2 * ARM Generic Interrupt Controller v3
4 * Copyright (c) 2016 Linaro Limited
5 * Written by Peter Maydell
7 * This code is licensed under the GPL, version 2 or (at your option)
11 /* This file contains the code for the system register interface
12 * portions of the GICv3.
15 #include "qemu/osdep.h"
16 #include "qemu/bitops.h"
17 #include "qemu/main-loop.h"
19 #include "gicv3_internal.h"
22 void gicv3_set_gicv3state(CPUState
*cpu
, GICv3CPUState
*s
)
24 ARMCPU
*arm_cpu
= ARM_CPU(cpu
);
25 CPUARMState
*env
= &arm_cpu
->env
;
27 env
->gicv3state
= (void *)s
;
30 static GICv3CPUState
*icc_cs_from_env(CPUARMState
*env
)
32 /* Given the CPU, find the right GICv3CPUState struct.
33 * Since we registered the CPU interface with the EL change hook as
34 * the opaque pointer, we can just directly get from the CPU to it.
36 return arm_get_el_change_hook_opaque(arm_env_get_cpu(env
));
39 static bool gicv3_use_ns_bank(CPUARMState
*env
)
41 /* Return true if we should use the NonSecure bank for a banked GIC
42 * CPU interface register. Note that this differs from the
43 * access_secure_reg() function because GICv3 banked registers are
44 * banked even for AArch64, unlike the other CPU system registers.
46 return !arm_is_secure_below_el3(env
);
49 /* The minimum BPR for the virtual interface is a configurable property */
50 static inline int icv_min_vbpr(GICv3CPUState
*cs
)
52 return 7 - cs
->vprebits
;
55 /* Simple accessor functions for LR fields */
56 static uint32_t ich_lr_vintid(uint64_t lr
)
58 return extract64(lr
, ICH_LR_EL2_VINTID_SHIFT
, ICH_LR_EL2_VINTID_LENGTH
);
61 static uint32_t ich_lr_pintid(uint64_t lr
)
63 return extract64(lr
, ICH_LR_EL2_PINTID_SHIFT
, ICH_LR_EL2_PINTID_LENGTH
);
66 static uint32_t ich_lr_prio(uint64_t lr
)
68 return extract64(lr
, ICH_LR_EL2_PRIORITY_SHIFT
, ICH_LR_EL2_PRIORITY_LENGTH
);
71 static int ich_lr_state(uint64_t lr
)
73 return extract64(lr
, ICH_LR_EL2_STATE_SHIFT
, ICH_LR_EL2_STATE_LENGTH
);
76 static bool icv_access(CPUARMState
*env
, int hcr_flags
)
78 /* Return true if this ICC_ register access should really be
79 * directed to an ICV_ access. hcr_flags is a mask of
80 * HCR_EL2 bits to check: we treat this as an ICV_ access
81 * if we are in NS EL1 and at least one of the specified
82 * HCR_EL2 bits is set.
84 * ICV registers fall into four categories:
85 * * access if NS EL1 and HCR_EL2.FMO == 1:
86 * all ICV regs with '0' in their name
87 * * access if NS EL1 and HCR_EL2.IMO == 1:
88 * all ICV regs with '1' in their name
89 * * access if NS EL1 and either IMO or FMO == 1:
92 return (env
->cp15
.hcr_el2
& hcr_flags
) && arm_current_el(env
) == 1
93 && !arm_is_secure_below_el3(env
);
96 static int read_vbpr(GICv3CPUState
*cs
, int grp
)
98 /* Read VBPR value out of the VMCR field (caller must handle
99 * VCBPR effects if required)
101 if (grp
== GICV3_G0
) {
102 return extract64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VBPR0_SHIFT
,
103 ICH_VMCR_EL2_VBPR0_LENGTH
);
105 return extract64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VBPR1_SHIFT
,
106 ICH_VMCR_EL2_VBPR1_LENGTH
);
110 static void write_vbpr(GICv3CPUState
*cs
, int grp
, int value
)
112 /* Write new VBPR1 value, handling the "writing a value less than
113 * the minimum sets it to the minimum" semantics.
115 int min
= icv_min_vbpr(cs
);
117 if (grp
!= GICV3_G0
) {
121 value
= MAX(value
, min
);
123 if (grp
== GICV3_G0
) {
124 cs
->ich_vmcr_el2
= deposit64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VBPR0_SHIFT
,
125 ICH_VMCR_EL2_VBPR0_LENGTH
, value
);
127 cs
->ich_vmcr_el2
= deposit64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VBPR1_SHIFT
,
128 ICH_VMCR_EL2_VBPR1_LENGTH
, value
);
132 static uint32_t icv_fullprio_mask(GICv3CPUState
*cs
)
134 /* Return a mask word which clears the unimplemented priority bits
135 * from a priority value for a virtual interrupt. (Not to be confused
136 * with the group priority, whose mask depends on the value of VBPR
137 * for the interrupt group.)
139 return ~0U << (8 - cs
->vpribits
);
142 static int ich_highest_active_virt_prio(GICv3CPUState
*cs
)
144 /* Calculate the current running priority based on the set bits
145 * in the ICH Active Priority Registers.
148 int aprmax
= 1 << (cs
->vprebits
- 5);
150 assert(aprmax
<= ARRAY_SIZE(cs
->ich_apr
[0]));
152 for (i
= 0; i
< aprmax
; i
++) {
153 uint32_t apr
= cs
->ich_apr
[GICV3_G0
][i
] |
154 cs
->ich_apr
[GICV3_G1NS
][i
];
159 return (i
* 32 + ctz32(apr
)) << (icv_min_vbpr(cs
) + 1);
161 /* No current active interrupts: return idle priority */
165 static int hppvi_index(GICv3CPUState
*cs
)
167 /* Return the list register index of the highest priority pending
168 * virtual interrupt, as per the HighestPriorityVirtualInterrupt
169 * pseudocode. If no pending virtual interrupts, return -1.
173 /* Note that a list register entry with a priority of 0xff will
174 * never be reported by this function; this is the architecturally
179 if (!(cs
->ich_vmcr_el2
& (ICH_VMCR_EL2_VENG0
| ICH_VMCR_EL2_VENG1
))) {
180 /* Both groups disabled, definitely nothing to do */
184 for (i
= 0; i
< cs
->num_list_regs
; i
++) {
185 uint64_t lr
= cs
->ich_lr_el2
[i
];
188 if (ich_lr_state(lr
) != ICH_LR_EL2_STATE_PENDING
) {
193 /* Ignore interrupts if relevant group enable not set */
194 if (lr
& ICH_LR_EL2_GROUP
) {
195 if (!(cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VENG1
)) {
199 if (!(cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VENG0
)) {
204 thisprio
= ich_lr_prio(lr
);
206 if (thisprio
< prio
) {
215 static uint32_t icv_gprio_mask(GICv3CPUState
*cs
, int group
)
217 /* Return a mask word which clears the subpriority bits from
218 * a priority value for a virtual interrupt in the specified group.
219 * This depends on the VBPR value.
220 * If using VBPR0 then:
221 * a BPR of 0 means the group priority bits are [7:1];
222 * a BPR of 1 means they are [7:2], and so on down to
223 * a BPR of 7 meaning no group priority bits at all.
224 * If using VBPR1 then:
225 * a BPR of 0 is impossible (the minimum value is 1)
226 * a BPR of 1 means the group priority bits are [7:1];
227 * a BPR of 2 means they are [7:2], and so on down to
228 * a BPR of 7 meaning the group priority is [7].
230 * Which BPR to use depends on the group of the interrupt and
231 * the current ICH_VMCR_EL2.VCBPR settings.
233 * This corresponds to the VGroupBits() pseudocode.
237 if (group
== GICV3_G1NS
&& cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VCBPR
) {
241 bpr
= read_vbpr(cs
, group
);
242 if (group
== GICV3_G1NS
) {
247 return ~0U << (bpr
+ 1);
250 static bool icv_hppi_can_preempt(GICv3CPUState
*cs
, uint64_t lr
)
252 /* Return true if we can signal this virtual interrupt defined by
253 * the given list register value; see the pseudocode functions
254 * CanSignalVirtualInterrupt and CanSignalVirtualInt.
255 * Compare also icc_hppi_can_preempt() which is the non-virtual
256 * equivalent of these checks.
259 uint32_t mask
, prio
, rprio
, vpmr
;
261 if (!(cs
->ich_hcr_el2
& ICH_HCR_EL2_EN
)) {
262 /* Virtual interface disabled */
266 /* We don't need to check that this LR is in Pending state because
267 * that has already been done in hppvi_index().
270 prio
= ich_lr_prio(lr
);
271 vpmr
= extract64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VPMR_SHIFT
,
272 ICH_VMCR_EL2_VPMR_LENGTH
);
275 /* Priority mask masks this interrupt */
279 rprio
= ich_highest_active_virt_prio(cs
);
281 /* No running interrupt so we can preempt */
285 grp
= (lr
& ICH_LR_EL2_GROUP
) ? GICV3_G1NS
: GICV3_G0
;
287 mask
= icv_gprio_mask(cs
, grp
);
289 /* We only preempt a running interrupt if the pending interrupt's
290 * group priority is sufficient (the subpriorities are not considered).
292 if ((prio
& mask
) < (rprio
& mask
)) {
299 static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState
*cs
,
302 /* Return a set of bits indicating the EOI maintenance interrupt status
303 * for each list register. The EOI maintenance interrupt status is
304 * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1
305 * (see the GICv3 spec for the ICH_EISR_EL2 register).
306 * If misr is not NULL then we should also collect the information
307 * about the MISR.EOI, MISR.NP and MISR.U bits.
311 bool seenpending
= false;
314 for (i
= 0; i
< cs
->num_list_regs
; i
++) {
315 uint64_t lr
= cs
->ich_lr_el2
[i
];
317 if ((lr
& (ICH_LR_EL2_STATE_MASK
| ICH_LR_EL2_HW
| ICH_LR_EL2_EOI
))
321 if ((lr
& ICH_LR_EL2_STATE_MASK
)) {
324 if (ich_lr_state(lr
) == ICH_LR_EL2_STATE_PENDING
) {
330 if (validcount
< 2 && (cs
->ich_hcr_el2
& ICH_HCR_EL2_UIE
)) {
331 *misr
|= ICH_MISR_EL2_U
;
333 if (!seenpending
&& (cs
->ich_hcr_el2
& ICH_HCR_EL2_NPIE
)) {
334 *misr
|= ICH_MISR_EL2_NP
;
337 *misr
|= ICH_MISR_EL2_EOI
;
343 static uint32_t maintenance_interrupt_state(GICv3CPUState
*cs
)
345 /* Return a set of bits indicating the maintenance interrupt status
346 * (as seen in the ICH_MISR_EL2 register).
350 /* Scan list registers and fill in the U, NP and EOI bits */
351 eoi_maintenance_interrupt_state(cs
, &value
);
353 if (cs
->ich_hcr_el2
& (ICH_HCR_EL2_LRENPIE
| ICH_HCR_EL2_EOICOUNT_MASK
)) {
354 value
|= ICH_MISR_EL2_LRENP
;
357 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_VGRP0EIE
) &&
358 (cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VENG0
)) {
359 value
|= ICH_MISR_EL2_VGRP0E
;
362 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_VGRP0DIE
) &&
363 !(cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VENG1
)) {
364 value
|= ICH_MISR_EL2_VGRP0D
;
366 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_VGRP1EIE
) &&
367 (cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VENG1
)) {
368 value
|= ICH_MISR_EL2_VGRP1E
;
371 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_VGRP1DIE
) &&
372 !(cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VENG1
)) {
373 value
|= ICH_MISR_EL2_VGRP1D
;
379 static void gicv3_cpuif_virt_update(GICv3CPUState
*cs
)
381 /* Tell the CPU about any pending virtual interrupts or
382 * maintenance interrupts, following a change to the state
383 * of the CPU interface relevant to virtual interrupts.
385 * CAUTION: this function will call qemu_set_irq() on the
386 * CPU maintenance IRQ line, which is typically wired up
387 * to the GIC as a per-CPU interrupt. This means that it
388 * will recursively call back into the GIC code via
389 * gicv3_redist_set_irq() and thus into the CPU interface code's
390 * gicv3_cpuif_update(). It is therefore important that this
391 * function is only called as the final action of a CPU interface
392 * register write implementation, after all the GIC state
393 * fields have been updated. gicv3_cpuif_update() also must
394 * not cause this function to be called, but that happens
395 * naturally as a result of there being no architectural
396 * linkage between the physical and virtual GIC logic.
403 idx
= hppvi_index(cs
);
404 trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs
), idx
);
406 uint64_t lr
= cs
->ich_lr_el2
[idx
];
408 if (icv_hppi_can_preempt(cs
, lr
)) {
409 /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */
410 if (lr
& ICH_LR_EL2_GROUP
) {
418 if (cs
->ich_hcr_el2
& ICH_HCR_EL2_EN
) {
419 maintlevel
= maintenance_interrupt_state(cs
);
422 trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs
), fiqlevel
,
423 irqlevel
, maintlevel
);
425 qemu_set_irq(cs
->parent_vfiq
, fiqlevel
);
426 qemu_set_irq(cs
->parent_virq
, irqlevel
);
427 qemu_set_irq(cs
->maintenance_irq
, maintlevel
);
430 static uint64_t icv_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
432 GICv3CPUState
*cs
= icc_cs_from_env(env
);
433 int regno
= ri
->opc2
& 3;
434 int grp
= ri
->crm
& 1 ? GICV3_G0
: GICV3_G1NS
;
435 uint64_t value
= cs
->ich_apr
[grp
][regno
];
437 trace_gicv3_icv_ap_read(ri
->crm
& 1, regno
, gicv3_redist_affid(cs
), value
);
441 static void icv_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
444 GICv3CPUState
*cs
= icc_cs_from_env(env
);
445 int regno
= ri
->opc2
& 3;
446 int grp
= ri
->crm
& 1 ? GICV3_G0
: GICV3_G1NS
;
448 trace_gicv3_icv_ap_write(ri
->crm
& 1, regno
, gicv3_redist_affid(cs
), value
);
450 cs
->ich_apr
[grp
][regno
] = value
& 0xFFFFFFFFU
;
452 gicv3_cpuif_virt_update(cs
);
456 static uint64_t icv_bpr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
458 GICv3CPUState
*cs
= icc_cs_from_env(env
);
459 int grp
= (ri
->crm
== 8) ? GICV3_G0
: GICV3_G1NS
;
463 if (grp
== GICV3_G1NS
&& (cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VCBPR
)) {
464 /* reads return bpr0 + 1 saturated to 7, writes ignored */
469 bpr
= read_vbpr(cs
, grp
);
476 trace_gicv3_icv_bpr_read(ri
->crm
== 8 ? 0 : 1, gicv3_redist_affid(cs
), bpr
);
481 static void icv_bpr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
484 GICv3CPUState
*cs
= icc_cs_from_env(env
);
485 int grp
= (ri
->crm
== 8) ? GICV3_G0
: GICV3_G1NS
;
487 trace_gicv3_icv_bpr_write(ri
->crm
== 8 ? 0 : 1,
488 gicv3_redist_affid(cs
), value
);
490 if (grp
== GICV3_G1NS
&& (cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VCBPR
)) {
491 /* reads return bpr0 + 1 saturated to 7, writes ignored */
495 write_vbpr(cs
, grp
, value
);
497 gicv3_cpuif_virt_update(cs
);
500 static uint64_t icv_pmr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
502 GICv3CPUState
*cs
= icc_cs_from_env(env
);
505 value
= extract64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VPMR_SHIFT
,
506 ICH_VMCR_EL2_VPMR_LENGTH
);
508 trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs
), value
);
512 static void icv_pmr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
515 GICv3CPUState
*cs
= icc_cs_from_env(env
);
517 trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs
), value
);
519 value
&= icv_fullprio_mask(cs
);
521 cs
->ich_vmcr_el2
= deposit64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VPMR_SHIFT
,
522 ICH_VMCR_EL2_VPMR_LENGTH
, value
);
524 gicv3_cpuif_virt_update(cs
);
527 static uint64_t icv_igrpen_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
529 GICv3CPUState
*cs
= icc_cs_from_env(env
);
533 enbit
= ri
->opc2
& 1 ? ICH_VMCR_EL2_VENG1_SHIFT
: ICH_VMCR_EL2_VENG0_SHIFT
;
534 value
= extract64(cs
->ich_vmcr_el2
, enbit
, 1);
536 trace_gicv3_icv_igrpen_read(ri
->opc2
& 1 ? 1 : 0,
537 gicv3_redist_affid(cs
), value
);
541 static void icv_igrpen_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
544 GICv3CPUState
*cs
= icc_cs_from_env(env
);
547 trace_gicv3_icv_igrpen_write(ri
->opc2
& 1 ? 1 : 0,
548 gicv3_redist_affid(cs
), value
);
550 enbit
= ri
->opc2
& 1 ? ICH_VMCR_EL2_VENG1_SHIFT
: ICH_VMCR_EL2_VENG0_SHIFT
;
552 cs
->ich_vmcr_el2
= deposit64(cs
->ich_vmcr_el2
, enbit
, 1, value
);
553 gicv3_cpuif_virt_update(cs
);
556 static uint64_t icv_ctlr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
558 GICv3CPUState
*cs
= icc_cs_from_env(env
);
561 /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits)
562 * should match the ones reported in ich_vtr_read().
564 value
= ICC_CTLR_EL1_A3V
| (1 << ICC_CTLR_EL1_IDBITS_SHIFT
) |
565 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT
);
567 if (cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VEOIM
) {
568 value
|= ICC_CTLR_EL1_EOIMODE
;
571 if (cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VCBPR
) {
572 value
|= ICC_CTLR_EL1_CBPR
;
575 trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs
), value
);
579 static void icv_ctlr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
582 GICv3CPUState
*cs
= icc_cs_from_env(env
);
584 trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs
), value
);
586 cs
->ich_vmcr_el2
= deposit64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VCBPR_SHIFT
,
587 1, value
& ICC_CTLR_EL1_CBPR
? 1 : 0);
588 cs
->ich_vmcr_el2
= deposit64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VEOIM_SHIFT
,
589 1, value
& ICC_CTLR_EL1_EOIMODE
? 1 : 0);
591 gicv3_cpuif_virt_update(cs
);
594 static uint64_t icv_rpr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
596 GICv3CPUState
*cs
= icc_cs_from_env(env
);
597 int prio
= ich_highest_active_virt_prio(cs
);
599 trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs
), prio
);
603 static uint64_t icv_hppir_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
605 GICv3CPUState
*cs
= icc_cs_from_env(env
);
606 int grp
= ri
->crm
== 8 ? GICV3_G0
: GICV3_G1NS
;
607 int idx
= hppvi_index(cs
);
608 uint64_t value
= INTID_SPURIOUS
;
611 uint64_t lr
= cs
->ich_lr_el2
[idx
];
612 int thisgrp
= (lr
& ICH_LR_EL2_GROUP
) ? GICV3_G1NS
: GICV3_G0
;
614 if (grp
== thisgrp
) {
615 value
= ich_lr_vintid(lr
);
619 trace_gicv3_icv_hppir_read(grp
, gicv3_redist_affid(cs
), value
);
623 static void icv_activate_irq(GICv3CPUState
*cs
, int idx
, int grp
)
625 /* Activate the interrupt in the specified list register
626 * by moving it from Pending to Active state, and update the
627 * Active Priority Registers.
629 uint32_t mask
= icv_gprio_mask(cs
, grp
);
630 int prio
= ich_lr_prio(cs
->ich_lr_el2
[idx
]) & mask
;
631 int aprbit
= prio
>> (8 - cs
->vprebits
);
632 int regno
= aprbit
/ 32;
633 int regbit
= aprbit
% 32;
635 cs
->ich_lr_el2
[idx
] &= ~ICH_LR_EL2_STATE_PENDING_BIT
;
636 cs
->ich_lr_el2
[idx
] |= ICH_LR_EL2_STATE_ACTIVE_BIT
;
637 cs
->ich_apr
[grp
][regno
] |= (1 << regbit
);
640 static uint64_t icv_iar_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
642 GICv3CPUState
*cs
= icc_cs_from_env(env
);
643 int grp
= ri
->crm
== 8 ? GICV3_G0
: GICV3_G1NS
;
644 int idx
= hppvi_index(cs
);
645 uint64_t intid
= INTID_SPURIOUS
;
648 uint64_t lr
= cs
->ich_lr_el2
[idx
];
649 int thisgrp
= (lr
& ICH_LR_EL2_GROUP
) ? GICV3_G1NS
: GICV3_G0
;
651 if (thisgrp
== grp
&& icv_hppi_can_preempt(cs
, lr
)) {
652 intid
= ich_lr_vintid(lr
);
653 if (intid
< INTID_SECURE
) {
654 icv_activate_irq(cs
, idx
, grp
);
656 /* Interrupt goes from Pending to Invalid */
657 cs
->ich_lr_el2
[idx
] &= ~ICH_LR_EL2_STATE_PENDING_BIT
;
658 /* We will now return the (bogus) ID from the list register,
659 * as per the pseudocode.
665 trace_gicv3_icv_iar_read(ri
->crm
== 8 ? 0 : 1,
666 gicv3_redist_affid(cs
), intid
);
670 static int icc_highest_active_prio(GICv3CPUState
*cs
)
672 /* Calculate the current running priority based on the set bits
673 * in the Active Priority Registers.
677 for (i
= 0; i
< ARRAY_SIZE(cs
->icc_apr
[0]); i
++) {
678 uint32_t apr
= cs
->icc_apr
[GICV3_G0
][i
] |
679 cs
->icc_apr
[GICV3_G1
][i
] | cs
->icc_apr
[GICV3_G1NS
][i
];
684 return (i
* 32 + ctz32(apr
)) << (GIC_MIN_BPR
+ 1);
686 /* No current active interrupts: return idle priority */
690 static uint32_t icc_gprio_mask(GICv3CPUState
*cs
, int group
)
692 /* Return a mask word which clears the subpriority bits from
693 * a priority value for an interrupt in the specified group.
694 * This depends on the BPR value. For CBPR0 (S or NS):
695 * a BPR of 0 means the group priority bits are [7:1];
696 * a BPR of 1 means they are [7:2], and so on down to
697 * a BPR of 7 meaning no group priority bits at all.
699 * a BPR of 0 is impossible (the minimum value is 1)
700 * a BPR of 1 means the group priority bits are [7:1];
701 * a BPR of 2 means they are [7:2], and so on down to
702 * a BPR of 7 meaning the group priority is [7].
704 * Which BPR to use depends on the group of the interrupt and
705 * the current ICC_CTLR.CBPR settings.
707 * This corresponds to the GroupBits() pseudocode.
711 if ((group
== GICV3_G1
&& cs
->icc_ctlr_el1
[GICV3_S
] & ICC_CTLR_EL1_CBPR
) ||
712 (group
== GICV3_G1NS
&&
713 cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_CBPR
)) {
717 bpr
= cs
->icc_bpr
[group
] & 7;
719 if (group
== GICV3_G1NS
) {
724 return ~0U << (bpr
+ 1);
727 static bool icc_no_enabled_hppi(GICv3CPUState
*cs
)
729 /* Return true if there is no pending interrupt, or the
730 * highest priority pending interrupt is in a group which has been
731 * disabled at the CPU interface by the ICC_IGRPEN* register enable bits.
733 return cs
->hppi
.prio
== 0xff || (cs
->icc_igrpen
[cs
->hppi
.grp
] == 0);
736 static bool icc_hppi_can_preempt(GICv3CPUState
*cs
)
738 /* Return true if we have a pending interrupt of sufficient
739 * priority to preempt.
744 if (icc_no_enabled_hppi(cs
)) {
748 if (cs
->hppi
.prio
>= cs
->icc_pmr_el1
) {
749 /* Priority mask masks this interrupt */
753 rprio
= icc_highest_active_prio(cs
);
755 /* No currently running interrupt so we can preempt */
759 mask
= icc_gprio_mask(cs
, cs
->hppi
.grp
);
761 /* We only preempt a running interrupt if the pending interrupt's
762 * group priority is sufficient (the subpriorities are not considered).
764 if ((cs
->hppi
.prio
& mask
) < (rprio
& mask
)) {
771 void gicv3_cpuif_update(GICv3CPUState
*cs
)
773 /* Tell the CPU about its highest priority pending interrupt */
776 ARMCPU
*cpu
= ARM_CPU(cs
->cpu
);
777 CPUARMState
*env
= &cpu
->env
;
779 g_assert(qemu_mutex_iothread_locked());
781 trace_gicv3_cpuif_update(gicv3_redist_affid(cs
), cs
->hppi
.irq
,
782 cs
->hppi
.grp
, cs
->hppi
.prio
);
784 if (cs
->hppi
.grp
== GICV3_G1
&& !arm_feature(env
, ARM_FEATURE_EL3
)) {
785 /* If a Security-enabled GIC sends a G1S interrupt to a
786 * Security-disabled CPU, we must treat it as if it were G0.
788 cs
->hppi
.grp
= GICV3_G0
;
791 if (icc_hppi_can_preempt(cs
)) {
792 /* We have an interrupt: should we signal it as IRQ or FIQ?
793 * This is described in the GICv3 spec section 4.6.2.
797 switch (cs
->hppi
.grp
) {
802 isfiq
= (!arm_is_secure(env
) ||
803 (arm_current_el(env
) == 3 && arm_el_is_aa64(env
, 3)));
806 isfiq
= arm_is_secure(env
);
809 g_assert_not_reached();
819 trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs
), fiqlevel
, irqlevel
);
821 qemu_set_irq(cs
->parent_fiq
, fiqlevel
);
822 qemu_set_irq(cs
->parent_irq
, irqlevel
);
825 static uint64_t icc_pmr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
827 GICv3CPUState
*cs
= icc_cs_from_env(env
);
828 uint32_t value
= cs
->icc_pmr_el1
;
830 if (icv_access(env
, HCR_FMO
| HCR_IMO
)) {
831 return icv_pmr_read(env
, ri
);
834 if (arm_feature(env
, ARM_FEATURE_EL3
) && !arm_is_secure(env
) &&
835 (env
->cp15
.scr_el3
& SCR_FIQ
)) {
836 /* NS access and Group 0 is inaccessible to NS: return the
837 * NS view of the current priority
840 /* Secure priorities not visible to NS */
842 } else if (value
!= 0xff) {
843 value
= (value
<< 1) & 0xff;
847 trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs
), value
);
852 static void icc_pmr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
855 GICv3CPUState
*cs
= icc_cs_from_env(env
);
857 if (icv_access(env
, HCR_FMO
| HCR_IMO
)) {
858 return icv_pmr_write(env
, ri
, value
);
861 trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs
), value
);
865 if (arm_feature(env
, ARM_FEATURE_EL3
) && !arm_is_secure(env
) &&
866 (env
->cp15
.scr_el3
& SCR_FIQ
)) {
867 /* NS access and Group 0 is inaccessible to NS: return the
868 * NS view of the current priority
870 if (!(cs
->icc_pmr_el1
& 0x80)) {
871 /* Current PMR in the secure range, don't allow NS to change it */
874 value
= (value
>> 1) & 0x80;
876 cs
->icc_pmr_el1
= value
;
877 gicv3_cpuif_update(cs
);
880 static void icc_activate_irq(GICv3CPUState
*cs
, int irq
)
882 /* Move the interrupt from the Pending state to Active, and update
883 * the Active Priority Registers
885 uint32_t mask
= icc_gprio_mask(cs
, cs
->hppi
.grp
);
886 int prio
= cs
->hppi
.prio
& mask
;
887 int aprbit
= prio
>> 1;
888 int regno
= aprbit
/ 32;
889 int regbit
= aprbit
% 32;
891 cs
->icc_apr
[cs
->hppi
.grp
][regno
] |= (1 << regbit
);
893 if (irq
< GIC_INTERNAL
) {
894 cs
->gicr_iactiver0
= deposit32(cs
->gicr_iactiver0
, irq
, 1, 1);
895 cs
->gicr_ipendr0
= deposit32(cs
->gicr_ipendr0
, irq
, 1, 0);
896 gicv3_redist_update(cs
);
898 gicv3_gicd_active_set(cs
->gic
, irq
);
899 gicv3_gicd_pending_clear(cs
->gic
, irq
);
900 gicv3_update(cs
->gic
, irq
, 1);
904 static uint64_t icc_hppir0_value(GICv3CPUState
*cs
, CPUARMState
*env
)
906 /* Return the highest priority pending interrupt register value
911 if (cs
->hppi
.prio
== 0xff) {
912 return INTID_SPURIOUS
;
915 /* Check whether we can return the interrupt or if we should return
916 * a special identifier, as per the CheckGroup0ForSpecialIdentifiers
917 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
920 irq_is_secure
= (!(cs
->gic
->gicd_ctlr
& GICD_CTLR_DS
) &&
921 (cs
->hppi
.grp
!= GICV3_G1NS
));
923 if (cs
->hppi
.grp
!= GICV3_G0
&& !arm_is_el3_or_mon(env
)) {
924 return INTID_SPURIOUS
;
926 if (irq_is_secure
&& !arm_is_secure(env
)) {
927 /* Secure interrupts not visible to Nonsecure */
928 return INTID_SPURIOUS
;
931 if (cs
->hppi
.grp
!= GICV3_G0
) {
932 /* Indicate to EL3 that there's a Group 1 interrupt for the other
935 return irq_is_secure
? INTID_SECURE
: INTID_NONSECURE
;
941 static uint64_t icc_hppir1_value(GICv3CPUState
*cs
, CPUARMState
*env
)
943 /* Return the highest priority pending interrupt register value
948 if (cs
->hppi
.prio
== 0xff) {
949 return INTID_SPURIOUS
;
952 /* Check whether we can return the interrupt or if we should return
953 * a special identifier, as per the CheckGroup1ForSpecialIdentifiers
954 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
957 irq_is_secure
= (!(cs
->gic
->gicd_ctlr
& GICD_CTLR_DS
) &&
958 (cs
->hppi
.grp
!= GICV3_G1NS
));
960 if (cs
->hppi
.grp
== GICV3_G0
) {
961 /* Group 0 interrupts not visible via HPPIR1 */
962 return INTID_SPURIOUS
;
965 if (!arm_is_secure(env
)) {
966 /* Secure interrupts not visible in Non-secure */
967 return INTID_SPURIOUS
;
969 } else if (!arm_is_el3_or_mon(env
) && arm_is_secure(env
)) {
970 /* Group 1 non-secure interrupts not visible in Secure EL1 */
971 return INTID_SPURIOUS
;
977 static uint64_t icc_iar0_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
979 GICv3CPUState
*cs
= icc_cs_from_env(env
);
982 if (icv_access(env
, HCR_FMO
)) {
983 return icv_iar_read(env
, ri
);
986 if (!icc_hppi_can_preempt(cs
)) {
987 intid
= INTID_SPURIOUS
;
989 intid
= icc_hppir0_value(cs
, env
);
992 if (!(intid
>= INTID_SECURE
&& intid
<= INTID_SPURIOUS
)) {
993 icc_activate_irq(cs
, intid
);
996 trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs
), intid
);
1000 static uint64_t icc_iar1_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1002 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1005 if (icv_access(env
, HCR_IMO
)) {
1006 return icv_iar_read(env
, ri
);
1009 if (!icc_hppi_can_preempt(cs
)) {
1010 intid
= INTID_SPURIOUS
;
1012 intid
= icc_hppir1_value(cs
, env
);
1015 if (!(intid
>= INTID_SECURE
&& intid
<= INTID_SPURIOUS
)) {
1016 icc_activate_irq(cs
, intid
);
1019 trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs
), intid
);
1023 static void icc_drop_prio(GICv3CPUState
*cs
, int grp
)
1025 /* Drop the priority of the currently active interrupt in
1026 * the specified group.
1028 * Note that we can guarantee (because of the requirement to nest
1029 * ICC_IAR reads [which activate an interrupt and raise priority]
1030 * with ICC_EOIR writes [which drop the priority for the interrupt])
1031 * that the interrupt we're being called for is the highest priority
1032 * active interrupt, meaning that it has the lowest set bit in the
1035 * If the guest does not honour the ordering constraints then the
1036 * behaviour of the GIC is UNPREDICTABLE, which for us means that
1037 * the values of the APR registers might become incorrect and the
1038 * running priority will be wrong, so interrupts that should preempt
1039 * might not do so, and interrupts that should not preempt might do so.
1043 for (i
= 0; i
< ARRAY_SIZE(cs
->icc_apr
[grp
]); i
++) {
1044 uint64_t *papr
= &cs
->icc_apr
[grp
][i
];
1049 /* Clear the lowest set bit */
1054 /* running priority change means we need an update for this cpu i/f */
1055 gicv3_cpuif_update(cs
);
1058 static bool icc_eoi_split(CPUARMState
*env
, GICv3CPUState
*cs
)
1060 /* Return true if we should split priority drop and interrupt
1061 * deactivation, ie whether the relevant EOIMode bit is set.
1063 if (arm_is_el3_or_mon(env
)) {
1064 return cs
->icc_ctlr_el3
& ICC_CTLR_EL3_EOIMODE_EL3
;
1066 if (arm_is_secure_below_el3(env
)) {
1067 return cs
->icc_ctlr_el1
[GICV3_S
] & ICC_CTLR_EL1_EOIMODE
;
1069 return cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_EOIMODE
;
1073 static int icc_highest_active_group(GICv3CPUState
*cs
)
1075 /* Return the group with the highest priority active interrupt.
1076 * We can do this by just comparing the APRs to see which one
1077 * has the lowest set bit.
1078 * (If more than one group is active at the same priority then
1079 * we're in UNPREDICTABLE territory.)
1083 for (i
= 0; i
< ARRAY_SIZE(cs
->icc_apr
[0]); i
++) {
1084 int g0ctz
= ctz32(cs
->icc_apr
[GICV3_G0
][i
]);
1085 int g1ctz
= ctz32(cs
->icc_apr
[GICV3_G1
][i
]);
1086 int g1nsctz
= ctz32(cs
->icc_apr
[GICV3_G1NS
][i
]);
1088 if (g1nsctz
< g0ctz
&& g1nsctz
< g1ctz
) {
1091 if (g1ctz
< g0ctz
) {
1098 /* No set active bits? UNPREDICTABLE; return -1 so the caller
1099 * ignores the spurious EOI attempt.
1104 static void icc_deactivate_irq(GICv3CPUState
*cs
, int irq
)
1106 if (irq
< GIC_INTERNAL
) {
1107 cs
->gicr_iactiver0
= deposit32(cs
->gicr_iactiver0
, irq
, 1, 0);
1108 gicv3_redist_update(cs
);
1110 gicv3_gicd_active_clear(cs
->gic
, irq
);
1111 gicv3_update(cs
->gic
, irq
, 1);
1115 static bool icv_eoi_split(CPUARMState
*env
, GICv3CPUState
*cs
)
1117 /* Return true if we should split priority drop and interrupt
1118 * deactivation, ie whether the virtual EOIMode bit is set.
1120 return cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VEOIM
;
1123 static int icv_find_active(GICv3CPUState
*cs
, int irq
)
1125 /* Given an interrupt number for an active interrupt, return the index
1126 * of the corresponding list register, or -1 if there is no match.
1127 * Corresponds to FindActiveVirtualInterrupt pseudocode.
1131 for (i
= 0; i
< cs
->num_list_regs
; i
++) {
1132 uint64_t lr
= cs
->ich_lr_el2
[i
];
1134 if ((lr
& ICH_LR_EL2_STATE_ACTIVE_BIT
) && ich_lr_vintid(lr
) == irq
) {
1142 static void icv_deactivate_irq(GICv3CPUState
*cs
, int idx
)
1144 /* Deactivate the interrupt in the specified list register index */
1145 uint64_t lr
= cs
->ich_lr_el2
[idx
];
1147 if (lr
& ICH_LR_EL2_HW
) {
1148 /* Deactivate the associated physical interrupt */
1149 int pirq
= ich_lr_pintid(lr
);
1151 if (pirq
< INTID_SECURE
) {
1152 icc_deactivate_irq(cs
, pirq
);
1156 /* Clear the 'active' part of the state, so ActivePending->Pending
1157 * and Active->Invalid.
1159 lr
&= ~ICH_LR_EL2_STATE_ACTIVE_BIT
;
1160 cs
->ich_lr_el2
[idx
] = lr
;
1163 static void icv_increment_eoicount(GICv3CPUState
*cs
)
1165 /* Increment the EOICOUNT field in ICH_HCR_EL2 */
1166 int eoicount
= extract64(cs
->ich_hcr_el2
, ICH_HCR_EL2_EOICOUNT_SHIFT
,
1167 ICH_HCR_EL2_EOICOUNT_LENGTH
);
1169 cs
->ich_hcr_el2
= deposit64(cs
->ich_hcr_el2
, ICH_HCR_EL2_EOICOUNT_SHIFT
,
1170 ICH_HCR_EL2_EOICOUNT_LENGTH
, eoicount
+ 1);
1173 static int icv_drop_prio(GICv3CPUState
*cs
)
1175 /* Drop the priority of the currently active virtual interrupt
1176 * (favouring group 0 if there is a set active bit at
1177 * the same priority for both group 0 and group 1).
1178 * Return the priority value for the bit we just cleared,
1179 * or 0xff if no bits were set in the AP registers at all.
1180 * Note that though the ich_apr[] are uint64_t only the low
1181 * 32 bits are actually relevant.
1184 int aprmax
= 1 << (cs
->vprebits
- 5);
1186 assert(aprmax
<= ARRAY_SIZE(cs
->ich_apr
[0]));
1188 for (i
= 0; i
< aprmax
; i
++) {
1189 uint64_t *papr0
= &cs
->ich_apr
[GICV3_G0
][i
];
1190 uint64_t *papr1
= &cs
->ich_apr
[GICV3_G1NS
][i
];
1191 int apr0count
, apr1count
;
1193 if (!*papr0
&& !*papr1
) {
1197 /* We can't just use the bit-twiddling hack icc_drop_prio() does
1198 * because we need to return the bit number we cleared so
1199 * it can be compared against the list register's priority field.
1201 apr0count
= ctz32(*papr0
);
1202 apr1count
= ctz32(*papr1
);
1204 if (apr0count
<= apr1count
) {
1205 *papr0
&= *papr0
- 1;
1206 return (apr0count
+ i
* 32) << (icv_min_vbpr(cs
) + 1);
1208 *papr1
&= *papr1
- 1;
1209 return (apr1count
+ i
* 32) << (icv_min_vbpr(cs
) + 1);
1215 static void icv_dir_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1218 /* Deactivate interrupt */
1219 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1221 int irq
= value
& 0xffffff;
1223 trace_gicv3_icv_dir_write(gicv3_redist_affid(cs
), value
);
1225 if (irq
>= cs
->gic
->num_irq
) {
1226 /* Also catches special interrupt numbers and LPIs */
1230 if (!icv_eoi_split(env
, cs
)) {
1234 idx
= icv_find_active(cs
, irq
);
1237 /* No list register matching this, so increment the EOI count
1238 * (might trigger a maintenance interrupt)
1240 icv_increment_eoicount(cs
);
1242 icv_deactivate_irq(cs
, idx
);
1245 gicv3_cpuif_virt_update(cs
);
1248 static void icv_eoir_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1251 /* End of Interrupt */
1252 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1253 int irq
= value
& 0xffffff;
1254 int grp
= ri
->crm
== 8 ? GICV3_G0
: GICV3_G1NS
;
1257 trace_gicv3_icv_eoir_write(ri
->crm
== 8 ? 0 : 1,
1258 gicv3_redist_affid(cs
), value
);
1260 if (irq
>= cs
->gic
->num_irq
) {
1261 /* Also catches special interrupt numbers and LPIs */
1265 /* We implement the IMPDEF choice of "drop priority before doing
1266 * error checks" (because that lets us avoid scanning the AP
1269 dropprio
= icv_drop_prio(cs
);
1270 if (dropprio
== 0xff) {
1271 /* No active interrupt. It is CONSTRAINED UNPREDICTABLE
1272 * whether the list registers are checked in this
1273 * situation; we choose not to.
1278 idx
= icv_find_active(cs
, irq
);
1281 /* No valid list register corresponding to EOI ID */
1282 icv_increment_eoicount(cs
);
1284 uint64_t lr
= cs
->ich_lr_el2
[idx
];
1285 int thisgrp
= (lr
& ICH_LR_EL2_GROUP
) ? GICV3_G1NS
: GICV3_G0
;
1286 int lr_gprio
= ich_lr_prio(lr
) & icv_gprio_mask(cs
, grp
);
1288 if (thisgrp
== grp
&& lr_gprio
== dropprio
) {
1289 if (!icv_eoi_split(env
, cs
)) {
1290 /* Priority drop and deactivate not split: deactivate irq now */
1291 icv_deactivate_irq(cs
, idx
);
1296 gicv3_cpuif_virt_update(cs
);
1299 static void icc_eoir_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1302 /* End of Interrupt */
1303 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1304 int irq
= value
& 0xffffff;
1307 if (icv_access(env
, ri
->crm
== 8 ? HCR_FMO
: HCR_IMO
)) {
1308 icv_eoir_write(env
, ri
, value
);
1312 trace_gicv3_icc_eoir_write(ri
->crm
== 8 ? 0 : 1,
1313 gicv3_redist_affid(cs
), value
);
1320 if (arm_is_secure(env
)) {
1327 if (irq
>= cs
->gic
->num_irq
) {
1328 /* This handles two cases:
1329 * 1. If software writes the ID of a spurious interrupt [ie 1020-1023]
1330 * to the GICC_EOIR, the GIC ignores that write.
1331 * 2. If software writes the number of a non-existent interrupt
1332 * this must be a subcase of "value written does not match the last
1333 * valid interrupt value read from the Interrupt Acknowledge
1334 * register" and so this is UNPREDICTABLE. We choose to ignore it.
1339 if (icc_highest_active_group(cs
) != grp
) {
1343 icc_drop_prio(cs
, grp
);
1345 if (!icc_eoi_split(env
, cs
)) {
1346 /* Priority drop and deactivate not split: deactivate irq now */
1347 icc_deactivate_irq(cs
, irq
);
1351 static uint64_t icc_hppir0_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1353 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1356 if (icv_access(env
, HCR_FMO
)) {
1357 return icv_hppir_read(env
, ri
);
1360 value
= icc_hppir0_value(cs
, env
);
1361 trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs
), value
);
1365 static uint64_t icc_hppir1_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1367 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1370 if (icv_access(env
, HCR_IMO
)) {
1371 return icv_hppir_read(env
, ri
);
1374 value
= icc_hppir1_value(cs
, env
);
1375 trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs
), value
);
1379 static uint64_t icc_bpr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1381 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1382 int grp
= (ri
->crm
== 8) ? GICV3_G0
: GICV3_G1
;
1383 bool satinc
= false;
1386 if (icv_access(env
, grp
== GICV3_G0
? HCR_FMO
: HCR_IMO
)) {
1387 return icv_bpr_read(env
, ri
);
1390 if (grp
== GICV3_G1
&& gicv3_use_ns_bank(env
)) {
1394 if (grp
== GICV3_G1
&& !arm_is_el3_or_mon(env
) &&
1395 (cs
->icc_ctlr_el1
[GICV3_S
] & ICC_CTLR_EL1_CBPR
)) {
1396 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1402 if (grp
== GICV3_G1NS
&& arm_current_el(env
) < 3 &&
1403 (cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_CBPR
)) {
1404 /* reads return bpr0 + 1 sat to 7, writes ignored */
1409 bpr
= cs
->icc_bpr
[grp
];
1415 trace_gicv3_icc_bpr_read(ri
->crm
== 8 ? 0 : 1, gicv3_redist_affid(cs
), bpr
);
1420 static void icc_bpr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1423 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1424 int grp
= (ri
->crm
== 8) ? GICV3_G0
: GICV3_G1
;
1427 if (icv_access(env
, grp
== GICV3_G0
? HCR_FMO
: HCR_IMO
)) {
1428 icv_bpr_write(env
, ri
, value
);
1432 trace_gicv3_icc_bpr_write(ri
->crm
== 8 ? 0 : 1,
1433 gicv3_redist_affid(cs
), value
);
1435 if (grp
== GICV3_G1
&& gicv3_use_ns_bank(env
)) {
1439 if (grp
== GICV3_G1
&& !arm_is_el3_or_mon(env
) &&
1440 (cs
->icc_ctlr_el1
[GICV3_S
] & ICC_CTLR_EL1_CBPR
)) {
1441 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1447 if (grp
== GICV3_G1NS
&& arm_current_el(env
) < 3 &&
1448 (cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_CBPR
)) {
1449 /* reads return bpr0 + 1 sat to 7, writes ignored */
1453 minval
= (grp
== GICV3_G1NS
) ? GIC_MIN_BPR_NS
: GIC_MIN_BPR
;
1454 if (value
< minval
) {
1458 cs
->icc_bpr
[grp
] = value
& 7;
1459 gicv3_cpuif_update(cs
);
1462 static uint64_t icc_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1464 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1467 int regno
= ri
->opc2
& 3;
1468 int grp
= ri
->crm
& 1 ? GICV3_G0
: GICV3_G1
;
1470 if (icv_access(env
, grp
== GICV3_G0
? HCR_FMO
: HCR_IMO
)) {
1471 return icv_ap_read(env
, ri
);
1474 if (grp
== GICV3_G1
&& gicv3_use_ns_bank(env
)) {
1478 value
= cs
->icc_apr
[grp
][regno
];
1480 trace_gicv3_icc_ap_read(ri
->crm
& 1, regno
, gicv3_redist_affid(cs
), value
);
1484 static void icc_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1487 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1489 int regno
= ri
->opc2
& 3;
1490 int grp
= ri
->crm
& 1 ? GICV3_G0
: GICV3_G1
;
1492 if (icv_access(env
, grp
== GICV3_G0
? HCR_FMO
: HCR_IMO
)) {
1493 icv_ap_write(env
, ri
, value
);
1497 trace_gicv3_icc_ap_write(ri
->crm
& 1, regno
, gicv3_redist_affid(cs
), value
);
1499 if (grp
== GICV3_G1
&& gicv3_use_ns_bank(env
)) {
1503 /* It's not possible to claim that a Non-secure interrupt is active
1504 * at a priority outside the Non-secure range (128..255), since this
1505 * would otherwise allow malicious NS code to block delivery of S interrupts
1506 * by writing a bad value to these registers.
1508 if (grp
== GICV3_G1NS
&& regno
< 2 && arm_feature(env
, ARM_FEATURE_EL3
)) {
1512 cs
->icc_apr
[grp
][regno
] = value
& 0xFFFFFFFFU
;
1513 gicv3_cpuif_update(cs
);
1516 static void icc_dir_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1519 /* Deactivate interrupt */
1520 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1521 int irq
= value
& 0xffffff;
1522 bool irq_is_secure
, single_sec_state
, irq_is_grp0
;
1523 bool route_fiq_to_el3
, route_irq_to_el3
, route_fiq_to_el2
, route_irq_to_el2
;
1525 if (icv_access(env
, HCR_FMO
| HCR_IMO
)) {
1526 icv_dir_write(env
, ri
, value
);
1530 trace_gicv3_icc_dir_write(gicv3_redist_affid(cs
), value
);
1532 if (irq
>= cs
->gic
->num_irq
) {
1533 /* Also catches special interrupt numbers and LPIs */
1537 if (!icc_eoi_split(env
, cs
)) {
1541 int grp
= gicv3_irq_group(cs
->gic
, cs
, irq
);
1543 single_sec_state
= cs
->gic
->gicd_ctlr
& GICD_CTLR_DS
;
1544 irq_is_secure
= !single_sec_state
&& (grp
!= GICV3_G1NS
);
1545 irq_is_grp0
= grp
== GICV3_G0
;
1547 /* Check whether we're allowed to deactivate this interrupt based
1548 * on its group and the current CPU state.
1549 * These checks are laid out to correspond to the spec's pseudocode.
1551 route_fiq_to_el3
= env
->cp15
.scr_el3
& SCR_FIQ
;
1552 route_irq_to_el3
= env
->cp15
.scr_el3
& SCR_IRQ
;
1553 /* No need to include !IsSecure in route_*_to_el2 as it's only
1554 * tested in cases where we know !IsSecure is true.
1556 route_fiq_to_el2
= env
->cp15
.hcr_el2
& HCR_FMO
;
1557 route_irq_to_el2
= env
->cp15
.hcr_el2
& HCR_FMO
;
1559 switch (arm_current_el(env
)) {
1563 if (single_sec_state
&& irq_is_grp0
&& !route_fiq_to_el3
) {
1566 if (!irq_is_secure
&& !irq_is_grp0
&& !route_irq_to_el3
) {
1571 if (!arm_is_secure_below_el3(env
)) {
1572 if (single_sec_state
&& irq_is_grp0
&&
1573 !route_fiq_to_el3
&& !route_fiq_to_el2
) {
1576 if (!irq_is_secure
&& !irq_is_grp0
&&
1577 !route_irq_to_el3
&& !route_irq_to_el2
) {
1581 if (irq_is_grp0
&& !route_fiq_to_el3
) {
1585 (!irq_is_secure
|| !single_sec_state
) &&
1586 !route_irq_to_el3
) {
1592 g_assert_not_reached();
1595 icc_deactivate_irq(cs
, irq
);
1598 static uint64_t icc_rpr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1600 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1603 if (icv_access(env
, HCR_FMO
| HCR_IMO
)) {
1604 return icv_rpr_read(env
, ri
);
1607 prio
= icc_highest_active_prio(cs
);
1609 if (arm_feature(env
, ARM_FEATURE_EL3
) &&
1610 !arm_is_secure(env
) && (env
->cp15
.scr_el3
& SCR_FIQ
)) {
1611 /* NS GIC access and Group 0 is inaccessible to NS */
1613 /* NS mustn't see priorities in the Secure half of the range */
1615 } else if (prio
!= 0xff) {
1616 /* Non-idle priority: show the Non-secure view of it */
1617 prio
= (prio
<< 1) & 0xff;
1621 trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs
), prio
);
1625 static void icc_generate_sgi(CPUARMState
*env
, GICv3CPUState
*cs
,
1626 uint64_t value
, int grp
, bool ns
)
1628 GICv3State
*s
= cs
->gic
;
1630 /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */
1631 uint64_t aff
= extract64(value
, 48, 8) << 16 |
1632 extract64(value
, 32, 8) << 8 |
1633 extract64(value
, 16, 8);
1634 uint32_t targetlist
= extract64(value
, 0, 16);
1635 uint32_t irq
= extract64(value
, 24, 4);
1636 bool irm
= extract64(value
, 40, 1);
1639 if (grp
== GICV3_G1
&& s
->gicd_ctlr
& GICD_CTLR_DS
) {
1640 /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1
1641 * interrupts as Group 0 interrupts and must send Secure Group 0
1642 * interrupts to the target CPUs.
1647 trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs
), irq
, irm
,
1650 for (i
= 0; i
< s
->num_cpu
; i
++) {
1651 GICv3CPUState
*ocs
= &s
->cpu
[i
];
1654 /* IRM == 1 : route to all CPUs except self */
1659 /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15]
1660 * where the corresponding bit is set in targetlist
1664 if (ocs
->gicr_typer
>> 40 != aff
) {
1667 aff0
= extract64(ocs
->gicr_typer
, 32, 8);
1668 if (aff0
> 15 || extract32(targetlist
, aff0
, 1) == 0) {
1673 /* The redistributor will check against its own GICR_NSACR as needed */
1674 gicv3_redist_send_sgi(ocs
, grp
, irq
, ns
);
1678 static void icc_sgi0r_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1681 /* Generate Secure Group 0 SGI. */
1682 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1683 bool ns
= !arm_is_secure(env
);
1685 icc_generate_sgi(env
, cs
, value
, GICV3_G0
, ns
);
1688 static void icc_sgi1r_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1691 /* Generate Group 1 SGI for the current Security state */
1692 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1694 bool ns
= !arm_is_secure(env
);
1696 grp
= ns
? GICV3_G1NS
: GICV3_G1
;
1697 icc_generate_sgi(env
, cs
, value
, grp
, ns
);
1700 static void icc_asgi1r_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1703 /* Generate Group 1 SGI for the Security state that is not
1706 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1708 bool ns
= !arm_is_secure(env
);
1710 grp
= ns
? GICV3_G1
: GICV3_G1NS
;
1711 icc_generate_sgi(env
, cs
, value
, grp
, ns
);
1714 static uint64_t icc_igrpen_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1716 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1717 int grp
= ri
->opc2
& 1 ? GICV3_G1
: GICV3_G0
;
1720 if (icv_access(env
, grp
== GICV3_G0
? HCR_FMO
: HCR_IMO
)) {
1721 return icv_igrpen_read(env
, ri
);
1724 if (grp
== GICV3_G1
&& gicv3_use_ns_bank(env
)) {
1728 value
= cs
->icc_igrpen
[grp
];
1729 trace_gicv3_icc_igrpen_read(ri
->opc2
& 1 ? 1 : 0,
1730 gicv3_redist_affid(cs
), value
);
1734 static void icc_igrpen_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1737 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1738 int grp
= ri
->opc2
& 1 ? GICV3_G1
: GICV3_G0
;
1740 if (icv_access(env
, grp
== GICV3_G0
? HCR_FMO
: HCR_IMO
)) {
1741 icv_igrpen_write(env
, ri
, value
);
1745 trace_gicv3_icc_igrpen_write(ri
->opc2
& 1 ? 1 : 0,
1746 gicv3_redist_affid(cs
), value
);
1748 if (grp
== GICV3_G1
&& gicv3_use_ns_bank(env
)) {
1752 cs
->icc_igrpen
[grp
] = value
& ICC_IGRPEN_ENABLE
;
1753 gicv3_cpuif_update(cs
);
1756 static uint64_t icc_igrpen1_el3_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1758 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1761 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1762 value
= cs
->icc_igrpen
[GICV3_G1NS
] | (cs
->icc_igrpen
[GICV3_G1
] << 1);
1763 trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs
), value
);
1767 static void icc_igrpen1_el3_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1770 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1772 trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs
), value
);
1774 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1775 cs
->icc_igrpen
[GICV3_G1NS
] = extract32(value
, 0, 1);
1776 cs
->icc_igrpen
[GICV3_G1
] = extract32(value
, 1, 1);
1777 gicv3_cpuif_update(cs
);
1780 static uint64_t icc_ctlr_el1_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1782 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1783 int bank
= gicv3_use_ns_bank(env
) ? GICV3_NS
: GICV3_S
;
1786 if (icv_access(env
, HCR_FMO
| HCR_IMO
)) {
1787 return icv_ctlr_read(env
, ri
);
1790 value
= cs
->icc_ctlr_el1
[bank
];
1791 trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs
), value
);
1795 static void icc_ctlr_el1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1798 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1799 int bank
= gicv3_use_ns_bank(env
) ? GICV3_NS
: GICV3_S
;
1802 if (icv_access(env
, HCR_FMO
| HCR_IMO
)) {
1803 icv_ctlr_write(env
, ri
, value
);
1807 trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs
), value
);
1809 /* Only CBPR and EOIMODE can be RW;
1810 * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or
1811 * the asseciated priority-based routing of them);
1812 * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO.
1814 if (arm_feature(env
, ARM_FEATURE_EL3
) &&
1815 ((cs
->gic
->gicd_ctlr
& GICD_CTLR_DS
) == 0)) {
1816 mask
= ICC_CTLR_EL1_EOIMODE
;
1818 mask
= ICC_CTLR_EL1_CBPR
| ICC_CTLR_EL1_EOIMODE
;
1821 cs
->icc_ctlr_el1
[bank
] &= ~mask
;
1822 cs
->icc_ctlr_el1
[bank
] |= (value
& mask
);
1823 gicv3_cpuif_update(cs
);
1827 static uint64_t icc_ctlr_el3_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1829 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1832 value
= cs
->icc_ctlr_el3
;
1833 if (cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_EOIMODE
) {
1834 value
|= ICC_CTLR_EL3_EOIMODE_EL1NS
;
1836 if (cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_CBPR
) {
1837 value
|= ICC_CTLR_EL3_CBPR_EL1NS
;
1839 if (cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_EOIMODE
) {
1840 value
|= ICC_CTLR_EL3_EOIMODE_EL1S
;
1842 if (cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_CBPR
) {
1843 value
|= ICC_CTLR_EL3_CBPR_EL1S
;
1846 trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs
), value
);
1850 static void icc_ctlr_el3_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1853 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1856 trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs
), value
);
1858 /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */
1859 cs
->icc_ctlr_el1
[GICV3_NS
] &= (ICC_CTLR_EL1_CBPR
| ICC_CTLR_EL1_EOIMODE
);
1860 if (value
& ICC_CTLR_EL3_EOIMODE_EL1NS
) {
1861 cs
->icc_ctlr_el1
[GICV3_NS
] |= ICC_CTLR_EL1_EOIMODE
;
1863 if (value
& ICC_CTLR_EL3_CBPR_EL1NS
) {
1864 cs
->icc_ctlr_el1
[GICV3_NS
] |= ICC_CTLR_EL1_CBPR
;
1867 cs
->icc_ctlr_el1
[GICV3_S
] &= (ICC_CTLR_EL1_CBPR
| ICC_CTLR_EL1_EOIMODE
);
1868 if (value
& ICC_CTLR_EL3_EOIMODE_EL1S
) {
1869 cs
->icc_ctlr_el1
[GICV3_S
] |= ICC_CTLR_EL1_EOIMODE
;
1871 if (value
& ICC_CTLR_EL3_CBPR_EL1S
) {
1872 cs
->icc_ctlr_el1
[GICV3_S
] |= ICC_CTLR_EL1_CBPR
;
1875 /* The only bit stored in icc_ctlr_el3 which is writeable is EOIMODE_EL3: */
1876 mask
= ICC_CTLR_EL3_EOIMODE_EL3
;
1878 cs
->icc_ctlr_el3
&= ~mask
;
1879 cs
->icc_ctlr_el3
|= (value
& mask
);
1880 gicv3_cpuif_update(cs
);
1883 static CPAccessResult
gicv3_irqfiq_access(CPUARMState
*env
,
1884 const ARMCPRegInfo
*ri
, bool isread
)
1886 CPAccessResult r
= CP_ACCESS_OK
;
1887 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1888 int el
= arm_current_el(env
);
1890 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_TC
) &&
1891 el
== 1 && !arm_is_secure_below_el3(env
)) {
1892 /* Takes priority over a possible EL3 trap */
1893 return CP_ACCESS_TRAP_EL2
;
1896 if ((env
->cp15
.scr_el3
& (SCR_FIQ
| SCR_IRQ
)) == (SCR_FIQ
| SCR_IRQ
)) {
1899 if (arm_is_secure_below_el3(env
) ||
1900 ((env
->cp15
.hcr_el2
& (HCR_IMO
| HCR_FMO
)) == 0)) {
1901 r
= CP_ACCESS_TRAP_EL3
;
1905 r
= CP_ACCESS_TRAP_EL3
;
1908 if (!is_a64(env
) && !arm_is_el3_or_mon(env
)) {
1909 r
= CP_ACCESS_TRAP_EL3
;
1913 g_assert_not_reached();
1917 if (r
== CP_ACCESS_TRAP_EL3
&& !arm_el_is_aa64(env
, 3)) {
1923 static CPAccessResult
gicv3_dir_access(CPUARMState
*env
,
1924 const ARMCPRegInfo
*ri
, bool isread
)
1926 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1928 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_TDIR
) &&
1929 arm_current_el(env
) == 1 && !arm_is_secure_below_el3(env
)) {
1930 /* Takes priority over a possible EL3 trap */
1931 return CP_ACCESS_TRAP_EL2
;
1934 return gicv3_irqfiq_access(env
, ri
, isread
);
1937 static CPAccessResult
gicv3_sgi_access(CPUARMState
*env
,
1938 const ARMCPRegInfo
*ri
, bool isread
)
1940 if ((env
->cp15
.hcr_el2
& (HCR_IMO
| HCR_FMO
)) &&
1941 arm_current_el(env
) == 1 && !arm_is_secure_below_el3(env
)) {
1942 /* Takes priority over a possible EL3 trap */
1943 return CP_ACCESS_TRAP_EL2
;
1946 return gicv3_irqfiq_access(env
, ri
, isread
);
1949 static CPAccessResult
gicv3_fiq_access(CPUARMState
*env
,
1950 const ARMCPRegInfo
*ri
, bool isread
)
1952 CPAccessResult r
= CP_ACCESS_OK
;
1953 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1954 int el
= arm_current_el(env
);
1956 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_TALL0
) &&
1957 el
== 1 && !arm_is_secure_below_el3(env
)) {
1958 /* Takes priority over a possible EL3 trap */
1959 return CP_ACCESS_TRAP_EL2
;
1962 if (env
->cp15
.scr_el3
& SCR_FIQ
) {
1965 if (arm_is_secure_below_el3(env
) ||
1966 ((env
->cp15
.hcr_el2
& HCR_FMO
) == 0)) {
1967 r
= CP_ACCESS_TRAP_EL3
;
1971 r
= CP_ACCESS_TRAP_EL3
;
1974 if (!is_a64(env
) && !arm_is_el3_or_mon(env
)) {
1975 r
= CP_ACCESS_TRAP_EL3
;
1979 g_assert_not_reached();
1983 if (r
== CP_ACCESS_TRAP_EL3
&& !arm_el_is_aa64(env
, 3)) {
1989 static CPAccessResult
gicv3_irq_access(CPUARMState
*env
,
1990 const ARMCPRegInfo
*ri
, bool isread
)
1992 CPAccessResult r
= CP_ACCESS_OK
;
1993 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1994 int el
= arm_current_el(env
);
1996 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_TALL1
) &&
1997 el
== 1 && !arm_is_secure_below_el3(env
)) {
1998 /* Takes priority over a possible EL3 trap */
1999 return CP_ACCESS_TRAP_EL2
;
2002 if (env
->cp15
.scr_el3
& SCR_IRQ
) {
2005 if (arm_is_secure_below_el3(env
) ||
2006 ((env
->cp15
.hcr_el2
& HCR_IMO
) == 0)) {
2007 r
= CP_ACCESS_TRAP_EL3
;
2011 r
= CP_ACCESS_TRAP_EL3
;
2014 if (!is_a64(env
) && !arm_is_el3_or_mon(env
)) {
2015 r
= CP_ACCESS_TRAP_EL3
;
2019 g_assert_not_reached();
2023 if (r
== CP_ACCESS_TRAP_EL3
&& !arm_el_is_aa64(env
, 3)) {
2029 static void icc_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2031 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2033 cs
->icc_ctlr_el1
[GICV3_S
] = ICC_CTLR_EL1_A3V
|
2034 (1 << ICC_CTLR_EL1_IDBITS_SHIFT
) |
2035 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT
);
2036 cs
->icc_ctlr_el1
[GICV3_NS
] = ICC_CTLR_EL1_A3V
|
2037 (1 << ICC_CTLR_EL1_IDBITS_SHIFT
) |
2038 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT
);
2039 cs
->icc_pmr_el1
= 0;
2040 cs
->icc_bpr
[GICV3_G0
] = GIC_MIN_BPR
;
2041 cs
->icc_bpr
[GICV3_G1
] = GIC_MIN_BPR
;
2042 cs
->icc_bpr
[GICV3_G1NS
] = GIC_MIN_BPR_NS
;
2043 memset(cs
->icc_apr
, 0, sizeof(cs
->icc_apr
));
2044 memset(cs
->icc_igrpen
, 0, sizeof(cs
->icc_igrpen
));
2045 cs
->icc_ctlr_el3
= ICC_CTLR_EL3_NDS
| ICC_CTLR_EL3_A3V
|
2046 (1 << ICC_CTLR_EL3_IDBITS_SHIFT
) |
2047 (7 << ICC_CTLR_EL3_PRIBITS_SHIFT
);
2049 memset(cs
->ich_apr
, 0, sizeof(cs
->ich_apr
));
2050 cs
->ich_hcr_el2
= 0;
2051 memset(cs
->ich_lr_el2
, 0, sizeof(cs
->ich_lr_el2
));
2052 cs
->ich_vmcr_el2
= ICH_VMCR_EL2_VFIQEN
|
2053 ((icv_min_vbpr(cs
) + 1) << ICH_VMCR_EL2_VBPR1_SHIFT
) |
2054 (icv_min_vbpr(cs
) << ICH_VMCR_EL2_VBPR0_SHIFT
);
2057 static const ARMCPRegInfo gicv3_cpuif_reginfo
[] = {
2058 { .name
= "ICC_PMR_EL1", .state
= ARM_CP_STATE_BOTH
,
2059 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 6, .opc2
= 0,
2060 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2061 .access
= PL1_RW
, .accessfn
= gicv3_irqfiq_access
,
2062 .readfn
= icc_pmr_read
,
2063 .writefn
= icc_pmr_write
,
2064 /* We hang the whole cpu interface reset routine off here
2065 * rather than parcelling it out into one little function
2068 .resetfn
= icc_reset
,
2070 { .name
= "ICC_IAR0_EL1", .state
= ARM_CP_STATE_BOTH
,
2071 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 0,
2072 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2073 .access
= PL1_R
, .accessfn
= gicv3_fiq_access
,
2074 .readfn
= icc_iar0_read
,
2076 { .name
= "ICC_EOIR0_EL1", .state
= ARM_CP_STATE_BOTH
,
2077 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 1,
2078 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2079 .access
= PL1_W
, .accessfn
= gicv3_fiq_access
,
2080 .writefn
= icc_eoir_write
,
2082 { .name
= "ICC_HPPIR0_EL1", .state
= ARM_CP_STATE_BOTH
,
2083 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 2,
2084 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2085 .access
= PL1_R
, .accessfn
= gicv3_fiq_access
,
2086 .readfn
= icc_hppir0_read
,
2088 { .name
= "ICC_BPR0_EL1", .state
= ARM_CP_STATE_BOTH
,
2089 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 3,
2090 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2091 .access
= PL1_RW
, .accessfn
= gicv3_fiq_access
,
2092 .readfn
= icc_bpr_read
,
2093 .writefn
= icc_bpr_write
,
2095 { .name
= "ICC_AP0R0_EL1", .state
= ARM_CP_STATE_BOTH
,
2096 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 4,
2097 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2098 .access
= PL1_RW
, .accessfn
= gicv3_fiq_access
,
2099 .readfn
= icc_ap_read
,
2100 .writefn
= icc_ap_write
,
2102 { .name
= "ICC_AP0R1_EL1", .state
= ARM_CP_STATE_BOTH
,
2103 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 5,
2104 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2105 .access
= PL1_RW
, .accessfn
= gicv3_fiq_access
,
2106 .readfn
= icc_ap_read
,
2107 .writefn
= icc_ap_write
,
2109 { .name
= "ICC_AP0R2_EL1", .state
= ARM_CP_STATE_BOTH
,
2110 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 6,
2111 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2112 .access
= PL1_RW
, .accessfn
= gicv3_fiq_access
,
2113 .readfn
= icc_ap_read
,
2114 .writefn
= icc_ap_write
,
2116 { .name
= "ICC_AP0R3_EL1", .state
= ARM_CP_STATE_BOTH
,
2117 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 7,
2118 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2119 .access
= PL1_RW
, .accessfn
= gicv3_fiq_access
,
2120 .readfn
= icc_ap_read
,
2121 .writefn
= icc_ap_write
,
2123 /* All the ICC_AP1R*_EL1 registers are banked */
2124 { .name
= "ICC_AP1R0_EL1", .state
= ARM_CP_STATE_BOTH
,
2125 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 9, .opc2
= 0,
2126 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2127 .access
= PL1_RW
, .accessfn
= gicv3_irq_access
,
2128 .readfn
= icc_ap_read
,
2129 .writefn
= icc_ap_write
,
2131 { .name
= "ICC_AP1R1_EL1", .state
= ARM_CP_STATE_BOTH
,
2132 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 9, .opc2
= 1,
2133 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2134 .access
= PL1_RW
, .accessfn
= gicv3_irq_access
,
2135 .readfn
= icc_ap_read
,
2136 .writefn
= icc_ap_write
,
2138 { .name
= "ICC_AP1R2_EL1", .state
= ARM_CP_STATE_BOTH
,
2139 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 9, .opc2
= 2,
2140 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2141 .access
= PL1_RW
, .accessfn
= gicv3_irq_access
,
2142 .readfn
= icc_ap_read
,
2143 .writefn
= icc_ap_write
,
2145 { .name
= "ICC_AP1R3_EL1", .state
= ARM_CP_STATE_BOTH
,
2146 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 9, .opc2
= 3,
2147 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2148 .access
= PL1_RW
, .accessfn
= gicv3_irq_access
,
2149 .readfn
= icc_ap_read
,
2150 .writefn
= icc_ap_write
,
2152 { .name
= "ICC_DIR_EL1", .state
= ARM_CP_STATE_BOTH
,
2153 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 11, .opc2
= 1,
2154 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2155 .access
= PL1_W
, .accessfn
= gicv3_dir_access
,
2156 .writefn
= icc_dir_write
,
2158 { .name
= "ICC_RPR_EL1", .state
= ARM_CP_STATE_BOTH
,
2159 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 11, .opc2
= 3,
2160 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2161 .access
= PL1_R
, .accessfn
= gicv3_irqfiq_access
,
2162 .readfn
= icc_rpr_read
,
2164 { .name
= "ICC_SGI1R_EL1", .state
= ARM_CP_STATE_AA64
,
2165 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 11, .opc2
= 5,
2166 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2167 .access
= PL1_W
, .accessfn
= gicv3_sgi_access
,
2168 .writefn
= icc_sgi1r_write
,
2170 { .name
= "ICC_SGI1R",
2171 .cp
= 15, .opc1
= 0, .crm
= 12,
2172 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_NO_RAW
,
2173 .access
= PL1_W
, .accessfn
= gicv3_sgi_access
,
2174 .writefn
= icc_sgi1r_write
,
2176 { .name
= "ICC_ASGI1R_EL1", .state
= ARM_CP_STATE_AA64
,
2177 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 11, .opc2
= 6,
2178 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2179 .access
= PL1_W
, .accessfn
= gicv3_sgi_access
,
2180 .writefn
= icc_asgi1r_write
,
2182 { .name
= "ICC_ASGI1R",
2183 .cp
= 15, .opc1
= 1, .crm
= 12,
2184 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_NO_RAW
,
2185 .access
= PL1_W
, .accessfn
= gicv3_sgi_access
,
2186 .writefn
= icc_asgi1r_write
,
2188 { .name
= "ICC_SGI0R_EL1", .state
= ARM_CP_STATE_AA64
,
2189 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 11, .opc2
= 7,
2190 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2191 .access
= PL1_W
, .accessfn
= gicv3_sgi_access
,
2192 .writefn
= icc_sgi0r_write
,
2194 { .name
= "ICC_SGI0R",
2195 .cp
= 15, .opc1
= 2, .crm
= 12,
2196 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_NO_RAW
,
2197 .access
= PL1_W
, .accessfn
= gicv3_sgi_access
,
2198 .writefn
= icc_sgi0r_write
,
2200 { .name
= "ICC_IAR1_EL1", .state
= ARM_CP_STATE_BOTH
,
2201 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 0,
2202 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2203 .access
= PL1_R
, .accessfn
= gicv3_irq_access
,
2204 .readfn
= icc_iar1_read
,
2206 { .name
= "ICC_EOIR1_EL1", .state
= ARM_CP_STATE_BOTH
,
2207 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 1,
2208 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2209 .access
= PL1_W
, .accessfn
= gicv3_irq_access
,
2210 .writefn
= icc_eoir_write
,
2212 { .name
= "ICC_HPPIR1_EL1", .state
= ARM_CP_STATE_BOTH
,
2213 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 2,
2214 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2215 .access
= PL1_R
, .accessfn
= gicv3_irq_access
,
2216 .readfn
= icc_hppir1_read
,
2218 /* This register is banked */
2219 { .name
= "ICC_BPR1_EL1", .state
= ARM_CP_STATE_BOTH
,
2220 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 3,
2221 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2222 .access
= PL1_RW
, .accessfn
= gicv3_irq_access
,
2223 .readfn
= icc_bpr_read
,
2224 .writefn
= icc_bpr_write
,
2226 /* This register is banked */
2227 { .name
= "ICC_CTLR_EL1", .state
= ARM_CP_STATE_BOTH
,
2228 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 4,
2229 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2230 .access
= PL1_RW
, .accessfn
= gicv3_irqfiq_access
,
2231 .readfn
= icc_ctlr_el1_read
,
2232 .writefn
= icc_ctlr_el1_write
,
2234 { .name
= "ICC_SRE_EL1", .state
= ARM_CP_STATE_BOTH
,
2235 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 5,
2236 .type
= ARM_CP_NO_RAW
| ARM_CP_CONST
,
2238 /* We don't support IRQ/FIQ bypass and system registers are
2239 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2240 * This register is banked but since it's constant we don't
2241 * need to do anything special.
2245 { .name
= "ICC_IGRPEN0_EL1", .state
= ARM_CP_STATE_BOTH
,
2246 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 6,
2247 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2248 .access
= PL1_RW
, .accessfn
= gicv3_fiq_access
,
2249 .readfn
= icc_igrpen_read
,
2250 .writefn
= icc_igrpen_write
,
2252 /* This register is banked */
2253 { .name
= "ICC_IGRPEN1_EL1", .state
= ARM_CP_STATE_BOTH
,
2254 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 7,
2255 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2256 .access
= PL1_RW
, .accessfn
= gicv3_irq_access
,
2257 .readfn
= icc_igrpen_read
,
2258 .writefn
= icc_igrpen_write
,
2260 { .name
= "ICC_SRE_EL2", .state
= ARM_CP_STATE_BOTH
,
2261 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 9, .opc2
= 5,
2262 .type
= ARM_CP_NO_RAW
| ARM_CP_CONST
,
2264 /* We don't support IRQ/FIQ bypass and system registers are
2265 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2269 { .name
= "ICC_CTLR_EL3", .state
= ARM_CP_STATE_BOTH
,
2270 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 12, .opc2
= 4,
2271 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2273 .readfn
= icc_ctlr_el3_read
,
2274 .writefn
= icc_ctlr_el3_write
,
2276 { .name
= "ICC_SRE_EL3", .state
= ARM_CP_STATE_BOTH
,
2277 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 12, .opc2
= 5,
2278 .type
= ARM_CP_NO_RAW
| ARM_CP_CONST
,
2280 /* We don't support IRQ/FIQ bypass and system registers are
2281 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2285 { .name
= "ICC_IGRPEN1_EL3", .state
= ARM_CP_STATE_BOTH
,
2286 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 12, .opc2
= 7,
2287 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2289 .readfn
= icc_igrpen1_el3_read
,
2290 .writefn
= icc_igrpen1_el3_write
,
2295 static uint64_t ich_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2297 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2298 int regno
= ri
->opc2
& 3;
2299 int grp
= ri
->crm
& 1 ? GICV3_G0
: GICV3_G1NS
;
2302 value
= cs
->ich_apr
[grp
][regno
];
2303 trace_gicv3_ich_ap_read(ri
->crm
& 1, regno
, gicv3_redist_affid(cs
), value
);
2307 static void ich_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2310 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2311 int regno
= ri
->opc2
& 3;
2312 int grp
= ri
->crm
& 1 ? GICV3_G0
: GICV3_G1NS
;
2314 trace_gicv3_ich_ap_write(ri
->crm
& 1, regno
, gicv3_redist_affid(cs
), value
);
2316 cs
->ich_apr
[grp
][regno
] = value
& 0xFFFFFFFFU
;
2317 gicv3_cpuif_virt_update(cs
);
2320 static uint64_t ich_hcr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2322 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2323 uint64_t value
= cs
->ich_hcr_el2
;
2325 trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs
), value
);
2329 static void ich_hcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2332 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2334 trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs
), value
);
2336 value
&= ICH_HCR_EL2_EN
| ICH_HCR_EL2_UIE
| ICH_HCR_EL2_LRENPIE
|
2337 ICH_HCR_EL2_NPIE
| ICH_HCR_EL2_VGRP0EIE
| ICH_HCR_EL2_VGRP0DIE
|
2338 ICH_HCR_EL2_VGRP1EIE
| ICH_HCR_EL2_VGRP1DIE
| ICH_HCR_EL2_TC
|
2339 ICH_HCR_EL2_TALL0
| ICH_HCR_EL2_TALL1
| ICH_HCR_EL2_TSEI
|
2340 ICH_HCR_EL2_TDIR
| ICH_HCR_EL2_EOICOUNT_MASK
;
2342 cs
->ich_hcr_el2
= value
;
2343 gicv3_cpuif_virt_update(cs
);
2346 static uint64_t ich_vmcr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2348 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2349 uint64_t value
= cs
->ich_vmcr_el2
;
2351 trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs
), value
);
2355 static void ich_vmcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2358 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2360 trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs
), value
);
2362 value
&= ICH_VMCR_EL2_VENG0
| ICH_VMCR_EL2_VENG1
| ICH_VMCR_EL2_VCBPR
|
2363 ICH_VMCR_EL2_VEOIM
| ICH_VMCR_EL2_VBPR1_MASK
|
2364 ICH_VMCR_EL2_VBPR0_MASK
| ICH_VMCR_EL2_VPMR_MASK
;
2365 value
|= ICH_VMCR_EL2_VFIQEN
;
2367 cs
->ich_vmcr_el2
= value
;
2368 /* Enforce "writing BPRs to less than minimum sets them to the minimum"
2369 * by reading and writing back the fields.
2371 write_vbpr(cs
, GICV3_G1
, read_vbpr(cs
, GICV3_G0
));
2372 write_vbpr(cs
, GICV3_G1
, read_vbpr(cs
, GICV3_G1
));
2374 gicv3_cpuif_virt_update(cs
);
2377 static uint64_t ich_lr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2379 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2380 int regno
= ri
->opc2
| ((ri
->crm
& 1) << 3);
2383 /* This read function handles all of:
2384 * 64-bit reads of the whole LR
2385 * 32-bit reads of the low half of the LR
2386 * 32-bit reads of the high half of the LR
2388 if (ri
->state
== ARM_CP_STATE_AA32
) {
2389 if (ri
->crm
>= 14) {
2390 value
= extract64(cs
->ich_lr_el2
[regno
], 32, 32);
2391 trace_gicv3_ich_lrc_read(regno
, gicv3_redist_affid(cs
), value
);
2393 value
= extract64(cs
->ich_lr_el2
[regno
], 0, 32);
2394 trace_gicv3_ich_lr32_read(regno
, gicv3_redist_affid(cs
), value
);
2397 value
= cs
->ich_lr_el2
[regno
];
2398 trace_gicv3_ich_lr_read(regno
, gicv3_redist_affid(cs
), value
);
2404 static void ich_lr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2407 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2408 int regno
= ri
->opc2
| ((ri
->crm
& 1) << 3);
2410 /* This write function handles all of:
2411 * 64-bit writes to the whole LR
2412 * 32-bit writes to the low half of the LR
2413 * 32-bit writes to the high half of the LR
2415 if (ri
->state
== ARM_CP_STATE_AA32
) {
2416 if (ri
->crm
>= 14) {
2417 trace_gicv3_ich_lrc_write(regno
, gicv3_redist_affid(cs
), value
);
2418 value
= deposit64(cs
->ich_lr_el2
[regno
], 32, 32, value
);
2420 trace_gicv3_ich_lr32_write(regno
, gicv3_redist_affid(cs
), value
);
2421 value
= deposit64(cs
->ich_lr_el2
[regno
], 0, 32, value
);
2424 trace_gicv3_ich_lr_write(regno
, gicv3_redist_affid(cs
), value
);
2427 /* Enforce RES0 bits in priority field */
2428 if (cs
->vpribits
< 8) {
2429 value
= deposit64(value
, ICH_LR_EL2_PRIORITY_SHIFT
,
2430 8 - cs
->vpribits
, 0);
2433 cs
->ich_lr_el2
[regno
] = value
;
2434 gicv3_cpuif_virt_update(cs
);
2437 static uint64_t ich_vtr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2439 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2442 value
= ((cs
->num_list_regs
- 1) << ICH_VTR_EL2_LISTREGS_SHIFT
)
2443 | ICH_VTR_EL2_TDS
| ICH_VTR_EL2_NV4
| ICH_VTR_EL2_A3V
2444 | (1 << ICH_VTR_EL2_IDBITS_SHIFT
)
2445 | ((cs
->vprebits
- 1) << ICH_VTR_EL2_PREBITS_SHIFT
)
2446 | ((cs
->vpribits
- 1) << ICH_VTR_EL2_PRIBITS_SHIFT
);
2448 trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs
), value
);
2452 static uint64_t ich_misr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2454 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2455 uint64_t value
= maintenance_interrupt_state(cs
);
2457 trace_gicv3_ich_misr_read(gicv3_redist_affid(cs
), value
);
2461 static uint64_t ich_eisr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2463 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2464 uint64_t value
= eoi_maintenance_interrupt_state(cs
, NULL
);
2466 trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs
), value
);
2470 static uint64_t ich_elrsr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2472 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2476 for (i
= 0; i
< cs
->num_list_regs
; i
++) {
2477 uint64_t lr
= cs
->ich_lr_el2
[i
];
2479 if ((lr
& ICH_LR_EL2_STATE_MASK
) == 0 &&
2480 ((lr
& ICH_LR_EL2_HW
) != 0 || (lr
& ICH_LR_EL2_EOI
) == 0)) {
2485 trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs
), value
);
2489 static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo
[] = {
2490 { .name
= "ICH_AP0R0_EL2", .state
= ARM_CP_STATE_BOTH
,
2491 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 8, .opc2
= 0,
2492 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2494 .readfn
= ich_ap_read
,
2495 .writefn
= ich_ap_write
,
2497 { .name
= "ICH_AP1R0_EL2", .state
= ARM_CP_STATE_BOTH
,
2498 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 9, .opc2
= 0,
2499 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2501 .readfn
= ich_ap_read
,
2502 .writefn
= ich_ap_write
,
2504 { .name
= "ICH_HCR_EL2", .state
= ARM_CP_STATE_BOTH
,
2505 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 11, .opc2
= 0,
2506 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2508 .readfn
= ich_hcr_read
,
2509 .writefn
= ich_hcr_write
,
2511 { .name
= "ICH_VTR_EL2", .state
= ARM_CP_STATE_BOTH
,
2512 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 11, .opc2
= 1,
2513 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2515 .readfn
= ich_vtr_read
,
2517 { .name
= "ICH_MISR_EL2", .state
= ARM_CP_STATE_BOTH
,
2518 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 11, .opc2
= 2,
2519 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2521 .readfn
= ich_misr_read
,
2523 { .name
= "ICH_EISR_EL2", .state
= ARM_CP_STATE_BOTH
,
2524 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 11, .opc2
= 3,
2525 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2527 .readfn
= ich_eisr_read
,
2529 { .name
= "ICH_ELRSR_EL2", .state
= ARM_CP_STATE_BOTH
,
2530 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 11, .opc2
= 5,
2531 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2533 .readfn
= ich_elrsr_read
,
2535 { .name
= "ICH_VMCR_EL2", .state
= ARM_CP_STATE_BOTH
,
2536 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 11, .opc2
= 7,
2537 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2539 .readfn
= ich_vmcr_read
,
2540 .writefn
= ich_vmcr_write
,
2545 static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo
[] = {
2546 { .name
= "ICH_AP0R1_EL2", .state
= ARM_CP_STATE_BOTH
,
2547 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 8, .opc2
= 1,
2548 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2550 .readfn
= ich_ap_read
,
2551 .writefn
= ich_ap_write
,
2553 { .name
= "ICH_AP1R1_EL2", .state
= ARM_CP_STATE_BOTH
,
2554 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 9, .opc2
= 1,
2555 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2557 .readfn
= ich_ap_read
,
2558 .writefn
= ich_ap_write
,
2563 static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo
[] = {
2564 { .name
= "ICH_AP0R2_EL2", .state
= ARM_CP_STATE_BOTH
,
2565 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 8, .opc2
= 2,
2566 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2568 .readfn
= ich_ap_read
,
2569 .writefn
= ich_ap_write
,
2571 { .name
= "ICH_AP0R3_EL2", .state
= ARM_CP_STATE_BOTH
,
2572 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 8, .opc2
= 3,
2573 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2575 .readfn
= ich_ap_read
,
2576 .writefn
= ich_ap_write
,
2578 { .name
= "ICH_AP1R2_EL2", .state
= ARM_CP_STATE_BOTH
,
2579 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 9, .opc2
= 2,
2580 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2582 .readfn
= ich_ap_read
,
2583 .writefn
= ich_ap_write
,
2585 { .name
= "ICH_AP1R3_EL2", .state
= ARM_CP_STATE_BOTH
,
2586 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 9, .opc2
= 3,
2587 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2589 .readfn
= ich_ap_read
,
2590 .writefn
= ich_ap_write
,
2595 static void gicv3_cpuif_el_change_hook(ARMCPU
*cpu
, void *opaque
)
2597 GICv3CPUState
*cs
= opaque
;
2599 gicv3_cpuif_update(cs
);
2602 void gicv3_init_cpuif(GICv3State
*s
)
2604 /* Called from the GICv3 realize function; register our system
2605 * registers with the CPU
2609 for (i
= 0; i
< s
->num_cpu
; i
++) {
2610 ARMCPU
*cpu
= ARM_CPU(qemu_get_cpu(i
));
2611 GICv3CPUState
*cs
= &s
->cpu
[i
];
2613 /* Note that we can't just use the GICv3CPUState as an opaque pointer
2614 * in define_arm_cp_regs_with_opaque(), because when we're called back
2615 * it might be with code translated by CPU 0 but run by CPU 1, in
2616 * which case we'd get the wrong value.
2617 * So instead we define the regs with no ri->opaque info, and
2618 * get back to the GICv3CPUState from the ARMCPU by reading back
2619 * the opaque pointer from the el_change_hook, which we're going
2620 * to need to register anyway.
2622 define_arm_cp_regs(cpu
, gicv3_cpuif_reginfo
);
2623 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL2
)
2624 && cpu
->gic_num_lrs
) {
2627 cs
->maintenance_irq
= cpu
->gicv3_maintenance_interrupt
;
2629 cs
->num_list_regs
= cpu
->gic_num_lrs
;
2630 cs
->vpribits
= cpu
->gic_vpribits
;
2631 cs
->vprebits
= cpu
->gic_vprebits
;
2633 /* Check against architectural constraints: getting these
2634 * wrong would be a bug in the CPU code defining these,
2635 * and the implementation relies on them holding.
2637 g_assert(cs
->vprebits
<= cs
->vpribits
);
2638 g_assert(cs
->vprebits
>= 5 && cs
->vprebits
<= 7);
2639 g_assert(cs
->vpribits
>= 5 && cs
->vpribits
<= 8);
2641 define_arm_cp_regs(cpu
, gicv3_cpuif_hcr_reginfo
);
2643 for (j
= 0; j
< cs
->num_list_regs
; j
++) {
2644 /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs
2645 * are split into two cp15 regs, LR (the low part, with the
2646 * same encoding as the AArch64 LR) and LRC (the high part).
2648 ARMCPRegInfo lr_regset
[] = {
2649 { .name
= "ICH_LRn_EL2", .state
= ARM_CP_STATE_BOTH
,
2650 .opc0
= 3, .opc1
= 4, .crn
= 12,
2651 .crm
= 12 + (j
>> 3), .opc2
= j
& 7,
2652 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2654 .readfn
= ich_lr_read
,
2655 .writefn
= ich_lr_write
,
2657 { .name
= "ICH_LRCn_EL2", .state
= ARM_CP_STATE_AA32
,
2658 .cp
= 15, .opc1
= 4, .crn
= 12,
2659 .crm
= 14 + (j
>> 3), .opc2
= j
& 7,
2660 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2662 .readfn
= ich_lr_read
,
2663 .writefn
= ich_lr_write
,
2667 define_arm_cp_regs(cpu
, lr_regset
);
2669 if (cs
->vprebits
>= 6) {
2670 define_arm_cp_regs(cpu
, gicv3_cpuif_ich_apxr1_reginfo
);
2672 if (cs
->vprebits
== 7) {
2673 define_arm_cp_regs(cpu
, gicv3_cpuif_ich_apxr23_reginfo
);
2676 arm_register_el_change_hook(cpu
, gicv3_cpuif_el_change_hook
, cs
);