4 * Copyright (c) 2003 Fabrice Bellard
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 #define _ATFILE_SOURCE
20 #include "qemu/osdep.h"
21 #include "qemu/cutils.h"
22 #include "qemu/path.h"
29 #include <sys/mount.h>
31 #include <sys/fsuid.h>
32 #include <sys/personality.h>
33 #include <sys/prctl.h>
34 #include <sys/resource.h>
36 #include <linux/capability.h>
38 #include <sys/timex.h>
40 int __clone2(int (*fn
)(void *), void *child_stack_base
,
41 size_t stack_size
, int flags
, void *arg
, ...);
43 #include <sys/socket.h>
47 #include <sys/times.h>
50 #include <sys/statfs.h>
53 #include <sys/sysinfo.h>
54 #include <sys/signalfd.h>
55 //#include <sys/user.h>
56 #include <netinet/ip.h>
57 #include <netinet/tcp.h>
58 #include <linux/wireless.h>
59 #include <linux/icmp.h>
60 #include <linux/icmpv6.h>
61 #include <linux/errqueue.h>
62 #include <linux/random.h>
63 #include "qemu-common.h"
65 #include <sys/timerfd.h>
71 #include <sys/eventfd.h>
74 #include <sys/epoll.h>
77 #include "qemu/xattr.h"
79 #ifdef CONFIG_SENDFILE
80 #include <sys/sendfile.h>
83 #define termios host_termios
84 #define winsize host_winsize
85 #define termio host_termio
86 #define sgttyb host_sgttyb /* same as target */
87 #define tchars host_tchars /* same as target */
88 #define ltchars host_ltchars /* same as target */
90 #include <linux/termios.h>
91 #include <linux/unistd.h>
92 #include <linux/cdrom.h>
93 #include <linux/hdreg.h>
94 #include <linux/soundcard.h>
96 #include <linux/mtio.h>
98 #if defined(CONFIG_FIEMAP)
99 #include <linux/fiemap.h>
101 #include <linux/fb.h>
102 #include <linux/vt.h>
103 #include <linux/dm-ioctl.h>
104 #include <linux/reboot.h>
105 #include <linux/route.h>
106 #include <linux/filter.h>
107 #include <linux/blkpg.h>
108 #include <netpacket/packet.h>
109 #include <linux/netlink.h>
110 #ifdef CONFIG_RTNETLINK
111 #include <linux/rtnetlink.h>
112 #include <linux/if_bridge.h>
114 #include <linux/audit.h>
115 #include "linux_loop.h"
121 #define CLONE_IO 0x80000000 /* Clone io context */
124 /* We can't directly call the host clone syscall, because this will
125 * badly confuse libc (breaking mutexes, for example). So we must
126 * divide clone flags into:
127 * * flag combinations that look like pthread_create()
128 * * flag combinations that look like fork()
129 * * flags we can implement within QEMU itself
130 * * flags we can't support and will return an error for
132 /* For thread creation, all these flags must be present; for
133 * fork, none must be present.
135 #define CLONE_THREAD_FLAGS \
136 (CLONE_VM | CLONE_FS | CLONE_FILES | \
137 CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM)
139 /* These flags are ignored:
140 * CLONE_DETACHED is now ignored by the kernel;
141 * CLONE_IO is just an optimisation hint to the I/O scheduler
143 #define CLONE_IGNORED_FLAGS \
144 (CLONE_DETACHED | CLONE_IO)
146 /* Flags for fork which we can implement within QEMU itself */
147 #define CLONE_OPTIONAL_FORK_FLAGS \
148 (CLONE_SETTLS | CLONE_PARENT_SETTID | \
149 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID)
151 /* Flags for thread creation which we can implement within QEMU itself */
152 #define CLONE_OPTIONAL_THREAD_FLAGS \
153 (CLONE_SETTLS | CLONE_PARENT_SETTID | \
154 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT)
156 #define CLONE_INVALID_FORK_FLAGS \
157 (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS))
159 #define CLONE_INVALID_THREAD_FLAGS \
160 (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS | \
161 CLONE_IGNORED_FLAGS))
163 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits
164 * have almost all been allocated. We cannot support any of
165 * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC,
166 * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED.
167 * The checks against the invalid thread masks above will catch these.
168 * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.)
172 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted
173 * once. This exercises the codepaths for restart.
175 //#define DEBUG_ERESTARTSYS
177 //#include <linux/msdos_fs.h>
178 #define VFAT_IOCTL_READDIR_BOTH _IOR('r', 1, struct linux_dirent [2])
179 #define VFAT_IOCTL_READDIR_SHORT _IOR('r', 2, struct linux_dirent [2])
189 #define _syscall0(type,name) \
190 static type name (void) \
192 return syscall(__NR_##name); \
195 #define _syscall1(type,name,type1,arg1) \
196 static type name (type1 arg1) \
198 return syscall(__NR_##name, arg1); \
201 #define _syscall2(type,name,type1,arg1,type2,arg2) \
202 static type name (type1 arg1,type2 arg2) \
204 return syscall(__NR_##name, arg1, arg2); \
207 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \
208 static type name (type1 arg1,type2 arg2,type3 arg3) \
210 return syscall(__NR_##name, arg1, arg2, arg3); \
213 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \
214 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4) \
216 return syscall(__NR_##name, arg1, arg2, arg3, arg4); \
219 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
221 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5) \
223 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
227 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
228 type5,arg5,type6,arg6) \
229 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5, \
232 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
236 #define __NR_sys_uname __NR_uname
237 #define __NR_sys_getcwd1 __NR_getcwd
238 #define __NR_sys_getdents __NR_getdents
239 #define __NR_sys_getdents64 __NR_getdents64
240 #define __NR_sys_getpriority __NR_getpriority
241 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo
242 #define __NR_sys_rt_tgsigqueueinfo __NR_rt_tgsigqueueinfo
243 #define __NR_sys_syslog __NR_syslog
244 #define __NR_sys_futex __NR_futex
245 #define __NR_sys_inotify_init __NR_inotify_init
246 #define __NR_sys_inotify_add_watch __NR_inotify_add_watch
247 #define __NR_sys_inotify_rm_watch __NR_inotify_rm_watch
249 #if defined(__alpha__) || defined (__ia64__) || defined(__x86_64__) || \
251 #define __NR__llseek __NR_lseek
254 /* Newer kernel ports have llseek() instead of _llseek() */
255 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek)
256 #define TARGET_NR__llseek TARGET_NR_llseek
260 _syscall0(int, gettid
)
262 /* This is a replacement for the host gettid() and must return a host
264 static int gettid(void) {
268 #if defined(TARGET_NR_getdents) && defined(__NR_getdents)
269 _syscall3(int, sys_getdents
, uint
, fd
, struct linux_dirent
*, dirp
, uint
, count
);
271 #if !defined(__NR_getdents) || \
272 (defined(TARGET_NR_getdents64) && defined(__NR_getdents64))
273 _syscall3(int, sys_getdents64
, uint
, fd
, struct linux_dirent64
*, dirp
, uint
, count
);
275 #if defined(TARGET_NR__llseek) && defined(__NR_llseek)
276 _syscall5(int, _llseek
, uint
, fd
, ulong
, hi
, ulong
, lo
,
277 loff_t
*, res
, uint
, wh
);
279 _syscall3(int, sys_rt_sigqueueinfo
, pid_t
, pid
, int, sig
, siginfo_t
*, uinfo
)
280 _syscall4(int, sys_rt_tgsigqueueinfo
, pid_t
, pid
, pid_t
, tid
, int, sig
,
282 _syscall3(int,sys_syslog
,int,type
,char*,bufp
,int,len
)
283 #ifdef __NR_exit_group
284 _syscall1(int,exit_group
,int,error_code
)
286 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
287 _syscall1(int,set_tid_address
,int *,tidptr
)
289 #if defined(TARGET_NR_futex) && defined(__NR_futex)
290 _syscall6(int,sys_futex
,int *,uaddr
,int,op
,int,val
,
291 const struct timespec
*,timeout
,int *,uaddr2
,int,val3
)
293 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity
294 _syscall3(int, sys_sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
295 unsigned long *, user_mask_ptr
);
296 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity
297 _syscall3(int, sys_sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
298 unsigned long *, user_mask_ptr
);
299 _syscall4(int, reboot
, int, magic1
, int, magic2
, unsigned int, cmd
,
301 _syscall2(int, capget
, struct __user_cap_header_struct
*, header
,
302 struct __user_cap_data_struct
*, data
);
303 _syscall2(int, capset
, struct __user_cap_header_struct
*, header
,
304 struct __user_cap_data_struct
*, data
);
305 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
306 _syscall2(int, ioprio_get
, int, which
, int, who
)
308 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
309 _syscall3(int, ioprio_set
, int, which
, int, who
, int, ioprio
)
311 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
312 _syscall3(int, getrandom
, void *, buf
, size_t, buflen
, unsigned int, flags
)
315 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
316 _syscall5(int, kcmp
, pid_t
, pid1
, pid_t
, pid2
, int, type
,
317 unsigned long, idx1
, unsigned long, idx2
)
320 static bitmask_transtbl fcntl_flags_tbl
[] = {
321 { TARGET_O_ACCMODE
, TARGET_O_WRONLY
, O_ACCMODE
, O_WRONLY
, },
322 { TARGET_O_ACCMODE
, TARGET_O_RDWR
, O_ACCMODE
, O_RDWR
, },
323 { TARGET_O_CREAT
, TARGET_O_CREAT
, O_CREAT
, O_CREAT
, },
324 { TARGET_O_EXCL
, TARGET_O_EXCL
, O_EXCL
, O_EXCL
, },
325 { TARGET_O_NOCTTY
, TARGET_O_NOCTTY
, O_NOCTTY
, O_NOCTTY
, },
326 { TARGET_O_TRUNC
, TARGET_O_TRUNC
, O_TRUNC
, O_TRUNC
, },
327 { TARGET_O_APPEND
, TARGET_O_APPEND
, O_APPEND
, O_APPEND
, },
328 { TARGET_O_NONBLOCK
, TARGET_O_NONBLOCK
, O_NONBLOCK
, O_NONBLOCK
, },
329 { TARGET_O_SYNC
, TARGET_O_DSYNC
, O_SYNC
, O_DSYNC
, },
330 { TARGET_O_SYNC
, TARGET_O_SYNC
, O_SYNC
, O_SYNC
, },
331 { TARGET_FASYNC
, TARGET_FASYNC
, FASYNC
, FASYNC
, },
332 { TARGET_O_DIRECTORY
, TARGET_O_DIRECTORY
, O_DIRECTORY
, O_DIRECTORY
, },
333 { TARGET_O_NOFOLLOW
, TARGET_O_NOFOLLOW
, O_NOFOLLOW
, O_NOFOLLOW
, },
334 #if defined(O_DIRECT)
335 { TARGET_O_DIRECT
, TARGET_O_DIRECT
, O_DIRECT
, O_DIRECT
, },
337 #if defined(O_NOATIME)
338 { TARGET_O_NOATIME
, TARGET_O_NOATIME
, O_NOATIME
, O_NOATIME
},
340 #if defined(O_CLOEXEC)
341 { TARGET_O_CLOEXEC
, TARGET_O_CLOEXEC
, O_CLOEXEC
, O_CLOEXEC
},
344 { TARGET_O_PATH
, TARGET_O_PATH
, O_PATH
, O_PATH
},
346 #if defined(O_TMPFILE)
347 { TARGET_O_TMPFILE
, TARGET_O_TMPFILE
, O_TMPFILE
, O_TMPFILE
},
349 /* Don't terminate the list prematurely on 64-bit host+guest. */
350 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0
351 { TARGET_O_LARGEFILE
, TARGET_O_LARGEFILE
, O_LARGEFILE
, O_LARGEFILE
, },
358 QEMU_IFLA_BR_FORWARD_DELAY
,
359 QEMU_IFLA_BR_HELLO_TIME
,
360 QEMU_IFLA_BR_MAX_AGE
,
361 QEMU_IFLA_BR_AGEING_TIME
,
362 QEMU_IFLA_BR_STP_STATE
,
363 QEMU_IFLA_BR_PRIORITY
,
364 QEMU_IFLA_BR_VLAN_FILTERING
,
365 QEMU_IFLA_BR_VLAN_PROTOCOL
,
366 QEMU_IFLA_BR_GROUP_FWD_MASK
,
367 QEMU_IFLA_BR_ROOT_ID
,
368 QEMU_IFLA_BR_BRIDGE_ID
,
369 QEMU_IFLA_BR_ROOT_PORT
,
370 QEMU_IFLA_BR_ROOT_PATH_COST
,
371 QEMU_IFLA_BR_TOPOLOGY_CHANGE
,
372 QEMU_IFLA_BR_TOPOLOGY_CHANGE_DETECTED
,
373 QEMU_IFLA_BR_HELLO_TIMER
,
374 QEMU_IFLA_BR_TCN_TIMER
,
375 QEMU_IFLA_BR_TOPOLOGY_CHANGE_TIMER
,
376 QEMU_IFLA_BR_GC_TIMER
,
377 QEMU_IFLA_BR_GROUP_ADDR
,
378 QEMU_IFLA_BR_FDB_FLUSH
,
379 QEMU_IFLA_BR_MCAST_ROUTER
,
380 QEMU_IFLA_BR_MCAST_SNOOPING
,
381 QEMU_IFLA_BR_MCAST_QUERY_USE_IFADDR
,
382 QEMU_IFLA_BR_MCAST_QUERIER
,
383 QEMU_IFLA_BR_MCAST_HASH_ELASTICITY
,
384 QEMU_IFLA_BR_MCAST_HASH_MAX
,
385 QEMU_IFLA_BR_MCAST_LAST_MEMBER_CNT
,
386 QEMU_IFLA_BR_MCAST_STARTUP_QUERY_CNT
,
387 QEMU_IFLA_BR_MCAST_LAST_MEMBER_INTVL
,
388 QEMU_IFLA_BR_MCAST_MEMBERSHIP_INTVL
,
389 QEMU_IFLA_BR_MCAST_QUERIER_INTVL
,
390 QEMU_IFLA_BR_MCAST_QUERY_INTVL
,
391 QEMU_IFLA_BR_MCAST_QUERY_RESPONSE_INTVL
,
392 QEMU_IFLA_BR_MCAST_STARTUP_QUERY_INTVL
,
393 QEMU_IFLA_BR_NF_CALL_IPTABLES
,
394 QEMU_IFLA_BR_NF_CALL_IP6TABLES
,
395 QEMU_IFLA_BR_NF_CALL_ARPTABLES
,
396 QEMU_IFLA_BR_VLAN_DEFAULT_PVID
,
398 QEMU_IFLA_BR_VLAN_STATS_ENABLED
,
399 QEMU_IFLA_BR_MCAST_STATS_ENABLED
,
423 QEMU_IFLA_NET_NS_PID
,
426 QEMU_IFLA_VFINFO_LIST
,
434 QEMU_IFLA_PROMISCUITY
,
435 QEMU_IFLA_NUM_TX_QUEUES
,
436 QEMU_IFLA_NUM_RX_QUEUES
,
438 QEMU_IFLA_PHYS_PORT_ID
,
439 QEMU_IFLA_CARRIER_CHANGES
,
440 QEMU_IFLA_PHYS_SWITCH_ID
,
441 QEMU_IFLA_LINK_NETNSID
,
442 QEMU_IFLA_PHYS_PORT_NAME
,
443 QEMU_IFLA_PROTO_DOWN
,
444 QEMU_IFLA_GSO_MAX_SEGS
,
445 QEMU_IFLA_GSO_MAX_SIZE
,
452 QEMU_IFLA_BRPORT_UNSPEC
,
453 QEMU_IFLA_BRPORT_STATE
,
454 QEMU_IFLA_BRPORT_PRIORITY
,
455 QEMU_IFLA_BRPORT_COST
,
456 QEMU_IFLA_BRPORT_MODE
,
457 QEMU_IFLA_BRPORT_GUARD
,
458 QEMU_IFLA_BRPORT_PROTECT
,
459 QEMU_IFLA_BRPORT_FAST_LEAVE
,
460 QEMU_IFLA_BRPORT_LEARNING
,
461 QEMU_IFLA_BRPORT_UNICAST_FLOOD
,
462 QEMU_IFLA_BRPORT_PROXYARP
,
463 QEMU_IFLA_BRPORT_LEARNING_SYNC
,
464 QEMU_IFLA_BRPORT_PROXYARP_WIFI
,
465 QEMU_IFLA_BRPORT_ROOT_ID
,
466 QEMU_IFLA_BRPORT_BRIDGE_ID
,
467 QEMU_IFLA_BRPORT_DESIGNATED_PORT
,
468 QEMU_IFLA_BRPORT_DESIGNATED_COST
,
471 QEMU_IFLA_BRPORT_TOPOLOGY_CHANGE_ACK
,
472 QEMU_IFLA_BRPORT_CONFIG_PENDING
,
473 QEMU_IFLA_BRPORT_MESSAGE_AGE_TIMER
,
474 QEMU_IFLA_BRPORT_FORWARD_DELAY_TIMER
,
475 QEMU_IFLA_BRPORT_HOLD_TIMER
,
476 QEMU_IFLA_BRPORT_FLUSH
,
477 QEMU_IFLA_BRPORT_MULTICAST_ROUTER
,
478 QEMU_IFLA_BRPORT_PAD
,
479 QEMU___IFLA_BRPORT_MAX
483 QEMU_IFLA_INFO_UNSPEC
,
486 QEMU_IFLA_INFO_XSTATS
,
487 QEMU_IFLA_INFO_SLAVE_KIND
,
488 QEMU_IFLA_INFO_SLAVE_DATA
,
489 QEMU___IFLA_INFO_MAX
,
493 QEMU_IFLA_INET_UNSPEC
,
495 QEMU___IFLA_INET_MAX
,
499 QEMU_IFLA_INET6_UNSPEC
,
500 QEMU_IFLA_INET6_FLAGS
,
501 QEMU_IFLA_INET6_CONF
,
502 QEMU_IFLA_INET6_STATS
,
503 QEMU_IFLA_INET6_MCAST
,
504 QEMU_IFLA_INET6_CACHEINFO
,
505 QEMU_IFLA_INET6_ICMP6STATS
,
506 QEMU_IFLA_INET6_TOKEN
,
507 QEMU_IFLA_INET6_ADDR_GEN_MODE
,
508 QEMU___IFLA_INET6_MAX
511 typedef abi_long (*TargetFdDataFunc
)(void *, size_t);
512 typedef abi_long (*TargetFdAddrFunc
)(void *, abi_ulong
, socklen_t
);
513 typedef struct TargetFdTrans
{
514 TargetFdDataFunc host_to_target_data
;
515 TargetFdDataFunc target_to_host_data
;
516 TargetFdAddrFunc target_to_host_addr
;
519 static TargetFdTrans
**target_fd_trans
;
521 static unsigned int target_fd_max
;
523 static TargetFdDataFunc
fd_trans_target_to_host_data(int fd
)
525 if (fd
>= 0 && fd
< target_fd_max
&& target_fd_trans
[fd
]) {
526 return target_fd_trans
[fd
]->target_to_host_data
;
531 static TargetFdDataFunc
fd_trans_host_to_target_data(int fd
)
533 if (fd
>= 0 && fd
< target_fd_max
&& target_fd_trans
[fd
]) {
534 return target_fd_trans
[fd
]->host_to_target_data
;
539 static TargetFdAddrFunc
fd_trans_target_to_host_addr(int fd
)
541 if (fd
>= 0 && fd
< target_fd_max
&& target_fd_trans
[fd
]) {
542 return target_fd_trans
[fd
]->target_to_host_addr
;
547 static void fd_trans_register(int fd
, TargetFdTrans
*trans
)
551 if (fd
>= target_fd_max
) {
552 oldmax
= target_fd_max
;
553 target_fd_max
= ((fd
>> 6) + 1) << 6; /* by slice of 64 entries */
554 target_fd_trans
= g_renew(TargetFdTrans
*,
555 target_fd_trans
, target_fd_max
);
556 memset((void *)(target_fd_trans
+ oldmax
), 0,
557 (target_fd_max
- oldmax
) * sizeof(TargetFdTrans
*));
559 target_fd_trans
[fd
] = trans
;
562 static void fd_trans_unregister(int fd
)
564 if (fd
>= 0 && fd
< target_fd_max
) {
565 target_fd_trans
[fd
] = NULL
;
569 static void fd_trans_dup(int oldfd
, int newfd
)
571 fd_trans_unregister(newfd
);
572 if (oldfd
< target_fd_max
&& target_fd_trans
[oldfd
]) {
573 fd_trans_register(newfd
, target_fd_trans
[oldfd
]);
577 static int sys_getcwd1(char *buf
, size_t size
)
579 if (getcwd(buf
, size
) == NULL
) {
580 /* getcwd() sets errno */
583 return strlen(buf
)+1;
586 #ifdef TARGET_NR_utimensat
587 #if defined(__NR_utimensat)
588 #define __NR_sys_utimensat __NR_utimensat
589 _syscall4(int,sys_utimensat
,int,dirfd
,const char *,pathname
,
590 const struct timespec
*,tsp
,int,flags
)
592 static int sys_utimensat(int dirfd
, const char *pathname
,
593 const struct timespec times
[2], int flags
)
599 #endif /* TARGET_NR_utimensat */
601 #ifdef CONFIG_INOTIFY
602 #include <sys/inotify.h>
604 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
605 static int sys_inotify_init(void)
607 return (inotify_init());
610 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
611 static int sys_inotify_add_watch(int fd
,const char *pathname
, int32_t mask
)
613 return (inotify_add_watch(fd
, pathname
, mask
));
616 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
617 static int sys_inotify_rm_watch(int fd
, int32_t wd
)
619 return (inotify_rm_watch(fd
, wd
));
622 #ifdef CONFIG_INOTIFY1
623 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
624 static int sys_inotify_init1(int flags
)
626 return (inotify_init1(flags
));
631 /* Userspace can usually survive runtime without inotify */
632 #undef TARGET_NR_inotify_init
633 #undef TARGET_NR_inotify_init1
634 #undef TARGET_NR_inotify_add_watch
635 #undef TARGET_NR_inotify_rm_watch
636 #endif /* CONFIG_INOTIFY */
638 #if defined(TARGET_NR_prlimit64)
639 #ifndef __NR_prlimit64
640 # define __NR_prlimit64 -1
642 #define __NR_sys_prlimit64 __NR_prlimit64
643 /* The glibc rlimit structure may not be that used by the underlying syscall */
644 struct host_rlimit64
{
648 _syscall4(int, sys_prlimit64
, pid_t
, pid
, int, resource
,
649 const struct host_rlimit64
*, new_limit
,
650 struct host_rlimit64
*, old_limit
)
654 #if defined(TARGET_NR_timer_create)
655 /* Maxiumum of 32 active POSIX timers allowed at any one time. */
656 static timer_t g_posix_timers
[32] = { 0, } ;
658 static inline int next_free_host_timer(void)
661 /* FIXME: Does finding the next free slot require a lock? */
662 for (k
= 0; k
< ARRAY_SIZE(g_posix_timers
); k
++) {
663 if (g_posix_timers
[k
] == 0) {
664 g_posix_timers
[k
] = (timer_t
) 1;
672 /* ARM EABI and MIPS expect 64bit types aligned even on pairs or registers */
674 static inline int regpairs_aligned(void *cpu_env
) {
675 return ((((CPUARMState
*)cpu_env
)->eabi
) == 1) ;
677 #elif defined(TARGET_MIPS) && (TARGET_ABI_BITS == 32)
678 static inline int regpairs_aligned(void *cpu_env
) { return 1; }
679 #elif defined(TARGET_PPC) && !defined(TARGET_PPC64)
680 /* SysV AVI for PPC32 expects 64bit parameters to be passed on odd/even pairs
681 * of registers which translates to the same as ARM/MIPS, because we start with
683 static inline int regpairs_aligned(void *cpu_env
) { return 1; }
685 static inline int regpairs_aligned(void *cpu_env
) { return 0; }
688 #define ERRNO_TABLE_SIZE 1200
690 /* target_to_host_errno_table[] is initialized from
691 * host_to_target_errno_table[] in syscall_init(). */
692 static uint16_t target_to_host_errno_table
[ERRNO_TABLE_SIZE
] = {
696 * This list is the union of errno values overridden in asm-<arch>/errno.h
697 * minus the errnos that are not actually generic to all archs.
699 static uint16_t host_to_target_errno_table
[ERRNO_TABLE_SIZE
] = {
700 [EAGAIN
] = TARGET_EAGAIN
,
701 [EIDRM
] = TARGET_EIDRM
,
702 [ECHRNG
] = TARGET_ECHRNG
,
703 [EL2NSYNC
] = TARGET_EL2NSYNC
,
704 [EL3HLT
] = TARGET_EL3HLT
,
705 [EL3RST
] = TARGET_EL3RST
,
706 [ELNRNG
] = TARGET_ELNRNG
,
707 [EUNATCH
] = TARGET_EUNATCH
,
708 [ENOCSI
] = TARGET_ENOCSI
,
709 [EL2HLT
] = TARGET_EL2HLT
,
710 [EDEADLK
] = TARGET_EDEADLK
,
711 [ENOLCK
] = TARGET_ENOLCK
,
712 [EBADE
] = TARGET_EBADE
,
713 [EBADR
] = TARGET_EBADR
,
714 [EXFULL
] = TARGET_EXFULL
,
715 [ENOANO
] = TARGET_ENOANO
,
716 [EBADRQC
] = TARGET_EBADRQC
,
717 [EBADSLT
] = TARGET_EBADSLT
,
718 [EBFONT
] = TARGET_EBFONT
,
719 [ENOSTR
] = TARGET_ENOSTR
,
720 [ENODATA
] = TARGET_ENODATA
,
721 [ETIME
] = TARGET_ETIME
,
722 [ENOSR
] = TARGET_ENOSR
,
723 [ENONET
] = TARGET_ENONET
,
724 [ENOPKG
] = TARGET_ENOPKG
,
725 [EREMOTE
] = TARGET_EREMOTE
,
726 [ENOLINK
] = TARGET_ENOLINK
,
727 [EADV
] = TARGET_EADV
,
728 [ESRMNT
] = TARGET_ESRMNT
,
729 [ECOMM
] = TARGET_ECOMM
,
730 [EPROTO
] = TARGET_EPROTO
,
731 [EDOTDOT
] = TARGET_EDOTDOT
,
732 [EMULTIHOP
] = TARGET_EMULTIHOP
,
733 [EBADMSG
] = TARGET_EBADMSG
,
734 [ENAMETOOLONG
] = TARGET_ENAMETOOLONG
,
735 [EOVERFLOW
] = TARGET_EOVERFLOW
,
736 [ENOTUNIQ
] = TARGET_ENOTUNIQ
,
737 [EBADFD
] = TARGET_EBADFD
,
738 [EREMCHG
] = TARGET_EREMCHG
,
739 [ELIBACC
] = TARGET_ELIBACC
,
740 [ELIBBAD
] = TARGET_ELIBBAD
,
741 [ELIBSCN
] = TARGET_ELIBSCN
,
742 [ELIBMAX
] = TARGET_ELIBMAX
,
743 [ELIBEXEC
] = TARGET_ELIBEXEC
,
744 [EILSEQ
] = TARGET_EILSEQ
,
745 [ENOSYS
] = TARGET_ENOSYS
,
746 [ELOOP
] = TARGET_ELOOP
,
747 [ERESTART
] = TARGET_ERESTART
,
748 [ESTRPIPE
] = TARGET_ESTRPIPE
,
749 [ENOTEMPTY
] = TARGET_ENOTEMPTY
,
750 [EUSERS
] = TARGET_EUSERS
,
751 [ENOTSOCK
] = TARGET_ENOTSOCK
,
752 [EDESTADDRREQ
] = TARGET_EDESTADDRREQ
,
753 [EMSGSIZE
] = TARGET_EMSGSIZE
,
754 [EPROTOTYPE
] = TARGET_EPROTOTYPE
,
755 [ENOPROTOOPT
] = TARGET_ENOPROTOOPT
,
756 [EPROTONOSUPPORT
] = TARGET_EPROTONOSUPPORT
,
757 [ESOCKTNOSUPPORT
] = TARGET_ESOCKTNOSUPPORT
,
758 [EOPNOTSUPP
] = TARGET_EOPNOTSUPP
,
759 [EPFNOSUPPORT
] = TARGET_EPFNOSUPPORT
,
760 [EAFNOSUPPORT
] = TARGET_EAFNOSUPPORT
,
761 [EADDRINUSE
] = TARGET_EADDRINUSE
,
762 [EADDRNOTAVAIL
] = TARGET_EADDRNOTAVAIL
,
763 [ENETDOWN
] = TARGET_ENETDOWN
,
764 [ENETUNREACH
] = TARGET_ENETUNREACH
,
765 [ENETRESET
] = TARGET_ENETRESET
,
766 [ECONNABORTED
] = TARGET_ECONNABORTED
,
767 [ECONNRESET
] = TARGET_ECONNRESET
,
768 [ENOBUFS
] = TARGET_ENOBUFS
,
769 [EISCONN
] = TARGET_EISCONN
,
770 [ENOTCONN
] = TARGET_ENOTCONN
,
771 [EUCLEAN
] = TARGET_EUCLEAN
,
772 [ENOTNAM
] = TARGET_ENOTNAM
,
773 [ENAVAIL
] = TARGET_ENAVAIL
,
774 [EISNAM
] = TARGET_EISNAM
,
775 [EREMOTEIO
] = TARGET_EREMOTEIO
,
776 [EDQUOT
] = TARGET_EDQUOT
,
777 [ESHUTDOWN
] = TARGET_ESHUTDOWN
,
778 [ETOOMANYREFS
] = TARGET_ETOOMANYREFS
,
779 [ETIMEDOUT
] = TARGET_ETIMEDOUT
,
780 [ECONNREFUSED
] = TARGET_ECONNREFUSED
,
781 [EHOSTDOWN
] = TARGET_EHOSTDOWN
,
782 [EHOSTUNREACH
] = TARGET_EHOSTUNREACH
,
783 [EALREADY
] = TARGET_EALREADY
,
784 [EINPROGRESS
] = TARGET_EINPROGRESS
,
785 [ESTALE
] = TARGET_ESTALE
,
786 [ECANCELED
] = TARGET_ECANCELED
,
787 [ENOMEDIUM
] = TARGET_ENOMEDIUM
,
788 [EMEDIUMTYPE
] = TARGET_EMEDIUMTYPE
,
790 [ENOKEY
] = TARGET_ENOKEY
,
793 [EKEYEXPIRED
] = TARGET_EKEYEXPIRED
,
796 [EKEYREVOKED
] = TARGET_EKEYREVOKED
,
799 [EKEYREJECTED
] = TARGET_EKEYREJECTED
,
802 [EOWNERDEAD
] = TARGET_EOWNERDEAD
,
804 #ifdef ENOTRECOVERABLE
805 [ENOTRECOVERABLE
] = TARGET_ENOTRECOVERABLE
,
808 [ENOMSG
] = TARGET_ENOMSG
,
811 [ERFKILL
] = TARGET_ERFKILL
,
814 [EHWPOISON
] = TARGET_EHWPOISON
,
818 static inline int host_to_target_errno(int err
)
820 if (err
>= 0 && err
< ERRNO_TABLE_SIZE
&&
821 host_to_target_errno_table
[err
]) {
822 return host_to_target_errno_table
[err
];
827 static inline int target_to_host_errno(int err
)
829 if (err
>= 0 && err
< ERRNO_TABLE_SIZE
&&
830 target_to_host_errno_table
[err
]) {
831 return target_to_host_errno_table
[err
];
836 static inline abi_long
get_errno(abi_long ret
)
839 return -host_to_target_errno(errno
);
844 static inline int is_error(abi_long ret
)
846 return (abi_ulong
)ret
>= (abi_ulong
)(-4096);
849 const char *target_strerror(int err
)
851 if (err
== TARGET_ERESTARTSYS
) {
852 return "To be restarted";
854 if (err
== TARGET_QEMU_ESIGRETURN
) {
855 return "Successful exit from sigreturn";
858 if ((err
>= ERRNO_TABLE_SIZE
) || (err
< 0)) {
861 return strerror(target_to_host_errno(err
));
864 #define safe_syscall0(type, name) \
865 static type safe_##name(void) \
867 return safe_syscall(__NR_##name); \
870 #define safe_syscall1(type, name, type1, arg1) \
871 static type safe_##name(type1 arg1) \
873 return safe_syscall(__NR_##name, arg1); \
876 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \
877 static type safe_##name(type1 arg1, type2 arg2) \
879 return safe_syscall(__NR_##name, arg1, arg2); \
882 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \
883 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \
885 return safe_syscall(__NR_##name, arg1, arg2, arg3); \
888 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \
890 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \
892 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \
895 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \
896 type4, arg4, type5, arg5) \
897 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
900 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
903 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \
904 type4, arg4, type5, arg5, type6, arg6) \
905 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
906 type5 arg5, type6 arg6) \
908 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
911 safe_syscall3(ssize_t
, read
, int, fd
, void *, buff
, size_t, count
)
912 safe_syscall3(ssize_t
, write
, int, fd
, const void *, buff
, size_t, count
)
913 safe_syscall4(int, openat
, int, dirfd
, const char *, pathname
, \
914 int, flags
, mode_t
, mode
)
915 safe_syscall4(pid_t
, wait4
, pid_t
, pid
, int *, status
, int, options
, \
916 struct rusage
*, rusage
)
917 safe_syscall5(int, waitid
, idtype_t
, idtype
, id_t
, id
, siginfo_t
*, infop
, \
918 int, options
, struct rusage
*, rusage
)
919 safe_syscall3(int, execve
, const char *, filename
, char **, argv
, char **, envp
)
920 safe_syscall6(int, pselect6
, int, nfds
, fd_set
*, readfds
, fd_set
*, writefds
, \
921 fd_set
*, exceptfds
, struct timespec
*, timeout
, void *, sig
)
922 safe_syscall5(int, ppoll
, struct pollfd
*, ufds
, unsigned int, nfds
,
923 struct timespec
*, tsp
, const sigset_t
*, sigmask
,
925 safe_syscall6(int, epoll_pwait
, int, epfd
, struct epoll_event
*, events
,
926 int, maxevents
, int, timeout
, const sigset_t
*, sigmask
,
928 safe_syscall6(int,futex
,int *,uaddr
,int,op
,int,val
, \
929 const struct timespec
*,timeout
,int *,uaddr2
,int,val3
)
930 safe_syscall2(int, rt_sigsuspend
, sigset_t
*, newset
, size_t, sigsetsize
)
931 safe_syscall2(int, kill
, pid_t
, pid
, int, sig
)
932 safe_syscall2(int, tkill
, int, tid
, int, sig
)
933 safe_syscall3(int, tgkill
, int, tgid
, int, pid
, int, sig
)
934 safe_syscall3(ssize_t
, readv
, int, fd
, const struct iovec
*, iov
, int, iovcnt
)
935 safe_syscall3(ssize_t
, writev
, int, fd
, const struct iovec
*, iov
, int, iovcnt
)
936 safe_syscall5(ssize_t
, preadv
, int, fd
, const struct iovec
*, iov
, int, iovcnt
,
937 unsigned long, pos_l
, unsigned long, pos_h
)
938 safe_syscall5(ssize_t
, pwritev
, int, fd
, const struct iovec
*, iov
, int, iovcnt
,
939 unsigned long, pos_l
, unsigned long, pos_h
)
940 safe_syscall3(int, connect
, int, fd
, const struct sockaddr
*, addr
,
942 safe_syscall6(ssize_t
, sendto
, int, fd
, const void *, buf
, size_t, len
,
943 int, flags
, const struct sockaddr
*, addr
, socklen_t
, addrlen
)
944 safe_syscall6(ssize_t
, recvfrom
, int, fd
, void *, buf
, size_t, len
,
945 int, flags
, struct sockaddr
*, addr
, socklen_t
*, addrlen
)
946 safe_syscall3(ssize_t
, sendmsg
, int, fd
, const struct msghdr
*, msg
, int, flags
)
947 safe_syscall3(ssize_t
, recvmsg
, int, fd
, struct msghdr
*, msg
, int, flags
)
948 safe_syscall2(int, flock
, int, fd
, int, operation
)
949 safe_syscall4(int, rt_sigtimedwait
, const sigset_t
*, these
, siginfo_t
*, uinfo
,
950 const struct timespec
*, uts
, size_t, sigsetsize
)
951 safe_syscall4(int, accept4
, int, fd
, struct sockaddr
*, addr
, socklen_t
*, len
,
953 safe_syscall2(int, nanosleep
, const struct timespec
*, req
,
954 struct timespec
*, rem
)
955 #ifdef TARGET_NR_clock_nanosleep
956 safe_syscall4(int, clock_nanosleep
, const clockid_t
, clock
, int, flags
,
957 const struct timespec
*, req
, struct timespec
*, rem
)
960 safe_syscall4(int, msgsnd
, int, msgid
, const void *, msgp
, size_t, sz
,
962 safe_syscall5(int, msgrcv
, int, msgid
, void *, msgp
, size_t, sz
,
963 long, msgtype
, int, flags
)
964 safe_syscall4(int, semtimedop
, int, semid
, struct sembuf
*, tsops
,
965 unsigned, nsops
, const struct timespec
*, timeout
)
967 /* This host kernel architecture uses a single ipc syscall; fake up
968 * wrappers for the sub-operations to hide this implementation detail.
969 * Annoyingly we can't include linux/ipc.h to get the constant definitions
970 * for the call parameter because some structs in there conflict with the
971 * sys/ipc.h ones. So we just define them here, and rely on them being
972 * the same for all host architectures.
974 #define Q_SEMTIMEDOP 4
977 #define Q_IPCCALL(VERSION, OP) ((VERSION) << 16 | (OP))
979 safe_syscall6(int, ipc
, int, call
, long, first
, long, second
, long, third
,
980 void *, ptr
, long, fifth
)
981 static int safe_msgsnd(int msgid
, const void *msgp
, size_t sz
, int flags
)
983 return safe_ipc(Q_IPCCALL(0, Q_MSGSND
), msgid
, sz
, flags
, (void *)msgp
, 0);
985 static int safe_msgrcv(int msgid
, void *msgp
, size_t sz
, long type
, int flags
)
987 return safe_ipc(Q_IPCCALL(1, Q_MSGRCV
), msgid
, sz
, flags
, msgp
, type
);
989 static int safe_semtimedop(int semid
, struct sembuf
*tsops
, unsigned nsops
,
990 const struct timespec
*timeout
)
992 return safe_ipc(Q_IPCCALL(0, Q_SEMTIMEDOP
), semid
, nsops
, 0, tsops
,
996 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
997 safe_syscall5(int, mq_timedsend
, int, mqdes
, const char *, msg_ptr
,
998 size_t, len
, unsigned, prio
, const struct timespec
*, timeout
)
999 safe_syscall5(int, mq_timedreceive
, int, mqdes
, char *, msg_ptr
,
1000 size_t, len
, unsigned *, prio
, const struct timespec
*, timeout
)
1002 /* We do ioctl like this rather than via safe_syscall3 to preserve the
1003 * "third argument might be integer or pointer or not present" behaviour of
1004 * the libc function.
1006 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__)
1007 /* Similarly for fcntl. Note that callers must always:
1008 * pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK
1009 * use the flock64 struct rather than unsuffixed flock
1010 * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts.
1013 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__)
1015 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__)
1018 static inline int host_to_target_sock_type(int host_type
)
1022 switch (host_type
& 0xf /* SOCK_TYPE_MASK */) {
1024 target_type
= TARGET_SOCK_DGRAM
;
1027 target_type
= TARGET_SOCK_STREAM
;
1030 target_type
= host_type
& 0xf /* SOCK_TYPE_MASK */;
1034 #if defined(SOCK_CLOEXEC)
1035 if (host_type
& SOCK_CLOEXEC
) {
1036 target_type
|= TARGET_SOCK_CLOEXEC
;
1040 #if defined(SOCK_NONBLOCK)
1041 if (host_type
& SOCK_NONBLOCK
) {
1042 target_type
|= TARGET_SOCK_NONBLOCK
;
1049 static abi_ulong target_brk
;
1050 static abi_ulong target_original_brk
;
1051 static abi_ulong brk_page
;
1053 void target_set_brk(abi_ulong new_brk
)
1055 target_original_brk
= target_brk
= HOST_PAGE_ALIGN(new_brk
);
1056 brk_page
= HOST_PAGE_ALIGN(target_brk
);
1059 //#define DEBUGF_BRK(message, args...) do { fprintf(stderr, (message), ## args); } while (0)
1060 #define DEBUGF_BRK(message, args...)
1062 /* do_brk() must return target values and target errnos. */
1063 abi_long
do_brk(abi_ulong new_brk
)
1065 abi_long mapped_addr
;
1066 abi_ulong new_alloc_size
;
1068 DEBUGF_BRK("do_brk(" TARGET_ABI_FMT_lx
") -> ", new_brk
);
1071 DEBUGF_BRK(TARGET_ABI_FMT_lx
" (!new_brk)\n", target_brk
);
1074 if (new_brk
< target_original_brk
) {
1075 DEBUGF_BRK(TARGET_ABI_FMT_lx
" (new_brk < target_original_brk)\n",
1080 /* If the new brk is less than the highest page reserved to the
1081 * target heap allocation, set it and we're almost done... */
1082 if (new_brk
<= brk_page
) {
1083 /* Heap contents are initialized to zero, as for anonymous
1085 if (new_brk
> target_brk
) {
1086 memset(g2h(target_brk
), 0, new_brk
- target_brk
);
1088 target_brk
= new_brk
;
1089 DEBUGF_BRK(TARGET_ABI_FMT_lx
" (new_brk <= brk_page)\n", target_brk
);
1093 /* We need to allocate more memory after the brk... Note that
1094 * we don't use MAP_FIXED because that will map over the top of
1095 * any existing mapping (like the one with the host libc or qemu
1096 * itself); instead we treat "mapped but at wrong address" as
1097 * a failure and unmap again.
1099 new_alloc_size
= HOST_PAGE_ALIGN(new_brk
- brk_page
);
1100 mapped_addr
= get_errno(target_mmap(brk_page
, new_alloc_size
,
1101 PROT_READ
|PROT_WRITE
,
1102 MAP_ANON
|MAP_PRIVATE
, 0, 0));
1104 if (mapped_addr
== brk_page
) {
1105 /* Heap contents are initialized to zero, as for anonymous
1106 * mapped pages. Technically the new pages are already
1107 * initialized to zero since they *are* anonymous mapped
1108 * pages, however we have to take care with the contents that
1109 * come from the remaining part of the previous page: it may
1110 * contains garbage data due to a previous heap usage (grown
1111 * then shrunken). */
1112 memset(g2h(target_brk
), 0, brk_page
- target_brk
);
1114 target_brk
= new_brk
;
1115 brk_page
= HOST_PAGE_ALIGN(target_brk
);
1116 DEBUGF_BRK(TARGET_ABI_FMT_lx
" (mapped_addr == brk_page)\n",
1119 } else if (mapped_addr
!= -1) {
1120 /* Mapped but at wrong address, meaning there wasn't actually
1121 * enough space for this brk.
1123 target_munmap(mapped_addr
, new_alloc_size
);
1125 DEBUGF_BRK(TARGET_ABI_FMT_lx
" (mapped_addr != -1)\n", target_brk
);
1128 DEBUGF_BRK(TARGET_ABI_FMT_lx
" (otherwise)\n", target_brk
);
1131 #if defined(TARGET_ALPHA)
1132 /* We (partially) emulate OSF/1 on Alpha, which requires we
1133 return a proper errno, not an unchanged brk value. */
1134 return -TARGET_ENOMEM
;
1136 /* For everything else, return the previous break. */
1140 static inline abi_long
copy_from_user_fdset(fd_set
*fds
,
1141 abi_ulong target_fds_addr
,
1145 abi_ulong b
, *target_fds
;
1147 nw
= DIV_ROUND_UP(n
, TARGET_ABI_BITS
);
1148 if (!(target_fds
= lock_user(VERIFY_READ
,
1150 sizeof(abi_ulong
) * nw
,
1152 return -TARGET_EFAULT
;
1156 for (i
= 0; i
< nw
; i
++) {
1157 /* grab the abi_ulong */
1158 __get_user(b
, &target_fds
[i
]);
1159 for (j
= 0; j
< TARGET_ABI_BITS
; j
++) {
1160 /* check the bit inside the abi_ulong */
1167 unlock_user(target_fds
, target_fds_addr
, 0);
1172 static inline abi_ulong
copy_from_user_fdset_ptr(fd_set
*fds
, fd_set
**fds_ptr
,
1173 abi_ulong target_fds_addr
,
1176 if (target_fds_addr
) {
1177 if (copy_from_user_fdset(fds
, target_fds_addr
, n
))
1178 return -TARGET_EFAULT
;
1186 static inline abi_long
copy_to_user_fdset(abi_ulong target_fds_addr
,
1192 abi_ulong
*target_fds
;
1194 nw
= DIV_ROUND_UP(n
, TARGET_ABI_BITS
);
1195 if (!(target_fds
= lock_user(VERIFY_WRITE
,
1197 sizeof(abi_ulong
) * nw
,
1199 return -TARGET_EFAULT
;
1202 for (i
= 0; i
< nw
; i
++) {
1204 for (j
= 0; j
< TARGET_ABI_BITS
; j
++) {
1205 v
|= ((abi_ulong
)(FD_ISSET(k
, fds
) != 0) << j
);
1208 __put_user(v
, &target_fds
[i
]);
1211 unlock_user(target_fds
, target_fds_addr
, sizeof(abi_ulong
) * nw
);
1216 #if defined(__alpha__)
1217 #define HOST_HZ 1024
1222 static inline abi_long
host_to_target_clock_t(long ticks
)
1224 #if HOST_HZ == TARGET_HZ
1227 return ((int64_t)ticks
* TARGET_HZ
) / HOST_HZ
;
1231 static inline abi_long
host_to_target_rusage(abi_ulong target_addr
,
1232 const struct rusage
*rusage
)
1234 struct target_rusage
*target_rusage
;
1236 if (!lock_user_struct(VERIFY_WRITE
, target_rusage
, target_addr
, 0))
1237 return -TARGET_EFAULT
;
1238 target_rusage
->ru_utime
.tv_sec
= tswapal(rusage
->ru_utime
.tv_sec
);
1239 target_rusage
->ru_utime
.tv_usec
= tswapal(rusage
->ru_utime
.tv_usec
);
1240 target_rusage
->ru_stime
.tv_sec
= tswapal(rusage
->ru_stime
.tv_sec
);
1241 target_rusage
->ru_stime
.tv_usec
= tswapal(rusage
->ru_stime
.tv_usec
);
1242 target_rusage
->ru_maxrss
= tswapal(rusage
->ru_maxrss
);
1243 target_rusage
->ru_ixrss
= tswapal(rusage
->ru_ixrss
);
1244 target_rusage
->ru_idrss
= tswapal(rusage
->ru_idrss
);
1245 target_rusage
->ru_isrss
= tswapal(rusage
->ru_isrss
);
1246 target_rusage
->ru_minflt
= tswapal(rusage
->ru_minflt
);
1247 target_rusage
->ru_majflt
= tswapal(rusage
->ru_majflt
);
1248 target_rusage
->ru_nswap
= tswapal(rusage
->ru_nswap
);
1249 target_rusage
->ru_inblock
= tswapal(rusage
->ru_inblock
);
1250 target_rusage
->ru_oublock
= tswapal(rusage
->ru_oublock
);
1251 target_rusage
->ru_msgsnd
= tswapal(rusage
->ru_msgsnd
);
1252 target_rusage
->ru_msgrcv
= tswapal(rusage
->ru_msgrcv
);
1253 target_rusage
->ru_nsignals
= tswapal(rusage
->ru_nsignals
);
1254 target_rusage
->ru_nvcsw
= tswapal(rusage
->ru_nvcsw
);
1255 target_rusage
->ru_nivcsw
= tswapal(rusage
->ru_nivcsw
);
1256 unlock_user_struct(target_rusage
, target_addr
, 1);
1261 static inline rlim_t
target_to_host_rlim(abi_ulong target_rlim
)
1263 abi_ulong target_rlim_swap
;
1266 target_rlim_swap
= tswapal(target_rlim
);
1267 if (target_rlim_swap
== TARGET_RLIM_INFINITY
)
1268 return RLIM_INFINITY
;
1270 result
= target_rlim_swap
;
1271 if (target_rlim_swap
!= (rlim_t
)result
)
1272 return RLIM_INFINITY
;
1277 static inline abi_ulong
host_to_target_rlim(rlim_t rlim
)
1279 abi_ulong target_rlim_swap
;
1282 if (rlim
== RLIM_INFINITY
|| rlim
!= (abi_long
)rlim
)
1283 target_rlim_swap
= TARGET_RLIM_INFINITY
;
1285 target_rlim_swap
= rlim
;
1286 result
= tswapal(target_rlim_swap
);
1291 static inline int target_to_host_resource(int code
)
1294 case TARGET_RLIMIT_AS
:
1296 case TARGET_RLIMIT_CORE
:
1298 case TARGET_RLIMIT_CPU
:
1300 case TARGET_RLIMIT_DATA
:
1302 case TARGET_RLIMIT_FSIZE
:
1303 return RLIMIT_FSIZE
;
1304 case TARGET_RLIMIT_LOCKS
:
1305 return RLIMIT_LOCKS
;
1306 case TARGET_RLIMIT_MEMLOCK
:
1307 return RLIMIT_MEMLOCK
;
1308 case TARGET_RLIMIT_MSGQUEUE
:
1309 return RLIMIT_MSGQUEUE
;
1310 case TARGET_RLIMIT_NICE
:
1312 case TARGET_RLIMIT_NOFILE
:
1313 return RLIMIT_NOFILE
;
1314 case TARGET_RLIMIT_NPROC
:
1315 return RLIMIT_NPROC
;
1316 case TARGET_RLIMIT_RSS
:
1318 case TARGET_RLIMIT_RTPRIO
:
1319 return RLIMIT_RTPRIO
;
1320 case TARGET_RLIMIT_SIGPENDING
:
1321 return RLIMIT_SIGPENDING
;
1322 case TARGET_RLIMIT_STACK
:
1323 return RLIMIT_STACK
;
1329 static inline abi_long
copy_from_user_timeval(struct timeval
*tv
,
1330 abi_ulong target_tv_addr
)
1332 struct target_timeval
*target_tv
;
1334 if (!lock_user_struct(VERIFY_READ
, target_tv
, target_tv_addr
, 1))
1335 return -TARGET_EFAULT
;
1337 __get_user(tv
->tv_sec
, &target_tv
->tv_sec
);
1338 __get_user(tv
->tv_usec
, &target_tv
->tv_usec
);
1340 unlock_user_struct(target_tv
, target_tv_addr
, 0);
1345 static inline abi_long
copy_to_user_timeval(abi_ulong target_tv_addr
,
1346 const struct timeval
*tv
)
1348 struct target_timeval
*target_tv
;
1350 if (!lock_user_struct(VERIFY_WRITE
, target_tv
, target_tv_addr
, 0))
1351 return -TARGET_EFAULT
;
1353 __put_user(tv
->tv_sec
, &target_tv
->tv_sec
);
1354 __put_user(tv
->tv_usec
, &target_tv
->tv_usec
);
1356 unlock_user_struct(target_tv
, target_tv_addr
, 1);
1361 static inline abi_long
copy_from_user_timezone(struct timezone
*tz
,
1362 abi_ulong target_tz_addr
)
1364 struct target_timezone
*target_tz
;
1366 if (!lock_user_struct(VERIFY_READ
, target_tz
, target_tz_addr
, 1)) {
1367 return -TARGET_EFAULT
;
1370 __get_user(tz
->tz_minuteswest
, &target_tz
->tz_minuteswest
);
1371 __get_user(tz
->tz_dsttime
, &target_tz
->tz_dsttime
);
1373 unlock_user_struct(target_tz
, target_tz_addr
, 0);
1378 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
1381 static inline abi_long
copy_from_user_mq_attr(struct mq_attr
*attr
,
1382 abi_ulong target_mq_attr_addr
)
1384 struct target_mq_attr
*target_mq_attr
;
1386 if (!lock_user_struct(VERIFY_READ
, target_mq_attr
,
1387 target_mq_attr_addr
, 1))
1388 return -TARGET_EFAULT
;
1390 __get_user(attr
->mq_flags
, &target_mq_attr
->mq_flags
);
1391 __get_user(attr
->mq_maxmsg
, &target_mq_attr
->mq_maxmsg
);
1392 __get_user(attr
->mq_msgsize
, &target_mq_attr
->mq_msgsize
);
1393 __get_user(attr
->mq_curmsgs
, &target_mq_attr
->mq_curmsgs
);
1395 unlock_user_struct(target_mq_attr
, target_mq_attr_addr
, 0);
1400 static inline abi_long
copy_to_user_mq_attr(abi_ulong target_mq_attr_addr
,
1401 const struct mq_attr
*attr
)
1403 struct target_mq_attr
*target_mq_attr
;
1405 if (!lock_user_struct(VERIFY_WRITE
, target_mq_attr
,
1406 target_mq_attr_addr
, 0))
1407 return -TARGET_EFAULT
;
1409 __put_user(attr
->mq_flags
, &target_mq_attr
->mq_flags
);
1410 __put_user(attr
->mq_maxmsg
, &target_mq_attr
->mq_maxmsg
);
1411 __put_user(attr
->mq_msgsize
, &target_mq_attr
->mq_msgsize
);
1412 __put_user(attr
->mq_curmsgs
, &target_mq_attr
->mq_curmsgs
);
1414 unlock_user_struct(target_mq_attr
, target_mq_attr_addr
, 1);
1420 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect)
1421 /* do_select() must return target values and target errnos. */
1422 static abi_long
do_select(int n
,
1423 abi_ulong rfd_addr
, abi_ulong wfd_addr
,
1424 abi_ulong efd_addr
, abi_ulong target_tv_addr
)
1426 fd_set rfds
, wfds
, efds
;
1427 fd_set
*rfds_ptr
, *wfds_ptr
, *efds_ptr
;
1429 struct timespec ts
, *ts_ptr
;
1432 ret
= copy_from_user_fdset_ptr(&rfds
, &rfds_ptr
, rfd_addr
, n
);
1436 ret
= copy_from_user_fdset_ptr(&wfds
, &wfds_ptr
, wfd_addr
, n
);
1440 ret
= copy_from_user_fdset_ptr(&efds
, &efds_ptr
, efd_addr
, n
);
1445 if (target_tv_addr
) {
1446 if (copy_from_user_timeval(&tv
, target_tv_addr
))
1447 return -TARGET_EFAULT
;
1448 ts
.tv_sec
= tv
.tv_sec
;
1449 ts
.tv_nsec
= tv
.tv_usec
* 1000;
1455 ret
= get_errno(safe_pselect6(n
, rfds_ptr
, wfds_ptr
, efds_ptr
,
1458 if (!is_error(ret
)) {
1459 if (rfd_addr
&& copy_to_user_fdset(rfd_addr
, &rfds
, n
))
1460 return -TARGET_EFAULT
;
1461 if (wfd_addr
&& copy_to_user_fdset(wfd_addr
, &wfds
, n
))
1462 return -TARGET_EFAULT
;
1463 if (efd_addr
&& copy_to_user_fdset(efd_addr
, &efds
, n
))
1464 return -TARGET_EFAULT
;
1466 if (target_tv_addr
) {
1467 tv
.tv_sec
= ts
.tv_sec
;
1468 tv
.tv_usec
= ts
.tv_nsec
/ 1000;
1469 if (copy_to_user_timeval(target_tv_addr
, &tv
)) {
1470 return -TARGET_EFAULT
;
1478 #if defined(TARGET_WANT_OLD_SYS_SELECT)
1479 static abi_long
do_old_select(abi_ulong arg1
)
1481 struct target_sel_arg_struct
*sel
;
1482 abi_ulong inp
, outp
, exp
, tvp
;
1485 if (!lock_user_struct(VERIFY_READ
, sel
, arg1
, 1)) {
1486 return -TARGET_EFAULT
;
1489 nsel
= tswapal(sel
->n
);
1490 inp
= tswapal(sel
->inp
);
1491 outp
= tswapal(sel
->outp
);
1492 exp
= tswapal(sel
->exp
);
1493 tvp
= tswapal(sel
->tvp
);
1495 unlock_user_struct(sel
, arg1
, 0);
1497 return do_select(nsel
, inp
, outp
, exp
, tvp
);
1502 static abi_long
do_pipe2(int host_pipe
[], int flags
)
1505 return pipe2(host_pipe
, flags
);
1511 static abi_long
do_pipe(void *cpu_env
, abi_ulong pipedes
,
1512 int flags
, int is_pipe2
)
1516 ret
= flags
? do_pipe2(host_pipe
, flags
) : pipe(host_pipe
);
1519 return get_errno(ret
);
1521 /* Several targets have special calling conventions for the original
1522 pipe syscall, but didn't replicate this into the pipe2 syscall. */
1524 #if defined(TARGET_ALPHA)
1525 ((CPUAlphaState
*)cpu_env
)->ir
[IR_A4
] = host_pipe
[1];
1526 return host_pipe
[0];
1527 #elif defined(TARGET_MIPS)
1528 ((CPUMIPSState
*)cpu_env
)->active_tc
.gpr
[3] = host_pipe
[1];
1529 return host_pipe
[0];
1530 #elif defined(TARGET_SH4)
1531 ((CPUSH4State
*)cpu_env
)->gregs
[1] = host_pipe
[1];
1532 return host_pipe
[0];
1533 #elif defined(TARGET_SPARC)
1534 ((CPUSPARCState
*)cpu_env
)->regwptr
[1] = host_pipe
[1];
1535 return host_pipe
[0];
1539 if (put_user_s32(host_pipe
[0], pipedes
)
1540 || put_user_s32(host_pipe
[1], pipedes
+ sizeof(host_pipe
[0])))
1541 return -TARGET_EFAULT
;
1542 return get_errno(ret
);
1545 static inline abi_long
target_to_host_ip_mreq(struct ip_mreqn
*mreqn
,
1546 abi_ulong target_addr
,
1549 struct target_ip_mreqn
*target_smreqn
;
1551 target_smreqn
= lock_user(VERIFY_READ
, target_addr
, len
, 1);
1553 return -TARGET_EFAULT
;
1554 mreqn
->imr_multiaddr
.s_addr
= target_smreqn
->imr_multiaddr
.s_addr
;
1555 mreqn
->imr_address
.s_addr
= target_smreqn
->imr_address
.s_addr
;
1556 if (len
== sizeof(struct target_ip_mreqn
))
1557 mreqn
->imr_ifindex
= tswapal(target_smreqn
->imr_ifindex
);
1558 unlock_user(target_smreqn
, target_addr
, 0);
1563 static inline abi_long
target_to_host_sockaddr(int fd
, struct sockaddr
*addr
,
1564 abi_ulong target_addr
,
1567 const socklen_t unix_maxlen
= sizeof (struct sockaddr_un
);
1568 sa_family_t sa_family
;
1569 struct target_sockaddr
*target_saddr
;
1571 if (fd_trans_target_to_host_addr(fd
)) {
1572 return fd_trans_target_to_host_addr(fd
)(addr
, target_addr
, len
);
1575 target_saddr
= lock_user(VERIFY_READ
, target_addr
, len
, 1);
1577 return -TARGET_EFAULT
;
1579 sa_family
= tswap16(target_saddr
->sa_family
);
1581 /* Oops. The caller might send a incomplete sun_path; sun_path
1582 * must be terminated by \0 (see the manual page), but
1583 * unfortunately it is quite common to specify sockaddr_un
1584 * length as "strlen(x->sun_path)" while it should be
1585 * "strlen(...) + 1". We'll fix that here if needed.
1586 * Linux kernel has a similar feature.
1589 if (sa_family
== AF_UNIX
) {
1590 if (len
< unix_maxlen
&& len
> 0) {
1591 char *cp
= (char*)target_saddr
;
1593 if ( cp
[len
-1] && !cp
[len
] )
1596 if (len
> unix_maxlen
)
1600 memcpy(addr
, target_saddr
, len
);
1601 addr
->sa_family
= sa_family
;
1602 if (sa_family
== AF_NETLINK
) {
1603 struct sockaddr_nl
*nladdr
;
1605 nladdr
= (struct sockaddr_nl
*)addr
;
1606 nladdr
->nl_pid
= tswap32(nladdr
->nl_pid
);
1607 nladdr
->nl_groups
= tswap32(nladdr
->nl_groups
);
1608 } else if (sa_family
== AF_PACKET
) {
1609 struct target_sockaddr_ll
*lladdr
;
1611 lladdr
= (struct target_sockaddr_ll
*)addr
;
1612 lladdr
->sll_ifindex
= tswap32(lladdr
->sll_ifindex
);
1613 lladdr
->sll_hatype
= tswap16(lladdr
->sll_hatype
);
1615 unlock_user(target_saddr
, target_addr
, 0);
1620 static inline abi_long
host_to_target_sockaddr(abi_ulong target_addr
,
1621 struct sockaddr
*addr
,
1624 struct target_sockaddr
*target_saddr
;
1631 target_saddr
= lock_user(VERIFY_WRITE
, target_addr
, len
, 0);
1633 return -TARGET_EFAULT
;
1634 memcpy(target_saddr
, addr
, len
);
1635 if (len
>= offsetof(struct target_sockaddr
, sa_family
) +
1636 sizeof(target_saddr
->sa_family
)) {
1637 target_saddr
->sa_family
= tswap16(addr
->sa_family
);
1639 if (addr
->sa_family
== AF_NETLINK
&& len
>= sizeof(struct sockaddr_nl
)) {
1640 struct sockaddr_nl
*target_nl
= (struct sockaddr_nl
*)target_saddr
;
1641 target_nl
->nl_pid
= tswap32(target_nl
->nl_pid
);
1642 target_nl
->nl_groups
= tswap32(target_nl
->nl_groups
);
1643 } else if (addr
->sa_family
== AF_PACKET
) {
1644 struct sockaddr_ll
*target_ll
= (struct sockaddr_ll
*)target_saddr
;
1645 target_ll
->sll_ifindex
= tswap32(target_ll
->sll_ifindex
);
1646 target_ll
->sll_hatype
= tswap16(target_ll
->sll_hatype
);
1647 } else if (addr
->sa_family
== AF_INET6
&&
1648 len
>= sizeof(struct target_sockaddr_in6
)) {
1649 struct target_sockaddr_in6
*target_in6
=
1650 (struct target_sockaddr_in6
*)target_saddr
;
1651 target_in6
->sin6_scope_id
= tswap16(target_in6
->sin6_scope_id
);
1653 unlock_user(target_saddr
, target_addr
, len
);
1658 static inline abi_long
target_to_host_cmsg(struct msghdr
*msgh
,
1659 struct target_msghdr
*target_msgh
)
1661 struct cmsghdr
*cmsg
= CMSG_FIRSTHDR(msgh
);
1662 abi_long msg_controllen
;
1663 abi_ulong target_cmsg_addr
;
1664 struct target_cmsghdr
*target_cmsg
, *target_cmsg_start
;
1665 socklen_t space
= 0;
1667 msg_controllen
= tswapal(target_msgh
->msg_controllen
);
1668 if (msg_controllen
< sizeof (struct target_cmsghdr
))
1670 target_cmsg_addr
= tswapal(target_msgh
->msg_control
);
1671 target_cmsg
= lock_user(VERIFY_READ
, target_cmsg_addr
, msg_controllen
, 1);
1672 target_cmsg_start
= target_cmsg
;
1674 return -TARGET_EFAULT
;
1676 while (cmsg
&& target_cmsg
) {
1677 void *data
= CMSG_DATA(cmsg
);
1678 void *target_data
= TARGET_CMSG_DATA(target_cmsg
);
1680 int len
= tswapal(target_cmsg
->cmsg_len
)
1681 - TARGET_CMSG_ALIGN(sizeof (struct target_cmsghdr
));
1683 space
+= CMSG_SPACE(len
);
1684 if (space
> msgh
->msg_controllen
) {
1685 space
-= CMSG_SPACE(len
);
1686 /* This is a QEMU bug, since we allocated the payload
1687 * area ourselves (unlike overflow in host-to-target
1688 * conversion, which is just the guest giving us a buffer
1689 * that's too small). It can't happen for the payload types
1690 * we currently support; if it becomes an issue in future
1691 * we would need to improve our allocation strategy to
1692 * something more intelligent than "twice the size of the
1693 * target buffer we're reading from".
1695 gemu_log("Host cmsg overflow\n");
1699 if (tswap32(target_cmsg
->cmsg_level
) == TARGET_SOL_SOCKET
) {
1700 cmsg
->cmsg_level
= SOL_SOCKET
;
1702 cmsg
->cmsg_level
= tswap32(target_cmsg
->cmsg_level
);
1704 cmsg
->cmsg_type
= tswap32(target_cmsg
->cmsg_type
);
1705 cmsg
->cmsg_len
= CMSG_LEN(len
);
1707 if (cmsg
->cmsg_level
== SOL_SOCKET
&& cmsg
->cmsg_type
== SCM_RIGHTS
) {
1708 int *fd
= (int *)data
;
1709 int *target_fd
= (int *)target_data
;
1710 int i
, numfds
= len
/ sizeof(int);
1712 for (i
= 0; i
< numfds
; i
++) {
1713 __get_user(fd
[i
], target_fd
+ i
);
1715 } else if (cmsg
->cmsg_level
== SOL_SOCKET
1716 && cmsg
->cmsg_type
== SCM_CREDENTIALS
) {
1717 struct ucred
*cred
= (struct ucred
*)data
;
1718 struct target_ucred
*target_cred
=
1719 (struct target_ucred
*)target_data
;
1721 __get_user(cred
->pid
, &target_cred
->pid
);
1722 __get_user(cred
->uid
, &target_cred
->uid
);
1723 __get_user(cred
->gid
, &target_cred
->gid
);
1725 gemu_log("Unsupported ancillary data: %d/%d\n",
1726 cmsg
->cmsg_level
, cmsg
->cmsg_type
);
1727 memcpy(data
, target_data
, len
);
1730 cmsg
= CMSG_NXTHDR(msgh
, cmsg
);
1731 target_cmsg
= TARGET_CMSG_NXTHDR(target_msgh
, target_cmsg
,
1734 unlock_user(target_cmsg
, target_cmsg_addr
, 0);
1736 msgh
->msg_controllen
= space
;
1740 static inline abi_long
host_to_target_cmsg(struct target_msghdr
*target_msgh
,
1741 struct msghdr
*msgh
)
1743 struct cmsghdr
*cmsg
= CMSG_FIRSTHDR(msgh
);
1744 abi_long msg_controllen
;
1745 abi_ulong target_cmsg_addr
;
1746 struct target_cmsghdr
*target_cmsg
, *target_cmsg_start
;
1747 socklen_t space
= 0;
1749 msg_controllen
= tswapal(target_msgh
->msg_controllen
);
1750 if (msg_controllen
< sizeof (struct target_cmsghdr
))
1752 target_cmsg_addr
= tswapal(target_msgh
->msg_control
);
1753 target_cmsg
= lock_user(VERIFY_WRITE
, target_cmsg_addr
, msg_controllen
, 0);
1754 target_cmsg_start
= target_cmsg
;
1756 return -TARGET_EFAULT
;
1758 while (cmsg
&& target_cmsg
) {
1759 void *data
= CMSG_DATA(cmsg
);
1760 void *target_data
= TARGET_CMSG_DATA(target_cmsg
);
1762 int len
= cmsg
->cmsg_len
- CMSG_ALIGN(sizeof (struct cmsghdr
));
1763 int tgt_len
, tgt_space
;
1765 /* We never copy a half-header but may copy half-data;
1766 * this is Linux's behaviour in put_cmsg(). Note that
1767 * truncation here is a guest problem (which we report
1768 * to the guest via the CTRUNC bit), unlike truncation
1769 * in target_to_host_cmsg, which is a QEMU bug.
1771 if (msg_controllen
< sizeof(struct cmsghdr
)) {
1772 target_msgh
->msg_flags
|= tswap32(MSG_CTRUNC
);
1776 if (cmsg
->cmsg_level
== SOL_SOCKET
) {
1777 target_cmsg
->cmsg_level
= tswap32(TARGET_SOL_SOCKET
);
1779 target_cmsg
->cmsg_level
= tswap32(cmsg
->cmsg_level
);
1781 target_cmsg
->cmsg_type
= tswap32(cmsg
->cmsg_type
);
1783 tgt_len
= TARGET_CMSG_LEN(len
);
1785 /* Payload types which need a different size of payload on
1786 * the target must adjust tgt_len here.
1788 switch (cmsg
->cmsg_level
) {
1790 switch (cmsg
->cmsg_type
) {
1792 tgt_len
= sizeof(struct target_timeval
);
1801 if (msg_controllen
< tgt_len
) {
1802 target_msgh
->msg_flags
|= tswap32(MSG_CTRUNC
);
1803 tgt_len
= msg_controllen
;
1806 /* We must now copy-and-convert len bytes of payload
1807 * into tgt_len bytes of destination space. Bear in mind
1808 * that in both source and destination we may be dealing
1809 * with a truncated value!
1811 switch (cmsg
->cmsg_level
) {
1813 switch (cmsg
->cmsg_type
) {
1816 int *fd
= (int *)data
;
1817 int *target_fd
= (int *)target_data
;
1818 int i
, numfds
= tgt_len
/ sizeof(int);
1820 for (i
= 0; i
< numfds
; i
++) {
1821 __put_user(fd
[i
], target_fd
+ i
);
1827 struct timeval
*tv
= (struct timeval
*)data
;
1828 struct target_timeval
*target_tv
=
1829 (struct target_timeval
*)target_data
;
1831 if (len
!= sizeof(struct timeval
) ||
1832 tgt_len
!= sizeof(struct target_timeval
)) {
1836 /* copy struct timeval to target */
1837 __put_user(tv
->tv_sec
, &target_tv
->tv_sec
);
1838 __put_user(tv
->tv_usec
, &target_tv
->tv_usec
);
1841 case SCM_CREDENTIALS
:
1843 struct ucred
*cred
= (struct ucred
*)data
;
1844 struct target_ucred
*target_cred
=
1845 (struct target_ucred
*)target_data
;
1847 __put_user(cred
->pid
, &target_cred
->pid
);
1848 __put_user(cred
->uid
, &target_cred
->uid
);
1849 __put_user(cred
->gid
, &target_cred
->gid
);
1858 switch (cmsg
->cmsg_type
) {
1861 uint32_t *v
= (uint32_t *)data
;
1862 uint32_t *t_int
= (uint32_t *)target_data
;
1864 __put_user(*v
, t_int
);
1870 struct sock_extended_err ee
;
1871 struct sockaddr_in offender
;
1873 struct errhdr_t
*errh
= (struct errhdr_t
*)data
;
1874 struct errhdr_t
*target_errh
=
1875 (struct errhdr_t
*)target_data
;
1877 __put_user(errh
->ee
.ee_errno
, &target_errh
->ee
.ee_errno
);
1878 __put_user(errh
->ee
.ee_origin
, &target_errh
->ee
.ee_origin
);
1879 __put_user(errh
->ee
.ee_type
, &target_errh
->ee
.ee_type
);
1880 __put_user(errh
->ee
.ee_code
, &target_errh
->ee
.ee_code
);
1881 __put_user(errh
->ee
.ee_pad
, &target_errh
->ee
.ee_pad
);
1882 __put_user(errh
->ee
.ee_info
, &target_errh
->ee
.ee_info
);
1883 __put_user(errh
->ee
.ee_data
, &target_errh
->ee
.ee_data
);
1884 host_to_target_sockaddr((unsigned long) &target_errh
->offender
,
1885 (void *) &errh
->offender
, sizeof(errh
->offender
));
1894 switch (cmsg
->cmsg_type
) {
1897 uint32_t *v
= (uint32_t *)data
;
1898 uint32_t *t_int
= (uint32_t *)target_data
;
1900 __put_user(*v
, t_int
);
1906 struct sock_extended_err ee
;
1907 struct sockaddr_in6 offender
;
1909 struct errhdr6_t
*errh
= (struct errhdr6_t
*)data
;
1910 struct errhdr6_t
*target_errh
=
1911 (struct errhdr6_t
*)target_data
;
1913 __put_user(errh
->ee
.ee_errno
, &target_errh
->ee
.ee_errno
);
1914 __put_user(errh
->ee
.ee_origin
, &target_errh
->ee
.ee_origin
);
1915 __put_user(errh
->ee
.ee_type
, &target_errh
->ee
.ee_type
);
1916 __put_user(errh
->ee
.ee_code
, &target_errh
->ee
.ee_code
);
1917 __put_user(errh
->ee
.ee_pad
, &target_errh
->ee
.ee_pad
);
1918 __put_user(errh
->ee
.ee_info
, &target_errh
->ee
.ee_info
);
1919 __put_user(errh
->ee
.ee_data
, &target_errh
->ee
.ee_data
);
1920 host_to_target_sockaddr((unsigned long) &target_errh
->offender
,
1921 (void *) &errh
->offender
, sizeof(errh
->offender
));
1931 gemu_log("Unsupported ancillary data: %d/%d\n",
1932 cmsg
->cmsg_level
, cmsg
->cmsg_type
);
1933 memcpy(target_data
, data
, MIN(len
, tgt_len
));
1934 if (tgt_len
> len
) {
1935 memset(target_data
+ len
, 0, tgt_len
- len
);
1939 target_cmsg
->cmsg_len
= tswapal(tgt_len
);
1940 tgt_space
= TARGET_CMSG_SPACE(len
);
1941 if (msg_controllen
< tgt_space
) {
1942 tgt_space
= msg_controllen
;
1944 msg_controllen
-= tgt_space
;
1946 cmsg
= CMSG_NXTHDR(msgh
, cmsg
);
1947 target_cmsg
= TARGET_CMSG_NXTHDR(target_msgh
, target_cmsg
,
1950 unlock_user(target_cmsg
, target_cmsg_addr
, space
);
1952 target_msgh
->msg_controllen
= tswapal(space
);
1956 static void tswap_nlmsghdr(struct nlmsghdr
*nlh
)
1958 nlh
->nlmsg_len
= tswap32(nlh
->nlmsg_len
);
1959 nlh
->nlmsg_type
= tswap16(nlh
->nlmsg_type
);
1960 nlh
->nlmsg_flags
= tswap16(nlh
->nlmsg_flags
);
1961 nlh
->nlmsg_seq
= tswap32(nlh
->nlmsg_seq
);
1962 nlh
->nlmsg_pid
= tswap32(nlh
->nlmsg_pid
);
1965 static abi_long
host_to_target_for_each_nlmsg(struct nlmsghdr
*nlh
,
1967 abi_long (*host_to_target_nlmsg
)
1968 (struct nlmsghdr
*))
1973 while (len
> sizeof(struct nlmsghdr
)) {
1975 nlmsg_len
= nlh
->nlmsg_len
;
1976 if (nlmsg_len
< sizeof(struct nlmsghdr
) ||
1981 switch (nlh
->nlmsg_type
) {
1983 tswap_nlmsghdr(nlh
);
1989 struct nlmsgerr
*e
= NLMSG_DATA(nlh
);
1990 e
->error
= tswap32(e
->error
);
1991 tswap_nlmsghdr(&e
->msg
);
1992 tswap_nlmsghdr(nlh
);
1996 ret
= host_to_target_nlmsg(nlh
);
1998 tswap_nlmsghdr(nlh
);
2003 tswap_nlmsghdr(nlh
);
2004 len
-= NLMSG_ALIGN(nlmsg_len
);
2005 nlh
= (struct nlmsghdr
*)(((char*)nlh
) + NLMSG_ALIGN(nlmsg_len
));
2010 static abi_long
target_to_host_for_each_nlmsg(struct nlmsghdr
*nlh
,
2012 abi_long (*target_to_host_nlmsg
)
2013 (struct nlmsghdr
*))
2017 while (len
> sizeof(struct nlmsghdr
)) {
2018 if (tswap32(nlh
->nlmsg_len
) < sizeof(struct nlmsghdr
) ||
2019 tswap32(nlh
->nlmsg_len
) > len
) {
2022 tswap_nlmsghdr(nlh
);
2023 switch (nlh
->nlmsg_type
) {
2030 struct nlmsgerr
*e
= NLMSG_DATA(nlh
);
2031 e
->error
= tswap32(e
->error
);
2032 tswap_nlmsghdr(&e
->msg
);
2036 ret
= target_to_host_nlmsg(nlh
);
2041 len
-= NLMSG_ALIGN(nlh
->nlmsg_len
);
2042 nlh
= (struct nlmsghdr
*)(((char *)nlh
) + NLMSG_ALIGN(nlh
->nlmsg_len
));
2047 #ifdef CONFIG_RTNETLINK
2048 static abi_long
host_to_target_for_each_nlattr(struct nlattr
*nlattr
,
2049 size_t len
, void *context
,
2050 abi_long (*host_to_target_nlattr
)
2054 unsigned short nla_len
;
2057 while (len
> sizeof(struct nlattr
)) {
2058 nla_len
= nlattr
->nla_len
;
2059 if (nla_len
< sizeof(struct nlattr
) ||
2063 ret
= host_to_target_nlattr(nlattr
, context
);
2064 nlattr
->nla_len
= tswap16(nlattr
->nla_len
);
2065 nlattr
->nla_type
= tswap16(nlattr
->nla_type
);
2069 len
-= NLA_ALIGN(nla_len
);
2070 nlattr
= (struct nlattr
*)(((char *)nlattr
) + NLA_ALIGN(nla_len
));
2075 static abi_long
host_to_target_for_each_rtattr(struct rtattr
*rtattr
,
2077 abi_long (*host_to_target_rtattr
)
2080 unsigned short rta_len
;
2083 while (len
> sizeof(struct rtattr
)) {
2084 rta_len
= rtattr
->rta_len
;
2085 if (rta_len
< sizeof(struct rtattr
) ||
2089 ret
= host_to_target_rtattr(rtattr
);
2090 rtattr
->rta_len
= tswap16(rtattr
->rta_len
);
2091 rtattr
->rta_type
= tswap16(rtattr
->rta_type
);
2095 len
-= RTA_ALIGN(rta_len
);
2096 rtattr
= (struct rtattr
*)(((char *)rtattr
) + RTA_ALIGN(rta_len
));
2101 #define NLA_DATA(nla) ((void *)((char *)(nla)) + NLA_HDRLEN)
2103 static abi_long
host_to_target_data_bridge_nlattr(struct nlattr
*nlattr
,
2110 switch (nlattr
->nla_type
) {
2112 case QEMU_IFLA_BR_FDB_FLUSH
:
2115 case QEMU_IFLA_BR_GROUP_ADDR
:
2118 case QEMU_IFLA_BR_VLAN_FILTERING
:
2119 case QEMU_IFLA_BR_TOPOLOGY_CHANGE
:
2120 case QEMU_IFLA_BR_TOPOLOGY_CHANGE_DETECTED
:
2121 case QEMU_IFLA_BR_MCAST_ROUTER
:
2122 case QEMU_IFLA_BR_MCAST_SNOOPING
:
2123 case QEMU_IFLA_BR_MCAST_QUERY_USE_IFADDR
:
2124 case QEMU_IFLA_BR_MCAST_QUERIER
:
2125 case QEMU_IFLA_BR_NF_CALL_IPTABLES
:
2126 case QEMU_IFLA_BR_NF_CALL_IP6TABLES
:
2127 case QEMU_IFLA_BR_NF_CALL_ARPTABLES
:
2130 case QEMU_IFLA_BR_PRIORITY
:
2131 case QEMU_IFLA_BR_VLAN_PROTOCOL
:
2132 case QEMU_IFLA_BR_GROUP_FWD_MASK
:
2133 case QEMU_IFLA_BR_ROOT_PORT
:
2134 case QEMU_IFLA_BR_VLAN_DEFAULT_PVID
:
2135 u16
= NLA_DATA(nlattr
);
2136 *u16
= tswap16(*u16
);
2139 case QEMU_IFLA_BR_FORWARD_DELAY
:
2140 case QEMU_IFLA_BR_HELLO_TIME
:
2141 case QEMU_IFLA_BR_MAX_AGE
:
2142 case QEMU_IFLA_BR_AGEING_TIME
:
2143 case QEMU_IFLA_BR_STP_STATE
:
2144 case QEMU_IFLA_BR_ROOT_PATH_COST
:
2145 case QEMU_IFLA_BR_MCAST_HASH_ELASTICITY
:
2146 case QEMU_IFLA_BR_MCAST_HASH_MAX
:
2147 case QEMU_IFLA_BR_MCAST_LAST_MEMBER_CNT
:
2148 case QEMU_IFLA_BR_MCAST_STARTUP_QUERY_CNT
:
2149 u32
= NLA_DATA(nlattr
);
2150 *u32
= tswap32(*u32
);
2153 case QEMU_IFLA_BR_HELLO_TIMER
:
2154 case QEMU_IFLA_BR_TCN_TIMER
:
2155 case QEMU_IFLA_BR_GC_TIMER
:
2156 case QEMU_IFLA_BR_TOPOLOGY_CHANGE_TIMER
:
2157 case QEMU_IFLA_BR_MCAST_LAST_MEMBER_INTVL
:
2158 case QEMU_IFLA_BR_MCAST_MEMBERSHIP_INTVL
:
2159 case QEMU_IFLA_BR_MCAST_QUERIER_INTVL
:
2160 case QEMU_IFLA_BR_MCAST_QUERY_INTVL
:
2161 case QEMU_IFLA_BR_MCAST_QUERY_RESPONSE_INTVL
:
2162 case QEMU_IFLA_BR_MCAST_STARTUP_QUERY_INTVL
:
2163 u64
= NLA_DATA(nlattr
);
2164 *u64
= tswap64(*u64
);
2166 /* ifla_bridge_id: uin8_t[] */
2167 case QEMU_IFLA_BR_ROOT_ID
:
2168 case QEMU_IFLA_BR_BRIDGE_ID
:
2171 gemu_log("Unknown QEMU_IFLA_BR type %d\n", nlattr
->nla_type
);
2177 static abi_long
host_to_target_slave_data_bridge_nlattr(struct nlattr
*nlattr
,
2184 switch (nlattr
->nla_type
) {
2186 case QEMU_IFLA_BRPORT_STATE
:
2187 case QEMU_IFLA_BRPORT_MODE
:
2188 case QEMU_IFLA_BRPORT_GUARD
:
2189 case QEMU_IFLA_BRPORT_PROTECT
:
2190 case QEMU_IFLA_BRPORT_FAST_LEAVE
:
2191 case QEMU_IFLA_BRPORT_LEARNING
:
2192 case QEMU_IFLA_BRPORT_UNICAST_FLOOD
:
2193 case QEMU_IFLA_BRPORT_PROXYARP
:
2194 case QEMU_IFLA_BRPORT_LEARNING_SYNC
:
2195 case QEMU_IFLA_BRPORT_PROXYARP_WIFI
:
2196 case QEMU_IFLA_BRPORT_TOPOLOGY_CHANGE_ACK
:
2197 case QEMU_IFLA_BRPORT_CONFIG_PENDING
:
2198 case QEMU_IFLA_BRPORT_MULTICAST_ROUTER
:
2201 case QEMU_IFLA_BRPORT_PRIORITY
:
2202 case QEMU_IFLA_BRPORT_DESIGNATED_PORT
:
2203 case QEMU_IFLA_BRPORT_DESIGNATED_COST
:
2204 case QEMU_IFLA_BRPORT_ID
:
2205 case QEMU_IFLA_BRPORT_NO
:
2206 u16
= NLA_DATA(nlattr
);
2207 *u16
= tswap16(*u16
);
2210 case QEMU_IFLA_BRPORT_COST
:
2211 u32
= NLA_DATA(nlattr
);
2212 *u32
= tswap32(*u32
);
2215 case QEMU_IFLA_BRPORT_MESSAGE_AGE_TIMER
:
2216 case QEMU_IFLA_BRPORT_FORWARD_DELAY_TIMER
:
2217 case QEMU_IFLA_BRPORT_HOLD_TIMER
:
2218 u64
= NLA_DATA(nlattr
);
2219 *u64
= tswap64(*u64
);
2221 /* ifla_bridge_id: uint8_t[] */
2222 case QEMU_IFLA_BRPORT_ROOT_ID
:
2223 case QEMU_IFLA_BRPORT_BRIDGE_ID
:
2226 gemu_log("Unknown QEMU_IFLA_BRPORT type %d\n", nlattr
->nla_type
);
2232 struct linkinfo_context
{
2239 static abi_long
host_to_target_data_linkinfo_nlattr(struct nlattr
*nlattr
,
2242 struct linkinfo_context
*li_context
= context
;
2244 switch (nlattr
->nla_type
) {
2246 case QEMU_IFLA_INFO_KIND
:
2247 li_context
->name
= NLA_DATA(nlattr
);
2248 li_context
->len
= nlattr
->nla_len
- NLA_HDRLEN
;
2250 case QEMU_IFLA_INFO_SLAVE_KIND
:
2251 li_context
->slave_name
= NLA_DATA(nlattr
);
2252 li_context
->slave_len
= nlattr
->nla_len
- NLA_HDRLEN
;
2255 case QEMU_IFLA_INFO_XSTATS
:
2256 /* FIXME: only used by CAN */
2259 case QEMU_IFLA_INFO_DATA
:
2260 if (strncmp(li_context
->name
, "bridge",
2261 li_context
->len
) == 0) {
2262 return host_to_target_for_each_nlattr(NLA_DATA(nlattr
),
2265 host_to_target_data_bridge_nlattr
);
2267 gemu_log("Unknown QEMU_IFLA_INFO_KIND %s\n", li_context
->name
);
2270 case QEMU_IFLA_INFO_SLAVE_DATA
:
2271 if (strncmp(li_context
->slave_name
, "bridge",
2272 li_context
->slave_len
) == 0) {
2273 return host_to_target_for_each_nlattr(NLA_DATA(nlattr
),
2276 host_to_target_slave_data_bridge_nlattr
);
2278 gemu_log("Unknown QEMU_IFLA_INFO_SLAVE_KIND %s\n",
2279 li_context
->slave_name
);
2283 gemu_log("Unknown host QEMU_IFLA_INFO type: %d\n", nlattr
->nla_type
);
2290 static abi_long
host_to_target_data_inet_nlattr(struct nlattr
*nlattr
,
2296 switch (nlattr
->nla_type
) {
2297 case QEMU_IFLA_INET_CONF
:
2298 u32
= NLA_DATA(nlattr
);
2299 for (i
= 0; i
< (nlattr
->nla_len
- NLA_HDRLEN
) / sizeof(*u32
);
2301 u32
[i
] = tswap32(u32
[i
]);
2305 gemu_log("Unknown host AF_INET type: %d\n", nlattr
->nla_type
);
2310 static abi_long
host_to_target_data_inet6_nlattr(struct nlattr
*nlattr
,
2315 struct ifla_cacheinfo
*ci
;
2318 switch (nlattr
->nla_type
) {
2320 case QEMU_IFLA_INET6_TOKEN
:
2323 case QEMU_IFLA_INET6_ADDR_GEN_MODE
:
2326 case QEMU_IFLA_INET6_FLAGS
:
2327 u32
= NLA_DATA(nlattr
);
2328 *u32
= tswap32(*u32
);
2331 case QEMU_IFLA_INET6_CONF
:
2332 u32
= NLA_DATA(nlattr
);
2333 for (i
= 0; i
< (nlattr
->nla_len
- NLA_HDRLEN
) / sizeof(*u32
);
2335 u32
[i
] = tswap32(u32
[i
]);
2338 /* ifla_cacheinfo */
2339 case QEMU_IFLA_INET6_CACHEINFO
:
2340 ci
= NLA_DATA(nlattr
);
2341 ci
->max_reasm_len
= tswap32(ci
->max_reasm_len
);
2342 ci
->tstamp
= tswap32(ci
->tstamp
);
2343 ci
->reachable_time
= tswap32(ci
->reachable_time
);
2344 ci
->retrans_time
= tswap32(ci
->retrans_time
);
2347 case QEMU_IFLA_INET6_STATS
:
2348 case QEMU_IFLA_INET6_ICMP6STATS
:
2349 u64
= NLA_DATA(nlattr
);
2350 for (i
= 0; i
< (nlattr
->nla_len
- NLA_HDRLEN
) / sizeof(*u64
);
2352 u64
[i
] = tswap64(u64
[i
]);
2356 gemu_log("Unknown host AF_INET6 type: %d\n", nlattr
->nla_type
);
2361 static abi_long
host_to_target_data_spec_nlattr(struct nlattr
*nlattr
,
2364 switch (nlattr
->nla_type
) {
2366 return host_to_target_for_each_nlattr(NLA_DATA(nlattr
), nlattr
->nla_len
,
2368 host_to_target_data_inet_nlattr
);
2370 return host_to_target_for_each_nlattr(NLA_DATA(nlattr
), nlattr
->nla_len
,
2372 host_to_target_data_inet6_nlattr
);
2374 gemu_log("Unknown host AF_SPEC type: %d\n", nlattr
->nla_type
);
2380 static abi_long
host_to_target_data_link_rtattr(struct rtattr
*rtattr
)
2383 struct rtnl_link_stats
*st
;
2384 struct rtnl_link_stats64
*st64
;
2385 struct rtnl_link_ifmap
*map
;
2386 struct linkinfo_context li_context
;
2388 switch (rtattr
->rta_type
) {
2390 case QEMU_IFLA_ADDRESS
:
2391 case QEMU_IFLA_BROADCAST
:
2393 case QEMU_IFLA_IFNAME
:
2394 case QEMU_IFLA_QDISC
:
2397 case QEMU_IFLA_OPERSTATE
:
2398 case QEMU_IFLA_LINKMODE
:
2399 case QEMU_IFLA_CARRIER
:
2400 case QEMU_IFLA_PROTO_DOWN
:
2404 case QEMU_IFLA_LINK
:
2405 case QEMU_IFLA_WEIGHT
:
2406 case QEMU_IFLA_TXQLEN
:
2407 case QEMU_IFLA_CARRIER_CHANGES
:
2408 case QEMU_IFLA_NUM_RX_QUEUES
:
2409 case QEMU_IFLA_NUM_TX_QUEUES
:
2410 case QEMU_IFLA_PROMISCUITY
:
2411 case QEMU_IFLA_EXT_MASK
:
2412 case QEMU_IFLA_LINK_NETNSID
:
2413 case QEMU_IFLA_GROUP
:
2414 case QEMU_IFLA_MASTER
:
2415 case QEMU_IFLA_NUM_VF
:
2416 case QEMU_IFLA_GSO_MAX_SEGS
:
2417 case QEMU_IFLA_GSO_MAX_SIZE
:
2418 u32
= RTA_DATA(rtattr
);
2419 *u32
= tswap32(*u32
);
2421 /* struct rtnl_link_stats */
2422 case QEMU_IFLA_STATS
:
2423 st
= RTA_DATA(rtattr
);
2424 st
->rx_packets
= tswap32(st
->rx_packets
);
2425 st
->tx_packets
= tswap32(st
->tx_packets
);
2426 st
->rx_bytes
= tswap32(st
->rx_bytes
);
2427 st
->tx_bytes
= tswap32(st
->tx_bytes
);
2428 st
->rx_errors
= tswap32(st
->rx_errors
);
2429 st
->tx_errors
= tswap32(st
->tx_errors
);
2430 st
->rx_dropped
= tswap32(st
->rx_dropped
);
2431 st
->tx_dropped
= tswap32(st
->tx_dropped
);
2432 st
->multicast
= tswap32(st
->multicast
);
2433 st
->collisions
= tswap32(st
->collisions
);
2435 /* detailed rx_errors: */
2436 st
->rx_length_errors
= tswap32(st
->rx_length_errors
);
2437 st
->rx_over_errors
= tswap32(st
->rx_over_errors
);
2438 st
->rx_crc_errors
= tswap32(st
->rx_crc_errors
);
2439 st
->rx_frame_errors
= tswap32(st
->rx_frame_errors
);
2440 st
->rx_fifo_errors
= tswap32(st
->rx_fifo_errors
);
2441 st
->rx_missed_errors
= tswap32(st
->rx_missed_errors
);
2443 /* detailed tx_errors */
2444 st
->tx_aborted_errors
= tswap32(st
->tx_aborted_errors
);
2445 st
->tx_carrier_errors
= tswap32(st
->tx_carrier_errors
);
2446 st
->tx_fifo_errors
= tswap32(st
->tx_fifo_errors
);
2447 st
->tx_heartbeat_errors
= tswap32(st
->tx_heartbeat_errors
);
2448 st
->tx_window_errors
= tswap32(st
->tx_window_errors
);
2451 st
->rx_compressed
= tswap32(st
->rx_compressed
);
2452 st
->tx_compressed
= tswap32(st
->tx_compressed
);
2454 /* struct rtnl_link_stats64 */
2455 case QEMU_IFLA_STATS64
:
2456 st64
= RTA_DATA(rtattr
);
2457 st64
->rx_packets
= tswap64(st64
->rx_packets
);
2458 st64
->tx_packets
= tswap64(st64
->tx_packets
);
2459 st64
->rx_bytes
= tswap64(st64
->rx_bytes
);
2460 st64
->tx_bytes
= tswap64(st64
->tx_bytes
);
2461 st64
->rx_errors
= tswap64(st64
->rx_errors
);
2462 st64
->tx_errors
= tswap64(st64
->tx_errors
);
2463 st64
->rx_dropped
= tswap64(st64
->rx_dropped
);
2464 st64
->tx_dropped
= tswap64(st64
->tx_dropped
);
2465 st64
->multicast
= tswap64(st64
->multicast
);
2466 st64
->collisions
= tswap64(st64
->collisions
);
2468 /* detailed rx_errors: */
2469 st64
->rx_length_errors
= tswap64(st64
->rx_length_errors
);
2470 st64
->rx_over_errors
= tswap64(st64
->rx_over_errors
);
2471 st64
->rx_crc_errors
= tswap64(st64
->rx_crc_errors
);
2472 st64
->rx_frame_errors
= tswap64(st64
->rx_frame_errors
);
2473 st64
->rx_fifo_errors
= tswap64(st64
->rx_fifo_errors
);
2474 st64
->rx_missed_errors
= tswap64(st64
->rx_missed_errors
);
2476 /* detailed tx_errors */
2477 st64
->tx_aborted_errors
= tswap64(st64
->tx_aborted_errors
);
2478 st64
->tx_carrier_errors
= tswap64(st64
->tx_carrier_errors
);
2479 st64
->tx_fifo_errors
= tswap64(st64
->tx_fifo_errors
);
2480 st64
->tx_heartbeat_errors
= tswap64(st64
->tx_heartbeat_errors
);
2481 st64
->tx_window_errors
= tswap64(st64
->tx_window_errors
);
2484 st64
->rx_compressed
= tswap64(st64
->rx_compressed
);
2485 st64
->tx_compressed
= tswap64(st64
->tx_compressed
);
2487 /* struct rtnl_link_ifmap */
2489 map
= RTA_DATA(rtattr
);
2490 map
->mem_start
= tswap64(map
->mem_start
);
2491 map
->mem_end
= tswap64(map
->mem_end
);
2492 map
->base_addr
= tswap64(map
->base_addr
);
2493 map
->irq
= tswap16(map
->irq
);
2496 case QEMU_IFLA_LINKINFO
:
2497 memset(&li_context
, 0, sizeof(li_context
));
2498 return host_to_target_for_each_nlattr(RTA_DATA(rtattr
), rtattr
->rta_len
,
2500 host_to_target_data_linkinfo_nlattr
);
2501 case QEMU_IFLA_AF_SPEC
:
2502 return host_to_target_for_each_nlattr(RTA_DATA(rtattr
), rtattr
->rta_len
,
2504 host_to_target_data_spec_nlattr
);
2506 gemu_log("Unknown host QEMU_IFLA type: %d\n", rtattr
->rta_type
);
2512 static abi_long
host_to_target_data_addr_rtattr(struct rtattr
*rtattr
)
2515 struct ifa_cacheinfo
*ci
;
2517 switch (rtattr
->rta_type
) {
2518 /* binary: depends on family type */
2528 u32
= RTA_DATA(rtattr
);
2529 *u32
= tswap32(*u32
);
2531 /* struct ifa_cacheinfo */
2533 ci
= RTA_DATA(rtattr
);
2534 ci
->ifa_prefered
= tswap32(ci
->ifa_prefered
);
2535 ci
->ifa_valid
= tswap32(ci
->ifa_valid
);
2536 ci
->cstamp
= tswap32(ci
->cstamp
);
2537 ci
->tstamp
= tswap32(ci
->tstamp
);
2540 gemu_log("Unknown host IFA type: %d\n", rtattr
->rta_type
);
2546 static abi_long
host_to_target_data_route_rtattr(struct rtattr
*rtattr
)
2549 switch (rtattr
->rta_type
) {
2550 /* binary: depends on family type */
2559 u32
= RTA_DATA(rtattr
);
2560 *u32
= tswap32(*u32
);
2563 gemu_log("Unknown host RTA type: %d\n", rtattr
->rta_type
);
2569 static abi_long
host_to_target_link_rtattr(struct rtattr
*rtattr
,
2570 uint32_t rtattr_len
)
2572 return host_to_target_for_each_rtattr(rtattr
, rtattr_len
,
2573 host_to_target_data_link_rtattr
);
2576 static abi_long
host_to_target_addr_rtattr(struct rtattr
*rtattr
,
2577 uint32_t rtattr_len
)
2579 return host_to_target_for_each_rtattr(rtattr
, rtattr_len
,
2580 host_to_target_data_addr_rtattr
);
2583 static abi_long
host_to_target_route_rtattr(struct rtattr
*rtattr
,
2584 uint32_t rtattr_len
)
2586 return host_to_target_for_each_rtattr(rtattr
, rtattr_len
,
2587 host_to_target_data_route_rtattr
);
2590 static abi_long
host_to_target_data_route(struct nlmsghdr
*nlh
)
2593 struct ifinfomsg
*ifi
;
2594 struct ifaddrmsg
*ifa
;
2597 nlmsg_len
= nlh
->nlmsg_len
;
2598 switch (nlh
->nlmsg_type
) {
2602 if (nlh
->nlmsg_len
>= NLMSG_LENGTH(sizeof(*ifi
))) {
2603 ifi
= NLMSG_DATA(nlh
);
2604 ifi
->ifi_type
= tswap16(ifi
->ifi_type
);
2605 ifi
->ifi_index
= tswap32(ifi
->ifi_index
);
2606 ifi
->ifi_flags
= tswap32(ifi
->ifi_flags
);
2607 ifi
->ifi_change
= tswap32(ifi
->ifi_change
);
2608 host_to_target_link_rtattr(IFLA_RTA(ifi
),
2609 nlmsg_len
- NLMSG_LENGTH(sizeof(*ifi
)));
2615 if (nlh
->nlmsg_len
>= NLMSG_LENGTH(sizeof(*ifa
))) {
2616 ifa
= NLMSG_DATA(nlh
);
2617 ifa
->ifa_index
= tswap32(ifa
->ifa_index
);
2618 host_to_target_addr_rtattr(IFA_RTA(ifa
),
2619 nlmsg_len
- NLMSG_LENGTH(sizeof(*ifa
)));
2625 if (nlh
->nlmsg_len
>= NLMSG_LENGTH(sizeof(*rtm
))) {
2626 rtm
= NLMSG_DATA(nlh
);
2627 rtm
->rtm_flags
= tswap32(rtm
->rtm_flags
);
2628 host_to_target_route_rtattr(RTM_RTA(rtm
),
2629 nlmsg_len
- NLMSG_LENGTH(sizeof(*rtm
)));
2633 return -TARGET_EINVAL
;
2638 static inline abi_long
host_to_target_nlmsg_route(struct nlmsghdr
*nlh
,
2641 return host_to_target_for_each_nlmsg(nlh
, len
, host_to_target_data_route
);
2644 static abi_long
target_to_host_for_each_rtattr(struct rtattr
*rtattr
,
2646 abi_long (*target_to_host_rtattr
)
2651 while (len
>= sizeof(struct rtattr
)) {
2652 if (tswap16(rtattr
->rta_len
) < sizeof(struct rtattr
) ||
2653 tswap16(rtattr
->rta_len
) > len
) {
2656 rtattr
->rta_len
= tswap16(rtattr
->rta_len
);
2657 rtattr
->rta_type
= tswap16(rtattr
->rta_type
);
2658 ret
= target_to_host_rtattr(rtattr
);
2662 len
-= RTA_ALIGN(rtattr
->rta_len
);
2663 rtattr
= (struct rtattr
*)(((char *)rtattr
) +
2664 RTA_ALIGN(rtattr
->rta_len
));
2669 static abi_long
target_to_host_data_link_rtattr(struct rtattr
*rtattr
)
2671 switch (rtattr
->rta_type
) {
2673 gemu_log("Unknown target QEMU_IFLA type: %d\n", rtattr
->rta_type
);
2679 static abi_long
target_to_host_data_addr_rtattr(struct rtattr
*rtattr
)
2681 switch (rtattr
->rta_type
) {
2682 /* binary: depends on family type */
2687 gemu_log("Unknown target IFA type: %d\n", rtattr
->rta_type
);
2693 static abi_long
target_to_host_data_route_rtattr(struct rtattr
*rtattr
)
2696 switch (rtattr
->rta_type
) {
2697 /* binary: depends on family type */
2705 u32
= RTA_DATA(rtattr
);
2706 *u32
= tswap32(*u32
);
2709 gemu_log("Unknown target RTA type: %d\n", rtattr
->rta_type
);
2715 static void target_to_host_link_rtattr(struct rtattr
*rtattr
,
2716 uint32_t rtattr_len
)
2718 target_to_host_for_each_rtattr(rtattr
, rtattr_len
,
2719 target_to_host_data_link_rtattr
);
2722 static void target_to_host_addr_rtattr(struct rtattr
*rtattr
,
2723 uint32_t rtattr_len
)
2725 target_to_host_for_each_rtattr(rtattr
, rtattr_len
,
2726 target_to_host_data_addr_rtattr
);
2729 static void target_to_host_route_rtattr(struct rtattr
*rtattr
,
2730 uint32_t rtattr_len
)
2732 target_to_host_for_each_rtattr(rtattr
, rtattr_len
,
2733 target_to_host_data_route_rtattr
);
2736 static abi_long
target_to_host_data_route(struct nlmsghdr
*nlh
)
2738 struct ifinfomsg
*ifi
;
2739 struct ifaddrmsg
*ifa
;
2742 switch (nlh
->nlmsg_type
) {
2747 if (nlh
->nlmsg_len
>= NLMSG_LENGTH(sizeof(*ifi
))) {
2748 ifi
= NLMSG_DATA(nlh
);
2749 ifi
->ifi_type
= tswap16(ifi
->ifi_type
);
2750 ifi
->ifi_index
= tswap32(ifi
->ifi_index
);
2751 ifi
->ifi_flags
= tswap32(ifi
->ifi_flags
);
2752 ifi
->ifi_change
= tswap32(ifi
->ifi_change
);
2753 target_to_host_link_rtattr(IFLA_RTA(ifi
), nlh
->nlmsg_len
-
2754 NLMSG_LENGTH(sizeof(*ifi
)));
2760 if (nlh
->nlmsg_len
>= NLMSG_LENGTH(sizeof(*ifa
))) {
2761 ifa
= NLMSG_DATA(nlh
);
2762 ifa
->ifa_index
= tswap32(ifa
->ifa_index
);
2763 target_to_host_addr_rtattr(IFA_RTA(ifa
), nlh
->nlmsg_len
-
2764 NLMSG_LENGTH(sizeof(*ifa
)));
2771 if (nlh
->nlmsg_len
>= NLMSG_LENGTH(sizeof(*rtm
))) {
2772 rtm
= NLMSG_DATA(nlh
);
2773 rtm
->rtm_flags
= tswap32(rtm
->rtm_flags
);
2774 target_to_host_route_rtattr(RTM_RTA(rtm
), nlh
->nlmsg_len
-
2775 NLMSG_LENGTH(sizeof(*rtm
)));
2779 return -TARGET_EOPNOTSUPP
;
2784 static abi_long
target_to_host_nlmsg_route(struct nlmsghdr
*nlh
, size_t len
)
2786 return target_to_host_for_each_nlmsg(nlh
, len
, target_to_host_data_route
);
2788 #endif /* CONFIG_RTNETLINK */
2790 static abi_long
host_to_target_data_audit(struct nlmsghdr
*nlh
)
2792 switch (nlh
->nlmsg_type
) {
2794 gemu_log("Unknown host audit message type %d\n",
2796 return -TARGET_EINVAL
;
2801 static inline abi_long
host_to_target_nlmsg_audit(struct nlmsghdr
*nlh
,
2804 return host_to_target_for_each_nlmsg(nlh
, len
, host_to_target_data_audit
);
2807 static abi_long
target_to_host_data_audit(struct nlmsghdr
*nlh
)
2809 switch (nlh
->nlmsg_type
) {
2811 case AUDIT_FIRST_USER_MSG
... AUDIT_LAST_USER_MSG
:
2812 case AUDIT_FIRST_USER_MSG2
... AUDIT_LAST_USER_MSG2
:
2815 gemu_log("Unknown target audit message type %d\n",
2817 return -TARGET_EINVAL
;
2823 static abi_long
target_to_host_nlmsg_audit(struct nlmsghdr
*nlh
, size_t len
)
2825 return target_to_host_for_each_nlmsg(nlh
, len
, target_to_host_data_audit
);
2828 /* do_setsockopt() Must return target values and target errnos. */
2829 static abi_long
do_setsockopt(int sockfd
, int level
, int optname
,
2830 abi_ulong optval_addr
, socklen_t optlen
)
2834 struct ip_mreqn
*ip_mreq
;
2835 struct ip_mreq_source
*ip_mreq_source
;
2839 /* TCP options all take an 'int' value. */
2840 if (optlen
< sizeof(uint32_t))
2841 return -TARGET_EINVAL
;
2843 if (get_user_u32(val
, optval_addr
))
2844 return -TARGET_EFAULT
;
2845 ret
= get_errno(setsockopt(sockfd
, level
, optname
, &val
, sizeof(val
)));
2852 case IP_ROUTER_ALERT
:
2856 case IP_MTU_DISCOVER
:
2863 case IP_MULTICAST_TTL
:
2864 case IP_MULTICAST_LOOP
:
2866 if (optlen
>= sizeof(uint32_t)) {
2867 if (get_user_u32(val
, optval_addr
))
2868 return -TARGET_EFAULT
;
2869 } else if (optlen
>= 1) {
2870 if (get_user_u8(val
, optval_addr
))
2871 return -TARGET_EFAULT
;
2873 ret
= get_errno(setsockopt(sockfd
, level
, optname
, &val
, sizeof(val
)));
2875 case IP_ADD_MEMBERSHIP
:
2876 case IP_DROP_MEMBERSHIP
:
2877 if (optlen
< sizeof (struct target_ip_mreq
) ||
2878 optlen
> sizeof (struct target_ip_mreqn
))
2879 return -TARGET_EINVAL
;
2881 ip_mreq
= (struct ip_mreqn
*) alloca(optlen
);
2882 target_to_host_ip_mreq(ip_mreq
, optval_addr
, optlen
);
2883 ret
= get_errno(setsockopt(sockfd
, level
, optname
, ip_mreq
, optlen
));
2886 case IP_BLOCK_SOURCE
:
2887 case IP_UNBLOCK_SOURCE
:
2888 case IP_ADD_SOURCE_MEMBERSHIP
:
2889 case IP_DROP_SOURCE_MEMBERSHIP
:
2890 if (optlen
!= sizeof (struct target_ip_mreq_source
))
2891 return -TARGET_EINVAL
;
2893 ip_mreq_source
= lock_user(VERIFY_READ
, optval_addr
, optlen
, 1);
2894 ret
= get_errno(setsockopt(sockfd
, level
, optname
, ip_mreq_source
, optlen
));
2895 unlock_user (ip_mreq_source
, optval_addr
, 0);
2904 case IPV6_MTU_DISCOVER
:
2907 case IPV6_RECVPKTINFO
:
2908 case IPV6_UNICAST_HOPS
:
2910 case IPV6_RECVHOPLIMIT
:
2911 case IPV6_2292HOPLIMIT
:
2914 if (optlen
< sizeof(uint32_t)) {
2915 return -TARGET_EINVAL
;
2917 if (get_user_u32(val
, optval_addr
)) {
2918 return -TARGET_EFAULT
;
2920 ret
= get_errno(setsockopt(sockfd
, level
, optname
,
2921 &val
, sizeof(val
)));
2925 struct in6_pktinfo pki
;
2927 if (optlen
< sizeof(pki
)) {
2928 return -TARGET_EINVAL
;
2931 if (copy_from_user(&pki
, optval_addr
, sizeof(pki
))) {
2932 return -TARGET_EFAULT
;
2935 pki
.ipi6_ifindex
= tswap32(pki
.ipi6_ifindex
);
2937 ret
= get_errno(setsockopt(sockfd
, level
, optname
,
2938 &pki
, sizeof(pki
)));
2949 struct icmp6_filter icmp6f
;
2951 if (optlen
> sizeof(icmp6f
)) {
2952 optlen
= sizeof(icmp6f
);
2955 if (copy_from_user(&icmp6f
, optval_addr
, optlen
)) {
2956 return -TARGET_EFAULT
;
2959 for (val
= 0; val
< 8; val
++) {
2960 icmp6f
.data
[val
] = tswap32(icmp6f
.data
[val
]);
2963 ret
= get_errno(setsockopt(sockfd
, level
, optname
,
2975 /* those take an u32 value */
2976 if (optlen
< sizeof(uint32_t)) {
2977 return -TARGET_EINVAL
;
2980 if (get_user_u32(val
, optval_addr
)) {
2981 return -TARGET_EFAULT
;
2983 ret
= get_errno(setsockopt(sockfd
, level
, optname
,
2984 &val
, sizeof(val
)));
2991 case TARGET_SOL_SOCKET
:
2993 case TARGET_SO_RCVTIMEO
:
2997 optname
= SO_RCVTIMEO
;
3000 if (optlen
!= sizeof(struct target_timeval
)) {
3001 return -TARGET_EINVAL
;
3004 if (copy_from_user_timeval(&tv
, optval_addr
)) {
3005 return -TARGET_EFAULT
;
3008 ret
= get_errno(setsockopt(sockfd
, SOL_SOCKET
, optname
,
3012 case TARGET_SO_SNDTIMEO
:
3013 optname
= SO_SNDTIMEO
;
3015 case TARGET_SO_ATTACH_FILTER
:
3017 struct target_sock_fprog
*tfprog
;
3018 struct target_sock_filter
*tfilter
;
3019 struct sock_fprog fprog
;
3020 struct sock_filter
*filter
;
3023 if (optlen
!= sizeof(*tfprog
)) {
3024 return -TARGET_EINVAL
;
3026 if (!lock_user_struct(VERIFY_READ
, tfprog
, optval_addr
, 0)) {
3027 return -TARGET_EFAULT
;
3029 if (!lock_user_struct(VERIFY_READ
, tfilter
,
3030 tswapal(tfprog
->filter
), 0)) {
3031 unlock_user_struct(tfprog
, optval_addr
, 1);
3032 return -TARGET_EFAULT
;
3035 fprog
.len
= tswap16(tfprog
->len
);
3036 filter
= g_try_new(struct sock_filter
, fprog
.len
);
3037 if (filter
== NULL
) {
3038 unlock_user_struct(tfilter
, tfprog
->filter
, 1);
3039 unlock_user_struct(tfprog
, optval_addr
, 1);
3040 return -TARGET_ENOMEM
;
3042 for (i
= 0; i
< fprog
.len
; i
++) {
3043 filter
[i
].code
= tswap16(tfilter
[i
].code
);
3044 filter
[i
].jt
= tfilter
[i
].jt
;
3045 filter
[i
].jf
= tfilter
[i
].jf
;
3046 filter
[i
].k
= tswap32(tfilter
[i
].k
);
3048 fprog
.filter
= filter
;
3050 ret
= get_errno(setsockopt(sockfd
, SOL_SOCKET
,
3051 SO_ATTACH_FILTER
, &fprog
, sizeof(fprog
)));
3054 unlock_user_struct(tfilter
, tfprog
->filter
, 1);
3055 unlock_user_struct(tfprog
, optval_addr
, 1);
3058 case TARGET_SO_BINDTODEVICE
:
3060 char *dev_ifname
, *addr_ifname
;
3062 if (optlen
> IFNAMSIZ
- 1) {
3063 optlen
= IFNAMSIZ
- 1;
3065 dev_ifname
= lock_user(VERIFY_READ
, optval_addr
, optlen
, 1);
3067 return -TARGET_EFAULT
;
3069 optname
= SO_BINDTODEVICE
;
3070 addr_ifname
= alloca(IFNAMSIZ
);
3071 memcpy(addr_ifname
, dev_ifname
, optlen
);
3072 addr_ifname
[optlen
] = 0;
3073 ret
= get_errno(setsockopt(sockfd
, SOL_SOCKET
, optname
,
3074 addr_ifname
, optlen
));
3075 unlock_user (dev_ifname
, optval_addr
, 0);
3078 /* Options with 'int' argument. */
3079 case TARGET_SO_DEBUG
:
3082 case TARGET_SO_REUSEADDR
:
3083 optname
= SO_REUSEADDR
;
3085 case TARGET_SO_TYPE
:
3088 case TARGET_SO_ERROR
:
3091 case TARGET_SO_DONTROUTE
:
3092 optname
= SO_DONTROUTE
;
3094 case TARGET_SO_BROADCAST
:
3095 optname
= SO_BROADCAST
;
3097 case TARGET_SO_SNDBUF
:
3098 optname
= SO_SNDBUF
;
3100 case TARGET_SO_SNDBUFFORCE
:
3101 optname
= SO_SNDBUFFORCE
;
3103 case TARGET_SO_RCVBUF
:
3104 optname
= SO_RCVBUF
;
3106 case TARGET_SO_RCVBUFFORCE
:
3107 optname
= SO_RCVBUFFORCE
;
3109 case TARGET_SO_KEEPALIVE
:
3110 optname
= SO_KEEPALIVE
;
3112 case TARGET_SO_OOBINLINE
:
3113 optname
= SO_OOBINLINE
;
3115 case TARGET_SO_NO_CHECK
:
3116 optname
= SO_NO_CHECK
;
3118 case TARGET_SO_PRIORITY
:
3119 optname
= SO_PRIORITY
;
3122 case TARGET_SO_BSDCOMPAT
:
3123 optname
= SO_BSDCOMPAT
;
3126 case TARGET_SO_PASSCRED
:
3127 optname
= SO_PASSCRED
;
3129 case TARGET_SO_PASSSEC
:
3130 optname
= SO_PASSSEC
;
3132 case TARGET_SO_TIMESTAMP
:
3133 optname
= SO_TIMESTAMP
;
3135 case TARGET_SO_RCVLOWAT
:
3136 optname
= SO_RCVLOWAT
;
3141 if (optlen
< sizeof(uint32_t))
3142 return -TARGET_EINVAL
;
3144 if (get_user_u32(val
, optval_addr
))
3145 return -TARGET_EFAULT
;
3146 ret
= get_errno(setsockopt(sockfd
, SOL_SOCKET
, optname
, &val
, sizeof(val
)));
3150 gemu_log("Unsupported setsockopt level=%d optname=%d\n", level
, optname
);
3151 ret
= -TARGET_ENOPROTOOPT
;
3156 /* do_getsockopt() Must return target values and target errnos. */
3157 static abi_long
do_getsockopt(int sockfd
, int level
, int optname
,
3158 abi_ulong optval_addr
, abi_ulong optlen
)
3165 case TARGET_SOL_SOCKET
:
3168 /* These don't just return a single integer */
3169 case TARGET_SO_LINGER
:
3170 case TARGET_SO_RCVTIMEO
:
3171 case TARGET_SO_SNDTIMEO
:
3172 case TARGET_SO_PEERNAME
:
3174 case TARGET_SO_PEERCRED
: {
3177 struct target_ucred
*tcr
;
3179 if (get_user_u32(len
, optlen
)) {
3180 return -TARGET_EFAULT
;
3183 return -TARGET_EINVAL
;
3187 ret
= get_errno(getsockopt(sockfd
, level
, SO_PEERCRED
,
3195 if (!lock_user_struct(VERIFY_WRITE
, tcr
, optval_addr
, 0)) {
3196 return -TARGET_EFAULT
;
3198 __put_user(cr
.pid
, &tcr
->pid
);
3199 __put_user(cr
.uid
, &tcr
->uid
);
3200 __put_user(cr
.gid
, &tcr
->gid
);
3201 unlock_user_struct(tcr
, optval_addr
, 1);
3202 if (put_user_u32(len
, optlen
)) {
3203 return -TARGET_EFAULT
;
3207 /* Options with 'int' argument. */
3208 case TARGET_SO_DEBUG
:
3211 case TARGET_SO_REUSEADDR
:
3212 optname
= SO_REUSEADDR
;
3214 case TARGET_SO_TYPE
:
3217 case TARGET_SO_ERROR
:
3220 case TARGET_SO_DONTROUTE
:
3221 optname
= SO_DONTROUTE
;
3223 case TARGET_SO_BROADCAST
:
3224 optname
= SO_BROADCAST
;
3226 case TARGET_SO_SNDBUF
:
3227 optname
= SO_SNDBUF
;
3229 case TARGET_SO_RCVBUF
:
3230 optname
= SO_RCVBUF
;
3232 case TARGET_SO_KEEPALIVE
:
3233 optname
= SO_KEEPALIVE
;
3235 case TARGET_SO_OOBINLINE
:
3236 optname
= SO_OOBINLINE
;
3238 case TARGET_SO_NO_CHECK
:
3239 optname
= SO_NO_CHECK
;
3241 case TARGET_SO_PRIORITY
:
3242 optname
= SO_PRIORITY
;
3245 case TARGET_SO_BSDCOMPAT
:
3246 optname
= SO_BSDCOMPAT
;
3249 case TARGET_SO_PASSCRED
:
3250 optname
= SO_PASSCRED
;
3252 case TARGET_SO_TIMESTAMP
:
3253 optname
= SO_TIMESTAMP
;
3255 case TARGET_SO_RCVLOWAT
:
3256 optname
= SO_RCVLOWAT
;
3258 case TARGET_SO_ACCEPTCONN
:
3259 optname
= SO_ACCEPTCONN
;
3266 /* TCP options all take an 'int' value. */
3268 if (get_user_u32(len
, optlen
))
3269 return -TARGET_EFAULT
;
3271 return -TARGET_EINVAL
;
3273 ret
= get_errno(getsockopt(sockfd
, level
, optname
, &val
, &lv
));
3276 if (optname
== SO_TYPE
) {
3277 val
= host_to_target_sock_type(val
);
3282 if (put_user_u32(val
, optval_addr
))
3283 return -TARGET_EFAULT
;
3285 if (put_user_u8(val
, optval_addr
))
3286 return -TARGET_EFAULT
;
3288 if (put_user_u32(len
, optlen
))
3289 return -TARGET_EFAULT
;
3296 case IP_ROUTER_ALERT
:
3300 case IP_MTU_DISCOVER
:
3306 case IP_MULTICAST_TTL
:
3307 case IP_MULTICAST_LOOP
:
3308 if (get_user_u32(len
, optlen
))
3309 return -TARGET_EFAULT
;
3311 return -TARGET_EINVAL
;
3313 ret
= get_errno(getsockopt(sockfd
, level
, optname
, &val
, &lv
));
3316 if (len
< sizeof(int) && len
> 0 && val
>= 0 && val
< 255) {
3318 if (put_user_u32(len
, optlen
)
3319 || put_user_u8(val
, optval_addr
))
3320 return -TARGET_EFAULT
;
3322 if (len
> sizeof(int))
3324 if (put_user_u32(len
, optlen
)
3325 || put_user_u32(val
, optval_addr
))
3326 return -TARGET_EFAULT
;
3330 ret
= -TARGET_ENOPROTOOPT
;
3336 gemu_log("getsockopt level=%d optname=%d not yet supported\n",
3338 ret
= -TARGET_EOPNOTSUPP
;
3344 static struct iovec
*lock_iovec(int type
, abi_ulong target_addr
,
3345 abi_ulong count
, int copy
)
3347 struct target_iovec
*target_vec
;
3349 abi_ulong total_len
, max_len
;
3352 bool bad_address
= false;
3358 if (count
> IOV_MAX
) {
3363 vec
= g_try_new0(struct iovec
, count
);
3369 target_vec
= lock_user(VERIFY_READ
, target_addr
,
3370 count
* sizeof(struct target_iovec
), 1);
3371 if (target_vec
== NULL
) {
3376 /* ??? If host page size > target page size, this will result in a
3377 value larger than what we can actually support. */
3378 max_len
= 0x7fffffff & TARGET_PAGE_MASK
;
3381 for (i
= 0; i
< count
; i
++) {
3382 abi_ulong base
= tswapal(target_vec
[i
].iov_base
);
3383 abi_long len
= tswapal(target_vec
[i
].iov_len
);
3388 } else if (len
== 0) {
3389 /* Zero length pointer is ignored. */
3390 vec
[i
].iov_base
= 0;
3392 vec
[i
].iov_base
= lock_user(type
, base
, len
, copy
);
3393 /* If the first buffer pointer is bad, this is a fault. But
3394 * subsequent bad buffers will result in a partial write; this
3395 * is realized by filling the vector with null pointers and
3397 if (!vec
[i
].iov_base
) {
3408 if (len
> max_len
- total_len
) {
3409 len
= max_len
- total_len
;
3412 vec
[i
].iov_len
= len
;
3416 unlock_user(target_vec
, target_addr
, 0);
3421 if (tswapal(target_vec
[i
].iov_len
) > 0) {
3422 unlock_user(vec
[i
].iov_base
, tswapal(target_vec
[i
].iov_base
), 0);
3425 unlock_user(target_vec
, target_addr
, 0);
3432 static void unlock_iovec(struct iovec
*vec
, abi_ulong target_addr
,
3433 abi_ulong count
, int copy
)
3435 struct target_iovec
*target_vec
;
3438 target_vec
= lock_user(VERIFY_READ
, target_addr
,
3439 count
* sizeof(struct target_iovec
), 1);
3441 for (i
= 0; i
< count
; i
++) {
3442 abi_ulong base
= tswapal(target_vec
[i
].iov_base
);
3443 abi_long len
= tswapal(target_vec
[i
].iov_len
);
3447 unlock_user(vec
[i
].iov_base
, base
, copy
? vec
[i
].iov_len
: 0);
3449 unlock_user(target_vec
, target_addr
, 0);
3455 static inline int target_to_host_sock_type(int *type
)
3458 int target_type
= *type
;
3460 switch (target_type
& TARGET_SOCK_TYPE_MASK
) {
3461 case TARGET_SOCK_DGRAM
:
3462 host_type
= SOCK_DGRAM
;
3464 case TARGET_SOCK_STREAM
:
3465 host_type
= SOCK_STREAM
;
3468 host_type
= target_type
& TARGET_SOCK_TYPE_MASK
;
3471 if (target_type
& TARGET_SOCK_CLOEXEC
) {
3472 #if defined(SOCK_CLOEXEC)
3473 host_type
|= SOCK_CLOEXEC
;
3475 return -TARGET_EINVAL
;
3478 if (target_type
& TARGET_SOCK_NONBLOCK
) {
3479 #if defined(SOCK_NONBLOCK)
3480 host_type
|= SOCK_NONBLOCK
;
3481 #elif !defined(O_NONBLOCK)
3482 return -TARGET_EINVAL
;
3489 /* Try to emulate socket type flags after socket creation. */
3490 static int sock_flags_fixup(int fd
, int target_type
)
3492 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK)
3493 if (target_type
& TARGET_SOCK_NONBLOCK
) {
3494 int flags
= fcntl(fd
, F_GETFL
);
3495 if (fcntl(fd
, F_SETFL
, O_NONBLOCK
| flags
) == -1) {
3497 return -TARGET_EINVAL
;
3504 static abi_long
packet_target_to_host_sockaddr(void *host_addr
,
3505 abi_ulong target_addr
,
3508 struct sockaddr
*addr
= host_addr
;
3509 struct target_sockaddr
*target_saddr
;
3511 target_saddr
= lock_user(VERIFY_READ
, target_addr
, len
, 1);
3512 if (!target_saddr
) {
3513 return -TARGET_EFAULT
;
3516 memcpy(addr
, target_saddr
, len
);
3517 addr
->sa_family
= tswap16(target_saddr
->sa_family
);
3518 /* spkt_protocol is big-endian */
3520 unlock_user(target_saddr
, target_addr
, 0);
3524 static TargetFdTrans target_packet_trans
= {
3525 .target_to_host_addr
= packet_target_to_host_sockaddr
,
3528 #ifdef CONFIG_RTNETLINK
3529 static abi_long
netlink_route_target_to_host(void *buf
, size_t len
)
3533 ret
= target_to_host_nlmsg_route(buf
, len
);
3541 static abi_long
netlink_route_host_to_target(void *buf
, size_t len
)
3545 ret
= host_to_target_nlmsg_route(buf
, len
);
3553 static TargetFdTrans target_netlink_route_trans
= {
3554 .target_to_host_data
= netlink_route_target_to_host
,
3555 .host_to_target_data
= netlink_route_host_to_target
,
3557 #endif /* CONFIG_RTNETLINK */
3559 static abi_long
netlink_audit_target_to_host(void *buf
, size_t len
)
3563 ret
= target_to_host_nlmsg_audit(buf
, len
);
3571 static abi_long
netlink_audit_host_to_target(void *buf
, size_t len
)
3575 ret
= host_to_target_nlmsg_audit(buf
, len
);
3583 static TargetFdTrans target_netlink_audit_trans
= {
3584 .target_to_host_data
= netlink_audit_target_to_host
,
3585 .host_to_target_data
= netlink_audit_host_to_target
,
3588 /* do_socket() Must return target values and target errnos. */
3589 static abi_long
do_socket(int domain
, int type
, int protocol
)
3591 int target_type
= type
;
3594 ret
= target_to_host_sock_type(&type
);
3599 if (domain
== PF_NETLINK
&& !(
3600 #ifdef CONFIG_RTNETLINK
3601 protocol
== NETLINK_ROUTE
||
3603 protocol
== NETLINK_KOBJECT_UEVENT
||
3604 protocol
== NETLINK_AUDIT
)) {
3605 return -EPFNOSUPPORT
;
3608 if (domain
== AF_PACKET
||
3609 (domain
== AF_INET
&& type
== SOCK_PACKET
)) {
3610 protocol
= tswap16(protocol
);
3613 ret
= get_errno(socket(domain
, type
, protocol
));
3615 ret
= sock_flags_fixup(ret
, target_type
);
3616 if (type
== SOCK_PACKET
) {
3617 /* Manage an obsolete case :
3618 * if socket type is SOCK_PACKET, bind by name
3620 fd_trans_register(ret
, &target_packet_trans
);
3621 } else if (domain
== PF_NETLINK
) {
3623 #ifdef CONFIG_RTNETLINK
3625 fd_trans_register(ret
, &target_netlink_route_trans
);
3628 case NETLINK_KOBJECT_UEVENT
:
3629 /* nothing to do: messages are strings */
3632 fd_trans_register(ret
, &target_netlink_audit_trans
);
3635 g_assert_not_reached();
3642 /* do_bind() Must return target values and target errnos. */
3643 static abi_long
do_bind(int sockfd
, abi_ulong target_addr
,
3649 if ((int)addrlen
< 0) {
3650 return -TARGET_EINVAL
;
3653 addr
= alloca(addrlen
+1);
3655 ret
= target_to_host_sockaddr(sockfd
, addr
, target_addr
, addrlen
);
3659 return get_errno(bind(sockfd
, addr
, addrlen
));
3662 /* do_connect() Must return target values and target errnos. */
3663 static abi_long
do_connect(int sockfd
, abi_ulong target_addr
,
3669 if ((int)addrlen
< 0) {
3670 return -TARGET_EINVAL
;
3673 addr
= alloca(addrlen
+1);
3675 ret
= target_to_host_sockaddr(sockfd
, addr
, target_addr
, addrlen
);
3679 return get_errno(safe_connect(sockfd
, addr
, addrlen
));
3682 /* do_sendrecvmsg_locked() Must return target values and target errnos. */
3683 static abi_long
do_sendrecvmsg_locked(int fd
, struct target_msghdr
*msgp
,
3684 int flags
, int send
)
3690 abi_ulong target_vec
;
3692 if (msgp
->msg_name
) {
3693 msg
.msg_namelen
= tswap32(msgp
->msg_namelen
);
3694 msg
.msg_name
= alloca(msg
.msg_namelen
+1);
3695 ret
= target_to_host_sockaddr(fd
, msg
.msg_name
,
3696 tswapal(msgp
->msg_name
),
3698 if (ret
== -TARGET_EFAULT
) {
3699 /* For connected sockets msg_name and msg_namelen must
3700 * be ignored, so returning EFAULT immediately is wrong.
3701 * Instead, pass a bad msg_name to the host kernel, and
3702 * let it decide whether to return EFAULT or not.
3704 msg
.msg_name
= (void *)-1;
3709 msg
.msg_name
= NULL
;
3710 msg
.msg_namelen
= 0;
3712 msg
.msg_controllen
= 2 * tswapal(msgp
->msg_controllen
);
3713 msg
.msg_control
= alloca(msg
.msg_controllen
);
3714 msg
.msg_flags
= tswap32(msgp
->msg_flags
);
3716 count
= tswapal(msgp
->msg_iovlen
);
3717 target_vec
= tswapal(msgp
->msg_iov
);
3719 if (count
> IOV_MAX
) {
3720 /* sendrcvmsg returns a different errno for this condition than
3721 * readv/writev, so we must catch it here before lock_iovec() does.
3723 ret
= -TARGET_EMSGSIZE
;
3727 vec
= lock_iovec(send
? VERIFY_READ
: VERIFY_WRITE
,
3728 target_vec
, count
, send
);
3730 ret
= -host_to_target_errno(errno
);
3733 msg
.msg_iovlen
= count
;
3737 if (fd_trans_target_to_host_data(fd
)) {
3740 host_msg
= g_malloc(msg
.msg_iov
->iov_len
);
3741 memcpy(host_msg
, msg
.msg_iov
->iov_base
, msg
.msg_iov
->iov_len
);
3742 ret
= fd_trans_target_to_host_data(fd
)(host_msg
,
3743 msg
.msg_iov
->iov_len
);
3745 msg
.msg_iov
->iov_base
= host_msg
;
3746 ret
= get_errno(safe_sendmsg(fd
, &msg
, flags
));
3750 ret
= target_to_host_cmsg(&msg
, msgp
);
3752 ret
= get_errno(safe_sendmsg(fd
, &msg
, flags
));
3756 ret
= get_errno(safe_recvmsg(fd
, &msg
, flags
));
3757 if (!is_error(ret
)) {
3759 if (fd_trans_host_to_target_data(fd
)) {
3760 ret
= fd_trans_host_to_target_data(fd
)(msg
.msg_iov
->iov_base
,
3763 ret
= host_to_target_cmsg(msgp
, &msg
);
3765 if (!is_error(ret
)) {
3766 msgp
->msg_namelen
= tswap32(msg
.msg_namelen
);
3767 if (msg
.msg_name
!= NULL
&& msg
.msg_name
!= (void *)-1) {
3768 ret
= host_to_target_sockaddr(tswapal(msgp
->msg_name
),
3769 msg
.msg_name
, msg
.msg_namelen
);
3781 unlock_iovec(vec
, target_vec
, count
, !send
);
3786 static abi_long
do_sendrecvmsg(int fd
, abi_ulong target_msg
,
3787 int flags
, int send
)
3790 struct target_msghdr
*msgp
;
3792 if (!lock_user_struct(send
? VERIFY_READ
: VERIFY_WRITE
,
3796 return -TARGET_EFAULT
;
3798 ret
= do_sendrecvmsg_locked(fd
, msgp
, flags
, send
);
3799 unlock_user_struct(msgp
, target_msg
, send
? 0 : 1);
3803 /* We don't rely on the C library to have sendmmsg/recvmmsg support,
3804 * so it might not have this *mmsg-specific flag either.
3806 #ifndef MSG_WAITFORONE
3807 #define MSG_WAITFORONE 0x10000
3810 static abi_long
do_sendrecvmmsg(int fd
, abi_ulong target_msgvec
,
3811 unsigned int vlen
, unsigned int flags
,
3814 struct target_mmsghdr
*mmsgp
;
3818 if (vlen
> UIO_MAXIOV
) {
3822 mmsgp
= lock_user(VERIFY_WRITE
, target_msgvec
, sizeof(*mmsgp
) * vlen
, 1);
3824 return -TARGET_EFAULT
;
3827 for (i
= 0; i
< vlen
; i
++) {
3828 ret
= do_sendrecvmsg_locked(fd
, &mmsgp
[i
].msg_hdr
, flags
, send
);
3829 if (is_error(ret
)) {
3832 mmsgp
[i
].msg_len
= tswap32(ret
);
3833 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
3834 if (flags
& MSG_WAITFORONE
) {
3835 flags
|= MSG_DONTWAIT
;
3839 unlock_user(mmsgp
, target_msgvec
, sizeof(*mmsgp
) * i
);
3841 /* Return number of datagrams sent if we sent any at all;
3842 * otherwise return the error.
3850 /* do_accept4() Must return target values and target errnos. */
3851 static abi_long
do_accept4(int fd
, abi_ulong target_addr
,
3852 abi_ulong target_addrlen_addr
, int flags
)
3859 host_flags
= target_to_host_bitmask(flags
, fcntl_flags_tbl
);
3861 if (target_addr
== 0) {
3862 return get_errno(safe_accept4(fd
, NULL
, NULL
, host_flags
));
3865 /* linux returns EINVAL if addrlen pointer is invalid */
3866 if (get_user_u32(addrlen
, target_addrlen_addr
))
3867 return -TARGET_EINVAL
;
3869 if ((int)addrlen
< 0) {
3870 return -TARGET_EINVAL
;
3873 if (!access_ok(VERIFY_WRITE
, target_addr
, addrlen
))
3874 return -TARGET_EINVAL
;
3876 addr
= alloca(addrlen
);
3878 ret
= get_errno(safe_accept4(fd
, addr
, &addrlen
, host_flags
));
3879 if (!is_error(ret
)) {
3880 host_to_target_sockaddr(target_addr
, addr
, addrlen
);
3881 if (put_user_u32(addrlen
, target_addrlen_addr
))
3882 ret
= -TARGET_EFAULT
;
3887 /* do_getpeername() Must return target values and target errnos. */
3888 static abi_long
do_getpeername(int fd
, abi_ulong target_addr
,
3889 abi_ulong target_addrlen_addr
)
3895 if (get_user_u32(addrlen
, target_addrlen_addr
))
3896 return -TARGET_EFAULT
;
3898 if ((int)addrlen
< 0) {
3899 return -TARGET_EINVAL
;
3902 if (!access_ok(VERIFY_WRITE
, target_addr
, addrlen
))
3903 return -TARGET_EFAULT
;
3905 addr
= alloca(addrlen
);
3907 ret
= get_errno(getpeername(fd
, addr
, &addrlen
));
3908 if (!is_error(ret
)) {
3909 host_to_target_sockaddr(target_addr
, addr
, addrlen
);
3910 if (put_user_u32(addrlen
, target_addrlen_addr
))
3911 ret
= -TARGET_EFAULT
;
3916 /* do_getsockname() Must return target values and target errnos. */
3917 static abi_long
do_getsockname(int fd
, abi_ulong target_addr
,
3918 abi_ulong target_addrlen_addr
)
3924 if (get_user_u32(addrlen
, target_addrlen_addr
))
3925 return -TARGET_EFAULT
;
3927 if ((int)addrlen
< 0) {
3928 return -TARGET_EINVAL
;
3931 if (!access_ok(VERIFY_WRITE
, target_addr
, addrlen
))
3932 return -TARGET_EFAULT
;
3934 addr
= alloca(addrlen
);
3936 ret
= get_errno(getsockname(fd
, addr
, &addrlen
));
3937 if (!is_error(ret
)) {
3938 host_to_target_sockaddr(target_addr
, addr
, addrlen
);
3939 if (put_user_u32(addrlen
, target_addrlen_addr
))
3940 ret
= -TARGET_EFAULT
;
3945 /* do_socketpair() Must return target values and target errnos. */
3946 static abi_long
do_socketpair(int domain
, int type
, int protocol
,
3947 abi_ulong target_tab_addr
)
3952 target_to_host_sock_type(&type
);
3954 ret
= get_errno(socketpair(domain
, type
, protocol
, tab
));
3955 if (!is_error(ret
)) {
3956 if (put_user_s32(tab
[0], target_tab_addr
)
3957 || put_user_s32(tab
[1], target_tab_addr
+ sizeof(tab
[0])))
3958 ret
= -TARGET_EFAULT
;
3963 /* do_sendto() Must return target values and target errnos. */
3964 static abi_long
do_sendto(int fd
, abi_ulong msg
, size_t len
, int flags
,
3965 abi_ulong target_addr
, socklen_t addrlen
)
3969 void *copy_msg
= NULL
;
3972 if ((int)addrlen
< 0) {
3973 return -TARGET_EINVAL
;
3976 host_msg
= lock_user(VERIFY_READ
, msg
, len
, 1);
3978 return -TARGET_EFAULT
;
3979 if (fd_trans_target_to_host_data(fd
)) {
3980 copy_msg
= host_msg
;
3981 host_msg
= g_malloc(len
);
3982 memcpy(host_msg
, copy_msg
, len
);
3983 ret
= fd_trans_target_to_host_data(fd
)(host_msg
, len
);
3989 addr
= alloca(addrlen
+1);
3990 ret
= target_to_host_sockaddr(fd
, addr
, target_addr
, addrlen
);
3994 ret
= get_errno(safe_sendto(fd
, host_msg
, len
, flags
, addr
, addrlen
));
3996 ret
= get_errno(safe_sendto(fd
, host_msg
, len
, flags
, NULL
, 0));
4001 host_msg
= copy_msg
;
4003 unlock_user(host_msg
, msg
, 0);
4007 /* do_recvfrom() Must return target values and target errnos. */
4008 static abi_long
do_recvfrom(int fd
, abi_ulong msg
, size_t len
, int flags
,
4009 abi_ulong target_addr
,
4010 abi_ulong target_addrlen
)
4017 host_msg
= lock_user(VERIFY_WRITE
, msg
, len
, 0);
4019 return -TARGET_EFAULT
;
4021 if (get_user_u32(addrlen
, target_addrlen
)) {
4022 ret
= -TARGET_EFAULT
;
4025 if ((int)addrlen
< 0) {
4026 ret
= -TARGET_EINVAL
;
4029 addr
= alloca(addrlen
);
4030 ret
= get_errno(safe_recvfrom(fd
, host_msg
, len
, flags
,
4033 addr
= NULL
; /* To keep compiler quiet. */
4034 ret
= get_errno(safe_recvfrom(fd
, host_msg
, len
, flags
, NULL
, 0));
4036 if (!is_error(ret
)) {
4037 if (fd_trans_host_to_target_data(fd
)) {
4038 ret
= fd_trans_host_to_target_data(fd
)(host_msg
, ret
);
4041 host_to_target_sockaddr(target_addr
, addr
, addrlen
);
4042 if (put_user_u32(addrlen
, target_addrlen
)) {
4043 ret
= -TARGET_EFAULT
;
4047 unlock_user(host_msg
, msg
, len
);
4050 unlock_user(host_msg
, msg
, 0);
4055 #ifdef TARGET_NR_socketcall
4056 /* do_socketcall() must return target values and target errnos. */
4057 static abi_long
do_socketcall(int num
, abi_ulong vptr
)
4059 static const unsigned nargs
[] = { /* number of arguments per operation */
4060 [TARGET_SYS_SOCKET
] = 3, /* domain, type, protocol */
4061 [TARGET_SYS_BIND
] = 3, /* fd, addr, addrlen */
4062 [TARGET_SYS_CONNECT
] = 3, /* fd, addr, addrlen */
4063 [TARGET_SYS_LISTEN
] = 2, /* fd, backlog */
4064 [TARGET_SYS_ACCEPT
] = 3, /* fd, addr, addrlen */
4065 [TARGET_SYS_GETSOCKNAME
] = 3, /* fd, addr, addrlen */
4066 [TARGET_SYS_GETPEERNAME
] = 3, /* fd, addr, addrlen */
4067 [TARGET_SYS_SOCKETPAIR
] = 4, /* domain, type, protocol, tab */
4068 [TARGET_SYS_SEND
] = 4, /* fd, msg, len, flags */
4069 [TARGET_SYS_RECV
] = 4, /* fd, msg, len, flags */
4070 [TARGET_SYS_SENDTO
] = 6, /* fd, msg, len, flags, addr, addrlen */
4071 [TARGET_SYS_RECVFROM
] = 6, /* fd, msg, len, flags, addr, addrlen */
4072 [TARGET_SYS_SHUTDOWN
] = 2, /* fd, how */
4073 [TARGET_SYS_SETSOCKOPT
] = 5, /* fd, level, optname, optval, optlen */
4074 [TARGET_SYS_GETSOCKOPT
] = 5, /* fd, level, optname, optval, optlen */
4075 [TARGET_SYS_SENDMSG
] = 3, /* fd, msg, flags */
4076 [TARGET_SYS_RECVMSG
] = 3, /* fd, msg, flags */
4077 [TARGET_SYS_ACCEPT4
] = 4, /* fd, addr, addrlen, flags */
4078 [TARGET_SYS_RECVMMSG
] = 4, /* fd, msgvec, vlen, flags */
4079 [TARGET_SYS_SENDMMSG
] = 4, /* fd, msgvec, vlen, flags */
4081 abi_long a
[6]; /* max 6 args */
4084 /* check the range of the first argument num */
4085 /* (TARGET_SYS_SENDMMSG is the highest among TARGET_SYS_xxx) */
4086 if (num
< 1 || num
> TARGET_SYS_SENDMMSG
) {
4087 return -TARGET_EINVAL
;
4089 /* ensure we have space for args */
4090 if (nargs
[num
] > ARRAY_SIZE(a
)) {
4091 return -TARGET_EINVAL
;
4093 /* collect the arguments in a[] according to nargs[] */
4094 for (i
= 0; i
< nargs
[num
]; ++i
) {
4095 if (get_user_ual(a
[i
], vptr
+ i
* sizeof(abi_long
)) != 0) {
4096 return -TARGET_EFAULT
;
4099 /* now when we have the args, invoke the appropriate underlying function */
4101 case TARGET_SYS_SOCKET
: /* domain, type, protocol */
4102 return do_socket(a
[0], a
[1], a
[2]);
4103 case TARGET_SYS_BIND
: /* sockfd, addr, addrlen */
4104 return do_bind(a
[0], a
[1], a
[2]);
4105 case TARGET_SYS_CONNECT
: /* sockfd, addr, addrlen */
4106 return do_connect(a
[0], a
[1], a
[2]);
4107 case TARGET_SYS_LISTEN
: /* sockfd, backlog */
4108 return get_errno(listen(a
[0], a
[1]));
4109 case TARGET_SYS_ACCEPT
: /* sockfd, addr, addrlen */
4110 return do_accept4(a
[0], a
[1], a
[2], 0);
4111 case TARGET_SYS_GETSOCKNAME
: /* sockfd, addr, addrlen */
4112 return do_getsockname(a
[0], a
[1], a
[2]);
4113 case TARGET_SYS_GETPEERNAME
: /* sockfd, addr, addrlen */
4114 return do_getpeername(a
[0], a
[1], a
[2]);
4115 case TARGET_SYS_SOCKETPAIR
: /* domain, type, protocol, tab */
4116 return do_socketpair(a
[0], a
[1], a
[2], a
[3]);
4117 case TARGET_SYS_SEND
: /* sockfd, msg, len, flags */
4118 return do_sendto(a
[0], a
[1], a
[2], a
[3], 0, 0);
4119 case TARGET_SYS_RECV
: /* sockfd, msg, len, flags */
4120 return do_recvfrom(a
[0], a
[1], a
[2], a
[3], 0, 0);
4121 case TARGET_SYS_SENDTO
: /* sockfd, msg, len, flags, addr, addrlen */
4122 return do_sendto(a
[0], a
[1], a
[2], a
[3], a
[4], a
[5]);
4123 case TARGET_SYS_RECVFROM
: /* sockfd, msg, len, flags, addr, addrlen */
4124 return do_recvfrom(a
[0], a
[1], a
[2], a
[3], a
[4], a
[5]);
4125 case TARGET_SYS_SHUTDOWN
: /* sockfd, how */
4126 return get_errno(shutdown(a
[0], a
[1]));
4127 case TARGET_SYS_SETSOCKOPT
: /* sockfd, level, optname, optval, optlen */
4128 return do_setsockopt(a
[0], a
[1], a
[2], a
[3], a
[4]);
4129 case TARGET_SYS_GETSOCKOPT
: /* sockfd, level, optname, optval, optlen */
4130 return do_getsockopt(a
[0], a
[1], a
[2], a
[3], a
[4]);
4131 case TARGET_SYS_SENDMSG
: /* sockfd, msg, flags */
4132 return do_sendrecvmsg(a
[0], a
[1], a
[2], 1);
4133 case TARGET_SYS_RECVMSG
: /* sockfd, msg, flags */
4134 return do_sendrecvmsg(a
[0], a
[1], a
[2], 0);
4135 case TARGET_SYS_ACCEPT4
: /* sockfd, addr, addrlen, flags */
4136 return do_accept4(a
[0], a
[1], a
[2], a
[3]);
4137 case TARGET_SYS_RECVMMSG
: /* sockfd, msgvec, vlen, flags */
4138 return do_sendrecvmmsg(a
[0], a
[1], a
[2], a
[3], 0);
4139 case TARGET_SYS_SENDMMSG
: /* sockfd, msgvec, vlen, flags */
4140 return do_sendrecvmmsg(a
[0], a
[1], a
[2], a
[3], 1);
4142 gemu_log("Unsupported socketcall: %d\n", num
);
4143 return -TARGET_EINVAL
;
4148 #define N_SHM_REGIONS 32
4150 static struct shm_region
{
4154 } shm_regions
[N_SHM_REGIONS
];
4156 #ifndef TARGET_SEMID64_DS
4157 /* asm-generic version of this struct */
4158 struct target_semid64_ds
4160 struct target_ipc_perm sem_perm
;
4161 abi_ulong sem_otime
;
4162 #if TARGET_ABI_BITS == 32
4163 abi_ulong __unused1
;
4165 abi_ulong sem_ctime
;
4166 #if TARGET_ABI_BITS == 32
4167 abi_ulong __unused2
;
4169 abi_ulong sem_nsems
;
4170 abi_ulong __unused3
;
4171 abi_ulong __unused4
;
4175 static inline abi_long
target_to_host_ipc_perm(struct ipc_perm
*host_ip
,
4176 abi_ulong target_addr
)
4178 struct target_ipc_perm
*target_ip
;
4179 struct target_semid64_ds
*target_sd
;
4181 if (!lock_user_struct(VERIFY_READ
, target_sd
, target_addr
, 1))
4182 return -TARGET_EFAULT
;
4183 target_ip
= &(target_sd
->sem_perm
);
4184 host_ip
->__key
= tswap32(target_ip
->__key
);
4185 host_ip
->uid
= tswap32(target_ip
->uid
);
4186 host_ip
->gid
= tswap32(target_ip
->gid
);
4187 host_ip
->cuid
= tswap32(target_ip
->cuid
);
4188 host_ip
->cgid
= tswap32(target_ip
->cgid
);
4189 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
4190 host_ip
->mode
= tswap32(target_ip
->mode
);
4192 host_ip
->mode
= tswap16(target_ip
->mode
);
4194 #if defined(TARGET_PPC)
4195 host_ip
->__seq
= tswap32(target_ip
->__seq
);
4197 host_ip
->__seq
= tswap16(target_ip
->__seq
);
4199 unlock_user_struct(target_sd
, target_addr
, 0);
4203 static inline abi_long
host_to_target_ipc_perm(abi_ulong target_addr
,
4204 struct ipc_perm
*host_ip
)
4206 struct target_ipc_perm
*target_ip
;
4207 struct target_semid64_ds
*target_sd
;
4209 if (!lock_user_struct(VERIFY_WRITE
, target_sd
, target_addr
, 0))
4210 return -TARGET_EFAULT
;
4211 target_ip
= &(target_sd
->sem_perm
);
4212 target_ip
->__key
= tswap32(host_ip
->__key
);
4213 target_ip
->uid
= tswap32(host_ip
->uid
);
4214 target_ip
->gid
= tswap32(host_ip
->gid
);
4215 target_ip
->cuid
= tswap32(host_ip
->cuid
);
4216 target_ip
->cgid
= tswap32(host_ip
->cgid
);
4217 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
4218 target_ip
->mode
= tswap32(host_ip
->mode
);
4220 target_ip
->mode
= tswap16(host_ip
->mode
);
4222 #if defined(TARGET_PPC)
4223 target_ip
->__seq
= tswap32(host_ip
->__seq
);
4225 target_ip
->__seq
= tswap16(host_ip
->__seq
);
4227 unlock_user_struct(target_sd
, target_addr
, 1);
4231 static inline abi_long
target_to_host_semid_ds(struct semid_ds
*host_sd
,
4232 abi_ulong target_addr
)
4234 struct target_semid64_ds
*target_sd
;
4236 if (!lock_user_struct(VERIFY_READ
, target_sd
, target_addr
, 1))
4237 return -TARGET_EFAULT
;
4238 if (target_to_host_ipc_perm(&(host_sd
->sem_perm
),target_addr
))
4239 return -TARGET_EFAULT
;
4240 host_sd
->sem_nsems
= tswapal(target_sd
->sem_nsems
);
4241 host_sd
->sem_otime
= tswapal(target_sd
->sem_otime
);
4242 host_sd
->sem_ctime
= tswapal(target_sd
->sem_ctime
);
4243 unlock_user_struct(target_sd
, target_addr
, 0);
4247 static inline abi_long
host_to_target_semid_ds(abi_ulong target_addr
,
4248 struct semid_ds
*host_sd
)
4250 struct target_semid64_ds
*target_sd
;
4252 if (!lock_user_struct(VERIFY_WRITE
, target_sd
, target_addr
, 0))
4253 return -TARGET_EFAULT
;
4254 if (host_to_target_ipc_perm(target_addr
,&(host_sd
->sem_perm
)))
4255 return -TARGET_EFAULT
;
4256 target_sd
->sem_nsems
= tswapal(host_sd
->sem_nsems
);
4257 target_sd
->sem_otime
= tswapal(host_sd
->sem_otime
);
4258 target_sd
->sem_ctime
= tswapal(host_sd
->sem_ctime
);
4259 unlock_user_struct(target_sd
, target_addr
, 1);
4263 struct target_seminfo
{
4276 static inline abi_long
host_to_target_seminfo(abi_ulong target_addr
,
4277 struct seminfo
*host_seminfo
)
4279 struct target_seminfo
*target_seminfo
;
4280 if (!lock_user_struct(VERIFY_WRITE
, target_seminfo
, target_addr
, 0))
4281 return -TARGET_EFAULT
;
4282 __put_user(host_seminfo
->semmap
, &target_seminfo
->semmap
);
4283 __put_user(host_seminfo
->semmni
, &target_seminfo
->semmni
);
4284 __put_user(host_seminfo
->semmns
, &target_seminfo
->semmns
);
4285 __put_user(host_seminfo
->semmnu
, &target_seminfo
->semmnu
);
4286 __put_user(host_seminfo
->semmsl
, &target_seminfo
->semmsl
);
4287 __put_user(host_seminfo
->semopm
, &target_seminfo
->semopm
);
4288 __put_user(host_seminfo
->semume
, &target_seminfo
->semume
);
4289 __put_user(host_seminfo
->semusz
, &target_seminfo
->semusz
);
4290 __put_user(host_seminfo
->semvmx
, &target_seminfo
->semvmx
);
4291 __put_user(host_seminfo
->semaem
, &target_seminfo
->semaem
);
4292 unlock_user_struct(target_seminfo
, target_addr
, 1);
4298 struct semid_ds
*buf
;
4299 unsigned short *array
;
4300 struct seminfo
*__buf
;
4303 union target_semun
{
4310 static inline abi_long
target_to_host_semarray(int semid
, unsigned short **host_array
,
4311 abi_ulong target_addr
)
4314 unsigned short *array
;
4316 struct semid_ds semid_ds
;
4319 semun
.buf
= &semid_ds
;
4321 ret
= semctl(semid
, 0, IPC_STAT
, semun
);
4323 return get_errno(ret
);
4325 nsems
= semid_ds
.sem_nsems
;
4327 *host_array
= g_try_new(unsigned short, nsems
);
4329 return -TARGET_ENOMEM
;
4331 array
= lock_user(VERIFY_READ
, target_addr
,
4332 nsems
*sizeof(unsigned short), 1);
4334 g_free(*host_array
);
4335 return -TARGET_EFAULT
;
4338 for(i
=0; i
<nsems
; i
++) {
4339 __get_user((*host_array
)[i
], &array
[i
]);
4341 unlock_user(array
, target_addr
, 0);
4346 static inline abi_long
host_to_target_semarray(int semid
, abi_ulong target_addr
,
4347 unsigned short **host_array
)
4350 unsigned short *array
;
4352 struct semid_ds semid_ds
;
4355 semun
.buf
= &semid_ds
;
4357 ret
= semctl(semid
, 0, IPC_STAT
, semun
);
4359 return get_errno(ret
);
4361 nsems
= semid_ds
.sem_nsems
;
4363 array
= lock_user(VERIFY_WRITE
, target_addr
,
4364 nsems
*sizeof(unsigned short), 0);
4366 return -TARGET_EFAULT
;
4368 for(i
=0; i
<nsems
; i
++) {
4369 __put_user((*host_array
)[i
], &array
[i
]);
4371 g_free(*host_array
);
4372 unlock_user(array
, target_addr
, 1);
4377 static inline abi_long
do_semctl(int semid
, int semnum
, int cmd
,
4378 abi_ulong target_arg
)
4380 union target_semun target_su
= { .buf
= target_arg
};
4382 struct semid_ds dsarg
;
4383 unsigned short *array
= NULL
;
4384 struct seminfo seminfo
;
4385 abi_long ret
= -TARGET_EINVAL
;
4392 /* In 64 bit cross-endian situations, we will erroneously pick up
4393 * the wrong half of the union for the "val" element. To rectify
4394 * this, the entire 8-byte structure is byteswapped, followed by
4395 * a swap of the 4 byte val field. In other cases, the data is
4396 * already in proper host byte order. */
4397 if (sizeof(target_su
.val
) != (sizeof(target_su
.buf
))) {
4398 target_su
.buf
= tswapal(target_su
.buf
);
4399 arg
.val
= tswap32(target_su
.val
);
4401 arg
.val
= target_su
.val
;
4403 ret
= get_errno(semctl(semid
, semnum
, cmd
, arg
));
4407 err
= target_to_host_semarray(semid
, &array
, target_su
.array
);
4411 ret
= get_errno(semctl(semid
, semnum
, cmd
, arg
));
4412 err
= host_to_target_semarray(semid
, target_su
.array
, &array
);
4419 err
= target_to_host_semid_ds(&dsarg
, target_su
.buf
);
4423 ret
= get_errno(semctl(semid
, semnum
, cmd
, arg
));
4424 err
= host_to_target_semid_ds(target_su
.buf
, &dsarg
);
4430 arg
.__buf
= &seminfo
;
4431 ret
= get_errno(semctl(semid
, semnum
, cmd
, arg
));
4432 err
= host_to_target_seminfo(target_su
.__buf
, &seminfo
);
4440 ret
= get_errno(semctl(semid
, semnum
, cmd
, NULL
));
4447 struct target_sembuf
{
4448 unsigned short sem_num
;
4453 static inline abi_long
target_to_host_sembuf(struct sembuf
*host_sembuf
,
4454 abi_ulong target_addr
,
4457 struct target_sembuf
*target_sembuf
;
4460 target_sembuf
= lock_user(VERIFY_READ
, target_addr
,
4461 nsops
*sizeof(struct target_sembuf
), 1);
4463 return -TARGET_EFAULT
;
4465 for(i
=0; i
<nsops
; i
++) {
4466 __get_user(host_sembuf
[i
].sem_num
, &target_sembuf
[i
].sem_num
);
4467 __get_user(host_sembuf
[i
].sem_op
, &target_sembuf
[i
].sem_op
);
4468 __get_user(host_sembuf
[i
].sem_flg
, &target_sembuf
[i
].sem_flg
);
4471 unlock_user(target_sembuf
, target_addr
, 0);
4476 static inline abi_long
do_semop(int semid
, abi_long ptr
, unsigned nsops
)
4478 struct sembuf sops
[nsops
];
4480 if (target_to_host_sembuf(sops
, ptr
, nsops
))
4481 return -TARGET_EFAULT
;
4483 return get_errno(safe_semtimedop(semid
, sops
, nsops
, NULL
));
4486 struct target_msqid_ds
4488 struct target_ipc_perm msg_perm
;
4489 abi_ulong msg_stime
;
4490 #if TARGET_ABI_BITS == 32
4491 abi_ulong __unused1
;
4493 abi_ulong msg_rtime
;
4494 #if TARGET_ABI_BITS == 32
4495 abi_ulong __unused2
;
4497 abi_ulong msg_ctime
;
4498 #if TARGET_ABI_BITS == 32
4499 abi_ulong __unused3
;
4501 abi_ulong __msg_cbytes
;
4503 abi_ulong msg_qbytes
;
4504 abi_ulong msg_lspid
;
4505 abi_ulong msg_lrpid
;
4506 abi_ulong __unused4
;
4507 abi_ulong __unused5
;
4510 static inline abi_long
target_to_host_msqid_ds(struct msqid_ds
*host_md
,
4511 abi_ulong target_addr
)
4513 struct target_msqid_ds
*target_md
;
4515 if (!lock_user_struct(VERIFY_READ
, target_md
, target_addr
, 1))
4516 return -TARGET_EFAULT
;
4517 if (target_to_host_ipc_perm(&(host_md
->msg_perm
),target_addr
))
4518 return -TARGET_EFAULT
;
4519 host_md
->msg_stime
= tswapal(target_md
->msg_stime
);
4520 host_md
->msg_rtime
= tswapal(target_md
->msg_rtime
);
4521 host_md
->msg_ctime
= tswapal(target_md
->msg_ctime
);
4522 host_md
->__msg_cbytes
= tswapal(target_md
->__msg_cbytes
);
4523 host_md
->msg_qnum
= tswapal(target_md
->msg_qnum
);
4524 host_md
->msg_qbytes
= tswapal(target_md
->msg_qbytes
);
4525 host_md
->msg_lspid
= tswapal(target_md
->msg_lspid
);
4526 host_md
->msg_lrpid
= tswapal(target_md
->msg_lrpid
);
4527 unlock_user_struct(target_md
, target_addr
, 0);
4531 static inline abi_long
host_to_target_msqid_ds(abi_ulong target_addr
,
4532 struct msqid_ds
*host_md
)
4534 struct target_msqid_ds
*target_md
;
4536 if (!lock_user_struct(VERIFY_WRITE
, target_md
, target_addr
, 0))
4537 return -TARGET_EFAULT
;
4538 if (host_to_target_ipc_perm(target_addr
,&(host_md
->msg_perm
)))
4539 return -TARGET_EFAULT
;
4540 target_md
->msg_stime
= tswapal(host_md
->msg_stime
);
4541 target_md
->msg_rtime
= tswapal(host_md
->msg_rtime
);
4542 target_md
->msg_ctime
= tswapal(host_md
->msg_ctime
);
4543 target_md
->__msg_cbytes
= tswapal(host_md
->__msg_cbytes
);
4544 target_md
->msg_qnum
= tswapal(host_md
->msg_qnum
);
4545 target_md
->msg_qbytes
= tswapal(host_md
->msg_qbytes
);
4546 target_md
->msg_lspid
= tswapal(host_md
->msg_lspid
);
4547 target_md
->msg_lrpid
= tswapal(host_md
->msg_lrpid
);
4548 unlock_user_struct(target_md
, target_addr
, 1);
4552 struct target_msginfo
{
4560 unsigned short int msgseg
;
4563 static inline abi_long
host_to_target_msginfo(abi_ulong target_addr
,
4564 struct msginfo
*host_msginfo
)
4566 struct target_msginfo
*target_msginfo
;
4567 if (!lock_user_struct(VERIFY_WRITE
, target_msginfo
, target_addr
, 0))
4568 return -TARGET_EFAULT
;
4569 __put_user(host_msginfo
->msgpool
, &target_msginfo
->msgpool
);
4570 __put_user(host_msginfo
->msgmap
, &target_msginfo
->msgmap
);
4571 __put_user(host_msginfo
->msgmax
, &target_msginfo
->msgmax
);
4572 __put_user(host_msginfo
->msgmnb
, &target_msginfo
->msgmnb
);
4573 __put_user(host_msginfo
->msgmni
, &target_msginfo
->msgmni
);
4574 __put_user(host_msginfo
->msgssz
, &target_msginfo
->msgssz
);
4575 __put_user(host_msginfo
->msgtql
, &target_msginfo
->msgtql
);
4576 __put_user(host_msginfo
->msgseg
, &target_msginfo
->msgseg
);
4577 unlock_user_struct(target_msginfo
, target_addr
, 1);
4581 static inline abi_long
do_msgctl(int msgid
, int cmd
, abi_long ptr
)
4583 struct msqid_ds dsarg
;
4584 struct msginfo msginfo
;
4585 abi_long ret
= -TARGET_EINVAL
;
4593 if (target_to_host_msqid_ds(&dsarg
,ptr
))
4594 return -TARGET_EFAULT
;
4595 ret
= get_errno(msgctl(msgid
, cmd
, &dsarg
));
4596 if (host_to_target_msqid_ds(ptr
,&dsarg
))
4597 return -TARGET_EFAULT
;
4600 ret
= get_errno(msgctl(msgid
, cmd
, NULL
));
4604 ret
= get_errno(msgctl(msgid
, cmd
, (struct msqid_ds
*)&msginfo
));
4605 if (host_to_target_msginfo(ptr
, &msginfo
))
4606 return -TARGET_EFAULT
;
4613 struct target_msgbuf
{
4618 static inline abi_long
do_msgsnd(int msqid
, abi_long msgp
,
4619 ssize_t msgsz
, int msgflg
)
4621 struct target_msgbuf
*target_mb
;
4622 struct msgbuf
*host_mb
;
4626 return -TARGET_EINVAL
;
4629 if (!lock_user_struct(VERIFY_READ
, target_mb
, msgp
, 0))
4630 return -TARGET_EFAULT
;
4631 host_mb
= g_try_malloc(msgsz
+ sizeof(long));
4633 unlock_user_struct(target_mb
, msgp
, 0);
4634 return -TARGET_ENOMEM
;
4636 host_mb
->mtype
= (abi_long
) tswapal(target_mb
->mtype
);
4637 memcpy(host_mb
->mtext
, target_mb
->mtext
, msgsz
);
4638 ret
= get_errno(safe_msgsnd(msqid
, host_mb
, msgsz
, msgflg
));
4640 unlock_user_struct(target_mb
, msgp
, 0);
4645 static inline abi_long
do_msgrcv(int msqid
, abi_long msgp
,
4646 ssize_t msgsz
, abi_long msgtyp
,
4649 struct target_msgbuf
*target_mb
;
4651 struct msgbuf
*host_mb
;
4655 return -TARGET_EINVAL
;
4658 if (!lock_user_struct(VERIFY_WRITE
, target_mb
, msgp
, 0))
4659 return -TARGET_EFAULT
;
4661 host_mb
= g_try_malloc(msgsz
+ sizeof(long));
4663 ret
= -TARGET_ENOMEM
;
4666 ret
= get_errno(safe_msgrcv(msqid
, host_mb
, msgsz
, msgtyp
, msgflg
));
4669 abi_ulong target_mtext_addr
= msgp
+ sizeof(abi_ulong
);
4670 target_mtext
= lock_user(VERIFY_WRITE
, target_mtext_addr
, ret
, 0);
4671 if (!target_mtext
) {
4672 ret
= -TARGET_EFAULT
;
4675 memcpy(target_mb
->mtext
, host_mb
->mtext
, ret
);
4676 unlock_user(target_mtext
, target_mtext_addr
, ret
);
4679 target_mb
->mtype
= tswapal(host_mb
->mtype
);
4683 unlock_user_struct(target_mb
, msgp
, 1);
4688 static inline abi_long
target_to_host_shmid_ds(struct shmid_ds
*host_sd
,
4689 abi_ulong target_addr
)
4691 struct target_shmid_ds
*target_sd
;
4693 if (!lock_user_struct(VERIFY_READ
, target_sd
, target_addr
, 1))
4694 return -TARGET_EFAULT
;
4695 if (target_to_host_ipc_perm(&(host_sd
->shm_perm
), target_addr
))
4696 return -TARGET_EFAULT
;
4697 __get_user(host_sd
->shm_segsz
, &target_sd
->shm_segsz
);
4698 __get_user(host_sd
->shm_atime
, &target_sd
->shm_atime
);
4699 __get_user(host_sd
->shm_dtime
, &target_sd
->shm_dtime
);
4700 __get_user(host_sd
->shm_ctime
, &target_sd
->shm_ctime
);
4701 __get_user(host_sd
->shm_cpid
, &target_sd
->shm_cpid
);
4702 __get_user(host_sd
->shm_lpid
, &target_sd
->shm_lpid
);
4703 __get_user(host_sd
->shm_nattch
, &target_sd
->shm_nattch
);
4704 unlock_user_struct(target_sd
, target_addr
, 0);
4708 static inline abi_long
host_to_target_shmid_ds(abi_ulong target_addr
,
4709 struct shmid_ds
*host_sd
)
4711 struct target_shmid_ds
*target_sd
;
4713 if (!lock_user_struct(VERIFY_WRITE
, target_sd
, target_addr
, 0))
4714 return -TARGET_EFAULT
;
4715 if (host_to_target_ipc_perm(target_addr
, &(host_sd
->shm_perm
)))
4716 return -TARGET_EFAULT
;
4717 __put_user(host_sd
->shm_segsz
, &target_sd
->shm_segsz
);
4718 __put_user(host_sd
->shm_atime
, &target_sd
->shm_atime
);
4719 __put_user(host_sd
->shm_dtime
, &target_sd
->shm_dtime
);
4720 __put_user(host_sd
->shm_ctime
, &target_sd
->shm_ctime
);
4721 __put_user(host_sd
->shm_cpid
, &target_sd
->shm_cpid
);
4722 __put_user(host_sd
->shm_lpid
, &target_sd
->shm_lpid
);
4723 __put_user(host_sd
->shm_nattch
, &target_sd
->shm_nattch
);
4724 unlock_user_struct(target_sd
, target_addr
, 1);
4728 struct target_shminfo
{
4736 static inline abi_long
host_to_target_shminfo(abi_ulong target_addr
,
4737 struct shminfo
*host_shminfo
)
4739 struct target_shminfo
*target_shminfo
;
4740 if (!lock_user_struct(VERIFY_WRITE
, target_shminfo
, target_addr
, 0))
4741 return -TARGET_EFAULT
;
4742 __put_user(host_shminfo
->shmmax
, &target_shminfo
->shmmax
);
4743 __put_user(host_shminfo
->shmmin
, &target_shminfo
->shmmin
);
4744 __put_user(host_shminfo
->shmmni
, &target_shminfo
->shmmni
);
4745 __put_user(host_shminfo
->shmseg
, &target_shminfo
->shmseg
);
4746 __put_user(host_shminfo
->shmall
, &target_shminfo
->shmall
);
4747 unlock_user_struct(target_shminfo
, target_addr
, 1);
4751 struct target_shm_info
{
4756 abi_ulong swap_attempts
;
4757 abi_ulong swap_successes
;
4760 static inline abi_long
host_to_target_shm_info(abi_ulong target_addr
,
4761 struct shm_info
*host_shm_info
)
4763 struct target_shm_info
*target_shm_info
;
4764 if (!lock_user_struct(VERIFY_WRITE
, target_shm_info
, target_addr
, 0))
4765 return -TARGET_EFAULT
;
4766 __put_user(host_shm_info
->used_ids
, &target_shm_info
->used_ids
);
4767 __put_user(host_shm_info
->shm_tot
, &target_shm_info
->shm_tot
);
4768 __put_user(host_shm_info
->shm_rss
, &target_shm_info
->shm_rss
);
4769 __put_user(host_shm_info
->shm_swp
, &target_shm_info
->shm_swp
);
4770 __put_user(host_shm_info
->swap_attempts
, &target_shm_info
->swap_attempts
);
4771 __put_user(host_shm_info
->swap_successes
, &target_shm_info
->swap_successes
);
4772 unlock_user_struct(target_shm_info
, target_addr
, 1);
4776 static inline abi_long
do_shmctl(int shmid
, int cmd
, abi_long buf
)
4778 struct shmid_ds dsarg
;
4779 struct shminfo shminfo
;
4780 struct shm_info shm_info
;
4781 abi_long ret
= -TARGET_EINVAL
;
4789 if (target_to_host_shmid_ds(&dsarg
, buf
))
4790 return -TARGET_EFAULT
;
4791 ret
= get_errno(shmctl(shmid
, cmd
, &dsarg
));
4792 if (host_to_target_shmid_ds(buf
, &dsarg
))
4793 return -TARGET_EFAULT
;
4796 ret
= get_errno(shmctl(shmid
, cmd
, (struct shmid_ds
*)&shminfo
));
4797 if (host_to_target_shminfo(buf
, &shminfo
))
4798 return -TARGET_EFAULT
;
4801 ret
= get_errno(shmctl(shmid
, cmd
, (struct shmid_ds
*)&shm_info
));
4802 if (host_to_target_shm_info(buf
, &shm_info
))
4803 return -TARGET_EFAULT
;
4808 ret
= get_errno(shmctl(shmid
, cmd
, NULL
));
4815 #ifndef TARGET_FORCE_SHMLBA
4816 /* For most architectures, SHMLBA is the same as the page size;
4817 * some architectures have larger values, in which case they should
4818 * define TARGET_FORCE_SHMLBA and provide a target_shmlba() function.
4819 * This corresponds to the kernel arch code defining __ARCH_FORCE_SHMLBA
4820 * and defining its own value for SHMLBA.
4822 * The kernel also permits SHMLBA to be set by the architecture to a
4823 * value larger than the page size without setting __ARCH_FORCE_SHMLBA;
4824 * this means that addresses are rounded to the large size if
4825 * SHM_RND is set but addresses not aligned to that size are not rejected
4826 * as long as they are at least page-aligned. Since the only architecture
4827 * which uses this is ia64 this code doesn't provide for that oddity.
4829 static inline abi_ulong
target_shmlba(CPUArchState
*cpu_env
)
4831 return TARGET_PAGE_SIZE
;
4835 static inline abi_ulong
do_shmat(CPUArchState
*cpu_env
,
4836 int shmid
, abi_ulong shmaddr
, int shmflg
)
4840 struct shmid_ds shm_info
;
4844 /* find out the length of the shared memory segment */
4845 ret
= get_errno(shmctl(shmid
, IPC_STAT
, &shm_info
));
4846 if (is_error(ret
)) {
4847 /* can't get length, bail out */
4851 shmlba
= target_shmlba(cpu_env
);
4853 if (shmaddr
& (shmlba
- 1)) {
4854 if (shmflg
& SHM_RND
) {
4855 shmaddr
&= ~(shmlba
- 1);
4857 return -TARGET_EINVAL
;
4864 host_raddr
= shmat(shmid
, (void *)g2h(shmaddr
), shmflg
);
4866 abi_ulong mmap_start
;
4868 mmap_start
= mmap_find_vma(0, shm_info
.shm_segsz
);
4870 if (mmap_start
== -1) {
4872 host_raddr
= (void *)-1;
4874 host_raddr
= shmat(shmid
, g2h(mmap_start
), shmflg
| SHM_REMAP
);
4877 if (host_raddr
== (void *)-1) {
4879 return get_errno((long)host_raddr
);
4881 raddr
=h2g((unsigned long)host_raddr
);
4883 page_set_flags(raddr
, raddr
+ shm_info
.shm_segsz
,
4884 PAGE_VALID
| PAGE_READ
|
4885 ((shmflg
& SHM_RDONLY
)? 0 : PAGE_WRITE
));
4887 for (i
= 0; i
< N_SHM_REGIONS
; i
++) {
4888 if (!shm_regions
[i
].in_use
) {
4889 shm_regions
[i
].in_use
= true;
4890 shm_regions
[i
].start
= raddr
;
4891 shm_regions
[i
].size
= shm_info
.shm_segsz
;
4901 static inline abi_long
do_shmdt(abi_ulong shmaddr
)
4905 for (i
= 0; i
< N_SHM_REGIONS
; ++i
) {
4906 if (shm_regions
[i
].in_use
&& shm_regions
[i
].start
== shmaddr
) {
4907 shm_regions
[i
].in_use
= false;
4908 page_set_flags(shmaddr
, shmaddr
+ shm_regions
[i
].size
, 0);
4913 return get_errno(shmdt(g2h(shmaddr
)));
4916 #ifdef TARGET_NR_ipc
4917 /* ??? This only works with linear mappings. */
4918 /* do_ipc() must return target values and target errnos. */
4919 static abi_long
do_ipc(CPUArchState
*cpu_env
,
4920 unsigned int call
, abi_long first
,
4921 abi_long second
, abi_long third
,
4922 abi_long ptr
, abi_long fifth
)
4927 version
= call
>> 16;
4932 ret
= do_semop(first
, ptr
, second
);
4936 ret
= get_errno(semget(first
, second
, third
));
4939 case IPCOP_semctl
: {
4940 /* The semun argument to semctl is passed by value, so dereference the
4943 get_user_ual(atptr
, ptr
);
4944 ret
= do_semctl(first
, second
, third
, atptr
);
4949 ret
= get_errno(msgget(first
, second
));
4953 ret
= do_msgsnd(first
, ptr
, second
, third
);
4957 ret
= do_msgctl(first
, second
, ptr
);
4964 struct target_ipc_kludge
{
4969 if (!lock_user_struct(VERIFY_READ
, tmp
, ptr
, 1)) {
4970 ret
= -TARGET_EFAULT
;
4974 ret
= do_msgrcv(first
, tswapal(tmp
->msgp
), second
, tswapal(tmp
->msgtyp
), third
);
4976 unlock_user_struct(tmp
, ptr
, 0);
4980 ret
= do_msgrcv(first
, ptr
, second
, fifth
, third
);
4989 raddr
= do_shmat(cpu_env
, first
, ptr
, second
);
4990 if (is_error(raddr
))
4991 return get_errno(raddr
);
4992 if (put_user_ual(raddr
, third
))
4993 return -TARGET_EFAULT
;
4997 ret
= -TARGET_EINVAL
;
5002 ret
= do_shmdt(ptr
);
5006 /* IPC_* flag values are the same on all linux platforms */
5007 ret
= get_errno(shmget(first
, second
, third
));
5010 /* IPC_* and SHM_* command values are the same on all linux platforms */
5012 ret
= do_shmctl(first
, second
, ptr
);
5015 gemu_log("Unsupported ipc call: %d (version %d)\n", call
, version
);
5016 ret
= -TARGET_ENOSYS
;
5023 /* kernel structure types definitions */
5025 #define STRUCT(name, ...) STRUCT_ ## name,
5026 #define STRUCT_SPECIAL(name) STRUCT_ ## name,
5028 #include "syscall_types.h"
5032 #undef STRUCT_SPECIAL
5034 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = { __VA_ARGS__, TYPE_NULL };
5035 #define STRUCT_SPECIAL(name)
5036 #include "syscall_types.h"
5038 #undef STRUCT_SPECIAL
5040 typedef struct IOCTLEntry IOCTLEntry
;
5042 typedef abi_long
do_ioctl_fn(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
5043 int fd
, int cmd
, abi_long arg
);
5047 unsigned int host_cmd
;
5050 do_ioctl_fn
*do_ioctl
;
5051 const argtype arg_type
[5];
5054 #define IOC_R 0x0001
5055 #define IOC_W 0x0002
5056 #define IOC_RW (IOC_R | IOC_W)
5058 #define MAX_STRUCT_SIZE 4096
5060 #ifdef CONFIG_FIEMAP
5061 /* So fiemap access checks don't overflow on 32 bit systems.
5062 * This is very slightly smaller than the limit imposed by
5063 * the underlying kernel.
5065 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap)) \
5066 / sizeof(struct fiemap_extent))
5068 static abi_long
do_ioctl_fs_ioc_fiemap(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
5069 int fd
, int cmd
, abi_long arg
)
5071 /* The parameter for this ioctl is a struct fiemap followed
5072 * by an array of struct fiemap_extent whose size is set
5073 * in fiemap->fm_extent_count. The array is filled in by the
5076 int target_size_in
, target_size_out
;
5078 const argtype
*arg_type
= ie
->arg_type
;
5079 const argtype extent_arg_type
[] = { MK_STRUCT(STRUCT_fiemap_extent
) };
5082 int i
, extent_size
= thunk_type_size(extent_arg_type
, 0);
5086 assert(arg_type
[0] == TYPE_PTR
);
5087 assert(ie
->access
== IOC_RW
);
5089 target_size_in
= thunk_type_size(arg_type
, 0);
5090 argptr
= lock_user(VERIFY_READ
, arg
, target_size_in
, 1);
5092 return -TARGET_EFAULT
;
5094 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
5095 unlock_user(argptr
, arg
, 0);
5096 fm
= (struct fiemap
*)buf_temp
;
5097 if (fm
->fm_extent_count
> FIEMAP_MAX_EXTENTS
) {
5098 return -TARGET_EINVAL
;
5101 outbufsz
= sizeof (*fm
) +
5102 (sizeof(struct fiemap_extent
) * fm
->fm_extent_count
);
5104 if (outbufsz
> MAX_STRUCT_SIZE
) {
5105 /* We can't fit all the extents into the fixed size buffer.
5106 * Allocate one that is large enough and use it instead.
5108 fm
= g_try_malloc(outbufsz
);
5110 return -TARGET_ENOMEM
;
5112 memcpy(fm
, buf_temp
, sizeof(struct fiemap
));
5115 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, fm
));
5116 if (!is_error(ret
)) {
5117 target_size_out
= target_size_in
;
5118 /* An extent_count of 0 means we were only counting the extents
5119 * so there are no structs to copy
5121 if (fm
->fm_extent_count
!= 0) {
5122 target_size_out
+= fm
->fm_mapped_extents
* extent_size
;
5124 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size_out
, 0);
5126 ret
= -TARGET_EFAULT
;
5128 /* Convert the struct fiemap */
5129 thunk_convert(argptr
, fm
, arg_type
, THUNK_TARGET
);
5130 if (fm
->fm_extent_count
!= 0) {
5131 p
= argptr
+ target_size_in
;
5132 /* ...and then all the struct fiemap_extents */
5133 for (i
= 0; i
< fm
->fm_mapped_extents
; i
++) {
5134 thunk_convert(p
, &fm
->fm_extents
[i
], extent_arg_type
,
5139 unlock_user(argptr
, arg
, target_size_out
);
5149 static abi_long
do_ioctl_ifconf(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
5150 int fd
, int cmd
, abi_long arg
)
5152 const argtype
*arg_type
= ie
->arg_type
;
5156 struct ifconf
*host_ifconf
;
5158 const argtype ifreq_arg_type
[] = { MK_STRUCT(STRUCT_sockaddr_ifreq
) };
5159 int target_ifreq_size
;
5164 abi_long target_ifc_buf
;
5168 assert(arg_type
[0] == TYPE_PTR
);
5169 assert(ie
->access
== IOC_RW
);
5172 target_size
= thunk_type_size(arg_type
, 0);
5174 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
5176 return -TARGET_EFAULT
;
5177 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
5178 unlock_user(argptr
, arg
, 0);
5180 host_ifconf
= (struct ifconf
*)(unsigned long)buf_temp
;
5181 target_ifc_len
= host_ifconf
->ifc_len
;
5182 target_ifc_buf
= (abi_long
)(unsigned long)host_ifconf
->ifc_buf
;
5184 target_ifreq_size
= thunk_type_size(ifreq_arg_type
, 0);
5185 nb_ifreq
= target_ifc_len
/ target_ifreq_size
;
5186 host_ifc_len
= nb_ifreq
* sizeof(struct ifreq
);
5188 outbufsz
= sizeof(*host_ifconf
) + host_ifc_len
;
5189 if (outbufsz
> MAX_STRUCT_SIZE
) {
5190 /* We can't fit all the extents into the fixed size buffer.
5191 * Allocate one that is large enough and use it instead.
5193 host_ifconf
= malloc(outbufsz
);
5195 return -TARGET_ENOMEM
;
5197 memcpy(host_ifconf
, buf_temp
, sizeof(*host_ifconf
));
5200 host_ifc_buf
= (char*)host_ifconf
+ sizeof(*host_ifconf
);
5202 host_ifconf
->ifc_len
= host_ifc_len
;
5203 host_ifconf
->ifc_buf
= host_ifc_buf
;
5205 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, host_ifconf
));
5206 if (!is_error(ret
)) {
5207 /* convert host ifc_len to target ifc_len */
5209 nb_ifreq
= host_ifconf
->ifc_len
/ sizeof(struct ifreq
);
5210 target_ifc_len
= nb_ifreq
* target_ifreq_size
;
5211 host_ifconf
->ifc_len
= target_ifc_len
;
5213 /* restore target ifc_buf */
5215 host_ifconf
->ifc_buf
= (char *)(unsigned long)target_ifc_buf
;
5217 /* copy struct ifconf to target user */
5219 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size
, 0);
5221 return -TARGET_EFAULT
;
5222 thunk_convert(argptr
, host_ifconf
, arg_type
, THUNK_TARGET
);
5223 unlock_user(argptr
, arg
, target_size
);
5225 /* copy ifreq[] to target user */
5227 argptr
= lock_user(VERIFY_WRITE
, target_ifc_buf
, target_ifc_len
, 0);
5228 for (i
= 0; i
< nb_ifreq
; i
++) {
5229 thunk_convert(argptr
+ i
* target_ifreq_size
,
5230 host_ifc_buf
+ i
* sizeof(struct ifreq
),
5231 ifreq_arg_type
, THUNK_TARGET
);
5233 unlock_user(argptr
, target_ifc_buf
, target_ifc_len
);
5243 static abi_long
do_ioctl_dm(const IOCTLEntry
*ie
, uint8_t *buf_temp
, int fd
,
5244 int cmd
, abi_long arg
)
5247 struct dm_ioctl
*host_dm
;
5248 abi_long guest_data
;
5249 uint32_t guest_data_size
;
5251 const argtype
*arg_type
= ie
->arg_type
;
5253 void *big_buf
= NULL
;
5257 target_size
= thunk_type_size(arg_type
, 0);
5258 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
5260 ret
= -TARGET_EFAULT
;
5263 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
5264 unlock_user(argptr
, arg
, 0);
5266 /* buf_temp is too small, so fetch things into a bigger buffer */
5267 big_buf
= g_malloc0(((struct dm_ioctl
*)buf_temp
)->data_size
* 2);
5268 memcpy(big_buf
, buf_temp
, target_size
);
5272 guest_data
= arg
+ host_dm
->data_start
;
5273 if ((guest_data
- arg
) < 0) {
5274 ret
= -TARGET_EINVAL
;
5277 guest_data_size
= host_dm
->data_size
- host_dm
->data_start
;
5278 host_data
= (char*)host_dm
+ host_dm
->data_start
;
5280 argptr
= lock_user(VERIFY_READ
, guest_data
, guest_data_size
, 1);
5282 ret
= -TARGET_EFAULT
;
5286 switch (ie
->host_cmd
) {
5288 case DM_LIST_DEVICES
:
5291 case DM_DEV_SUSPEND
:
5294 case DM_TABLE_STATUS
:
5295 case DM_TABLE_CLEAR
:
5297 case DM_LIST_VERSIONS
:
5301 case DM_DEV_SET_GEOMETRY
:
5302 /* data contains only strings */
5303 memcpy(host_data
, argptr
, guest_data_size
);
5306 memcpy(host_data
, argptr
, guest_data_size
);
5307 *(uint64_t*)host_data
= tswap64(*(uint64_t*)argptr
);
5311 void *gspec
= argptr
;
5312 void *cur_data
= host_data
;
5313 const argtype arg_type
[] = { MK_STRUCT(STRUCT_dm_target_spec
) };
5314 int spec_size
= thunk_type_size(arg_type
, 0);
5317 for (i
= 0; i
< host_dm
->target_count
; i
++) {
5318 struct dm_target_spec
*spec
= cur_data
;
5322 thunk_convert(spec
, gspec
, arg_type
, THUNK_HOST
);
5323 slen
= strlen((char*)gspec
+ spec_size
) + 1;
5325 spec
->next
= sizeof(*spec
) + slen
;
5326 strcpy((char*)&spec
[1], gspec
+ spec_size
);
5328 cur_data
+= spec
->next
;
5333 ret
= -TARGET_EINVAL
;
5334 unlock_user(argptr
, guest_data
, 0);
5337 unlock_user(argptr
, guest_data
, 0);
5339 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, buf_temp
));
5340 if (!is_error(ret
)) {
5341 guest_data
= arg
+ host_dm
->data_start
;
5342 guest_data_size
= host_dm
->data_size
- host_dm
->data_start
;
5343 argptr
= lock_user(VERIFY_WRITE
, guest_data
, guest_data_size
, 0);
5344 switch (ie
->host_cmd
) {
5349 case DM_DEV_SUSPEND
:
5352 case DM_TABLE_CLEAR
:
5354 case DM_DEV_SET_GEOMETRY
:
5355 /* no return data */
5357 case DM_LIST_DEVICES
:
5359 struct dm_name_list
*nl
= (void*)host_dm
+ host_dm
->data_start
;
5360 uint32_t remaining_data
= guest_data_size
;
5361 void *cur_data
= argptr
;
5362 const argtype arg_type
[] = { MK_STRUCT(STRUCT_dm_name_list
) };
5363 int nl_size
= 12; /* can't use thunk_size due to alignment */
5366 uint32_t next
= nl
->next
;
5368 nl
->next
= nl_size
+ (strlen(nl
->name
) + 1);
5370 if (remaining_data
< nl
->next
) {
5371 host_dm
->flags
|= DM_BUFFER_FULL_FLAG
;
5374 thunk_convert(cur_data
, nl
, arg_type
, THUNK_TARGET
);
5375 strcpy(cur_data
+ nl_size
, nl
->name
);
5376 cur_data
+= nl
->next
;
5377 remaining_data
-= nl
->next
;
5381 nl
= (void*)nl
+ next
;
5386 case DM_TABLE_STATUS
:
5388 struct dm_target_spec
*spec
= (void*)host_dm
+ host_dm
->data_start
;
5389 void *cur_data
= argptr
;
5390 const argtype arg_type
[] = { MK_STRUCT(STRUCT_dm_target_spec
) };
5391 int spec_size
= thunk_type_size(arg_type
, 0);
5394 for (i
= 0; i
< host_dm
->target_count
; i
++) {
5395 uint32_t next
= spec
->next
;
5396 int slen
= strlen((char*)&spec
[1]) + 1;
5397 spec
->next
= (cur_data
- argptr
) + spec_size
+ slen
;
5398 if (guest_data_size
< spec
->next
) {
5399 host_dm
->flags
|= DM_BUFFER_FULL_FLAG
;
5402 thunk_convert(cur_data
, spec
, arg_type
, THUNK_TARGET
);
5403 strcpy(cur_data
+ spec_size
, (char*)&spec
[1]);
5404 cur_data
= argptr
+ spec
->next
;
5405 spec
= (void*)host_dm
+ host_dm
->data_start
+ next
;
5411 void *hdata
= (void*)host_dm
+ host_dm
->data_start
;
5412 int count
= *(uint32_t*)hdata
;
5413 uint64_t *hdev
= hdata
+ 8;
5414 uint64_t *gdev
= argptr
+ 8;
5417 *(uint32_t*)argptr
= tswap32(count
);
5418 for (i
= 0; i
< count
; i
++) {
5419 *gdev
= tswap64(*hdev
);
5425 case DM_LIST_VERSIONS
:
5427 struct dm_target_versions
*vers
= (void*)host_dm
+ host_dm
->data_start
;
5428 uint32_t remaining_data
= guest_data_size
;
5429 void *cur_data
= argptr
;
5430 const argtype arg_type
[] = { MK_STRUCT(STRUCT_dm_target_versions
) };
5431 int vers_size
= thunk_type_size(arg_type
, 0);
5434 uint32_t next
= vers
->next
;
5436 vers
->next
= vers_size
+ (strlen(vers
->name
) + 1);
5438 if (remaining_data
< vers
->next
) {
5439 host_dm
->flags
|= DM_BUFFER_FULL_FLAG
;
5442 thunk_convert(cur_data
, vers
, arg_type
, THUNK_TARGET
);
5443 strcpy(cur_data
+ vers_size
, vers
->name
);
5444 cur_data
+= vers
->next
;
5445 remaining_data
-= vers
->next
;
5449 vers
= (void*)vers
+ next
;
5454 unlock_user(argptr
, guest_data
, 0);
5455 ret
= -TARGET_EINVAL
;
5458 unlock_user(argptr
, guest_data
, guest_data_size
);
5460 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size
, 0);
5462 ret
= -TARGET_EFAULT
;
5465 thunk_convert(argptr
, buf_temp
, arg_type
, THUNK_TARGET
);
5466 unlock_user(argptr
, arg
, target_size
);
5473 static abi_long
do_ioctl_blkpg(const IOCTLEntry
*ie
, uint8_t *buf_temp
, int fd
,
5474 int cmd
, abi_long arg
)
5478 const argtype
*arg_type
= ie
->arg_type
;
5479 const argtype part_arg_type
[] = { MK_STRUCT(STRUCT_blkpg_partition
) };
5482 struct blkpg_ioctl_arg
*host_blkpg
= (void*)buf_temp
;
5483 struct blkpg_partition host_part
;
5485 /* Read and convert blkpg */
5487 target_size
= thunk_type_size(arg_type
, 0);
5488 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
5490 ret
= -TARGET_EFAULT
;
5493 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
5494 unlock_user(argptr
, arg
, 0);
5496 switch (host_blkpg
->op
) {
5497 case BLKPG_ADD_PARTITION
:
5498 case BLKPG_DEL_PARTITION
:
5499 /* payload is struct blkpg_partition */
5502 /* Unknown opcode */
5503 ret
= -TARGET_EINVAL
;
5507 /* Read and convert blkpg->data */
5508 arg
= (abi_long
)(uintptr_t)host_blkpg
->data
;
5509 target_size
= thunk_type_size(part_arg_type
, 0);
5510 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
5512 ret
= -TARGET_EFAULT
;
5515 thunk_convert(&host_part
, argptr
, part_arg_type
, THUNK_HOST
);
5516 unlock_user(argptr
, arg
, 0);
5518 /* Swizzle the data pointer to our local copy and call! */
5519 host_blkpg
->data
= &host_part
;
5520 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, host_blkpg
));
5526 static abi_long
do_ioctl_rt(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
5527 int fd
, int cmd
, abi_long arg
)
5529 const argtype
*arg_type
= ie
->arg_type
;
5530 const StructEntry
*se
;
5531 const argtype
*field_types
;
5532 const int *dst_offsets
, *src_offsets
;
5535 abi_ulong
*target_rt_dev_ptr
;
5536 unsigned long *host_rt_dev_ptr
;
5540 assert(ie
->access
== IOC_W
);
5541 assert(*arg_type
== TYPE_PTR
);
5543 assert(*arg_type
== TYPE_STRUCT
);
5544 target_size
= thunk_type_size(arg_type
, 0);
5545 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
5547 return -TARGET_EFAULT
;
5550 assert(*arg_type
== (int)STRUCT_rtentry
);
5551 se
= struct_entries
+ *arg_type
++;
5552 assert(se
->convert
[0] == NULL
);
5553 /* convert struct here to be able to catch rt_dev string */
5554 field_types
= se
->field_types
;
5555 dst_offsets
= se
->field_offsets
[THUNK_HOST
];
5556 src_offsets
= se
->field_offsets
[THUNK_TARGET
];
5557 for (i
= 0; i
< se
->nb_fields
; i
++) {
5558 if (dst_offsets
[i
] == offsetof(struct rtentry
, rt_dev
)) {
5559 assert(*field_types
== TYPE_PTRVOID
);
5560 target_rt_dev_ptr
= (abi_ulong
*)(argptr
+ src_offsets
[i
]);
5561 host_rt_dev_ptr
= (unsigned long *)(buf_temp
+ dst_offsets
[i
]);
5562 if (*target_rt_dev_ptr
!= 0) {
5563 *host_rt_dev_ptr
= (unsigned long)lock_user_string(
5564 tswapal(*target_rt_dev_ptr
));
5565 if (!*host_rt_dev_ptr
) {
5566 unlock_user(argptr
, arg
, 0);
5567 return -TARGET_EFAULT
;
5570 *host_rt_dev_ptr
= 0;
5575 field_types
= thunk_convert(buf_temp
+ dst_offsets
[i
],
5576 argptr
+ src_offsets
[i
],
5577 field_types
, THUNK_HOST
);
5579 unlock_user(argptr
, arg
, 0);
5581 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, buf_temp
));
5582 if (*host_rt_dev_ptr
!= 0) {
5583 unlock_user((void *)*host_rt_dev_ptr
,
5584 *target_rt_dev_ptr
, 0);
5589 static abi_long
do_ioctl_kdsigaccept(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
5590 int fd
, int cmd
, abi_long arg
)
5592 int sig
= target_to_host_signal(arg
);
5593 return get_errno(safe_ioctl(fd
, ie
->host_cmd
, sig
));
5596 static IOCTLEntry ioctl_entries
[] = {
5597 #define IOCTL(cmd, access, ...) \
5598 { TARGET_ ## cmd, cmd, #cmd, access, 0, { __VA_ARGS__ } },
5599 #define IOCTL_SPECIAL(cmd, access, dofn, ...) \
5600 { TARGET_ ## cmd, cmd, #cmd, access, dofn, { __VA_ARGS__ } },
5601 #define IOCTL_IGNORE(cmd) \
5602 { TARGET_ ## cmd, 0, #cmd },
5607 /* ??? Implement proper locking for ioctls. */
5608 /* do_ioctl() Must return target values and target errnos. */
5609 static abi_long
do_ioctl(int fd
, int cmd
, abi_long arg
)
5611 const IOCTLEntry
*ie
;
5612 const argtype
*arg_type
;
5614 uint8_t buf_temp
[MAX_STRUCT_SIZE
];
5620 if (ie
->target_cmd
== 0) {
5621 gemu_log("Unsupported ioctl: cmd=0x%04lx\n", (long)cmd
);
5622 return -TARGET_ENOSYS
;
5624 if (ie
->target_cmd
== cmd
)
5628 arg_type
= ie
->arg_type
;
5630 gemu_log("ioctl: cmd=0x%04lx (%s)\n", (long)cmd
, ie
->name
);
5633 return ie
->do_ioctl(ie
, buf_temp
, fd
, cmd
, arg
);
5634 } else if (!ie
->host_cmd
) {
5635 /* Some architectures define BSD ioctls in their headers
5636 that are not implemented in Linux. */
5637 return -TARGET_ENOSYS
;
5640 switch(arg_type
[0]) {
5643 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
));
5647 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, arg
));
5651 target_size
= thunk_type_size(arg_type
, 0);
5652 switch(ie
->access
) {
5654 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, buf_temp
));
5655 if (!is_error(ret
)) {
5656 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size
, 0);
5658 return -TARGET_EFAULT
;
5659 thunk_convert(argptr
, buf_temp
, arg_type
, THUNK_TARGET
);
5660 unlock_user(argptr
, arg
, target_size
);
5664 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
5666 return -TARGET_EFAULT
;
5667 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
5668 unlock_user(argptr
, arg
, 0);
5669 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, buf_temp
));
5673 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
5675 return -TARGET_EFAULT
;
5676 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
5677 unlock_user(argptr
, arg
, 0);
5678 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, buf_temp
));
5679 if (!is_error(ret
)) {
5680 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size
, 0);
5682 return -TARGET_EFAULT
;
5683 thunk_convert(argptr
, buf_temp
, arg_type
, THUNK_TARGET
);
5684 unlock_user(argptr
, arg
, target_size
);
5690 gemu_log("Unsupported ioctl type: cmd=0x%04lx type=%d\n",
5691 (long)cmd
, arg_type
[0]);
5692 ret
= -TARGET_ENOSYS
;
5698 static const bitmask_transtbl iflag_tbl
[] = {
5699 { TARGET_IGNBRK
, TARGET_IGNBRK
, IGNBRK
, IGNBRK
},
5700 { TARGET_BRKINT
, TARGET_BRKINT
, BRKINT
, BRKINT
},
5701 { TARGET_IGNPAR
, TARGET_IGNPAR
, IGNPAR
, IGNPAR
},
5702 { TARGET_PARMRK
, TARGET_PARMRK
, PARMRK
, PARMRK
},
5703 { TARGET_INPCK
, TARGET_INPCK
, INPCK
, INPCK
},
5704 { TARGET_ISTRIP
, TARGET_ISTRIP
, ISTRIP
, ISTRIP
},
5705 { TARGET_INLCR
, TARGET_INLCR
, INLCR
, INLCR
},
5706 { TARGET_IGNCR
, TARGET_IGNCR
, IGNCR
, IGNCR
},
5707 { TARGET_ICRNL
, TARGET_ICRNL
, ICRNL
, ICRNL
},
5708 { TARGET_IUCLC
, TARGET_IUCLC
, IUCLC
, IUCLC
},
5709 { TARGET_IXON
, TARGET_IXON
, IXON
, IXON
},
5710 { TARGET_IXANY
, TARGET_IXANY
, IXANY
, IXANY
},
5711 { TARGET_IXOFF
, TARGET_IXOFF
, IXOFF
, IXOFF
},
5712 { TARGET_IMAXBEL
, TARGET_IMAXBEL
, IMAXBEL
, IMAXBEL
},
5716 static const bitmask_transtbl oflag_tbl
[] = {
5717 { TARGET_OPOST
, TARGET_OPOST
, OPOST
, OPOST
},
5718 { TARGET_OLCUC
, TARGET_OLCUC
, OLCUC
, OLCUC
},
5719 { TARGET_ONLCR
, TARGET_ONLCR
, ONLCR
, ONLCR
},
5720 { TARGET_OCRNL
, TARGET_OCRNL
, OCRNL
, OCRNL
},
5721 { TARGET_ONOCR
, TARGET_ONOCR
, ONOCR
, ONOCR
},
5722 { TARGET_ONLRET
, TARGET_ONLRET
, ONLRET
, ONLRET
},
5723 { TARGET_OFILL
, TARGET_OFILL
, OFILL
, OFILL
},
5724 { TARGET_OFDEL
, TARGET_OFDEL
, OFDEL
, OFDEL
},
5725 { TARGET_NLDLY
, TARGET_NL0
, NLDLY
, NL0
},
5726 { TARGET_NLDLY
, TARGET_NL1
, NLDLY
, NL1
},
5727 { TARGET_CRDLY
, TARGET_CR0
, CRDLY
, CR0
},
5728 { TARGET_CRDLY
, TARGET_CR1
, CRDLY
, CR1
},
5729 { TARGET_CRDLY
, TARGET_CR2
, CRDLY
, CR2
},
5730 { TARGET_CRDLY
, TARGET_CR3
, CRDLY
, CR3
},
5731 { TARGET_TABDLY
, TARGET_TAB0
, TABDLY
, TAB0
},
5732 { TARGET_TABDLY
, TARGET_TAB1
, TABDLY
, TAB1
},
5733 { TARGET_TABDLY
, TARGET_TAB2
, TABDLY
, TAB2
},
5734 { TARGET_TABDLY
, TARGET_TAB3
, TABDLY
, TAB3
},
5735 { TARGET_BSDLY
, TARGET_BS0
, BSDLY
, BS0
},
5736 { TARGET_BSDLY
, TARGET_BS1
, BSDLY
, BS1
},
5737 { TARGET_VTDLY
, TARGET_VT0
, VTDLY
, VT0
},
5738 { TARGET_VTDLY
, TARGET_VT1
, VTDLY
, VT1
},
5739 { TARGET_FFDLY
, TARGET_FF0
, FFDLY
, FF0
},
5740 { TARGET_FFDLY
, TARGET_FF1
, FFDLY
, FF1
},
5744 static const bitmask_transtbl cflag_tbl
[] = {
5745 { TARGET_CBAUD
, TARGET_B0
, CBAUD
, B0
},
5746 { TARGET_CBAUD
, TARGET_B50
, CBAUD
, B50
},
5747 { TARGET_CBAUD
, TARGET_B75
, CBAUD
, B75
},
5748 { TARGET_CBAUD
, TARGET_B110
, CBAUD
, B110
},
5749 { TARGET_CBAUD
, TARGET_B134
, CBAUD
, B134
},
5750 { TARGET_CBAUD
, TARGET_B150
, CBAUD
, B150
},
5751 { TARGET_CBAUD
, TARGET_B200
, CBAUD
, B200
},
5752 { TARGET_CBAUD
, TARGET_B300
, CBAUD
, B300
},
5753 { TARGET_CBAUD
, TARGET_B600
, CBAUD
, B600
},
5754 { TARGET_CBAUD
, TARGET_B1200
, CBAUD
, B1200
},
5755 { TARGET_CBAUD
, TARGET_B1800
, CBAUD
, B1800
},
5756 { TARGET_CBAUD
, TARGET_B2400
, CBAUD
, B2400
},
5757 { TARGET_CBAUD
, TARGET_B4800
, CBAUD
, B4800
},
5758 { TARGET_CBAUD
, TARGET_B9600
, CBAUD
, B9600
},
5759 { TARGET_CBAUD
, TARGET_B19200
, CBAUD
, B19200
},
5760 { TARGET_CBAUD
, TARGET_B38400
, CBAUD
, B38400
},
5761 { TARGET_CBAUD
, TARGET_B57600
, CBAUD
, B57600
},
5762 { TARGET_CBAUD
, TARGET_B115200
, CBAUD
, B115200
},
5763 { TARGET_CBAUD
, TARGET_B230400
, CBAUD
, B230400
},
5764 { TARGET_CBAUD
, TARGET_B460800
, CBAUD
, B460800
},
5765 { TARGET_CSIZE
, TARGET_CS5
, CSIZE
, CS5
},
5766 { TARGET_CSIZE
, TARGET_CS6
, CSIZE
, CS6
},
5767 { TARGET_CSIZE
, TARGET_CS7
, CSIZE
, CS7
},
5768 { TARGET_CSIZE
, TARGET_CS8
, CSIZE
, CS8
},
5769 { TARGET_CSTOPB
, TARGET_CSTOPB
, CSTOPB
, CSTOPB
},
5770 { TARGET_CREAD
, TARGET_CREAD
, CREAD
, CREAD
},
5771 { TARGET_PARENB
, TARGET_PARENB
, PARENB
, PARENB
},
5772 { TARGET_PARODD
, TARGET_PARODD
, PARODD
, PARODD
},
5773 { TARGET_HUPCL
, TARGET_HUPCL
, HUPCL
, HUPCL
},
5774 { TARGET_CLOCAL
, TARGET_CLOCAL
, CLOCAL
, CLOCAL
},
5775 { TARGET_CRTSCTS
, TARGET_CRTSCTS
, CRTSCTS
, CRTSCTS
},
5779 static const bitmask_transtbl lflag_tbl
[] = {
5780 { TARGET_ISIG
, TARGET_ISIG
, ISIG
, ISIG
},
5781 { TARGET_ICANON
, TARGET_ICANON
, ICANON
, ICANON
},
5782 { TARGET_XCASE
, TARGET_XCASE
, XCASE
, XCASE
},
5783 { TARGET_ECHO
, TARGET_ECHO
, ECHO
, ECHO
},
5784 { TARGET_ECHOE
, TARGET_ECHOE
, ECHOE
, ECHOE
},
5785 { TARGET_ECHOK
, TARGET_ECHOK
, ECHOK
, ECHOK
},
5786 { TARGET_ECHONL
, TARGET_ECHONL
, ECHONL
, ECHONL
},
5787 { TARGET_NOFLSH
, TARGET_NOFLSH
, NOFLSH
, NOFLSH
},
5788 { TARGET_TOSTOP
, TARGET_TOSTOP
, TOSTOP
, TOSTOP
},
5789 { TARGET_ECHOCTL
, TARGET_ECHOCTL
, ECHOCTL
, ECHOCTL
},
5790 { TARGET_ECHOPRT
, TARGET_ECHOPRT
, ECHOPRT
, ECHOPRT
},
5791 { TARGET_ECHOKE
, TARGET_ECHOKE
, ECHOKE
, ECHOKE
},
5792 { TARGET_FLUSHO
, TARGET_FLUSHO
, FLUSHO
, FLUSHO
},
5793 { TARGET_PENDIN
, TARGET_PENDIN
, PENDIN
, PENDIN
},
5794 { TARGET_IEXTEN
, TARGET_IEXTEN
, IEXTEN
, IEXTEN
},
5798 static void target_to_host_termios (void *dst
, const void *src
)
5800 struct host_termios
*host
= dst
;
5801 const struct target_termios
*target
= src
;
5804 target_to_host_bitmask(tswap32(target
->c_iflag
), iflag_tbl
);
5806 target_to_host_bitmask(tswap32(target
->c_oflag
), oflag_tbl
);
5808 target_to_host_bitmask(tswap32(target
->c_cflag
), cflag_tbl
);
5810 target_to_host_bitmask(tswap32(target
->c_lflag
), lflag_tbl
);
5811 host
->c_line
= target
->c_line
;
5813 memset(host
->c_cc
, 0, sizeof(host
->c_cc
));
5814 host
->c_cc
[VINTR
] = target
->c_cc
[TARGET_VINTR
];
5815 host
->c_cc
[VQUIT
] = target
->c_cc
[TARGET_VQUIT
];
5816 host
->c_cc
[VERASE
] = target
->c_cc
[TARGET_VERASE
];
5817 host
->c_cc
[VKILL
] = target
->c_cc
[TARGET_VKILL
];
5818 host
->c_cc
[VEOF
] = target
->c_cc
[TARGET_VEOF
];
5819 host
->c_cc
[VTIME
] = target
->c_cc
[TARGET_VTIME
];
5820 host
->c_cc
[VMIN
] = target
->c_cc
[TARGET_VMIN
];
5821 host
->c_cc
[VSWTC
] = target
->c_cc
[TARGET_VSWTC
];
5822 host
->c_cc
[VSTART
] = target
->c_cc
[TARGET_VSTART
];
5823 host
->c_cc
[VSTOP
] = target
->c_cc
[TARGET_VSTOP
];
5824 host
->c_cc
[VSUSP
] = target
->c_cc
[TARGET_VSUSP
];
5825 host
->c_cc
[VEOL
] = target
->c_cc
[TARGET_VEOL
];
5826 host
->c_cc
[VREPRINT
] = target
->c_cc
[TARGET_VREPRINT
];
5827 host
->c_cc
[VDISCARD
] = target
->c_cc
[TARGET_VDISCARD
];
5828 host
->c_cc
[VWERASE
] = target
->c_cc
[TARGET_VWERASE
];
5829 host
->c_cc
[VLNEXT
] = target
->c_cc
[TARGET_VLNEXT
];
5830 host
->c_cc
[VEOL2
] = target
->c_cc
[TARGET_VEOL2
];
5833 static void host_to_target_termios (void *dst
, const void *src
)
5835 struct target_termios
*target
= dst
;
5836 const struct host_termios
*host
= src
;
5839 tswap32(host_to_target_bitmask(host
->c_iflag
, iflag_tbl
));
5841 tswap32(host_to_target_bitmask(host
->c_oflag
, oflag_tbl
));
5843 tswap32(host_to_target_bitmask(host
->c_cflag
, cflag_tbl
));
5845 tswap32(host_to_target_bitmask(host
->c_lflag
, lflag_tbl
));
5846 target
->c_line
= host
->c_line
;
5848 memset(target
->c_cc
, 0, sizeof(target
->c_cc
));
5849 target
->c_cc
[TARGET_VINTR
] = host
->c_cc
[VINTR
];
5850 target
->c_cc
[TARGET_VQUIT
] = host
->c_cc
[VQUIT
];
5851 target
->c_cc
[TARGET_VERASE
] = host
->c_cc
[VERASE
];
5852 target
->c_cc
[TARGET_VKILL
] = host
->c_cc
[VKILL
];
5853 target
->c_cc
[TARGET_VEOF
] = host
->c_cc
[VEOF
];
5854 target
->c_cc
[TARGET_VTIME
] = host
->c_cc
[VTIME
];
5855 target
->c_cc
[TARGET_VMIN
] = host
->c_cc
[VMIN
];
5856 target
->c_cc
[TARGET_VSWTC
] = host
->c_cc
[VSWTC
];
5857 target
->c_cc
[TARGET_VSTART
] = host
->c_cc
[VSTART
];
5858 target
->c_cc
[TARGET_VSTOP
] = host
->c_cc
[VSTOP
];
5859 target
->c_cc
[TARGET_VSUSP
] = host
->c_cc
[VSUSP
];
5860 target
->c_cc
[TARGET_VEOL
] = host
->c_cc
[VEOL
];
5861 target
->c_cc
[TARGET_VREPRINT
] = host
->c_cc
[VREPRINT
];
5862 target
->c_cc
[TARGET_VDISCARD
] = host
->c_cc
[VDISCARD
];
5863 target
->c_cc
[TARGET_VWERASE
] = host
->c_cc
[VWERASE
];
5864 target
->c_cc
[TARGET_VLNEXT
] = host
->c_cc
[VLNEXT
];
5865 target
->c_cc
[TARGET_VEOL2
] = host
->c_cc
[VEOL2
];
5868 static const StructEntry struct_termios_def
= {
5869 .convert
= { host_to_target_termios
, target_to_host_termios
},
5870 .size
= { sizeof(struct target_termios
), sizeof(struct host_termios
) },
5871 .align
= { __alignof__(struct target_termios
), __alignof__(struct host_termios
) },
5874 static bitmask_transtbl mmap_flags_tbl
[] = {
5875 { TARGET_MAP_SHARED
, TARGET_MAP_SHARED
, MAP_SHARED
, MAP_SHARED
},
5876 { TARGET_MAP_PRIVATE
, TARGET_MAP_PRIVATE
, MAP_PRIVATE
, MAP_PRIVATE
},
5877 { TARGET_MAP_FIXED
, TARGET_MAP_FIXED
, MAP_FIXED
, MAP_FIXED
},
5878 { TARGET_MAP_ANONYMOUS
, TARGET_MAP_ANONYMOUS
, MAP_ANONYMOUS
, MAP_ANONYMOUS
},
5879 { TARGET_MAP_GROWSDOWN
, TARGET_MAP_GROWSDOWN
, MAP_GROWSDOWN
, MAP_GROWSDOWN
},
5880 { TARGET_MAP_DENYWRITE
, TARGET_MAP_DENYWRITE
, MAP_DENYWRITE
, MAP_DENYWRITE
},
5881 { TARGET_MAP_EXECUTABLE
, TARGET_MAP_EXECUTABLE
, MAP_EXECUTABLE
, MAP_EXECUTABLE
},
5882 { TARGET_MAP_LOCKED
, TARGET_MAP_LOCKED
, MAP_LOCKED
, MAP_LOCKED
},
5883 { TARGET_MAP_NORESERVE
, TARGET_MAP_NORESERVE
, MAP_NORESERVE
,
5888 #if defined(TARGET_I386)
5890 /* NOTE: there is really one LDT for all the threads */
5891 static uint8_t *ldt_table
;
5893 static abi_long
read_ldt(abi_ulong ptr
, unsigned long bytecount
)
5900 size
= TARGET_LDT_ENTRIES
* TARGET_LDT_ENTRY_SIZE
;
5901 if (size
> bytecount
)
5903 p
= lock_user(VERIFY_WRITE
, ptr
, size
, 0);
5905 return -TARGET_EFAULT
;
5906 /* ??? Should this by byteswapped? */
5907 memcpy(p
, ldt_table
, size
);
5908 unlock_user(p
, ptr
, size
);
5912 /* XXX: add locking support */
5913 static abi_long
write_ldt(CPUX86State
*env
,
5914 abi_ulong ptr
, unsigned long bytecount
, int oldmode
)
5916 struct target_modify_ldt_ldt_s ldt_info
;
5917 struct target_modify_ldt_ldt_s
*target_ldt_info
;
5918 int seg_32bit
, contents
, read_exec_only
, limit_in_pages
;
5919 int seg_not_present
, useable
, lm
;
5920 uint32_t *lp
, entry_1
, entry_2
;
5922 if (bytecount
!= sizeof(ldt_info
))
5923 return -TARGET_EINVAL
;
5924 if (!lock_user_struct(VERIFY_READ
, target_ldt_info
, ptr
, 1))
5925 return -TARGET_EFAULT
;
5926 ldt_info
.entry_number
= tswap32(target_ldt_info
->entry_number
);
5927 ldt_info
.base_addr
= tswapal(target_ldt_info
->base_addr
);
5928 ldt_info
.limit
= tswap32(target_ldt_info
->limit
);
5929 ldt_info
.flags
= tswap32(target_ldt_info
->flags
);
5930 unlock_user_struct(target_ldt_info
, ptr
, 0);
5932 if (ldt_info
.entry_number
>= TARGET_LDT_ENTRIES
)
5933 return -TARGET_EINVAL
;
5934 seg_32bit
= ldt_info
.flags
& 1;
5935 contents
= (ldt_info
.flags
>> 1) & 3;
5936 read_exec_only
= (ldt_info
.flags
>> 3) & 1;
5937 limit_in_pages
= (ldt_info
.flags
>> 4) & 1;
5938 seg_not_present
= (ldt_info
.flags
>> 5) & 1;
5939 useable
= (ldt_info
.flags
>> 6) & 1;
5943 lm
= (ldt_info
.flags
>> 7) & 1;
5945 if (contents
== 3) {
5947 return -TARGET_EINVAL
;
5948 if (seg_not_present
== 0)
5949 return -TARGET_EINVAL
;
5951 /* allocate the LDT */
5953 env
->ldt
.base
= target_mmap(0,
5954 TARGET_LDT_ENTRIES
* TARGET_LDT_ENTRY_SIZE
,
5955 PROT_READ
|PROT_WRITE
,
5956 MAP_ANONYMOUS
|MAP_PRIVATE
, -1, 0);
5957 if (env
->ldt
.base
== -1)
5958 return -TARGET_ENOMEM
;
5959 memset(g2h(env
->ldt
.base
), 0,
5960 TARGET_LDT_ENTRIES
* TARGET_LDT_ENTRY_SIZE
);
5961 env
->ldt
.limit
= 0xffff;
5962 ldt_table
= g2h(env
->ldt
.base
);
5965 /* NOTE: same code as Linux kernel */
5966 /* Allow LDTs to be cleared by the user. */
5967 if (ldt_info
.base_addr
== 0 && ldt_info
.limit
== 0) {
5970 read_exec_only
== 1 &&
5972 limit_in_pages
== 0 &&
5973 seg_not_present
== 1 &&
5981 entry_1
= ((ldt_info
.base_addr
& 0x0000ffff) << 16) |
5982 (ldt_info
.limit
& 0x0ffff);
5983 entry_2
= (ldt_info
.base_addr
& 0xff000000) |
5984 ((ldt_info
.base_addr
& 0x00ff0000) >> 16) |
5985 (ldt_info
.limit
& 0xf0000) |
5986 ((read_exec_only
^ 1) << 9) |
5988 ((seg_not_present
^ 1) << 15) |
5990 (limit_in_pages
<< 23) |
5994 entry_2
|= (useable
<< 20);
5996 /* Install the new entry ... */
5998 lp
= (uint32_t *)(ldt_table
+ (ldt_info
.entry_number
<< 3));
5999 lp
[0] = tswap32(entry_1
);
6000 lp
[1] = tswap32(entry_2
);
6004 /* specific and weird i386 syscalls */
6005 static abi_long
do_modify_ldt(CPUX86State
*env
, int func
, abi_ulong ptr
,
6006 unsigned long bytecount
)
6012 ret
= read_ldt(ptr
, bytecount
);
6015 ret
= write_ldt(env
, ptr
, bytecount
, 1);
6018 ret
= write_ldt(env
, ptr
, bytecount
, 0);
6021 ret
= -TARGET_ENOSYS
;
6027 #if defined(TARGET_I386) && defined(TARGET_ABI32)
6028 abi_long
do_set_thread_area(CPUX86State
*env
, abi_ulong ptr
)
6030 uint64_t *gdt_table
= g2h(env
->gdt
.base
);
6031 struct target_modify_ldt_ldt_s ldt_info
;
6032 struct target_modify_ldt_ldt_s
*target_ldt_info
;
6033 int seg_32bit
, contents
, read_exec_only
, limit_in_pages
;
6034 int seg_not_present
, useable
, lm
;
6035 uint32_t *lp
, entry_1
, entry_2
;
6038 lock_user_struct(VERIFY_WRITE
, target_ldt_info
, ptr
, 1);
6039 if (!target_ldt_info
)
6040 return -TARGET_EFAULT
;
6041 ldt_info
.entry_number
= tswap32(target_ldt_info
->entry_number
);
6042 ldt_info
.base_addr
= tswapal(target_ldt_info
->base_addr
);
6043 ldt_info
.limit
= tswap32(target_ldt_info
->limit
);
6044 ldt_info
.flags
= tswap32(target_ldt_info
->flags
);
6045 if (ldt_info
.entry_number
== -1) {
6046 for (i
=TARGET_GDT_ENTRY_TLS_MIN
; i
<=TARGET_GDT_ENTRY_TLS_MAX
; i
++) {
6047 if (gdt_table
[i
] == 0) {
6048 ldt_info
.entry_number
= i
;
6049 target_ldt_info
->entry_number
= tswap32(i
);
6054 unlock_user_struct(target_ldt_info
, ptr
, 1);
6056 if (ldt_info
.entry_number
< TARGET_GDT_ENTRY_TLS_MIN
||
6057 ldt_info
.entry_number
> TARGET_GDT_ENTRY_TLS_MAX
)
6058 return -TARGET_EINVAL
;
6059 seg_32bit
= ldt_info
.flags
& 1;
6060 contents
= (ldt_info
.flags
>> 1) & 3;
6061 read_exec_only
= (ldt_info
.flags
>> 3) & 1;
6062 limit_in_pages
= (ldt_info
.flags
>> 4) & 1;
6063 seg_not_present
= (ldt_info
.flags
>> 5) & 1;
6064 useable
= (ldt_info
.flags
>> 6) & 1;
6068 lm
= (ldt_info
.flags
>> 7) & 1;
6071 if (contents
== 3) {
6072 if (seg_not_present
== 0)
6073 return -TARGET_EINVAL
;
6076 /* NOTE: same code as Linux kernel */
6077 /* Allow LDTs to be cleared by the user. */
6078 if (ldt_info
.base_addr
== 0 && ldt_info
.limit
== 0) {
6079 if ((contents
== 0 &&
6080 read_exec_only
== 1 &&
6082 limit_in_pages
== 0 &&
6083 seg_not_present
== 1 &&
6091 entry_1
= ((ldt_info
.base_addr
& 0x0000ffff) << 16) |
6092 (ldt_info
.limit
& 0x0ffff);
6093 entry_2
= (ldt_info
.base_addr
& 0xff000000) |
6094 ((ldt_info
.base_addr
& 0x00ff0000) >> 16) |
6095 (ldt_info
.limit
& 0xf0000) |
6096 ((read_exec_only
^ 1) << 9) |
6098 ((seg_not_present
^ 1) << 15) |
6100 (limit_in_pages
<< 23) |
6105 /* Install the new entry ... */
6107 lp
= (uint32_t *)(gdt_table
+ ldt_info
.entry_number
);
6108 lp
[0] = tswap32(entry_1
);
6109 lp
[1] = tswap32(entry_2
);
6113 static abi_long
do_get_thread_area(CPUX86State
*env
, abi_ulong ptr
)
6115 struct target_modify_ldt_ldt_s
*target_ldt_info
;
6116 uint64_t *gdt_table
= g2h(env
->gdt
.base
);
6117 uint32_t base_addr
, limit
, flags
;
6118 int seg_32bit
, contents
, read_exec_only
, limit_in_pages
, idx
;
6119 int seg_not_present
, useable
, lm
;
6120 uint32_t *lp
, entry_1
, entry_2
;
6122 lock_user_struct(VERIFY_WRITE
, target_ldt_info
, ptr
, 1);
6123 if (!target_ldt_info
)
6124 return -TARGET_EFAULT
;
6125 idx
= tswap32(target_ldt_info
->entry_number
);
6126 if (idx
< TARGET_GDT_ENTRY_TLS_MIN
||
6127 idx
> TARGET_GDT_ENTRY_TLS_MAX
) {
6128 unlock_user_struct(target_ldt_info
, ptr
, 1);
6129 return -TARGET_EINVAL
;
6131 lp
= (uint32_t *)(gdt_table
+ idx
);
6132 entry_1
= tswap32(lp
[0]);
6133 entry_2
= tswap32(lp
[1]);
6135 read_exec_only
= ((entry_2
>> 9) & 1) ^ 1;
6136 contents
= (entry_2
>> 10) & 3;
6137 seg_not_present
= ((entry_2
>> 15) & 1) ^ 1;
6138 seg_32bit
= (entry_2
>> 22) & 1;
6139 limit_in_pages
= (entry_2
>> 23) & 1;
6140 useable
= (entry_2
>> 20) & 1;
6144 lm
= (entry_2
>> 21) & 1;
6146 flags
= (seg_32bit
<< 0) | (contents
<< 1) |
6147 (read_exec_only
<< 3) | (limit_in_pages
<< 4) |
6148 (seg_not_present
<< 5) | (useable
<< 6) | (lm
<< 7);
6149 limit
= (entry_1
& 0xffff) | (entry_2
& 0xf0000);
6150 base_addr
= (entry_1
>> 16) |
6151 (entry_2
& 0xff000000) |
6152 ((entry_2
& 0xff) << 16);
6153 target_ldt_info
->base_addr
= tswapal(base_addr
);
6154 target_ldt_info
->limit
= tswap32(limit
);
6155 target_ldt_info
->flags
= tswap32(flags
);
6156 unlock_user_struct(target_ldt_info
, ptr
, 1);
6159 #endif /* TARGET_I386 && TARGET_ABI32 */
6161 #ifndef TARGET_ABI32
6162 abi_long
do_arch_prctl(CPUX86State
*env
, int code
, abi_ulong addr
)
6169 case TARGET_ARCH_SET_GS
:
6170 case TARGET_ARCH_SET_FS
:
6171 if (code
== TARGET_ARCH_SET_GS
)
6175 cpu_x86_load_seg(env
, idx
, 0);
6176 env
->segs
[idx
].base
= addr
;
6178 case TARGET_ARCH_GET_GS
:
6179 case TARGET_ARCH_GET_FS
:
6180 if (code
== TARGET_ARCH_GET_GS
)
6184 val
= env
->segs
[idx
].base
;
6185 if (put_user(val
, addr
, abi_ulong
))
6186 ret
= -TARGET_EFAULT
;
6189 ret
= -TARGET_EINVAL
;
6196 #endif /* defined(TARGET_I386) */
6198 #define NEW_STACK_SIZE 0x40000
6201 static pthread_mutex_t clone_lock
= PTHREAD_MUTEX_INITIALIZER
;
6204 pthread_mutex_t mutex
;
6205 pthread_cond_t cond
;
6208 abi_ulong child_tidptr
;
6209 abi_ulong parent_tidptr
;
6213 static void *clone_func(void *arg
)
6215 new_thread_info
*info
= arg
;
6220 rcu_register_thread();
6222 cpu
= ENV_GET_CPU(env
);
6224 ts
= (TaskState
*)cpu
->opaque
;
6225 info
->tid
= gettid();
6227 if (info
->child_tidptr
)
6228 put_user_u32(info
->tid
, info
->child_tidptr
);
6229 if (info
->parent_tidptr
)
6230 put_user_u32(info
->tid
, info
->parent_tidptr
);
6231 /* Enable signals. */
6232 sigprocmask(SIG_SETMASK
, &info
->sigmask
, NULL
);
6233 /* Signal to the parent that we're ready. */
6234 pthread_mutex_lock(&info
->mutex
);
6235 pthread_cond_broadcast(&info
->cond
);
6236 pthread_mutex_unlock(&info
->mutex
);
6237 /* Wait until the parent has finshed initializing the tls state. */
6238 pthread_mutex_lock(&clone_lock
);
6239 pthread_mutex_unlock(&clone_lock
);
6245 /* do_fork() Must return host values and target errnos (unlike most
6246 do_*() functions). */
6247 static int do_fork(CPUArchState
*env
, unsigned int flags
, abi_ulong newsp
,
6248 abi_ulong parent_tidptr
, target_ulong newtls
,
6249 abi_ulong child_tidptr
)
6251 CPUState
*cpu
= ENV_GET_CPU(env
);
6255 CPUArchState
*new_env
;
6258 flags
&= ~CLONE_IGNORED_FLAGS
;
6260 /* Emulate vfork() with fork() */
6261 if (flags
& CLONE_VFORK
)
6262 flags
&= ~(CLONE_VFORK
| CLONE_VM
);
6264 if (flags
& CLONE_VM
) {
6265 TaskState
*parent_ts
= (TaskState
*)cpu
->opaque
;
6266 new_thread_info info
;
6267 pthread_attr_t attr
;
6269 if (((flags
& CLONE_THREAD_FLAGS
) != CLONE_THREAD_FLAGS
) ||
6270 (flags
& CLONE_INVALID_THREAD_FLAGS
)) {
6271 return -TARGET_EINVAL
;
6274 ts
= g_new0(TaskState
, 1);
6275 init_task_state(ts
);
6276 /* we create a new CPU instance. */
6277 new_env
= cpu_copy(env
);
6278 /* Init regs that differ from the parent. */
6279 cpu_clone_regs(new_env
, newsp
);
6280 new_cpu
= ENV_GET_CPU(new_env
);
6281 new_cpu
->opaque
= ts
;
6282 ts
->bprm
= parent_ts
->bprm
;
6283 ts
->info
= parent_ts
->info
;
6284 ts
->signal_mask
= parent_ts
->signal_mask
;
6286 if (flags
& CLONE_CHILD_CLEARTID
) {
6287 ts
->child_tidptr
= child_tidptr
;
6290 if (flags
& CLONE_SETTLS
) {
6291 cpu_set_tls (new_env
, newtls
);
6294 /* Grab a mutex so that thread setup appears atomic. */
6295 pthread_mutex_lock(&clone_lock
);
6297 memset(&info
, 0, sizeof(info
));
6298 pthread_mutex_init(&info
.mutex
, NULL
);
6299 pthread_mutex_lock(&info
.mutex
);
6300 pthread_cond_init(&info
.cond
, NULL
);
6302 if (flags
& CLONE_CHILD_SETTID
) {
6303 info
.child_tidptr
= child_tidptr
;
6305 if (flags
& CLONE_PARENT_SETTID
) {
6306 info
.parent_tidptr
= parent_tidptr
;
6309 ret
= pthread_attr_init(&attr
);
6310 ret
= pthread_attr_setstacksize(&attr
, NEW_STACK_SIZE
);
6311 ret
= pthread_attr_setdetachstate(&attr
, PTHREAD_CREATE_DETACHED
);
6312 /* It is not safe to deliver signals until the child has finished
6313 initializing, so temporarily block all signals. */
6314 sigfillset(&sigmask
);
6315 sigprocmask(SIG_BLOCK
, &sigmask
, &info
.sigmask
);
6317 /* If this is our first additional thread, we need to ensure we
6318 * generate code for parallel execution and flush old translations.
6320 if (!parallel_cpus
) {
6321 parallel_cpus
= true;
6325 ret
= pthread_create(&info
.thread
, &attr
, clone_func
, &info
);
6326 /* TODO: Free new CPU state if thread creation failed. */
6328 sigprocmask(SIG_SETMASK
, &info
.sigmask
, NULL
);
6329 pthread_attr_destroy(&attr
);
6331 /* Wait for the child to initialize. */
6332 pthread_cond_wait(&info
.cond
, &info
.mutex
);
6337 pthread_mutex_unlock(&info
.mutex
);
6338 pthread_cond_destroy(&info
.cond
);
6339 pthread_mutex_destroy(&info
.mutex
);
6340 pthread_mutex_unlock(&clone_lock
);
6342 /* if no CLONE_VM, we consider it is a fork */
6343 if (flags
& CLONE_INVALID_FORK_FLAGS
) {
6344 return -TARGET_EINVAL
;
6347 /* We can't support custom termination signals */
6348 if ((flags
& CSIGNAL
) != TARGET_SIGCHLD
) {
6349 return -TARGET_EINVAL
;
6352 if (block_signals()) {
6353 return -TARGET_ERESTARTSYS
;
6359 /* Child Process. */
6360 cpu_clone_regs(env
, newsp
);
6362 /* There is a race condition here. The parent process could
6363 theoretically read the TID in the child process before the child
6364 tid is set. This would require using either ptrace
6365 (not implemented) or having *_tidptr to point at a shared memory
6366 mapping. We can't repeat the spinlock hack used above because
6367 the child process gets its own copy of the lock. */
6368 if (flags
& CLONE_CHILD_SETTID
)
6369 put_user_u32(gettid(), child_tidptr
);
6370 if (flags
& CLONE_PARENT_SETTID
)
6371 put_user_u32(gettid(), parent_tidptr
);
6372 ts
= (TaskState
*)cpu
->opaque
;
6373 if (flags
& CLONE_SETTLS
)
6374 cpu_set_tls (env
, newtls
);
6375 if (flags
& CLONE_CHILD_CLEARTID
)
6376 ts
->child_tidptr
= child_tidptr
;
6384 /* warning : doesn't handle linux specific flags... */
6385 static int target_to_host_fcntl_cmd(int cmd
)
6388 case TARGET_F_DUPFD
:
6389 case TARGET_F_GETFD
:
6390 case TARGET_F_SETFD
:
6391 case TARGET_F_GETFL
:
6392 case TARGET_F_SETFL
:
6394 case TARGET_F_GETLK
:
6396 case TARGET_F_SETLK
:
6398 case TARGET_F_SETLKW
:
6400 case TARGET_F_GETOWN
:
6402 case TARGET_F_SETOWN
:
6404 case TARGET_F_GETSIG
:
6406 case TARGET_F_SETSIG
:
6408 #if TARGET_ABI_BITS == 32
6409 case TARGET_F_GETLK64
:
6411 case TARGET_F_SETLK64
:
6413 case TARGET_F_SETLKW64
:
6416 case TARGET_F_SETLEASE
:
6418 case TARGET_F_GETLEASE
:
6420 #ifdef F_DUPFD_CLOEXEC
6421 case TARGET_F_DUPFD_CLOEXEC
:
6422 return F_DUPFD_CLOEXEC
;
6424 case TARGET_F_NOTIFY
:
6427 case TARGET_F_GETOWN_EX
:
6431 case TARGET_F_SETOWN_EX
:
6435 case TARGET_F_SETPIPE_SZ
:
6436 return F_SETPIPE_SZ
;
6437 case TARGET_F_GETPIPE_SZ
:
6438 return F_GETPIPE_SZ
;
6441 return -TARGET_EINVAL
;
6443 return -TARGET_EINVAL
;
6446 #define TRANSTBL_CONVERT(a) { -1, TARGET_##a, -1, a }
6447 static const bitmask_transtbl flock_tbl
[] = {
6448 TRANSTBL_CONVERT(F_RDLCK
),
6449 TRANSTBL_CONVERT(F_WRLCK
),
6450 TRANSTBL_CONVERT(F_UNLCK
),
6451 TRANSTBL_CONVERT(F_EXLCK
),
6452 TRANSTBL_CONVERT(F_SHLCK
),
6456 static inline abi_long
copy_from_user_flock(struct flock64
*fl
,
6457 abi_ulong target_flock_addr
)
6459 struct target_flock
*target_fl
;
6462 if (!lock_user_struct(VERIFY_READ
, target_fl
, target_flock_addr
, 1)) {
6463 return -TARGET_EFAULT
;
6466 __get_user(l_type
, &target_fl
->l_type
);
6467 fl
->l_type
= target_to_host_bitmask(l_type
, flock_tbl
);
6468 __get_user(fl
->l_whence
, &target_fl
->l_whence
);
6469 __get_user(fl
->l_start
, &target_fl
->l_start
);
6470 __get_user(fl
->l_len
, &target_fl
->l_len
);
6471 __get_user(fl
->l_pid
, &target_fl
->l_pid
);
6472 unlock_user_struct(target_fl
, target_flock_addr
, 0);
6476 static inline abi_long
copy_to_user_flock(abi_ulong target_flock_addr
,
6477 const struct flock64
*fl
)
6479 struct target_flock
*target_fl
;
6482 if (!lock_user_struct(VERIFY_WRITE
, target_fl
, target_flock_addr
, 0)) {
6483 return -TARGET_EFAULT
;
6486 l_type
= host_to_target_bitmask(fl
->l_type
, flock_tbl
);
6487 __put_user(l_type
, &target_fl
->l_type
);
6488 __put_user(fl
->l_whence
, &target_fl
->l_whence
);
6489 __put_user(fl
->l_start
, &target_fl
->l_start
);
6490 __put_user(fl
->l_len
, &target_fl
->l_len
);
6491 __put_user(fl
->l_pid
, &target_fl
->l_pid
);
6492 unlock_user_struct(target_fl
, target_flock_addr
, 1);
6496 typedef abi_long
from_flock64_fn(struct flock64
*fl
, abi_ulong target_addr
);
6497 typedef abi_long
to_flock64_fn(abi_ulong target_addr
, const struct flock64
*fl
);
6499 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32
6500 static inline abi_long
copy_from_user_eabi_flock64(struct flock64
*fl
,
6501 abi_ulong target_flock_addr
)
6503 struct target_eabi_flock64
*target_fl
;
6506 if (!lock_user_struct(VERIFY_READ
, target_fl
, target_flock_addr
, 1)) {
6507 return -TARGET_EFAULT
;
6510 __get_user(l_type
, &target_fl
->l_type
);
6511 fl
->l_type
= target_to_host_bitmask(l_type
, flock_tbl
);
6512 __get_user(fl
->l_whence
, &target_fl
->l_whence
);
6513 __get_user(fl
->l_start
, &target_fl
->l_start
);
6514 __get_user(fl
->l_len
, &target_fl
->l_len
);
6515 __get_user(fl
->l_pid
, &target_fl
->l_pid
);
6516 unlock_user_struct(target_fl
, target_flock_addr
, 0);
6520 static inline abi_long
copy_to_user_eabi_flock64(abi_ulong target_flock_addr
,
6521 const struct flock64
*fl
)
6523 struct target_eabi_flock64
*target_fl
;
6526 if (!lock_user_struct(VERIFY_WRITE
, target_fl
, target_flock_addr
, 0)) {
6527 return -TARGET_EFAULT
;
6530 l_type
= host_to_target_bitmask(fl
->l_type
, flock_tbl
);
6531 __put_user(l_type
, &target_fl
->l_type
);
6532 __put_user(fl
->l_whence
, &target_fl
->l_whence
);
6533 __put_user(fl
->l_start
, &target_fl
->l_start
);
6534 __put_user(fl
->l_len
, &target_fl
->l_len
);
6535 __put_user(fl
->l_pid
, &target_fl
->l_pid
);
6536 unlock_user_struct(target_fl
, target_flock_addr
, 1);
6541 static inline abi_long
copy_from_user_flock64(struct flock64
*fl
,
6542 abi_ulong target_flock_addr
)
6544 struct target_flock64
*target_fl
;
6547 if (!lock_user_struct(VERIFY_READ
, target_fl
, target_flock_addr
, 1)) {
6548 return -TARGET_EFAULT
;
6551 __get_user(l_type
, &target_fl
->l_type
);
6552 fl
->l_type
= target_to_host_bitmask(l_type
, flock_tbl
);
6553 __get_user(fl
->l_whence
, &target_fl
->l_whence
);
6554 __get_user(fl
->l_start
, &target_fl
->l_start
);
6555 __get_user(fl
->l_len
, &target_fl
->l_len
);
6556 __get_user(fl
->l_pid
, &target_fl
->l_pid
);
6557 unlock_user_struct(target_fl
, target_flock_addr
, 0);
6561 static inline abi_long
copy_to_user_flock64(abi_ulong target_flock_addr
,
6562 const struct flock64
*fl
)
6564 struct target_flock64
*target_fl
;
6567 if (!lock_user_struct(VERIFY_WRITE
, target_fl
, target_flock_addr
, 0)) {
6568 return -TARGET_EFAULT
;
6571 l_type
= host_to_target_bitmask(fl
->l_type
, flock_tbl
);
6572 __put_user(l_type
, &target_fl
->l_type
);
6573 __put_user(fl
->l_whence
, &target_fl
->l_whence
);
6574 __put_user(fl
->l_start
, &target_fl
->l_start
);
6575 __put_user(fl
->l_len
, &target_fl
->l_len
);
6576 __put_user(fl
->l_pid
, &target_fl
->l_pid
);
6577 unlock_user_struct(target_fl
, target_flock_addr
, 1);
6581 static abi_long
do_fcntl(int fd
, int cmd
, abi_ulong arg
)
6583 struct flock64 fl64
;
6585 struct f_owner_ex fox
;
6586 struct target_f_owner_ex
*target_fox
;
6589 int host_cmd
= target_to_host_fcntl_cmd(cmd
);
6591 if (host_cmd
== -TARGET_EINVAL
)
6595 case TARGET_F_GETLK
:
6596 ret
= copy_from_user_flock(&fl64
, arg
);
6600 ret
= get_errno(safe_fcntl(fd
, host_cmd
, &fl64
));
6602 ret
= copy_to_user_flock(arg
, &fl64
);
6606 case TARGET_F_SETLK
:
6607 case TARGET_F_SETLKW
:
6608 ret
= copy_from_user_flock(&fl64
, arg
);
6612 ret
= get_errno(safe_fcntl(fd
, host_cmd
, &fl64
));
6615 case TARGET_F_GETLK64
:
6616 ret
= copy_from_user_flock64(&fl64
, arg
);
6620 ret
= get_errno(safe_fcntl(fd
, host_cmd
, &fl64
));
6622 ret
= copy_to_user_flock64(arg
, &fl64
);
6625 case TARGET_F_SETLK64
:
6626 case TARGET_F_SETLKW64
:
6627 ret
= copy_from_user_flock64(&fl64
, arg
);
6631 ret
= get_errno(safe_fcntl(fd
, host_cmd
, &fl64
));
6634 case TARGET_F_GETFL
:
6635 ret
= get_errno(safe_fcntl(fd
, host_cmd
, arg
));
6637 ret
= host_to_target_bitmask(ret
, fcntl_flags_tbl
);
6641 case TARGET_F_SETFL
:
6642 ret
= get_errno(safe_fcntl(fd
, host_cmd
,
6643 target_to_host_bitmask(arg
,
6648 case TARGET_F_GETOWN_EX
:
6649 ret
= get_errno(safe_fcntl(fd
, host_cmd
, &fox
));
6651 if (!lock_user_struct(VERIFY_WRITE
, target_fox
, arg
, 0))
6652 return -TARGET_EFAULT
;
6653 target_fox
->type
= tswap32(fox
.type
);
6654 target_fox
->pid
= tswap32(fox
.pid
);
6655 unlock_user_struct(target_fox
, arg
, 1);
6661 case TARGET_F_SETOWN_EX
:
6662 if (!lock_user_struct(VERIFY_READ
, target_fox
, arg
, 1))
6663 return -TARGET_EFAULT
;
6664 fox
.type
= tswap32(target_fox
->type
);
6665 fox
.pid
= tswap32(target_fox
->pid
);
6666 unlock_user_struct(target_fox
, arg
, 0);
6667 ret
= get_errno(safe_fcntl(fd
, host_cmd
, &fox
));
6671 case TARGET_F_SETOWN
:
6672 case TARGET_F_GETOWN
:
6673 case TARGET_F_SETSIG
:
6674 case TARGET_F_GETSIG
:
6675 case TARGET_F_SETLEASE
:
6676 case TARGET_F_GETLEASE
:
6677 case TARGET_F_SETPIPE_SZ
:
6678 case TARGET_F_GETPIPE_SZ
:
6679 ret
= get_errno(safe_fcntl(fd
, host_cmd
, arg
));
6683 ret
= get_errno(safe_fcntl(fd
, cmd
, arg
));
6691 static inline int high2lowuid(int uid
)
6699 static inline int high2lowgid(int gid
)
6707 static inline int low2highuid(int uid
)
6709 if ((int16_t)uid
== -1)
6715 static inline int low2highgid(int gid
)
6717 if ((int16_t)gid
== -1)
6722 static inline int tswapid(int id
)
6727 #define put_user_id(x, gaddr) put_user_u16(x, gaddr)
6729 #else /* !USE_UID16 */
6730 static inline int high2lowuid(int uid
)
6734 static inline int high2lowgid(int gid
)
6738 static inline int low2highuid(int uid
)
6742 static inline int low2highgid(int gid
)
6746 static inline int tswapid(int id
)
6751 #define put_user_id(x, gaddr) put_user_u32(x, gaddr)
6753 #endif /* USE_UID16 */
6755 /* We must do direct syscalls for setting UID/GID, because we want to
6756 * implement the Linux system call semantics of "change only for this thread",
6757 * not the libc/POSIX semantics of "change for all threads in process".
6758 * (See http://ewontfix.com/17/ for more details.)
6759 * We use the 32-bit version of the syscalls if present; if it is not
6760 * then either the host architecture supports 32-bit UIDs natively with
6761 * the standard syscall, or the 16-bit UID is the best we can do.
6763 #ifdef __NR_setuid32
6764 #define __NR_sys_setuid __NR_setuid32
6766 #define __NR_sys_setuid __NR_setuid
6768 #ifdef __NR_setgid32
6769 #define __NR_sys_setgid __NR_setgid32
6771 #define __NR_sys_setgid __NR_setgid
6773 #ifdef __NR_setresuid32
6774 #define __NR_sys_setresuid __NR_setresuid32
6776 #define __NR_sys_setresuid __NR_setresuid
6778 #ifdef __NR_setresgid32
6779 #define __NR_sys_setresgid __NR_setresgid32
6781 #define __NR_sys_setresgid __NR_setresgid
6784 _syscall1(int, sys_setuid
, uid_t
, uid
)
6785 _syscall1(int, sys_setgid
, gid_t
, gid
)
6786 _syscall3(int, sys_setresuid
, uid_t
, ruid
, uid_t
, euid
, uid_t
, suid
)
6787 _syscall3(int, sys_setresgid
, gid_t
, rgid
, gid_t
, egid
, gid_t
, sgid
)
6789 void syscall_init(void)
6792 const argtype
*arg_type
;
6796 thunk_init(STRUCT_MAX
);
6798 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def);
6799 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def);
6800 #include "syscall_types.h"
6802 #undef STRUCT_SPECIAL
6804 /* Build target_to_host_errno_table[] table from
6805 * host_to_target_errno_table[]. */
6806 for (i
= 0; i
< ERRNO_TABLE_SIZE
; i
++) {
6807 target_to_host_errno_table
[host_to_target_errno_table
[i
]] = i
;
6810 /* we patch the ioctl size if necessary. We rely on the fact that
6811 no ioctl has all the bits at '1' in the size field */
6813 while (ie
->target_cmd
!= 0) {
6814 if (((ie
->target_cmd
>> TARGET_IOC_SIZESHIFT
) & TARGET_IOC_SIZEMASK
) ==
6815 TARGET_IOC_SIZEMASK
) {
6816 arg_type
= ie
->arg_type
;
6817 if (arg_type
[0] != TYPE_PTR
) {
6818 fprintf(stderr
, "cannot patch size for ioctl 0x%x\n",
6823 size
= thunk_type_size(arg_type
, 0);
6824 ie
->target_cmd
= (ie
->target_cmd
&
6825 ~(TARGET_IOC_SIZEMASK
<< TARGET_IOC_SIZESHIFT
)) |
6826 (size
<< TARGET_IOC_SIZESHIFT
);
6829 /* automatic consistency check if same arch */
6830 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \
6831 (defined(__x86_64__) && defined(TARGET_X86_64))
6832 if (unlikely(ie
->target_cmd
!= ie
->host_cmd
)) {
6833 fprintf(stderr
, "ERROR: ioctl(%s): target=0x%x host=0x%x\n",
6834 ie
->name
, ie
->target_cmd
, ie
->host_cmd
);
6841 #if TARGET_ABI_BITS == 32
6842 static inline uint64_t target_offset64(uint32_t word0
, uint32_t word1
)
6844 #ifdef TARGET_WORDS_BIGENDIAN
6845 return ((uint64_t)word0
<< 32) | word1
;
6847 return ((uint64_t)word1
<< 32) | word0
;
6850 #else /* TARGET_ABI_BITS == 32 */
6851 static inline uint64_t target_offset64(uint64_t word0
, uint64_t word1
)
6855 #endif /* TARGET_ABI_BITS != 32 */
6857 #ifdef TARGET_NR_truncate64
6858 static inline abi_long
target_truncate64(void *cpu_env
, const char *arg1
,
6863 if (regpairs_aligned(cpu_env
)) {
6867 return get_errno(truncate64(arg1
, target_offset64(arg2
, arg3
)));
6871 #ifdef TARGET_NR_ftruncate64
6872 static inline abi_long
target_ftruncate64(void *cpu_env
, abi_long arg1
,
6877 if (regpairs_aligned(cpu_env
)) {
6881 return get_errno(ftruncate64(arg1
, target_offset64(arg2
, arg3
)));
6885 static inline abi_long
target_to_host_timespec(struct timespec
*host_ts
,
6886 abi_ulong target_addr
)
6888 struct target_timespec
*target_ts
;
6890 if (!lock_user_struct(VERIFY_READ
, target_ts
, target_addr
, 1))
6891 return -TARGET_EFAULT
;
6892 __get_user(host_ts
->tv_sec
, &target_ts
->tv_sec
);
6893 __get_user(host_ts
->tv_nsec
, &target_ts
->tv_nsec
);
6894 unlock_user_struct(target_ts
, target_addr
, 0);
6898 static inline abi_long
host_to_target_timespec(abi_ulong target_addr
,
6899 struct timespec
*host_ts
)
6901 struct target_timespec
*target_ts
;
6903 if (!lock_user_struct(VERIFY_WRITE
, target_ts
, target_addr
, 0))
6904 return -TARGET_EFAULT
;
6905 __put_user(host_ts
->tv_sec
, &target_ts
->tv_sec
);
6906 __put_user(host_ts
->tv_nsec
, &target_ts
->tv_nsec
);
6907 unlock_user_struct(target_ts
, target_addr
, 1);
6911 static inline abi_long
target_to_host_itimerspec(struct itimerspec
*host_itspec
,
6912 abi_ulong target_addr
)
6914 struct target_itimerspec
*target_itspec
;
6916 if (!lock_user_struct(VERIFY_READ
, target_itspec
, target_addr
, 1)) {
6917 return -TARGET_EFAULT
;
6920 host_itspec
->it_interval
.tv_sec
=
6921 tswapal(target_itspec
->it_interval
.tv_sec
);
6922 host_itspec
->it_interval
.tv_nsec
=
6923 tswapal(target_itspec
->it_interval
.tv_nsec
);
6924 host_itspec
->it_value
.tv_sec
= tswapal(target_itspec
->it_value
.tv_sec
);
6925 host_itspec
->it_value
.tv_nsec
= tswapal(target_itspec
->it_value
.tv_nsec
);
6927 unlock_user_struct(target_itspec
, target_addr
, 1);
6931 static inline abi_long
host_to_target_itimerspec(abi_ulong target_addr
,
6932 struct itimerspec
*host_its
)
6934 struct target_itimerspec
*target_itspec
;
6936 if (!lock_user_struct(VERIFY_WRITE
, target_itspec
, target_addr
, 0)) {
6937 return -TARGET_EFAULT
;
6940 target_itspec
->it_interval
.tv_sec
= tswapal(host_its
->it_interval
.tv_sec
);
6941 target_itspec
->it_interval
.tv_nsec
= tswapal(host_its
->it_interval
.tv_nsec
);
6943 target_itspec
->it_value
.tv_sec
= tswapal(host_its
->it_value
.tv_sec
);
6944 target_itspec
->it_value
.tv_nsec
= tswapal(host_its
->it_value
.tv_nsec
);
6946 unlock_user_struct(target_itspec
, target_addr
, 0);
6950 static inline abi_long
target_to_host_timex(struct timex
*host_tx
,
6951 abi_long target_addr
)
6953 struct target_timex
*target_tx
;
6955 if (!lock_user_struct(VERIFY_READ
, target_tx
, target_addr
, 1)) {
6956 return -TARGET_EFAULT
;
6959 __get_user(host_tx
->modes
, &target_tx
->modes
);
6960 __get_user(host_tx
->offset
, &target_tx
->offset
);
6961 __get_user(host_tx
->freq
, &target_tx
->freq
);
6962 __get_user(host_tx
->maxerror
, &target_tx
->maxerror
);
6963 __get_user(host_tx
->esterror
, &target_tx
->esterror
);
6964 __get_user(host_tx
->status
, &target_tx
->status
);
6965 __get_user(host_tx
->constant
, &target_tx
->constant
);
6966 __get_user(host_tx
->precision
, &target_tx
->precision
);
6967 __get_user(host_tx
->tolerance
, &target_tx
->tolerance
);
6968 __get_user(host_tx
->time
.tv_sec
, &target_tx
->time
.tv_sec
);
6969 __get_user(host_tx
->time
.tv_usec
, &target_tx
->time
.tv_usec
);
6970 __get_user(host_tx
->tick
, &target_tx
->tick
);
6971 __get_user(host_tx
->ppsfreq
, &target_tx
->ppsfreq
);
6972 __get_user(host_tx
->jitter
, &target_tx
->jitter
);
6973 __get_user(host_tx
->shift
, &target_tx
->shift
);
6974 __get_user(host_tx
->stabil
, &target_tx
->stabil
);
6975 __get_user(host_tx
->jitcnt
, &target_tx
->jitcnt
);
6976 __get_user(host_tx
->calcnt
, &target_tx
->calcnt
);
6977 __get_user(host_tx
->errcnt
, &target_tx
->errcnt
);
6978 __get_user(host_tx
->stbcnt
, &target_tx
->stbcnt
);
6979 __get_user(host_tx
->tai
, &target_tx
->tai
);
6981 unlock_user_struct(target_tx
, target_addr
, 0);
6985 static inline abi_long
host_to_target_timex(abi_long target_addr
,
6986 struct timex
*host_tx
)
6988 struct target_timex
*target_tx
;
6990 if (!lock_user_struct(VERIFY_WRITE
, target_tx
, target_addr
, 0)) {
6991 return -TARGET_EFAULT
;
6994 __put_user(host_tx
->modes
, &target_tx
->modes
);
6995 __put_user(host_tx
->offset
, &target_tx
->offset
);
6996 __put_user(host_tx
->freq
, &target_tx
->freq
);
6997 __put_user(host_tx
->maxerror
, &target_tx
->maxerror
);
6998 __put_user(host_tx
->esterror
, &target_tx
->esterror
);
6999 __put_user(host_tx
->status
, &target_tx
->status
);
7000 __put_user(host_tx
->constant
, &target_tx
->constant
);
7001 __put_user(host_tx
->precision
, &target_tx
->precision
);
7002 __put_user(host_tx
->tolerance
, &target_tx
->tolerance
);
7003 __put_user(host_tx
->time
.tv_sec
, &target_tx
->time
.tv_sec
);
7004 __put_user(host_tx
->time
.tv_usec
, &target_tx
->time
.tv_usec
);
7005 __put_user(host_tx
->tick
, &target_tx
->tick
);
7006 __put_user(host_tx
->ppsfreq
, &target_tx
->ppsfreq
);
7007 __put_user(host_tx
->jitter
, &target_tx
->jitter
);
7008 __put_user(host_tx
->shift
, &target_tx
->shift
);
7009 __put_user(host_tx
->stabil
, &target_tx
->stabil
);
7010 __put_user(host_tx
->jitcnt
, &target_tx
->jitcnt
);
7011 __put_user(host_tx
->calcnt
, &target_tx
->calcnt
);
7012 __put_user(host_tx
->errcnt
, &target_tx
->errcnt
);
7013 __put_user(host_tx
->stbcnt
, &target_tx
->stbcnt
);
7014 __put_user(host_tx
->tai
, &target_tx
->tai
);
7016 unlock_user_struct(target_tx
, target_addr
, 1);
7021 static inline abi_long
target_to_host_sigevent(struct sigevent
*host_sevp
,
7022 abi_ulong target_addr
)
7024 struct target_sigevent
*target_sevp
;
7026 if (!lock_user_struct(VERIFY_READ
, target_sevp
, target_addr
, 1)) {
7027 return -TARGET_EFAULT
;
7030 /* This union is awkward on 64 bit systems because it has a 32 bit
7031 * integer and a pointer in it; we follow the conversion approach
7032 * used for handling sigval types in signal.c so the guest should get
7033 * the correct value back even if we did a 64 bit byteswap and it's
7034 * using the 32 bit integer.
7036 host_sevp
->sigev_value
.sival_ptr
=
7037 (void *)(uintptr_t)tswapal(target_sevp
->sigev_value
.sival_ptr
);
7038 host_sevp
->sigev_signo
=
7039 target_to_host_signal(tswap32(target_sevp
->sigev_signo
));
7040 host_sevp
->sigev_notify
= tswap32(target_sevp
->sigev_notify
);
7041 host_sevp
->_sigev_un
._tid
= tswap32(target_sevp
->_sigev_un
._tid
);
7043 unlock_user_struct(target_sevp
, target_addr
, 1);
7047 #if defined(TARGET_NR_mlockall)
7048 static inline int target_to_host_mlockall_arg(int arg
)
7052 if (arg
& TARGET_MLOCKALL_MCL_CURRENT
) {
7053 result
|= MCL_CURRENT
;
7055 if (arg
& TARGET_MLOCKALL_MCL_FUTURE
) {
7056 result
|= MCL_FUTURE
;
7062 static inline abi_long
host_to_target_stat64(void *cpu_env
,
7063 abi_ulong target_addr
,
7064 struct stat
*host_st
)
7066 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
7067 if (((CPUARMState
*)cpu_env
)->eabi
) {
7068 struct target_eabi_stat64
*target_st
;
7070 if (!lock_user_struct(VERIFY_WRITE
, target_st
, target_addr
, 0))
7071 return -TARGET_EFAULT
;
7072 memset(target_st
, 0, sizeof(struct target_eabi_stat64
));
7073 __put_user(host_st
->st_dev
, &target_st
->st_dev
);
7074 __put_user(host_st
->st_ino
, &target_st
->st_ino
);
7075 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7076 __put_user(host_st
->st_ino
, &target_st
->__st_ino
);
7078 __put_user(host_st
->st_mode
, &target_st
->st_mode
);
7079 __put_user(host_st
->st_nlink
, &target_st
->st_nlink
);
7080 __put_user(host_st
->st_uid
, &target_st
->st_uid
);
7081 __put_user(host_st
->st_gid
, &target_st
->st_gid
);
7082 __put_user(host_st
->st_rdev
, &target_st
->st_rdev
);
7083 __put_user(host_st
->st_size
, &target_st
->st_size
);
7084 __put_user(host_st
->st_blksize
, &target_st
->st_blksize
);
7085 __put_user(host_st
->st_blocks
, &target_st
->st_blocks
);
7086 __put_user(host_st
->st_atime
, &target_st
->target_st_atime
);
7087 __put_user(host_st
->st_mtime
, &target_st
->target_st_mtime
);
7088 __put_user(host_st
->st_ctime
, &target_st
->target_st_ctime
);
7089 unlock_user_struct(target_st
, target_addr
, 1);
7093 #if defined(TARGET_HAS_STRUCT_STAT64)
7094 struct target_stat64
*target_st
;
7096 struct target_stat
*target_st
;
7099 if (!lock_user_struct(VERIFY_WRITE
, target_st
, target_addr
, 0))
7100 return -TARGET_EFAULT
;
7101 memset(target_st
, 0, sizeof(*target_st
));
7102 __put_user(host_st
->st_dev
, &target_st
->st_dev
);
7103 __put_user(host_st
->st_ino
, &target_st
->st_ino
);
7104 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7105 __put_user(host_st
->st_ino
, &target_st
->__st_ino
);
7107 __put_user(host_st
->st_mode
, &target_st
->st_mode
);
7108 __put_user(host_st
->st_nlink
, &target_st
->st_nlink
);
7109 __put_user(host_st
->st_uid
, &target_st
->st_uid
);
7110 __put_user(host_st
->st_gid
, &target_st
->st_gid
);
7111 __put_user(host_st
->st_rdev
, &target_st
->st_rdev
);
7112 /* XXX: better use of kernel struct */
7113 __put_user(host_st
->st_size
, &target_st
->st_size
);
7114 __put_user(host_st
->st_blksize
, &target_st
->st_blksize
);
7115 __put_user(host_st
->st_blocks
, &target_st
->st_blocks
);
7116 __put_user(host_st
->st_atime
, &target_st
->target_st_atime
);
7117 __put_user(host_st
->st_mtime
, &target_st
->target_st_mtime
);
7118 __put_user(host_st
->st_ctime
, &target_st
->target_st_ctime
);
7119 unlock_user_struct(target_st
, target_addr
, 1);
7125 /* ??? Using host futex calls even when target atomic operations
7126 are not really atomic probably breaks things. However implementing
7127 futexes locally would make futexes shared between multiple processes
7128 tricky. However they're probably useless because guest atomic
7129 operations won't work either. */
7130 static int do_futex(target_ulong uaddr
, int op
, int val
, target_ulong timeout
,
7131 target_ulong uaddr2
, int val3
)
7133 struct timespec ts
, *pts
;
7136 /* ??? We assume FUTEX_* constants are the same on both host
7138 #ifdef FUTEX_CMD_MASK
7139 base_op
= op
& FUTEX_CMD_MASK
;
7145 case FUTEX_WAIT_BITSET
:
7148 target_to_host_timespec(pts
, timeout
);
7152 return get_errno(safe_futex(g2h(uaddr
), op
, tswap32(val
),
7155 return get_errno(safe_futex(g2h(uaddr
), op
, val
, NULL
, NULL
, 0));
7157 return get_errno(safe_futex(g2h(uaddr
), op
, val
, NULL
, NULL
, 0));
7159 case FUTEX_CMP_REQUEUE
:
7161 /* For FUTEX_REQUEUE, FUTEX_CMP_REQUEUE, and FUTEX_WAKE_OP, the
7162 TIMEOUT parameter is interpreted as a uint32_t by the kernel.
7163 But the prototype takes a `struct timespec *'; insert casts
7164 to satisfy the compiler. We do not need to tswap TIMEOUT
7165 since it's not compared to guest memory. */
7166 pts
= (struct timespec
*)(uintptr_t) timeout
;
7167 return get_errno(safe_futex(g2h(uaddr
), op
, val
, pts
,
7169 (base_op
== FUTEX_CMP_REQUEUE
7173 return -TARGET_ENOSYS
;
7176 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7177 static abi_long
do_name_to_handle_at(abi_long dirfd
, abi_long pathname
,
7178 abi_long handle
, abi_long mount_id
,
7181 struct file_handle
*target_fh
;
7182 struct file_handle
*fh
;
7186 unsigned int size
, total_size
;
7188 if (get_user_s32(size
, handle
)) {
7189 return -TARGET_EFAULT
;
7192 name
= lock_user_string(pathname
);
7194 return -TARGET_EFAULT
;
7197 total_size
= sizeof(struct file_handle
) + size
;
7198 target_fh
= lock_user(VERIFY_WRITE
, handle
, total_size
, 0);
7200 unlock_user(name
, pathname
, 0);
7201 return -TARGET_EFAULT
;
7204 fh
= g_malloc0(total_size
);
7205 fh
->handle_bytes
= size
;
7207 ret
= get_errno(name_to_handle_at(dirfd
, path(name
), fh
, &mid
, flags
));
7208 unlock_user(name
, pathname
, 0);
7210 /* man name_to_handle_at(2):
7211 * Other than the use of the handle_bytes field, the caller should treat
7212 * the file_handle structure as an opaque data type
7215 memcpy(target_fh
, fh
, total_size
);
7216 target_fh
->handle_bytes
= tswap32(fh
->handle_bytes
);
7217 target_fh
->handle_type
= tswap32(fh
->handle_type
);
7219 unlock_user(target_fh
, handle
, total_size
);
7221 if (put_user_s32(mid
, mount_id
)) {
7222 return -TARGET_EFAULT
;
7230 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7231 static abi_long
do_open_by_handle_at(abi_long mount_fd
, abi_long handle
,
7234 struct file_handle
*target_fh
;
7235 struct file_handle
*fh
;
7236 unsigned int size
, total_size
;
7239 if (get_user_s32(size
, handle
)) {
7240 return -TARGET_EFAULT
;
7243 total_size
= sizeof(struct file_handle
) + size
;
7244 target_fh
= lock_user(VERIFY_READ
, handle
, total_size
, 1);
7246 return -TARGET_EFAULT
;
7249 fh
= g_memdup(target_fh
, total_size
);
7250 fh
->handle_bytes
= size
;
7251 fh
->handle_type
= tswap32(target_fh
->handle_type
);
7253 ret
= get_errno(open_by_handle_at(mount_fd
, fh
,
7254 target_to_host_bitmask(flags
, fcntl_flags_tbl
)));
7258 unlock_user(target_fh
, handle
, total_size
);
7264 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4)
7266 /* signalfd siginfo conversion */
7269 host_to_target_signalfd_siginfo(struct signalfd_siginfo
*tinfo
,
7270 const struct signalfd_siginfo
*info
)
7272 int sig
= host_to_target_signal(info
->ssi_signo
);
7274 /* linux/signalfd.h defines a ssi_addr_lsb
7275 * not defined in sys/signalfd.h but used by some kernels
7278 #ifdef BUS_MCEERR_AO
7279 if (tinfo
->ssi_signo
== SIGBUS
&&
7280 (tinfo
->ssi_code
== BUS_MCEERR_AR
||
7281 tinfo
->ssi_code
== BUS_MCEERR_AO
)) {
7282 uint16_t *ssi_addr_lsb
= (uint16_t *)(&info
->ssi_addr
+ 1);
7283 uint16_t *tssi_addr_lsb
= (uint16_t *)(&tinfo
->ssi_addr
+ 1);
7284 *tssi_addr_lsb
= tswap16(*ssi_addr_lsb
);
7288 tinfo
->ssi_signo
= tswap32(sig
);
7289 tinfo
->ssi_errno
= tswap32(tinfo
->ssi_errno
);
7290 tinfo
->ssi_code
= tswap32(info
->ssi_code
);
7291 tinfo
->ssi_pid
= tswap32(info
->ssi_pid
);
7292 tinfo
->ssi_uid
= tswap32(info
->ssi_uid
);
7293 tinfo
->ssi_fd
= tswap32(info
->ssi_fd
);
7294 tinfo
->ssi_tid
= tswap32(info
->ssi_tid
);
7295 tinfo
->ssi_band
= tswap32(info
->ssi_band
);
7296 tinfo
->ssi_overrun
= tswap32(info
->ssi_overrun
);
7297 tinfo
->ssi_trapno
= tswap32(info
->ssi_trapno
);
7298 tinfo
->ssi_status
= tswap32(info
->ssi_status
);
7299 tinfo
->ssi_int
= tswap32(info
->ssi_int
);
7300 tinfo
->ssi_ptr
= tswap64(info
->ssi_ptr
);
7301 tinfo
->ssi_utime
= tswap64(info
->ssi_utime
);
7302 tinfo
->ssi_stime
= tswap64(info
->ssi_stime
);
7303 tinfo
->ssi_addr
= tswap64(info
->ssi_addr
);
7306 static abi_long
host_to_target_data_signalfd(void *buf
, size_t len
)
7310 for (i
= 0; i
< len
; i
+= sizeof(struct signalfd_siginfo
)) {
7311 host_to_target_signalfd_siginfo(buf
+ i
, buf
+ i
);
7317 static TargetFdTrans target_signalfd_trans
= {
7318 .host_to_target_data
= host_to_target_data_signalfd
,
7321 static abi_long
do_signalfd4(int fd
, abi_long mask
, int flags
)
7324 target_sigset_t
*target_mask
;
7328 if (flags
& ~(TARGET_O_NONBLOCK
| TARGET_O_CLOEXEC
)) {
7329 return -TARGET_EINVAL
;
7331 if (!lock_user_struct(VERIFY_READ
, target_mask
, mask
, 1)) {
7332 return -TARGET_EFAULT
;
7335 target_to_host_sigset(&host_mask
, target_mask
);
7337 host_flags
= target_to_host_bitmask(flags
, fcntl_flags_tbl
);
7339 ret
= get_errno(signalfd(fd
, &host_mask
, host_flags
));
7341 fd_trans_register(ret
, &target_signalfd_trans
);
7344 unlock_user_struct(target_mask
, mask
, 0);
7350 /* Map host to target signal numbers for the wait family of syscalls.
7351 Assume all other status bits are the same. */
7352 int host_to_target_waitstatus(int status
)
7354 if (WIFSIGNALED(status
)) {
7355 return host_to_target_signal(WTERMSIG(status
)) | (status
& ~0x7f);
7357 if (WIFSTOPPED(status
)) {
7358 return (host_to_target_signal(WSTOPSIG(status
)) << 8)
7364 static int open_self_cmdline(void *cpu_env
, int fd
)
7366 CPUState
*cpu
= ENV_GET_CPU((CPUArchState
*)cpu_env
);
7367 struct linux_binprm
*bprm
= ((TaskState
*)cpu
->opaque
)->bprm
;
7370 for (i
= 0; i
< bprm
->argc
; i
++) {
7371 size_t len
= strlen(bprm
->argv
[i
]) + 1;
7373 if (write(fd
, bprm
->argv
[i
], len
) != len
) {
7381 static int open_self_maps(void *cpu_env
, int fd
)
7383 CPUState
*cpu
= ENV_GET_CPU((CPUArchState
*)cpu_env
);
7384 TaskState
*ts
= cpu
->opaque
;
7390 fp
= fopen("/proc/self/maps", "r");
7395 while ((read
= getline(&line
, &len
, fp
)) != -1) {
7396 int fields
, dev_maj
, dev_min
, inode
;
7397 uint64_t min
, max
, offset
;
7398 char flag_r
, flag_w
, flag_x
, flag_p
;
7399 char path
[512] = "";
7400 fields
= sscanf(line
, "%"PRIx64
"-%"PRIx64
" %c%c%c%c %"PRIx64
" %x:%x %d"
7401 " %512s", &min
, &max
, &flag_r
, &flag_w
, &flag_x
,
7402 &flag_p
, &offset
, &dev_maj
, &dev_min
, &inode
, path
);
7404 if ((fields
< 10) || (fields
> 11)) {
7407 if (h2g_valid(min
)) {
7408 int flags
= page_get_flags(h2g(min
));
7409 max
= h2g_valid(max
- 1) ? max
: (uintptr_t)g2h(GUEST_ADDR_MAX
);
7410 if (page_check_range(h2g(min
), max
- min
, flags
) == -1) {
7413 if (h2g(min
) == ts
->info
->stack_limit
) {
7414 pstrcpy(path
, sizeof(path
), " [stack]");
7416 dprintf(fd
, TARGET_ABI_FMT_lx
"-" TARGET_ABI_FMT_lx
7417 " %c%c%c%c %08" PRIx64
" %02x:%02x %d %s%s\n",
7418 h2g(min
), h2g(max
- 1) + 1, flag_r
, flag_w
,
7419 flag_x
, flag_p
, offset
, dev_maj
, dev_min
, inode
,
7420 path
[0] ? " " : "", path
);
7430 static int open_self_stat(void *cpu_env
, int fd
)
7432 CPUState
*cpu
= ENV_GET_CPU((CPUArchState
*)cpu_env
);
7433 TaskState
*ts
= cpu
->opaque
;
7434 abi_ulong start_stack
= ts
->info
->start_stack
;
7437 for (i
= 0; i
< 44; i
++) {
7445 snprintf(buf
, sizeof(buf
), "%"PRId64
" ", val
);
7446 } else if (i
== 1) {
7448 snprintf(buf
, sizeof(buf
), "(%s) ", ts
->bprm
->argv
[0]);
7449 } else if (i
== 27) {
7452 snprintf(buf
, sizeof(buf
), "%"PRId64
" ", val
);
7454 /* for the rest, there is MasterCard */
7455 snprintf(buf
, sizeof(buf
), "0%c", i
== 43 ? '\n' : ' ');
7459 if (write(fd
, buf
, len
) != len
) {
7467 static int open_self_auxv(void *cpu_env
, int fd
)
7469 CPUState
*cpu
= ENV_GET_CPU((CPUArchState
*)cpu_env
);
7470 TaskState
*ts
= cpu
->opaque
;
7471 abi_ulong auxv
= ts
->info
->saved_auxv
;
7472 abi_ulong len
= ts
->info
->auxv_len
;
7476 * Auxiliary vector is stored in target process stack.
7477 * read in whole auxv vector and copy it to file
7479 ptr
= lock_user(VERIFY_READ
, auxv
, len
, 0);
7483 r
= write(fd
, ptr
, len
);
7490 lseek(fd
, 0, SEEK_SET
);
7491 unlock_user(ptr
, auxv
, len
);
7497 static int is_proc_myself(const char *filename
, const char *entry
)
7499 if (!strncmp(filename
, "/proc/", strlen("/proc/"))) {
7500 filename
+= strlen("/proc/");
7501 if (!strncmp(filename
, "self/", strlen("self/"))) {
7502 filename
+= strlen("self/");
7503 } else if (*filename
>= '1' && *filename
<= '9') {
7505 snprintf(myself
, sizeof(myself
), "%d/", getpid());
7506 if (!strncmp(filename
, myself
, strlen(myself
))) {
7507 filename
+= strlen(myself
);
7514 if (!strcmp(filename
, entry
)) {
7521 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
7522 static int is_proc(const char *filename
, const char *entry
)
7524 return strcmp(filename
, entry
) == 0;
7527 static int open_net_route(void *cpu_env
, int fd
)
7534 fp
= fopen("/proc/net/route", "r");
7541 read
= getline(&line
, &len
, fp
);
7542 dprintf(fd
, "%s", line
);
7546 while ((read
= getline(&line
, &len
, fp
)) != -1) {
7548 uint32_t dest
, gw
, mask
;
7549 unsigned int flags
, refcnt
, use
, metric
, mtu
, window
, irtt
;
7550 sscanf(line
, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
7551 iface
, &dest
, &gw
, &flags
, &refcnt
, &use
, &metric
,
7552 &mask
, &mtu
, &window
, &irtt
);
7553 dprintf(fd
, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
7554 iface
, tswap32(dest
), tswap32(gw
), flags
, refcnt
, use
,
7555 metric
, tswap32(mask
), mtu
, window
, irtt
);
7565 static int do_openat(void *cpu_env
, int dirfd
, const char *pathname
, int flags
, mode_t mode
)
7568 const char *filename
;
7569 int (*fill
)(void *cpu_env
, int fd
);
7570 int (*cmp
)(const char *s1
, const char *s2
);
7572 const struct fake_open
*fake_open
;
7573 static const struct fake_open fakes
[] = {
7574 { "maps", open_self_maps
, is_proc_myself
},
7575 { "stat", open_self_stat
, is_proc_myself
},
7576 { "auxv", open_self_auxv
, is_proc_myself
},
7577 { "cmdline", open_self_cmdline
, is_proc_myself
},
7578 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
7579 { "/proc/net/route", open_net_route
, is_proc
},
7581 { NULL
, NULL
, NULL
}
7584 if (is_proc_myself(pathname
, "exe")) {
7585 int execfd
= qemu_getauxval(AT_EXECFD
);
7586 return execfd
? execfd
: safe_openat(dirfd
, exec_path
, flags
, mode
);
7589 for (fake_open
= fakes
; fake_open
->filename
; fake_open
++) {
7590 if (fake_open
->cmp(pathname
, fake_open
->filename
)) {
7595 if (fake_open
->filename
) {
7597 char filename
[PATH_MAX
];
7600 /* create temporary file to map stat to */
7601 tmpdir
= getenv("TMPDIR");
7604 snprintf(filename
, sizeof(filename
), "%s/qemu-open.XXXXXX", tmpdir
);
7605 fd
= mkstemp(filename
);
7611 if ((r
= fake_open
->fill(cpu_env
, fd
))) {
7617 lseek(fd
, 0, SEEK_SET
);
7622 return safe_openat(dirfd
, path(pathname
), flags
, mode
);
7625 #define TIMER_MAGIC 0x0caf0000
7626 #define TIMER_MAGIC_MASK 0xffff0000
7628 /* Convert QEMU provided timer ID back to internal 16bit index format */
7629 static target_timer_t
get_timer_id(abi_long arg
)
7631 target_timer_t timerid
= arg
;
7633 if ((timerid
& TIMER_MAGIC_MASK
) != TIMER_MAGIC
) {
7634 return -TARGET_EINVAL
;
7639 if (timerid
>= ARRAY_SIZE(g_posix_timers
)) {
7640 return -TARGET_EINVAL
;
7646 static abi_long
swap_data_eventfd(void *buf
, size_t len
)
7648 uint64_t *counter
= buf
;
7651 if (len
< sizeof(uint64_t)) {
7655 for (i
= 0; i
< len
; i
+= sizeof(uint64_t)) {
7656 *counter
= tswap64(*counter
);
7663 static TargetFdTrans target_eventfd_trans
= {
7664 .host_to_target_data
= swap_data_eventfd
,
7665 .target_to_host_data
= swap_data_eventfd
,
7668 #if (defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)) || \
7669 (defined(CONFIG_INOTIFY1) && defined(TARGET_NR_inotify_init1) && \
7670 defined(__NR_inotify_init1))
7671 static abi_long
host_to_target_data_inotify(void *buf
, size_t len
)
7673 struct inotify_event
*ev
;
7677 for (i
= 0; i
< len
; i
+= sizeof(struct inotify_event
) + name_len
) {
7678 ev
= (struct inotify_event
*)((char *)buf
+ i
);
7681 ev
->wd
= tswap32(ev
->wd
);
7682 ev
->mask
= tswap32(ev
->mask
);
7683 ev
->cookie
= tswap32(ev
->cookie
);
7684 ev
->len
= tswap32(name_len
);
7690 static TargetFdTrans target_inotify_trans
= {
7691 .host_to_target_data
= host_to_target_data_inotify
,
7695 /* do_syscall() should always have a single exit point at the end so
7696 that actions, such as logging of syscall results, can be performed.
7697 All errnos that do_syscall() returns must be -TARGET_<errcode>. */
7698 abi_long
do_syscall(void *cpu_env
, int num
, abi_long arg1
,
7699 abi_long arg2
, abi_long arg3
, abi_long arg4
,
7700 abi_long arg5
, abi_long arg6
, abi_long arg7
,
7703 CPUState
*cpu
= ENV_GET_CPU(cpu_env
);
7709 #if defined(DEBUG_ERESTARTSYS)
7710 /* Debug-only code for exercising the syscall-restart code paths
7711 * in the per-architecture cpu main loops: restart every syscall
7712 * the guest makes once before letting it through.
7719 return -TARGET_ERESTARTSYS
;
7725 gemu_log("syscall %d", num
);
7727 trace_guest_user_syscall(cpu
, num
, arg1
, arg2
, arg3
, arg4
, arg5
, arg6
, arg7
, arg8
);
7729 print_syscall(num
, arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
7732 case TARGET_NR_exit
:
7733 /* In old applications this may be used to implement _exit(2).
7734 However in threaded applictions it is used for thread termination,
7735 and _exit_group is used for application termination.
7736 Do thread termination if we have more then one thread. */
7738 if (block_signals()) {
7739 ret
= -TARGET_ERESTARTSYS
;
7745 if (CPU_NEXT(first_cpu
)) {
7748 /* Remove the CPU from the list. */
7749 QTAILQ_REMOVE(&cpus
, cpu
, node
);
7754 if (ts
->child_tidptr
) {
7755 put_user_u32(0, ts
->child_tidptr
);
7756 sys_futex(g2h(ts
->child_tidptr
), FUTEX_WAKE
, INT_MAX
,
7760 object_unref(OBJECT(cpu
));
7762 rcu_unregister_thread();
7770 gdb_exit(cpu_env
, arg1
);
7772 ret
= 0; /* avoid warning */
7774 case TARGET_NR_read
:
7778 if (!(p
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0)))
7780 ret
= get_errno(safe_read(arg1
, p
, arg3
));
7782 fd_trans_host_to_target_data(arg1
)) {
7783 ret
= fd_trans_host_to_target_data(arg1
)(p
, ret
);
7785 unlock_user(p
, arg2
, ret
);
7788 case TARGET_NR_write
:
7789 if (!(p
= lock_user(VERIFY_READ
, arg2
, arg3
, 1)))
7791 if (fd_trans_target_to_host_data(arg1
)) {
7792 void *copy
= g_malloc(arg3
);
7793 memcpy(copy
, p
, arg3
);
7794 ret
= fd_trans_target_to_host_data(arg1
)(copy
, arg3
);
7796 ret
= get_errno(safe_write(arg1
, copy
, ret
));
7800 ret
= get_errno(safe_write(arg1
, p
, arg3
));
7802 unlock_user(p
, arg2
, 0);
7804 #ifdef TARGET_NR_open
7805 case TARGET_NR_open
:
7806 if (!(p
= lock_user_string(arg1
)))
7808 ret
= get_errno(do_openat(cpu_env
, AT_FDCWD
, p
,
7809 target_to_host_bitmask(arg2
, fcntl_flags_tbl
),
7811 fd_trans_unregister(ret
);
7812 unlock_user(p
, arg1
, 0);
7815 case TARGET_NR_openat
:
7816 if (!(p
= lock_user_string(arg2
)))
7818 ret
= get_errno(do_openat(cpu_env
, arg1
, p
,
7819 target_to_host_bitmask(arg3
, fcntl_flags_tbl
),
7821 fd_trans_unregister(ret
);
7822 unlock_user(p
, arg2
, 0);
7824 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7825 case TARGET_NR_name_to_handle_at
:
7826 ret
= do_name_to_handle_at(arg1
, arg2
, arg3
, arg4
, arg5
);
7829 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7830 case TARGET_NR_open_by_handle_at
:
7831 ret
= do_open_by_handle_at(arg1
, arg2
, arg3
);
7832 fd_trans_unregister(ret
);
7835 case TARGET_NR_close
:
7836 fd_trans_unregister(arg1
);
7837 ret
= get_errno(close(arg1
));
7842 #ifdef TARGET_NR_fork
7843 case TARGET_NR_fork
:
7844 ret
= get_errno(do_fork(cpu_env
, TARGET_SIGCHLD
, 0, 0, 0, 0));
7847 #ifdef TARGET_NR_waitpid
7848 case TARGET_NR_waitpid
:
7851 ret
= get_errno(safe_wait4(arg1
, &status
, arg3
, 0));
7852 if (!is_error(ret
) && arg2
&& ret
7853 && put_user_s32(host_to_target_waitstatus(status
), arg2
))
7858 #ifdef TARGET_NR_waitid
7859 case TARGET_NR_waitid
:
7863 ret
= get_errno(safe_waitid(arg1
, arg2
, &info
, arg4
, NULL
));
7864 if (!is_error(ret
) && arg3
&& info
.si_pid
!= 0) {
7865 if (!(p
= lock_user(VERIFY_WRITE
, arg3
, sizeof(target_siginfo_t
), 0)))
7867 host_to_target_siginfo(p
, &info
);
7868 unlock_user(p
, arg3
, sizeof(target_siginfo_t
));
7873 #ifdef TARGET_NR_creat /* not on alpha */
7874 case TARGET_NR_creat
:
7875 if (!(p
= lock_user_string(arg1
)))
7877 ret
= get_errno(creat(p
, arg2
));
7878 fd_trans_unregister(ret
);
7879 unlock_user(p
, arg1
, 0);
7882 #ifdef TARGET_NR_link
7883 case TARGET_NR_link
:
7886 p
= lock_user_string(arg1
);
7887 p2
= lock_user_string(arg2
);
7889 ret
= -TARGET_EFAULT
;
7891 ret
= get_errno(link(p
, p2
));
7892 unlock_user(p2
, arg2
, 0);
7893 unlock_user(p
, arg1
, 0);
7897 #if defined(TARGET_NR_linkat)
7898 case TARGET_NR_linkat
:
7903 p
= lock_user_string(arg2
);
7904 p2
= lock_user_string(arg4
);
7906 ret
= -TARGET_EFAULT
;
7908 ret
= get_errno(linkat(arg1
, p
, arg3
, p2
, arg5
));
7909 unlock_user(p
, arg2
, 0);
7910 unlock_user(p2
, arg4
, 0);
7914 #ifdef TARGET_NR_unlink
7915 case TARGET_NR_unlink
:
7916 if (!(p
= lock_user_string(arg1
)))
7918 ret
= get_errno(unlink(p
));
7919 unlock_user(p
, arg1
, 0);
7922 #if defined(TARGET_NR_unlinkat)
7923 case TARGET_NR_unlinkat
:
7924 if (!(p
= lock_user_string(arg2
)))
7926 ret
= get_errno(unlinkat(arg1
, p
, arg3
));
7927 unlock_user(p
, arg2
, 0);
7930 case TARGET_NR_execve
:
7932 char **argp
, **envp
;
7935 abi_ulong guest_argp
;
7936 abi_ulong guest_envp
;
7943 for (gp
= guest_argp
; gp
; gp
+= sizeof(abi_ulong
)) {
7944 if (get_user_ual(addr
, gp
))
7952 for (gp
= guest_envp
; gp
; gp
+= sizeof(abi_ulong
)) {
7953 if (get_user_ual(addr
, gp
))
7960 argp
= g_new0(char *, argc
+ 1);
7961 envp
= g_new0(char *, envc
+ 1);
7963 for (gp
= guest_argp
, q
= argp
; gp
;
7964 gp
+= sizeof(abi_ulong
), q
++) {
7965 if (get_user_ual(addr
, gp
))
7969 if (!(*q
= lock_user_string(addr
)))
7971 total_size
+= strlen(*q
) + 1;
7975 for (gp
= guest_envp
, q
= envp
; gp
;
7976 gp
+= sizeof(abi_ulong
), q
++) {
7977 if (get_user_ual(addr
, gp
))
7981 if (!(*q
= lock_user_string(addr
)))
7983 total_size
+= strlen(*q
) + 1;
7987 if (!(p
= lock_user_string(arg1
)))
7989 /* Although execve() is not an interruptible syscall it is
7990 * a special case where we must use the safe_syscall wrapper:
7991 * if we allow a signal to happen before we make the host
7992 * syscall then we will 'lose' it, because at the point of
7993 * execve the process leaves QEMU's control. So we use the
7994 * safe syscall wrapper to ensure that we either take the
7995 * signal as a guest signal, or else it does not happen
7996 * before the execve completes and makes it the other
7997 * program's problem.
7999 ret
= get_errno(safe_execve(p
, argp
, envp
));
8000 unlock_user(p
, arg1
, 0);
8005 ret
= -TARGET_EFAULT
;
8008 for (gp
= guest_argp
, q
= argp
; *q
;
8009 gp
+= sizeof(abi_ulong
), q
++) {
8010 if (get_user_ual(addr
, gp
)
8013 unlock_user(*q
, addr
, 0);
8015 for (gp
= guest_envp
, q
= envp
; *q
;
8016 gp
+= sizeof(abi_ulong
), q
++) {
8017 if (get_user_ual(addr
, gp
)
8020 unlock_user(*q
, addr
, 0);
8027 case TARGET_NR_chdir
:
8028 if (!(p
= lock_user_string(arg1
)))
8030 ret
= get_errno(chdir(p
));
8031 unlock_user(p
, arg1
, 0);
8033 #ifdef TARGET_NR_time
8034 case TARGET_NR_time
:
8037 ret
= get_errno(time(&host_time
));
8040 && put_user_sal(host_time
, arg1
))
8045 #ifdef TARGET_NR_mknod
8046 case TARGET_NR_mknod
:
8047 if (!(p
= lock_user_string(arg1
)))
8049 ret
= get_errno(mknod(p
, arg2
, arg3
));
8050 unlock_user(p
, arg1
, 0);
8053 #if defined(TARGET_NR_mknodat)
8054 case TARGET_NR_mknodat
:
8055 if (!(p
= lock_user_string(arg2
)))
8057 ret
= get_errno(mknodat(arg1
, p
, arg3
, arg4
));
8058 unlock_user(p
, arg2
, 0);
8061 #ifdef TARGET_NR_chmod
8062 case TARGET_NR_chmod
:
8063 if (!(p
= lock_user_string(arg1
)))
8065 ret
= get_errno(chmod(p
, arg2
));
8066 unlock_user(p
, arg1
, 0);
8069 #ifdef TARGET_NR_break
8070 case TARGET_NR_break
:
8073 #ifdef TARGET_NR_oldstat
8074 case TARGET_NR_oldstat
:
8077 case TARGET_NR_lseek
:
8078 ret
= get_errno(lseek(arg1
, arg2
, arg3
));
8080 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA)
8081 /* Alpha specific */
8082 case TARGET_NR_getxpid
:
8083 ((CPUAlphaState
*)cpu_env
)->ir
[IR_A4
] = getppid();
8084 ret
= get_errno(getpid());
8087 #ifdef TARGET_NR_getpid
8088 case TARGET_NR_getpid
:
8089 ret
= get_errno(getpid());
8092 case TARGET_NR_mount
:
8094 /* need to look at the data field */
8098 p
= lock_user_string(arg1
);
8106 p2
= lock_user_string(arg2
);
8109 unlock_user(p
, arg1
, 0);
8115 p3
= lock_user_string(arg3
);
8118 unlock_user(p
, arg1
, 0);
8120 unlock_user(p2
, arg2
, 0);
8127 /* FIXME - arg5 should be locked, but it isn't clear how to
8128 * do that since it's not guaranteed to be a NULL-terminated
8132 ret
= mount(p
, p2
, p3
, (unsigned long)arg4
, NULL
);
8134 ret
= mount(p
, p2
, p3
, (unsigned long)arg4
, g2h(arg5
));
8136 ret
= get_errno(ret
);
8139 unlock_user(p
, arg1
, 0);
8141 unlock_user(p2
, arg2
, 0);
8143 unlock_user(p3
, arg3
, 0);
8147 #ifdef TARGET_NR_umount
8148 case TARGET_NR_umount
:
8149 if (!(p
= lock_user_string(arg1
)))
8151 ret
= get_errno(umount(p
));
8152 unlock_user(p
, arg1
, 0);
8155 #ifdef TARGET_NR_stime /* not on alpha */
8156 case TARGET_NR_stime
:
8159 if (get_user_sal(host_time
, arg1
))
8161 ret
= get_errno(stime(&host_time
));
8165 case TARGET_NR_ptrace
:
8167 #ifdef TARGET_NR_alarm /* not on alpha */
8168 case TARGET_NR_alarm
:
8172 #ifdef TARGET_NR_oldfstat
8173 case TARGET_NR_oldfstat
:
8176 #ifdef TARGET_NR_pause /* not on alpha */
8177 case TARGET_NR_pause
:
8178 if (!block_signals()) {
8179 sigsuspend(&((TaskState
*)cpu
->opaque
)->signal_mask
);
8181 ret
= -TARGET_EINTR
;
8184 #ifdef TARGET_NR_utime
8185 case TARGET_NR_utime
:
8187 struct utimbuf tbuf
, *host_tbuf
;
8188 struct target_utimbuf
*target_tbuf
;
8190 if (!lock_user_struct(VERIFY_READ
, target_tbuf
, arg2
, 1))
8192 tbuf
.actime
= tswapal(target_tbuf
->actime
);
8193 tbuf
.modtime
= tswapal(target_tbuf
->modtime
);
8194 unlock_user_struct(target_tbuf
, arg2
, 0);
8199 if (!(p
= lock_user_string(arg1
)))
8201 ret
= get_errno(utime(p
, host_tbuf
));
8202 unlock_user(p
, arg1
, 0);
8206 #ifdef TARGET_NR_utimes
8207 case TARGET_NR_utimes
:
8209 struct timeval
*tvp
, tv
[2];
8211 if (copy_from_user_timeval(&tv
[0], arg2
)
8212 || copy_from_user_timeval(&tv
[1],
8213 arg2
+ sizeof(struct target_timeval
)))
8219 if (!(p
= lock_user_string(arg1
)))
8221 ret
= get_errno(utimes(p
, tvp
));
8222 unlock_user(p
, arg1
, 0);
8226 #if defined(TARGET_NR_futimesat)
8227 case TARGET_NR_futimesat
:
8229 struct timeval
*tvp
, tv
[2];
8231 if (copy_from_user_timeval(&tv
[0], arg3
)
8232 || copy_from_user_timeval(&tv
[1],
8233 arg3
+ sizeof(struct target_timeval
)))
8239 if (!(p
= lock_user_string(arg2
)))
8241 ret
= get_errno(futimesat(arg1
, path(p
), tvp
));
8242 unlock_user(p
, arg2
, 0);
8246 #ifdef TARGET_NR_stty
8247 case TARGET_NR_stty
:
8250 #ifdef TARGET_NR_gtty
8251 case TARGET_NR_gtty
:
8254 #ifdef TARGET_NR_access
8255 case TARGET_NR_access
:
8256 if (!(p
= lock_user_string(arg1
)))
8258 ret
= get_errno(access(path(p
), arg2
));
8259 unlock_user(p
, arg1
, 0);
8262 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat)
8263 case TARGET_NR_faccessat
:
8264 if (!(p
= lock_user_string(arg2
)))
8266 ret
= get_errno(faccessat(arg1
, p
, arg3
, 0));
8267 unlock_user(p
, arg2
, 0);
8270 #ifdef TARGET_NR_nice /* not on alpha */
8271 case TARGET_NR_nice
:
8272 ret
= get_errno(nice(arg1
));
8275 #ifdef TARGET_NR_ftime
8276 case TARGET_NR_ftime
:
8279 case TARGET_NR_sync
:
8283 #if defined(TARGET_NR_syncfs) && defined(CONFIG_SYNCFS)
8284 case TARGET_NR_syncfs
:
8285 ret
= get_errno(syncfs(arg1
));
8288 case TARGET_NR_kill
:
8289 ret
= get_errno(safe_kill(arg1
, target_to_host_signal(arg2
)));
8291 #ifdef TARGET_NR_rename
8292 case TARGET_NR_rename
:
8295 p
= lock_user_string(arg1
);
8296 p2
= lock_user_string(arg2
);
8298 ret
= -TARGET_EFAULT
;
8300 ret
= get_errno(rename(p
, p2
));
8301 unlock_user(p2
, arg2
, 0);
8302 unlock_user(p
, arg1
, 0);
8306 #if defined(TARGET_NR_renameat)
8307 case TARGET_NR_renameat
:
8310 p
= lock_user_string(arg2
);
8311 p2
= lock_user_string(arg4
);
8313 ret
= -TARGET_EFAULT
;
8315 ret
= get_errno(renameat(arg1
, p
, arg3
, p2
));
8316 unlock_user(p2
, arg4
, 0);
8317 unlock_user(p
, arg2
, 0);
8321 #ifdef TARGET_NR_mkdir
8322 case TARGET_NR_mkdir
:
8323 if (!(p
= lock_user_string(arg1
)))
8325 ret
= get_errno(mkdir(p
, arg2
));
8326 unlock_user(p
, arg1
, 0);
8329 #if defined(TARGET_NR_mkdirat)
8330 case TARGET_NR_mkdirat
:
8331 if (!(p
= lock_user_string(arg2
)))
8333 ret
= get_errno(mkdirat(arg1
, p
, arg3
));
8334 unlock_user(p
, arg2
, 0);
8337 #ifdef TARGET_NR_rmdir
8338 case TARGET_NR_rmdir
:
8339 if (!(p
= lock_user_string(arg1
)))
8341 ret
= get_errno(rmdir(p
));
8342 unlock_user(p
, arg1
, 0);
8346 ret
= get_errno(dup(arg1
));
8348 fd_trans_dup(arg1
, ret
);
8351 #ifdef TARGET_NR_pipe
8352 case TARGET_NR_pipe
:
8353 ret
= do_pipe(cpu_env
, arg1
, 0, 0);
8356 #ifdef TARGET_NR_pipe2
8357 case TARGET_NR_pipe2
:
8358 ret
= do_pipe(cpu_env
, arg1
,
8359 target_to_host_bitmask(arg2
, fcntl_flags_tbl
), 1);
8362 case TARGET_NR_times
:
8364 struct target_tms
*tmsp
;
8366 ret
= get_errno(times(&tms
));
8368 tmsp
= lock_user(VERIFY_WRITE
, arg1
, sizeof(struct target_tms
), 0);
8371 tmsp
->tms_utime
= tswapal(host_to_target_clock_t(tms
.tms_utime
));
8372 tmsp
->tms_stime
= tswapal(host_to_target_clock_t(tms
.tms_stime
));
8373 tmsp
->tms_cutime
= tswapal(host_to_target_clock_t(tms
.tms_cutime
));
8374 tmsp
->tms_cstime
= tswapal(host_to_target_clock_t(tms
.tms_cstime
));
8377 ret
= host_to_target_clock_t(ret
);
8380 #ifdef TARGET_NR_prof
8381 case TARGET_NR_prof
:
8384 #ifdef TARGET_NR_signal
8385 case TARGET_NR_signal
:
8388 case TARGET_NR_acct
:
8390 ret
= get_errno(acct(NULL
));
8392 if (!(p
= lock_user_string(arg1
)))
8394 ret
= get_errno(acct(path(p
)));
8395 unlock_user(p
, arg1
, 0);
8398 #ifdef TARGET_NR_umount2
8399 case TARGET_NR_umount2
:
8400 if (!(p
= lock_user_string(arg1
)))
8402 ret
= get_errno(umount2(p
, arg2
));
8403 unlock_user(p
, arg1
, 0);
8406 #ifdef TARGET_NR_lock
8407 case TARGET_NR_lock
:
8410 case TARGET_NR_ioctl
:
8411 ret
= do_ioctl(arg1
, arg2
, arg3
);
8413 case TARGET_NR_fcntl
:
8414 ret
= do_fcntl(arg1
, arg2
, arg3
);
8416 #ifdef TARGET_NR_mpx
8420 case TARGET_NR_setpgid
:
8421 ret
= get_errno(setpgid(arg1
, arg2
));
8423 #ifdef TARGET_NR_ulimit
8424 case TARGET_NR_ulimit
:
8427 #ifdef TARGET_NR_oldolduname
8428 case TARGET_NR_oldolduname
:
8431 case TARGET_NR_umask
:
8432 ret
= get_errno(umask(arg1
));
8434 case TARGET_NR_chroot
:
8435 if (!(p
= lock_user_string(arg1
)))
8437 ret
= get_errno(chroot(p
));
8438 unlock_user(p
, arg1
, 0);
8440 #ifdef TARGET_NR_ustat
8441 case TARGET_NR_ustat
:
8444 #ifdef TARGET_NR_dup2
8445 case TARGET_NR_dup2
:
8446 ret
= get_errno(dup2(arg1
, arg2
));
8448 fd_trans_dup(arg1
, arg2
);
8452 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3)
8453 case TARGET_NR_dup3
:
8454 ret
= get_errno(dup3(arg1
, arg2
, arg3
));
8456 fd_trans_dup(arg1
, arg2
);
8460 #ifdef TARGET_NR_getppid /* not on alpha */
8461 case TARGET_NR_getppid
:
8462 ret
= get_errno(getppid());
8465 #ifdef TARGET_NR_getpgrp
8466 case TARGET_NR_getpgrp
:
8467 ret
= get_errno(getpgrp());
8470 case TARGET_NR_setsid
:
8471 ret
= get_errno(setsid());
8473 #ifdef TARGET_NR_sigaction
8474 case TARGET_NR_sigaction
:
8476 #if defined(TARGET_ALPHA)
8477 struct target_sigaction act
, oact
, *pact
= 0;
8478 struct target_old_sigaction
*old_act
;
8480 if (!lock_user_struct(VERIFY_READ
, old_act
, arg2
, 1))
8482 act
._sa_handler
= old_act
->_sa_handler
;
8483 target_siginitset(&act
.sa_mask
, old_act
->sa_mask
);
8484 act
.sa_flags
= old_act
->sa_flags
;
8485 act
.sa_restorer
= 0;
8486 unlock_user_struct(old_act
, arg2
, 0);
8489 ret
= get_errno(do_sigaction(arg1
, pact
, &oact
));
8490 if (!is_error(ret
) && arg3
) {
8491 if (!lock_user_struct(VERIFY_WRITE
, old_act
, arg3
, 0))
8493 old_act
->_sa_handler
= oact
._sa_handler
;
8494 old_act
->sa_mask
= oact
.sa_mask
.sig
[0];
8495 old_act
->sa_flags
= oact
.sa_flags
;
8496 unlock_user_struct(old_act
, arg3
, 1);
8498 #elif defined(TARGET_MIPS)
8499 struct target_sigaction act
, oact
, *pact
, *old_act
;
8502 if (!lock_user_struct(VERIFY_READ
, old_act
, arg2
, 1))
8504 act
._sa_handler
= old_act
->_sa_handler
;
8505 target_siginitset(&act
.sa_mask
, old_act
->sa_mask
.sig
[0]);
8506 act
.sa_flags
= old_act
->sa_flags
;
8507 unlock_user_struct(old_act
, arg2
, 0);
8513 ret
= get_errno(do_sigaction(arg1
, pact
, &oact
));
8515 if (!is_error(ret
) && arg3
) {
8516 if (!lock_user_struct(VERIFY_WRITE
, old_act
, arg3
, 0))
8518 old_act
->_sa_handler
= oact
._sa_handler
;
8519 old_act
->sa_flags
= oact
.sa_flags
;
8520 old_act
->sa_mask
.sig
[0] = oact
.sa_mask
.sig
[0];
8521 old_act
->sa_mask
.sig
[1] = 0;
8522 old_act
->sa_mask
.sig
[2] = 0;
8523 old_act
->sa_mask
.sig
[3] = 0;
8524 unlock_user_struct(old_act
, arg3
, 1);
8527 struct target_old_sigaction
*old_act
;
8528 struct target_sigaction act
, oact
, *pact
;
8530 if (!lock_user_struct(VERIFY_READ
, old_act
, arg2
, 1))
8532 act
._sa_handler
= old_act
->_sa_handler
;
8533 target_siginitset(&act
.sa_mask
, old_act
->sa_mask
);
8534 act
.sa_flags
= old_act
->sa_flags
;
8535 act
.sa_restorer
= old_act
->sa_restorer
;
8536 unlock_user_struct(old_act
, arg2
, 0);
8541 ret
= get_errno(do_sigaction(arg1
, pact
, &oact
));
8542 if (!is_error(ret
) && arg3
) {
8543 if (!lock_user_struct(VERIFY_WRITE
, old_act
, arg3
, 0))
8545 old_act
->_sa_handler
= oact
._sa_handler
;
8546 old_act
->sa_mask
= oact
.sa_mask
.sig
[0];
8547 old_act
->sa_flags
= oact
.sa_flags
;
8548 old_act
->sa_restorer
= oact
.sa_restorer
;
8549 unlock_user_struct(old_act
, arg3
, 1);
8555 case TARGET_NR_rt_sigaction
:
8557 #if defined(TARGET_ALPHA)
8558 struct target_sigaction act
, oact
, *pact
= 0;
8559 struct target_rt_sigaction
*rt_act
;
8561 if (arg4
!= sizeof(target_sigset_t
)) {
8562 ret
= -TARGET_EINVAL
;
8566 if (!lock_user_struct(VERIFY_READ
, rt_act
, arg2
, 1))
8568 act
._sa_handler
= rt_act
->_sa_handler
;
8569 act
.sa_mask
= rt_act
->sa_mask
;
8570 act
.sa_flags
= rt_act
->sa_flags
;
8571 act
.sa_restorer
= arg5
;
8572 unlock_user_struct(rt_act
, arg2
, 0);
8575 ret
= get_errno(do_sigaction(arg1
, pact
, &oact
));
8576 if (!is_error(ret
) && arg3
) {
8577 if (!lock_user_struct(VERIFY_WRITE
, rt_act
, arg3
, 0))
8579 rt_act
->_sa_handler
= oact
._sa_handler
;
8580 rt_act
->sa_mask
= oact
.sa_mask
;
8581 rt_act
->sa_flags
= oact
.sa_flags
;
8582 unlock_user_struct(rt_act
, arg3
, 1);
8585 struct target_sigaction
*act
;
8586 struct target_sigaction
*oact
;
8588 if (arg4
!= sizeof(target_sigset_t
)) {
8589 ret
= -TARGET_EINVAL
;
8593 if (!lock_user_struct(VERIFY_READ
, act
, arg2
, 1))
8598 if (!lock_user_struct(VERIFY_WRITE
, oact
, arg3
, 0)) {
8599 ret
= -TARGET_EFAULT
;
8600 goto rt_sigaction_fail
;
8604 ret
= get_errno(do_sigaction(arg1
, act
, oact
));
8607 unlock_user_struct(act
, arg2
, 0);
8609 unlock_user_struct(oact
, arg3
, 1);
8613 #ifdef TARGET_NR_sgetmask /* not on alpha */
8614 case TARGET_NR_sgetmask
:
8617 abi_ulong target_set
;
8618 ret
= do_sigprocmask(0, NULL
, &cur_set
);
8620 host_to_target_old_sigset(&target_set
, &cur_set
);
8626 #ifdef TARGET_NR_ssetmask /* not on alpha */
8627 case TARGET_NR_ssetmask
:
8630 abi_ulong target_set
= arg1
;
8631 target_to_host_old_sigset(&set
, &target_set
);
8632 ret
= do_sigprocmask(SIG_SETMASK
, &set
, &oset
);
8634 host_to_target_old_sigset(&target_set
, &oset
);
8640 #ifdef TARGET_NR_sigprocmask
8641 case TARGET_NR_sigprocmask
:
8643 #if defined(TARGET_ALPHA)
8644 sigset_t set
, oldset
;
8649 case TARGET_SIG_BLOCK
:
8652 case TARGET_SIG_UNBLOCK
:
8655 case TARGET_SIG_SETMASK
:
8659 ret
= -TARGET_EINVAL
;
8663 target_to_host_old_sigset(&set
, &mask
);
8665 ret
= do_sigprocmask(how
, &set
, &oldset
);
8666 if (!is_error(ret
)) {
8667 host_to_target_old_sigset(&mask
, &oldset
);
8669 ((CPUAlphaState
*)cpu_env
)->ir
[IR_V0
] = 0; /* force no error */
8672 sigset_t set
, oldset
, *set_ptr
;
8677 case TARGET_SIG_BLOCK
:
8680 case TARGET_SIG_UNBLOCK
:
8683 case TARGET_SIG_SETMASK
:
8687 ret
= -TARGET_EINVAL
;
8690 if (!(p
= lock_user(VERIFY_READ
, arg2
, sizeof(target_sigset_t
), 1)))
8692 target_to_host_old_sigset(&set
, p
);
8693 unlock_user(p
, arg2
, 0);
8699 ret
= do_sigprocmask(how
, set_ptr
, &oldset
);
8700 if (!is_error(ret
) && arg3
) {
8701 if (!(p
= lock_user(VERIFY_WRITE
, arg3
, sizeof(target_sigset_t
), 0)))
8703 host_to_target_old_sigset(p
, &oldset
);
8704 unlock_user(p
, arg3
, sizeof(target_sigset_t
));
8710 case TARGET_NR_rt_sigprocmask
:
8713 sigset_t set
, oldset
, *set_ptr
;
8715 if (arg4
!= sizeof(target_sigset_t
)) {
8716 ret
= -TARGET_EINVAL
;
8722 case TARGET_SIG_BLOCK
:
8725 case TARGET_SIG_UNBLOCK
:
8728 case TARGET_SIG_SETMASK
:
8732 ret
= -TARGET_EINVAL
;
8735 if (!(p
= lock_user(VERIFY_READ
, arg2
, sizeof(target_sigset_t
), 1)))
8737 target_to_host_sigset(&set
, p
);
8738 unlock_user(p
, arg2
, 0);
8744 ret
= do_sigprocmask(how
, set_ptr
, &oldset
);
8745 if (!is_error(ret
) && arg3
) {
8746 if (!(p
= lock_user(VERIFY_WRITE
, arg3
, sizeof(target_sigset_t
), 0)))
8748 host_to_target_sigset(p
, &oldset
);
8749 unlock_user(p
, arg3
, sizeof(target_sigset_t
));
8753 #ifdef TARGET_NR_sigpending
8754 case TARGET_NR_sigpending
:
8757 ret
= get_errno(sigpending(&set
));
8758 if (!is_error(ret
)) {
8759 if (!(p
= lock_user(VERIFY_WRITE
, arg1
, sizeof(target_sigset_t
), 0)))
8761 host_to_target_old_sigset(p
, &set
);
8762 unlock_user(p
, arg1
, sizeof(target_sigset_t
));
8767 case TARGET_NR_rt_sigpending
:
8771 /* Yes, this check is >, not != like most. We follow the kernel's
8772 * logic and it does it like this because it implements
8773 * NR_sigpending through the same code path, and in that case
8774 * the old_sigset_t is smaller in size.
8776 if (arg2
> sizeof(target_sigset_t
)) {
8777 ret
= -TARGET_EINVAL
;
8781 ret
= get_errno(sigpending(&set
));
8782 if (!is_error(ret
)) {
8783 if (!(p
= lock_user(VERIFY_WRITE
, arg1
, sizeof(target_sigset_t
), 0)))
8785 host_to_target_sigset(p
, &set
);
8786 unlock_user(p
, arg1
, sizeof(target_sigset_t
));
8790 #ifdef TARGET_NR_sigsuspend
8791 case TARGET_NR_sigsuspend
:
8793 TaskState
*ts
= cpu
->opaque
;
8794 #if defined(TARGET_ALPHA)
8795 abi_ulong mask
= arg1
;
8796 target_to_host_old_sigset(&ts
->sigsuspend_mask
, &mask
);
8798 if (!(p
= lock_user(VERIFY_READ
, arg1
, sizeof(target_sigset_t
), 1)))
8800 target_to_host_old_sigset(&ts
->sigsuspend_mask
, p
);
8801 unlock_user(p
, arg1
, 0);
8803 ret
= get_errno(safe_rt_sigsuspend(&ts
->sigsuspend_mask
,
8805 if (ret
!= -TARGET_ERESTARTSYS
) {
8806 ts
->in_sigsuspend
= 1;
8811 case TARGET_NR_rt_sigsuspend
:
8813 TaskState
*ts
= cpu
->opaque
;
8815 if (arg2
!= sizeof(target_sigset_t
)) {
8816 ret
= -TARGET_EINVAL
;
8819 if (!(p
= lock_user(VERIFY_READ
, arg1
, sizeof(target_sigset_t
), 1)))
8821 target_to_host_sigset(&ts
->sigsuspend_mask
, p
);
8822 unlock_user(p
, arg1
, 0);
8823 ret
= get_errno(safe_rt_sigsuspend(&ts
->sigsuspend_mask
,
8825 if (ret
!= -TARGET_ERESTARTSYS
) {
8826 ts
->in_sigsuspend
= 1;
8830 case TARGET_NR_rt_sigtimedwait
:
8833 struct timespec uts
, *puts
;
8836 if (arg4
!= sizeof(target_sigset_t
)) {
8837 ret
= -TARGET_EINVAL
;
8841 if (!(p
= lock_user(VERIFY_READ
, arg1
, sizeof(target_sigset_t
), 1)))
8843 target_to_host_sigset(&set
, p
);
8844 unlock_user(p
, arg1
, 0);
8847 target_to_host_timespec(puts
, arg3
);
8851 ret
= get_errno(safe_rt_sigtimedwait(&set
, &uinfo
, puts
,
8853 if (!is_error(ret
)) {
8855 p
= lock_user(VERIFY_WRITE
, arg2
, sizeof(target_siginfo_t
),
8860 host_to_target_siginfo(p
, &uinfo
);
8861 unlock_user(p
, arg2
, sizeof(target_siginfo_t
));
8863 ret
= host_to_target_signal(ret
);
8867 case TARGET_NR_rt_sigqueueinfo
:
8871 p
= lock_user(VERIFY_READ
, arg3
, sizeof(target_siginfo_t
), 1);
8875 target_to_host_siginfo(&uinfo
, p
);
8876 unlock_user(p
, arg3
, 0);
8877 ret
= get_errno(sys_rt_sigqueueinfo(arg1
, arg2
, &uinfo
));
8880 case TARGET_NR_rt_tgsigqueueinfo
:
8884 p
= lock_user(VERIFY_READ
, arg4
, sizeof(target_siginfo_t
), 1);
8888 target_to_host_siginfo(&uinfo
, p
);
8889 unlock_user(p
, arg4
, 0);
8890 ret
= get_errno(sys_rt_tgsigqueueinfo(arg1
, arg2
, arg3
, &uinfo
));
8893 #ifdef TARGET_NR_sigreturn
8894 case TARGET_NR_sigreturn
:
8895 if (block_signals()) {
8896 ret
= -TARGET_ERESTARTSYS
;
8898 ret
= do_sigreturn(cpu_env
);
8902 case TARGET_NR_rt_sigreturn
:
8903 if (block_signals()) {
8904 ret
= -TARGET_ERESTARTSYS
;
8906 ret
= do_rt_sigreturn(cpu_env
);
8909 case TARGET_NR_sethostname
:
8910 if (!(p
= lock_user_string(arg1
)))
8912 ret
= get_errno(sethostname(p
, arg2
));
8913 unlock_user(p
, arg1
, 0);
8915 case TARGET_NR_setrlimit
:
8917 int resource
= target_to_host_resource(arg1
);
8918 struct target_rlimit
*target_rlim
;
8920 if (!lock_user_struct(VERIFY_READ
, target_rlim
, arg2
, 1))
8922 rlim
.rlim_cur
= target_to_host_rlim(target_rlim
->rlim_cur
);
8923 rlim
.rlim_max
= target_to_host_rlim(target_rlim
->rlim_max
);
8924 unlock_user_struct(target_rlim
, arg2
, 0);
8925 ret
= get_errno(setrlimit(resource
, &rlim
));
8928 case TARGET_NR_getrlimit
:
8930 int resource
= target_to_host_resource(arg1
);
8931 struct target_rlimit
*target_rlim
;
8934 ret
= get_errno(getrlimit(resource
, &rlim
));
8935 if (!is_error(ret
)) {
8936 if (!lock_user_struct(VERIFY_WRITE
, target_rlim
, arg2
, 0))
8938 target_rlim
->rlim_cur
= host_to_target_rlim(rlim
.rlim_cur
);
8939 target_rlim
->rlim_max
= host_to_target_rlim(rlim
.rlim_max
);
8940 unlock_user_struct(target_rlim
, arg2
, 1);
8944 case TARGET_NR_getrusage
:
8946 struct rusage rusage
;
8947 ret
= get_errno(getrusage(arg1
, &rusage
));
8948 if (!is_error(ret
)) {
8949 ret
= host_to_target_rusage(arg2
, &rusage
);
8953 case TARGET_NR_gettimeofday
:
8956 ret
= get_errno(gettimeofday(&tv
, NULL
));
8957 if (!is_error(ret
)) {
8958 if (copy_to_user_timeval(arg1
, &tv
))
8963 case TARGET_NR_settimeofday
:
8965 struct timeval tv
, *ptv
= NULL
;
8966 struct timezone tz
, *ptz
= NULL
;
8969 if (copy_from_user_timeval(&tv
, arg1
)) {
8976 if (copy_from_user_timezone(&tz
, arg2
)) {
8982 ret
= get_errno(settimeofday(ptv
, ptz
));
8985 #if defined(TARGET_NR_select)
8986 case TARGET_NR_select
:
8987 #if defined(TARGET_WANT_NI_OLD_SELECT)
8988 /* some architectures used to have old_select here
8989 * but now ENOSYS it.
8991 ret
= -TARGET_ENOSYS
;
8992 #elif defined(TARGET_WANT_OLD_SYS_SELECT)
8993 ret
= do_old_select(arg1
);
8995 ret
= do_select(arg1
, arg2
, arg3
, arg4
, arg5
);
8999 #ifdef TARGET_NR_pselect6
9000 case TARGET_NR_pselect6
:
9002 abi_long rfd_addr
, wfd_addr
, efd_addr
, n
, ts_addr
;
9003 fd_set rfds
, wfds
, efds
;
9004 fd_set
*rfds_ptr
, *wfds_ptr
, *efds_ptr
;
9005 struct timespec ts
, *ts_ptr
;
9008 * The 6th arg is actually two args smashed together,
9009 * so we cannot use the C library.
9017 abi_ulong arg_sigset
, arg_sigsize
, *arg7
;
9018 target_sigset_t
*target_sigset
;
9026 ret
= copy_from_user_fdset_ptr(&rfds
, &rfds_ptr
, rfd_addr
, n
);
9030 ret
= copy_from_user_fdset_ptr(&wfds
, &wfds_ptr
, wfd_addr
, n
);
9034 ret
= copy_from_user_fdset_ptr(&efds
, &efds_ptr
, efd_addr
, n
);
9040 * This takes a timespec, and not a timeval, so we cannot
9041 * use the do_select() helper ...
9044 if (target_to_host_timespec(&ts
, ts_addr
)) {
9052 /* Extract the two packed args for the sigset */
9055 sig
.size
= SIGSET_T_SIZE
;
9057 arg7
= lock_user(VERIFY_READ
, arg6
, sizeof(*arg7
) * 2, 1);
9061 arg_sigset
= tswapal(arg7
[0]);
9062 arg_sigsize
= tswapal(arg7
[1]);
9063 unlock_user(arg7
, arg6
, 0);
9067 if (arg_sigsize
!= sizeof(*target_sigset
)) {
9068 /* Like the kernel, we enforce correct size sigsets */
9069 ret
= -TARGET_EINVAL
;
9072 target_sigset
= lock_user(VERIFY_READ
, arg_sigset
,
9073 sizeof(*target_sigset
), 1);
9074 if (!target_sigset
) {
9077 target_to_host_sigset(&set
, target_sigset
);
9078 unlock_user(target_sigset
, arg_sigset
, 0);
9086 ret
= get_errno(safe_pselect6(n
, rfds_ptr
, wfds_ptr
, efds_ptr
,
9089 if (!is_error(ret
)) {
9090 if (rfd_addr
&& copy_to_user_fdset(rfd_addr
, &rfds
, n
))
9092 if (wfd_addr
&& copy_to_user_fdset(wfd_addr
, &wfds
, n
))
9094 if (efd_addr
&& copy_to_user_fdset(efd_addr
, &efds
, n
))
9097 if (ts_addr
&& host_to_target_timespec(ts_addr
, &ts
))
9103 #ifdef TARGET_NR_symlink
9104 case TARGET_NR_symlink
:
9107 p
= lock_user_string(arg1
);
9108 p2
= lock_user_string(arg2
);
9110 ret
= -TARGET_EFAULT
;
9112 ret
= get_errno(symlink(p
, p2
));
9113 unlock_user(p2
, arg2
, 0);
9114 unlock_user(p
, arg1
, 0);
9118 #if defined(TARGET_NR_symlinkat)
9119 case TARGET_NR_symlinkat
:
9122 p
= lock_user_string(arg1
);
9123 p2
= lock_user_string(arg3
);
9125 ret
= -TARGET_EFAULT
;
9127 ret
= get_errno(symlinkat(p
, arg2
, p2
));
9128 unlock_user(p2
, arg3
, 0);
9129 unlock_user(p
, arg1
, 0);
9133 #ifdef TARGET_NR_oldlstat
9134 case TARGET_NR_oldlstat
:
9137 #ifdef TARGET_NR_readlink
9138 case TARGET_NR_readlink
:
9141 p
= lock_user_string(arg1
);
9142 p2
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0);
9144 ret
= -TARGET_EFAULT
;
9146 /* Short circuit this for the magic exe check. */
9147 ret
= -TARGET_EINVAL
;
9148 } else if (is_proc_myself((const char *)p
, "exe")) {
9149 char real
[PATH_MAX
], *temp
;
9150 temp
= realpath(exec_path
, real
);
9151 /* Return value is # of bytes that we wrote to the buffer. */
9153 ret
= get_errno(-1);
9155 /* Don't worry about sign mismatch as earlier mapping
9156 * logic would have thrown a bad address error. */
9157 ret
= MIN(strlen(real
), arg3
);
9158 /* We cannot NUL terminate the string. */
9159 memcpy(p2
, real
, ret
);
9162 ret
= get_errno(readlink(path(p
), p2
, arg3
));
9164 unlock_user(p2
, arg2
, ret
);
9165 unlock_user(p
, arg1
, 0);
9169 #if defined(TARGET_NR_readlinkat)
9170 case TARGET_NR_readlinkat
:
9173 p
= lock_user_string(arg2
);
9174 p2
= lock_user(VERIFY_WRITE
, arg3
, arg4
, 0);
9176 ret
= -TARGET_EFAULT
;
9177 } else if (is_proc_myself((const char *)p
, "exe")) {
9178 char real
[PATH_MAX
], *temp
;
9179 temp
= realpath(exec_path
, real
);
9180 ret
= temp
== NULL
? get_errno(-1) : strlen(real
) ;
9181 snprintf((char *)p2
, arg4
, "%s", real
);
9183 ret
= get_errno(readlinkat(arg1
, path(p
), p2
, arg4
));
9185 unlock_user(p2
, arg3
, ret
);
9186 unlock_user(p
, arg2
, 0);
9190 #ifdef TARGET_NR_uselib
9191 case TARGET_NR_uselib
:
9194 #ifdef TARGET_NR_swapon
9195 case TARGET_NR_swapon
:
9196 if (!(p
= lock_user_string(arg1
)))
9198 ret
= get_errno(swapon(p
, arg2
));
9199 unlock_user(p
, arg1
, 0);
9202 case TARGET_NR_reboot
:
9203 if (arg3
== LINUX_REBOOT_CMD_RESTART2
) {
9204 /* arg4 must be ignored in all other cases */
9205 p
= lock_user_string(arg4
);
9209 ret
= get_errno(reboot(arg1
, arg2
, arg3
, p
));
9210 unlock_user(p
, arg4
, 0);
9212 ret
= get_errno(reboot(arg1
, arg2
, arg3
, NULL
));
9215 #ifdef TARGET_NR_readdir
9216 case TARGET_NR_readdir
:
9219 #ifdef TARGET_NR_mmap
9220 case TARGET_NR_mmap
:
9221 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \
9222 (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \
9223 defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \
9224 || defined(TARGET_S390X)
9227 abi_ulong v1
, v2
, v3
, v4
, v5
, v6
;
9228 if (!(v
= lock_user(VERIFY_READ
, arg1
, 6 * sizeof(abi_ulong
), 1)))
9236 unlock_user(v
, arg1
, 0);
9237 ret
= get_errno(target_mmap(v1
, v2
, v3
,
9238 target_to_host_bitmask(v4
, mmap_flags_tbl
),
9242 ret
= get_errno(target_mmap(arg1
, arg2
, arg3
,
9243 target_to_host_bitmask(arg4
, mmap_flags_tbl
),
9249 #ifdef TARGET_NR_mmap2
9250 case TARGET_NR_mmap2
:
9252 #define MMAP_SHIFT 12
9254 ret
= get_errno(target_mmap(arg1
, arg2
, arg3
,
9255 target_to_host_bitmask(arg4
, mmap_flags_tbl
),
9257 arg6
<< MMAP_SHIFT
));
9260 case TARGET_NR_munmap
:
9261 ret
= get_errno(target_munmap(arg1
, arg2
));
9263 case TARGET_NR_mprotect
:
9265 TaskState
*ts
= cpu
->opaque
;
9266 /* Special hack to detect libc making the stack executable. */
9267 if ((arg3
& PROT_GROWSDOWN
)
9268 && arg1
>= ts
->info
->stack_limit
9269 && arg1
<= ts
->info
->start_stack
) {
9270 arg3
&= ~PROT_GROWSDOWN
;
9271 arg2
= arg2
+ arg1
- ts
->info
->stack_limit
;
9272 arg1
= ts
->info
->stack_limit
;
9275 ret
= get_errno(target_mprotect(arg1
, arg2
, arg3
));
9277 #ifdef TARGET_NR_mremap
9278 case TARGET_NR_mremap
:
9279 ret
= get_errno(target_mremap(arg1
, arg2
, arg3
, arg4
, arg5
));
9282 /* ??? msync/mlock/munlock are broken for softmmu. */
9283 #ifdef TARGET_NR_msync
9284 case TARGET_NR_msync
:
9285 ret
= get_errno(msync(g2h(arg1
), arg2
, arg3
));
9288 #ifdef TARGET_NR_mlock
9289 case TARGET_NR_mlock
:
9290 ret
= get_errno(mlock(g2h(arg1
), arg2
));
9293 #ifdef TARGET_NR_munlock
9294 case TARGET_NR_munlock
:
9295 ret
= get_errno(munlock(g2h(arg1
), arg2
));
9298 #ifdef TARGET_NR_mlockall
9299 case TARGET_NR_mlockall
:
9300 ret
= get_errno(mlockall(target_to_host_mlockall_arg(arg1
)));
9303 #ifdef TARGET_NR_munlockall
9304 case TARGET_NR_munlockall
:
9305 ret
= get_errno(munlockall());
9308 case TARGET_NR_truncate
:
9309 if (!(p
= lock_user_string(arg1
)))
9311 ret
= get_errno(truncate(p
, arg2
));
9312 unlock_user(p
, arg1
, 0);
9314 case TARGET_NR_ftruncate
:
9315 ret
= get_errno(ftruncate(arg1
, arg2
));
9317 case TARGET_NR_fchmod
:
9318 ret
= get_errno(fchmod(arg1
, arg2
));
9320 #if defined(TARGET_NR_fchmodat)
9321 case TARGET_NR_fchmodat
:
9322 if (!(p
= lock_user_string(arg2
)))
9324 ret
= get_errno(fchmodat(arg1
, p
, arg3
, 0));
9325 unlock_user(p
, arg2
, 0);
9328 case TARGET_NR_getpriority
:
9329 /* Note that negative values are valid for getpriority, so we must
9330 differentiate based on errno settings. */
9332 ret
= getpriority(arg1
, arg2
);
9333 if (ret
== -1 && errno
!= 0) {
9334 ret
= -host_to_target_errno(errno
);
9338 /* Return value is the unbiased priority. Signal no error. */
9339 ((CPUAlphaState
*)cpu_env
)->ir
[IR_V0
] = 0;
9341 /* Return value is a biased priority to avoid negative numbers. */
9345 case TARGET_NR_setpriority
:
9346 ret
= get_errno(setpriority(arg1
, arg2
, arg3
));
9348 #ifdef TARGET_NR_profil
9349 case TARGET_NR_profil
:
9352 case TARGET_NR_statfs
:
9353 if (!(p
= lock_user_string(arg1
)))
9355 ret
= get_errno(statfs(path(p
), &stfs
));
9356 unlock_user(p
, arg1
, 0);
9358 if (!is_error(ret
)) {
9359 struct target_statfs
*target_stfs
;
9361 if (!lock_user_struct(VERIFY_WRITE
, target_stfs
, arg2
, 0))
9363 __put_user(stfs
.f_type
, &target_stfs
->f_type
);
9364 __put_user(stfs
.f_bsize
, &target_stfs
->f_bsize
);
9365 __put_user(stfs
.f_blocks
, &target_stfs
->f_blocks
);
9366 __put_user(stfs
.f_bfree
, &target_stfs
->f_bfree
);
9367 __put_user(stfs
.f_bavail
, &target_stfs
->f_bavail
);
9368 __put_user(stfs
.f_files
, &target_stfs
->f_files
);
9369 __put_user(stfs
.f_ffree
, &target_stfs
->f_ffree
);
9370 __put_user(stfs
.f_fsid
.__val
[0], &target_stfs
->f_fsid
.val
[0]);
9371 __put_user(stfs
.f_fsid
.__val
[1], &target_stfs
->f_fsid
.val
[1]);
9372 __put_user(stfs
.f_namelen
, &target_stfs
->f_namelen
);
9373 __put_user(stfs
.f_frsize
, &target_stfs
->f_frsize
);
9374 memset(target_stfs
->f_spare
, 0, sizeof(target_stfs
->f_spare
));
9375 unlock_user_struct(target_stfs
, arg2
, 1);
9378 case TARGET_NR_fstatfs
:
9379 ret
= get_errno(fstatfs(arg1
, &stfs
));
9380 goto convert_statfs
;
9381 #ifdef TARGET_NR_statfs64
9382 case TARGET_NR_statfs64
:
9383 if (!(p
= lock_user_string(arg1
)))
9385 ret
= get_errno(statfs(path(p
), &stfs
));
9386 unlock_user(p
, arg1
, 0);
9388 if (!is_error(ret
)) {
9389 struct target_statfs64
*target_stfs
;
9391 if (!lock_user_struct(VERIFY_WRITE
, target_stfs
, arg3
, 0))
9393 __put_user(stfs
.f_type
, &target_stfs
->f_type
);
9394 __put_user(stfs
.f_bsize
, &target_stfs
->f_bsize
);
9395 __put_user(stfs
.f_blocks
, &target_stfs
->f_blocks
);
9396 __put_user(stfs
.f_bfree
, &target_stfs
->f_bfree
);
9397 __put_user(stfs
.f_bavail
, &target_stfs
->f_bavail
);
9398 __put_user(stfs
.f_files
, &target_stfs
->f_files
);
9399 __put_user(stfs
.f_ffree
, &target_stfs
->f_ffree
);
9400 __put_user(stfs
.f_fsid
.__val
[0], &target_stfs
->f_fsid
.val
[0]);
9401 __put_user(stfs
.f_fsid
.__val
[1], &target_stfs
->f_fsid
.val
[1]);
9402 __put_user(stfs
.f_namelen
, &target_stfs
->f_namelen
);
9403 __put_user(stfs
.f_frsize
, &target_stfs
->f_frsize
);
9404 memset(target_stfs
->f_spare
, 0, sizeof(target_stfs
->f_spare
));
9405 unlock_user_struct(target_stfs
, arg3
, 1);
9408 case TARGET_NR_fstatfs64
:
9409 ret
= get_errno(fstatfs(arg1
, &stfs
));
9410 goto convert_statfs64
;
9412 #ifdef TARGET_NR_ioperm
9413 case TARGET_NR_ioperm
:
9416 #ifdef TARGET_NR_socketcall
9417 case TARGET_NR_socketcall
:
9418 ret
= do_socketcall(arg1
, arg2
);
9421 #ifdef TARGET_NR_accept
9422 case TARGET_NR_accept
:
9423 ret
= do_accept4(arg1
, arg2
, arg3
, 0);
9426 #ifdef TARGET_NR_accept4
9427 case TARGET_NR_accept4
:
9428 ret
= do_accept4(arg1
, arg2
, arg3
, arg4
);
9431 #ifdef TARGET_NR_bind
9432 case TARGET_NR_bind
:
9433 ret
= do_bind(arg1
, arg2
, arg3
);
9436 #ifdef TARGET_NR_connect
9437 case TARGET_NR_connect
:
9438 ret
= do_connect(arg1
, arg2
, arg3
);
9441 #ifdef TARGET_NR_getpeername
9442 case TARGET_NR_getpeername
:
9443 ret
= do_getpeername(arg1
, arg2
, arg3
);
9446 #ifdef TARGET_NR_getsockname
9447 case TARGET_NR_getsockname
:
9448 ret
= do_getsockname(arg1
, arg2
, arg3
);
9451 #ifdef TARGET_NR_getsockopt
9452 case TARGET_NR_getsockopt
:
9453 ret
= do_getsockopt(arg1
, arg2
, arg3
, arg4
, arg5
);
9456 #ifdef TARGET_NR_listen
9457 case TARGET_NR_listen
:
9458 ret
= get_errno(listen(arg1
, arg2
));
9461 #ifdef TARGET_NR_recv
9462 case TARGET_NR_recv
:
9463 ret
= do_recvfrom(arg1
, arg2
, arg3
, arg4
, 0, 0);
9466 #ifdef TARGET_NR_recvfrom
9467 case TARGET_NR_recvfrom
:
9468 ret
= do_recvfrom(arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
9471 #ifdef TARGET_NR_recvmsg
9472 case TARGET_NR_recvmsg
:
9473 ret
= do_sendrecvmsg(arg1
, arg2
, arg3
, 0);
9476 #ifdef TARGET_NR_send
9477 case TARGET_NR_send
:
9478 ret
= do_sendto(arg1
, arg2
, arg3
, arg4
, 0, 0);
9481 #ifdef TARGET_NR_sendmsg
9482 case TARGET_NR_sendmsg
:
9483 ret
= do_sendrecvmsg(arg1
, arg2
, arg3
, 1);
9486 #ifdef TARGET_NR_sendmmsg
9487 case TARGET_NR_sendmmsg
:
9488 ret
= do_sendrecvmmsg(arg1
, arg2
, arg3
, arg4
, 1);
9490 case TARGET_NR_recvmmsg
:
9491 ret
= do_sendrecvmmsg(arg1
, arg2
, arg3
, arg4
, 0);
9494 #ifdef TARGET_NR_sendto
9495 case TARGET_NR_sendto
:
9496 ret
= do_sendto(arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
9499 #ifdef TARGET_NR_shutdown
9500 case TARGET_NR_shutdown
:
9501 ret
= get_errno(shutdown(arg1
, arg2
));
9504 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
9505 case TARGET_NR_getrandom
:
9506 p
= lock_user(VERIFY_WRITE
, arg1
, arg2
, 0);
9510 ret
= get_errno(getrandom(p
, arg2
, arg3
));
9511 unlock_user(p
, arg1
, ret
);
9514 #ifdef TARGET_NR_socket
9515 case TARGET_NR_socket
:
9516 ret
= do_socket(arg1
, arg2
, arg3
);
9519 #ifdef TARGET_NR_socketpair
9520 case TARGET_NR_socketpair
:
9521 ret
= do_socketpair(arg1
, arg2
, arg3
, arg4
);
9524 #ifdef TARGET_NR_setsockopt
9525 case TARGET_NR_setsockopt
:
9526 ret
= do_setsockopt(arg1
, arg2
, arg3
, arg4
, (socklen_t
) arg5
);
9529 #if defined(TARGET_NR_syslog)
9530 case TARGET_NR_syslog
:
9535 case TARGET_SYSLOG_ACTION_CLOSE
: /* Close log */
9536 case TARGET_SYSLOG_ACTION_OPEN
: /* Open log */
9537 case TARGET_SYSLOG_ACTION_CLEAR
: /* Clear ring buffer */
9538 case TARGET_SYSLOG_ACTION_CONSOLE_OFF
: /* Disable logging */
9539 case TARGET_SYSLOG_ACTION_CONSOLE_ON
: /* Enable logging */
9540 case TARGET_SYSLOG_ACTION_CONSOLE_LEVEL
: /* Set messages level */
9541 case TARGET_SYSLOG_ACTION_SIZE_UNREAD
: /* Number of chars */
9542 case TARGET_SYSLOG_ACTION_SIZE_BUFFER
: /* Size of the buffer */
9544 ret
= get_errno(sys_syslog((int)arg1
, NULL
, (int)arg3
));
9547 case TARGET_SYSLOG_ACTION_READ
: /* Read from log */
9548 case TARGET_SYSLOG_ACTION_READ_CLEAR
: /* Read/clear msgs */
9549 case TARGET_SYSLOG_ACTION_READ_ALL
: /* Read last messages */
9551 ret
= -TARGET_EINVAL
;
9559 p
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0);
9561 ret
= -TARGET_EFAULT
;
9564 ret
= get_errno(sys_syslog((int)arg1
, p
, (int)arg3
));
9565 unlock_user(p
, arg2
, arg3
);
9575 case TARGET_NR_setitimer
:
9577 struct itimerval value
, ovalue
, *pvalue
;
9581 if (copy_from_user_timeval(&pvalue
->it_interval
, arg2
)
9582 || copy_from_user_timeval(&pvalue
->it_value
,
9583 arg2
+ sizeof(struct target_timeval
)))
9588 ret
= get_errno(setitimer(arg1
, pvalue
, &ovalue
));
9589 if (!is_error(ret
) && arg3
) {
9590 if (copy_to_user_timeval(arg3
,
9591 &ovalue
.it_interval
)
9592 || copy_to_user_timeval(arg3
+ sizeof(struct target_timeval
),
9598 case TARGET_NR_getitimer
:
9600 struct itimerval value
;
9602 ret
= get_errno(getitimer(arg1
, &value
));
9603 if (!is_error(ret
) && arg2
) {
9604 if (copy_to_user_timeval(arg2
,
9606 || copy_to_user_timeval(arg2
+ sizeof(struct target_timeval
),
9612 #ifdef TARGET_NR_stat
9613 case TARGET_NR_stat
:
9614 if (!(p
= lock_user_string(arg1
)))
9616 ret
= get_errno(stat(path(p
), &st
));
9617 unlock_user(p
, arg1
, 0);
9620 #ifdef TARGET_NR_lstat
9621 case TARGET_NR_lstat
:
9622 if (!(p
= lock_user_string(arg1
)))
9624 ret
= get_errno(lstat(path(p
), &st
));
9625 unlock_user(p
, arg1
, 0);
9628 case TARGET_NR_fstat
:
9630 ret
= get_errno(fstat(arg1
, &st
));
9631 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat)
9634 if (!is_error(ret
)) {
9635 struct target_stat
*target_st
;
9637 if (!lock_user_struct(VERIFY_WRITE
, target_st
, arg2
, 0))
9639 memset(target_st
, 0, sizeof(*target_st
));
9640 __put_user(st
.st_dev
, &target_st
->st_dev
);
9641 __put_user(st
.st_ino
, &target_st
->st_ino
);
9642 __put_user(st
.st_mode
, &target_st
->st_mode
);
9643 __put_user(st
.st_uid
, &target_st
->st_uid
);
9644 __put_user(st
.st_gid
, &target_st
->st_gid
);
9645 __put_user(st
.st_nlink
, &target_st
->st_nlink
);
9646 __put_user(st
.st_rdev
, &target_st
->st_rdev
);
9647 __put_user(st
.st_size
, &target_st
->st_size
);
9648 __put_user(st
.st_blksize
, &target_st
->st_blksize
);
9649 __put_user(st
.st_blocks
, &target_st
->st_blocks
);
9650 __put_user(st
.st_atime
, &target_st
->target_st_atime
);
9651 __put_user(st
.st_mtime
, &target_st
->target_st_mtime
);
9652 __put_user(st
.st_ctime
, &target_st
->target_st_ctime
);
9653 unlock_user_struct(target_st
, arg2
, 1);
9657 #ifdef TARGET_NR_olduname
9658 case TARGET_NR_olduname
:
9661 #ifdef TARGET_NR_iopl
9662 case TARGET_NR_iopl
:
9665 case TARGET_NR_vhangup
:
9666 ret
= get_errno(vhangup());
9668 #ifdef TARGET_NR_idle
9669 case TARGET_NR_idle
:
9672 #ifdef TARGET_NR_syscall
9673 case TARGET_NR_syscall
:
9674 ret
= do_syscall(cpu_env
, arg1
& 0xffff, arg2
, arg3
, arg4
, arg5
,
9675 arg6
, arg7
, arg8
, 0);
9678 case TARGET_NR_wait4
:
9681 abi_long status_ptr
= arg2
;
9682 struct rusage rusage
, *rusage_ptr
;
9683 abi_ulong target_rusage
= arg4
;
9684 abi_long rusage_err
;
9686 rusage_ptr
= &rusage
;
9689 ret
= get_errno(safe_wait4(arg1
, &status
, arg3
, rusage_ptr
));
9690 if (!is_error(ret
)) {
9691 if (status_ptr
&& ret
) {
9692 status
= host_to_target_waitstatus(status
);
9693 if (put_user_s32(status
, status_ptr
))
9696 if (target_rusage
) {
9697 rusage_err
= host_to_target_rusage(target_rusage
, &rusage
);
9705 #ifdef TARGET_NR_swapoff
9706 case TARGET_NR_swapoff
:
9707 if (!(p
= lock_user_string(arg1
)))
9709 ret
= get_errno(swapoff(p
));
9710 unlock_user(p
, arg1
, 0);
9713 case TARGET_NR_sysinfo
:
9715 struct target_sysinfo
*target_value
;
9716 struct sysinfo value
;
9717 ret
= get_errno(sysinfo(&value
));
9718 if (!is_error(ret
) && arg1
)
9720 if (!lock_user_struct(VERIFY_WRITE
, target_value
, arg1
, 0))
9722 __put_user(value
.uptime
, &target_value
->uptime
);
9723 __put_user(value
.loads
[0], &target_value
->loads
[0]);
9724 __put_user(value
.loads
[1], &target_value
->loads
[1]);
9725 __put_user(value
.loads
[2], &target_value
->loads
[2]);
9726 __put_user(value
.totalram
, &target_value
->totalram
);
9727 __put_user(value
.freeram
, &target_value
->freeram
);
9728 __put_user(value
.sharedram
, &target_value
->sharedram
);
9729 __put_user(value
.bufferram
, &target_value
->bufferram
);
9730 __put_user(value
.totalswap
, &target_value
->totalswap
);
9731 __put_user(value
.freeswap
, &target_value
->freeswap
);
9732 __put_user(value
.procs
, &target_value
->procs
);
9733 __put_user(value
.totalhigh
, &target_value
->totalhigh
);
9734 __put_user(value
.freehigh
, &target_value
->freehigh
);
9735 __put_user(value
.mem_unit
, &target_value
->mem_unit
);
9736 unlock_user_struct(target_value
, arg1
, 1);
9740 #ifdef TARGET_NR_ipc
9742 ret
= do_ipc(cpu_env
, arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
9745 #ifdef TARGET_NR_semget
9746 case TARGET_NR_semget
:
9747 ret
= get_errno(semget(arg1
, arg2
, arg3
));
9750 #ifdef TARGET_NR_semop
9751 case TARGET_NR_semop
:
9752 ret
= do_semop(arg1
, arg2
, arg3
);
9755 #ifdef TARGET_NR_semctl
9756 case TARGET_NR_semctl
:
9757 ret
= do_semctl(arg1
, arg2
, arg3
, arg4
);
9760 #ifdef TARGET_NR_msgctl
9761 case TARGET_NR_msgctl
:
9762 ret
= do_msgctl(arg1
, arg2
, arg3
);
9765 #ifdef TARGET_NR_msgget
9766 case TARGET_NR_msgget
:
9767 ret
= get_errno(msgget(arg1
, arg2
));
9770 #ifdef TARGET_NR_msgrcv
9771 case TARGET_NR_msgrcv
:
9772 ret
= do_msgrcv(arg1
, arg2
, arg3
, arg4
, arg5
);
9775 #ifdef TARGET_NR_msgsnd
9776 case TARGET_NR_msgsnd
:
9777 ret
= do_msgsnd(arg1
, arg2
, arg3
, arg4
);
9780 #ifdef TARGET_NR_shmget
9781 case TARGET_NR_shmget
:
9782 ret
= get_errno(shmget(arg1
, arg2
, arg3
));
9785 #ifdef TARGET_NR_shmctl
9786 case TARGET_NR_shmctl
:
9787 ret
= do_shmctl(arg1
, arg2
, arg3
);
9790 #ifdef TARGET_NR_shmat
9791 case TARGET_NR_shmat
:
9792 ret
= do_shmat(cpu_env
, arg1
, arg2
, arg3
);
9795 #ifdef TARGET_NR_shmdt
9796 case TARGET_NR_shmdt
:
9797 ret
= do_shmdt(arg1
);
9800 case TARGET_NR_fsync
:
9801 ret
= get_errno(fsync(arg1
));
9803 case TARGET_NR_clone
:
9804 /* Linux manages to have three different orderings for its
9805 * arguments to clone(); the BACKWARDS and BACKWARDS2 defines
9806 * match the kernel's CONFIG_CLONE_* settings.
9807 * Microblaze is further special in that it uses a sixth
9808 * implicit argument to clone for the TLS pointer.
9810 #if defined(TARGET_MICROBLAZE)
9811 ret
= get_errno(do_fork(cpu_env
, arg1
, arg2
, arg4
, arg6
, arg5
));
9812 #elif defined(TARGET_CLONE_BACKWARDS)
9813 ret
= get_errno(do_fork(cpu_env
, arg1
, arg2
, arg3
, arg4
, arg5
));
9814 #elif defined(TARGET_CLONE_BACKWARDS2)
9815 ret
= get_errno(do_fork(cpu_env
, arg2
, arg1
, arg3
, arg5
, arg4
));
9817 ret
= get_errno(do_fork(cpu_env
, arg1
, arg2
, arg3
, arg5
, arg4
));
9820 #ifdef __NR_exit_group
9821 /* new thread calls */
9822 case TARGET_NR_exit_group
:
9826 gdb_exit(cpu_env
, arg1
);
9827 ret
= get_errno(exit_group(arg1
));
9830 case TARGET_NR_setdomainname
:
9831 if (!(p
= lock_user_string(arg1
)))
9833 ret
= get_errno(setdomainname(p
, arg2
));
9834 unlock_user(p
, arg1
, 0);
9836 case TARGET_NR_uname
:
9837 /* no need to transcode because we use the linux syscall */
9839 struct new_utsname
* buf
;
9841 if (!lock_user_struct(VERIFY_WRITE
, buf
, arg1
, 0))
9843 ret
= get_errno(sys_uname(buf
));
9844 if (!is_error(ret
)) {
9845 /* Overwrite the native machine name with whatever is being
9847 strcpy (buf
->machine
, cpu_to_uname_machine(cpu_env
));
9848 /* Allow the user to override the reported release. */
9849 if (qemu_uname_release
&& *qemu_uname_release
) {
9850 g_strlcpy(buf
->release
, qemu_uname_release
,
9851 sizeof(buf
->release
));
9854 unlock_user_struct(buf
, arg1
, 1);
9858 case TARGET_NR_modify_ldt
:
9859 ret
= do_modify_ldt(cpu_env
, arg1
, arg2
, arg3
);
9861 #if !defined(TARGET_X86_64)
9862 case TARGET_NR_vm86old
:
9864 case TARGET_NR_vm86
:
9865 ret
= do_vm86(cpu_env
, arg1
, arg2
);
9869 case TARGET_NR_adjtimex
:
9871 struct timex host_buf
;
9873 if (target_to_host_timex(&host_buf
, arg1
) != 0) {
9876 ret
= get_errno(adjtimex(&host_buf
));
9877 if (!is_error(ret
)) {
9878 if (host_to_target_timex(arg1
, &host_buf
) != 0) {
9884 #if defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME)
9885 case TARGET_NR_clock_adjtime
:
9887 struct timex htx
, *phtx
= &htx
;
9889 if (target_to_host_timex(phtx
, arg2
) != 0) {
9892 ret
= get_errno(clock_adjtime(arg1
, phtx
));
9893 if (!is_error(ret
) && phtx
) {
9894 if (host_to_target_timex(arg2
, phtx
) != 0) {
9901 #ifdef TARGET_NR_create_module
9902 case TARGET_NR_create_module
:
9904 case TARGET_NR_init_module
:
9905 case TARGET_NR_delete_module
:
9906 #ifdef TARGET_NR_get_kernel_syms
9907 case TARGET_NR_get_kernel_syms
:
9910 case TARGET_NR_quotactl
:
9912 case TARGET_NR_getpgid
:
9913 ret
= get_errno(getpgid(arg1
));
9915 case TARGET_NR_fchdir
:
9916 ret
= get_errno(fchdir(arg1
));
9918 #ifdef TARGET_NR_bdflush /* not on x86_64 */
9919 case TARGET_NR_bdflush
:
9922 #ifdef TARGET_NR_sysfs
9923 case TARGET_NR_sysfs
:
9926 case TARGET_NR_personality
:
9927 ret
= get_errno(personality(arg1
));
9929 #ifdef TARGET_NR_afs_syscall
9930 case TARGET_NR_afs_syscall
:
9933 #ifdef TARGET_NR__llseek /* Not on alpha */
9934 case TARGET_NR__llseek
:
9937 #if !defined(__NR_llseek)
9938 res
= lseek(arg1
, ((uint64_t)arg2
<< 32) | (abi_ulong
)arg3
, arg5
);
9940 ret
= get_errno(res
);
9945 ret
= get_errno(_llseek(arg1
, arg2
, arg3
, &res
, arg5
));
9947 if ((ret
== 0) && put_user_s64(res
, arg4
)) {
9953 #ifdef TARGET_NR_getdents
9954 case TARGET_NR_getdents
:
9955 #ifdef __NR_getdents
9956 #if TARGET_ABI_BITS == 32 && HOST_LONG_BITS == 64
9958 struct target_dirent
*target_dirp
;
9959 struct linux_dirent
*dirp
;
9960 abi_long count
= arg3
;
9962 dirp
= g_try_malloc(count
);
9964 ret
= -TARGET_ENOMEM
;
9968 ret
= get_errno(sys_getdents(arg1
, dirp
, count
));
9969 if (!is_error(ret
)) {
9970 struct linux_dirent
*de
;
9971 struct target_dirent
*tde
;
9973 int reclen
, treclen
;
9974 int count1
, tnamelen
;
9978 if (!(target_dirp
= lock_user(VERIFY_WRITE
, arg2
, count
, 0)))
9982 reclen
= de
->d_reclen
;
9983 tnamelen
= reclen
- offsetof(struct linux_dirent
, d_name
);
9984 assert(tnamelen
>= 0);
9985 treclen
= tnamelen
+ offsetof(struct target_dirent
, d_name
);
9986 assert(count1
+ treclen
<= count
);
9987 tde
->d_reclen
= tswap16(treclen
);
9988 tde
->d_ino
= tswapal(de
->d_ino
);
9989 tde
->d_off
= tswapal(de
->d_off
);
9990 memcpy(tde
->d_name
, de
->d_name
, tnamelen
);
9991 de
= (struct linux_dirent
*)((char *)de
+ reclen
);
9993 tde
= (struct target_dirent
*)((char *)tde
+ treclen
);
9997 unlock_user(target_dirp
, arg2
, ret
);
10003 struct linux_dirent
*dirp
;
10004 abi_long count
= arg3
;
10006 if (!(dirp
= lock_user(VERIFY_WRITE
, arg2
, count
, 0)))
10008 ret
= get_errno(sys_getdents(arg1
, dirp
, count
));
10009 if (!is_error(ret
)) {
10010 struct linux_dirent
*de
;
10015 reclen
= de
->d_reclen
;
10018 de
->d_reclen
= tswap16(reclen
);
10019 tswapls(&de
->d_ino
);
10020 tswapls(&de
->d_off
);
10021 de
= (struct linux_dirent
*)((char *)de
+ reclen
);
10025 unlock_user(dirp
, arg2
, ret
);
10029 /* Implement getdents in terms of getdents64 */
10031 struct linux_dirent64
*dirp
;
10032 abi_long count
= arg3
;
10034 dirp
= lock_user(VERIFY_WRITE
, arg2
, count
, 0);
10038 ret
= get_errno(sys_getdents64(arg1
, dirp
, count
));
10039 if (!is_error(ret
)) {
10040 /* Convert the dirent64 structs to target dirent. We do this
10041 * in-place, since we can guarantee that a target_dirent is no
10042 * larger than a dirent64; however this means we have to be
10043 * careful to read everything before writing in the new format.
10045 struct linux_dirent64
*de
;
10046 struct target_dirent
*tde
;
10051 tde
= (struct target_dirent
*)dirp
;
10053 int namelen
, treclen
;
10054 int reclen
= de
->d_reclen
;
10055 uint64_t ino
= de
->d_ino
;
10056 int64_t off
= de
->d_off
;
10057 uint8_t type
= de
->d_type
;
10059 namelen
= strlen(de
->d_name
);
10060 treclen
= offsetof(struct target_dirent
, d_name
)
10062 treclen
= QEMU_ALIGN_UP(treclen
, sizeof(abi_long
));
10064 memmove(tde
->d_name
, de
->d_name
, namelen
+ 1);
10065 tde
->d_ino
= tswapal(ino
);
10066 tde
->d_off
= tswapal(off
);
10067 tde
->d_reclen
= tswap16(treclen
);
10068 /* The target_dirent type is in what was formerly a padding
10069 * byte at the end of the structure:
10071 *(((char *)tde
) + treclen
- 1) = type
;
10073 de
= (struct linux_dirent64
*)((char *)de
+ reclen
);
10074 tde
= (struct target_dirent
*)((char *)tde
+ treclen
);
10080 unlock_user(dirp
, arg2
, ret
);
10084 #endif /* TARGET_NR_getdents */
10085 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
10086 case TARGET_NR_getdents64
:
10088 struct linux_dirent64
*dirp
;
10089 abi_long count
= arg3
;
10090 if (!(dirp
= lock_user(VERIFY_WRITE
, arg2
, count
, 0)))
10092 ret
= get_errno(sys_getdents64(arg1
, dirp
, count
));
10093 if (!is_error(ret
)) {
10094 struct linux_dirent64
*de
;
10099 reclen
= de
->d_reclen
;
10102 de
->d_reclen
= tswap16(reclen
);
10103 tswap64s((uint64_t *)&de
->d_ino
);
10104 tswap64s((uint64_t *)&de
->d_off
);
10105 de
= (struct linux_dirent64
*)((char *)de
+ reclen
);
10109 unlock_user(dirp
, arg2
, ret
);
10112 #endif /* TARGET_NR_getdents64 */
10113 #if defined(TARGET_NR__newselect)
10114 case TARGET_NR__newselect
:
10115 ret
= do_select(arg1
, arg2
, arg3
, arg4
, arg5
);
10118 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll)
10119 # ifdef TARGET_NR_poll
10120 case TARGET_NR_poll
:
10122 # ifdef TARGET_NR_ppoll
10123 case TARGET_NR_ppoll
:
10126 struct target_pollfd
*target_pfd
;
10127 unsigned int nfds
= arg2
;
10128 struct pollfd
*pfd
;
10134 if (nfds
> (INT_MAX
/ sizeof(struct target_pollfd
))) {
10135 ret
= -TARGET_EINVAL
;
10139 target_pfd
= lock_user(VERIFY_WRITE
, arg1
,
10140 sizeof(struct target_pollfd
) * nfds
, 1);
10145 pfd
= alloca(sizeof(struct pollfd
) * nfds
);
10146 for (i
= 0; i
< nfds
; i
++) {
10147 pfd
[i
].fd
= tswap32(target_pfd
[i
].fd
);
10148 pfd
[i
].events
= tswap16(target_pfd
[i
].events
);
10153 # ifdef TARGET_NR_ppoll
10154 case TARGET_NR_ppoll
:
10156 struct timespec _timeout_ts
, *timeout_ts
= &_timeout_ts
;
10157 target_sigset_t
*target_set
;
10158 sigset_t _set
, *set
= &_set
;
10161 if (target_to_host_timespec(timeout_ts
, arg3
)) {
10162 unlock_user(target_pfd
, arg1
, 0);
10170 if (arg5
!= sizeof(target_sigset_t
)) {
10171 unlock_user(target_pfd
, arg1
, 0);
10172 ret
= -TARGET_EINVAL
;
10176 target_set
= lock_user(VERIFY_READ
, arg4
, sizeof(target_sigset_t
), 1);
10178 unlock_user(target_pfd
, arg1
, 0);
10181 target_to_host_sigset(set
, target_set
);
10186 ret
= get_errno(safe_ppoll(pfd
, nfds
, timeout_ts
,
10187 set
, SIGSET_T_SIZE
));
10189 if (!is_error(ret
) && arg3
) {
10190 host_to_target_timespec(arg3
, timeout_ts
);
10193 unlock_user(target_set
, arg4
, 0);
10198 # ifdef TARGET_NR_poll
10199 case TARGET_NR_poll
:
10201 struct timespec ts
, *pts
;
10204 /* Convert ms to secs, ns */
10205 ts
.tv_sec
= arg3
/ 1000;
10206 ts
.tv_nsec
= (arg3
% 1000) * 1000000LL;
10209 /* -ve poll() timeout means "infinite" */
10212 ret
= get_errno(safe_ppoll(pfd
, nfds
, pts
, NULL
, 0));
10217 g_assert_not_reached();
10220 if (!is_error(ret
)) {
10221 for(i
= 0; i
< nfds
; i
++) {
10222 target_pfd
[i
].revents
= tswap16(pfd
[i
].revents
);
10225 unlock_user(target_pfd
, arg1
, sizeof(struct target_pollfd
) * nfds
);
10229 case TARGET_NR_flock
:
10230 /* NOTE: the flock constant seems to be the same for every
10232 ret
= get_errno(safe_flock(arg1
, arg2
));
10234 case TARGET_NR_readv
:
10236 struct iovec
*vec
= lock_iovec(VERIFY_WRITE
, arg2
, arg3
, 0);
10238 ret
= get_errno(safe_readv(arg1
, vec
, arg3
));
10239 unlock_iovec(vec
, arg2
, arg3
, 1);
10241 ret
= -host_to_target_errno(errno
);
10245 case TARGET_NR_writev
:
10247 struct iovec
*vec
= lock_iovec(VERIFY_READ
, arg2
, arg3
, 1);
10249 ret
= get_errno(safe_writev(arg1
, vec
, arg3
));
10250 unlock_iovec(vec
, arg2
, arg3
, 0);
10252 ret
= -host_to_target_errno(errno
);
10256 #if defined(TARGET_NR_preadv)
10257 case TARGET_NR_preadv
:
10259 struct iovec
*vec
= lock_iovec(VERIFY_WRITE
, arg2
, arg3
, 0);
10261 ret
= get_errno(safe_preadv(arg1
, vec
, arg3
, arg4
, arg5
));
10262 unlock_iovec(vec
, arg2
, arg3
, 1);
10264 ret
= -host_to_target_errno(errno
);
10269 #if defined(TARGET_NR_pwritev)
10270 case TARGET_NR_pwritev
:
10272 struct iovec
*vec
= lock_iovec(VERIFY_READ
, arg2
, arg3
, 1);
10274 ret
= get_errno(safe_pwritev(arg1
, vec
, arg3
, arg4
, arg5
));
10275 unlock_iovec(vec
, arg2
, arg3
, 0);
10277 ret
= -host_to_target_errno(errno
);
10282 case TARGET_NR_getsid
:
10283 ret
= get_errno(getsid(arg1
));
10285 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */
10286 case TARGET_NR_fdatasync
:
10287 ret
= get_errno(fdatasync(arg1
));
10290 #ifdef TARGET_NR__sysctl
10291 case TARGET_NR__sysctl
:
10292 /* We don't implement this, but ENOTDIR is always a safe
10294 ret
= -TARGET_ENOTDIR
;
10297 case TARGET_NR_sched_getaffinity
:
10299 unsigned int mask_size
;
10300 unsigned long *mask
;
10303 * sched_getaffinity needs multiples of ulong, so need to take
10304 * care of mismatches between target ulong and host ulong sizes.
10306 if (arg2
& (sizeof(abi_ulong
) - 1)) {
10307 ret
= -TARGET_EINVAL
;
10310 mask_size
= (arg2
+ (sizeof(*mask
) - 1)) & ~(sizeof(*mask
) - 1);
10312 mask
= alloca(mask_size
);
10313 ret
= get_errno(sys_sched_getaffinity(arg1
, mask_size
, mask
));
10315 if (!is_error(ret
)) {
10317 /* More data returned than the caller's buffer will fit.
10318 * This only happens if sizeof(abi_long) < sizeof(long)
10319 * and the caller passed us a buffer holding an odd number
10320 * of abi_longs. If the host kernel is actually using the
10321 * extra 4 bytes then fail EINVAL; otherwise we can just
10322 * ignore them and only copy the interesting part.
10324 int numcpus
= sysconf(_SC_NPROCESSORS_CONF
);
10325 if (numcpus
> arg2
* 8) {
10326 ret
= -TARGET_EINVAL
;
10332 if (copy_to_user(arg3
, mask
, ret
)) {
10338 case TARGET_NR_sched_setaffinity
:
10340 unsigned int mask_size
;
10341 unsigned long *mask
;
10344 * sched_setaffinity needs multiples of ulong, so need to take
10345 * care of mismatches between target ulong and host ulong sizes.
10347 if (arg2
& (sizeof(abi_ulong
) - 1)) {
10348 ret
= -TARGET_EINVAL
;
10351 mask_size
= (arg2
+ (sizeof(*mask
) - 1)) & ~(sizeof(*mask
) - 1);
10353 mask
= alloca(mask_size
);
10354 if (!lock_user_struct(VERIFY_READ
, p
, arg3
, 1)) {
10357 memcpy(mask
, p
, arg2
);
10358 unlock_user_struct(p
, arg2
, 0);
10360 ret
= get_errno(sys_sched_setaffinity(arg1
, mask_size
, mask
));
10363 case TARGET_NR_sched_setparam
:
10365 struct sched_param
*target_schp
;
10366 struct sched_param schp
;
10369 return -TARGET_EINVAL
;
10371 if (!lock_user_struct(VERIFY_READ
, target_schp
, arg2
, 1))
10373 schp
.sched_priority
= tswap32(target_schp
->sched_priority
);
10374 unlock_user_struct(target_schp
, arg2
, 0);
10375 ret
= get_errno(sched_setparam(arg1
, &schp
));
10378 case TARGET_NR_sched_getparam
:
10380 struct sched_param
*target_schp
;
10381 struct sched_param schp
;
10384 return -TARGET_EINVAL
;
10386 ret
= get_errno(sched_getparam(arg1
, &schp
));
10387 if (!is_error(ret
)) {
10388 if (!lock_user_struct(VERIFY_WRITE
, target_schp
, arg2
, 0))
10390 target_schp
->sched_priority
= tswap32(schp
.sched_priority
);
10391 unlock_user_struct(target_schp
, arg2
, 1);
10395 case TARGET_NR_sched_setscheduler
:
10397 struct sched_param
*target_schp
;
10398 struct sched_param schp
;
10400 return -TARGET_EINVAL
;
10402 if (!lock_user_struct(VERIFY_READ
, target_schp
, arg3
, 1))
10404 schp
.sched_priority
= tswap32(target_schp
->sched_priority
);
10405 unlock_user_struct(target_schp
, arg3
, 0);
10406 ret
= get_errno(sched_setscheduler(arg1
, arg2
, &schp
));
10409 case TARGET_NR_sched_getscheduler
:
10410 ret
= get_errno(sched_getscheduler(arg1
));
10412 case TARGET_NR_sched_yield
:
10413 ret
= get_errno(sched_yield());
10415 case TARGET_NR_sched_get_priority_max
:
10416 ret
= get_errno(sched_get_priority_max(arg1
));
10418 case TARGET_NR_sched_get_priority_min
:
10419 ret
= get_errno(sched_get_priority_min(arg1
));
10421 case TARGET_NR_sched_rr_get_interval
:
10423 struct timespec ts
;
10424 ret
= get_errno(sched_rr_get_interval(arg1
, &ts
));
10425 if (!is_error(ret
)) {
10426 ret
= host_to_target_timespec(arg2
, &ts
);
10430 case TARGET_NR_nanosleep
:
10432 struct timespec req
, rem
;
10433 target_to_host_timespec(&req
, arg1
);
10434 ret
= get_errno(safe_nanosleep(&req
, &rem
));
10435 if (is_error(ret
) && arg2
) {
10436 host_to_target_timespec(arg2
, &rem
);
10440 #ifdef TARGET_NR_query_module
10441 case TARGET_NR_query_module
:
10442 goto unimplemented
;
10444 #ifdef TARGET_NR_nfsservctl
10445 case TARGET_NR_nfsservctl
:
10446 goto unimplemented
;
10448 case TARGET_NR_prctl
:
10450 case PR_GET_PDEATHSIG
:
10453 ret
= get_errno(prctl(arg1
, &deathsig
, arg3
, arg4
, arg5
));
10454 if (!is_error(ret
) && arg2
10455 && put_user_ual(deathsig
, arg2
)) {
10463 void *name
= lock_user(VERIFY_WRITE
, arg2
, 16, 1);
10467 ret
= get_errno(prctl(arg1
, (unsigned long)name
,
10468 arg3
, arg4
, arg5
));
10469 unlock_user(name
, arg2
, 16);
10474 void *name
= lock_user(VERIFY_READ
, arg2
, 16, 1);
10478 ret
= get_errno(prctl(arg1
, (unsigned long)name
,
10479 arg3
, arg4
, arg5
));
10480 unlock_user(name
, arg2
, 0);
10485 /* Most prctl options have no pointer arguments */
10486 ret
= get_errno(prctl(arg1
, arg2
, arg3
, arg4
, arg5
));
10490 #ifdef TARGET_NR_arch_prctl
10491 case TARGET_NR_arch_prctl
:
10492 #if defined(TARGET_I386) && !defined(TARGET_ABI32)
10493 ret
= do_arch_prctl(cpu_env
, arg1
, arg2
);
10496 goto unimplemented
;
10499 #ifdef TARGET_NR_pread64
10500 case TARGET_NR_pread64
:
10501 if (regpairs_aligned(cpu_env
)) {
10505 if (!(p
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0)))
10507 ret
= get_errno(pread64(arg1
, p
, arg3
, target_offset64(arg4
, arg5
)));
10508 unlock_user(p
, arg2
, ret
);
10510 case TARGET_NR_pwrite64
:
10511 if (regpairs_aligned(cpu_env
)) {
10515 if (!(p
= lock_user(VERIFY_READ
, arg2
, arg3
, 1)))
10517 ret
= get_errno(pwrite64(arg1
, p
, arg3
, target_offset64(arg4
, arg5
)));
10518 unlock_user(p
, arg2
, 0);
10521 case TARGET_NR_getcwd
:
10522 if (!(p
= lock_user(VERIFY_WRITE
, arg1
, arg2
, 0)))
10524 ret
= get_errno(sys_getcwd1(p
, arg2
));
10525 unlock_user(p
, arg1
, ret
);
10527 case TARGET_NR_capget
:
10528 case TARGET_NR_capset
:
10530 struct target_user_cap_header
*target_header
;
10531 struct target_user_cap_data
*target_data
= NULL
;
10532 struct __user_cap_header_struct header
;
10533 struct __user_cap_data_struct data
[2];
10534 struct __user_cap_data_struct
*dataptr
= NULL
;
10535 int i
, target_datalen
;
10536 int data_items
= 1;
10538 if (!lock_user_struct(VERIFY_WRITE
, target_header
, arg1
, 1)) {
10541 header
.version
= tswap32(target_header
->version
);
10542 header
.pid
= tswap32(target_header
->pid
);
10544 if (header
.version
!= _LINUX_CAPABILITY_VERSION
) {
10545 /* Version 2 and up takes pointer to two user_data structs */
10549 target_datalen
= sizeof(*target_data
) * data_items
;
10552 if (num
== TARGET_NR_capget
) {
10553 target_data
= lock_user(VERIFY_WRITE
, arg2
, target_datalen
, 0);
10555 target_data
= lock_user(VERIFY_READ
, arg2
, target_datalen
, 1);
10557 if (!target_data
) {
10558 unlock_user_struct(target_header
, arg1
, 0);
10562 if (num
== TARGET_NR_capset
) {
10563 for (i
= 0; i
< data_items
; i
++) {
10564 data
[i
].effective
= tswap32(target_data
[i
].effective
);
10565 data
[i
].permitted
= tswap32(target_data
[i
].permitted
);
10566 data
[i
].inheritable
= tswap32(target_data
[i
].inheritable
);
10573 if (num
== TARGET_NR_capget
) {
10574 ret
= get_errno(capget(&header
, dataptr
));
10576 ret
= get_errno(capset(&header
, dataptr
));
10579 /* The kernel always updates version for both capget and capset */
10580 target_header
->version
= tswap32(header
.version
);
10581 unlock_user_struct(target_header
, arg1
, 1);
10584 if (num
== TARGET_NR_capget
) {
10585 for (i
= 0; i
< data_items
; i
++) {
10586 target_data
[i
].effective
= tswap32(data
[i
].effective
);
10587 target_data
[i
].permitted
= tswap32(data
[i
].permitted
);
10588 target_data
[i
].inheritable
= tswap32(data
[i
].inheritable
);
10590 unlock_user(target_data
, arg2
, target_datalen
);
10592 unlock_user(target_data
, arg2
, 0);
10597 case TARGET_NR_sigaltstack
:
10598 ret
= do_sigaltstack(arg1
, arg2
, get_sp_from_cpustate((CPUArchState
*)cpu_env
));
10601 #ifdef CONFIG_SENDFILE
10602 case TARGET_NR_sendfile
:
10604 off_t
*offp
= NULL
;
10607 ret
= get_user_sal(off
, arg3
);
10608 if (is_error(ret
)) {
10613 ret
= get_errno(sendfile(arg1
, arg2
, offp
, arg4
));
10614 if (!is_error(ret
) && arg3
) {
10615 abi_long ret2
= put_user_sal(off
, arg3
);
10616 if (is_error(ret2
)) {
10622 #ifdef TARGET_NR_sendfile64
10623 case TARGET_NR_sendfile64
:
10625 off_t
*offp
= NULL
;
10628 ret
= get_user_s64(off
, arg3
);
10629 if (is_error(ret
)) {
10634 ret
= get_errno(sendfile(arg1
, arg2
, offp
, arg4
));
10635 if (!is_error(ret
) && arg3
) {
10636 abi_long ret2
= put_user_s64(off
, arg3
);
10637 if (is_error(ret2
)) {
10645 case TARGET_NR_sendfile
:
10646 #ifdef TARGET_NR_sendfile64
10647 case TARGET_NR_sendfile64
:
10649 goto unimplemented
;
10652 #ifdef TARGET_NR_getpmsg
10653 case TARGET_NR_getpmsg
:
10654 goto unimplemented
;
10656 #ifdef TARGET_NR_putpmsg
10657 case TARGET_NR_putpmsg
:
10658 goto unimplemented
;
10660 #ifdef TARGET_NR_vfork
10661 case TARGET_NR_vfork
:
10662 ret
= get_errno(do_fork(cpu_env
,
10663 CLONE_VFORK
| CLONE_VM
| TARGET_SIGCHLD
,
10667 #ifdef TARGET_NR_ugetrlimit
10668 case TARGET_NR_ugetrlimit
:
10670 struct rlimit rlim
;
10671 int resource
= target_to_host_resource(arg1
);
10672 ret
= get_errno(getrlimit(resource
, &rlim
));
10673 if (!is_error(ret
)) {
10674 struct target_rlimit
*target_rlim
;
10675 if (!lock_user_struct(VERIFY_WRITE
, target_rlim
, arg2
, 0))
10677 target_rlim
->rlim_cur
= host_to_target_rlim(rlim
.rlim_cur
);
10678 target_rlim
->rlim_max
= host_to_target_rlim(rlim
.rlim_max
);
10679 unlock_user_struct(target_rlim
, arg2
, 1);
10684 #ifdef TARGET_NR_truncate64
10685 case TARGET_NR_truncate64
:
10686 if (!(p
= lock_user_string(arg1
)))
10688 ret
= target_truncate64(cpu_env
, p
, arg2
, arg3
, arg4
);
10689 unlock_user(p
, arg1
, 0);
10692 #ifdef TARGET_NR_ftruncate64
10693 case TARGET_NR_ftruncate64
:
10694 ret
= target_ftruncate64(cpu_env
, arg1
, arg2
, arg3
, arg4
);
10697 #ifdef TARGET_NR_stat64
10698 case TARGET_NR_stat64
:
10699 if (!(p
= lock_user_string(arg1
)))
10701 ret
= get_errno(stat(path(p
), &st
));
10702 unlock_user(p
, arg1
, 0);
10703 if (!is_error(ret
))
10704 ret
= host_to_target_stat64(cpu_env
, arg2
, &st
);
10707 #ifdef TARGET_NR_lstat64
10708 case TARGET_NR_lstat64
:
10709 if (!(p
= lock_user_string(arg1
)))
10711 ret
= get_errno(lstat(path(p
), &st
));
10712 unlock_user(p
, arg1
, 0);
10713 if (!is_error(ret
))
10714 ret
= host_to_target_stat64(cpu_env
, arg2
, &st
);
10717 #ifdef TARGET_NR_fstat64
10718 case TARGET_NR_fstat64
:
10719 ret
= get_errno(fstat(arg1
, &st
));
10720 if (!is_error(ret
))
10721 ret
= host_to_target_stat64(cpu_env
, arg2
, &st
);
10724 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat))
10725 #ifdef TARGET_NR_fstatat64
10726 case TARGET_NR_fstatat64
:
10728 #ifdef TARGET_NR_newfstatat
10729 case TARGET_NR_newfstatat
:
10731 if (!(p
= lock_user_string(arg2
)))
10733 ret
= get_errno(fstatat(arg1
, path(p
), &st
, arg4
));
10734 if (!is_error(ret
))
10735 ret
= host_to_target_stat64(cpu_env
, arg3
, &st
);
10738 #ifdef TARGET_NR_lchown
10739 case TARGET_NR_lchown
:
10740 if (!(p
= lock_user_string(arg1
)))
10742 ret
= get_errno(lchown(p
, low2highuid(arg2
), low2highgid(arg3
)));
10743 unlock_user(p
, arg1
, 0);
10746 #ifdef TARGET_NR_getuid
10747 case TARGET_NR_getuid
:
10748 ret
= get_errno(high2lowuid(getuid()));
10751 #ifdef TARGET_NR_getgid
10752 case TARGET_NR_getgid
:
10753 ret
= get_errno(high2lowgid(getgid()));
10756 #ifdef TARGET_NR_geteuid
10757 case TARGET_NR_geteuid
:
10758 ret
= get_errno(high2lowuid(geteuid()));
10761 #ifdef TARGET_NR_getegid
10762 case TARGET_NR_getegid
:
10763 ret
= get_errno(high2lowgid(getegid()));
10766 case TARGET_NR_setreuid
:
10767 ret
= get_errno(setreuid(low2highuid(arg1
), low2highuid(arg2
)));
10769 case TARGET_NR_setregid
:
10770 ret
= get_errno(setregid(low2highgid(arg1
), low2highgid(arg2
)));
10772 case TARGET_NR_getgroups
:
10774 int gidsetsize
= arg1
;
10775 target_id
*target_grouplist
;
10779 grouplist
= alloca(gidsetsize
* sizeof(gid_t
));
10780 ret
= get_errno(getgroups(gidsetsize
, grouplist
));
10781 if (gidsetsize
== 0)
10783 if (!is_error(ret
)) {
10784 target_grouplist
= lock_user(VERIFY_WRITE
, arg2
, gidsetsize
* sizeof(target_id
), 0);
10785 if (!target_grouplist
)
10787 for(i
= 0;i
< ret
; i
++)
10788 target_grouplist
[i
] = tswapid(high2lowgid(grouplist
[i
]));
10789 unlock_user(target_grouplist
, arg2
, gidsetsize
* sizeof(target_id
));
10793 case TARGET_NR_setgroups
:
10795 int gidsetsize
= arg1
;
10796 target_id
*target_grouplist
;
10797 gid_t
*grouplist
= NULL
;
10800 grouplist
= alloca(gidsetsize
* sizeof(gid_t
));
10801 target_grouplist
= lock_user(VERIFY_READ
, arg2
, gidsetsize
* sizeof(target_id
), 1);
10802 if (!target_grouplist
) {
10803 ret
= -TARGET_EFAULT
;
10806 for (i
= 0; i
< gidsetsize
; i
++) {
10807 grouplist
[i
] = low2highgid(tswapid(target_grouplist
[i
]));
10809 unlock_user(target_grouplist
, arg2
, 0);
10811 ret
= get_errno(setgroups(gidsetsize
, grouplist
));
10814 case TARGET_NR_fchown
:
10815 ret
= get_errno(fchown(arg1
, low2highuid(arg2
), low2highgid(arg3
)));
10817 #if defined(TARGET_NR_fchownat)
10818 case TARGET_NR_fchownat
:
10819 if (!(p
= lock_user_string(arg2
)))
10821 ret
= get_errno(fchownat(arg1
, p
, low2highuid(arg3
),
10822 low2highgid(arg4
), arg5
));
10823 unlock_user(p
, arg2
, 0);
10826 #ifdef TARGET_NR_setresuid
10827 case TARGET_NR_setresuid
:
10828 ret
= get_errno(sys_setresuid(low2highuid(arg1
),
10830 low2highuid(arg3
)));
10833 #ifdef TARGET_NR_getresuid
10834 case TARGET_NR_getresuid
:
10836 uid_t ruid
, euid
, suid
;
10837 ret
= get_errno(getresuid(&ruid
, &euid
, &suid
));
10838 if (!is_error(ret
)) {
10839 if (put_user_id(high2lowuid(ruid
), arg1
)
10840 || put_user_id(high2lowuid(euid
), arg2
)
10841 || put_user_id(high2lowuid(suid
), arg3
))
10847 #ifdef TARGET_NR_getresgid
10848 case TARGET_NR_setresgid
:
10849 ret
= get_errno(sys_setresgid(low2highgid(arg1
),
10851 low2highgid(arg3
)));
10854 #ifdef TARGET_NR_getresgid
10855 case TARGET_NR_getresgid
:
10857 gid_t rgid
, egid
, sgid
;
10858 ret
= get_errno(getresgid(&rgid
, &egid
, &sgid
));
10859 if (!is_error(ret
)) {
10860 if (put_user_id(high2lowgid(rgid
), arg1
)
10861 || put_user_id(high2lowgid(egid
), arg2
)
10862 || put_user_id(high2lowgid(sgid
), arg3
))
10868 #ifdef TARGET_NR_chown
10869 case TARGET_NR_chown
:
10870 if (!(p
= lock_user_string(arg1
)))
10872 ret
= get_errno(chown(p
, low2highuid(arg2
), low2highgid(arg3
)));
10873 unlock_user(p
, arg1
, 0);
10876 case TARGET_NR_setuid
:
10877 ret
= get_errno(sys_setuid(low2highuid(arg1
)));
10879 case TARGET_NR_setgid
:
10880 ret
= get_errno(sys_setgid(low2highgid(arg1
)));
10882 case TARGET_NR_setfsuid
:
10883 ret
= get_errno(setfsuid(arg1
));
10885 case TARGET_NR_setfsgid
:
10886 ret
= get_errno(setfsgid(arg1
));
10889 #ifdef TARGET_NR_lchown32
10890 case TARGET_NR_lchown32
:
10891 if (!(p
= lock_user_string(arg1
)))
10893 ret
= get_errno(lchown(p
, arg2
, arg3
));
10894 unlock_user(p
, arg1
, 0);
10897 #ifdef TARGET_NR_getuid32
10898 case TARGET_NR_getuid32
:
10899 ret
= get_errno(getuid());
10903 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA)
10904 /* Alpha specific */
10905 case TARGET_NR_getxuid
:
10909 ((CPUAlphaState
*)cpu_env
)->ir
[IR_A4
]=euid
;
10911 ret
= get_errno(getuid());
10914 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA)
10915 /* Alpha specific */
10916 case TARGET_NR_getxgid
:
10920 ((CPUAlphaState
*)cpu_env
)->ir
[IR_A4
]=egid
;
10922 ret
= get_errno(getgid());
10925 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA)
10926 /* Alpha specific */
10927 case TARGET_NR_osf_getsysinfo
:
10928 ret
= -TARGET_EOPNOTSUPP
;
10930 case TARGET_GSI_IEEE_FP_CONTROL
:
10932 uint64_t swcr
, fpcr
= cpu_alpha_load_fpcr (cpu_env
);
10934 /* Copied from linux ieee_fpcr_to_swcr. */
10935 swcr
= (fpcr
>> 35) & SWCR_STATUS_MASK
;
10936 swcr
|= (fpcr
>> 36) & SWCR_MAP_DMZ
;
10937 swcr
|= (~fpcr
>> 48) & (SWCR_TRAP_ENABLE_INV
10938 | SWCR_TRAP_ENABLE_DZE
10939 | SWCR_TRAP_ENABLE_OVF
);
10940 swcr
|= (~fpcr
>> 57) & (SWCR_TRAP_ENABLE_UNF
10941 | SWCR_TRAP_ENABLE_INE
);
10942 swcr
|= (fpcr
>> 47) & SWCR_MAP_UMZ
;
10943 swcr
|= (~fpcr
>> 41) & SWCR_TRAP_ENABLE_DNO
;
10945 if (put_user_u64 (swcr
, arg2
))
10951 /* case GSI_IEEE_STATE_AT_SIGNAL:
10952 -- Not implemented in linux kernel.
10954 -- Retrieves current unaligned access state; not much used.
10955 case GSI_PROC_TYPE:
10956 -- Retrieves implver information; surely not used.
10957 case GSI_GET_HWRPB:
10958 -- Grabs a copy of the HWRPB; surely not used.
10963 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA)
10964 /* Alpha specific */
10965 case TARGET_NR_osf_setsysinfo
:
10966 ret
= -TARGET_EOPNOTSUPP
;
10968 case TARGET_SSI_IEEE_FP_CONTROL
:
10970 uint64_t swcr
, fpcr
, orig_fpcr
;
10972 if (get_user_u64 (swcr
, arg2
)) {
10975 orig_fpcr
= cpu_alpha_load_fpcr(cpu_env
);
10976 fpcr
= orig_fpcr
& FPCR_DYN_MASK
;
10978 /* Copied from linux ieee_swcr_to_fpcr. */
10979 fpcr
|= (swcr
& SWCR_STATUS_MASK
) << 35;
10980 fpcr
|= (swcr
& SWCR_MAP_DMZ
) << 36;
10981 fpcr
|= (~swcr
& (SWCR_TRAP_ENABLE_INV
10982 | SWCR_TRAP_ENABLE_DZE
10983 | SWCR_TRAP_ENABLE_OVF
)) << 48;
10984 fpcr
|= (~swcr
& (SWCR_TRAP_ENABLE_UNF
10985 | SWCR_TRAP_ENABLE_INE
)) << 57;
10986 fpcr
|= (swcr
& SWCR_MAP_UMZ
? FPCR_UNDZ
| FPCR_UNFD
: 0);
10987 fpcr
|= (~swcr
& SWCR_TRAP_ENABLE_DNO
) << 41;
10989 cpu_alpha_store_fpcr(cpu_env
, fpcr
);
10994 case TARGET_SSI_IEEE_RAISE_EXCEPTION
:
10996 uint64_t exc
, fpcr
, orig_fpcr
;
10999 if (get_user_u64(exc
, arg2
)) {
11003 orig_fpcr
= cpu_alpha_load_fpcr(cpu_env
);
11005 /* We only add to the exception status here. */
11006 fpcr
= orig_fpcr
| ((exc
& SWCR_STATUS_MASK
) << 35);
11008 cpu_alpha_store_fpcr(cpu_env
, fpcr
);
11011 /* Old exceptions are not signaled. */
11012 fpcr
&= ~(orig_fpcr
& FPCR_STATUS_MASK
);
11014 /* If any exceptions set by this call,
11015 and are unmasked, send a signal. */
11017 if ((fpcr
& (FPCR_INE
| FPCR_INED
)) == FPCR_INE
) {
11018 si_code
= TARGET_FPE_FLTRES
;
11020 if ((fpcr
& (FPCR_UNF
| FPCR_UNFD
)) == FPCR_UNF
) {
11021 si_code
= TARGET_FPE_FLTUND
;
11023 if ((fpcr
& (FPCR_OVF
| FPCR_OVFD
)) == FPCR_OVF
) {
11024 si_code
= TARGET_FPE_FLTOVF
;
11026 if ((fpcr
& (FPCR_DZE
| FPCR_DZED
)) == FPCR_DZE
) {
11027 si_code
= TARGET_FPE_FLTDIV
;
11029 if ((fpcr
& (FPCR_INV
| FPCR_INVD
)) == FPCR_INV
) {
11030 si_code
= TARGET_FPE_FLTINV
;
11032 if (si_code
!= 0) {
11033 target_siginfo_t info
;
11034 info
.si_signo
= SIGFPE
;
11036 info
.si_code
= si_code
;
11037 info
._sifields
._sigfault
._addr
11038 = ((CPUArchState
*)cpu_env
)->pc
;
11039 queue_signal((CPUArchState
*)cpu_env
, info
.si_signo
,
11040 QEMU_SI_FAULT
, &info
);
11045 /* case SSI_NVPAIRS:
11046 -- Used with SSIN_UACPROC to enable unaligned accesses.
11047 case SSI_IEEE_STATE_AT_SIGNAL:
11048 case SSI_IEEE_IGNORE_STATE_AT_SIGNAL:
11049 -- Not implemented in linux kernel
11054 #ifdef TARGET_NR_osf_sigprocmask
11055 /* Alpha specific. */
11056 case TARGET_NR_osf_sigprocmask
:
11060 sigset_t set
, oldset
;
11063 case TARGET_SIG_BLOCK
:
11066 case TARGET_SIG_UNBLOCK
:
11069 case TARGET_SIG_SETMASK
:
11073 ret
= -TARGET_EINVAL
;
11077 target_to_host_old_sigset(&set
, &mask
);
11078 ret
= do_sigprocmask(how
, &set
, &oldset
);
11080 host_to_target_old_sigset(&mask
, &oldset
);
11087 #ifdef TARGET_NR_getgid32
11088 case TARGET_NR_getgid32
:
11089 ret
= get_errno(getgid());
11092 #ifdef TARGET_NR_geteuid32
11093 case TARGET_NR_geteuid32
:
11094 ret
= get_errno(geteuid());
11097 #ifdef TARGET_NR_getegid32
11098 case TARGET_NR_getegid32
:
11099 ret
= get_errno(getegid());
11102 #ifdef TARGET_NR_setreuid32
11103 case TARGET_NR_setreuid32
:
11104 ret
= get_errno(setreuid(arg1
, arg2
));
11107 #ifdef TARGET_NR_setregid32
11108 case TARGET_NR_setregid32
:
11109 ret
= get_errno(setregid(arg1
, arg2
));
11112 #ifdef TARGET_NR_getgroups32
11113 case TARGET_NR_getgroups32
:
11115 int gidsetsize
= arg1
;
11116 uint32_t *target_grouplist
;
11120 grouplist
= alloca(gidsetsize
* sizeof(gid_t
));
11121 ret
= get_errno(getgroups(gidsetsize
, grouplist
));
11122 if (gidsetsize
== 0)
11124 if (!is_error(ret
)) {
11125 target_grouplist
= lock_user(VERIFY_WRITE
, arg2
, gidsetsize
* 4, 0);
11126 if (!target_grouplist
) {
11127 ret
= -TARGET_EFAULT
;
11130 for(i
= 0;i
< ret
; i
++)
11131 target_grouplist
[i
] = tswap32(grouplist
[i
]);
11132 unlock_user(target_grouplist
, arg2
, gidsetsize
* 4);
11137 #ifdef TARGET_NR_setgroups32
11138 case TARGET_NR_setgroups32
:
11140 int gidsetsize
= arg1
;
11141 uint32_t *target_grouplist
;
11145 grouplist
= alloca(gidsetsize
* sizeof(gid_t
));
11146 target_grouplist
= lock_user(VERIFY_READ
, arg2
, gidsetsize
* 4, 1);
11147 if (!target_grouplist
) {
11148 ret
= -TARGET_EFAULT
;
11151 for(i
= 0;i
< gidsetsize
; i
++)
11152 grouplist
[i
] = tswap32(target_grouplist
[i
]);
11153 unlock_user(target_grouplist
, arg2
, 0);
11154 ret
= get_errno(setgroups(gidsetsize
, grouplist
));
11158 #ifdef TARGET_NR_fchown32
11159 case TARGET_NR_fchown32
:
11160 ret
= get_errno(fchown(arg1
, arg2
, arg3
));
11163 #ifdef TARGET_NR_setresuid32
11164 case TARGET_NR_setresuid32
:
11165 ret
= get_errno(sys_setresuid(arg1
, arg2
, arg3
));
11168 #ifdef TARGET_NR_getresuid32
11169 case TARGET_NR_getresuid32
:
11171 uid_t ruid
, euid
, suid
;
11172 ret
= get_errno(getresuid(&ruid
, &euid
, &suid
));
11173 if (!is_error(ret
)) {
11174 if (put_user_u32(ruid
, arg1
)
11175 || put_user_u32(euid
, arg2
)
11176 || put_user_u32(suid
, arg3
))
11182 #ifdef TARGET_NR_setresgid32
11183 case TARGET_NR_setresgid32
:
11184 ret
= get_errno(sys_setresgid(arg1
, arg2
, arg3
));
11187 #ifdef TARGET_NR_getresgid32
11188 case TARGET_NR_getresgid32
:
11190 gid_t rgid
, egid
, sgid
;
11191 ret
= get_errno(getresgid(&rgid
, &egid
, &sgid
));
11192 if (!is_error(ret
)) {
11193 if (put_user_u32(rgid
, arg1
)
11194 || put_user_u32(egid
, arg2
)
11195 || put_user_u32(sgid
, arg3
))
11201 #ifdef TARGET_NR_chown32
11202 case TARGET_NR_chown32
:
11203 if (!(p
= lock_user_string(arg1
)))
11205 ret
= get_errno(chown(p
, arg2
, arg3
));
11206 unlock_user(p
, arg1
, 0);
11209 #ifdef TARGET_NR_setuid32
11210 case TARGET_NR_setuid32
:
11211 ret
= get_errno(sys_setuid(arg1
));
11214 #ifdef TARGET_NR_setgid32
11215 case TARGET_NR_setgid32
:
11216 ret
= get_errno(sys_setgid(arg1
));
11219 #ifdef TARGET_NR_setfsuid32
11220 case TARGET_NR_setfsuid32
:
11221 ret
= get_errno(setfsuid(arg1
));
11224 #ifdef TARGET_NR_setfsgid32
11225 case TARGET_NR_setfsgid32
:
11226 ret
= get_errno(setfsgid(arg1
));
11230 case TARGET_NR_pivot_root
:
11231 goto unimplemented
;
11232 #ifdef TARGET_NR_mincore
11233 case TARGET_NR_mincore
:
11236 ret
= -TARGET_ENOMEM
;
11237 a
= lock_user(VERIFY_READ
, arg1
, arg2
, 0);
11241 ret
= -TARGET_EFAULT
;
11242 p
= lock_user_string(arg3
);
11246 ret
= get_errno(mincore(a
, arg2
, p
));
11247 unlock_user(p
, arg3
, ret
);
11249 unlock_user(a
, arg1
, 0);
11253 #ifdef TARGET_NR_arm_fadvise64_64
11254 case TARGET_NR_arm_fadvise64_64
:
11255 /* arm_fadvise64_64 looks like fadvise64_64 but
11256 * with different argument order: fd, advice, offset, len
11257 * rather than the usual fd, offset, len, advice.
11258 * Note that offset and len are both 64-bit so appear as
11259 * pairs of 32-bit registers.
11261 ret
= posix_fadvise(arg1
, target_offset64(arg3
, arg4
),
11262 target_offset64(arg5
, arg6
), arg2
);
11263 ret
= -host_to_target_errno(ret
);
11267 #if TARGET_ABI_BITS == 32
11269 #ifdef TARGET_NR_fadvise64_64
11270 case TARGET_NR_fadvise64_64
:
11271 #if defined(TARGET_PPC)
11272 /* 6 args: fd, advice, offset (high, low), len (high, low) */
11280 /* 6 args: fd, offset (high, low), len (high, low), advice */
11281 if (regpairs_aligned(cpu_env
)) {
11282 /* offset is in (3,4), len in (5,6) and advice in 7 */
11290 ret
= -host_to_target_errno(posix_fadvise(arg1
,
11291 target_offset64(arg2
, arg3
),
11292 target_offset64(arg4
, arg5
),
11297 #ifdef TARGET_NR_fadvise64
11298 case TARGET_NR_fadvise64
:
11299 /* 5 args: fd, offset (high, low), len, advice */
11300 if (regpairs_aligned(cpu_env
)) {
11301 /* offset is in (3,4), len in 5 and advice in 6 */
11307 ret
= -host_to_target_errno(posix_fadvise(arg1
,
11308 target_offset64(arg2
, arg3
),
11313 #else /* not a 32-bit ABI */
11314 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64)
11315 #ifdef TARGET_NR_fadvise64_64
11316 case TARGET_NR_fadvise64_64
:
11318 #ifdef TARGET_NR_fadvise64
11319 case TARGET_NR_fadvise64
:
11321 #ifdef TARGET_S390X
11323 case 4: arg4
= POSIX_FADV_NOREUSE
+ 1; break; /* make sure it's an invalid value */
11324 case 5: arg4
= POSIX_FADV_NOREUSE
+ 2; break; /* ditto */
11325 case 6: arg4
= POSIX_FADV_DONTNEED
; break;
11326 case 7: arg4
= POSIX_FADV_NOREUSE
; break;
11330 ret
= -host_to_target_errno(posix_fadvise(arg1
, arg2
, arg3
, arg4
));
11333 #endif /* end of 64-bit ABI fadvise handling */
11335 #ifdef TARGET_NR_madvise
11336 case TARGET_NR_madvise
:
11337 /* A straight passthrough may not be safe because qemu sometimes
11338 turns private file-backed mappings into anonymous mappings.
11339 This will break MADV_DONTNEED.
11340 This is a hint, so ignoring and returning success is ok. */
11341 ret
= get_errno(0);
11344 #if TARGET_ABI_BITS == 32
11345 case TARGET_NR_fcntl64
:
11349 from_flock64_fn
*copyfrom
= copy_from_user_flock64
;
11350 to_flock64_fn
*copyto
= copy_to_user_flock64
;
11353 if (((CPUARMState
*)cpu_env
)->eabi
) {
11354 copyfrom
= copy_from_user_eabi_flock64
;
11355 copyto
= copy_to_user_eabi_flock64
;
11359 cmd
= target_to_host_fcntl_cmd(arg2
);
11360 if (cmd
== -TARGET_EINVAL
) {
11366 case TARGET_F_GETLK64
:
11367 ret
= copyfrom(&fl
, arg3
);
11371 ret
= get_errno(fcntl(arg1
, cmd
, &fl
));
11373 ret
= copyto(arg3
, &fl
);
11377 case TARGET_F_SETLK64
:
11378 case TARGET_F_SETLKW64
:
11379 ret
= copyfrom(&fl
, arg3
);
11383 ret
= get_errno(safe_fcntl(arg1
, cmd
, &fl
));
11386 ret
= do_fcntl(arg1
, arg2
, arg3
);
11392 #ifdef TARGET_NR_cacheflush
11393 case TARGET_NR_cacheflush
:
11394 /* self-modifying code is handled automatically, so nothing needed */
11398 #ifdef TARGET_NR_security
11399 case TARGET_NR_security
:
11400 goto unimplemented
;
11402 #ifdef TARGET_NR_getpagesize
11403 case TARGET_NR_getpagesize
:
11404 ret
= TARGET_PAGE_SIZE
;
11407 case TARGET_NR_gettid
:
11408 ret
= get_errno(gettid());
11410 #ifdef TARGET_NR_readahead
11411 case TARGET_NR_readahead
:
11412 #if TARGET_ABI_BITS == 32
11413 if (regpairs_aligned(cpu_env
)) {
11418 ret
= get_errno(readahead(arg1
, target_offset64(arg2
, arg3
) , arg4
));
11420 ret
= get_errno(readahead(arg1
, arg2
, arg3
));
11425 #ifdef TARGET_NR_setxattr
11426 case TARGET_NR_listxattr
:
11427 case TARGET_NR_llistxattr
:
11431 b
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0);
11433 ret
= -TARGET_EFAULT
;
11437 p
= lock_user_string(arg1
);
11439 if (num
== TARGET_NR_listxattr
) {
11440 ret
= get_errno(listxattr(p
, b
, arg3
));
11442 ret
= get_errno(llistxattr(p
, b
, arg3
));
11445 ret
= -TARGET_EFAULT
;
11447 unlock_user(p
, arg1
, 0);
11448 unlock_user(b
, arg2
, arg3
);
11451 case TARGET_NR_flistxattr
:
11455 b
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0);
11457 ret
= -TARGET_EFAULT
;
11461 ret
= get_errno(flistxattr(arg1
, b
, arg3
));
11462 unlock_user(b
, arg2
, arg3
);
11465 case TARGET_NR_setxattr
:
11466 case TARGET_NR_lsetxattr
:
11468 void *p
, *n
, *v
= 0;
11470 v
= lock_user(VERIFY_READ
, arg3
, arg4
, 1);
11472 ret
= -TARGET_EFAULT
;
11476 p
= lock_user_string(arg1
);
11477 n
= lock_user_string(arg2
);
11479 if (num
== TARGET_NR_setxattr
) {
11480 ret
= get_errno(setxattr(p
, n
, v
, arg4
, arg5
));
11482 ret
= get_errno(lsetxattr(p
, n
, v
, arg4
, arg5
));
11485 ret
= -TARGET_EFAULT
;
11487 unlock_user(p
, arg1
, 0);
11488 unlock_user(n
, arg2
, 0);
11489 unlock_user(v
, arg3
, 0);
11492 case TARGET_NR_fsetxattr
:
11496 v
= lock_user(VERIFY_READ
, arg3
, arg4
, 1);
11498 ret
= -TARGET_EFAULT
;
11502 n
= lock_user_string(arg2
);
11504 ret
= get_errno(fsetxattr(arg1
, n
, v
, arg4
, arg5
));
11506 ret
= -TARGET_EFAULT
;
11508 unlock_user(n
, arg2
, 0);
11509 unlock_user(v
, arg3
, 0);
11512 case TARGET_NR_getxattr
:
11513 case TARGET_NR_lgetxattr
:
11515 void *p
, *n
, *v
= 0;
11517 v
= lock_user(VERIFY_WRITE
, arg3
, arg4
, 0);
11519 ret
= -TARGET_EFAULT
;
11523 p
= lock_user_string(arg1
);
11524 n
= lock_user_string(arg2
);
11526 if (num
== TARGET_NR_getxattr
) {
11527 ret
= get_errno(getxattr(p
, n
, v
, arg4
));
11529 ret
= get_errno(lgetxattr(p
, n
, v
, arg4
));
11532 ret
= -TARGET_EFAULT
;
11534 unlock_user(p
, arg1
, 0);
11535 unlock_user(n
, arg2
, 0);
11536 unlock_user(v
, arg3
, arg4
);
11539 case TARGET_NR_fgetxattr
:
11543 v
= lock_user(VERIFY_WRITE
, arg3
, arg4
, 0);
11545 ret
= -TARGET_EFAULT
;
11549 n
= lock_user_string(arg2
);
11551 ret
= get_errno(fgetxattr(arg1
, n
, v
, arg4
));
11553 ret
= -TARGET_EFAULT
;
11555 unlock_user(n
, arg2
, 0);
11556 unlock_user(v
, arg3
, arg4
);
11559 case TARGET_NR_removexattr
:
11560 case TARGET_NR_lremovexattr
:
11563 p
= lock_user_string(arg1
);
11564 n
= lock_user_string(arg2
);
11566 if (num
== TARGET_NR_removexattr
) {
11567 ret
= get_errno(removexattr(p
, n
));
11569 ret
= get_errno(lremovexattr(p
, n
));
11572 ret
= -TARGET_EFAULT
;
11574 unlock_user(p
, arg1
, 0);
11575 unlock_user(n
, arg2
, 0);
11578 case TARGET_NR_fremovexattr
:
11581 n
= lock_user_string(arg2
);
11583 ret
= get_errno(fremovexattr(arg1
, n
));
11585 ret
= -TARGET_EFAULT
;
11587 unlock_user(n
, arg2
, 0);
11591 #endif /* CONFIG_ATTR */
11592 #ifdef TARGET_NR_set_thread_area
11593 case TARGET_NR_set_thread_area
:
11594 #if defined(TARGET_MIPS)
11595 ((CPUMIPSState
*) cpu_env
)->active_tc
.CP0_UserLocal
= arg1
;
11598 #elif defined(TARGET_CRIS)
11600 ret
= -TARGET_EINVAL
;
11602 ((CPUCRISState
*) cpu_env
)->pregs
[PR_PID
] = arg1
;
11606 #elif defined(TARGET_I386) && defined(TARGET_ABI32)
11607 ret
= do_set_thread_area(cpu_env
, arg1
);
11609 #elif defined(TARGET_M68K)
11611 TaskState
*ts
= cpu
->opaque
;
11612 ts
->tp_value
= arg1
;
11617 goto unimplemented_nowarn
;
11620 #ifdef TARGET_NR_get_thread_area
11621 case TARGET_NR_get_thread_area
:
11622 #if defined(TARGET_I386) && defined(TARGET_ABI32)
11623 ret
= do_get_thread_area(cpu_env
, arg1
);
11625 #elif defined(TARGET_M68K)
11627 TaskState
*ts
= cpu
->opaque
;
11628 ret
= ts
->tp_value
;
11632 goto unimplemented_nowarn
;
11635 #ifdef TARGET_NR_getdomainname
11636 case TARGET_NR_getdomainname
:
11637 goto unimplemented_nowarn
;
11640 #ifdef TARGET_NR_clock_gettime
11641 case TARGET_NR_clock_gettime
:
11643 struct timespec ts
;
11644 ret
= get_errno(clock_gettime(arg1
, &ts
));
11645 if (!is_error(ret
)) {
11646 host_to_target_timespec(arg2
, &ts
);
11651 #ifdef TARGET_NR_clock_getres
11652 case TARGET_NR_clock_getres
:
11654 struct timespec ts
;
11655 ret
= get_errno(clock_getres(arg1
, &ts
));
11656 if (!is_error(ret
)) {
11657 host_to_target_timespec(arg2
, &ts
);
11662 #ifdef TARGET_NR_clock_nanosleep
11663 case TARGET_NR_clock_nanosleep
:
11665 struct timespec ts
;
11666 target_to_host_timespec(&ts
, arg3
);
11667 ret
= get_errno(safe_clock_nanosleep(arg1
, arg2
,
11668 &ts
, arg4
? &ts
: NULL
));
11670 host_to_target_timespec(arg4
, &ts
);
11672 #if defined(TARGET_PPC)
11673 /* clock_nanosleep is odd in that it returns positive errno values.
11674 * On PPC, CR0 bit 3 should be set in such a situation. */
11675 if (ret
&& ret
!= -TARGET_ERESTARTSYS
) {
11676 ((CPUPPCState
*)cpu_env
)->crf
[0] |= 1;
11683 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
11684 case TARGET_NR_set_tid_address
:
11685 ret
= get_errno(set_tid_address((int *)g2h(arg1
)));
11689 case TARGET_NR_tkill
:
11690 ret
= get_errno(safe_tkill((int)arg1
, target_to_host_signal(arg2
)));
11693 case TARGET_NR_tgkill
:
11694 ret
= get_errno(safe_tgkill((int)arg1
, (int)arg2
,
11695 target_to_host_signal(arg3
)));
11698 #ifdef TARGET_NR_set_robust_list
11699 case TARGET_NR_set_robust_list
:
11700 case TARGET_NR_get_robust_list
:
11701 /* The ABI for supporting robust futexes has userspace pass
11702 * the kernel a pointer to a linked list which is updated by
11703 * userspace after the syscall; the list is walked by the kernel
11704 * when the thread exits. Since the linked list in QEMU guest
11705 * memory isn't a valid linked list for the host and we have
11706 * no way to reliably intercept the thread-death event, we can't
11707 * support these. Silently return ENOSYS so that guest userspace
11708 * falls back to a non-robust futex implementation (which should
11709 * be OK except in the corner case of the guest crashing while
11710 * holding a mutex that is shared with another process via
11713 goto unimplemented_nowarn
;
11716 #if defined(TARGET_NR_utimensat)
11717 case TARGET_NR_utimensat
:
11719 struct timespec
*tsp
, ts
[2];
11723 target_to_host_timespec(ts
, arg3
);
11724 target_to_host_timespec(ts
+1, arg3
+sizeof(struct target_timespec
));
11728 ret
= get_errno(sys_utimensat(arg1
, NULL
, tsp
, arg4
));
11730 if (!(p
= lock_user_string(arg2
))) {
11731 ret
= -TARGET_EFAULT
;
11734 ret
= get_errno(sys_utimensat(arg1
, path(p
), tsp
, arg4
));
11735 unlock_user(p
, arg2
, 0);
11740 case TARGET_NR_futex
:
11741 ret
= do_futex(arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
11743 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
11744 case TARGET_NR_inotify_init
:
11745 ret
= get_errno(sys_inotify_init());
11747 fd_trans_register(ret
, &target_inotify_trans
);
11751 #ifdef CONFIG_INOTIFY1
11752 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
11753 case TARGET_NR_inotify_init1
:
11754 ret
= get_errno(sys_inotify_init1(target_to_host_bitmask(arg1
,
11755 fcntl_flags_tbl
)));
11757 fd_trans_register(ret
, &target_inotify_trans
);
11762 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
11763 case TARGET_NR_inotify_add_watch
:
11764 p
= lock_user_string(arg2
);
11765 ret
= get_errno(sys_inotify_add_watch(arg1
, path(p
), arg3
));
11766 unlock_user(p
, arg2
, 0);
11769 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
11770 case TARGET_NR_inotify_rm_watch
:
11771 ret
= get_errno(sys_inotify_rm_watch(arg1
, arg2
));
11775 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
11776 case TARGET_NR_mq_open
:
11778 struct mq_attr posix_mq_attr
;
11779 struct mq_attr
*pposix_mq_attr
;
11782 host_flags
= target_to_host_bitmask(arg2
, fcntl_flags_tbl
);
11783 pposix_mq_attr
= NULL
;
11785 if (copy_from_user_mq_attr(&posix_mq_attr
, arg4
) != 0) {
11788 pposix_mq_attr
= &posix_mq_attr
;
11790 p
= lock_user_string(arg1
- 1);
11794 ret
= get_errno(mq_open(p
, host_flags
, arg3
, pposix_mq_attr
));
11795 unlock_user (p
, arg1
, 0);
11799 case TARGET_NR_mq_unlink
:
11800 p
= lock_user_string(arg1
- 1);
11802 ret
= -TARGET_EFAULT
;
11805 ret
= get_errno(mq_unlink(p
));
11806 unlock_user (p
, arg1
, 0);
11809 case TARGET_NR_mq_timedsend
:
11811 struct timespec ts
;
11813 p
= lock_user (VERIFY_READ
, arg2
, arg3
, 1);
11815 target_to_host_timespec(&ts
, arg5
);
11816 ret
= get_errno(safe_mq_timedsend(arg1
, p
, arg3
, arg4
, &ts
));
11817 host_to_target_timespec(arg5
, &ts
);
11819 ret
= get_errno(safe_mq_timedsend(arg1
, p
, arg3
, arg4
, NULL
));
11821 unlock_user (p
, arg2
, arg3
);
11825 case TARGET_NR_mq_timedreceive
:
11827 struct timespec ts
;
11830 p
= lock_user (VERIFY_READ
, arg2
, arg3
, 1);
11832 target_to_host_timespec(&ts
, arg5
);
11833 ret
= get_errno(safe_mq_timedreceive(arg1
, p
, arg3
,
11835 host_to_target_timespec(arg5
, &ts
);
11837 ret
= get_errno(safe_mq_timedreceive(arg1
, p
, arg3
,
11840 unlock_user (p
, arg2
, arg3
);
11842 put_user_u32(prio
, arg4
);
11846 /* Not implemented for now... */
11847 /* case TARGET_NR_mq_notify: */
11850 case TARGET_NR_mq_getsetattr
:
11852 struct mq_attr posix_mq_attr_in
, posix_mq_attr_out
;
11855 ret
= mq_getattr(arg1
, &posix_mq_attr_out
);
11856 copy_to_user_mq_attr(arg3
, &posix_mq_attr_out
);
11859 copy_from_user_mq_attr(&posix_mq_attr_in
, arg2
);
11860 ret
|= mq_setattr(arg1
, &posix_mq_attr_in
, &posix_mq_attr_out
);
11867 #ifdef CONFIG_SPLICE
11868 #ifdef TARGET_NR_tee
11869 case TARGET_NR_tee
:
11871 ret
= get_errno(tee(arg1
,arg2
,arg3
,arg4
));
11875 #ifdef TARGET_NR_splice
11876 case TARGET_NR_splice
:
11878 loff_t loff_in
, loff_out
;
11879 loff_t
*ploff_in
= NULL
, *ploff_out
= NULL
;
11881 if (get_user_u64(loff_in
, arg2
)) {
11884 ploff_in
= &loff_in
;
11887 if (get_user_u64(loff_out
, arg4
)) {
11890 ploff_out
= &loff_out
;
11892 ret
= get_errno(splice(arg1
, ploff_in
, arg3
, ploff_out
, arg5
, arg6
));
11894 if (put_user_u64(loff_in
, arg2
)) {
11899 if (put_user_u64(loff_out
, arg4
)) {
11906 #ifdef TARGET_NR_vmsplice
11907 case TARGET_NR_vmsplice
:
11909 struct iovec
*vec
= lock_iovec(VERIFY_READ
, arg2
, arg3
, 1);
11911 ret
= get_errno(vmsplice(arg1
, vec
, arg3
, arg4
));
11912 unlock_iovec(vec
, arg2
, arg3
, 0);
11914 ret
= -host_to_target_errno(errno
);
11919 #endif /* CONFIG_SPLICE */
11920 #ifdef CONFIG_EVENTFD
11921 #if defined(TARGET_NR_eventfd)
11922 case TARGET_NR_eventfd
:
11923 ret
= get_errno(eventfd(arg1
, 0));
11925 fd_trans_register(ret
, &target_eventfd_trans
);
11929 #if defined(TARGET_NR_eventfd2)
11930 case TARGET_NR_eventfd2
:
11932 int host_flags
= arg2
& (~(TARGET_O_NONBLOCK
| TARGET_O_CLOEXEC
));
11933 if (arg2
& TARGET_O_NONBLOCK
) {
11934 host_flags
|= O_NONBLOCK
;
11936 if (arg2
& TARGET_O_CLOEXEC
) {
11937 host_flags
|= O_CLOEXEC
;
11939 ret
= get_errno(eventfd(arg1
, host_flags
));
11941 fd_trans_register(ret
, &target_eventfd_trans
);
11946 #endif /* CONFIG_EVENTFD */
11947 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate)
11948 case TARGET_NR_fallocate
:
11949 #if TARGET_ABI_BITS == 32
11950 ret
= get_errno(fallocate(arg1
, arg2
, target_offset64(arg3
, arg4
),
11951 target_offset64(arg5
, arg6
)));
11953 ret
= get_errno(fallocate(arg1
, arg2
, arg3
, arg4
));
11957 #if defined(CONFIG_SYNC_FILE_RANGE)
11958 #if defined(TARGET_NR_sync_file_range)
11959 case TARGET_NR_sync_file_range
:
11960 #if TARGET_ABI_BITS == 32
11961 #if defined(TARGET_MIPS)
11962 ret
= get_errno(sync_file_range(arg1
, target_offset64(arg3
, arg4
),
11963 target_offset64(arg5
, arg6
), arg7
));
11965 ret
= get_errno(sync_file_range(arg1
, target_offset64(arg2
, arg3
),
11966 target_offset64(arg4
, arg5
), arg6
));
11967 #endif /* !TARGET_MIPS */
11969 ret
= get_errno(sync_file_range(arg1
, arg2
, arg3
, arg4
));
11973 #if defined(TARGET_NR_sync_file_range2)
11974 case TARGET_NR_sync_file_range2
:
11975 /* This is like sync_file_range but the arguments are reordered */
11976 #if TARGET_ABI_BITS == 32
11977 ret
= get_errno(sync_file_range(arg1
, target_offset64(arg3
, arg4
),
11978 target_offset64(arg5
, arg6
), arg2
));
11980 ret
= get_errno(sync_file_range(arg1
, arg3
, arg4
, arg2
));
11985 #if defined(TARGET_NR_signalfd4)
11986 case TARGET_NR_signalfd4
:
11987 ret
= do_signalfd4(arg1
, arg2
, arg4
);
11990 #if defined(TARGET_NR_signalfd)
11991 case TARGET_NR_signalfd
:
11992 ret
= do_signalfd4(arg1
, arg2
, 0);
11995 #if defined(CONFIG_EPOLL)
11996 #if defined(TARGET_NR_epoll_create)
11997 case TARGET_NR_epoll_create
:
11998 ret
= get_errno(epoll_create(arg1
));
12001 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1)
12002 case TARGET_NR_epoll_create1
:
12003 ret
= get_errno(epoll_create1(arg1
));
12006 #if defined(TARGET_NR_epoll_ctl)
12007 case TARGET_NR_epoll_ctl
:
12009 struct epoll_event ep
;
12010 struct epoll_event
*epp
= 0;
12012 struct target_epoll_event
*target_ep
;
12013 if (!lock_user_struct(VERIFY_READ
, target_ep
, arg4
, 1)) {
12016 ep
.events
= tswap32(target_ep
->events
);
12017 /* The epoll_data_t union is just opaque data to the kernel,
12018 * so we transfer all 64 bits across and need not worry what
12019 * actual data type it is.
12021 ep
.data
.u64
= tswap64(target_ep
->data
.u64
);
12022 unlock_user_struct(target_ep
, arg4
, 0);
12025 ret
= get_errno(epoll_ctl(arg1
, arg2
, arg3
, epp
));
12030 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait)
12031 #if defined(TARGET_NR_epoll_wait)
12032 case TARGET_NR_epoll_wait
:
12034 #if defined(TARGET_NR_epoll_pwait)
12035 case TARGET_NR_epoll_pwait
:
12038 struct target_epoll_event
*target_ep
;
12039 struct epoll_event
*ep
;
12041 int maxevents
= arg3
;
12042 int timeout
= arg4
;
12044 if (maxevents
<= 0 || maxevents
> TARGET_EP_MAX_EVENTS
) {
12045 ret
= -TARGET_EINVAL
;
12049 target_ep
= lock_user(VERIFY_WRITE
, arg2
,
12050 maxevents
* sizeof(struct target_epoll_event
), 1);
12055 ep
= g_try_new(struct epoll_event
, maxevents
);
12057 unlock_user(target_ep
, arg2
, 0);
12058 ret
= -TARGET_ENOMEM
;
12063 #if defined(TARGET_NR_epoll_pwait)
12064 case TARGET_NR_epoll_pwait
:
12066 target_sigset_t
*target_set
;
12067 sigset_t _set
, *set
= &_set
;
12070 if (arg6
!= sizeof(target_sigset_t
)) {
12071 ret
= -TARGET_EINVAL
;
12075 target_set
= lock_user(VERIFY_READ
, arg5
,
12076 sizeof(target_sigset_t
), 1);
12078 ret
= -TARGET_EFAULT
;
12081 target_to_host_sigset(set
, target_set
);
12082 unlock_user(target_set
, arg5
, 0);
12087 ret
= get_errno(safe_epoll_pwait(epfd
, ep
, maxevents
, timeout
,
12088 set
, SIGSET_T_SIZE
));
12092 #if defined(TARGET_NR_epoll_wait)
12093 case TARGET_NR_epoll_wait
:
12094 ret
= get_errno(safe_epoll_pwait(epfd
, ep
, maxevents
, timeout
,
12099 ret
= -TARGET_ENOSYS
;
12101 if (!is_error(ret
)) {
12103 for (i
= 0; i
< ret
; i
++) {
12104 target_ep
[i
].events
= tswap32(ep
[i
].events
);
12105 target_ep
[i
].data
.u64
= tswap64(ep
[i
].data
.u64
);
12107 unlock_user(target_ep
, arg2
,
12108 ret
* sizeof(struct target_epoll_event
));
12110 unlock_user(target_ep
, arg2
, 0);
12117 #ifdef TARGET_NR_prlimit64
12118 case TARGET_NR_prlimit64
:
12120 /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */
12121 struct target_rlimit64
*target_rnew
, *target_rold
;
12122 struct host_rlimit64 rnew
, rold
, *rnewp
= 0;
12123 int resource
= target_to_host_resource(arg2
);
12125 if (!lock_user_struct(VERIFY_READ
, target_rnew
, arg3
, 1)) {
12128 rnew
.rlim_cur
= tswap64(target_rnew
->rlim_cur
);
12129 rnew
.rlim_max
= tswap64(target_rnew
->rlim_max
);
12130 unlock_user_struct(target_rnew
, arg3
, 0);
12134 ret
= get_errno(sys_prlimit64(arg1
, resource
, rnewp
, arg4
? &rold
: 0));
12135 if (!is_error(ret
) && arg4
) {
12136 if (!lock_user_struct(VERIFY_WRITE
, target_rold
, arg4
, 1)) {
12139 target_rold
->rlim_cur
= tswap64(rold
.rlim_cur
);
12140 target_rold
->rlim_max
= tswap64(rold
.rlim_max
);
12141 unlock_user_struct(target_rold
, arg4
, 1);
12146 #ifdef TARGET_NR_gethostname
12147 case TARGET_NR_gethostname
:
12149 char *name
= lock_user(VERIFY_WRITE
, arg1
, arg2
, 0);
12151 ret
= get_errno(gethostname(name
, arg2
));
12152 unlock_user(name
, arg1
, arg2
);
12154 ret
= -TARGET_EFAULT
;
12159 #ifdef TARGET_NR_atomic_cmpxchg_32
12160 case TARGET_NR_atomic_cmpxchg_32
:
12162 /* should use start_exclusive from main.c */
12163 abi_ulong mem_value
;
12164 if (get_user_u32(mem_value
, arg6
)) {
12165 target_siginfo_t info
;
12166 info
.si_signo
= SIGSEGV
;
12168 info
.si_code
= TARGET_SEGV_MAPERR
;
12169 info
._sifields
._sigfault
._addr
= arg6
;
12170 queue_signal((CPUArchState
*)cpu_env
, info
.si_signo
,
12171 QEMU_SI_FAULT
, &info
);
12175 if (mem_value
== arg2
)
12176 put_user_u32(arg1
, arg6
);
12181 #ifdef TARGET_NR_atomic_barrier
12182 case TARGET_NR_atomic_barrier
:
12184 /* Like the kernel implementation and the qemu arm barrier, no-op this? */
12190 #ifdef TARGET_NR_timer_create
12191 case TARGET_NR_timer_create
:
12193 /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */
12195 struct sigevent host_sevp
= { {0}, }, *phost_sevp
= NULL
;
12198 int timer_index
= next_free_host_timer();
12200 if (timer_index
< 0) {
12201 ret
= -TARGET_EAGAIN
;
12203 timer_t
*phtimer
= g_posix_timers
+ timer_index
;
12206 phost_sevp
= &host_sevp
;
12207 ret
= target_to_host_sigevent(phost_sevp
, arg2
);
12213 ret
= get_errno(timer_create(clkid
, phost_sevp
, phtimer
));
12217 if (put_user(TIMER_MAGIC
| timer_index
, arg3
, target_timer_t
)) {
12226 #ifdef TARGET_NR_timer_settime
12227 case TARGET_NR_timer_settime
:
12229 /* args: timer_t timerid, int flags, const struct itimerspec *new_value,
12230 * struct itimerspec * old_value */
12231 target_timer_t timerid
= get_timer_id(arg1
);
12235 } else if (arg3
== 0) {
12236 ret
= -TARGET_EINVAL
;
12238 timer_t htimer
= g_posix_timers
[timerid
];
12239 struct itimerspec hspec_new
= {{0},}, hspec_old
= {{0},};
12241 if (target_to_host_itimerspec(&hspec_new
, arg3
)) {
12245 timer_settime(htimer
, arg2
, &hspec_new
, &hspec_old
));
12246 if (arg4
&& host_to_target_itimerspec(arg4
, &hspec_old
)) {
12254 #ifdef TARGET_NR_timer_gettime
12255 case TARGET_NR_timer_gettime
:
12257 /* args: timer_t timerid, struct itimerspec *curr_value */
12258 target_timer_t timerid
= get_timer_id(arg1
);
12262 } else if (!arg2
) {
12263 ret
= -TARGET_EFAULT
;
12265 timer_t htimer
= g_posix_timers
[timerid
];
12266 struct itimerspec hspec
;
12267 ret
= get_errno(timer_gettime(htimer
, &hspec
));
12269 if (host_to_target_itimerspec(arg2
, &hspec
)) {
12270 ret
= -TARGET_EFAULT
;
12277 #ifdef TARGET_NR_timer_getoverrun
12278 case TARGET_NR_timer_getoverrun
:
12280 /* args: timer_t timerid */
12281 target_timer_t timerid
= get_timer_id(arg1
);
12286 timer_t htimer
= g_posix_timers
[timerid
];
12287 ret
= get_errno(timer_getoverrun(htimer
));
12289 fd_trans_unregister(ret
);
12294 #ifdef TARGET_NR_timer_delete
12295 case TARGET_NR_timer_delete
:
12297 /* args: timer_t timerid */
12298 target_timer_t timerid
= get_timer_id(arg1
);
12303 timer_t htimer
= g_posix_timers
[timerid
];
12304 ret
= get_errno(timer_delete(htimer
));
12305 g_posix_timers
[timerid
] = 0;
12311 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD)
12312 case TARGET_NR_timerfd_create
:
12313 ret
= get_errno(timerfd_create(arg1
,
12314 target_to_host_bitmask(arg2
, fcntl_flags_tbl
)));
12318 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD)
12319 case TARGET_NR_timerfd_gettime
:
12321 struct itimerspec its_curr
;
12323 ret
= get_errno(timerfd_gettime(arg1
, &its_curr
));
12325 if (arg2
&& host_to_target_itimerspec(arg2
, &its_curr
)) {
12332 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)
12333 case TARGET_NR_timerfd_settime
:
12335 struct itimerspec its_new
, its_old
, *p_new
;
12338 if (target_to_host_itimerspec(&its_new
, arg3
)) {
12346 ret
= get_errno(timerfd_settime(arg1
, arg2
, p_new
, &its_old
));
12348 if (arg4
&& host_to_target_itimerspec(arg4
, &its_old
)) {
12355 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
12356 case TARGET_NR_ioprio_get
:
12357 ret
= get_errno(ioprio_get(arg1
, arg2
));
12361 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
12362 case TARGET_NR_ioprio_set
:
12363 ret
= get_errno(ioprio_set(arg1
, arg2
, arg3
));
12367 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS)
12368 case TARGET_NR_setns
:
12369 ret
= get_errno(setns(arg1
, arg2
));
12372 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS)
12373 case TARGET_NR_unshare
:
12374 ret
= get_errno(unshare(arg1
));
12377 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
12378 case TARGET_NR_kcmp
:
12379 ret
= get_errno(kcmp(arg1
, arg2
, arg3
, arg4
, arg5
));
12385 gemu_log("qemu: Unsupported syscall: %d\n", num
);
12386 #if defined(TARGET_NR_setxattr) || defined(TARGET_NR_get_thread_area) || defined(TARGET_NR_getdomainname) || defined(TARGET_NR_set_robust_list)
12387 unimplemented_nowarn
:
12389 ret
= -TARGET_ENOSYS
;
12394 gemu_log(" = " TARGET_ABI_FMT_ld
"\n", ret
);
12397 print_syscall_ret(num
, ret
);
12398 trace_guest_user_syscall_ret(cpu
, num
, ret
);
12401 ret
= -TARGET_EFAULT
;