Merge remote-tracking branch 'remotes/mcayland/tags/qemu-sparc-signed' into staging
[qemu/kevin.git] / hw / intc / armv7m_nvic.c
blobbe46639b63230471459ef9baa337c89e6795865e
1 /*
2 * ARM Nested Vectored Interrupt Controller
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
9 * The ARMv7M System controller is fairly tightly tied in with the
10 * NVIC. Much of that is also implemented here.
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "qemu-common.h"
16 #include "cpu.h"
17 #include "hw/sysbus.h"
18 #include "qemu/timer.h"
19 #include "hw/arm/arm.h"
20 #include "hw/intc/armv7m_nvic.h"
21 #include "target/arm/cpu.h"
22 #include "exec/exec-all.h"
23 #include "qemu/log.h"
24 #include "trace.h"
26 /* IRQ number counting:
28 * the num-irq property counts the number of external IRQ lines
30 * NVICState::num_irq counts the total number of exceptions
31 * (external IRQs, the 15 internal exceptions including reset,
32 * and one for the unused exception number 0).
34 * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines.
36 * NVIC_MAX_VECTORS is the highest permitted number of exceptions.
38 * Iterating through all exceptions should typically be done with
39 * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0.
41 * The external qemu_irq lines are the NVIC's external IRQ lines,
42 * so line 0 is exception 16.
44 * In the terminology of the architecture manual, "interrupts" are
45 * a subcategory of exception referring to the external interrupts
46 * (which are exception numbers NVIC_FIRST_IRQ and upward).
47 * For historical reasons QEMU tends to use "interrupt" and
48 * "exception" more or less interchangeably.
50 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS
51 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ)
53 /* Effective running priority of the CPU when no exception is active
54 * (higher than the highest possible priority value)
56 #define NVIC_NOEXC_PRIO 0x100
57 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */
58 #define NVIC_NS_PRIO_LIMIT 0x80
60 static const uint8_t nvic_id[] = {
61 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
64 static int nvic_pending_prio(NVICState *s)
66 /* return the group priority of the current pending interrupt,
67 * or NVIC_NOEXC_PRIO if no interrupt is pending
69 return s->vectpending_prio;
72 /* Return the value of the ISCR RETTOBASE bit:
73 * 1 if there is exactly one active exception
74 * 0 if there is more than one active exception
75 * UNKNOWN if there are no active exceptions (we choose 1,
76 * which matches the choice Cortex-M3 is documented as making).
78 * NB: some versions of the documentation talk about this
79 * counting "active exceptions other than the one shown by IPSR";
80 * this is only different in the obscure corner case where guest
81 * code has manually deactivated an exception and is about
82 * to fail an exception-return integrity check. The definition
83 * above is the one from the v8M ARM ARM and is also in line
84 * with the behaviour documented for the Cortex-M3.
86 static bool nvic_rettobase(NVICState *s)
88 int irq, nhand = 0;
89 bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
91 for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) {
92 if (s->vectors[irq].active ||
93 (check_sec && irq < NVIC_INTERNAL_VECTORS &&
94 s->sec_vectors[irq].active)) {
95 nhand++;
96 if (nhand == 2) {
97 return 0;
102 return 1;
105 /* Return the value of the ISCR ISRPENDING bit:
106 * 1 if an external interrupt is pending
107 * 0 if no external interrupt is pending
109 static bool nvic_isrpending(NVICState *s)
111 int irq;
113 /* We can shortcut if the highest priority pending interrupt
114 * happens to be external or if there is nothing pending.
116 if (s->vectpending > NVIC_FIRST_IRQ) {
117 return true;
119 if (s->vectpending == 0) {
120 return false;
123 for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) {
124 if (s->vectors[irq].pending) {
125 return true;
128 return false;
131 static bool exc_is_banked(int exc)
133 /* Return true if this is one of the limited set of exceptions which
134 * are banked (and thus have state in sec_vectors[])
136 return exc == ARMV7M_EXCP_HARD ||
137 exc == ARMV7M_EXCP_MEM ||
138 exc == ARMV7M_EXCP_USAGE ||
139 exc == ARMV7M_EXCP_SVC ||
140 exc == ARMV7M_EXCP_PENDSV ||
141 exc == ARMV7M_EXCP_SYSTICK;
144 /* Return a mask word which clears the subpriority bits from
145 * a priority value for an M-profile exception, leaving only
146 * the group priority.
148 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure)
150 return ~0U << (s->prigroup[secure] + 1);
153 static bool exc_targets_secure(NVICState *s, int exc)
155 /* Return true if this non-banked exception targets Secure state. */
156 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
157 return false;
160 if (exc >= NVIC_FIRST_IRQ) {
161 return !s->itns[exc];
164 /* Function shouldn't be called for banked exceptions. */
165 assert(!exc_is_banked(exc));
167 switch (exc) {
168 case ARMV7M_EXCP_NMI:
169 case ARMV7M_EXCP_BUS:
170 return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
171 case ARMV7M_EXCP_SECURE:
172 return true;
173 case ARMV7M_EXCP_DEBUG:
174 /* TODO: controlled by DEMCR.SDME, which we don't yet implement */
175 return false;
176 default:
177 /* reset, and reserved (unused) low exception numbers.
178 * We'll get called by code that loops through all the exception
179 * numbers, but it doesn't matter what we return here as these
180 * non-existent exceptions will never be pended or active.
182 return true;
186 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure)
188 /* Return the group priority for this exception, given its raw
189 * (group-and-subgroup) priority value and whether it is targeting
190 * secure state or not.
192 if (rawprio < 0) {
193 return rawprio;
195 rawprio &= nvic_gprio_mask(s, targets_secure);
196 /* AIRCR.PRIS causes us to squash all NS priorities into the
197 * lower half of the total range
199 if (!targets_secure &&
200 (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) {
201 rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT;
203 return rawprio;
206 /* Recompute vectpending and exception_prio for a CPU which implements
207 * the Security extension
209 static void nvic_recompute_state_secure(NVICState *s)
211 int i, bank;
212 int pend_prio = NVIC_NOEXC_PRIO;
213 int active_prio = NVIC_NOEXC_PRIO;
214 int pend_irq = 0;
215 bool pending_is_s_banked = false;
217 /* R_CQRV: precedence is by:
218 * - lowest group priority; if both the same then
219 * - lowest subpriority; if both the same then
220 * - lowest exception number; if both the same (ie banked) then
221 * - secure exception takes precedence
222 * Compare pseudocode RawExecutionPriority.
223 * Annoyingly, now we have two prigroup values (for S and NS)
224 * we can't do the loop comparison on raw priority values.
226 for (i = 1; i < s->num_irq; i++) {
227 for (bank = M_REG_S; bank >= M_REG_NS; bank--) {
228 VecInfo *vec;
229 int prio;
230 bool targets_secure;
232 if (bank == M_REG_S) {
233 if (!exc_is_banked(i)) {
234 continue;
236 vec = &s->sec_vectors[i];
237 targets_secure = true;
238 } else {
239 vec = &s->vectors[i];
240 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i);
243 prio = exc_group_prio(s, vec->prio, targets_secure);
244 if (vec->enabled && vec->pending && prio < pend_prio) {
245 pend_prio = prio;
246 pend_irq = i;
247 pending_is_s_banked = (bank == M_REG_S);
249 if (vec->active && prio < active_prio) {
250 active_prio = prio;
255 s->vectpending_is_s_banked = pending_is_s_banked;
256 s->vectpending = pend_irq;
257 s->vectpending_prio = pend_prio;
258 s->exception_prio = active_prio;
260 trace_nvic_recompute_state_secure(s->vectpending,
261 s->vectpending_is_s_banked,
262 s->vectpending_prio,
263 s->exception_prio);
266 /* Recompute vectpending and exception_prio */
267 static void nvic_recompute_state(NVICState *s)
269 int i;
270 int pend_prio = NVIC_NOEXC_PRIO;
271 int active_prio = NVIC_NOEXC_PRIO;
272 int pend_irq = 0;
274 /* In theory we could write one function that handled both
275 * the "security extension present" and "not present"; however
276 * the security related changes significantly complicate the
277 * recomputation just by themselves and mixing both cases together
278 * would be even worse, so we retain a separate non-secure-only
279 * version for CPUs which don't implement the security extension.
281 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
282 nvic_recompute_state_secure(s);
283 return;
286 for (i = 1; i < s->num_irq; i++) {
287 VecInfo *vec = &s->vectors[i];
289 if (vec->enabled && vec->pending && vec->prio < pend_prio) {
290 pend_prio = vec->prio;
291 pend_irq = i;
293 if (vec->active && vec->prio < active_prio) {
294 active_prio = vec->prio;
298 if (active_prio > 0) {
299 active_prio &= nvic_gprio_mask(s, false);
302 if (pend_prio > 0) {
303 pend_prio &= nvic_gprio_mask(s, false);
306 s->vectpending = pend_irq;
307 s->vectpending_prio = pend_prio;
308 s->exception_prio = active_prio;
310 trace_nvic_recompute_state(s->vectpending,
311 s->vectpending_prio,
312 s->exception_prio);
315 /* Return the current execution priority of the CPU
316 * (equivalent to the pseudocode ExecutionPriority function).
317 * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO.
319 static inline int nvic_exec_prio(NVICState *s)
321 CPUARMState *env = &s->cpu->env;
322 int running = NVIC_NOEXC_PRIO;
324 if (env->v7m.basepri[M_REG_NS] > 0) {
325 running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS);
328 if (env->v7m.basepri[M_REG_S] > 0) {
329 int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S);
330 if (running > basepri) {
331 running = basepri;
335 if (env->v7m.primask[M_REG_NS]) {
336 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
337 if (running > NVIC_NS_PRIO_LIMIT) {
338 running = NVIC_NS_PRIO_LIMIT;
340 } else {
341 running = 0;
345 if (env->v7m.primask[M_REG_S]) {
346 running = 0;
349 if (env->v7m.faultmask[M_REG_NS]) {
350 if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
351 running = -1;
352 } else {
353 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
354 if (running > NVIC_NS_PRIO_LIMIT) {
355 running = NVIC_NS_PRIO_LIMIT;
357 } else {
358 running = 0;
363 if (env->v7m.faultmask[M_REG_S]) {
364 running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1;
367 /* consider priority of active handler */
368 return MIN(running, s->exception_prio);
371 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
373 /* Return true if the requested execution priority is negative
374 * for the specified security state, ie that security state
375 * has an active NMI or HardFault or has set its FAULTMASK.
376 * Note that this is not the same as whether the execution
377 * priority is actually negative (for instance AIRCR.PRIS may
378 * mean we don't allow FAULTMASK_NS to actually make the execution
379 * priority negative). Compare pseudocode IsReqExcPriNeg().
381 NVICState *s = opaque;
383 if (s->cpu->env.v7m.faultmask[secure]) {
384 return true;
387 if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active :
388 s->vectors[ARMV7M_EXCP_HARD].active) {
389 return true;
392 if (s->vectors[ARMV7M_EXCP_NMI].active &&
393 exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) {
394 return true;
397 return false;
400 bool armv7m_nvic_can_take_pending_exception(void *opaque)
402 NVICState *s = opaque;
404 return nvic_exec_prio(s) > nvic_pending_prio(s);
407 int armv7m_nvic_raw_execution_priority(void *opaque)
409 NVICState *s = opaque;
411 return s->exception_prio;
414 /* caller must call nvic_irq_update() after this.
415 * secure indicates the bank to use for banked exceptions (we assert if
416 * we are passed secure=true for a non-banked exception).
418 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio)
420 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
421 assert(irq < s->num_irq);
423 if (secure) {
424 assert(exc_is_banked(irq));
425 s->sec_vectors[irq].prio = prio;
426 } else {
427 s->vectors[irq].prio = prio;
430 trace_nvic_set_prio(irq, secure, prio);
433 /* Return the current raw priority register value.
434 * secure indicates the bank to use for banked exceptions (we assert if
435 * we are passed secure=true for a non-banked exception).
437 static int get_prio(NVICState *s, unsigned irq, bool secure)
439 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
440 assert(irq < s->num_irq);
442 if (secure) {
443 assert(exc_is_banked(irq));
444 return s->sec_vectors[irq].prio;
445 } else {
446 return s->vectors[irq].prio;
450 /* Recompute state and assert irq line accordingly.
451 * Must be called after changes to:
452 * vec->active, vec->enabled, vec->pending or vec->prio for any vector
453 * prigroup
455 static void nvic_irq_update(NVICState *s)
457 int lvl;
458 int pend_prio;
460 nvic_recompute_state(s);
461 pend_prio = nvic_pending_prio(s);
463 /* Raise NVIC output if this IRQ would be taken, except that we
464 * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which
465 * will be checked for in arm_v7m_cpu_exec_interrupt()); changes
466 * to those CPU registers don't cause us to recalculate the NVIC
467 * pending info.
469 lvl = (pend_prio < s->exception_prio);
470 trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl);
471 qemu_set_irq(s->excpout, lvl);
475 * armv7m_nvic_clear_pending: mark the specified exception as not pending
476 * @opaque: the NVIC
477 * @irq: the exception number to mark as not pending
478 * @secure: false for non-banked exceptions or for the nonsecure
479 * version of a banked exception, true for the secure version of a banked
480 * exception.
482 * Marks the specified exception as not pending. Note that we will assert()
483 * if @secure is true and @irq does not specify one of the fixed set
484 * of architecturally banked exceptions.
486 static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure)
488 NVICState *s = (NVICState *)opaque;
489 VecInfo *vec;
491 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
493 if (secure) {
494 assert(exc_is_banked(irq));
495 vec = &s->sec_vectors[irq];
496 } else {
497 vec = &s->vectors[irq];
499 trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio);
500 if (vec->pending) {
501 vec->pending = 0;
502 nvic_irq_update(s);
506 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure)
508 NVICState *s = (NVICState *)opaque;
509 bool banked = exc_is_banked(irq);
510 VecInfo *vec;
512 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
513 assert(!secure || banked);
515 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
517 trace_nvic_set_pending(irq, secure, vec->enabled, vec->prio);
519 if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) {
520 /* If a synchronous exception is pending then it may be
521 * escalated to HardFault if:
522 * * it is equal or lower priority to current execution
523 * * it is disabled
524 * (ie we need to take it immediately but we can't do so).
525 * Asynchronous exceptions (and interrupts) simply remain pending.
527 * For QEMU, we don't have any imprecise (asynchronous) faults,
528 * so we can assume that PREFETCH_ABORT and DATA_ABORT are always
529 * synchronous.
530 * Debug exceptions are awkward because only Debug exceptions
531 * resulting from the BKPT instruction should be escalated,
532 * but we don't currently implement any Debug exceptions other
533 * than those that result from BKPT, so we treat all debug exceptions
534 * as needing escalation.
536 * This all means we can identify whether to escalate based only on
537 * the exception number and don't (yet) need the caller to explicitly
538 * tell us whether this exception is synchronous or not.
540 int running = nvic_exec_prio(s);
541 bool escalate = false;
543 if (exc_group_prio(s, vec->prio, secure) >= running) {
544 trace_nvic_escalate_prio(irq, vec->prio, running);
545 escalate = true;
546 } else if (!vec->enabled) {
547 trace_nvic_escalate_disabled(irq);
548 escalate = true;
551 if (escalate) {
553 /* We need to escalate this exception to a synchronous HardFault.
554 * If BFHFNMINS is set then we escalate to the banked HF for
555 * the target security state of the original exception; otherwise
556 * we take a Secure HardFault.
558 irq = ARMV7M_EXCP_HARD;
559 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
560 (secure ||
561 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
562 vec = &s->sec_vectors[irq];
563 } else {
564 vec = &s->vectors[irq];
566 if (running <= vec->prio) {
567 /* We want to escalate to HardFault but we can't take the
568 * synchronous HardFault at this point either. This is a
569 * Lockup condition due to a guest bug. We don't model
570 * Lockup, so report via cpu_abort() instead.
572 cpu_abort(&s->cpu->parent_obj,
573 "Lockup: can't escalate %d to HardFault "
574 "(current priority %d)\n", irq, running);
577 /* HF may be banked but there is only one shared HFSR */
578 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
582 if (!vec->pending) {
583 vec->pending = 1;
584 nvic_irq_update(s);
588 /* Make pending IRQ active. */
589 bool armv7m_nvic_acknowledge_irq(void *opaque)
591 NVICState *s = (NVICState *)opaque;
592 CPUARMState *env = &s->cpu->env;
593 const int pending = s->vectpending;
594 const int running = nvic_exec_prio(s);
595 VecInfo *vec;
596 bool targets_secure;
598 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
600 if (s->vectpending_is_s_banked) {
601 vec = &s->sec_vectors[pending];
602 targets_secure = true;
603 } else {
604 vec = &s->vectors[pending];
605 targets_secure = !exc_is_banked(s->vectpending) &&
606 exc_targets_secure(s, s->vectpending);
609 assert(vec->enabled);
610 assert(vec->pending);
612 assert(s->vectpending_prio < running);
614 trace_nvic_acknowledge_irq(pending, s->vectpending_prio, targets_secure);
616 vec->active = 1;
617 vec->pending = 0;
619 write_v7m_exception(env, s->vectpending);
621 nvic_irq_update(s);
623 return targets_secure;
626 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure)
628 NVICState *s = (NVICState *)opaque;
629 VecInfo *vec;
630 int ret;
632 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
634 if (secure && exc_is_banked(irq)) {
635 vec = &s->sec_vectors[irq];
636 } else {
637 vec = &s->vectors[irq];
640 trace_nvic_complete_irq(irq, secure);
642 if (!vec->active) {
643 /* Tell the caller this was an illegal exception return */
644 return -1;
647 ret = nvic_rettobase(s);
649 vec->active = 0;
650 if (vec->level) {
651 /* Re-pend the exception if it's still held high; only
652 * happens for extenal IRQs
654 assert(irq >= NVIC_FIRST_IRQ);
655 vec->pending = 1;
658 nvic_irq_update(s);
660 return ret;
663 /* callback when external interrupt line is changed */
664 static void set_irq_level(void *opaque, int n, int level)
666 NVICState *s = opaque;
667 VecInfo *vec;
669 n += NVIC_FIRST_IRQ;
671 assert(n >= NVIC_FIRST_IRQ && n < s->num_irq);
673 trace_nvic_set_irq_level(n, level);
675 /* The pending status of an external interrupt is
676 * latched on rising edge and exception handler return.
678 * Pulsing the IRQ will always run the handler
679 * once, and the handler will re-run until the
680 * level is low when the handler completes.
682 vec = &s->vectors[n];
683 if (level != vec->level) {
684 vec->level = level;
685 if (level) {
686 armv7m_nvic_set_pending(s, n, false);
691 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
693 ARMCPU *cpu = s->cpu;
694 uint32_t val;
696 switch (offset) {
697 case 4: /* Interrupt Control Type. */
698 return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1;
699 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
701 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
702 int i;
704 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
705 goto bad_offset;
707 if (!attrs.secure) {
708 return 0;
710 val = 0;
711 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
712 if (s->itns[startvec + i]) {
713 val |= (1 << i);
716 return val;
718 case 0xd00: /* CPUID Base. */
719 return cpu->midr;
720 case 0xd04: /* Interrupt Control State (ICSR) */
721 /* VECTACTIVE */
722 val = cpu->env.v7m.exception;
723 /* VECTPENDING */
724 val |= (s->vectpending & 0xff) << 12;
725 /* ISRPENDING - set if any external IRQ is pending */
726 if (nvic_isrpending(s)) {
727 val |= (1 << 22);
729 /* RETTOBASE - set if only one handler is active */
730 if (nvic_rettobase(s)) {
731 val |= (1 << 11);
733 if (attrs.secure) {
734 /* PENDSTSET */
735 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) {
736 val |= (1 << 26);
738 /* PENDSVSET */
739 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) {
740 val |= (1 << 28);
742 } else {
743 /* PENDSTSET */
744 if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) {
745 val |= (1 << 26);
747 /* PENDSVSET */
748 if (s->vectors[ARMV7M_EXCP_PENDSV].pending) {
749 val |= (1 << 28);
752 /* NMIPENDSET */
753 if ((cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
754 s->vectors[ARMV7M_EXCP_NMI].pending) {
755 val |= (1 << 31);
757 /* ISRPREEMPT: RES0 when halting debug not implemented */
758 /* STTNS: RES0 for the Main Extension */
759 return val;
760 case 0xd08: /* Vector Table Offset. */
761 return cpu->env.v7m.vecbase[attrs.secure];
762 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
763 val = 0xfa050000 | (s->prigroup[attrs.secure] << 8);
764 if (attrs.secure) {
765 /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */
766 val |= cpu->env.v7m.aircr;
767 } else {
768 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
769 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If
770 * security isn't supported then BFHFNMINS is RAO (and
771 * the bit in env.v7m.aircr is always set).
773 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK;
776 return val;
777 case 0xd10: /* System Control. */
778 /* TODO: Implement SLEEPONEXIT. */
779 return 0;
780 case 0xd14: /* Configuration Control. */
781 /* The BFHFNMIGN bit is the only non-banked bit; we
782 * keep it in the non-secure copy of the register.
784 val = cpu->env.v7m.ccr[attrs.secure];
785 val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
786 return val;
787 case 0xd24: /* System Handler Control and State (SHCSR) */
788 val = 0;
789 if (attrs.secure) {
790 if (s->sec_vectors[ARMV7M_EXCP_MEM].active) {
791 val |= (1 << 0);
793 if (s->sec_vectors[ARMV7M_EXCP_HARD].active) {
794 val |= (1 << 2);
796 if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) {
797 val |= (1 << 3);
799 if (s->sec_vectors[ARMV7M_EXCP_SVC].active) {
800 val |= (1 << 7);
802 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) {
803 val |= (1 << 10);
805 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) {
806 val |= (1 << 11);
808 if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) {
809 val |= (1 << 12);
811 if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) {
812 val |= (1 << 13);
814 if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) {
815 val |= (1 << 15);
817 if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) {
818 val |= (1 << 16);
820 if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) {
821 val |= (1 << 18);
823 if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) {
824 val |= (1 << 21);
826 /* SecureFault is not banked but is always RAZ/WI to NS */
827 if (s->vectors[ARMV7M_EXCP_SECURE].active) {
828 val |= (1 << 4);
830 if (s->vectors[ARMV7M_EXCP_SECURE].enabled) {
831 val |= (1 << 19);
833 if (s->vectors[ARMV7M_EXCP_SECURE].pending) {
834 val |= (1 << 20);
836 } else {
837 if (s->vectors[ARMV7M_EXCP_MEM].active) {
838 val |= (1 << 0);
840 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
841 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */
842 if (s->vectors[ARMV7M_EXCP_HARD].active) {
843 val |= (1 << 2);
845 if (s->vectors[ARMV7M_EXCP_HARD].pending) {
846 val |= (1 << 21);
849 if (s->vectors[ARMV7M_EXCP_USAGE].active) {
850 val |= (1 << 3);
852 if (s->vectors[ARMV7M_EXCP_SVC].active) {
853 val |= (1 << 7);
855 if (s->vectors[ARMV7M_EXCP_PENDSV].active) {
856 val |= (1 << 10);
858 if (s->vectors[ARMV7M_EXCP_SYSTICK].active) {
859 val |= (1 << 11);
861 if (s->vectors[ARMV7M_EXCP_USAGE].pending) {
862 val |= (1 << 12);
864 if (s->vectors[ARMV7M_EXCP_MEM].pending) {
865 val |= (1 << 13);
867 if (s->vectors[ARMV7M_EXCP_SVC].pending) {
868 val |= (1 << 15);
870 if (s->vectors[ARMV7M_EXCP_MEM].enabled) {
871 val |= (1 << 16);
873 if (s->vectors[ARMV7M_EXCP_USAGE].enabled) {
874 val |= (1 << 18);
877 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
878 if (s->vectors[ARMV7M_EXCP_BUS].active) {
879 val |= (1 << 1);
881 if (s->vectors[ARMV7M_EXCP_BUS].pending) {
882 val |= (1 << 14);
884 if (s->vectors[ARMV7M_EXCP_BUS].enabled) {
885 val |= (1 << 17);
887 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
888 s->vectors[ARMV7M_EXCP_NMI].active) {
889 /* NMIACT is not present in v7M */
890 val |= (1 << 5);
894 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
895 if (s->vectors[ARMV7M_EXCP_DEBUG].active) {
896 val |= (1 << 8);
898 return val;
899 case 0xd28: /* Configurable Fault Status. */
900 /* The BFSR bits [15:8] are shared between security states
901 * and we store them in the NS copy
903 val = cpu->env.v7m.cfsr[attrs.secure];
904 val |= cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK;
905 return val;
906 case 0xd2c: /* Hard Fault Status. */
907 return cpu->env.v7m.hfsr;
908 case 0xd30: /* Debug Fault Status. */
909 return cpu->env.v7m.dfsr;
910 case 0xd34: /* MMFAR MemManage Fault Address */
911 return cpu->env.v7m.mmfar[attrs.secure];
912 case 0xd38: /* Bus Fault Address. */
913 return cpu->env.v7m.bfar;
914 case 0xd3c: /* Aux Fault Status. */
915 /* TODO: Implement fault status registers. */
916 qemu_log_mask(LOG_UNIMP,
917 "Aux Fault status registers unimplemented\n");
918 return 0;
919 case 0xd40: /* PFR0. */
920 return 0x00000030;
921 case 0xd44: /* PRF1. */
922 return 0x00000200;
923 case 0xd48: /* DFR0. */
924 return 0x00100000;
925 case 0xd4c: /* AFR0. */
926 return 0x00000000;
927 case 0xd50: /* MMFR0. */
928 return 0x00000030;
929 case 0xd54: /* MMFR1. */
930 return 0x00000000;
931 case 0xd58: /* MMFR2. */
932 return 0x00000000;
933 case 0xd5c: /* MMFR3. */
934 return 0x00000000;
935 case 0xd60: /* ISAR0. */
936 return 0x01141110;
937 case 0xd64: /* ISAR1. */
938 return 0x02111000;
939 case 0xd68: /* ISAR2. */
940 return 0x21112231;
941 case 0xd6c: /* ISAR3. */
942 return 0x01111110;
943 case 0xd70: /* ISAR4. */
944 return 0x01310102;
945 /* TODO: Implement debug registers. */
946 case 0xd90: /* MPU_TYPE */
947 /* Unified MPU; if the MPU is not present this value is zero */
948 return cpu->pmsav7_dregion << 8;
949 break;
950 case 0xd94: /* MPU_CTRL */
951 return cpu->env.v7m.mpu_ctrl[attrs.secure];
952 case 0xd98: /* MPU_RNR */
953 return cpu->env.pmsav7.rnr[attrs.secure];
954 case 0xd9c: /* MPU_RBAR */
955 case 0xda4: /* MPU_RBAR_A1 */
956 case 0xdac: /* MPU_RBAR_A2 */
957 case 0xdb4: /* MPU_RBAR_A3 */
959 int region = cpu->env.pmsav7.rnr[attrs.secure];
961 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
962 /* PMSAv8M handling of the aliases is different from v7M:
963 * aliases A1, A2, A3 override the low two bits of the region
964 * number in MPU_RNR, and there is no 'region' field in the
965 * RBAR register.
967 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
968 if (aliasno) {
969 region = deposit32(region, 0, 2, aliasno);
971 if (region >= cpu->pmsav7_dregion) {
972 return 0;
974 return cpu->env.pmsav8.rbar[attrs.secure][region];
977 if (region >= cpu->pmsav7_dregion) {
978 return 0;
980 return (cpu->env.pmsav7.drbar[region] & 0x1f) | (region & 0xf);
982 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
983 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
984 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
985 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
987 int region = cpu->env.pmsav7.rnr[attrs.secure];
989 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
990 /* PMSAv8M handling of the aliases is different from v7M:
991 * aliases A1, A2, A3 override the low two bits of the region
992 * number in MPU_RNR.
994 int aliasno = (offset - 0xda0) / 8; /* 0..3 */
995 if (aliasno) {
996 region = deposit32(region, 0, 2, aliasno);
998 if (region >= cpu->pmsav7_dregion) {
999 return 0;
1001 return cpu->env.pmsav8.rlar[attrs.secure][region];
1004 if (region >= cpu->pmsav7_dregion) {
1005 return 0;
1007 return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) |
1008 (cpu->env.pmsav7.drsr[region] & 0xffff);
1010 case 0xdc0: /* MPU_MAIR0 */
1011 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1012 goto bad_offset;
1014 return cpu->env.pmsav8.mair0[attrs.secure];
1015 case 0xdc4: /* MPU_MAIR1 */
1016 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1017 goto bad_offset;
1019 return cpu->env.pmsav8.mair1[attrs.secure];
1020 case 0xdd0: /* SAU_CTRL */
1021 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1022 goto bad_offset;
1024 if (!attrs.secure) {
1025 return 0;
1027 return cpu->env.sau.ctrl;
1028 case 0xdd4: /* SAU_TYPE */
1029 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1030 goto bad_offset;
1032 if (!attrs.secure) {
1033 return 0;
1035 return cpu->sau_sregion;
1036 case 0xdd8: /* SAU_RNR */
1037 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1038 goto bad_offset;
1040 if (!attrs.secure) {
1041 return 0;
1043 return cpu->env.sau.rnr;
1044 case 0xddc: /* SAU_RBAR */
1046 int region = cpu->env.sau.rnr;
1048 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1049 goto bad_offset;
1051 if (!attrs.secure) {
1052 return 0;
1054 if (region >= cpu->sau_sregion) {
1055 return 0;
1057 return cpu->env.sau.rbar[region];
1059 case 0xde0: /* SAU_RLAR */
1061 int region = cpu->env.sau.rnr;
1063 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1064 goto bad_offset;
1066 if (!attrs.secure) {
1067 return 0;
1069 if (region >= cpu->sau_sregion) {
1070 return 0;
1072 return cpu->env.sau.rlar[region];
1074 case 0xde4: /* SFSR */
1075 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1076 goto bad_offset;
1078 if (!attrs.secure) {
1079 return 0;
1081 return cpu->env.v7m.sfsr;
1082 case 0xde8: /* SFAR */
1083 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1084 goto bad_offset;
1086 if (!attrs.secure) {
1087 return 0;
1089 return cpu->env.v7m.sfar;
1090 default:
1091 bad_offset:
1092 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
1093 return 0;
1097 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
1098 MemTxAttrs attrs)
1100 ARMCPU *cpu = s->cpu;
1102 switch (offset) {
1103 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1105 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
1106 int i;
1108 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1109 goto bad_offset;
1111 if (!attrs.secure) {
1112 break;
1114 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1115 s->itns[startvec + i] = (value >> i) & 1;
1117 nvic_irq_update(s);
1118 break;
1120 case 0xd04: /* Interrupt Control State (ICSR) */
1121 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1122 if (value & (1 << 31)) {
1123 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
1124 } else if (value & (1 << 30) &&
1125 arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1126 /* PENDNMICLR didn't exist in v7M */
1127 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false);
1130 if (value & (1 << 28)) {
1131 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1132 } else if (value & (1 << 27)) {
1133 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1135 if (value & (1 << 26)) {
1136 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1137 } else if (value & (1 << 25)) {
1138 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1140 break;
1141 case 0xd08: /* Vector Table Offset. */
1142 cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80;
1143 break;
1144 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1145 if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) {
1146 if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) {
1147 if (attrs.secure ||
1148 !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) {
1149 qemu_irq_pulse(s->sysresetreq);
1152 if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) {
1153 qemu_log_mask(LOG_GUEST_ERROR,
1154 "Setting VECTCLRACTIVE when not in DEBUG mode "
1155 "is UNPREDICTABLE\n");
1157 if (value & R_V7M_AIRCR_VECTRESET_MASK) {
1158 /* NB: this bit is RES0 in v8M */
1159 qemu_log_mask(LOG_GUEST_ERROR,
1160 "Setting VECTRESET when not in DEBUG mode "
1161 "is UNPREDICTABLE\n");
1163 s->prigroup[attrs.secure] = extract32(value,
1164 R_V7M_AIRCR_PRIGROUP_SHIFT,
1165 R_V7M_AIRCR_PRIGROUP_LENGTH);
1166 if (attrs.secure) {
1167 /* These bits are only writable by secure */
1168 cpu->env.v7m.aircr = value &
1169 (R_V7M_AIRCR_SYSRESETREQS_MASK |
1170 R_V7M_AIRCR_BFHFNMINS_MASK |
1171 R_V7M_AIRCR_PRIS_MASK);
1172 /* BFHFNMINS changes the priority of Secure HardFault, and
1173 * allows a pending Non-secure HardFault to preempt (which
1174 * we implement by marking it enabled).
1176 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1177 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3;
1178 s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
1179 } else {
1180 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
1181 s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
1184 nvic_irq_update(s);
1186 break;
1187 case 0xd10: /* System Control. */
1188 /* TODO: Implement control registers. */
1189 qemu_log_mask(LOG_UNIMP, "NVIC: SCR unimplemented\n");
1190 break;
1191 case 0xd14: /* Configuration Control. */
1192 /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */
1193 value &= (R_V7M_CCR_STKALIGN_MASK |
1194 R_V7M_CCR_BFHFNMIGN_MASK |
1195 R_V7M_CCR_DIV_0_TRP_MASK |
1196 R_V7M_CCR_UNALIGN_TRP_MASK |
1197 R_V7M_CCR_USERSETMPEND_MASK |
1198 R_V7M_CCR_NONBASETHRDENA_MASK);
1200 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1201 /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */
1202 value |= R_V7M_CCR_NONBASETHRDENA_MASK
1203 | R_V7M_CCR_STKALIGN_MASK;
1205 if (attrs.secure) {
1206 /* the BFHFNMIGN bit is not banked; keep that in the NS copy */
1207 cpu->env.v7m.ccr[M_REG_NS] =
1208 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK)
1209 | (value & R_V7M_CCR_BFHFNMIGN_MASK);
1210 value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1213 cpu->env.v7m.ccr[attrs.secure] = value;
1214 break;
1215 case 0xd24: /* System Handler Control and State (SHCSR) */
1216 if (attrs.secure) {
1217 s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1218 /* Secure HardFault active bit cannot be written */
1219 s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1220 s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1221 s->sec_vectors[ARMV7M_EXCP_PENDSV].active =
1222 (value & (1 << 10)) != 0;
1223 s->sec_vectors[ARMV7M_EXCP_SYSTICK].active =
1224 (value & (1 << 11)) != 0;
1225 s->sec_vectors[ARMV7M_EXCP_USAGE].pending =
1226 (value & (1 << 12)) != 0;
1227 s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1228 s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1229 s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1230 s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1231 s->sec_vectors[ARMV7M_EXCP_USAGE].enabled =
1232 (value & (1 << 18)) != 0;
1233 s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1234 /* SecureFault not banked, but RAZ/WI to NS */
1235 s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0;
1236 s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0;
1237 s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0;
1238 } else {
1239 s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1240 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1241 /* HARDFAULTPENDED is not present in v7M */
1242 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1244 s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1245 s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1246 s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0;
1247 s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0;
1248 s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0;
1249 s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1250 s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1251 s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1252 s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
1254 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1255 s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0;
1256 s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0;
1257 s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1259 /* NMIACT can only be written if the write is of a zero, with
1260 * BFHFNMINS 1, and by the CPU in secure state via the NS alias.
1262 if (!attrs.secure && cpu->env.v7m.secure &&
1263 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1264 (value & (1 << 5)) == 0) {
1265 s->vectors[ARMV7M_EXCP_NMI].active = 0;
1267 /* HARDFAULTACT can only be written if the write is of a zero
1268 * to the non-secure HardFault state by the CPU in secure state.
1269 * The only case where we can be targeting the non-secure HF state
1270 * when in secure state is if this is a write via the NS alias
1271 * and BFHFNMINS is 1.
1273 if (!attrs.secure && cpu->env.v7m.secure &&
1274 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1275 (value & (1 << 2)) == 0) {
1276 s->vectors[ARMV7M_EXCP_HARD].active = 0;
1279 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1280 s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0;
1281 nvic_irq_update(s);
1282 break;
1283 case 0xd28: /* Configurable Fault Status. */
1284 cpu->env.v7m.cfsr[attrs.secure] &= ~value; /* W1C */
1285 if (attrs.secure) {
1286 /* The BFSR bits [15:8] are shared between security states
1287 * and we store them in the NS copy.
1289 cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK);
1291 break;
1292 case 0xd2c: /* Hard Fault Status. */
1293 cpu->env.v7m.hfsr &= ~value; /* W1C */
1294 break;
1295 case 0xd30: /* Debug Fault Status. */
1296 cpu->env.v7m.dfsr &= ~value; /* W1C */
1297 break;
1298 case 0xd34: /* Mem Manage Address. */
1299 cpu->env.v7m.mmfar[attrs.secure] = value;
1300 return;
1301 case 0xd38: /* Bus Fault Address. */
1302 cpu->env.v7m.bfar = value;
1303 return;
1304 case 0xd3c: /* Aux Fault Status. */
1305 qemu_log_mask(LOG_UNIMP,
1306 "NVIC: Aux fault status registers unimplemented\n");
1307 break;
1308 case 0xd90: /* MPU_TYPE */
1309 return; /* RO */
1310 case 0xd94: /* MPU_CTRL */
1311 if ((value &
1312 (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK))
1313 == R_V7M_MPU_CTRL_HFNMIENA_MASK) {
1314 qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is "
1315 "UNPREDICTABLE\n");
1317 cpu->env.v7m.mpu_ctrl[attrs.secure]
1318 = value & (R_V7M_MPU_CTRL_ENABLE_MASK |
1319 R_V7M_MPU_CTRL_HFNMIENA_MASK |
1320 R_V7M_MPU_CTRL_PRIVDEFENA_MASK);
1321 tlb_flush(CPU(cpu));
1322 break;
1323 case 0xd98: /* MPU_RNR */
1324 if (value >= cpu->pmsav7_dregion) {
1325 qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %"
1326 PRIu32 "/%" PRIu32 "\n",
1327 value, cpu->pmsav7_dregion);
1328 } else {
1329 cpu->env.pmsav7.rnr[attrs.secure] = value;
1331 break;
1332 case 0xd9c: /* MPU_RBAR */
1333 case 0xda4: /* MPU_RBAR_A1 */
1334 case 0xdac: /* MPU_RBAR_A2 */
1335 case 0xdb4: /* MPU_RBAR_A3 */
1337 int region;
1339 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1340 /* PMSAv8M handling of the aliases is different from v7M:
1341 * aliases A1, A2, A3 override the low two bits of the region
1342 * number in MPU_RNR, and there is no 'region' field in the
1343 * RBAR register.
1345 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1347 region = cpu->env.pmsav7.rnr[attrs.secure];
1348 if (aliasno) {
1349 region = deposit32(region, 0, 2, aliasno);
1351 if (region >= cpu->pmsav7_dregion) {
1352 return;
1354 cpu->env.pmsav8.rbar[attrs.secure][region] = value;
1355 tlb_flush(CPU(cpu));
1356 return;
1359 if (value & (1 << 4)) {
1360 /* VALID bit means use the region number specified in this
1361 * value and also update MPU_RNR.REGION with that value.
1363 region = extract32(value, 0, 4);
1364 if (region >= cpu->pmsav7_dregion) {
1365 qemu_log_mask(LOG_GUEST_ERROR,
1366 "MPU region out of range %u/%" PRIu32 "\n",
1367 region, cpu->pmsav7_dregion);
1368 return;
1370 cpu->env.pmsav7.rnr[attrs.secure] = region;
1371 } else {
1372 region = cpu->env.pmsav7.rnr[attrs.secure];
1375 if (region >= cpu->pmsav7_dregion) {
1376 return;
1379 cpu->env.pmsav7.drbar[region] = value & ~0x1f;
1380 tlb_flush(CPU(cpu));
1381 break;
1383 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1384 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1385 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1386 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1388 int region = cpu->env.pmsav7.rnr[attrs.secure];
1390 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1391 /* PMSAv8M handling of the aliases is different from v7M:
1392 * aliases A1, A2, A3 override the low two bits of the region
1393 * number in MPU_RNR.
1395 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1397 region = cpu->env.pmsav7.rnr[attrs.secure];
1398 if (aliasno) {
1399 region = deposit32(region, 0, 2, aliasno);
1401 if (region >= cpu->pmsav7_dregion) {
1402 return;
1404 cpu->env.pmsav8.rlar[attrs.secure][region] = value;
1405 tlb_flush(CPU(cpu));
1406 return;
1409 if (region >= cpu->pmsav7_dregion) {
1410 return;
1413 cpu->env.pmsav7.drsr[region] = value & 0xff3f;
1414 cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f;
1415 tlb_flush(CPU(cpu));
1416 break;
1418 case 0xdc0: /* MPU_MAIR0 */
1419 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1420 goto bad_offset;
1422 if (cpu->pmsav7_dregion) {
1423 /* Register is RES0 if no MPU regions are implemented */
1424 cpu->env.pmsav8.mair0[attrs.secure] = value;
1426 /* We don't need to do anything else because memory attributes
1427 * only affect cacheability, and we don't implement caching.
1429 break;
1430 case 0xdc4: /* MPU_MAIR1 */
1431 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1432 goto bad_offset;
1434 if (cpu->pmsav7_dregion) {
1435 /* Register is RES0 if no MPU regions are implemented */
1436 cpu->env.pmsav8.mair1[attrs.secure] = value;
1438 /* We don't need to do anything else because memory attributes
1439 * only affect cacheability, and we don't implement caching.
1441 break;
1442 case 0xdd0: /* SAU_CTRL */
1443 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1444 goto bad_offset;
1446 if (!attrs.secure) {
1447 return;
1449 cpu->env.sau.ctrl = value & 3;
1450 break;
1451 case 0xdd4: /* SAU_TYPE */
1452 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1453 goto bad_offset;
1455 break;
1456 case 0xdd8: /* SAU_RNR */
1457 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1458 goto bad_offset;
1460 if (!attrs.secure) {
1461 return;
1463 if (value >= cpu->sau_sregion) {
1464 qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %"
1465 PRIu32 "/%" PRIu32 "\n",
1466 value, cpu->sau_sregion);
1467 } else {
1468 cpu->env.sau.rnr = value;
1470 break;
1471 case 0xddc: /* SAU_RBAR */
1473 int region = cpu->env.sau.rnr;
1475 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1476 goto bad_offset;
1478 if (!attrs.secure) {
1479 return;
1481 if (region >= cpu->sau_sregion) {
1482 return;
1484 cpu->env.sau.rbar[region] = value & ~0x1f;
1485 tlb_flush(CPU(cpu));
1486 break;
1488 case 0xde0: /* SAU_RLAR */
1490 int region = cpu->env.sau.rnr;
1492 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1493 goto bad_offset;
1495 if (!attrs.secure) {
1496 return;
1498 if (region >= cpu->sau_sregion) {
1499 return;
1501 cpu->env.sau.rlar[region] = value & ~0x1c;
1502 tlb_flush(CPU(cpu));
1503 break;
1505 case 0xde4: /* SFSR */
1506 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1507 goto bad_offset;
1509 if (!attrs.secure) {
1510 return;
1512 cpu->env.v7m.sfsr &= ~value; /* W1C */
1513 break;
1514 case 0xde8: /* SFAR */
1515 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1516 goto bad_offset;
1518 if (!attrs.secure) {
1519 return;
1521 cpu->env.v7m.sfsr = value;
1522 break;
1523 case 0xf00: /* Software Triggered Interrupt Register */
1525 int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ;
1526 if (excnum < s->num_irq) {
1527 armv7m_nvic_set_pending(s, excnum, false);
1529 break;
1531 default:
1532 bad_offset:
1533 qemu_log_mask(LOG_GUEST_ERROR,
1534 "NVIC: Bad write offset 0x%x\n", offset);
1538 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs)
1540 /* Return true if unprivileged access to this register is permitted. */
1541 switch (offset) {
1542 case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */
1543 /* For access via STIR_NS it is the NS CCR.USERSETMPEND that
1544 * controls access even though the CPU is in Secure state (I_QDKX).
1546 return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK;
1547 default:
1548 /* All other user accesses cause a BusFault unconditionally */
1549 return false;
1553 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs)
1555 /* Behaviour for the SHPR register field for this exception:
1556 * return M_REG_NS to use the nonsecure vector (including for
1557 * non-banked exceptions), M_REG_S for the secure version of
1558 * a banked exception, and -1 if this field should RAZ/WI.
1560 switch (exc) {
1561 case ARMV7M_EXCP_MEM:
1562 case ARMV7M_EXCP_USAGE:
1563 case ARMV7M_EXCP_SVC:
1564 case ARMV7M_EXCP_PENDSV:
1565 case ARMV7M_EXCP_SYSTICK:
1566 /* Banked exceptions */
1567 return attrs.secure;
1568 case ARMV7M_EXCP_BUS:
1569 /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */
1570 if (!attrs.secure &&
1571 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1572 return -1;
1574 return M_REG_NS;
1575 case ARMV7M_EXCP_SECURE:
1576 /* Not banked, RAZ/WI from nonsecure */
1577 if (!attrs.secure) {
1578 return -1;
1580 return M_REG_NS;
1581 case ARMV7M_EXCP_DEBUG:
1582 /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */
1583 return M_REG_NS;
1584 case 8 ... 10:
1585 case 13:
1586 /* RES0 */
1587 return -1;
1588 default:
1589 /* Not reachable due to decode of SHPR register addresses */
1590 g_assert_not_reached();
1594 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
1595 uint64_t *data, unsigned size,
1596 MemTxAttrs attrs)
1598 NVICState *s = (NVICState *)opaque;
1599 uint32_t offset = addr;
1600 unsigned i, startvec, end;
1601 uint32_t val;
1603 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
1604 /* Generate BusFault for unprivileged accesses */
1605 return MEMTX_ERROR;
1608 switch (offset) {
1609 /* reads of set and clear both return the status */
1610 case 0x100 ... 0x13f: /* NVIC Set enable */
1611 offset += 0x80;
1612 /* fall through */
1613 case 0x180 ... 0x1bf: /* NVIC Clear enable */
1614 val = 0;
1615 startvec = offset - 0x180 + NVIC_FIRST_IRQ; /* vector # */
1617 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1618 if (s->vectors[startvec + i].enabled &&
1619 (attrs.secure || s->itns[startvec + i])) {
1620 val |= (1 << i);
1623 break;
1624 case 0x200 ... 0x23f: /* NVIC Set pend */
1625 offset += 0x80;
1626 /* fall through */
1627 case 0x280 ... 0x2bf: /* NVIC Clear pend */
1628 val = 0;
1629 startvec = offset - 0x280 + NVIC_FIRST_IRQ; /* vector # */
1630 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1631 if (s->vectors[startvec + i].pending &&
1632 (attrs.secure || s->itns[startvec + i])) {
1633 val |= (1 << i);
1636 break;
1637 case 0x300 ... 0x33f: /* NVIC Active */
1638 val = 0;
1639 startvec = offset - 0x300 + NVIC_FIRST_IRQ; /* vector # */
1641 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1642 if (s->vectors[startvec + i].active &&
1643 (attrs.secure || s->itns[startvec + i])) {
1644 val |= (1 << i);
1647 break;
1648 case 0x400 ... 0x5ef: /* NVIC Priority */
1649 val = 0;
1650 startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */
1652 for (i = 0; i < size && startvec + i < s->num_irq; i++) {
1653 if (attrs.secure || s->itns[startvec + i]) {
1654 val |= s->vectors[startvec + i].prio << (8 * i);
1657 break;
1658 case 0xd18 ... 0xd23: /* System Handler Priority (SHPR1, SHPR2, SHPR3) */
1659 val = 0;
1660 for (i = 0; i < size; i++) {
1661 unsigned hdlidx = (offset - 0xd14) + i;
1662 int sbank = shpr_bank(s, hdlidx, attrs);
1664 if (sbank < 0) {
1665 continue;
1667 val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank));
1669 break;
1670 case 0xfe0 ... 0xfff: /* ID. */
1671 if (offset & 3) {
1672 val = 0;
1673 } else {
1674 val = nvic_id[(offset - 0xfe0) >> 2];
1676 break;
1677 default:
1678 if (size == 4) {
1679 val = nvic_readl(s, offset, attrs);
1680 } else {
1681 qemu_log_mask(LOG_GUEST_ERROR,
1682 "NVIC: Bad read of size %d at offset 0x%x\n",
1683 size, offset);
1684 val = 0;
1688 trace_nvic_sysreg_read(addr, val, size);
1689 *data = val;
1690 return MEMTX_OK;
1693 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
1694 uint64_t value, unsigned size,
1695 MemTxAttrs attrs)
1697 NVICState *s = (NVICState *)opaque;
1698 uint32_t offset = addr;
1699 unsigned i, startvec, end;
1700 unsigned setval = 0;
1702 trace_nvic_sysreg_write(addr, value, size);
1704 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
1705 /* Generate BusFault for unprivileged accesses */
1706 return MEMTX_ERROR;
1709 switch (offset) {
1710 case 0x100 ... 0x13f: /* NVIC Set enable */
1711 offset += 0x80;
1712 setval = 1;
1713 /* fall through */
1714 case 0x180 ... 0x1bf: /* NVIC Clear enable */
1715 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ;
1717 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1718 if (value & (1 << i) &&
1719 (attrs.secure || s->itns[startvec + i])) {
1720 s->vectors[startvec + i].enabled = setval;
1723 nvic_irq_update(s);
1724 return MEMTX_OK;
1725 case 0x200 ... 0x23f: /* NVIC Set pend */
1726 /* the special logic in armv7m_nvic_set_pending()
1727 * is not needed since IRQs are never escalated
1729 offset += 0x80;
1730 setval = 1;
1731 /* fall through */
1732 case 0x280 ... 0x2bf: /* NVIC Clear pend */
1733 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
1735 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1736 if (value & (1 << i) &&
1737 (attrs.secure || s->itns[startvec + i])) {
1738 s->vectors[startvec + i].pending = setval;
1741 nvic_irq_update(s);
1742 return MEMTX_OK;
1743 case 0x300 ... 0x33f: /* NVIC Active */
1744 return MEMTX_OK; /* R/O */
1745 case 0x400 ... 0x5ef: /* NVIC Priority */
1746 startvec = 8 * (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */
1748 for (i = 0; i < size && startvec + i < s->num_irq; i++) {
1749 if (attrs.secure || s->itns[startvec + i]) {
1750 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff);
1753 nvic_irq_update(s);
1754 return MEMTX_OK;
1755 case 0xd18 ... 0xd23: /* System Handler Priority (SHPR1, SHPR2, SHPR3) */
1756 for (i = 0; i < size; i++) {
1757 unsigned hdlidx = (offset - 0xd14) + i;
1758 int newprio = extract32(value, i * 8, 8);
1759 int sbank = shpr_bank(s, hdlidx, attrs);
1761 if (sbank < 0) {
1762 continue;
1764 set_prio(s, hdlidx, sbank, newprio);
1766 nvic_irq_update(s);
1767 return MEMTX_OK;
1769 if (size == 4) {
1770 nvic_writel(s, offset, value, attrs);
1771 return MEMTX_OK;
1773 qemu_log_mask(LOG_GUEST_ERROR,
1774 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
1775 /* This is UNPREDICTABLE; treat as RAZ/WI */
1776 return MEMTX_OK;
1779 static const MemoryRegionOps nvic_sysreg_ops = {
1780 .read_with_attrs = nvic_sysreg_read,
1781 .write_with_attrs = nvic_sysreg_write,
1782 .endianness = DEVICE_NATIVE_ENDIAN,
1785 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr,
1786 uint64_t value, unsigned size,
1787 MemTxAttrs attrs)
1789 if (attrs.secure) {
1790 /* S accesses to the alias act like NS accesses to the real region */
1791 attrs.secure = 0;
1792 return nvic_sysreg_write(opaque, addr, value, size, attrs);
1793 } else {
1794 /* NS attrs are RAZ/WI for privileged, and BusFault for user */
1795 if (attrs.user) {
1796 return MEMTX_ERROR;
1798 return MEMTX_OK;
1802 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr,
1803 uint64_t *data, unsigned size,
1804 MemTxAttrs attrs)
1806 if (attrs.secure) {
1807 /* S accesses to the alias act like NS accesses to the real region */
1808 attrs.secure = 0;
1809 return nvic_sysreg_read(opaque, addr, data, size, attrs);
1810 } else {
1811 /* NS attrs are RAZ/WI for privileged, and BusFault for user */
1812 if (attrs.user) {
1813 return MEMTX_ERROR;
1815 *data = 0;
1816 return MEMTX_OK;
1820 static const MemoryRegionOps nvic_sysreg_ns_ops = {
1821 .read_with_attrs = nvic_sysreg_ns_read,
1822 .write_with_attrs = nvic_sysreg_ns_write,
1823 .endianness = DEVICE_NATIVE_ENDIAN,
1826 static int nvic_post_load(void *opaque, int version_id)
1828 NVICState *s = opaque;
1829 unsigned i;
1830 int resetprio;
1832 /* Check for out of range priority settings */
1833 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
1835 if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio ||
1836 s->vectors[ARMV7M_EXCP_NMI].prio != -2 ||
1837 s->vectors[ARMV7M_EXCP_HARD].prio != -1) {
1838 return 1;
1840 for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) {
1841 if (s->vectors[i].prio & ~0xff) {
1842 return 1;
1846 nvic_recompute_state(s);
1848 return 0;
1851 static const VMStateDescription vmstate_VecInfo = {
1852 .name = "armv7m_nvic_info",
1853 .version_id = 1,
1854 .minimum_version_id = 1,
1855 .fields = (VMStateField[]) {
1856 VMSTATE_INT16(prio, VecInfo),
1857 VMSTATE_UINT8(enabled, VecInfo),
1858 VMSTATE_UINT8(pending, VecInfo),
1859 VMSTATE_UINT8(active, VecInfo),
1860 VMSTATE_UINT8(level, VecInfo),
1861 VMSTATE_END_OF_LIST()
1865 static bool nvic_security_needed(void *opaque)
1867 NVICState *s = opaque;
1869 return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
1872 static int nvic_security_post_load(void *opaque, int version_id)
1874 NVICState *s = opaque;
1875 int i;
1877 /* Check for out of range priority settings */
1878 if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1
1879 && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) {
1880 /* We can't cross-check against AIRCR.BFHFNMINS as we don't know
1881 * if the CPU state has been migrated yet; a mismatch won't
1882 * cause the emulation to blow up, though.
1884 return 1;
1886 for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) {
1887 if (s->sec_vectors[i].prio & ~0xff) {
1888 return 1;
1891 return 0;
1894 static const VMStateDescription vmstate_nvic_security = {
1895 .name = "nvic/m-security",
1896 .version_id = 1,
1897 .minimum_version_id = 1,
1898 .needed = nvic_security_needed,
1899 .post_load = &nvic_security_post_load,
1900 .fields = (VMStateField[]) {
1901 VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1,
1902 vmstate_VecInfo, VecInfo),
1903 VMSTATE_UINT32(prigroup[M_REG_S], NVICState),
1904 VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS),
1905 VMSTATE_END_OF_LIST()
1909 static const VMStateDescription vmstate_nvic = {
1910 .name = "armv7m_nvic",
1911 .version_id = 4,
1912 .minimum_version_id = 4,
1913 .post_load = &nvic_post_load,
1914 .fields = (VMStateField[]) {
1915 VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1,
1916 vmstate_VecInfo, VecInfo),
1917 VMSTATE_UINT32(prigroup[M_REG_NS], NVICState),
1918 VMSTATE_END_OF_LIST()
1920 .subsections = (const VMStateDescription*[]) {
1921 &vmstate_nvic_security,
1922 NULL
1926 static Property props_nvic[] = {
1927 /* Number of external IRQ lines (so excluding the 16 internal exceptions) */
1928 DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64),
1929 DEFINE_PROP_END_OF_LIST()
1932 static void armv7m_nvic_reset(DeviceState *dev)
1934 int resetprio;
1935 NVICState *s = NVIC(dev);
1937 memset(s->vectors, 0, sizeof(s->vectors));
1938 memset(s->sec_vectors, 0, sizeof(s->sec_vectors));
1939 s->prigroup[M_REG_NS] = 0;
1940 s->prigroup[M_REG_S] = 0;
1942 s->vectors[ARMV7M_EXCP_NMI].enabled = 1;
1943 /* MEM, BUS, and USAGE are enabled through
1944 * the System Handler Control register
1946 s->vectors[ARMV7M_EXCP_SVC].enabled = 1;
1947 s->vectors[ARMV7M_EXCP_DEBUG].enabled = 1;
1948 s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
1949 s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
1951 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
1952 s->vectors[ARMV7M_EXCP_RESET].prio = resetprio;
1953 s->vectors[ARMV7M_EXCP_NMI].prio = -2;
1954 s->vectors[ARMV7M_EXCP_HARD].prio = -1;
1956 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
1957 s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1;
1958 s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1;
1959 s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
1960 s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
1962 /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */
1963 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
1964 /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */
1965 s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
1966 } else {
1967 s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
1970 /* Strictly speaking the reset handler should be enabled.
1971 * However, we don't simulate soft resets through the NVIC,
1972 * and the reset vector should never be pended.
1973 * So we leave it disabled to catch logic errors.
1976 s->exception_prio = NVIC_NOEXC_PRIO;
1977 s->vectpending = 0;
1978 s->vectpending_is_s_banked = false;
1979 s->vectpending_prio = NVIC_NOEXC_PRIO;
1981 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
1982 memset(s->itns, 0, sizeof(s->itns));
1983 } else {
1984 /* This state is constant and not guest accessible in a non-security
1985 * NVIC; we set the bits to true to avoid having to do a feature
1986 * bit check in the NVIC enable/pend/etc register accessors.
1988 int i;
1990 for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) {
1991 s->itns[i] = true;
1996 static void nvic_systick_trigger(void *opaque, int n, int level)
1998 NVICState *s = opaque;
2000 if (level) {
2001 /* SysTick just asked us to pend its exception.
2002 * (This is different from an external interrupt line's
2003 * behaviour.)
2004 * TODO: when we implement the banked systicks we must make
2005 * this pend the correct banked exception.
2007 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, false);
2011 static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
2013 NVICState *s = NVIC(dev);
2014 SysBusDevice *systick_sbd;
2015 Error *err = NULL;
2016 int regionlen;
2018 s->cpu = ARM_CPU(qemu_get_cpu(0));
2019 assert(s->cpu);
2021 if (s->num_irq > NVIC_MAX_IRQ) {
2022 error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq);
2023 return;
2026 qdev_init_gpio_in(dev, set_irq_level, s->num_irq);
2028 /* include space for internal exception vectors */
2029 s->num_irq += NVIC_FIRST_IRQ;
2031 object_property_set_bool(OBJECT(&s->systick), true, "realized", &err);
2032 if (err != NULL) {
2033 error_propagate(errp, err);
2034 return;
2036 systick_sbd = SYS_BUS_DEVICE(&s->systick);
2037 sysbus_connect_irq(systick_sbd, 0,
2038 qdev_get_gpio_in_named(dev, "systick-trigger", 0));
2040 /* The NVIC and System Control Space (SCS) starts at 0xe000e000
2041 * and looks like this:
2042 * 0x004 - ICTR
2043 * 0x010 - 0xff - systick
2044 * 0x100..0x7ec - NVIC
2045 * 0x7f0..0xcff - Reserved
2046 * 0xd00..0xd3c - SCS registers
2047 * 0xd40..0xeff - Reserved or Not implemented
2048 * 0xf00 - STIR
2050 * Some registers within this space are banked between security states.
2051 * In v8M there is a second range 0xe002e000..0xe002efff which is the
2052 * NonSecure alias SCS; secure accesses to this behave like NS accesses
2053 * to the main SCS range, and non-secure accesses (including when
2054 * the security extension is not implemented) are RAZ/WI.
2055 * Note that both the main SCS range and the alias range are defined
2056 * to be exempt from memory attribution (R_BLJT) and so the memory
2057 * transaction attribute always matches the current CPU security
2058 * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops
2059 * wrappers we change attrs.secure to indicate the NS access; so
2060 * generally code determining which banked register to use should
2061 * use attrs.secure; code determining actual behaviour of the system
2062 * should use env->v7m.secure.
2064 regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000;
2065 memory_region_init(&s->container, OBJECT(s), "nvic", regionlen);
2066 /* The system register region goes at the bottom of the priority
2067 * stack as it covers the whole page.
2069 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
2070 "nvic_sysregs", 0x1000);
2071 memory_region_add_subregion(&s->container, 0, &s->sysregmem);
2072 memory_region_add_subregion_overlap(&s->container, 0x10,
2073 sysbus_mmio_get_region(systick_sbd, 0),
2076 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
2077 memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
2078 &nvic_sysreg_ns_ops, s,
2079 "nvic_sysregs_ns", 0x1000);
2080 memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem);
2083 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container);
2086 static void armv7m_nvic_instance_init(Object *obj)
2088 /* We have a different default value for the num-irq property
2089 * than our superclass. This function runs after qdev init
2090 * has set the defaults from the Property array and before
2091 * any user-specified property setting, so just modify the
2092 * value in the GICState struct.
2094 DeviceState *dev = DEVICE(obj);
2095 NVICState *nvic = NVIC(obj);
2096 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2098 object_initialize(&nvic->systick, sizeof(nvic->systick), TYPE_SYSTICK);
2099 qdev_set_parent_bus(DEVICE(&nvic->systick), sysbus_get_default());
2101 sysbus_init_irq(sbd, &nvic->excpout);
2102 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
2103 qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger", 1);
2106 static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
2108 DeviceClass *dc = DEVICE_CLASS(klass);
2110 dc->vmsd = &vmstate_nvic;
2111 dc->props = props_nvic;
2112 dc->reset = armv7m_nvic_reset;
2113 dc->realize = armv7m_nvic_realize;
2116 static const TypeInfo armv7m_nvic_info = {
2117 .name = TYPE_NVIC,
2118 .parent = TYPE_SYS_BUS_DEVICE,
2119 .instance_init = armv7m_nvic_instance_init,
2120 .instance_size = sizeof(NVICState),
2121 .class_init = armv7m_nvic_class_init,
2122 .class_size = sizeof(SysBusDeviceClass),
2125 static void armv7m_nvic_register_types(void)
2127 type_register_static(&armv7m_nvic_info);
2130 type_init(armv7m_nvic_register_types)