */
2977 mc->cpu_cluster_has_numa_boundary = true;
2978 mc->default_ram_id = "mach-virt.ram";
2979 mc->default_nic = "virtio-net-pci";
2981 object_class_property_add(oc, "acpi", "OnOffAuto",
2982 virt_get_acpi, virt_set_acpi,
2983 NULL, NULL);
2984 object_class_property_set_description(oc, "acpi",
2985 "Enable ACPI");
2986 object_class_property_add_bool(oc, "secure", virt_get_secure,
2987 virt_set_secure);
2988 object_class_property_set_description(oc, "secure",
2989 "Set on/off to enable/disable the ARM "
2990 "Security Extensions (TrustZone)");
2992 object_class_property_add_bool(oc, "virtualization", virt_get_virt,
2993 virt_set_virt);
2994 object_class_property_set_description(oc, "virtualization",
2995 "Set on/off to enable/disable emulating a "
2996 "guest CPU which implements the ARM "
2997 "Virtualization Extensions");
2999 object_class_property_add_bool(oc, "highmem", virt_get_highmem,
3000 virt_set_highmem);
3001 object_class_property_set_description(oc, "highmem",
3002 "Set on/off to enable/disable using "
3003 "physical address space above 32 bits");
3005 object_class_property_add_bool(oc, "compact-highmem",
3006 virt_get_compact_highmem,
3007 virt_set_compact_highmem);
3008 object_class_property_set_description(oc, "compact-highmem",
3009 "Set on/off to enable/disable compact "
3010 "layout for high memory regions");
3012 object_class_property_add_bool(oc, "highmem-redists",
3013 virt_get_highmem_redists,
3014 virt_set_highmem_redists);
3015 object_class_property_set_description(oc, "highmem-redists",
3016 "Set on/off to enable/disable high "
3017 "memory region for GICv3 or GICv4 "
3018 "redistributor");
3020 object_class_property_add_bool(oc, "highmem-ecam",
3021 virt_get_highmem_ecam,
3022 virt_set_highmem_ecam);
3023 object_class_property_set_description(oc, "highmem-ecam",
3024 "Set on/off to enable/disable high "
3025 "memory region for PCI ECAM");
3027 object_class_property_add_bool(oc, "highmem-mmio",
3028 virt_get_highmem_mmio,
3029 virt_set_highmem_mmio);
3030 object_class_property_set_description(oc, "highmem-mmio",
3031 "Set on/off to enable/disable high "
3032 "memory region for PCI MMIO");
3034 object_class_property_add_str(oc, "gic-version", virt_get_gic_version,
3035 virt_set_gic_version);
3036 object_class_property_set_description(oc, "gic-version",
3037 "Set GIC version. "
3038 "Valid values are 2, 3, 4, host and max");
3040 object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu);
3041 object_class_property_set_description(oc, "iommu",
3042 "Set the IOMMU type. "
3043 "Valid values are none and smmuv3");
3045 object_class_property_add_bool(oc, "default-bus-bypass-iommu",
3046 virt_get_default_bus_bypass_iommu,
3047 virt_set_default_bus_bypass_iommu);
3048 object_class_property_set_description(oc, "default-bus-bypass-iommu",
3049 "Set on/off to enable/disable "
3050 "bypass_iommu for default root bus");
3052 object_class_property_add_bool(oc, "ras", virt_get_ras,
3053 virt_set_ras);
3054 object_class_property_set_description(oc, "ras",
3055 "Set on/off to enable/disable reporting host memory errors "
3056 "to a KVM guest using ACPI and guest external abort exceptions");
3058 object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte);
3059 object_class_property_set_description(oc, "mte",
3060 "Set on/off to enable/disable emulating a "
3061 "guest CPU which implements the ARM "
3062 "Memory Tagging Extension");
3064 object_class_property_add_bool(oc, "its", virt_get_its,
3065 virt_set_its);
3066 object_class_property_set_description(oc, "its",
3067 "Set on/off to enable/disable "
3068 "ITS instantiation");
3070 object_class_property_add_bool(oc, "dtb-randomness",
3071 virt_get_dtb_randomness,
3072 virt_set_dtb_randomness);
3073 object_class_property_set_description(oc, "dtb-randomness",
3074 "Set off to disable passing random or "
3075 "non-deterministic dtb nodes to guest");
3077 object_class_property_add_bool(oc, "dtb-kaslr-seed",
3078 virt_get_dtb_randomness,
3079 virt_set_dtb_randomness);
3080 object_class_property_set_description(oc, "dtb-kaslr-seed",
3081 "Deprecated synonym of dtb-randomness");
3083 object_class_property_add_str(oc, "x-oem-id",
3084 virt_get_oem_id,
3085 virt_set_oem_id);
3086 object_class_property_set_description(oc, "x-oem-id",
3087 "Override the default value of field OEMID "
3088 "in ACPI table header."
3089 "The string may be up to 6 bytes in size");
3092 object_class_property_add_str(oc, "x-oem-table-id",
3093 virt_get_oem_table_id,
3094 virt_set_oem_table_id);
3095 object_class_property_set_description(oc, "x-oem-table-id",
3096 "Override the default value of field OEM Table ID "
3097 "in ACPI table header."
3098 "The string may be up to 8 bytes in size");
3102 static void virt_instance_init(Object *obj)
3104 VirtMachineState *vms = VIRT_MACHINE(obj);
3105 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
3107 /* EL3 is disabled by default on virt: this makes us consistent
3108 * between KVM and TCG for this board, and it also allows us to
3109 * boot UEFI blobs which assume no TrustZone support.
3111 vms->secure = false;
3113 /* EL2 is also disabled by default, for similar reasons */
3114 vms->virt = false;
3116 /* High memory is enabled by default */
3117 vms->highmem = true;
3118 vms->highmem_compact = !vmc->no_highmem_compact;
3119 vms->gic_version = VIRT_GIC_VERSION_NOSEL;
3121 vms->highmem_ecam = !vmc->no_highmem_ecam;
3122 vms->highmem_mmio = true;
3123 vms->highmem_redists = true;
3125 if (vmc->no_its) {
3126 vms->its = false;
3127 } else {
3128 /* Default allows ITS instantiation */
3129 vms->its = true;
3131 if (vmc->no_tcg_its) {
3132 vms->tcg_its = false;
3133 } else {
3134 vms->tcg_its = true;
3138 /* Default disallows iommu instantiation */
3139 vms->iommu = VIRT_IOMMU_NONE;
3141 /* The default root bus is attached to iommu by default */
3142 vms->default_bus_bypass_iommu = false;
3144 /* Default disallows RAS instantiation */
3145 vms->ras = false;
3147 /* MTE is disabled by default. */
3148 vms->mte = false;
3150 /* Supply kaslr-seed and rng-seed by default */
3151 vms->dtb_randomness = true;
3153 vms->irqmap = a15irqmap;
3155 virt_flash_create(vms);
3157 vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
3158 vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
3161 static const TypeInfo virt_machine_info = {
3162 .name = TYPE_VIRT_MACHINE,
3163 .parent = TYPE_MACHINE,
3164 .abstract = true,
3165 .instance_size = sizeof(VirtMachineState),
3166 .class_size = sizeof(VirtMachineClass),
3167 .class_init = virt_machine_class_init,
3168 .instance_init = virt_instance_init,
3169 .interfaces = (InterfaceInfo[]) {
3170 { TYPE_HOTPLUG_HANDLER },
3175 static void machvirt_machine_init(void)
3177 type_register_static(&virt_machine_info);
3179 type_init(machvirt_machine_init);
3181 static void virt_machine_8_2_options(MachineClass *mc)
3184 DEFINE_VIRT_MACHINE_AS_LATEST(8, 2)
3186 static void virt_machine_8_1_options(MachineClass *mc)
3188 virt_machine_8_2_options(mc);
3189 compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len);
3191 DEFINE_VIRT_MACHINE(8, 1)
3193 static void virt_machine_8_0_options(MachineClass *mc)
3195 virt_machine_8_1_options(mc);
3196 compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len);
3198 DEFINE_VIRT_MACHINE(8, 0)
3200 static void virt_machine_7_2_options(MachineClass *mc)
3202 virt_machine_8_0_options(mc);
3203 compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len);
3205 DEFINE_VIRT_MACHINE(7, 2)
3207 static void virt_machine_7_1_options(MachineClass *mc)
3209 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3211 virt_machine_7_2_options(mc);
3212 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
3213 /* Compact layout for high memory regions was introduced with 7.2 */
3214 vmc->no_highmem_compact = true;
3216 DEFINE_VIRT_MACHINE(7, 1)
3218 static void virt_machine_7_0_options(MachineClass *mc)
3220 virt_machine_7_1_options(mc);
3221 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
3223 DEFINE_VIRT_MACHINE(7, 0)
3225 static void virt_machine_6_2_options(MachineClass *mc)
3227 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3229 virt_machine_7_0_options(mc);
3230 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
3231 vmc->no_tcg_lpa2 = true;
3233 DEFINE_VIRT_MACHINE(6, 2)
3235 static void virt_machine_6_1_options(MachineClass *mc)
3237 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3239 virt_machine_6_2_options(mc);
3240 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
3241 mc->smp_props.prefer_sockets = true;
3242 vmc->no_cpu_topology = true;
3244 /* qemu ITS was introduced with 6.2 */
3245 vmc->no_tcg_its = true;
3247 DEFINE_VIRT_MACHINE(6, 1)
3249 static void virt_machine_6_0_options(MachineClass *mc)
3251 virt_machine_6_1_options(mc);
3252 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
3254 DEFINE_VIRT_MACHINE(6, 0)
3256 static void virt_machine_5_2_options(MachineClass *mc)
3258 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3260 virt_machine_6_0_options(mc);
3261 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
3262 vmc->no_secure_gpio = true;
3264 DEFINE_VIRT_MACHINE(5, 2)
3266 static void virt_machine_5_1_options(MachineClass *mc)
3268 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3270 virt_machine_5_2_options(mc);
3271 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
3272 vmc->no_kvm_steal_time = true;
3274 DEFINE_VIRT_MACHINE(5, 1)
3276 static void virt_machine_5_0_options(MachineClass *mc)
3278 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3280 virt_machine_5_1_options(mc);
3281 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
3282 mc->numa_mem_supported = true;
3283 vmc->acpi_expose_flash = true;
3284 mc->auto_enable_numa_with_memdev = false;
3286 DEFINE_VIRT_MACHINE(5, 0)
3288 static void virt_machine_4_2_options(MachineClass *mc)
3290 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3292 virt_machine_5_0_options(mc);
3293 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
3294 vmc->kvm_no_adjvtime = true;
3296 DEFINE_VIRT_MACHINE(4, 2)
3298 static void virt_machine_4_1_options(MachineClass *mc)
3300 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3302 virt_machine_4_2_options(mc);
3303 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
3304 vmc->no_ged = true;
3305 mc->auto_enable_numa_with_memhp = false;
3307 DEFINE_VIRT_MACHINE(4, 1)
3309 static void virt_machine_4_0_options(MachineClass *mc)
3311 virt_machine_4_1_options(mc);
3312 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
3314 DEFINE_VIRT_MACHINE(4, 0)
3316 static void virt_machine_3_1_options(MachineClass *mc)
3318 virt_machine_4_0_options(mc);
3319 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
3321 DEFINE_VIRT_MACHINE(3, 1)
3323 static void virt_machine_3_0_options(MachineClass *mc)
3325 virt_machine_3_1_options(mc);
3326 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
3328 DEFINE_VIRT_MACHINE(3, 0)
3330 static void virt_machine_2_12_options(MachineClass *mc)
3332 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3334 virt_machine_3_0_options(mc);
3335 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
3336 vmc->no_highmem_ecam = true;
3337 mc->max_cpus = 255;
3339 DEFINE_VIRT_MACHINE(2, 12)
3341 static void virt_machine_2_11_options(MachineClass *mc)
3343 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3345 virt_machine_2_12_options(mc);
3346 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
3347 vmc->smbios_old_sys_ver = true;
3349 DEFINE_VIRT_MACHINE(2, 11)
3351 static void virt_machine_2_10_options(MachineClass *mc)
3353 virt_machine_2_11_options(mc);
3354 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
3355 /* before 2.11 we never faulted accesses to bad addresses */
3356 mc->ignore_memory_transaction_failures = true;
3358 DEFINE_VIRT_MACHINE(2, 10)
3360 static void virt_machine_2_9_options(MachineClass *mc)
3362 virt_machine_2_10_options(mc);
3363 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
3365 DEFINE_VIRT_MACHINE(2, 9)
3367 static void virt_machine_2_8_options(MachineClass *mc)
3369 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3371 virt_machine_2_9_options(mc);
3372 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
3373 /* For 2.8 and earlier we falsely claimed in the DT that
3374 * our timers were edge-triggered, not level-triggered.
3376 vmc->claim_edge_triggered_timers = true;
3378 DEFINE_VIRT_MACHINE(2, 8)
3380 static void virt_machine_2_7_options(MachineClass *mc)
3382 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3384 virt_machine_2_8_options(mc);
3385 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
3386 /* ITS was introduced with 2.8 */
3387 vmc->no_its = true;
3388 /* Stick with 1K pages for migration compatibility */
3389 mc->minimum_page_bits = 0;
3391 DEFINE_VIRT_MACHINE(2, 7)
3393 static void virt_machine_2_6_options(MachineClass *mc)
3395 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3397 virt_machine_2_7_options(mc);
3398 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
3399 vmc->disallow_affinity_adjustment = true;
3400 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
3401 vmc->no_pmu = true;
3403 DEFINE_VIRT_MACHINE(2, 6)