1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
5 #include <sys/resource.h>
8 #include "disas/disas.h"
21 #define ELF_OSABI ELFOSABI_SYSV
23 /* from personality.h */
26 * Flags for bug emulation.
28 * These occupy the top three bytes.
31 ADDR_NO_RANDOMIZE
= 0x0040000, /* disable randomization of VA space */
32 FDPIC_FUNCPTRS
= 0x0080000, /* userspace function ptrs point to
33 descriptors (signal handling) */
34 MMAP_PAGE_ZERO
= 0x0100000,
35 ADDR_COMPAT_LAYOUT
= 0x0200000,
36 READ_IMPLIES_EXEC
= 0x0400000,
37 ADDR_LIMIT_32BIT
= 0x0800000,
38 SHORT_INODE
= 0x1000000,
39 WHOLE_SECONDS
= 0x2000000,
40 STICKY_TIMEOUTS
= 0x4000000,
41 ADDR_LIMIT_3GB
= 0x8000000,
47 * These go in the low byte. Avoid using the top bit, it will
48 * conflict with error returns.
52 PER_LINUX_32BIT
= 0x0000 | ADDR_LIMIT_32BIT
,
53 PER_LINUX_FDPIC
= 0x0000 | FDPIC_FUNCPTRS
,
54 PER_SVR4
= 0x0001 | STICKY_TIMEOUTS
| MMAP_PAGE_ZERO
,
55 PER_SVR3
= 0x0002 | STICKY_TIMEOUTS
| SHORT_INODE
,
56 PER_SCOSVR3
= 0x0003 | STICKY_TIMEOUTS
| WHOLE_SECONDS
| SHORT_INODE
,
57 PER_OSR5
= 0x0003 | STICKY_TIMEOUTS
| WHOLE_SECONDS
,
58 PER_WYSEV386
= 0x0004 | STICKY_TIMEOUTS
| SHORT_INODE
,
59 PER_ISCR4
= 0x0005 | STICKY_TIMEOUTS
,
61 PER_SUNOS
= 0x0006 | STICKY_TIMEOUTS
,
62 PER_XENIX
= 0x0007 | STICKY_TIMEOUTS
| SHORT_INODE
,
64 PER_LINUX32_3GB
= 0x0008 | ADDR_LIMIT_3GB
,
65 PER_IRIX32
= 0x0009 | STICKY_TIMEOUTS
,/* IRIX5 32-bit */
66 PER_IRIXN32
= 0x000a | STICKY_TIMEOUTS
,/* IRIX6 new 32-bit */
67 PER_IRIX64
= 0x000b | STICKY_TIMEOUTS
,/* IRIX6 64-bit */
69 PER_SOLARIS
= 0x000d | STICKY_TIMEOUTS
,
70 PER_UW7
= 0x000e | STICKY_TIMEOUTS
| MMAP_PAGE_ZERO
,
71 PER_OSF4
= 0x000f, /* OSF/1 v4 */
77 * Return the base personality without flags.
79 #define personality(pers) (pers & PER_MASK)
81 int info_is_fdpic(struct image_info
*info
)
83 return info
->personality
== PER_LINUX_FDPIC
;
86 /* this flag is uneffective under linux too, should be deleted */
88 #define MAP_DENYWRITE 0
91 /* should probably go in elf.h */
96 #ifdef TARGET_WORDS_BIGENDIAN
97 #define ELF_DATA ELFDATA2MSB
99 #define ELF_DATA ELFDATA2LSB
102 #ifdef TARGET_ABI_MIPSN32
103 typedef abi_ullong target_elf_greg_t
;
104 #define tswapreg(ptr) tswap64(ptr)
106 typedef abi_ulong target_elf_greg_t
;
107 #define tswapreg(ptr) tswapal(ptr)
111 typedef abi_ushort target_uid_t
;
112 typedef abi_ushort target_gid_t
;
114 typedef abi_uint target_uid_t
;
115 typedef abi_uint target_gid_t
;
117 typedef abi_int target_pid_t
;
121 #define ELF_PLATFORM get_elf_platform()
123 static const char *get_elf_platform(void)
125 static char elf_platform
[] = "i386";
126 int family
= object_property_get_int(OBJECT(thread_cpu
), "family", NULL
);
130 elf_platform
[1] = '0' + family
;
134 #define ELF_HWCAP get_elf_hwcap()
136 static uint32_t get_elf_hwcap(void)
138 X86CPU
*cpu
= X86_CPU(thread_cpu
);
140 return cpu
->env
.features
[FEAT_1_EDX
];
144 #define ELF_START_MMAP 0x2aaaaab000ULL
146 #define ELF_CLASS ELFCLASS64
147 #define ELF_ARCH EM_X86_64
149 static inline void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
152 regs
->rsp
= infop
->start_stack
;
153 regs
->rip
= infop
->entry
;
157 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
160 * Note that ELF_NREG should be 29 as there should be place for
161 * TRAPNO and ERR "registers" as well but linux doesn't dump
164 * See linux kernel: arch/x86/include/asm/elf.h
166 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUX86State
*env
)
168 (*regs
)[0] = env
->regs
[15];
169 (*regs
)[1] = env
->regs
[14];
170 (*regs
)[2] = env
->regs
[13];
171 (*regs
)[3] = env
->regs
[12];
172 (*regs
)[4] = env
->regs
[R_EBP
];
173 (*regs
)[5] = env
->regs
[R_EBX
];
174 (*regs
)[6] = env
->regs
[11];
175 (*regs
)[7] = env
->regs
[10];
176 (*regs
)[8] = env
->regs
[9];
177 (*regs
)[9] = env
->regs
[8];
178 (*regs
)[10] = env
->regs
[R_EAX
];
179 (*regs
)[11] = env
->regs
[R_ECX
];
180 (*regs
)[12] = env
->regs
[R_EDX
];
181 (*regs
)[13] = env
->regs
[R_ESI
];
182 (*regs
)[14] = env
->regs
[R_EDI
];
183 (*regs
)[15] = env
->regs
[R_EAX
]; /* XXX */
184 (*regs
)[16] = env
->eip
;
185 (*regs
)[17] = env
->segs
[R_CS
].selector
& 0xffff;
186 (*regs
)[18] = env
->eflags
;
187 (*regs
)[19] = env
->regs
[R_ESP
];
188 (*regs
)[20] = env
->segs
[R_SS
].selector
& 0xffff;
189 (*regs
)[21] = env
->segs
[R_FS
].selector
& 0xffff;
190 (*regs
)[22] = env
->segs
[R_GS
].selector
& 0xffff;
191 (*regs
)[23] = env
->segs
[R_DS
].selector
& 0xffff;
192 (*regs
)[24] = env
->segs
[R_ES
].selector
& 0xffff;
193 (*regs
)[25] = env
->segs
[R_FS
].selector
& 0xffff;
194 (*regs
)[26] = env
->segs
[R_GS
].selector
& 0xffff;
199 #define ELF_START_MMAP 0x80000000
202 * This is used to ensure we don't load something for the wrong architecture.
204 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
207 * These are used to set parameters in the core dumps.
209 #define ELF_CLASS ELFCLASS32
210 #define ELF_ARCH EM_386
212 static inline void init_thread(struct target_pt_regs
*regs
,
213 struct image_info
*infop
)
215 regs
->esp
= infop
->start_stack
;
216 regs
->eip
= infop
->entry
;
218 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
219 starts %edx contains a pointer to a function which might be
220 registered using `atexit'. This provides a mean for the
221 dynamic linker to call DT_FINI functions for shared libraries
222 that have been loaded before the code runs.
224 A value of 0 tells we have no such handler. */
229 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
232 * Note that ELF_NREG should be 19 as there should be place for
233 * TRAPNO and ERR "registers" as well but linux doesn't dump
236 * See linux kernel: arch/x86/include/asm/elf.h
238 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUX86State
*env
)
240 (*regs
)[0] = env
->regs
[R_EBX
];
241 (*regs
)[1] = env
->regs
[R_ECX
];
242 (*regs
)[2] = env
->regs
[R_EDX
];
243 (*regs
)[3] = env
->regs
[R_ESI
];
244 (*regs
)[4] = env
->regs
[R_EDI
];
245 (*regs
)[5] = env
->regs
[R_EBP
];
246 (*regs
)[6] = env
->regs
[R_EAX
];
247 (*regs
)[7] = env
->segs
[R_DS
].selector
& 0xffff;
248 (*regs
)[8] = env
->segs
[R_ES
].selector
& 0xffff;
249 (*regs
)[9] = env
->segs
[R_FS
].selector
& 0xffff;
250 (*regs
)[10] = env
->segs
[R_GS
].selector
& 0xffff;
251 (*regs
)[11] = env
->regs
[R_EAX
]; /* XXX */
252 (*regs
)[12] = env
->eip
;
253 (*regs
)[13] = env
->segs
[R_CS
].selector
& 0xffff;
254 (*regs
)[14] = env
->eflags
;
255 (*regs
)[15] = env
->regs
[R_ESP
];
256 (*regs
)[16] = env
->segs
[R_SS
].selector
& 0xffff;
260 #define USE_ELF_CORE_DUMP
261 #define ELF_EXEC_PAGESIZE 4096
267 #ifndef TARGET_AARCH64
268 /* 32 bit ARM definitions */
270 #define ELF_START_MMAP 0x80000000
272 #define ELF_ARCH EM_ARM
273 #define ELF_CLASS ELFCLASS32
275 static inline void init_thread(struct target_pt_regs
*regs
,
276 struct image_info
*infop
)
278 abi_long stack
= infop
->start_stack
;
279 memset(regs
, 0, sizeof(*regs
));
281 regs
->uregs
[16] = ARM_CPU_MODE_USR
;
282 if (infop
->entry
& 1) {
283 regs
->uregs
[16] |= CPSR_T
;
285 regs
->uregs
[15] = infop
->entry
& 0xfffffffe;
286 regs
->uregs
[13] = infop
->start_stack
;
287 /* FIXME - what to for failure of get_user()? */
288 get_user_ual(regs
->uregs
[2], stack
+ 8); /* envp */
289 get_user_ual(regs
->uregs
[1], stack
+ 4); /* envp */
290 /* XXX: it seems that r0 is zeroed after ! */
292 /* For uClinux PIC binaries. */
293 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
294 regs
->uregs
[10] = infop
->start_data
;
296 /* Support ARM FDPIC. */
297 if (info_is_fdpic(infop
)) {
298 /* As described in the ABI document, r7 points to the loadmap info
299 * prepared by the kernel. If an interpreter is needed, r8 points
300 * to the interpreter loadmap and r9 points to the interpreter
301 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
302 * r9 points to the main program PT_DYNAMIC info.
304 regs
->uregs
[7] = infop
->loadmap_addr
;
305 if (infop
->interpreter_loadmap_addr
) {
306 /* Executable is dynamically loaded. */
307 regs
->uregs
[8] = infop
->interpreter_loadmap_addr
;
308 regs
->uregs
[9] = infop
->interpreter_pt_dynamic_addr
;
311 regs
->uregs
[9] = infop
->pt_dynamic_addr
;
317 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
319 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUARMState
*env
)
321 (*regs
)[0] = tswapreg(env
->regs
[0]);
322 (*regs
)[1] = tswapreg(env
->regs
[1]);
323 (*regs
)[2] = tswapreg(env
->regs
[2]);
324 (*regs
)[3] = tswapreg(env
->regs
[3]);
325 (*regs
)[4] = tswapreg(env
->regs
[4]);
326 (*regs
)[5] = tswapreg(env
->regs
[5]);
327 (*regs
)[6] = tswapreg(env
->regs
[6]);
328 (*regs
)[7] = tswapreg(env
->regs
[7]);
329 (*regs
)[8] = tswapreg(env
->regs
[8]);
330 (*regs
)[9] = tswapreg(env
->regs
[9]);
331 (*regs
)[10] = tswapreg(env
->regs
[10]);
332 (*regs
)[11] = tswapreg(env
->regs
[11]);
333 (*regs
)[12] = tswapreg(env
->regs
[12]);
334 (*regs
)[13] = tswapreg(env
->regs
[13]);
335 (*regs
)[14] = tswapreg(env
->regs
[14]);
336 (*regs
)[15] = tswapreg(env
->regs
[15]);
338 (*regs
)[16] = tswapreg(cpsr_read((CPUARMState
*)env
));
339 (*regs
)[17] = tswapreg(env
->regs
[0]); /* XXX */
342 #define USE_ELF_CORE_DUMP
343 #define ELF_EXEC_PAGESIZE 4096
347 ARM_HWCAP_ARM_SWP
= 1 << 0,
348 ARM_HWCAP_ARM_HALF
= 1 << 1,
349 ARM_HWCAP_ARM_THUMB
= 1 << 2,
350 ARM_HWCAP_ARM_26BIT
= 1 << 3,
351 ARM_HWCAP_ARM_FAST_MULT
= 1 << 4,
352 ARM_HWCAP_ARM_FPA
= 1 << 5,
353 ARM_HWCAP_ARM_VFP
= 1 << 6,
354 ARM_HWCAP_ARM_EDSP
= 1 << 7,
355 ARM_HWCAP_ARM_JAVA
= 1 << 8,
356 ARM_HWCAP_ARM_IWMMXT
= 1 << 9,
357 ARM_HWCAP_ARM_CRUNCH
= 1 << 10,
358 ARM_HWCAP_ARM_THUMBEE
= 1 << 11,
359 ARM_HWCAP_ARM_NEON
= 1 << 12,
360 ARM_HWCAP_ARM_VFPv3
= 1 << 13,
361 ARM_HWCAP_ARM_VFPv3D16
= 1 << 14,
362 ARM_HWCAP_ARM_TLS
= 1 << 15,
363 ARM_HWCAP_ARM_VFPv4
= 1 << 16,
364 ARM_HWCAP_ARM_IDIVA
= 1 << 17,
365 ARM_HWCAP_ARM_IDIVT
= 1 << 18,
366 ARM_HWCAP_ARM_VFPD32
= 1 << 19,
367 ARM_HWCAP_ARM_LPAE
= 1 << 20,
368 ARM_HWCAP_ARM_EVTSTRM
= 1 << 21,
372 ARM_HWCAP2_ARM_AES
= 1 << 0,
373 ARM_HWCAP2_ARM_PMULL
= 1 << 1,
374 ARM_HWCAP2_ARM_SHA1
= 1 << 2,
375 ARM_HWCAP2_ARM_SHA2
= 1 << 3,
376 ARM_HWCAP2_ARM_CRC32
= 1 << 4,
379 /* The commpage only exists for 32 bit kernels */
381 /* Return 1 if the proposed guest space is suitable for the guest.
382 * Return 0 if the proposed guest space isn't suitable, but another
383 * address space should be tried.
384 * Return -1 if there is no way the proposed guest space can be
385 * valid regardless of the base.
386 * The guest code may leave a page mapped and populate it if the
387 * address is suitable.
389 static int init_guest_commpage(unsigned long guest_base
,
390 unsigned long guest_size
)
392 unsigned long real_start
, test_page_addr
;
394 /* We need to check that we can force a fault on access to the
395 * commpage at 0xffff0fxx
397 test_page_addr
= guest_base
+ (0xffff0f00 & qemu_host_page_mask
);
399 /* If the commpage lies within the already allocated guest space,
400 * then there is no way we can allocate it.
402 * You may be thinking that that this check is redundant because
403 * we already validated the guest size against MAX_RESERVED_VA;
404 * but if qemu_host_page_mask is unusually large, then
405 * test_page_addr may be lower.
407 if (test_page_addr
>= guest_base
408 && test_page_addr
< (guest_base
+ guest_size
)) {
412 /* Note it needs to be writeable to let us initialise it */
413 real_start
= (unsigned long)
414 mmap((void *)test_page_addr
, qemu_host_page_size
,
415 PROT_READ
| PROT_WRITE
,
416 MAP_ANONYMOUS
| MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
418 /* If we can't map it then try another address */
419 if (real_start
== -1ul) {
423 if (real_start
!= test_page_addr
) {
424 /* OS didn't put the page where we asked - unmap and reject */
425 munmap((void *)real_start
, qemu_host_page_size
);
429 /* Leave the page mapped
430 * Populate it (mmap should have left it all 0'd)
433 /* Kernel helper versions */
434 __put_user(5, (uint32_t *)g2h(0xffff0ffcul
));
436 /* Now it's populated make it RO */
437 if (mprotect((void *)test_page_addr
, qemu_host_page_size
, PROT_READ
)) {
438 perror("Protecting guest commpage");
442 return 1; /* All good */
445 #define ELF_HWCAP get_elf_hwcap()
446 #define ELF_HWCAP2 get_elf_hwcap2()
448 static uint32_t get_elf_hwcap(void)
450 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
453 hwcaps
|= ARM_HWCAP_ARM_SWP
;
454 hwcaps
|= ARM_HWCAP_ARM_HALF
;
455 hwcaps
|= ARM_HWCAP_ARM_THUMB
;
456 hwcaps
|= ARM_HWCAP_ARM_FAST_MULT
;
458 /* probe for the extra features */
459 #define GET_FEATURE(feat, hwcap) \
460 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
462 #define GET_FEATURE_ID(feat, hwcap) \
463 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
465 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
466 GET_FEATURE(ARM_FEATURE_V5
, ARM_HWCAP_ARM_EDSP
);
467 GET_FEATURE(ARM_FEATURE_VFP
, ARM_HWCAP_ARM_VFP
);
468 GET_FEATURE(ARM_FEATURE_IWMMXT
, ARM_HWCAP_ARM_IWMMXT
);
469 GET_FEATURE(ARM_FEATURE_THUMB2EE
, ARM_HWCAP_ARM_THUMBEE
);
470 GET_FEATURE(ARM_FEATURE_NEON
, ARM_HWCAP_ARM_NEON
);
471 GET_FEATURE(ARM_FEATURE_VFP3
, ARM_HWCAP_ARM_VFPv3
);
472 GET_FEATURE(ARM_FEATURE_V6K
, ARM_HWCAP_ARM_TLS
);
473 GET_FEATURE(ARM_FEATURE_VFP4
, ARM_HWCAP_ARM_VFPv4
);
474 GET_FEATURE_ID(arm_div
, ARM_HWCAP_ARM_IDIVA
);
475 GET_FEATURE_ID(thumb_div
, ARM_HWCAP_ARM_IDIVT
);
476 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
477 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
478 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
479 * to our VFP_FP16 feature bit.
481 GET_FEATURE(ARM_FEATURE_VFP3
, ARM_HWCAP_ARM_VFPD32
);
482 GET_FEATURE(ARM_FEATURE_LPAE
, ARM_HWCAP_ARM_LPAE
);
487 static uint32_t get_elf_hwcap2(void)
489 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
492 GET_FEATURE_ID(aa32_aes
, ARM_HWCAP2_ARM_AES
);
493 GET_FEATURE_ID(aa32_pmull
, ARM_HWCAP2_ARM_PMULL
);
494 GET_FEATURE_ID(aa32_sha1
, ARM_HWCAP2_ARM_SHA1
);
495 GET_FEATURE_ID(aa32_sha2
, ARM_HWCAP2_ARM_SHA2
);
496 GET_FEATURE_ID(aa32_crc32
, ARM_HWCAP2_ARM_CRC32
);
501 #undef GET_FEATURE_ID
504 /* 64 bit ARM definitions */
505 #define ELF_START_MMAP 0x80000000
507 #define ELF_ARCH EM_AARCH64
508 #define ELF_CLASS ELFCLASS64
509 #define ELF_PLATFORM "aarch64"
511 static inline void init_thread(struct target_pt_regs
*regs
,
512 struct image_info
*infop
)
514 abi_long stack
= infop
->start_stack
;
515 memset(regs
, 0, sizeof(*regs
));
517 regs
->pc
= infop
->entry
& ~0x3ULL
;
522 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
524 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
525 const CPUARMState
*env
)
529 for (i
= 0; i
< 32; i
++) {
530 (*regs
)[i
] = tswapreg(env
->xregs
[i
]);
532 (*regs
)[32] = tswapreg(env
->pc
);
533 (*regs
)[33] = tswapreg(pstate_read((CPUARMState
*)env
));
536 #define USE_ELF_CORE_DUMP
537 #define ELF_EXEC_PAGESIZE 4096
540 ARM_HWCAP_A64_FP
= 1 << 0,
541 ARM_HWCAP_A64_ASIMD
= 1 << 1,
542 ARM_HWCAP_A64_EVTSTRM
= 1 << 2,
543 ARM_HWCAP_A64_AES
= 1 << 3,
544 ARM_HWCAP_A64_PMULL
= 1 << 4,
545 ARM_HWCAP_A64_SHA1
= 1 << 5,
546 ARM_HWCAP_A64_SHA2
= 1 << 6,
547 ARM_HWCAP_A64_CRC32
= 1 << 7,
548 ARM_HWCAP_A64_ATOMICS
= 1 << 8,
549 ARM_HWCAP_A64_FPHP
= 1 << 9,
550 ARM_HWCAP_A64_ASIMDHP
= 1 << 10,
551 ARM_HWCAP_A64_CPUID
= 1 << 11,
552 ARM_HWCAP_A64_ASIMDRDM
= 1 << 12,
553 ARM_HWCAP_A64_JSCVT
= 1 << 13,
554 ARM_HWCAP_A64_FCMA
= 1 << 14,
555 ARM_HWCAP_A64_LRCPC
= 1 << 15,
556 ARM_HWCAP_A64_DCPOP
= 1 << 16,
557 ARM_HWCAP_A64_SHA3
= 1 << 17,
558 ARM_HWCAP_A64_SM3
= 1 << 18,
559 ARM_HWCAP_A64_SM4
= 1 << 19,
560 ARM_HWCAP_A64_ASIMDDP
= 1 << 20,
561 ARM_HWCAP_A64_SHA512
= 1 << 21,
562 ARM_HWCAP_A64_SVE
= 1 << 22,
565 #define ELF_HWCAP get_elf_hwcap()
567 static uint32_t get_elf_hwcap(void)
569 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
572 hwcaps
|= ARM_HWCAP_A64_FP
;
573 hwcaps
|= ARM_HWCAP_A64_ASIMD
;
575 /* probe for the extra features */
576 #define GET_FEATURE_ID(feat, hwcap) \
577 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
579 GET_FEATURE_ID(aa64_aes
, ARM_HWCAP_A64_AES
);
580 GET_FEATURE_ID(aa64_pmull
, ARM_HWCAP_A64_PMULL
);
581 GET_FEATURE_ID(aa64_sha1
, ARM_HWCAP_A64_SHA1
);
582 GET_FEATURE_ID(aa64_sha256
, ARM_HWCAP_A64_SHA2
);
583 GET_FEATURE_ID(aa64_sha512
, ARM_HWCAP_A64_SHA512
);
584 GET_FEATURE_ID(aa64_crc32
, ARM_HWCAP_A64_CRC32
);
585 GET_FEATURE_ID(aa64_sha3
, ARM_HWCAP_A64_SHA3
);
586 GET_FEATURE_ID(aa64_sm3
, ARM_HWCAP_A64_SM3
);
587 GET_FEATURE_ID(aa64_sm4
, ARM_HWCAP_A64_SM4
);
588 GET_FEATURE_ID(aa64_fp16
, ARM_HWCAP_A64_FPHP
| ARM_HWCAP_A64_ASIMDHP
);
589 GET_FEATURE_ID(aa64_atomics
, ARM_HWCAP_A64_ATOMICS
);
590 GET_FEATURE_ID(aa64_rdm
, ARM_HWCAP_A64_ASIMDRDM
);
591 GET_FEATURE_ID(aa64_dp
, ARM_HWCAP_A64_ASIMDDP
);
592 GET_FEATURE_ID(aa64_fcma
, ARM_HWCAP_A64_FCMA
);
593 GET_FEATURE_ID(aa64_sve
, ARM_HWCAP_A64_SVE
);
595 #undef GET_FEATURE_ID
600 #endif /* not TARGET_AARCH64 */
601 #endif /* TARGET_ARM */
604 #ifdef TARGET_SPARC64
606 #define ELF_START_MMAP 0x80000000
607 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
608 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
610 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
612 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
615 #define ELF_CLASS ELFCLASS64
616 #define ELF_ARCH EM_SPARCV9
618 #define STACK_BIAS 2047
620 static inline void init_thread(struct target_pt_regs
*regs
,
621 struct image_info
*infop
)
626 regs
->pc
= infop
->entry
;
627 regs
->npc
= regs
->pc
+ 4;
630 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
632 if (personality(infop
->personality
) == PER_LINUX32
)
633 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
635 regs
->u_regs
[14] = infop
->start_stack
- 16 * 8 - STACK_BIAS
;
640 #define ELF_START_MMAP 0x80000000
641 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
642 | HWCAP_SPARC_MULDIV)
644 #define ELF_CLASS ELFCLASS32
645 #define ELF_ARCH EM_SPARC
647 static inline void init_thread(struct target_pt_regs
*regs
,
648 struct image_info
*infop
)
651 regs
->pc
= infop
->entry
;
652 regs
->npc
= regs
->pc
+ 4;
654 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
662 #define ELF_MACHINE PPC_ELF_MACHINE
663 #define ELF_START_MMAP 0x80000000
665 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
667 #define elf_check_arch(x) ( (x) == EM_PPC64 )
669 #define ELF_CLASS ELFCLASS64
673 #define ELF_CLASS ELFCLASS32
677 #define ELF_ARCH EM_PPC
679 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
680 See arch/powerpc/include/asm/cputable.h. */
682 QEMU_PPC_FEATURE_32
= 0x80000000,
683 QEMU_PPC_FEATURE_64
= 0x40000000,
684 QEMU_PPC_FEATURE_601_INSTR
= 0x20000000,
685 QEMU_PPC_FEATURE_HAS_ALTIVEC
= 0x10000000,
686 QEMU_PPC_FEATURE_HAS_FPU
= 0x08000000,
687 QEMU_PPC_FEATURE_HAS_MMU
= 0x04000000,
688 QEMU_PPC_FEATURE_HAS_4xxMAC
= 0x02000000,
689 QEMU_PPC_FEATURE_UNIFIED_CACHE
= 0x01000000,
690 QEMU_PPC_FEATURE_HAS_SPE
= 0x00800000,
691 QEMU_PPC_FEATURE_HAS_EFP_SINGLE
= 0x00400000,
692 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE
= 0x00200000,
693 QEMU_PPC_FEATURE_NO_TB
= 0x00100000,
694 QEMU_PPC_FEATURE_POWER4
= 0x00080000,
695 QEMU_PPC_FEATURE_POWER5
= 0x00040000,
696 QEMU_PPC_FEATURE_POWER5_PLUS
= 0x00020000,
697 QEMU_PPC_FEATURE_CELL
= 0x00010000,
698 QEMU_PPC_FEATURE_BOOKE
= 0x00008000,
699 QEMU_PPC_FEATURE_SMT
= 0x00004000,
700 QEMU_PPC_FEATURE_ICACHE_SNOOP
= 0x00002000,
701 QEMU_PPC_FEATURE_ARCH_2_05
= 0x00001000,
702 QEMU_PPC_FEATURE_PA6T
= 0x00000800,
703 QEMU_PPC_FEATURE_HAS_DFP
= 0x00000400,
704 QEMU_PPC_FEATURE_POWER6_EXT
= 0x00000200,
705 QEMU_PPC_FEATURE_ARCH_2_06
= 0x00000100,
706 QEMU_PPC_FEATURE_HAS_VSX
= 0x00000080,
707 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT
= 0x00000040,
709 QEMU_PPC_FEATURE_TRUE_LE
= 0x00000002,
710 QEMU_PPC_FEATURE_PPC_LE
= 0x00000001,
712 /* Feature definitions in AT_HWCAP2. */
713 QEMU_PPC_FEATURE2_ARCH_2_07
= 0x80000000, /* ISA 2.07 */
714 QEMU_PPC_FEATURE2_HAS_HTM
= 0x40000000, /* Hardware Transactional Memory */
715 QEMU_PPC_FEATURE2_HAS_DSCR
= 0x20000000, /* Data Stream Control Register */
716 QEMU_PPC_FEATURE2_HAS_EBB
= 0x10000000, /* Event Base Branching */
717 QEMU_PPC_FEATURE2_HAS_ISEL
= 0x08000000, /* Integer Select */
718 QEMU_PPC_FEATURE2_HAS_TAR
= 0x04000000, /* Target Address Register */
719 QEMU_PPC_FEATURE2_ARCH_3_00
= 0x00800000, /* ISA 3.00 */
722 #define ELF_HWCAP get_elf_hwcap()
724 static uint32_t get_elf_hwcap(void)
726 PowerPCCPU
*cpu
= POWERPC_CPU(thread_cpu
);
727 uint32_t features
= 0;
729 /* We don't have to be terribly complete here; the high points are
730 Altivec/FP/SPE support. Anything else is just a bonus. */
731 #define GET_FEATURE(flag, feature) \
732 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
733 #define GET_FEATURE2(flags, feature) \
735 if ((cpu->env.insns_flags2 & flags) == flags) { \
736 features |= feature; \
739 GET_FEATURE(PPC_64B
, QEMU_PPC_FEATURE_64
);
740 GET_FEATURE(PPC_FLOAT
, QEMU_PPC_FEATURE_HAS_FPU
);
741 GET_FEATURE(PPC_ALTIVEC
, QEMU_PPC_FEATURE_HAS_ALTIVEC
);
742 GET_FEATURE(PPC_SPE
, QEMU_PPC_FEATURE_HAS_SPE
);
743 GET_FEATURE(PPC_SPE_SINGLE
, QEMU_PPC_FEATURE_HAS_EFP_SINGLE
);
744 GET_FEATURE(PPC_SPE_DOUBLE
, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE
);
745 GET_FEATURE(PPC_BOOKE
, QEMU_PPC_FEATURE_BOOKE
);
746 GET_FEATURE(PPC_405_MAC
, QEMU_PPC_FEATURE_HAS_4xxMAC
);
747 GET_FEATURE2(PPC2_DFP
, QEMU_PPC_FEATURE_HAS_DFP
);
748 GET_FEATURE2(PPC2_VSX
, QEMU_PPC_FEATURE_HAS_VSX
);
749 GET_FEATURE2((PPC2_PERM_ISA206
| PPC2_DIVE_ISA206
| PPC2_ATOMIC_ISA206
|
750 PPC2_FP_CVT_ISA206
| PPC2_FP_TST_ISA206
),
751 QEMU_PPC_FEATURE_ARCH_2_06
);
758 #define ELF_HWCAP2 get_elf_hwcap2()
760 static uint32_t get_elf_hwcap2(void)
762 PowerPCCPU
*cpu
= POWERPC_CPU(thread_cpu
);
763 uint32_t features
= 0;
765 #define GET_FEATURE(flag, feature) \
766 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
767 #define GET_FEATURE2(flag, feature) \
768 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
770 GET_FEATURE(PPC_ISEL
, QEMU_PPC_FEATURE2_HAS_ISEL
);
771 GET_FEATURE2(PPC2_BCTAR_ISA207
, QEMU_PPC_FEATURE2_HAS_TAR
);
772 GET_FEATURE2((PPC2_BCTAR_ISA207
| PPC2_LSQ_ISA207
| PPC2_ALTIVEC_207
|
773 PPC2_ISA207S
), QEMU_PPC_FEATURE2_ARCH_2_07
);
774 GET_FEATURE2(PPC2_ISA300
, QEMU_PPC_FEATURE2_ARCH_3_00
);
783 * The requirements here are:
784 * - keep the final alignment of sp (sp & 0xf)
785 * - make sure the 32-bit value at the first 16 byte aligned position of
786 * AUXV is greater than 16 for glibc compatibility.
787 * AT_IGNOREPPC is used for that.
788 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
789 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
791 #define DLINFO_ARCH_ITEMS 5
792 #define ARCH_DLINFO \
794 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
796 * Handle glibc compatibility: these magic entries must \
797 * be at the lowest addresses in the final auxv. \
799 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
800 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
801 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
802 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
803 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
806 static inline void init_thread(struct target_pt_regs
*_regs
, struct image_info
*infop
)
808 _regs
->gpr
[1] = infop
->start_stack
;
809 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
810 if (get_ppc64_abi(infop
) < 2) {
812 get_user_u64(val
, infop
->entry
+ 8);
813 _regs
->gpr
[2] = val
+ infop
->load_bias
;
814 get_user_u64(val
, infop
->entry
);
815 infop
->entry
= val
+ infop
->load_bias
;
817 _regs
->gpr
[12] = infop
->entry
; /* r12 set to global entry address */
820 _regs
->nip
= infop
->entry
;
823 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
825 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
827 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUPPCState
*env
)
830 target_ulong ccr
= 0;
832 for (i
= 0; i
< ARRAY_SIZE(env
->gpr
); i
++) {
833 (*regs
)[i
] = tswapreg(env
->gpr
[i
]);
836 (*regs
)[32] = tswapreg(env
->nip
);
837 (*regs
)[33] = tswapreg(env
->msr
);
838 (*regs
)[35] = tswapreg(env
->ctr
);
839 (*regs
)[36] = tswapreg(env
->lr
);
840 (*regs
)[37] = tswapreg(env
->xer
);
842 for (i
= 0; i
< ARRAY_SIZE(env
->crf
); i
++) {
843 ccr
|= env
->crf
[i
] << (32 - ((i
+ 1) * 4));
845 (*regs
)[38] = tswapreg(ccr
);
848 #define USE_ELF_CORE_DUMP
849 #define ELF_EXEC_PAGESIZE 4096
855 #define ELF_START_MMAP 0x80000000
858 #define ELF_CLASS ELFCLASS64
860 #define ELF_CLASS ELFCLASS32
862 #define ELF_ARCH EM_MIPS
864 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
866 static inline void init_thread(struct target_pt_regs
*regs
,
867 struct image_info
*infop
)
869 regs
->cp0_status
= 2 << CP0St_KSU
;
870 regs
->cp0_epc
= infop
->entry
;
871 regs
->regs
[29] = infop
->start_stack
;
874 /* See linux kernel: arch/mips/include/asm/elf.h. */
876 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
878 /* See linux kernel: arch/mips/include/asm/reg.h. */
885 TARGET_EF_R26
= TARGET_EF_R0
+ 26,
886 TARGET_EF_R27
= TARGET_EF_R0
+ 27,
887 TARGET_EF_LO
= TARGET_EF_R0
+ 32,
888 TARGET_EF_HI
= TARGET_EF_R0
+ 33,
889 TARGET_EF_CP0_EPC
= TARGET_EF_R0
+ 34,
890 TARGET_EF_CP0_BADVADDR
= TARGET_EF_R0
+ 35,
891 TARGET_EF_CP0_STATUS
= TARGET_EF_R0
+ 36,
892 TARGET_EF_CP0_CAUSE
= TARGET_EF_R0
+ 37
895 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
896 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUMIPSState
*env
)
900 for (i
= 0; i
< TARGET_EF_R0
; i
++) {
903 (*regs
)[TARGET_EF_R0
] = 0;
905 for (i
= 1; i
< ARRAY_SIZE(env
->active_tc
.gpr
); i
++) {
906 (*regs
)[TARGET_EF_R0
+ i
] = tswapreg(env
->active_tc
.gpr
[i
]);
909 (*regs
)[TARGET_EF_R26
] = 0;
910 (*regs
)[TARGET_EF_R27
] = 0;
911 (*regs
)[TARGET_EF_LO
] = tswapreg(env
->active_tc
.LO
[0]);
912 (*regs
)[TARGET_EF_HI
] = tswapreg(env
->active_tc
.HI
[0]);
913 (*regs
)[TARGET_EF_CP0_EPC
] = tswapreg(env
->active_tc
.PC
);
914 (*regs
)[TARGET_EF_CP0_BADVADDR
] = tswapreg(env
->CP0_BadVAddr
);
915 (*regs
)[TARGET_EF_CP0_STATUS
] = tswapreg(env
->CP0_Status
);
916 (*regs
)[TARGET_EF_CP0_CAUSE
] = tswapreg(env
->CP0_Cause
);
919 #define USE_ELF_CORE_DUMP
920 #define ELF_EXEC_PAGESIZE 4096
922 /* See arch/mips/include/uapi/asm/hwcap.h. */
924 HWCAP_MIPS_R6
= (1 << 0),
925 HWCAP_MIPS_MSA
= (1 << 1),
928 #define ELF_HWCAP get_elf_hwcap()
930 static uint32_t get_elf_hwcap(void)
932 MIPSCPU
*cpu
= MIPS_CPU(thread_cpu
);
935 #define GET_FEATURE(flag, hwcap) \
936 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
938 GET_FEATURE(ISA_MIPS32R6
| ISA_MIPS64R6
, HWCAP_MIPS_R6
);
939 GET_FEATURE(ASE_MSA
, HWCAP_MIPS_MSA
);
946 #endif /* TARGET_MIPS */
948 #ifdef TARGET_MICROBLAZE
950 #define ELF_START_MMAP 0x80000000
952 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
954 #define ELF_CLASS ELFCLASS32
955 #define ELF_ARCH EM_MICROBLAZE
957 static inline void init_thread(struct target_pt_regs
*regs
,
958 struct image_info
*infop
)
960 regs
->pc
= infop
->entry
;
961 regs
->r1
= infop
->start_stack
;
965 #define ELF_EXEC_PAGESIZE 4096
967 #define USE_ELF_CORE_DUMP
969 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
971 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
972 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUMBState
*env
)
976 for (i
= 0; i
< 32; i
++) {
977 (*regs
)[pos
++] = tswapreg(env
->regs
[i
]);
980 for (i
= 0; i
< 6; i
++) {
981 (*regs
)[pos
++] = tswapreg(env
->sregs
[i
]);
985 #endif /* TARGET_MICROBLAZE */
989 #define ELF_START_MMAP 0x80000000
991 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
993 #define ELF_CLASS ELFCLASS32
994 #define ELF_ARCH EM_ALTERA_NIOS2
996 static void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
998 regs
->ea
= infop
->entry
;
999 regs
->sp
= infop
->start_stack
;
1000 regs
->estatus
= 0x3;
1003 #define ELF_EXEC_PAGESIZE 4096
1005 #define USE_ELF_CORE_DUMP
1007 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1009 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1010 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
1011 const CPUNios2State
*env
)
1016 for (i
= 1; i
< 8; i
++) /* r0-r7 */
1017 (*regs
)[i
] = tswapreg(env
->regs
[i
+ 7]);
1019 for (i
= 8; i
< 16; i
++) /* r8-r15 */
1020 (*regs
)[i
] = tswapreg(env
->regs
[i
- 8]);
1022 for (i
= 16; i
< 24; i
++) /* r16-r23 */
1023 (*regs
)[i
] = tswapreg(env
->regs
[i
+ 7]);
1024 (*regs
)[24] = -1; /* R_ET */
1025 (*regs
)[25] = -1; /* R_BT */
1026 (*regs
)[26] = tswapreg(env
->regs
[R_GP
]);
1027 (*regs
)[27] = tswapreg(env
->regs
[R_SP
]);
1028 (*regs
)[28] = tswapreg(env
->regs
[R_FP
]);
1029 (*regs
)[29] = tswapreg(env
->regs
[R_EA
]);
1030 (*regs
)[30] = -1; /* R_SSTATUS */
1031 (*regs
)[31] = tswapreg(env
->regs
[R_RA
]);
1033 (*regs
)[32] = tswapreg(env
->regs
[R_PC
]);
1035 (*regs
)[33] = -1; /* R_STATUS */
1036 (*regs
)[34] = tswapreg(env
->regs
[CR_ESTATUS
]);
1038 for (i
= 35; i
< 49; i
++) /* ... */
1042 #endif /* TARGET_NIOS2 */
1044 #ifdef TARGET_OPENRISC
1046 #define ELF_START_MMAP 0x08000000
1048 #define ELF_ARCH EM_OPENRISC
1049 #define ELF_CLASS ELFCLASS32
1050 #define ELF_DATA ELFDATA2MSB
1052 static inline void init_thread(struct target_pt_regs
*regs
,
1053 struct image_info
*infop
)
1055 regs
->pc
= infop
->entry
;
1056 regs
->gpr
[1] = infop
->start_stack
;
1059 #define USE_ELF_CORE_DUMP
1060 #define ELF_EXEC_PAGESIZE 8192
1062 /* See linux kernel arch/openrisc/include/asm/elf.h. */
1063 #define ELF_NREG 34 /* gprs and pc, sr */
1064 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1066 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
1067 const CPUOpenRISCState
*env
)
1071 for (i
= 0; i
< 32; i
++) {
1072 (*regs
)[i
] = tswapreg(cpu_get_gpr(env
, i
));
1074 (*regs
)[32] = tswapreg(env
->pc
);
1075 (*regs
)[33] = tswapreg(cpu_get_sr(env
));
1078 #define ELF_PLATFORM NULL
1080 #endif /* TARGET_OPENRISC */
1084 #define ELF_START_MMAP 0x80000000
1086 #define ELF_CLASS ELFCLASS32
1087 #define ELF_ARCH EM_SH
1089 static inline void init_thread(struct target_pt_regs
*regs
,
1090 struct image_info
*infop
)
1092 /* Check other registers XXXXX */
1093 regs
->pc
= infop
->entry
;
1094 regs
->regs
[15] = infop
->start_stack
;
1097 /* See linux kernel: arch/sh/include/asm/elf.h. */
1099 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1101 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1106 TARGET_REG_GBR
= 19,
1107 TARGET_REG_MACH
= 20,
1108 TARGET_REG_MACL
= 21,
1109 TARGET_REG_SYSCALL
= 22
1112 static inline void elf_core_copy_regs(target_elf_gregset_t
*regs
,
1113 const CPUSH4State
*env
)
1117 for (i
= 0; i
< 16; i
++) {
1118 (*regs
)[i
] = tswapreg(env
->gregs
[i
]);
1121 (*regs
)[TARGET_REG_PC
] = tswapreg(env
->pc
);
1122 (*regs
)[TARGET_REG_PR
] = tswapreg(env
->pr
);
1123 (*regs
)[TARGET_REG_SR
] = tswapreg(env
->sr
);
1124 (*regs
)[TARGET_REG_GBR
] = tswapreg(env
->gbr
);
1125 (*regs
)[TARGET_REG_MACH
] = tswapreg(env
->mach
);
1126 (*regs
)[TARGET_REG_MACL
] = tswapreg(env
->macl
);
1127 (*regs
)[TARGET_REG_SYSCALL
] = 0; /* FIXME */
1130 #define USE_ELF_CORE_DUMP
1131 #define ELF_EXEC_PAGESIZE 4096
1134 SH_CPU_HAS_FPU
= 0x0001, /* Hardware FPU support */
1135 SH_CPU_HAS_P2_FLUSH_BUG
= 0x0002, /* Need to flush the cache in P2 area */
1136 SH_CPU_HAS_MMU_PAGE_ASSOC
= 0x0004, /* SH3: TLB way selection bit support */
1137 SH_CPU_HAS_DSP
= 0x0008, /* SH-DSP: DSP support */
1138 SH_CPU_HAS_PERF_COUNTER
= 0x0010, /* Hardware performance counters */
1139 SH_CPU_HAS_PTEA
= 0x0020, /* PTEA register */
1140 SH_CPU_HAS_LLSC
= 0x0040, /* movli.l/movco.l */
1141 SH_CPU_HAS_L2_CACHE
= 0x0080, /* Secondary cache / URAM */
1142 SH_CPU_HAS_OP32
= 0x0100, /* 32-bit instruction support */
1143 SH_CPU_HAS_PTEAEX
= 0x0200, /* PTE ASID Extension support */
1146 #define ELF_HWCAP get_elf_hwcap()
1148 static uint32_t get_elf_hwcap(void)
1150 SuperHCPU
*cpu
= SUPERH_CPU(thread_cpu
);
1153 hwcap
|= SH_CPU_HAS_FPU
;
1155 if (cpu
->env
.features
& SH_FEATURE_SH4A
) {
1156 hwcap
|= SH_CPU_HAS_LLSC
;
1166 #define ELF_START_MMAP 0x80000000
1168 #define ELF_CLASS ELFCLASS32
1169 #define ELF_ARCH EM_CRIS
1171 static inline void init_thread(struct target_pt_regs
*regs
,
1172 struct image_info
*infop
)
1174 regs
->erp
= infop
->entry
;
1177 #define ELF_EXEC_PAGESIZE 8192
1183 #define ELF_START_MMAP 0x80000000
1185 #define ELF_CLASS ELFCLASS32
1186 #define ELF_ARCH EM_68K
1188 /* ??? Does this need to do anything?
1189 #define ELF_PLAT_INIT(_r) */
1191 static inline void init_thread(struct target_pt_regs
*regs
,
1192 struct image_info
*infop
)
1194 regs
->usp
= infop
->start_stack
;
1196 regs
->pc
= infop
->entry
;
1199 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1201 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1203 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUM68KState
*env
)
1205 (*regs
)[0] = tswapreg(env
->dregs
[1]);
1206 (*regs
)[1] = tswapreg(env
->dregs
[2]);
1207 (*regs
)[2] = tswapreg(env
->dregs
[3]);
1208 (*regs
)[3] = tswapreg(env
->dregs
[4]);
1209 (*regs
)[4] = tswapreg(env
->dregs
[5]);
1210 (*regs
)[5] = tswapreg(env
->dregs
[6]);
1211 (*regs
)[6] = tswapreg(env
->dregs
[7]);
1212 (*regs
)[7] = tswapreg(env
->aregs
[0]);
1213 (*regs
)[8] = tswapreg(env
->aregs
[1]);
1214 (*regs
)[9] = tswapreg(env
->aregs
[2]);
1215 (*regs
)[10] = tswapreg(env
->aregs
[3]);
1216 (*regs
)[11] = tswapreg(env
->aregs
[4]);
1217 (*regs
)[12] = tswapreg(env
->aregs
[5]);
1218 (*regs
)[13] = tswapreg(env
->aregs
[6]);
1219 (*regs
)[14] = tswapreg(env
->dregs
[0]);
1220 (*regs
)[15] = tswapreg(env
->aregs
[7]);
1221 (*regs
)[16] = tswapreg(env
->dregs
[0]); /* FIXME: orig_d0 */
1222 (*regs
)[17] = tswapreg(env
->sr
);
1223 (*regs
)[18] = tswapreg(env
->pc
);
1224 (*regs
)[19] = 0; /* FIXME: regs->format | regs->vector */
1227 #define USE_ELF_CORE_DUMP
1228 #define ELF_EXEC_PAGESIZE 8192
1234 #define ELF_START_MMAP (0x30000000000ULL)
1236 #define ELF_CLASS ELFCLASS64
1237 #define ELF_ARCH EM_ALPHA
1239 static inline void init_thread(struct target_pt_regs
*regs
,
1240 struct image_info
*infop
)
1242 regs
->pc
= infop
->entry
;
1244 regs
->usp
= infop
->start_stack
;
1247 #define ELF_EXEC_PAGESIZE 8192
1249 #endif /* TARGET_ALPHA */
1253 #define ELF_START_MMAP (0x20000000000ULL)
1255 #define ELF_CLASS ELFCLASS64
1256 #define ELF_DATA ELFDATA2MSB
1257 #define ELF_ARCH EM_S390
1259 static inline void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
1261 regs
->psw
.addr
= infop
->entry
;
1262 regs
->psw
.mask
= PSW_MASK_64
| PSW_MASK_32
;
1263 regs
->gprs
[15] = infop
->start_stack
;
1266 #endif /* TARGET_S390X */
1268 #ifdef TARGET_TILEGX
1270 /* 42 bits real used address, a half for user mode */
1271 #define ELF_START_MMAP (0x00000020000000000ULL)
1273 #define elf_check_arch(x) ((x) == EM_TILEGX)
1275 #define ELF_CLASS ELFCLASS64
1276 #define ELF_DATA ELFDATA2LSB
1277 #define ELF_ARCH EM_TILEGX
1279 static inline void init_thread(struct target_pt_regs
*regs
,
1280 struct image_info
*infop
)
1282 regs
->pc
= infop
->entry
;
1283 regs
->sp
= infop
->start_stack
;
1287 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1289 #endif /* TARGET_TILEGX */
1293 #define ELF_START_MMAP 0x80000000
1294 #define ELF_ARCH EM_RISCV
1296 #ifdef TARGET_RISCV32
1297 #define ELF_CLASS ELFCLASS32
1299 #define ELF_CLASS ELFCLASS64
1302 static inline void init_thread(struct target_pt_regs
*regs
,
1303 struct image_info
*infop
)
1305 regs
->sepc
= infop
->entry
;
1306 regs
->sp
= infop
->start_stack
;
1309 #define ELF_EXEC_PAGESIZE 4096
1311 #endif /* TARGET_RISCV */
1315 #define ELF_START_MMAP 0x80000000
1316 #define ELF_CLASS ELFCLASS32
1317 #define ELF_ARCH EM_PARISC
1318 #define ELF_PLATFORM "PARISC"
1319 #define STACK_GROWS_DOWN 0
1320 #define STACK_ALIGNMENT 64
1322 static inline void init_thread(struct target_pt_regs
*regs
,
1323 struct image_info
*infop
)
1325 regs
->iaoq
[0] = infop
->entry
;
1326 regs
->iaoq
[1] = infop
->entry
+ 4;
1328 regs
->gr
[24] = infop
->arg_start
;
1329 regs
->gr
[25] = (infop
->arg_end
- infop
->arg_start
) / sizeof(abi_ulong
);
1330 /* The top-of-stack contains a linkage buffer. */
1331 regs
->gr
[30] = infop
->start_stack
+ 64;
1332 regs
->gr
[31] = infop
->entry
;
1335 #endif /* TARGET_HPPA */
1337 #ifdef TARGET_XTENSA
1339 #define ELF_START_MMAP 0x20000000
1341 #define ELF_CLASS ELFCLASS32
1342 #define ELF_ARCH EM_XTENSA
1344 static inline void init_thread(struct target_pt_regs
*regs
,
1345 struct image_info
*infop
)
1347 regs
->windowbase
= 0;
1348 regs
->windowstart
= 1;
1349 regs
->areg
[1] = infop
->start_stack
;
1350 regs
->pc
= infop
->entry
;
1353 /* See linux kernel: arch/xtensa/include/asm/elf.h. */
1354 #define ELF_NREG 128
1355 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1364 TARGET_REG_WINDOWSTART
,
1365 TARGET_REG_WINDOWBASE
,
1366 TARGET_REG_THREADPTR
,
1367 TARGET_REG_AR0
= 64,
1370 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
1371 const CPUXtensaState
*env
)
1375 (*regs
)[TARGET_REG_PC
] = tswapreg(env
->pc
);
1376 (*regs
)[TARGET_REG_PS
] = tswapreg(env
->sregs
[PS
] & ~PS_EXCM
);
1377 (*regs
)[TARGET_REG_LBEG
] = tswapreg(env
->sregs
[LBEG
]);
1378 (*regs
)[TARGET_REG_LEND
] = tswapreg(env
->sregs
[LEND
]);
1379 (*regs
)[TARGET_REG_LCOUNT
] = tswapreg(env
->sregs
[LCOUNT
]);
1380 (*regs
)[TARGET_REG_SAR
] = tswapreg(env
->sregs
[SAR
]);
1381 (*regs
)[TARGET_REG_WINDOWSTART
] = tswapreg(env
->sregs
[WINDOW_START
]);
1382 (*regs
)[TARGET_REG_WINDOWBASE
] = tswapreg(env
->sregs
[WINDOW_BASE
]);
1383 (*regs
)[TARGET_REG_THREADPTR
] = tswapreg(env
->uregs
[THREADPTR
]);
1384 xtensa_sync_phys_from_window((CPUXtensaState
*)env
);
1385 for (i
= 0; i
< env
->config
->nareg
; ++i
) {
1386 (*regs
)[TARGET_REG_AR0
+ i
] = tswapreg(env
->phys_regs
[i
]);
1390 #define USE_ELF_CORE_DUMP
1391 #define ELF_EXEC_PAGESIZE 4096
1393 #endif /* TARGET_XTENSA */
1395 #ifndef ELF_PLATFORM
1396 #define ELF_PLATFORM (NULL)
1400 #define ELF_MACHINE ELF_ARCH
1403 #ifndef elf_check_arch
1404 #define elf_check_arch(x) ((x) == ELF_ARCH)
1411 #ifndef STACK_GROWS_DOWN
1412 #define STACK_GROWS_DOWN 1
1415 #ifndef STACK_ALIGNMENT
1416 #define STACK_ALIGNMENT 16
1421 #define ELF_CLASS ELFCLASS32
1423 #define bswaptls(ptr) bswap32s(ptr)
1430 unsigned int a_info
; /* Use macros N_MAGIC, etc for access */
1431 unsigned int a_text
; /* length of text, in bytes */
1432 unsigned int a_data
; /* length of data, in bytes */
1433 unsigned int a_bss
; /* length of uninitialized data area, in bytes */
1434 unsigned int a_syms
; /* length of symbol table data in file, in bytes */
1435 unsigned int a_entry
; /* start address */
1436 unsigned int a_trsize
; /* length of relocation info for text, in bytes */
1437 unsigned int a_drsize
; /* length of relocation info for data, in bytes */
1441 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1447 /* Necessary parameters */
1448 #define TARGET_ELF_EXEC_PAGESIZE \
1449 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1450 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1451 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1452 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1453 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1454 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1456 #define DLINFO_ITEMS 15
1458 static inline void memcpy_fromfs(void * to
, const void * from
, unsigned long n
)
1460 memcpy(to
, from
, n
);
1464 static void bswap_ehdr(struct elfhdr
*ehdr
)
1466 bswap16s(&ehdr
->e_type
); /* Object file type */
1467 bswap16s(&ehdr
->e_machine
); /* Architecture */
1468 bswap32s(&ehdr
->e_version
); /* Object file version */
1469 bswaptls(&ehdr
->e_entry
); /* Entry point virtual address */
1470 bswaptls(&ehdr
->e_phoff
); /* Program header table file offset */
1471 bswaptls(&ehdr
->e_shoff
); /* Section header table file offset */
1472 bswap32s(&ehdr
->e_flags
); /* Processor-specific flags */
1473 bswap16s(&ehdr
->e_ehsize
); /* ELF header size in bytes */
1474 bswap16s(&ehdr
->e_phentsize
); /* Program header table entry size */
1475 bswap16s(&ehdr
->e_phnum
); /* Program header table entry count */
1476 bswap16s(&ehdr
->e_shentsize
); /* Section header table entry size */
1477 bswap16s(&ehdr
->e_shnum
); /* Section header table entry count */
1478 bswap16s(&ehdr
->e_shstrndx
); /* Section header string table index */
1481 static void bswap_phdr(struct elf_phdr
*phdr
, int phnum
)
1484 for (i
= 0; i
< phnum
; ++i
, ++phdr
) {
1485 bswap32s(&phdr
->p_type
); /* Segment type */
1486 bswap32s(&phdr
->p_flags
); /* Segment flags */
1487 bswaptls(&phdr
->p_offset
); /* Segment file offset */
1488 bswaptls(&phdr
->p_vaddr
); /* Segment virtual address */
1489 bswaptls(&phdr
->p_paddr
); /* Segment physical address */
1490 bswaptls(&phdr
->p_filesz
); /* Segment size in file */
1491 bswaptls(&phdr
->p_memsz
); /* Segment size in memory */
1492 bswaptls(&phdr
->p_align
); /* Segment alignment */
1496 static void bswap_shdr(struct elf_shdr
*shdr
, int shnum
)
1499 for (i
= 0; i
< shnum
; ++i
, ++shdr
) {
1500 bswap32s(&shdr
->sh_name
);
1501 bswap32s(&shdr
->sh_type
);
1502 bswaptls(&shdr
->sh_flags
);
1503 bswaptls(&shdr
->sh_addr
);
1504 bswaptls(&shdr
->sh_offset
);
1505 bswaptls(&shdr
->sh_size
);
1506 bswap32s(&shdr
->sh_link
);
1507 bswap32s(&shdr
->sh_info
);
1508 bswaptls(&shdr
->sh_addralign
);
1509 bswaptls(&shdr
->sh_entsize
);
1513 static void bswap_sym(struct elf_sym
*sym
)
1515 bswap32s(&sym
->st_name
);
1516 bswaptls(&sym
->st_value
);
1517 bswaptls(&sym
->st_size
);
1518 bswap16s(&sym
->st_shndx
);
1522 static void bswap_mips_abiflags(Mips_elf_abiflags_v0
*abiflags
)
1524 bswap16s(&abiflags
->version
);
1525 bswap32s(&abiflags
->ases
);
1526 bswap32s(&abiflags
->isa_ext
);
1527 bswap32s(&abiflags
->flags1
);
1528 bswap32s(&abiflags
->flags2
);
1532 static inline void bswap_ehdr(struct elfhdr
*ehdr
) { }
1533 static inline void bswap_phdr(struct elf_phdr
*phdr
, int phnum
) { }
1534 static inline void bswap_shdr(struct elf_shdr
*shdr
, int shnum
) { }
1535 static inline void bswap_sym(struct elf_sym
*sym
) { }
1537 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0
*abiflags
) { }
1541 #ifdef USE_ELF_CORE_DUMP
1542 static int elf_core_dump(int, const CPUArchState
*);
1543 #endif /* USE_ELF_CORE_DUMP */
1544 static void load_symbols(struct elfhdr
*hdr
, int fd
, abi_ulong load_bias
);
1546 /* Verify the portions of EHDR within E_IDENT for the target.
1547 This can be performed before bswapping the entire header. */
1548 static bool elf_check_ident(struct elfhdr
*ehdr
)
1550 return (ehdr
->e_ident
[EI_MAG0
] == ELFMAG0
1551 && ehdr
->e_ident
[EI_MAG1
] == ELFMAG1
1552 && ehdr
->e_ident
[EI_MAG2
] == ELFMAG2
1553 && ehdr
->e_ident
[EI_MAG3
] == ELFMAG3
1554 && ehdr
->e_ident
[EI_CLASS
] == ELF_CLASS
1555 && ehdr
->e_ident
[EI_DATA
] == ELF_DATA
1556 && ehdr
->e_ident
[EI_VERSION
] == EV_CURRENT
);
1559 /* Verify the portions of EHDR outside of E_IDENT for the target.
1560 This has to wait until after bswapping the header. */
1561 static bool elf_check_ehdr(struct elfhdr
*ehdr
)
1563 return (elf_check_arch(ehdr
->e_machine
)
1564 && ehdr
->e_ehsize
== sizeof(struct elfhdr
)
1565 && ehdr
->e_phentsize
== sizeof(struct elf_phdr
)
1566 && (ehdr
->e_type
== ET_EXEC
|| ehdr
->e_type
== ET_DYN
));
1570 * 'copy_elf_strings()' copies argument/envelope strings from user
1571 * memory to free pages in kernel mem. These are in a format ready
1572 * to be put directly into the top of new user memory.
1575 static abi_ulong
copy_elf_strings(int argc
, char **argv
, char *scratch
,
1576 abi_ulong p
, abi_ulong stack_limit
)
1583 return 0; /* bullet-proofing */
1586 if (STACK_GROWS_DOWN
) {
1587 int offset
= ((p
- 1) % TARGET_PAGE_SIZE
) + 1;
1588 for (i
= argc
- 1; i
>= 0; --i
) {
1591 fprintf(stderr
, "VFS: argc is wrong");
1594 len
= strlen(tmp
) + 1;
1597 if (len
> (p
- stack_limit
)) {
1601 int bytes_to_copy
= (len
> offset
) ? offset
: len
;
1602 tmp
-= bytes_to_copy
;
1604 offset
-= bytes_to_copy
;
1605 len
-= bytes_to_copy
;
1607 memcpy_fromfs(scratch
+ offset
, tmp
, bytes_to_copy
);
1610 memcpy_to_target(p
, scratch
, top
- p
);
1612 offset
= TARGET_PAGE_SIZE
;
1617 memcpy_to_target(p
, scratch
+ offset
, top
- p
);
1620 int remaining
= TARGET_PAGE_SIZE
- (p
% TARGET_PAGE_SIZE
);
1621 for (i
= 0; i
< argc
; ++i
) {
1624 fprintf(stderr
, "VFS: argc is wrong");
1627 len
= strlen(tmp
) + 1;
1628 if (len
> (stack_limit
- p
)) {
1632 int bytes_to_copy
= (len
> remaining
) ? remaining
: len
;
1634 memcpy_fromfs(scratch
+ (p
- top
), tmp
, bytes_to_copy
);
1636 tmp
+= bytes_to_copy
;
1637 remaining
-= bytes_to_copy
;
1639 len
-= bytes_to_copy
;
1641 if (remaining
== 0) {
1642 memcpy_to_target(top
, scratch
, p
- top
);
1644 remaining
= TARGET_PAGE_SIZE
;
1649 memcpy_to_target(top
, scratch
, p
- top
);
1656 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1657 * argument/environment space. Newer kernels (>2.6.33) allow more,
1658 * dependent on stack size, but guarantee at least 32 pages for
1659 * backwards compatibility.
1661 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1663 static abi_ulong
setup_arg_pages(struct linux_binprm
*bprm
,
1664 struct image_info
*info
)
1666 abi_ulong size
, error
, guard
;
1668 size
= guest_stack_size
;
1669 if (size
< STACK_LOWER_LIMIT
) {
1670 size
= STACK_LOWER_LIMIT
;
1672 guard
= TARGET_PAGE_SIZE
;
1673 if (guard
< qemu_real_host_page_size
) {
1674 guard
= qemu_real_host_page_size
;
1677 error
= target_mmap(0, size
+ guard
, PROT_READ
| PROT_WRITE
,
1678 MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
1680 perror("mmap stack");
1684 /* We reserve one extra page at the top of the stack as guard. */
1685 if (STACK_GROWS_DOWN
) {
1686 target_mprotect(error
, guard
, PROT_NONE
);
1687 info
->stack_limit
= error
+ guard
;
1688 return info
->stack_limit
+ size
- sizeof(void *);
1690 target_mprotect(error
+ size
, guard
, PROT_NONE
);
1691 info
->stack_limit
= error
+ size
;
1696 /* Map and zero the bss. We need to explicitly zero any fractional pages
1697 after the data section (i.e. bss). */
1698 static void zero_bss(abi_ulong elf_bss
, abi_ulong last_bss
, int prot
)
1700 uintptr_t host_start
, host_map_start
, host_end
;
1702 last_bss
= TARGET_PAGE_ALIGN(last_bss
);
1704 /* ??? There is confusion between qemu_real_host_page_size and
1705 qemu_host_page_size here and elsewhere in target_mmap, which
1706 may lead to the end of the data section mapping from the file
1707 not being mapped. At least there was an explicit test and
1708 comment for that here, suggesting that "the file size must
1709 be known". The comment probably pre-dates the introduction
1710 of the fstat system call in target_mmap which does in fact
1711 find out the size. What isn't clear is if the workaround
1712 here is still actually needed. For now, continue with it,
1713 but merge it with the "normal" mmap that would allocate the bss. */
1715 host_start
= (uintptr_t) g2h(elf_bss
);
1716 host_end
= (uintptr_t) g2h(last_bss
);
1717 host_map_start
= REAL_HOST_PAGE_ALIGN(host_start
);
1719 if (host_map_start
< host_end
) {
1720 void *p
= mmap((void *)host_map_start
, host_end
- host_map_start
,
1721 prot
, MAP_FIXED
| MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
1722 if (p
== MAP_FAILED
) {
1723 perror("cannot mmap brk");
1728 /* Ensure that the bss page(s) are valid */
1729 if ((page_get_flags(last_bss
-1) & prot
) != prot
) {
1730 page_set_flags(elf_bss
& TARGET_PAGE_MASK
, last_bss
, prot
| PAGE_VALID
);
1733 if (host_start
< host_map_start
) {
1734 memset((void *)host_start
, 0, host_map_start
- host_start
);
1739 static int elf_is_fdpic(struct elfhdr
*exec
)
1741 return exec
->e_ident
[EI_OSABI
] == ELFOSABI_ARM_FDPIC
;
1744 /* Default implementation, always false. */
1745 static int elf_is_fdpic(struct elfhdr
*exec
)
1751 static abi_ulong
loader_build_fdpic_loadmap(struct image_info
*info
, abi_ulong sp
)
1754 struct elf32_fdpic_loadseg
*loadsegs
= info
->loadsegs
;
1756 /* elf32_fdpic_loadseg */
1760 put_user_u32(loadsegs
[n
].addr
, sp
+0);
1761 put_user_u32(loadsegs
[n
].p_vaddr
, sp
+4);
1762 put_user_u32(loadsegs
[n
].p_memsz
, sp
+8);
1765 /* elf32_fdpic_loadmap */
1767 put_user_u16(0, sp
+0); /* version */
1768 put_user_u16(info
->nsegs
, sp
+2); /* nsegs */
1770 info
->personality
= PER_LINUX_FDPIC
;
1771 info
->loadmap_addr
= sp
;
1776 static abi_ulong
create_elf_tables(abi_ulong p
, int argc
, int envc
,
1777 struct elfhdr
*exec
,
1778 struct image_info
*info
,
1779 struct image_info
*interp_info
)
1782 abi_ulong u_argc
, u_argv
, u_envp
, u_auxv
;
1785 abi_ulong u_rand_bytes
;
1786 uint8_t k_rand_bytes
[16];
1787 abi_ulong u_platform
;
1788 const char *k_platform
;
1789 const int n
= sizeof(elf_addr_t
);
1793 /* Needs to be before we load the env/argc/... */
1794 if (elf_is_fdpic(exec
)) {
1795 /* Need 4 byte alignment for these structs */
1797 sp
= loader_build_fdpic_loadmap(info
, sp
);
1798 info
->other_info
= interp_info
;
1800 interp_info
->other_info
= info
;
1801 sp
= loader_build_fdpic_loadmap(interp_info
, sp
);
1802 info
->interpreter_loadmap_addr
= interp_info
->loadmap_addr
;
1803 info
->interpreter_pt_dynamic_addr
= interp_info
->pt_dynamic_addr
;
1805 info
->interpreter_loadmap_addr
= 0;
1806 info
->interpreter_pt_dynamic_addr
= 0;
1811 k_platform
= ELF_PLATFORM
;
1813 size_t len
= strlen(k_platform
) + 1;
1814 if (STACK_GROWS_DOWN
) {
1815 sp
-= (len
+ n
- 1) & ~(n
- 1);
1817 /* FIXME - check return value of memcpy_to_target() for failure */
1818 memcpy_to_target(sp
, k_platform
, len
);
1820 memcpy_to_target(sp
, k_platform
, len
);
1826 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1827 * the argv and envp pointers.
1829 if (STACK_GROWS_DOWN
) {
1830 sp
= QEMU_ALIGN_DOWN(sp
, 16);
1832 sp
= QEMU_ALIGN_UP(sp
, 16);
1836 * Generate 16 random bytes for userspace PRNG seeding (not
1837 * cryptically secure but it's not the aim of QEMU).
1839 for (i
= 0; i
< 16; i
++) {
1840 k_rand_bytes
[i
] = rand();
1842 if (STACK_GROWS_DOWN
) {
1845 /* FIXME - check return value of memcpy_to_target() for failure */
1846 memcpy_to_target(sp
, k_rand_bytes
, 16);
1848 memcpy_to_target(sp
, k_rand_bytes
, 16);
1853 size
= (DLINFO_ITEMS
+ 1) * 2;
1856 #ifdef DLINFO_ARCH_ITEMS
1857 size
+= DLINFO_ARCH_ITEMS
* 2;
1862 info
->auxv_len
= size
* n
;
1864 size
+= envc
+ argc
+ 2;
1865 size
+= 1; /* argc itself */
1868 /* Allocate space and finalize stack alignment for entry now. */
1869 if (STACK_GROWS_DOWN
) {
1870 u_argc
= QEMU_ALIGN_DOWN(sp
- size
, STACK_ALIGNMENT
);
1874 sp
= QEMU_ALIGN_UP(sp
+ size
, STACK_ALIGNMENT
);
1877 u_argv
= u_argc
+ n
;
1878 u_envp
= u_argv
+ (argc
+ 1) * n
;
1879 u_auxv
= u_envp
+ (envc
+ 1) * n
;
1880 info
->saved_auxv
= u_auxv
;
1881 info
->arg_start
= u_argv
;
1882 info
->arg_end
= u_argv
+ argc
* n
;
1884 /* This is correct because Linux defines
1885 * elf_addr_t as Elf32_Off / Elf64_Off
1887 #define NEW_AUX_ENT(id, val) do { \
1888 put_user_ual(id, u_auxv); u_auxv += n; \
1889 put_user_ual(val, u_auxv); u_auxv += n; \
1894 * ARCH_DLINFO must come first so platform specific code can enforce
1895 * special alignment requirements on the AUXV if necessary (eg. PPC).
1899 /* There must be exactly DLINFO_ITEMS entries here, or the assert
1900 * on info->auxv_len will trigger.
1902 NEW_AUX_ENT(AT_PHDR
, (abi_ulong
)(info
->load_addr
+ exec
->e_phoff
));
1903 NEW_AUX_ENT(AT_PHENT
, (abi_ulong
)(sizeof (struct elf_phdr
)));
1904 NEW_AUX_ENT(AT_PHNUM
, (abi_ulong
)(exec
->e_phnum
));
1905 if ((info
->alignment
& ~qemu_host_page_mask
) != 0) {
1906 /* Target doesn't support host page size alignment */
1907 NEW_AUX_ENT(AT_PAGESZ
, (abi_ulong
)(TARGET_PAGE_SIZE
));
1909 NEW_AUX_ENT(AT_PAGESZ
, (abi_ulong
)(MAX(TARGET_PAGE_SIZE
,
1910 qemu_host_page_size
)));
1912 NEW_AUX_ENT(AT_BASE
, (abi_ulong
)(interp_info
? interp_info
->load_addr
: 0));
1913 NEW_AUX_ENT(AT_FLAGS
, (abi_ulong
)0);
1914 NEW_AUX_ENT(AT_ENTRY
, info
->entry
);
1915 NEW_AUX_ENT(AT_UID
, (abi_ulong
) getuid());
1916 NEW_AUX_ENT(AT_EUID
, (abi_ulong
) geteuid());
1917 NEW_AUX_ENT(AT_GID
, (abi_ulong
) getgid());
1918 NEW_AUX_ENT(AT_EGID
, (abi_ulong
) getegid());
1919 NEW_AUX_ENT(AT_HWCAP
, (abi_ulong
) ELF_HWCAP
);
1920 NEW_AUX_ENT(AT_CLKTCK
, (abi_ulong
) sysconf(_SC_CLK_TCK
));
1921 NEW_AUX_ENT(AT_RANDOM
, (abi_ulong
) u_rand_bytes
);
1922 NEW_AUX_ENT(AT_SECURE
, (abi_ulong
) qemu_getauxval(AT_SECURE
));
1925 NEW_AUX_ENT(AT_HWCAP2
, (abi_ulong
) ELF_HWCAP2
);
1929 NEW_AUX_ENT(AT_PLATFORM
, u_platform
);
1931 NEW_AUX_ENT (AT_NULL
, 0);
1934 /* Check that our initial calculation of the auxv length matches how much
1935 * we actually put into it.
1937 assert(info
->auxv_len
== u_auxv
- info
->saved_auxv
);
1939 put_user_ual(argc
, u_argc
);
1941 p
= info
->arg_strings
;
1942 for (i
= 0; i
< argc
; ++i
) {
1943 put_user_ual(p
, u_argv
);
1945 p
+= target_strlen(p
) + 1;
1947 put_user_ual(0, u_argv
);
1949 p
= info
->env_strings
;
1950 for (i
= 0; i
< envc
; ++i
) {
1951 put_user_ual(p
, u_envp
);
1953 p
+= target_strlen(p
) + 1;
1955 put_user_ual(0, u_envp
);
1960 unsigned long init_guest_space(unsigned long host_start
,
1961 unsigned long host_size
,
1962 unsigned long guest_start
,
1965 unsigned long current_start
, aligned_start
;
1968 assert(host_start
|| host_size
);
1970 /* If just a starting address is given, then just verify that
1972 if (host_start
&& !host_size
) {
1973 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1974 if (init_guest_commpage(host_start
, host_size
) != 1) {
1975 return (unsigned long)-1;
1981 /* Setup the initial flags and start address. */
1982 current_start
= host_start
& qemu_host_page_mask
;
1983 flags
= MAP_ANONYMOUS
| MAP_PRIVATE
| MAP_NORESERVE
;
1988 /* Otherwise, a non-zero size region of memory needs to be mapped
1991 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1992 /* On 32-bit ARM, we need to map not just the usable memory, but
1993 * also the commpage. Try to find a suitable place by allocating
1994 * a big chunk for all of it. If host_start, then the naive
1995 * strategy probably does good enough.
1998 unsigned long guest_full_size
, host_full_size
, real_start
;
2001 (0xffff0f00 & qemu_host_page_mask
) + qemu_host_page_size
;
2002 host_full_size
= guest_full_size
- guest_start
;
2003 real_start
= (unsigned long)
2004 mmap(NULL
, host_full_size
, PROT_NONE
, flags
, -1, 0);
2005 if (real_start
== (unsigned long)-1) {
2006 if (host_size
< host_full_size
- qemu_host_page_size
) {
2007 /* We failed to map a continous segment, but we're
2008 * allowed to have a gap between the usable memory and
2009 * the commpage where other things can be mapped.
2010 * This sparseness gives us more flexibility to find
2015 return (unsigned long)-1;
2017 munmap((void *)real_start
, host_full_size
);
2018 if (real_start
& ~qemu_host_page_mask
) {
2019 /* The same thing again, but with an extra qemu_host_page_size
2020 * so that we can shift around alignment.
2022 unsigned long real_size
= host_full_size
+ qemu_host_page_size
;
2023 real_start
= (unsigned long)
2024 mmap(NULL
, real_size
, PROT_NONE
, flags
, -1, 0);
2025 if (real_start
== (unsigned long)-1) {
2026 if (host_size
< host_full_size
- qemu_host_page_size
) {
2029 return (unsigned long)-1;
2031 munmap((void *)real_start
, real_size
);
2032 real_start
= HOST_PAGE_ALIGN(real_start
);
2034 current_start
= real_start
;
2040 unsigned long real_start
, real_size
, aligned_size
;
2041 aligned_size
= real_size
= host_size
;
2043 /* Do not use mmap_find_vma here because that is limited to the
2044 * guest address space. We are going to make the
2045 * guest address space fit whatever we're given.
2047 real_start
= (unsigned long)
2048 mmap((void *)current_start
, host_size
, PROT_NONE
, flags
, -1, 0);
2049 if (real_start
== (unsigned long)-1) {
2050 return (unsigned long)-1;
2053 /* Check to see if the address is valid. */
2054 if (host_start
&& real_start
!= current_start
) {
2058 /* Ensure the address is properly aligned. */
2059 if (real_start
& ~qemu_host_page_mask
) {
2060 /* Ideally, we adjust like
2062 * pages: [ ][ ][ ][ ][ ]
2068 * But if there is something else mapped right after it,
2069 * then obviously it won't have room to grow, and the
2070 * kernel will put the new larger real someplace else with
2071 * unknown alignment (if we made it to here, then
2072 * fixed=false). Which is why we grow real by a full page
2073 * size, instead of by part of one; so that even if we get
2074 * moved, we can still guarantee alignment. But this does
2075 * mean that there is a padding of < 1 page both before
2076 * and after the aligned range; the "after" could could
2077 * cause problems for ARM emulation where it could butt in
2078 * to where we need to put the commpage.
2080 munmap((void *)real_start
, host_size
);
2081 real_size
= aligned_size
+ qemu_host_page_size
;
2082 real_start
= (unsigned long)
2083 mmap((void *)real_start
, real_size
, PROT_NONE
, flags
, -1, 0);
2084 if (real_start
== (unsigned long)-1) {
2085 return (unsigned long)-1;
2087 aligned_start
= HOST_PAGE_ALIGN(real_start
);
2089 aligned_start
= real_start
;
2092 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2093 /* On 32-bit ARM, we need to also be able to map the commpage. */
2094 int valid
= init_guest_commpage(aligned_start
- guest_start
,
2095 aligned_size
+ guest_start
);
2097 munmap((void *)real_start
, real_size
);
2098 return (unsigned long)-1;
2099 } else if (valid
== 0) {
2104 /* If nothing has said `return -1` or `goto try_again` yet,
2105 * then the address we have is good.
2110 /* That address didn't work. Unmap and try a different one.
2111 * The address the host picked because is typically right at
2112 * the top of the host address space and leaves the guest with
2113 * no usable address space. Resort to a linear search. We
2114 * already compensated for mmap_min_addr, so this should not
2115 * happen often. Probably means we got unlucky and host
2116 * address space randomization put a shared library somewhere
2119 * This is probably a good strategy if host_start, but is
2120 * probably a bad strategy if not, which means we got here
2121 * because of trouble with ARM commpage setup.
2123 munmap((void *)real_start
, real_size
);
2124 current_start
+= qemu_host_page_size
;
2125 if (host_start
== current_start
) {
2126 /* Theoretically possible if host doesn't have any suitably
2127 * aligned areas. Normally the first mmap will fail.
2129 return (unsigned long)-1;
2133 qemu_log_mask(CPU_LOG_PAGE
, "Reserved 0x%lx bytes of guest address space\n", host_size
);
2135 return aligned_start
;
2138 static void probe_guest_base(const char *image_name
,
2139 abi_ulong loaddr
, abi_ulong hiaddr
)
2141 /* Probe for a suitable guest base address, if the user has not set
2142 * it explicitly, and set guest_base appropriately.
2143 * In case of error we will print a suitable message and exit.
2146 if (!have_guest_base
&& !reserved_va
) {
2147 unsigned long host_start
, real_start
, host_size
;
2149 /* Round addresses to page boundaries. */
2150 loaddr
&= qemu_host_page_mask
;
2151 hiaddr
= HOST_PAGE_ALIGN(hiaddr
);
2153 if (loaddr
< mmap_min_addr
) {
2154 host_start
= HOST_PAGE_ALIGN(mmap_min_addr
);
2156 host_start
= loaddr
;
2157 if (host_start
!= loaddr
) {
2158 errmsg
= "Address overflow loading ELF binary";
2162 host_size
= hiaddr
- loaddr
;
2164 /* Setup the initial guest memory space with ranges gleaned from
2165 * the ELF image that is being loaded.
2167 real_start
= init_guest_space(host_start
, host_size
, loaddr
, false);
2168 if (real_start
== (unsigned long)-1) {
2169 errmsg
= "Unable to find space for application";
2172 guest_base
= real_start
- loaddr
;
2174 qemu_log_mask(CPU_LOG_PAGE
, "Relocating guest address space from 0x"
2175 TARGET_ABI_FMT_lx
" to 0x%lx\n",
2176 loaddr
, real_start
);
2181 fprintf(stderr
, "%s: %s\n", image_name
, errmsg
);
2186 /* Load an ELF image into the address space.
2188 IMAGE_NAME is the filename of the image, to use in error messages.
2189 IMAGE_FD is the open file descriptor for the image.
2191 BPRM_BUF is a copy of the beginning of the file; this of course
2192 contains the elf file header at offset 0. It is assumed that this
2193 buffer is sufficiently aligned to present no problems to the host
2194 in accessing data at aligned offsets within the buffer.
2196 On return: INFO values will be filled in, as necessary or available. */
2198 static void load_elf_image(const char *image_name
, int image_fd
,
2199 struct image_info
*info
, char **pinterp_name
,
2200 char bprm_buf
[BPRM_BUF_SIZE
])
2202 struct elfhdr
*ehdr
= (struct elfhdr
*)bprm_buf
;
2203 struct elf_phdr
*phdr
;
2204 abi_ulong load_addr
, load_bias
, loaddr
, hiaddr
, error
;
2208 /* First of all, some simple consistency checks */
2209 errmsg
= "Invalid ELF image for this architecture";
2210 if (!elf_check_ident(ehdr
)) {
2214 if (!elf_check_ehdr(ehdr
)) {
2218 i
= ehdr
->e_phnum
* sizeof(struct elf_phdr
);
2219 if (ehdr
->e_phoff
+ i
<= BPRM_BUF_SIZE
) {
2220 phdr
= (struct elf_phdr
*)(bprm_buf
+ ehdr
->e_phoff
);
2222 phdr
= (struct elf_phdr
*) alloca(i
);
2223 retval
= pread(image_fd
, phdr
, i
, ehdr
->e_phoff
);
2228 bswap_phdr(phdr
, ehdr
->e_phnum
);
2231 info
->pt_dynamic_addr
= 0;
2235 /* Find the maximum size of the image and allocate an appropriate
2236 amount of memory to handle that. */
2237 loaddr
= -1, hiaddr
= 0;
2238 info
->alignment
= 0;
2239 for (i
= 0; i
< ehdr
->e_phnum
; ++i
) {
2240 if (phdr
[i
].p_type
== PT_LOAD
) {
2241 abi_ulong a
= phdr
[i
].p_vaddr
- phdr
[i
].p_offset
;
2245 a
= phdr
[i
].p_vaddr
+ phdr
[i
].p_memsz
;
2250 info
->alignment
|= phdr
[i
].p_align
;
2255 if (ehdr
->e_type
== ET_DYN
) {
2256 /* The image indicates that it can be loaded anywhere. Find a
2257 location that can hold the memory space required. If the
2258 image is pre-linked, LOADDR will be non-zero. Since we do
2259 not supply MAP_FIXED here we'll use that address if and
2260 only if it remains available. */
2261 load_addr
= target_mmap(loaddr
, hiaddr
- loaddr
, PROT_NONE
,
2262 MAP_PRIVATE
| MAP_ANON
| MAP_NORESERVE
,
2264 if (load_addr
== -1) {
2267 } else if (pinterp_name
!= NULL
) {
2268 /* This is the main executable. Make sure that the low
2269 address does not conflict with MMAP_MIN_ADDR or the
2270 QEMU application itself. */
2271 probe_guest_base(image_name
, loaddr
, hiaddr
);
2273 load_bias
= load_addr
- loaddr
;
2275 if (elf_is_fdpic(ehdr
)) {
2276 struct elf32_fdpic_loadseg
*loadsegs
= info
->loadsegs
=
2277 g_malloc(sizeof(*loadsegs
) * info
->nsegs
);
2279 for (i
= 0; i
< ehdr
->e_phnum
; ++i
) {
2280 switch (phdr
[i
].p_type
) {
2282 info
->pt_dynamic_addr
= phdr
[i
].p_vaddr
+ load_bias
;
2285 loadsegs
->addr
= phdr
[i
].p_vaddr
+ load_bias
;
2286 loadsegs
->p_vaddr
= phdr
[i
].p_vaddr
;
2287 loadsegs
->p_memsz
= phdr
[i
].p_memsz
;
2294 info
->load_bias
= load_bias
;
2295 info
->load_addr
= load_addr
;
2296 info
->entry
= ehdr
->e_entry
+ load_bias
;
2297 info
->start_code
= -1;
2299 info
->start_data
= -1;
2302 info
->elf_flags
= ehdr
->e_flags
;
2304 for (i
= 0; i
< ehdr
->e_phnum
; i
++) {
2305 struct elf_phdr
*eppnt
= phdr
+ i
;
2306 if (eppnt
->p_type
== PT_LOAD
) {
2307 abi_ulong vaddr
, vaddr_po
, vaddr_ps
, vaddr_ef
, vaddr_em
, vaddr_len
;
2310 if (eppnt
->p_flags
& PF_R
) elf_prot
= PROT_READ
;
2311 if (eppnt
->p_flags
& PF_W
) elf_prot
|= PROT_WRITE
;
2312 if (eppnt
->p_flags
& PF_X
) elf_prot
|= PROT_EXEC
;
2314 vaddr
= load_bias
+ eppnt
->p_vaddr
;
2315 vaddr_po
= TARGET_ELF_PAGEOFFSET(vaddr
);
2316 vaddr_ps
= TARGET_ELF_PAGESTART(vaddr
);
2317 vaddr_len
= TARGET_ELF_PAGELENGTH(eppnt
->p_filesz
+ vaddr_po
);
2319 error
= target_mmap(vaddr_ps
, vaddr_len
,
2320 elf_prot
, MAP_PRIVATE
| MAP_FIXED
,
2321 image_fd
, eppnt
->p_offset
- vaddr_po
);
2326 vaddr_ef
= vaddr
+ eppnt
->p_filesz
;
2327 vaddr_em
= vaddr
+ eppnt
->p_memsz
;
2329 /* If the load segment requests extra zeros (e.g. bss), map it. */
2330 if (vaddr_ef
< vaddr_em
) {
2331 zero_bss(vaddr_ef
, vaddr_em
, elf_prot
);
2334 /* Find the full program boundaries. */
2335 if (elf_prot
& PROT_EXEC
) {
2336 if (vaddr
< info
->start_code
) {
2337 info
->start_code
= vaddr
;
2339 if (vaddr_ef
> info
->end_code
) {
2340 info
->end_code
= vaddr_ef
;
2343 if (elf_prot
& PROT_WRITE
) {
2344 if (vaddr
< info
->start_data
) {
2345 info
->start_data
= vaddr
;
2347 if (vaddr_ef
> info
->end_data
) {
2348 info
->end_data
= vaddr_ef
;
2350 if (vaddr_em
> info
->brk
) {
2351 info
->brk
= vaddr_em
;
2354 } else if (eppnt
->p_type
== PT_INTERP
&& pinterp_name
) {
2357 if (*pinterp_name
) {
2358 errmsg
= "Multiple PT_INTERP entries";
2361 interp_name
= malloc(eppnt
->p_filesz
);
2366 if (eppnt
->p_offset
+ eppnt
->p_filesz
<= BPRM_BUF_SIZE
) {
2367 memcpy(interp_name
, bprm_buf
+ eppnt
->p_offset
,
2370 retval
= pread(image_fd
, interp_name
, eppnt
->p_filesz
,
2372 if (retval
!= eppnt
->p_filesz
) {
2376 if (interp_name
[eppnt
->p_filesz
- 1] != 0) {
2377 errmsg
= "Invalid PT_INTERP entry";
2380 *pinterp_name
= interp_name
;
2382 } else if (eppnt
->p_type
== PT_MIPS_ABIFLAGS
) {
2383 Mips_elf_abiflags_v0 abiflags
;
2384 if (eppnt
->p_filesz
< sizeof(Mips_elf_abiflags_v0
)) {
2385 errmsg
= "Invalid PT_MIPS_ABIFLAGS entry";
2388 if (eppnt
->p_offset
+ eppnt
->p_filesz
<= BPRM_BUF_SIZE
) {
2389 memcpy(&abiflags
, bprm_buf
+ eppnt
->p_offset
,
2390 sizeof(Mips_elf_abiflags_v0
));
2392 retval
= pread(image_fd
, &abiflags
, sizeof(Mips_elf_abiflags_v0
),
2394 if (retval
!= sizeof(Mips_elf_abiflags_v0
)) {
2398 bswap_mips_abiflags(&abiflags
);
2399 info
->fp_abi
= abiflags
.fp_abi
;
2404 if (info
->end_data
== 0) {
2405 info
->start_data
= info
->end_code
;
2406 info
->end_data
= info
->end_code
;
2407 info
->brk
= info
->end_code
;
2410 if (qemu_log_enabled()) {
2411 load_symbols(ehdr
, image_fd
, load_bias
);
2421 errmsg
= "Incomplete read of file header";
2425 errmsg
= strerror(errno
);
2427 fprintf(stderr
, "%s: %s\n", image_name
, errmsg
);
2431 static void load_elf_interp(const char *filename
, struct image_info
*info
,
2432 char bprm_buf
[BPRM_BUF_SIZE
])
2436 fd
= open(path(filename
), O_RDONLY
);
2441 retval
= read(fd
, bprm_buf
, BPRM_BUF_SIZE
);
2445 if (retval
< BPRM_BUF_SIZE
) {
2446 memset(bprm_buf
+ retval
, 0, BPRM_BUF_SIZE
- retval
);
2449 load_elf_image(filename
, fd
, info
, NULL
, bprm_buf
);
2453 fprintf(stderr
, "%s: %s\n", filename
, strerror(errno
));
2457 static int symfind(const void *s0
, const void *s1
)
2459 target_ulong addr
= *(target_ulong
*)s0
;
2460 struct elf_sym
*sym
= (struct elf_sym
*)s1
;
2462 if (addr
< sym
->st_value
) {
2464 } else if (addr
>= sym
->st_value
+ sym
->st_size
) {
2470 static const char *lookup_symbolxx(struct syminfo
*s
, target_ulong orig_addr
)
2472 #if ELF_CLASS == ELFCLASS32
2473 struct elf_sym
*syms
= s
->disas_symtab
.elf32
;
2475 struct elf_sym
*syms
= s
->disas_symtab
.elf64
;
2479 struct elf_sym
*sym
;
2481 sym
= bsearch(&orig_addr
, syms
, s
->disas_num_syms
, sizeof(*syms
), symfind
);
2483 return s
->disas_strtab
+ sym
->st_name
;
2489 /* FIXME: This should use elf_ops.h */
2490 static int symcmp(const void *s0
, const void *s1
)
2492 struct elf_sym
*sym0
= (struct elf_sym
*)s0
;
2493 struct elf_sym
*sym1
= (struct elf_sym
*)s1
;
2494 return (sym0
->st_value
< sym1
->st_value
)
2496 : ((sym0
->st_value
> sym1
->st_value
) ? 1 : 0);
2499 /* Best attempt to load symbols from this ELF object. */
2500 static void load_symbols(struct elfhdr
*hdr
, int fd
, abi_ulong load_bias
)
2502 int i
, shnum
, nsyms
, sym_idx
= 0, str_idx
= 0;
2504 struct elf_shdr
*shdr
;
2505 char *strings
= NULL
;
2506 struct syminfo
*s
= NULL
;
2507 struct elf_sym
*new_syms
, *syms
= NULL
;
2509 shnum
= hdr
->e_shnum
;
2510 i
= shnum
* sizeof(struct elf_shdr
);
2511 shdr
= (struct elf_shdr
*)alloca(i
);
2512 if (pread(fd
, shdr
, i
, hdr
->e_shoff
) != i
) {
2516 bswap_shdr(shdr
, shnum
);
2517 for (i
= 0; i
< shnum
; ++i
) {
2518 if (shdr
[i
].sh_type
== SHT_SYMTAB
) {
2520 str_idx
= shdr
[i
].sh_link
;
2525 /* There will be no symbol table if the file was stripped. */
2529 /* Now know where the strtab and symtab are. Snarf them. */
2530 s
= g_try_new(struct syminfo
, 1);
2535 segsz
= shdr
[str_idx
].sh_size
;
2536 s
->disas_strtab
= strings
= g_try_malloc(segsz
);
2538 pread(fd
, strings
, segsz
, shdr
[str_idx
].sh_offset
) != segsz
) {
2542 segsz
= shdr
[sym_idx
].sh_size
;
2543 syms
= g_try_malloc(segsz
);
2544 if (!syms
|| pread(fd
, syms
, segsz
, shdr
[sym_idx
].sh_offset
) != segsz
) {
2548 if (segsz
/ sizeof(struct elf_sym
) > INT_MAX
) {
2549 /* Implausibly large symbol table: give up rather than ploughing
2550 * on with the number of symbols calculation overflowing
2554 nsyms
= segsz
/ sizeof(struct elf_sym
);
2555 for (i
= 0; i
< nsyms
; ) {
2556 bswap_sym(syms
+ i
);
2557 /* Throw away entries which we do not need. */
2558 if (syms
[i
].st_shndx
== SHN_UNDEF
2559 || syms
[i
].st_shndx
>= SHN_LORESERVE
2560 || ELF_ST_TYPE(syms
[i
].st_info
) != STT_FUNC
) {
2562 syms
[i
] = syms
[nsyms
];
2565 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2566 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2567 syms
[i
].st_value
&= ~(target_ulong
)1;
2569 syms
[i
].st_value
+= load_bias
;
2574 /* No "useful" symbol. */
2579 /* Attempt to free the storage associated with the local symbols
2580 that we threw away. Whether or not this has any effect on the
2581 memory allocation depends on the malloc implementation and how
2582 many symbols we managed to discard. */
2583 new_syms
= g_try_renew(struct elf_sym
, syms
, nsyms
);
2584 if (new_syms
== NULL
) {
2589 qsort(syms
, nsyms
, sizeof(*syms
), symcmp
);
2591 s
->disas_num_syms
= nsyms
;
2592 #if ELF_CLASS == ELFCLASS32
2593 s
->disas_symtab
.elf32
= syms
;
2595 s
->disas_symtab
.elf64
= syms
;
2597 s
->lookup_symbol
= lookup_symbolxx
;
2609 uint32_t get_elf_eflags(int fd
)
2615 /* Read ELF header */
2616 offset
= lseek(fd
, 0, SEEK_SET
);
2617 if (offset
== (off_t
) -1) {
2620 ret
= read(fd
, &ehdr
, sizeof(ehdr
));
2621 if (ret
< sizeof(ehdr
)) {
2624 offset
= lseek(fd
, offset
, SEEK_SET
);
2625 if (offset
== (off_t
) -1) {
2629 /* Check ELF signature */
2630 if (!elf_check_ident(&ehdr
)) {
2636 if (!elf_check_ehdr(&ehdr
)) {
2640 /* return architecture id */
2641 return ehdr
.e_flags
;
2644 int load_elf_binary(struct linux_binprm
*bprm
, struct image_info
*info
)
2646 struct image_info interp_info
;
2647 struct elfhdr elf_ex
;
2648 char *elf_interpreter
= NULL
;
2651 info
->start_mmap
= (abi_ulong
)ELF_START_MMAP
;
2653 load_elf_image(bprm
->filename
, bprm
->fd
, info
,
2654 &elf_interpreter
, bprm
->buf
);
2656 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2657 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2658 when we load the interpreter. */
2659 elf_ex
= *(struct elfhdr
*)bprm
->buf
;
2661 /* Do this so that we can load the interpreter, if need be. We will
2662 change some of these later */
2663 bprm
->p
= setup_arg_pages(bprm
, info
);
2665 scratch
= g_new0(char, TARGET_PAGE_SIZE
);
2666 if (STACK_GROWS_DOWN
) {
2667 bprm
->p
= copy_elf_strings(1, &bprm
->filename
, scratch
,
2668 bprm
->p
, info
->stack_limit
);
2669 info
->file_string
= bprm
->p
;
2670 bprm
->p
= copy_elf_strings(bprm
->envc
, bprm
->envp
, scratch
,
2671 bprm
->p
, info
->stack_limit
);
2672 info
->env_strings
= bprm
->p
;
2673 bprm
->p
= copy_elf_strings(bprm
->argc
, bprm
->argv
, scratch
,
2674 bprm
->p
, info
->stack_limit
);
2675 info
->arg_strings
= bprm
->p
;
2677 info
->arg_strings
= bprm
->p
;
2678 bprm
->p
= copy_elf_strings(bprm
->argc
, bprm
->argv
, scratch
,
2679 bprm
->p
, info
->stack_limit
);
2680 info
->env_strings
= bprm
->p
;
2681 bprm
->p
= copy_elf_strings(bprm
->envc
, bprm
->envp
, scratch
,
2682 bprm
->p
, info
->stack_limit
);
2683 info
->file_string
= bprm
->p
;
2684 bprm
->p
= copy_elf_strings(1, &bprm
->filename
, scratch
,
2685 bprm
->p
, info
->stack_limit
);
2691 fprintf(stderr
, "%s: %s\n", bprm
->filename
, strerror(E2BIG
));
2695 if (elf_interpreter
) {
2696 load_elf_interp(elf_interpreter
, &interp_info
, bprm
->buf
);
2698 /* If the program interpreter is one of these two, then assume
2699 an iBCS2 image. Otherwise assume a native linux image. */
2701 if (strcmp(elf_interpreter
, "/usr/lib/libc.so.1") == 0
2702 || strcmp(elf_interpreter
, "/usr/lib/ld.so.1") == 0) {
2703 info
->personality
= PER_SVR4
;
2705 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2706 and some applications "depend" upon this behavior. Since
2707 we do not have the power to recompile these, we emulate
2708 the SVr4 behavior. Sigh. */
2709 target_mmap(0, qemu_host_page_size
, PROT_READ
| PROT_EXEC
,
2710 MAP_FIXED
| MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
2713 info
->interp_fp_abi
= interp_info
.fp_abi
;
2717 bprm
->p
= create_elf_tables(bprm
->p
, bprm
->argc
, bprm
->envc
, &elf_ex
,
2718 info
, (elf_interpreter
? &interp_info
: NULL
));
2719 info
->start_stack
= bprm
->p
;
2721 /* If we have an interpreter, set that as the program's entry point.
2722 Copy the load_bias as well, to help PPC64 interpret the entry
2723 point as a function descriptor. Do this after creating elf tables
2724 so that we copy the original program entry point into the AUXV. */
2725 if (elf_interpreter
) {
2726 info
->load_bias
= interp_info
.load_bias
;
2727 info
->entry
= interp_info
.entry
;
2728 free(elf_interpreter
);
2731 #ifdef USE_ELF_CORE_DUMP
2732 bprm
->core_dump
= &elf_core_dump
;
2738 #ifdef USE_ELF_CORE_DUMP
2740 * Definitions to generate Intel SVR4-like core files.
2741 * These mostly have the same names as the SVR4 types with "target_elf_"
2742 * tacked on the front to prevent clashes with linux definitions,
2743 * and the typedef forms have been avoided. This is mostly like
2744 * the SVR4 structure, but more Linuxy, with things that Linux does
2745 * not support and which gdb doesn't really use excluded.
2747 * Fields we don't dump (their contents is zero) in linux-user qemu
2748 * are marked with XXX.
2750 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2752 * Porting ELF coredump for target is (quite) simple process. First you
2753 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2754 * the target resides):
2756 * #define USE_ELF_CORE_DUMP
2758 * Next you define type of register set used for dumping. ELF specification
2759 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2761 * typedef <target_regtype> target_elf_greg_t;
2762 * #define ELF_NREG <number of registers>
2763 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2765 * Last step is to implement target specific function that copies registers
2766 * from given cpu into just specified register set. Prototype is:
2768 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2769 * const CPUArchState *env);
2772 * regs - copy register values into here (allocated and zeroed by caller)
2773 * env - copy registers from here
2775 * Example for ARM target is provided in this file.
2778 /* An ELF note in memory */
2782 size_t namesz_rounded
;
2785 size_t datasz_rounded
;
2790 struct target_elf_siginfo
{
2791 abi_int si_signo
; /* signal number */
2792 abi_int si_code
; /* extra code */
2793 abi_int si_errno
; /* errno */
2796 struct target_elf_prstatus
{
2797 struct target_elf_siginfo pr_info
; /* Info associated with signal */
2798 abi_short pr_cursig
; /* Current signal */
2799 abi_ulong pr_sigpend
; /* XXX */
2800 abi_ulong pr_sighold
; /* XXX */
2801 target_pid_t pr_pid
;
2802 target_pid_t pr_ppid
;
2803 target_pid_t pr_pgrp
;
2804 target_pid_t pr_sid
;
2805 struct target_timeval pr_utime
; /* XXX User time */
2806 struct target_timeval pr_stime
; /* XXX System time */
2807 struct target_timeval pr_cutime
; /* XXX Cumulative user time */
2808 struct target_timeval pr_cstime
; /* XXX Cumulative system time */
2809 target_elf_gregset_t pr_reg
; /* GP registers */
2810 abi_int pr_fpvalid
; /* XXX */
2813 #define ELF_PRARGSZ (80) /* Number of chars for args */
2815 struct target_elf_prpsinfo
{
2816 char pr_state
; /* numeric process state */
2817 char pr_sname
; /* char for pr_state */
2818 char pr_zomb
; /* zombie */
2819 char pr_nice
; /* nice val */
2820 abi_ulong pr_flag
; /* flags */
2821 target_uid_t pr_uid
;
2822 target_gid_t pr_gid
;
2823 target_pid_t pr_pid
, pr_ppid
, pr_pgrp
, pr_sid
;
2825 char pr_fname
[16]; /* filename of executable */
2826 char pr_psargs
[ELF_PRARGSZ
]; /* initial part of arg list */
2829 /* Here is the structure in which status of each thread is captured. */
2830 struct elf_thread_status
{
2831 QTAILQ_ENTRY(elf_thread_status
) ets_link
;
2832 struct target_elf_prstatus prstatus
; /* NT_PRSTATUS */
2834 elf_fpregset_t fpu
; /* NT_PRFPREG */
2835 struct task_struct
*thread
;
2836 elf_fpxregset_t xfpu
; /* ELF_CORE_XFPREG_TYPE */
2838 struct memelfnote notes
[1];
2842 struct elf_note_info
{
2843 struct memelfnote
*notes
;
2844 struct target_elf_prstatus
*prstatus
; /* NT_PRSTATUS */
2845 struct target_elf_prpsinfo
*psinfo
; /* NT_PRPSINFO */
2847 QTAILQ_HEAD(, elf_thread_status
) thread_list
;
2850 * Current version of ELF coredump doesn't support
2851 * dumping fp regs etc.
2853 elf_fpregset_t
*fpu
;
2854 elf_fpxregset_t
*xfpu
;
2855 int thread_status_size
;
2861 struct vm_area_struct
{
2862 target_ulong vma_start
; /* start vaddr of memory region */
2863 target_ulong vma_end
; /* end vaddr of memory region */
2864 abi_ulong vma_flags
; /* protection etc. flags for the region */
2865 QTAILQ_ENTRY(vm_area_struct
) vma_link
;
2869 QTAILQ_HEAD(, vm_area_struct
) mm_mmap
;
2870 int mm_count
; /* number of mappings */
2873 static struct mm_struct
*vma_init(void);
2874 static void vma_delete(struct mm_struct
*);
2875 static int vma_add_mapping(struct mm_struct
*, target_ulong
,
2876 target_ulong
, abi_ulong
);
2877 static int vma_get_mapping_count(const struct mm_struct
*);
2878 static struct vm_area_struct
*vma_first(const struct mm_struct
*);
2879 static struct vm_area_struct
*vma_next(struct vm_area_struct
*);
2880 static abi_ulong
vma_dump_size(const struct vm_area_struct
*);
2881 static int vma_walker(void *priv
, target_ulong start
, target_ulong end
,
2882 unsigned long flags
);
2884 static void fill_elf_header(struct elfhdr
*, int, uint16_t, uint32_t);
2885 static void fill_note(struct memelfnote
*, const char *, int,
2886 unsigned int, void *);
2887 static void fill_prstatus(struct target_elf_prstatus
*, const TaskState
*, int);
2888 static int fill_psinfo(struct target_elf_prpsinfo
*, const TaskState
*);
2889 static void fill_auxv_note(struct memelfnote
*, const TaskState
*);
2890 static void fill_elf_note_phdr(struct elf_phdr
*, int, off_t
);
2891 static size_t note_size(const struct memelfnote
*);
2892 static void free_note_info(struct elf_note_info
*);
2893 static int fill_note_info(struct elf_note_info
*, long, const CPUArchState
*);
2894 static void fill_thread_info(struct elf_note_info
*, const CPUArchState
*);
2895 static int core_dump_filename(const TaskState
*, char *, size_t);
2897 static int dump_write(int, const void *, size_t);
2898 static int write_note(struct memelfnote
*, int);
2899 static int write_note_info(struct elf_note_info
*, int);
2902 static void bswap_prstatus(struct target_elf_prstatus
*prstatus
)
2904 prstatus
->pr_info
.si_signo
= tswap32(prstatus
->pr_info
.si_signo
);
2905 prstatus
->pr_info
.si_code
= tswap32(prstatus
->pr_info
.si_code
);
2906 prstatus
->pr_info
.si_errno
= tswap32(prstatus
->pr_info
.si_errno
);
2907 prstatus
->pr_cursig
= tswap16(prstatus
->pr_cursig
);
2908 prstatus
->pr_sigpend
= tswapal(prstatus
->pr_sigpend
);
2909 prstatus
->pr_sighold
= tswapal(prstatus
->pr_sighold
);
2910 prstatus
->pr_pid
= tswap32(prstatus
->pr_pid
);
2911 prstatus
->pr_ppid
= tswap32(prstatus
->pr_ppid
);
2912 prstatus
->pr_pgrp
= tswap32(prstatus
->pr_pgrp
);
2913 prstatus
->pr_sid
= tswap32(prstatus
->pr_sid
);
2914 /* cpu times are not filled, so we skip them */
2915 /* regs should be in correct format already */
2916 prstatus
->pr_fpvalid
= tswap32(prstatus
->pr_fpvalid
);
2919 static void bswap_psinfo(struct target_elf_prpsinfo
*psinfo
)
2921 psinfo
->pr_flag
= tswapal(psinfo
->pr_flag
);
2922 psinfo
->pr_uid
= tswap16(psinfo
->pr_uid
);
2923 psinfo
->pr_gid
= tswap16(psinfo
->pr_gid
);
2924 psinfo
->pr_pid
= tswap32(psinfo
->pr_pid
);
2925 psinfo
->pr_ppid
= tswap32(psinfo
->pr_ppid
);
2926 psinfo
->pr_pgrp
= tswap32(psinfo
->pr_pgrp
);
2927 psinfo
->pr_sid
= tswap32(psinfo
->pr_sid
);
2930 static void bswap_note(struct elf_note
*en
)
2932 bswap32s(&en
->n_namesz
);
2933 bswap32s(&en
->n_descsz
);
2934 bswap32s(&en
->n_type
);
2937 static inline void bswap_prstatus(struct target_elf_prstatus
*p
) { }
2938 static inline void bswap_psinfo(struct target_elf_prpsinfo
*p
) {}
2939 static inline void bswap_note(struct elf_note
*en
) { }
2940 #endif /* BSWAP_NEEDED */
2943 * Minimal support for linux memory regions. These are needed
2944 * when we are finding out what memory exactly belongs to
2945 * emulated process. No locks needed here, as long as
2946 * thread that received the signal is stopped.
2949 static struct mm_struct
*vma_init(void)
2951 struct mm_struct
*mm
;
2953 if ((mm
= g_malloc(sizeof (*mm
))) == NULL
)
2957 QTAILQ_INIT(&mm
->mm_mmap
);
2962 static void vma_delete(struct mm_struct
*mm
)
2964 struct vm_area_struct
*vma
;
2966 while ((vma
= vma_first(mm
)) != NULL
) {
2967 QTAILQ_REMOVE(&mm
->mm_mmap
, vma
, vma_link
);
2973 static int vma_add_mapping(struct mm_struct
*mm
, target_ulong start
,
2974 target_ulong end
, abi_ulong flags
)
2976 struct vm_area_struct
*vma
;
2978 if ((vma
= g_malloc0(sizeof (*vma
))) == NULL
)
2981 vma
->vma_start
= start
;
2983 vma
->vma_flags
= flags
;
2985 QTAILQ_INSERT_TAIL(&mm
->mm_mmap
, vma
, vma_link
);
2991 static struct vm_area_struct
*vma_first(const struct mm_struct
*mm
)
2993 return (QTAILQ_FIRST(&mm
->mm_mmap
));
2996 static struct vm_area_struct
*vma_next(struct vm_area_struct
*vma
)
2998 return (QTAILQ_NEXT(vma
, vma_link
));
3001 static int vma_get_mapping_count(const struct mm_struct
*mm
)
3003 return (mm
->mm_count
);
3007 * Calculate file (dump) size of given memory region.
3009 static abi_ulong
vma_dump_size(const struct vm_area_struct
*vma
)
3011 /* if we cannot even read the first page, skip it */
3012 if (!access_ok(VERIFY_READ
, vma
->vma_start
, TARGET_PAGE_SIZE
))
3016 * Usually we don't dump executable pages as they contain
3017 * non-writable code that debugger can read directly from
3018 * target library etc. However, thread stacks are marked
3019 * also executable so we read in first page of given region
3020 * and check whether it contains elf header. If there is
3021 * no elf header, we dump it.
3023 if (vma
->vma_flags
& PROT_EXEC
) {
3024 char page
[TARGET_PAGE_SIZE
];
3026 copy_from_user(page
, vma
->vma_start
, sizeof (page
));
3027 if ((page
[EI_MAG0
] == ELFMAG0
) &&
3028 (page
[EI_MAG1
] == ELFMAG1
) &&
3029 (page
[EI_MAG2
] == ELFMAG2
) &&
3030 (page
[EI_MAG3
] == ELFMAG3
)) {
3032 * Mappings are possibly from ELF binary. Don't dump
3039 return (vma
->vma_end
- vma
->vma_start
);
3042 static int vma_walker(void *priv
, target_ulong start
, target_ulong end
,
3043 unsigned long flags
)
3045 struct mm_struct
*mm
= (struct mm_struct
*)priv
;
3047 vma_add_mapping(mm
, start
, end
, flags
);
3051 static void fill_note(struct memelfnote
*note
, const char *name
, int type
,
3052 unsigned int sz
, void *data
)
3054 unsigned int namesz
;
3056 namesz
= strlen(name
) + 1;
3058 note
->namesz
= namesz
;
3059 note
->namesz_rounded
= roundup(namesz
, sizeof (int32_t));
3062 note
->datasz_rounded
= roundup(sz
, sizeof (int32_t));
3067 * We calculate rounded up note size here as specified by
3070 note
->notesz
= sizeof (struct elf_note
) +
3071 note
->namesz_rounded
+ note
->datasz_rounded
;
3074 static void fill_elf_header(struct elfhdr
*elf
, int segs
, uint16_t machine
,
3077 (void) memset(elf
, 0, sizeof(*elf
));
3079 (void) memcpy(elf
->e_ident
, ELFMAG
, SELFMAG
);
3080 elf
->e_ident
[EI_CLASS
] = ELF_CLASS
;
3081 elf
->e_ident
[EI_DATA
] = ELF_DATA
;
3082 elf
->e_ident
[EI_VERSION
] = EV_CURRENT
;
3083 elf
->e_ident
[EI_OSABI
] = ELF_OSABI
;
3085 elf
->e_type
= ET_CORE
;
3086 elf
->e_machine
= machine
;
3087 elf
->e_version
= EV_CURRENT
;
3088 elf
->e_phoff
= sizeof(struct elfhdr
);
3089 elf
->e_flags
= flags
;
3090 elf
->e_ehsize
= sizeof(struct elfhdr
);
3091 elf
->e_phentsize
= sizeof(struct elf_phdr
);
3092 elf
->e_phnum
= segs
;
3097 static void fill_elf_note_phdr(struct elf_phdr
*phdr
, int sz
, off_t offset
)
3099 phdr
->p_type
= PT_NOTE
;
3100 phdr
->p_offset
= offset
;
3103 phdr
->p_filesz
= sz
;
3108 bswap_phdr(phdr
, 1);
3111 static size_t note_size(const struct memelfnote
*note
)
3113 return (note
->notesz
);
3116 static void fill_prstatus(struct target_elf_prstatus
*prstatus
,
3117 const TaskState
*ts
, int signr
)
3119 (void) memset(prstatus
, 0, sizeof (*prstatus
));
3120 prstatus
->pr_info
.si_signo
= prstatus
->pr_cursig
= signr
;
3121 prstatus
->pr_pid
= ts
->ts_tid
;
3122 prstatus
->pr_ppid
= getppid();
3123 prstatus
->pr_pgrp
= getpgrp();
3124 prstatus
->pr_sid
= getsid(0);
3126 bswap_prstatus(prstatus
);
3129 static int fill_psinfo(struct target_elf_prpsinfo
*psinfo
, const TaskState
*ts
)
3131 char *base_filename
;
3132 unsigned int i
, len
;
3134 (void) memset(psinfo
, 0, sizeof (*psinfo
));
3136 len
= ts
->info
->arg_end
- ts
->info
->arg_start
;
3137 if (len
>= ELF_PRARGSZ
)
3138 len
= ELF_PRARGSZ
- 1;
3139 if (copy_from_user(&psinfo
->pr_psargs
, ts
->info
->arg_start
, len
))
3141 for (i
= 0; i
< len
; i
++)
3142 if (psinfo
->pr_psargs
[i
] == 0)
3143 psinfo
->pr_psargs
[i
] = ' ';
3144 psinfo
->pr_psargs
[len
] = 0;
3146 psinfo
->pr_pid
= getpid();
3147 psinfo
->pr_ppid
= getppid();
3148 psinfo
->pr_pgrp
= getpgrp();
3149 psinfo
->pr_sid
= getsid(0);
3150 psinfo
->pr_uid
= getuid();
3151 psinfo
->pr_gid
= getgid();
3153 base_filename
= g_path_get_basename(ts
->bprm
->filename
);
3155 * Using strncpy here is fine: at max-length,
3156 * this field is not NUL-terminated.
3158 (void) strncpy(psinfo
->pr_fname
, base_filename
,
3159 sizeof(psinfo
->pr_fname
));
3161 g_free(base_filename
);
3162 bswap_psinfo(psinfo
);
3166 static void fill_auxv_note(struct memelfnote
*note
, const TaskState
*ts
)
3168 elf_addr_t auxv
= (elf_addr_t
)ts
->info
->saved_auxv
;
3169 elf_addr_t orig_auxv
= auxv
;
3171 int len
= ts
->info
->auxv_len
;
3174 * Auxiliary vector is stored in target process stack. It contains
3175 * {type, value} pairs that we need to dump into note. This is not
3176 * strictly necessary but we do it here for sake of completeness.
3179 /* read in whole auxv vector and copy it to memelfnote */
3180 ptr
= lock_user(VERIFY_READ
, orig_auxv
, len
, 0);
3182 fill_note(note
, "CORE", NT_AUXV
, len
, ptr
);
3183 unlock_user(ptr
, auxv
, len
);
3188 * Constructs name of coredump file. We have following convention
3190 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3192 * Returns 0 in case of success, -1 otherwise (errno is set).
3194 static int core_dump_filename(const TaskState
*ts
, char *buf
,
3198 char *base_filename
= NULL
;
3202 assert(bufsize
>= PATH_MAX
);
3204 if (gettimeofday(&tv
, NULL
) < 0) {
3205 (void) fprintf(stderr
, "unable to get current timestamp: %s",
3210 base_filename
= g_path_get_basename(ts
->bprm
->filename
);
3211 (void) strftime(timestamp
, sizeof (timestamp
), "%Y%m%d-%H%M%S",
3212 localtime_r(&tv
.tv_sec
, &tm
));
3213 (void) snprintf(buf
, bufsize
, "qemu_%s_%s_%d.core",
3214 base_filename
, timestamp
, (int)getpid());
3215 g_free(base_filename
);
3220 static int dump_write(int fd
, const void *ptr
, size_t size
)
3222 const char *bufp
= (const char *)ptr
;
3223 ssize_t bytes_written
, bytes_left
;
3224 struct rlimit dumpsize
;
3228 getrlimit(RLIMIT_CORE
, &dumpsize
);
3229 if ((pos
= lseek(fd
, 0, SEEK_CUR
))==-1) {
3230 if (errno
== ESPIPE
) { /* not a seekable stream */
3236 if (dumpsize
.rlim_cur
<= pos
) {
3238 } else if (dumpsize
.rlim_cur
== RLIM_INFINITY
) {
3241 size_t limit_left
=dumpsize
.rlim_cur
- pos
;
3242 bytes_left
= limit_left
>= size
? size
: limit_left
;
3247 * In normal conditions, single write(2) should do but
3248 * in case of socket etc. this mechanism is more portable.
3251 bytes_written
= write(fd
, bufp
, bytes_left
);
3252 if (bytes_written
< 0) {
3256 } else if (bytes_written
== 0) { /* eof */
3259 bufp
+= bytes_written
;
3260 bytes_left
-= bytes_written
;
3261 } while (bytes_left
> 0);
3266 static int write_note(struct memelfnote
*men
, int fd
)
3270 en
.n_namesz
= men
->namesz
;
3271 en
.n_type
= men
->type
;
3272 en
.n_descsz
= men
->datasz
;
3276 if (dump_write(fd
, &en
, sizeof(en
)) != 0)
3278 if (dump_write(fd
, men
->name
, men
->namesz_rounded
) != 0)
3280 if (dump_write(fd
, men
->data
, men
->datasz_rounded
) != 0)
3286 static void fill_thread_info(struct elf_note_info
*info
, const CPUArchState
*env
)
3288 CPUState
*cpu
= ENV_GET_CPU((CPUArchState
*)env
);
3289 TaskState
*ts
= (TaskState
*)cpu
->opaque
;
3290 struct elf_thread_status
*ets
;
3292 ets
= g_malloc0(sizeof (*ets
));
3293 ets
->num_notes
= 1; /* only prstatus is dumped */
3294 fill_prstatus(&ets
->prstatus
, ts
, 0);
3295 elf_core_copy_regs(&ets
->prstatus
.pr_reg
, env
);
3296 fill_note(&ets
->notes
[0], "CORE", NT_PRSTATUS
, sizeof (ets
->prstatus
),
3299 QTAILQ_INSERT_TAIL(&info
->thread_list
, ets
, ets_link
);
3301 info
->notes_size
+= note_size(&ets
->notes
[0]);
3304 static void init_note_info(struct elf_note_info
*info
)
3306 /* Initialize the elf_note_info structure so that it is at
3307 * least safe to call free_note_info() on it. Must be
3308 * called before calling fill_note_info().
3310 memset(info
, 0, sizeof (*info
));
3311 QTAILQ_INIT(&info
->thread_list
);
3314 static int fill_note_info(struct elf_note_info
*info
,
3315 long signr
, const CPUArchState
*env
)
3318 CPUState
*cpu
= ENV_GET_CPU((CPUArchState
*)env
);
3319 TaskState
*ts
= (TaskState
*)cpu
->opaque
;
3322 info
->notes
= g_new0(struct memelfnote
, NUMNOTES
);
3323 if (info
->notes
== NULL
)
3325 info
->prstatus
= g_malloc0(sizeof (*info
->prstatus
));
3326 if (info
->prstatus
== NULL
)
3328 info
->psinfo
= g_malloc0(sizeof (*info
->psinfo
));
3329 if (info
->prstatus
== NULL
)
3333 * First fill in status (and registers) of current thread
3334 * including process info & aux vector.
3336 fill_prstatus(info
->prstatus
, ts
, signr
);
3337 elf_core_copy_regs(&info
->prstatus
->pr_reg
, env
);
3338 fill_note(&info
->notes
[0], "CORE", NT_PRSTATUS
,
3339 sizeof (*info
->prstatus
), info
->prstatus
);
3340 fill_psinfo(info
->psinfo
, ts
);
3341 fill_note(&info
->notes
[1], "CORE", NT_PRPSINFO
,
3342 sizeof (*info
->psinfo
), info
->psinfo
);
3343 fill_auxv_note(&info
->notes
[2], ts
);
3346 info
->notes_size
= 0;
3347 for (i
= 0; i
< info
->numnote
; i
++)
3348 info
->notes_size
+= note_size(&info
->notes
[i
]);
3350 /* read and fill status of all threads */
3353 if (cpu
== thread_cpu
) {
3356 fill_thread_info(info
, (CPUArchState
*)cpu
->env_ptr
);
3363 static void free_note_info(struct elf_note_info
*info
)
3365 struct elf_thread_status
*ets
;
3367 while (!QTAILQ_EMPTY(&info
->thread_list
)) {
3368 ets
= QTAILQ_FIRST(&info
->thread_list
);
3369 QTAILQ_REMOVE(&info
->thread_list
, ets
, ets_link
);
3373 g_free(info
->prstatus
);
3374 g_free(info
->psinfo
);
3375 g_free(info
->notes
);
3378 static int write_note_info(struct elf_note_info
*info
, int fd
)
3380 struct elf_thread_status
*ets
;
3383 /* write prstatus, psinfo and auxv for current thread */
3384 for (i
= 0; i
< info
->numnote
; i
++)
3385 if ((error
= write_note(&info
->notes
[i
], fd
)) != 0)
3388 /* write prstatus for each thread */
3389 QTAILQ_FOREACH(ets
, &info
->thread_list
, ets_link
) {
3390 if ((error
= write_note(&ets
->notes
[0], fd
)) != 0)
3398 * Write out ELF coredump.
3400 * See documentation of ELF object file format in:
3401 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3403 * Coredump format in linux is following:
3405 * 0 +----------------------+ \
3406 * | ELF header | ET_CORE |
3407 * +----------------------+ |
3408 * | ELF program headers | |--- headers
3409 * | - NOTE section | |
3410 * | - PT_LOAD sections | |
3411 * +----------------------+ /
3416 * +----------------------+ <-- aligned to target page
3417 * | Process memory dump |
3422 * +----------------------+
3424 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3425 * NT_PRSINFO -> struct elf_prpsinfo
3426 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3428 * Format follows System V format as close as possible. Current
3429 * version limitations are as follows:
3430 * - no floating point registers are dumped
3432 * Function returns 0 in case of success, negative errno otherwise.
3434 * TODO: make this work also during runtime: it should be
3435 * possible to force coredump from running process and then
3436 * continue processing. For example qemu could set up SIGUSR2
3437 * handler (provided that target process haven't registered
3438 * handler for that) that does the dump when signal is received.
3440 static int elf_core_dump(int signr
, const CPUArchState
*env
)
3442 const CPUState
*cpu
= ENV_GET_CPU((CPUArchState
*)env
);
3443 const TaskState
*ts
= (const TaskState
*)cpu
->opaque
;
3444 struct vm_area_struct
*vma
= NULL
;
3445 char corefile
[PATH_MAX
];
3446 struct elf_note_info info
;
3448 struct elf_phdr phdr
;
3449 struct rlimit dumpsize
;
3450 struct mm_struct
*mm
= NULL
;
3451 off_t offset
= 0, data_offset
= 0;
3455 init_note_info(&info
);
3458 getrlimit(RLIMIT_CORE
, &dumpsize
);
3459 if (dumpsize
.rlim_cur
== 0)
3462 if (core_dump_filename(ts
, corefile
, sizeof (corefile
)) < 0)
3465 if ((fd
= open(corefile
, O_WRONLY
| O_CREAT
,
3466 S_IRUSR
|S_IWUSR
|S_IRGRP
|S_IROTH
)) < 0)
3470 * Walk through target process memory mappings and
3471 * set up structure containing this information. After
3472 * this point vma_xxx functions can be used.
3474 if ((mm
= vma_init()) == NULL
)
3477 walk_memory_regions(mm
, vma_walker
);
3478 segs
= vma_get_mapping_count(mm
);
3481 * Construct valid coredump ELF header. We also
3482 * add one more segment for notes.
3484 fill_elf_header(&elf
, segs
+ 1, ELF_MACHINE
, 0);
3485 if (dump_write(fd
, &elf
, sizeof (elf
)) != 0)
3488 /* fill in the in-memory version of notes */
3489 if (fill_note_info(&info
, signr
, env
) < 0)
3492 offset
+= sizeof (elf
); /* elf header */
3493 offset
+= (segs
+ 1) * sizeof (struct elf_phdr
); /* program headers */
3495 /* write out notes program header */
3496 fill_elf_note_phdr(&phdr
, info
.notes_size
, offset
);
3498 offset
+= info
.notes_size
;
3499 if (dump_write(fd
, &phdr
, sizeof (phdr
)) != 0)
3503 * ELF specification wants data to start at page boundary so
3506 data_offset
= offset
= roundup(offset
, ELF_EXEC_PAGESIZE
);
3509 * Write program headers for memory regions mapped in
3510 * the target process.
3512 for (vma
= vma_first(mm
); vma
!= NULL
; vma
= vma_next(vma
)) {
3513 (void) memset(&phdr
, 0, sizeof (phdr
));
3515 phdr
.p_type
= PT_LOAD
;
3516 phdr
.p_offset
= offset
;
3517 phdr
.p_vaddr
= vma
->vma_start
;
3519 phdr
.p_filesz
= vma_dump_size(vma
);
3520 offset
+= phdr
.p_filesz
;
3521 phdr
.p_memsz
= vma
->vma_end
- vma
->vma_start
;
3522 phdr
.p_flags
= vma
->vma_flags
& PROT_READ
? PF_R
: 0;
3523 if (vma
->vma_flags
& PROT_WRITE
)
3524 phdr
.p_flags
|= PF_W
;
3525 if (vma
->vma_flags
& PROT_EXEC
)
3526 phdr
.p_flags
|= PF_X
;
3527 phdr
.p_align
= ELF_EXEC_PAGESIZE
;
3529 bswap_phdr(&phdr
, 1);
3530 if (dump_write(fd
, &phdr
, sizeof(phdr
)) != 0) {
3536 * Next we write notes just after program headers. No
3537 * alignment needed here.
3539 if (write_note_info(&info
, fd
) < 0)
3542 /* align data to page boundary */
3543 if (lseek(fd
, data_offset
, SEEK_SET
) != data_offset
)
3547 * Finally we can dump process memory into corefile as well.
3549 for (vma
= vma_first(mm
); vma
!= NULL
; vma
= vma_next(vma
)) {
3553 end
= vma
->vma_start
+ vma_dump_size(vma
);
3555 for (addr
= vma
->vma_start
; addr
< end
;
3556 addr
+= TARGET_PAGE_SIZE
) {
3557 char page
[TARGET_PAGE_SIZE
];
3561 * Read in page from target process memory and
3562 * write it to coredump file.
3564 error
= copy_from_user(page
, addr
, sizeof (page
));
3566 (void) fprintf(stderr
, "unable to dump " TARGET_ABI_FMT_lx
"\n",
3571 if (dump_write(fd
, page
, TARGET_PAGE_SIZE
) < 0)
3577 free_note_info(&info
);
3586 #endif /* USE_ELF_CORE_DUMP */
3588 void do_init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
3590 init_thread(regs
, infop
);