target-arm/powerctl: defer cpu reset work to CPU context
[qemu/kevin.git] / target / arm / cpu.h
blobe285ba3b4bd68f7c1d228dd64515217ba5948a6d
1 /*
2 * ARM virtual CPU header
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
26 #if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28 # define TARGET_LONG_BITS 64
29 #else
30 # define TARGET_LONG_BITS 32
31 #endif
33 #define CPUArchState struct CPUARMState
35 #include "qemu-common.h"
36 #include "cpu-qom.h"
37 #include "exec/cpu-defs.h"
39 #include "fpu/softfloat.h"
41 #define EXCP_UDEF 1 /* undefined instruction */
42 #define EXCP_SWI 2 /* software interrupt */
43 #define EXCP_PREFETCH_ABORT 3
44 #define EXCP_DATA_ABORT 4
45 #define EXCP_IRQ 5
46 #define EXCP_FIQ 6
47 #define EXCP_BKPT 7
48 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
49 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
50 #define EXCP_HVC 11 /* HyperVisor Call */
51 #define EXCP_HYP_TRAP 12
52 #define EXCP_SMC 13 /* Secure Monitor Call */
53 #define EXCP_VIRQ 14
54 #define EXCP_VFIQ 15
55 #define EXCP_SEMIHOST 16 /* semihosting call */
56 #define EXCP_NOCP 17 /* v7M NOCP UsageFault */
58 #define ARMV7M_EXCP_RESET 1
59 #define ARMV7M_EXCP_NMI 2
60 #define ARMV7M_EXCP_HARD 3
61 #define ARMV7M_EXCP_MEM 4
62 #define ARMV7M_EXCP_BUS 5
63 #define ARMV7M_EXCP_USAGE 6
64 #define ARMV7M_EXCP_SVC 11
65 #define ARMV7M_EXCP_DEBUG 12
66 #define ARMV7M_EXCP_PENDSV 14
67 #define ARMV7M_EXCP_SYSTICK 15
69 /* ARM-specific interrupt pending bits. */
70 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
71 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
72 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
74 /* The usual mapping for an AArch64 system register to its AArch32
75 * counterpart is for the 32 bit world to have access to the lower
76 * half only (with writes leaving the upper half untouched). It's
77 * therefore useful to be able to pass TCG the offset of the least
78 * significant half of a uint64_t struct member.
80 #ifdef HOST_WORDS_BIGENDIAN
81 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
82 #define offsetofhigh32(S, M) offsetof(S, M)
83 #else
84 #define offsetoflow32(S, M) offsetof(S, M)
85 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
86 #endif
88 /* Meanings of the ARMCPU object's four inbound GPIO lines */
89 #define ARM_CPU_IRQ 0
90 #define ARM_CPU_FIQ 1
91 #define ARM_CPU_VIRQ 2
92 #define ARM_CPU_VFIQ 3
94 #define NB_MMU_MODES 7
95 /* ARM-specific extra insn start words:
96 * 1: Conditional execution bits
97 * 2: Partial exception syndrome for data aborts
99 #define TARGET_INSN_START_EXTRA_WORDS 2
101 /* The 2nd extra word holding syndrome info for data aborts does not use
102 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
103 * help the sleb128 encoder do a better job.
104 * When restoring the CPU state, we shift it back up.
106 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
107 #define ARM_INSN_START_WORD2_SHIFT 14
109 /* We currently assume float and double are IEEE single and double
110 precision respectively.
111 Doing runtime conversions is tricky because VFP registers may contain
112 integer values (eg. as the result of a FTOSI instruction).
113 s<2n> maps to the least significant half of d<n>
114 s<2n+1> maps to the most significant half of d<n>
117 /* CPU state for each instance of a generic timer (in cp15 c14) */
118 typedef struct ARMGenericTimer {
119 uint64_t cval; /* Timer CompareValue register */
120 uint64_t ctl; /* Timer Control register */
121 } ARMGenericTimer;
123 #define GTIMER_PHYS 0
124 #define GTIMER_VIRT 1
125 #define GTIMER_HYP 2
126 #define GTIMER_SEC 3
127 #define NUM_GTIMERS 4
129 typedef struct {
130 uint64_t raw_tcr;
131 uint32_t mask;
132 uint32_t base_mask;
133 } TCR;
135 typedef struct CPUARMState {
136 /* Regs for current mode. */
137 uint32_t regs[16];
139 /* 32/64 switch only happens when taking and returning from
140 * exceptions so the overlap semantics are taken care of then
141 * instead of having a complicated union.
143 /* Regs for A64 mode. */
144 uint64_t xregs[32];
145 uint64_t pc;
146 /* PSTATE isn't an architectural register for ARMv8. However, it is
147 * convenient for us to assemble the underlying state into a 32 bit format
148 * identical to the architectural format used for the SPSR. (This is also
149 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
150 * 'pstate' register are.) Of the PSTATE bits:
151 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
152 * semantics as for AArch32, as described in the comments on each field)
153 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
154 * DAIF (exception masks) are kept in env->daif
155 * all other bits are stored in their correct places in env->pstate
157 uint32_t pstate;
158 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
160 /* Frequently accessed CPSR bits are stored separately for efficiency.
161 This contains all the other bits. Use cpsr_{read,write} to access
162 the whole CPSR. */
163 uint32_t uncached_cpsr;
164 uint32_t spsr;
166 /* Banked registers. */
167 uint64_t banked_spsr[8];
168 uint32_t banked_r13[8];
169 uint32_t banked_r14[8];
171 /* These hold r8-r12. */
172 uint32_t usr_regs[5];
173 uint32_t fiq_regs[5];
175 /* cpsr flag cache for faster execution */
176 uint32_t CF; /* 0 or 1 */
177 uint32_t VF; /* V is the bit 31. All other bits are undefined */
178 uint32_t NF; /* N is bit 31. All other bits are undefined. */
179 uint32_t ZF; /* Z set if zero. */
180 uint32_t QF; /* 0 or 1 */
181 uint32_t GE; /* cpsr[19:16] */
182 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
183 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
184 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
186 uint64_t elr_el[4]; /* AArch64 exception link regs */
187 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
189 /* System control coprocessor (cp15) */
190 struct {
191 uint32_t c0_cpuid;
192 union { /* Cache size selection */
193 struct {
194 uint64_t _unused_csselr0;
195 uint64_t csselr_ns;
196 uint64_t _unused_csselr1;
197 uint64_t csselr_s;
199 uint64_t csselr_el[4];
201 union { /* System control register. */
202 struct {
203 uint64_t _unused_sctlr;
204 uint64_t sctlr_ns;
205 uint64_t hsctlr;
206 uint64_t sctlr_s;
208 uint64_t sctlr_el[4];
210 uint64_t cpacr_el1; /* Architectural feature access control register */
211 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
212 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
213 uint64_t sder; /* Secure debug enable register. */
214 uint32_t nsacr; /* Non-secure access control register. */
215 union { /* MMU translation table base 0. */
216 struct {
217 uint64_t _unused_ttbr0_0;
218 uint64_t ttbr0_ns;
219 uint64_t _unused_ttbr0_1;
220 uint64_t ttbr0_s;
222 uint64_t ttbr0_el[4];
224 union { /* MMU translation table base 1. */
225 struct {
226 uint64_t _unused_ttbr1_0;
227 uint64_t ttbr1_ns;
228 uint64_t _unused_ttbr1_1;
229 uint64_t ttbr1_s;
231 uint64_t ttbr1_el[4];
233 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
234 /* MMU translation table base control. */
235 TCR tcr_el[4];
236 TCR vtcr_el2; /* Virtualization Translation Control. */
237 uint32_t c2_data; /* MPU data cacheable bits. */
238 uint32_t c2_insn; /* MPU instruction cacheable bits. */
239 union { /* MMU domain access control register
240 * MPU write buffer control.
242 struct {
243 uint64_t dacr_ns;
244 uint64_t dacr_s;
246 struct {
247 uint64_t dacr32_el2;
250 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
251 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
252 uint64_t hcr_el2; /* Hypervisor configuration register */
253 uint64_t scr_el3; /* Secure configuration register. */
254 union { /* Fault status registers. */
255 struct {
256 uint64_t ifsr_ns;
257 uint64_t ifsr_s;
259 struct {
260 uint64_t ifsr32_el2;
263 union {
264 struct {
265 uint64_t _unused_dfsr;
266 uint64_t dfsr_ns;
267 uint64_t hsr;
268 uint64_t dfsr_s;
270 uint64_t esr_el[4];
272 uint32_t c6_region[8]; /* MPU base/size registers. */
273 union { /* Fault address registers. */
274 struct {
275 uint64_t _unused_far0;
276 #ifdef HOST_WORDS_BIGENDIAN
277 uint32_t ifar_ns;
278 uint32_t dfar_ns;
279 uint32_t ifar_s;
280 uint32_t dfar_s;
281 #else
282 uint32_t dfar_ns;
283 uint32_t ifar_ns;
284 uint32_t dfar_s;
285 uint32_t ifar_s;
286 #endif
287 uint64_t _unused_far3;
289 uint64_t far_el[4];
291 uint64_t hpfar_el2;
292 uint64_t hstr_el2;
293 union { /* Translation result. */
294 struct {
295 uint64_t _unused_par_0;
296 uint64_t par_ns;
297 uint64_t _unused_par_1;
298 uint64_t par_s;
300 uint64_t par_el[4];
303 uint32_t c6_rgnr;
305 uint32_t c9_insn; /* Cache lockdown registers. */
306 uint32_t c9_data;
307 uint64_t c9_pmcr; /* performance monitor control register */
308 uint64_t c9_pmcnten; /* perf monitor counter enables */
309 uint32_t c9_pmovsr; /* perf monitor overflow status */
310 uint32_t c9_pmuserenr; /* perf monitor user enable */
311 uint64_t c9_pmselr; /* perf monitor counter selection register */
312 uint64_t c9_pminten; /* perf monitor interrupt enables */
313 union { /* Memory attribute redirection */
314 struct {
315 #ifdef HOST_WORDS_BIGENDIAN
316 uint64_t _unused_mair_0;
317 uint32_t mair1_ns;
318 uint32_t mair0_ns;
319 uint64_t _unused_mair_1;
320 uint32_t mair1_s;
321 uint32_t mair0_s;
322 #else
323 uint64_t _unused_mair_0;
324 uint32_t mair0_ns;
325 uint32_t mair1_ns;
326 uint64_t _unused_mair_1;
327 uint32_t mair0_s;
328 uint32_t mair1_s;
329 #endif
331 uint64_t mair_el[4];
333 union { /* vector base address register */
334 struct {
335 uint64_t _unused_vbar;
336 uint64_t vbar_ns;
337 uint64_t hvbar;
338 uint64_t vbar_s;
340 uint64_t vbar_el[4];
342 uint32_t mvbar; /* (monitor) vector base address register */
343 struct { /* FCSE PID. */
344 uint32_t fcseidr_ns;
345 uint32_t fcseidr_s;
347 union { /* Context ID. */
348 struct {
349 uint64_t _unused_contextidr_0;
350 uint64_t contextidr_ns;
351 uint64_t _unused_contextidr_1;
352 uint64_t contextidr_s;
354 uint64_t contextidr_el[4];
356 union { /* User RW Thread register. */
357 struct {
358 uint64_t tpidrurw_ns;
359 uint64_t tpidrprw_ns;
360 uint64_t htpidr;
361 uint64_t _tpidr_el3;
363 uint64_t tpidr_el[4];
365 /* The secure banks of these registers don't map anywhere */
366 uint64_t tpidrurw_s;
367 uint64_t tpidrprw_s;
368 uint64_t tpidruro_s;
370 union { /* User RO Thread register. */
371 uint64_t tpidruro_ns;
372 uint64_t tpidrro_el[1];
374 uint64_t c14_cntfrq; /* Counter Frequency register */
375 uint64_t c14_cntkctl; /* Timer Control register */
376 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
377 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
378 ARMGenericTimer c14_timer[NUM_GTIMERS];
379 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
380 uint32_t c15_ticonfig; /* TI925T configuration byte. */
381 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
382 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
383 uint32_t c15_threadid; /* TI debugger thread-ID. */
384 uint32_t c15_config_base_address; /* SCU base address. */
385 uint32_t c15_diagnostic; /* diagnostic register */
386 uint32_t c15_power_diagnostic;
387 uint32_t c15_power_control; /* power control */
388 uint64_t dbgbvr[16]; /* breakpoint value registers */
389 uint64_t dbgbcr[16]; /* breakpoint control registers */
390 uint64_t dbgwvr[16]; /* watchpoint value registers */
391 uint64_t dbgwcr[16]; /* watchpoint control registers */
392 uint64_t mdscr_el1;
393 uint64_t oslsr_el1; /* OS Lock Status */
394 uint64_t mdcr_el2;
395 uint64_t mdcr_el3;
396 /* If the counter is enabled, this stores the last time the counter
397 * was reset. Otherwise it stores the counter value
399 uint64_t c15_ccnt;
400 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
401 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
402 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
403 } cp15;
405 struct {
406 uint32_t other_sp;
407 uint32_t vecbase;
408 uint32_t basepri;
409 uint32_t control;
410 uint32_t ccr; /* Configuration and Control */
411 uint32_t cfsr; /* Configurable Fault Status */
412 uint32_t hfsr; /* HardFault Status */
413 uint32_t dfsr; /* Debug Fault Status Register */
414 uint32_t mmfar; /* MemManage Fault Address */
415 uint32_t bfar; /* BusFault Address */
416 int exception;
417 } v7m;
419 /* Information associated with an exception about to be taken:
420 * code which raises an exception must set cs->exception_index and
421 * the relevant parts of this structure; the cpu_do_interrupt function
422 * will then set the guest-visible registers as part of the exception
423 * entry process.
425 struct {
426 uint32_t syndrome; /* AArch64 format syndrome register */
427 uint32_t fsr; /* AArch32 format fault status register info */
428 uint64_t vaddress; /* virtual addr associated with exception, if any */
429 uint32_t target_el; /* EL the exception should be targeted for */
430 /* If we implement EL2 we will also need to store information
431 * about the intermediate physical address for stage 2 faults.
433 } exception;
435 /* Thumb-2 EE state. */
436 uint32_t teecr;
437 uint32_t teehbr;
439 /* VFP coprocessor state. */
440 struct {
441 /* VFP/Neon register state. Note that the mapping between S, D and Q
442 * views of the register bank differs between AArch64 and AArch32:
443 * In AArch32:
444 * Qn = regs[2n+1]:regs[2n]
445 * Dn = regs[n]
446 * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
447 * (and regs[32] to regs[63] are inaccessible)
448 * In AArch64:
449 * Qn = regs[2n+1]:regs[2n]
450 * Dn = regs[2n]
451 * Sn = regs[2n] bits 31..0
452 * This corresponds to the architecturally defined mapping between
453 * the two execution states, and means we do not need to explicitly
454 * map these registers when changing states.
456 float64 regs[64];
458 uint32_t xregs[16];
459 /* We store these fpcsr fields separately for convenience. */
460 int vec_len;
461 int vec_stride;
463 /* scratch space when Tn are not sufficient. */
464 uint32_t scratch[8];
466 /* fp_status is the "normal" fp status. standard_fp_status retains
467 * values corresponding to the ARM "Standard FPSCR Value", ie
468 * default-NaN, flush-to-zero, round-to-nearest and is used by
469 * any operations (generally Neon) which the architecture defines
470 * as controlled by the standard FPSCR value rather than the FPSCR.
472 * To avoid having to transfer exception bits around, we simply
473 * say that the FPSCR cumulative exception flags are the logical
474 * OR of the flags in the two fp statuses. This relies on the
475 * only thing which needs to read the exception flags being
476 * an explicit FPSCR read.
478 float_status fp_status;
479 float_status standard_fp_status;
480 } vfp;
481 uint64_t exclusive_addr;
482 uint64_t exclusive_val;
483 uint64_t exclusive_high;
485 /* iwMMXt coprocessor state. */
486 struct {
487 uint64_t regs[16];
488 uint64_t val;
490 uint32_t cregs[16];
491 } iwmmxt;
493 #if defined(CONFIG_USER_ONLY)
494 /* For usermode syscall translation. */
495 int eabi;
496 #endif
498 struct CPUBreakpoint *cpu_breakpoint[16];
499 struct CPUWatchpoint *cpu_watchpoint[16];
501 /* Fields up to this point are cleared by a CPU reset */
502 struct {} end_reset_fields;
504 CPU_COMMON
506 /* Fields after CPU_COMMON are preserved across CPU reset. */
508 /* Internal CPU feature flags. */
509 uint64_t features;
511 /* PMSAv7 MPU */
512 struct {
513 uint32_t *drbar;
514 uint32_t *drsr;
515 uint32_t *dracr;
516 } pmsav7;
518 void *nvic;
519 const struct arm_boot_info *boot_info;
520 } CPUARMState;
523 * ARMELChangeHook:
524 * type of a function which can be registered via arm_register_el_change_hook()
525 * to get callbacks when the CPU changes its exception level or mode.
527 typedef void ARMELChangeHook(ARMCPU *cpu, void *opaque);
530 /* These values map onto the return values for
531 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
532 typedef enum ARMPSCIState {
533 PSCI_OFF = 0,
534 PSCI_ON = 1,
535 PSCI_ON_PENDING = 2
536 } ARMPSCIState;
539 * ARMCPU:
540 * @env: #CPUARMState
542 * An ARM CPU core.
544 struct ARMCPU {
545 /*< private >*/
546 CPUState parent_obj;
547 /*< public >*/
549 CPUARMState env;
551 /* Coprocessor information */
552 GHashTable *cp_regs;
553 /* For marshalling (mostly coprocessor) register state between the
554 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
555 * we use these arrays.
557 /* List of register indexes managed via these arrays; (full KVM style
558 * 64 bit indexes, not CPRegInfo 32 bit indexes)
560 uint64_t *cpreg_indexes;
561 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
562 uint64_t *cpreg_values;
563 /* Length of the indexes, values, reset_values arrays */
564 int32_t cpreg_array_len;
565 /* These are used only for migration: incoming data arrives in
566 * these fields and is sanity checked in post_load before copying
567 * to the working data structures above.
569 uint64_t *cpreg_vmstate_indexes;
570 uint64_t *cpreg_vmstate_values;
571 int32_t cpreg_vmstate_array_len;
573 /* Timers used by the generic (architected) timer */
574 QEMUTimer *gt_timer[NUM_GTIMERS];
575 /* GPIO outputs for generic timer */
576 qemu_irq gt_timer_outputs[NUM_GTIMERS];
577 /* GPIO output for GICv3 maintenance interrupt signal */
578 qemu_irq gicv3_maintenance_interrupt;
580 /* MemoryRegion to use for secure physical accesses */
581 MemoryRegion *secure_memory;
583 /* 'compatible' string for this CPU for Linux device trees */
584 const char *dtb_compatible;
586 /* PSCI version for this CPU
587 * Bits[31:16] = Major Version
588 * Bits[15:0] = Minor Version
590 uint32_t psci_version;
592 /* Should CPU start in PSCI powered-off state? */
593 bool start_powered_off;
595 /* Current power state, access guarded by BQL */
596 ARMPSCIState power_state;
598 /* CPU has virtualization extension */
599 bool has_el2;
600 /* CPU has security extension */
601 bool has_el3;
602 /* CPU has PMU (Performance Monitor Unit) */
603 bool has_pmu;
605 /* CPU has memory protection unit */
606 bool has_mpu;
607 /* PMSAv7 MPU number of supported regions */
608 uint32_t pmsav7_dregion;
610 /* PSCI conduit used to invoke PSCI methods
611 * 0 - disabled, 1 - smc, 2 - hvc
613 uint32_t psci_conduit;
615 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
616 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
618 uint32_t kvm_target;
620 /* KVM init features for this CPU */
621 uint32_t kvm_init_features[7];
623 /* Uniprocessor system with MP extensions */
624 bool mp_is_up;
626 /* The instance init functions for implementation-specific subclasses
627 * set these fields to specify the implementation-dependent values of
628 * various constant registers and reset values of non-constant
629 * registers.
630 * Some of these might become QOM properties eventually.
631 * Field names match the official register names as defined in the
632 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
633 * is used for reset values of non-constant registers; no reset_
634 * prefix means a constant register.
636 uint32_t midr;
637 uint32_t revidr;
638 uint32_t reset_fpsid;
639 uint32_t mvfr0;
640 uint32_t mvfr1;
641 uint32_t mvfr2;
642 uint32_t ctr;
643 uint32_t reset_sctlr;
644 uint32_t id_pfr0;
645 uint32_t id_pfr1;
646 uint32_t id_dfr0;
647 uint32_t pmceid0;
648 uint32_t pmceid1;
649 uint32_t id_afr0;
650 uint32_t id_mmfr0;
651 uint32_t id_mmfr1;
652 uint32_t id_mmfr2;
653 uint32_t id_mmfr3;
654 uint32_t id_mmfr4;
655 uint32_t id_isar0;
656 uint32_t id_isar1;
657 uint32_t id_isar2;
658 uint32_t id_isar3;
659 uint32_t id_isar4;
660 uint32_t id_isar5;
661 uint64_t id_aa64pfr0;
662 uint64_t id_aa64pfr1;
663 uint64_t id_aa64dfr0;
664 uint64_t id_aa64dfr1;
665 uint64_t id_aa64afr0;
666 uint64_t id_aa64afr1;
667 uint64_t id_aa64isar0;
668 uint64_t id_aa64isar1;
669 uint64_t id_aa64mmfr0;
670 uint64_t id_aa64mmfr1;
671 uint32_t dbgdidr;
672 uint32_t clidr;
673 uint64_t mp_affinity; /* MP ID without feature bits */
674 /* The elements of this array are the CCSIDR values for each cache,
675 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
677 uint32_t ccsidr[16];
678 uint64_t reset_cbar;
679 uint32_t reset_auxcr;
680 bool reset_hivecs;
681 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
682 uint32_t dcz_blocksize;
683 uint64_t rvbar;
685 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
686 int gic_num_lrs; /* number of list registers */
687 int gic_vpribits; /* number of virtual priority bits */
688 int gic_vprebits; /* number of virtual preemption bits */
690 /* Whether the cfgend input is high (i.e. this CPU should reset into
691 * big-endian mode). This setting isn't used directly: instead it modifies
692 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
693 * architecture version.
695 bool cfgend;
697 ARMELChangeHook *el_change_hook;
698 void *el_change_hook_opaque;
701 static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
703 return container_of(env, ARMCPU, env);
706 #define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
708 #define ENV_OFFSET offsetof(ARMCPU, env)
710 #ifndef CONFIG_USER_ONLY
711 extern const struct VMStateDescription vmstate_arm_cpu;
712 #endif
714 void arm_cpu_do_interrupt(CPUState *cpu);
715 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
716 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
718 void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
719 int flags);
721 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
722 MemTxAttrs *attrs);
724 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
725 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
727 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
728 int cpuid, void *opaque);
729 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
730 int cpuid, void *opaque);
732 #ifdef TARGET_AARCH64
733 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
734 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
735 #endif
737 ARMCPU *cpu_arm_init(const char *cpu_model);
738 target_ulong do_arm_semihosting(CPUARMState *env);
739 void aarch64_sync_32_to_64(CPUARMState *env);
740 void aarch64_sync_64_to_32(CPUARMState *env);
742 static inline bool is_a64(CPUARMState *env)
744 return env->aarch64;
747 /* you can call this signal handler from your SIGBUS and SIGSEGV
748 signal handlers to inform the virtual CPU of exceptions. non zero
749 is returned if the signal was handled by the virtual CPU. */
750 int cpu_arm_signal_handler(int host_signum, void *pinfo,
751 void *puc);
754 * pmccntr_sync
755 * @env: CPUARMState
757 * Synchronises the counter in the PMCCNTR. This must always be called twice,
758 * once before any action that might affect the timer and again afterwards.
759 * The function is used to swap the state of the register if required.
760 * This only happens when not in user mode (!CONFIG_USER_ONLY)
762 void pmccntr_sync(CPUARMState *env);
764 /* SCTLR bit meanings. Several bits have been reused in newer
765 * versions of the architecture; in that case we define constants
766 * for both old and new bit meanings. Code which tests against those
767 * bits should probably check or otherwise arrange that the CPU
768 * is the architectural version it expects.
770 #define SCTLR_M (1U << 0)
771 #define SCTLR_A (1U << 1)
772 #define SCTLR_C (1U << 2)
773 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
774 #define SCTLR_SA (1U << 3)
775 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
776 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
777 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
778 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
779 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
780 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
781 #define SCTLR_ITD (1U << 7) /* v8 onward */
782 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
783 #define SCTLR_SED (1U << 8) /* v8 onward */
784 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
785 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
786 #define SCTLR_F (1U << 10) /* up to v6 */
787 #define SCTLR_SW (1U << 10) /* v7 onward */
788 #define SCTLR_Z (1U << 11)
789 #define SCTLR_I (1U << 12)
790 #define SCTLR_V (1U << 13)
791 #define SCTLR_RR (1U << 14) /* up to v7 */
792 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
793 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
794 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
795 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
796 #define SCTLR_nTWI (1U << 16) /* v8 onward */
797 #define SCTLR_HA (1U << 17)
798 #define SCTLR_BR (1U << 17) /* PMSA only */
799 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
800 #define SCTLR_nTWE (1U << 18) /* v8 onward */
801 #define SCTLR_WXN (1U << 19)
802 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
803 #define SCTLR_UWXN (1U << 20) /* v7 onward */
804 #define SCTLR_FI (1U << 21)
805 #define SCTLR_U (1U << 22)
806 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
807 #define SCTLR_VE (1U << 24) /* up to v7 */
808 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
809 #define SCTLR_EE (1U << 25)
810 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
811 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
812 #define SCTLR_NMFI (1U << 27)
813 #define SCTLR_TRE (1U << 28)
814 #define SCTLR_AFE (1U << 29)
815 #define SCTLR_TE (1U << 30)
817 #define CPTR_TCPAC (1U << 31)
818 #define CPTR_TTA (1U << 20)
819 #define CPTR_TFP (1U << 10)
821 #define MDCR_EPMAD (1U << 21)
822 #define MDCR_EDAD (1U << 20)
823 #define MDCR_SPME (1U << 17)
824 #define MDCR_SDD (1U << 16)
825 #define MDCR_SPD (3U << 14)
826 #define MDCR_TDRA (1U << 11)
827 #define MDCR_TDOSA (1U << 10)
828 #define MDCR_TDA (1U << 9)
829 #define MDCR_TDE (1U << 8)
830 #define MDCR_HPME (1U << 7)
831 #define MDCR_TPM (1U << 6)
832 #define MDCR_TPMCR (1U << 5)
834 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
835 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
837 #define CPSR_M (0x1fU)
838 #define CPSR_T (1U << 5)
839 #define CPSR_F (1U << 6)
840 #define CPSR_I (1U << 7)
841 #define CPSR_A (1U << 8)
842 #define CPSR_E (1U << 9)
843 #define CPSR_IT_2_7 (0xfc00U)
844 #define CPSR_GE (0xfU << 16)
845 #define CPSR_IL (1U << 20)
846 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
847 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
848 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
849 * where it is live state but not accessible to the AArch32 code.
851 #define CPSR_RESERVED (0x7U << 21)
852 #define CPSR_J (1U << 24)
853 #define CPSR_IT_0_1 (3U << 25)
854 #define CPSR_Q (1U << 27)
855 #define CPSR_V (1U << 28)
856 #define CPSR_C (1U << 29)
857 #define CPSR_Z (1U << 30)
858 #define CPSR_N (1U << 31)
859 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
860 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
862 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
863 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
864 | CPSR_NZCV)
865 /* Bits writable in user mode. */
866 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
867 /* Execution state bits. MRS read as zero, MSR writes ignored. */
868 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
869 /* Mask of bits which may be set by exception return copying them from SPSR */
870 #define CPSR_ERET_MASK (~CPSR_RESERVED)
872 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
873 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
874 #define TTBCR_PD0 (1U << 4)
875 #define TTBCR_PD1 (1U << 5)
876 #define TTBCR_EPD0 (1U << 7)
877 #define TTBCR_IRGN0 (3U << 8)
878 #define TTBCR_ORGN0 (3U << 10)
879 #define TTBCR_SH0 (3U << 12)
880 #define TTBCR_T1SZ (3U << 16)
881 #define TTBCR_A1 (1U << 22)
882 #define TTBCR_EPD1 (1U << 23)
883 #define TTBCR_IRGN1 (3U << 24)
884 #define TTBCR_ORGN1 (3U << 26)
885 #define TTBCR_SH1 (1U << 28)
886 #define TTBCR_EAE (1U << 31)
888 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
889 * Only these are valid when in AArch64 mode; in
890 * AArch32 mode SPSRs are basically CPSR-format.
892 #define PSTATE_SP (1U)
893 #define PSTATE_M (0xFU)
894 #define PSTATE_nRW (1U << 4)
895 #define PSTATE_F (1U << 6)
896 #define PSTATE_I (1U << 7)
897 #define PSTATE_A (1U << 8)
898 #define PSTATE_D (1U << 9)
899 #define PSTATE_IL (1U << 20)
900 #define PSTATE_SS (1U << 21)
901 #define PSTATE_V (1U << 28)
902 #define PSTATE_C (1U << 29)
903 #define PSTATE_Z (1U << 30)
904 #define PSTATE_N (1U << 31)
905 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
906 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
907 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
908 /* Mode values for AArch64 */
909 #define PSTATE_MODE_EL3h 13
910 #define PSTATE_MODE_EL3t 12
911 #define PSTATE_MODE_EL2h 9
912 #define PSTATE_MODE_EL2t 8
913 #define PSTATE_MODE_EL1h 5
914 #define PSTATE_MODE_EL1t 4
915 #define PSTATE_MODE_EL0t 0
917 /* Map EL and handler into a PSTATE_MODE. */
918 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
920 return (el << 2) | handler;
923 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
924 * interprocessing, so we don't attempt to sync with the cpsr state used by
925 * the 32 bit decoder.
927 static inline uint32_t pstate_read(CPUARMState *env)
929 int ZF;
931 ZF = (env->ZF == 0);
932 return (env->NF & 0x80000000) | (ZF << 30)
933 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
934 | env->pstate | env->daif;
937 static inline void pstate_write(CPUARMState *env, uint32_t val)
939 env->ZF = (~val) & PSTATE_Z;
940 env->NF = val;
941 env->CF = (val >> 29) & 1;
942 env->VF = (val << 3) & 0x80000000;
943 env->daif = val & PSTATE_DAIF;
944 env->pstate = val & ~CACHED_PSTATE_BITS;
947 /* Return the current CPSR value. */
948 uint32_t cpsr_read(CPUARMState *env);
950 typedef enum CPSRWriteType {
951 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
952 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
953 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */
954 CPSRWriteByGDBStub = 3, /* from the GDB stub */
955 } CPSRWriteType;
957 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
958 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
959 CPSRWriteType write_type);
961 /* Return the current xPSR value. */
962 static inline uint32_t xpsr_read(CPUARMState *env)
964 int ZF;
965 ZF = (env->ZF == 0);
966 return (env->NF & 0x80000000) | (ZF << 30)
967 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
968 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
969 | ((env->condexec_bits & 0xfc) << 8)
970 | env->v7m.exception;
973 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
974 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
976 if (mask & CPSR_NZCV) {
977 env->ZF = (~val) & CPSR_Z;
978 env->NF = val;
979 env->CF = (val >> 29) & 1;
980 env->VF = (val << 3) & 0x80000000;
982 if (mask & CPSR_Q)
983 env->QF = ((val & CPSR_Q) != 0);
984 if (mask & (1 << 24))
985 env->thumb = ((val & (1 << 24)) != 0);
986 if (mask & CPSR_IT_0_1) {
987 env->condexec_bits &= ~3;
988 env->condexec_bits |= (val >> 25) & 3;
990 if (mask & CPSR_IT_2_7) {
991 env->condexec_bits &= 3;
992 env->condexec_bits |= (val >> 8) & 0xfc;
994 if (mask & 0x1ff) {
995 env->v7m.exception = val & 0x1ff;
999 #define HCR_VM (1ULL << 0)
1000 #define HCR_SWIO (1ULL << 1)
1001 #define HCR_PTW (1ULL << 2)
1002 #define HCR_FMO (1ULL << 3)
1003 #define HCR_IMO (1ULL << 4)
1004 #define HCR_AMO (1ULL << 5)
1005 #define HCR_VF (1ULL << 6)
1006 #define HCR_VI (1ULL << 7)
1007 #define HCR_VSE (1ULL << 8)
1008 #define HCR_FB (1ULL << 9)
1009 #define HCR_BSU_MASK (3ULL << 10)
1010 #define HCR_DC (1ULL << 12)
1011 #define HCR_TWI (1ULL << 13)
1012 #define HCR_TWE (1ULL << 14)
1013 #define HCR_TID0 (1ULL << 15)
1014 #define HCR_TID1 (1ULL << 16)
1015 #define HCR_TID2 (1ULL << 17)
1016 #define HCR_TID3 (1ULL << 18)
1017 #define HCR_TSC (1ULL << 19)
1018 #define HCR_TIDCP (1ULL << 20)
1019 #define HCR_TACR (1ULL << 21)
1020 #define HCR_TSW (1ULL << 22)
1021 #define HCR_TPC (1ULL << 23)
1022 #define HCR_TPU (1ULL << 24)
1023 #define HCR_TTLB (1ULL << 25)
1024 #define HCR_TVM (1ULL << 26)
1025 #define HCR_TGE (1ULL << 27)
1026 #define HCR_TDZ (1ULL << 28)
1027 #define HCR_HCD (1ULL << 29)
1028 #define HCR_TRVM (1ULL << 30)
1029 #define HCR_RW (1ULL << 31)
1030 #define HCR_CD (1ULL << 32)
1031 #define HCR_ID (1ULL << 33)
1032 #define HCR_MASK ((1ULL << 34) - 1)
1034 #define SCR_NS (1U << 0)
1035 #define SCR_IRQ (1U << 1)
1036 #define SCR_FIQ (1U << 2)
1037 #define SCR_EA (1U << 3)
1038 #define SCR_FW (1U << 4)
1039 #define SCR_AW (1U << 5)
1040 #define SCR_NET (1U << 6)
1041 #define SCR_SMD (1U << 7)
1042 #define SCR_HCE (1U << 8)
1043 #define SCR_SIF (1U << 9)
1044 #define SCR_RW (1U << 10)
1045 #define SCR_ST (1U << 11)
1046 #define SCR_TWI (1U << 12)
1047 #define SCR_TWE (1U << 13)
1048 #define SCR_AARCH32_MASK (0x3fff & ~(SCR_RW | SCR_ST))
1049 #define SCR_AARCH64_MASK (0x3fff & ~SCR_NET)
1051 /* Return the current FPSCR value. */
1052 uint32_t vfp_get_fpscr(CPUARMState *env);
1053 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1055 /* For A64 the FPSCR is split into two logically distinct registers,
1056 * FPCR and FPSR. However since they still use non-overlapping bits
1057 * we store the underlying state in fpscr and just mask on read/write.
1059 #define FPSR_MASK 0xf800009f
1060 #define FPCR_MASK 0x07f79f00
1061 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1063 return vfp_get_fpscr(env) & FPSR_MASK;
1066 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1068 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1069 vfp_set_fpscr(env, new_fpscr);
1072 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1074 return vfp_get_fpscr(env) & FPCR_MASK;
1077 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1079 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1080 vfp_set_fpscr(env, new_fpscr);
1083 enum arm_cpu_mode {
1084 ARM_CPU_MODE_USR = 0x10,
1085 ARM_CPU_MODE_FIQ = 0x11,
1086 ARM_CPU_MODE_IRQ = 0x12,
1087 ARM_CPU_MODE_SVC = 0x13,
1088 ARM_CPU_MODE_MON = 0x16,
1089 ARM_CPU_MODE_ABT = 0x17,
1090 ARM_CPU_MODE_HYP = 0x1a,
1091 ARM_CPU_MODE_UND = 0x1b,
1092 ARM_CPU_MODE_SYS = 0x1f
1095 /* VFP system registers. */
1096 #define ARM_VFP_FPSID 0
1097 #define ARM_VFP_FPSCR 1
1098 #define ARM_VFP_MVFR2 5
1099 #define ARM_VFP_MVFR1 6
1100 #define ARM_VFP_MVFR0 7
1101 #define ARM_VFP_FPEXC 8
1102 #define ARM_VFP_FPINST 9
1103 #define ARM_VFP_FPINST2 10
1105 /* iwMMXt coprocessor control registers. */
1106 #define ARM_IWMMXT_wCID 0
1107 #define ARM_IWMMXT_wCon 1
1108 #define ARM_IWMMXT_wCSSF 2
1109 #define ARM_IWMMXT_wCASF 3
1110 #define ARM_IWMMXT_wCGR0 8
1111 #define ARM_IWMMXT_wCGR1 9
1112 #define ARM_IWMMXT_wCGR2 10
1113 #define ARM_IWMMXT_wCGR3 11
1115 /* V7M CCR bits */
1116 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1117 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1118 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1119 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1120 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1121 FIELD(V7M_CCR, STKALIGN, 9, 1)
1122 FIELD(V7M_CCR, DC, 16, 1)
1123 FIELD(V7M_CCR, IC, 17, 1)
1125 /* V7M CFSR bits for MMFSR */
1126 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1127 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1128 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1129 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1130 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1131 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1133 /* V7M CFSR bits for BFSR */
1134 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1135 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1136 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1137 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1138 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1139 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1140 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1142 /* V7M CFSR bits for UFSR */
1143 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1144 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1145 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1146 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1147 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1148 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1150 /* V7M HFSR bits */
1151 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1152 FIELD(V7M_HFSR, FORCED, 30, 1)
1153 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1155 /* V7M DFSR bits */
1156 FIELD(V7M_DFSR, HALTED, 0, 1)
1157 FIELD(V7M_DFSR, BKPT, 1, 1)
1158 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1159 FIELD(V7M_DFSR, VCATCH, 3, 1)
1160 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1162 /* If adding a feature bit which corresponds to a Linux ELF
1163 * HWCAP bit, remember to update the feature-bit-to-hwcap
1164 * mapping in linux-user/elfload.c:get_elf_hwcap().
1166 enum arm_features {
1167 ARM_FEATURE_VFP,
1168 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
1169 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
1170 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
1171 ARM_FEATURE_V6,
1172 ARM_FEATURE_V6K,
1173 ARM_FEATURE_V7,
1174 ARM_FEATURE_THUMB2,
1175 ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */
1176 ARM_FEATURE_VFP3,
1177 ARM_FEATURE_VFP_FP16,
1178 ARM_FEATURE_NEON,
1179 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
1180 ARM_FEATURE_M, /* Microcontroller profile. */
1181 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
1182 ARM_FEATURE_THUMB2EE,
1183 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
1184 ARM_FEATURE_V4T,
1185 ARM_FEATURE_V5,
1186 ARM_FEATURE_STRONGARM,
1187 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1188 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
1189 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1190 ARM_FEATURE_GENERIC_TIMER,
1191 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1192 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1193 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1194 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1195 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1196 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1197 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1198 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1199 ARM_FEATURE_V8,
1200 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1201 ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
1202 ARM_FEATURE_CBAR, /* has cp15 CBAR */
1203 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1204 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1205 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1206 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1207 ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
1208 ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
1209 ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
1210 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1211 ARM_FEATURE_PMU, /* has PMU support */
1212 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1215 static inline int arm_feature(CPUARMState *env, int feature)
1217 return (env->features & (1ULL << feature)) != 0;
1220 #if !defined(CONFIG_USER_ONLY)
1221 /* Return true if exception levels below EL3 are in secure state,
1222 * or would be following an exception return to that level.
1223 * Unlike arm_is_secure() (which is always a question about the
1224 * _current_ state of the CPU) this doesn't care about the current
1225 * EL or mode.
1227 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1229 if (arm_feature(env, ARM_FEATURE_EL3)) {
1230 return !(env->cp15.scr_el3 & SCR_NS);
1231 } else {
1232 /* If EL3 is not supported then the secure state is implementation
1233 * defined, in which case QEMU defaults to non-secure.
1235 return false;
1239 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1240 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1242 if (arm_feature(env, ARM_FEATURE_EL3)) {
1243 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1244 /* CPU currently in AArch64 state and EL3 */
1245 return true;
1246 } else if (!is_a64(env) &&
1247 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1248 /* CPU currently in AArch32 state and monitor mode */
1249 return true;
1252 return false;
1255 /* Return true if the processor is in secure state */
1256 static inline bool arm_is_secure(CPUARMState *env)
1258 if (arm_is_el3_or_mon(env)) {
1259 return true;
1261 return arm_is_secure_below_el3(env);
1264 #else
1265 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1267 return false;
1270 static inline bool arm_is_secure(CPUARMState *env)
1272 return false;
1274 #endif
1276 /* Return true if the specified exception level is running in AArch64 state. */
1277 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1279 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1280 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1282 assert(el >= 1 && el <= 3);
1283 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1285 /* The highest exception level is always at the maximum supported
1286 * register width, and then lower levels have a register width controlled
1287 * by bits in the SCR or HCR registers.
1289 if (el == 3) {
1290 return aa64;
1293 if (arm_feature(env, ARM_FEATURE_EL3)) {
1294 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1297 if (el == 2) {
1298 return aa64;
1301 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1302 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1305 return aa64;
1308 /* Function for determing whether guest cp register reads and writes should
1309 * access the secure or non-secure bank of a cp register. When EL3 is
1310 * operating in AArch32 state, the NS-bit determines whether the secure
1311 * instance of a cp register should be used. When EL3 is AArch64 (or if
1312 * it doesn't exist at all) then there is no register banking, and all
1313 * accesses are to the non-secure version.
1315 static inline bool access_secure_reg(CPUARMState *env)
1317 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1318 !arm_el_is_aa64(env, 3) &&
1319 !(env->cp15.scr_el3 & SCR_NS));
1321 return ret;
1324 /* Macros for accessing a specified CP register bank */
1325 #define A32_BANKED_REG_GET(_env, _regname, _secure) \
1326 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1328 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
1329 do { \
1330 if (_secure) { \
1331 (_env)->cp15._regname##_s = (_val); \
1332 } else { \
1333 (_env)->cp15._regname##_ns = (_val); \
1335 } while (0)
1337 /* Macros for automatically accessing a specific CP register bank depending on
1338 * the current secure state of the system. These macros are not intended for
1339 * supporting instruction translation reads/writes as these are dependent
1340 * solely on the SCR.NS bit and not the mode.
1342 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
1343 A32_BANKED_REG_GET((_env), _regname, \
1344 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1346 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
1347 A32_BANKED_REG_SET((_env), _regname, \
1348 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1349 (_val))
1351 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
1352 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1353 uint32_t cur_el, bool secure);
1355 /* Interface between CPU and Interrupt controller. */
1356 void armv7m_nvic_set_pending(void *opaque, int irq);
1357 int armv7m_nvic_acknowledge_irq(void *opaque);
1358 void armv7m_nvic_complete_irq(void *opaque, int irq);
1360 /* Interface for defining coprocessor registers.
1361 * Registers are defined in tables of arm_cp_reginfo structs
1362 * which are passed to define_arm_cp_regs().
1365 /* When looking up a coprocessor register we look for it
1366 * via an integer which encodes all of:
1367 * coprocessor number
1368 * Crn, Crm, opc1, opc2 fields
1369 * 32 or 64 bit register (ie is it accessed via MRC/MCR
1370 * or via MRRC/MCRR?)
1371 * non-secure/secure bank (AArch32 only)
1372 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1373 * (In this case crn and opc2 should be zero.)
1374 * For AArch64, there is no 32/64 bit size distinction;
1375 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1376 * and 4 bit CRn and CRm. The encoding patterns are chosen
1377 * to be easy to convert to and from the KVM encodings, and also
1378 * so that the hashtable can contain both AArch32 and AArch64
1379 * registers (to allow for interprocessing where we might run
1380 * 32 bit code on a 64 bit core).
1382 /* This bit is private to our hashtable cpreg; in KVM register
1383 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1384 * in the upper bits of the 64 bit ID.
1386 #define CP_REG_AA64_SHIFT 28
1387 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1389 /* To enable banking of coprocessor registers depending on ns-bit we
1390 * add a bit to distinguish between secure and non-secure cpregs in the
1391 * hashtable.
1393 #define CP_REG_NS_SHIFT 29
1394 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1396 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
1397 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
1398 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
1400 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1401 (CP_REG_AA64_MASK | \
1402 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
1403 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
1404 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
1405 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
1406 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
1407 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1409 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
1410 * version used as a key for the coprocessor register hashtable
1412 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1414 uint32_t cpregid = kvmid;
1415 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1416 cpregid |= CP_REG_AA64_MASK;
1417 } else {
1418 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1419 cpregid |= (1 << 15);
1422 /* KVM is always non-secure so add the NS flag on AArch32 register
1423 * entries.
1425 cpregid |= 1 << CP_REG_NS_SHIFT;
1427 return cpregid;
1430 /* Convert a truncated 32 bit hashtable key into the full
1431 * 64 bit KVM register ID.
1433 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1435 uint64_t kvmid;
1437 if (cpregid & CP_REG_AA64_MASK) {
1438 kvmid = cpregid & ~CP_REG_AA64_MASK;
1439 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
1440 } else {
1441 kvmid = cpregid & ~(1 << 15);
1442 if (cpregid & (1 << 15)) {
1443 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1444 } else {
1445 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1448 return kvmid;
1451 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
1452 * special-behaviour cp reg and bits [15..8] indicate what behaviour
1453 * it has. Otherwise it is a simple cp reg, where CONST indicates that
1454 * TCG can assume the value to be constant (ie load at translate time)
1455 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1456 * indicates that the TB should not be ended after a write to this register
1457 * (the default is that the TB ends after cp writes). OVERRIDE permits
1458 * a register definition to override a previous definition for the
1459 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1460 * old must have the OVERRIDE bit set.
1461 * ALIAS indicates that this register is an alias view of some underlying
1462 * state which is also visible via another register, and that the other
1463 * register is handling migration and reset; registers marked ALIAS will not be
1464 * migrated but may have their state set by syncing of register state from KVM.
1465 * NO_RAW indicates that this register has no underlying state and does not
1466 * support raw access for state saving/loading; it will not be used for either
1467 * migration or KVM state synchronization. (Typically this is for "registers"
1468 * which are actually used as instructions for cache maintenance and so on.)
1469 * IO indicates that this register does I/O and therefore its accesses
1470 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1471 * registers which implement clocks or timers require this.
1473 #define ARM_CP_SPECIAL 1
1474 #define ARM_CP_CONST 2
1475 #define ARM_CP_64BIT 4
1476 #define ARM_CP_SUPPRESS_TB_END 8
1477 #define ARM_CP_OVERRIDE 16
1478 #define ARM_CP_ALIAS 32
1479 #define ARM_CP_IO 64
1480 #define ARM_CP_NO_RAW 128
1481 #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
1482 #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
1483 #define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
1484 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
1485 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
1486 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
1487 /* Used only as a terminator for ARMCPRegInfo lists */
1488 #define ARM_CP_SENTINEL 0xffff
1489 /* Mask of only the flag bits in a type field */
1490 #define ARM_CP_FLAG_MASK 0xff
1492 /* Valid values for ARMCPRegInfo state field, indicating which of
1493 * the AArch32 and AArch64 execution states this register is visible in.
1494 * If the reginfo doesn't explicitly specify then it is AArch32 only.
1495 * If the reginfo is declared to be visible in both states then a second
1496 * reginfo is synthesised for the AArch32 view of the AArch64 register,
1497 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1498 * Note that we rely on the values of these enums as we iterate through
1499 * the various states in some places.
1501 enum {
1502 ARM_CP_STATE_AA32 = 0,
1503 ARM_CP_STATE_AA64 = 1,
1504 ARM_CP_STATE_BOTH = 2,
1507 /* ARM CP register secure state flags. These flags identify security state
1508 * attributes for a given CP register entry.
1509 * The existence of both or neither secure and non-secure flags indicates that
1510 * the register has both a secure and non-secure hash entry. A single one of
1511 * these flags causes the register to only be hashed for the specified
1512 * security state.
1513 * Although definitions may have any combination of the S/NS bits, each
1514 * registered entry will only have one to identify whether the entry is secure
1515 * or non-secure.
1517 enum {
1518 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
1519 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
1522 /* Return true if cptype is a valid type field. This is used to try to
1523 * catch errors where the sentinel has been accidentally left off the end
1524 * of a list of registers.
1526 static inline bool cptype_valid(int cptype)
1528 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
1529 || ((cptype & ARM_CP_SPECIAL) &&
1530 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
1533 /* Access rights:
1534 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
1535 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
1536 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
1537 * (ie any of the privileged modes in Secure state, or Monitor mode).
1538 * If a register is accessible in one privilege level it's always accessible
1539 * in higher privilege levels too. Since "Secure PL1" also follows this rule
1540 * (ie anything visible in PL2 is visible in S-PL1, some things are only
1541 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
1542 * terminology a little and call this PL3.
1543 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
1544 * with the ELx exception levels.
1546 * If access permissions for a register are more complex than can be
1547 * described with these bits, then use a laxer set of restrictions, and
1548 * do the more restrictive/complex check inside a helper function.
1550 #define PL3_R 0x80
1551 #define PL3_W 0x40
1552 #define PL2_R (0x20 | PL3_R)
1553 #define PL2_W (0x10 | PL3_W)
1554 #define PL1_R (0x08 | PL2_R)
1555 #define PL1_W (0x04 | PL2_W)
1556 #define PL0_R (0x02 | PL1_R)
1557 #define PL0_W (0x01 | PL1_W)
1559 #define PL3_RW (PL3_R | PL3_W)
1560 #define PL2_RW (PL2_R | PL2_W)
1561 #define PL1_RW (PL1_R | PL1_W)
1562 #define PL0_RW (PL0_R | PL0_W)
1564 /* Return the highest implemented Exception Level */
1565 static inline int arm_highest_el(CPUARMState *env)
1567 if (arm_feature(env, ARM_FEATURE_EL3)) {
1568 return 3;
1570 if (arm_feature(env, ARM_FEATURE_EL2)) {
1571 return 2;
1573 return 1;
1576 /* Return the current Exception Level (as per ARMv8; note that this differs
1577 * from the ARMv7 Privilege Level).
1579 static inline int arm_current_el(CPUARMState *env)
1581 if (arm_feature(env, ARM_FEATURE_M)) {
1582 return !((env->v7m.exception == 0) && (env->v7m.control & 1));
1585 if (is_a64(env)) {
1586 return extract32(env->pstate, 2, 2);
1589 switch (env->uncached_cpsr & 0x1f) {
1590 case ARM_CPU_MODE_USR:
1591 return 0;
1592 case ARM_CPU_MODE_HYP:
1593 return 2;
1594 case ARM_CPU_MODE_MON:
1595 return 3;
1596 default:
1597 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1598 /* If EL3 is 32-bit then all secure privileged modes run in
1599 * EL3
1601 return 3;
1604 return 1;
1608 typedef struct ARMCPRegInfo ARMCPRegInfo;
1610 typedef enum CPAccessResult {
1611 /* Access is permitted */
1612 CP_ACCESS_OK = 0,
1613 /* Access fails due to a configurable trap or enable which would
1614 * result in a categorized exception syndrome giving information about
1615 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
1616 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
1617 * PL1 if in EL0, otherwise to the current EL).
1619 CP_ACCESS_TRAP = 1,
1620 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
1621 * Note that this is not a catch-all case -- the set of cases which may
1622 * result in this failure is specifically defined by the architecture.
1624 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
1625 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
1626 CP_ACCESS_TRAP_EL2 = 3,
1627 CP_ACCESS_TRAP_EL3 = 4,
1628 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
1629 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
1630 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
1631 /* Access fails and results in an exception syndrome for an FP access,
1632 * trapped directly to EL2 or EL3
1634 CP_ACCESS_TRAP_FP_EL2 = 7,
1635 CP_ACCESS_TRAP_FP_EL3 = 8,
1636 } CPAccessResult;
1638 /* Access functions for coprocessor registers. These cannot fail and
1639 * may not raise exceptions.
1641 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1642 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
1643 uint64_t value);
1644 /* Access permission check functions for coprocessor registers. */
1645 typedef CPAccessResult CPAccessFn(CPUARMState *env,
1646 const ARMCPRegInfo *opaque,
1647 bool isread);
1648 /* Hook function for register reset */
1649 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1651 #define CP_ANY 0xff
1653 /* Definition of an ARM coprocessor register */
1654 struct ARMCPRegInfo {
1655 /* Name of register (useful mainly for debugging, need not be unique) */
1656 const char *name;
1657 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
1658 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
1659 * 'wildcard' field -- any value of that field in the MRC/MCR insn
1660 * will be decoded to this register. The register read and write
1661 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
1662 * used by the program, so it is possible to register a wildcard and
1663 * then behave differently on read/write if necessary.
1664 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
1665 * must both be zero.
1666 * For AArch64-visible registers, opc0 is also used.
1667 * Since there are no "coprocessors" in AArch64, cp is purely used as a
1668 * way to distinguish (for KVM's benefit) guest-visible system registers
1669 * from demuxed ones provided to preserve the "no side effects on
1670 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
1671 * visible (to match KVM's encoding); cp==0 will be converted to
1672 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
1674 uint8_t cp;
1675 uint8_t crn;
1676 uint8_t crm;
1677 uint8_t opc0;
1678 uint8_t opc1;
1679 uint8_t opc2;
1680 /* Execution state in which this register is visible: ARM_CP_STATE_* */
1681 int state;
1682 /* Register type: ARM_CP_* bits/values */
1683 int type;
1684 /* Access rights: PL*_[RW] */
1685 int access;
1686 /* Security state: ARM_CP_SECSTATE_* bits/values */
1687 int secure;
1688 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
1689 * this register was defined: can be used to hand data through to the
1690 * register read/write functions, since they are passed the ARMCPRegInfo*.
1692 void *opaque;
1693 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
1694 * fieldoffset is non-zero, the reset value of the register.
1696 uint64_t resetvalue;
1697 /* Offset of the field in CPUARMState for this register.
1699 * This is not needed if either:
1700 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
1701 * 2. both readfn and writefn are specified
1703 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
1705 /* Offsets of the secure and non-secure fields in CPUARMState for the
1706 * register if it is banked. These fields are only used during the static
1707 * registration of a register. During hashing the bank associated
1708 * with a given security state is copied to fieldoffset which is used from
1709 * there on out.
1711 * It is expected that register definitions use either fieldoffset or
1712 * bank_fieldoffsets in the definition but not both. It is also expected
1713 * that both bank offsets are set when defining a banked register. This
1714 * use indicates that a register is banked.
1716 ptrdiff_t bank_fieldoffsets[2];
1718 /* Function for making any access checks for this register in addition to
1719 * those specified by the 'access' permissions bits. If NULL, no extra
1720 * checks required. The access check is performed at runtime, not at
1721 * translate time.
1723 CPAccessFn *accessfn;
1724 /* Function for handling reads of this register. If NULL, then reads
1725 * will be done by loading from the offset into CPUARMState specified
1726 * by fieldoffset.
1728 CPReadFn *readfn;
1729 /* Function for handling writes of this register. If NULL, then writes
1730 * will be done by writing to the offset into CPUARMState specified
1731 * by fieldoffset.
1733 CPWriteFn *writefn;
1734 /* Function for doing a "raw" read; used when we need to copy
1735 * coprocessor state to the kernel for KVM or out for
1736 * migration. This only needs to be provided if there is also a
1737 * readfn and it has side effects (for instance clear-on-read bits).
1739 CPReadFn *raw_readfn;
1740 /* Function for doing a "raw" write; used when we need to copy KVM
1741 * kernel coprocessor state into userspace, or for inbound
1742 * migration. This only needs to be provided if there is also a
1743 * writefn and it masks out "unwritable" bits or has write-one-to-clear
1744 * or similar behaviour.
1746 CPWriteFn *raw_writefn;
1747 /* Function for resetting the register. If NULL, then reset will be done
1748 * by writing resetvalue to the field specified in fieldoffset. If
1749 * fieldoffset is 0 then no reset will be done.
1751 CPResetFn *resetfn;
1754 /* Macros which are lvalues for the field in CPUARMState for the
1755 * ARMCPRegInfo *ri.
1757 #define CPREG_FIELD32(env, ri) \
1758 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
1759 #define CPREG_FIELD64(env, ri) \
1760 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
1762 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
1764 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1765 const ARMCPRegInfo *regs, void *opaque);
1766 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1767 const ARMCPRegInfo *regs, void *opaque);
1768 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
1770 define_arm_cp_regs_with_opaque(cpu, regs, 0);
1772 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
1774 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
1776 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
1778 /* CPWriteFn that can be used to implement writes-ignored behaviour */
1779 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1780 uint64_t value);
1781 /* CPReadFn that can be used for read-as-zero behaviour */
1782 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
1784 /* CPResetFn that does nothing, for use if no reset is required even
1785 * if fieldoffset is non zero.
1787 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
1789 /* Return true if this reginfo struct's field in the cpu state struct
1790 * is 64 bits wide.
1792 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
1794 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
1797 static inline bool cp_access_ok(int current_el,
1798 const ARMCPRegInfo *ri, int isread)
1800 return (ri->access >> ((current_el * 2) + isread)) & 1;
1803 /* Raw read of a coprocessor register (as needed for migration, etc) */
1804 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
1807 * write_list_to_cpustate
1808 * @cpu: ARMCPU
1810 * For each register listed in the ARMCPU cpreg_indexes list, write
1811 * its value from the cpreg_values list into the ARMCPUState structure.
1812 * This updates TCG's working data structures from KVM data or
1813 * from incoming migration state.
1815 * Returns: true if all register values were updated correctly,
1816 * false if some register was unknown or could not be written.
1817 * Note that we do not stop early on failure -- we will attempt
1818 * writing all registers in the list.
1820 bool write_list_to_cpustate(ARMCPU *cpu);
1823 * write_cpustate_to_list:
1824 * @cpu: ARMCPU
1826 * For each register listed in the ARMCPU cpreg_indexes list, write
1827 * its value from the ARMCPUState structure into the cpreg_values list.
1828 * This is used to copy info from TCG's working data structures into
1829 * KVM or for outbound migration.
1831 * Returns: true if all register values were read correctly,
1832 * false if some register was unknown or could not be read.
1833 * Note that we do not stop early on failure -- we will attempt
1834 * reading all registers in the list.
1836 bool write_cpustate_to_list(ARMCPU *cpu);
1838 #define ARM_CPUID_TI915T 0x54029152
1839 #define ARM_CPUID_TI925T 0x54029252
1841 #if defined(CONFIG_USER_ONLY)
1842 #define TARGET_PAGE_BITS 12
1843 #else
1844 /* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
1845 * have to support 1K tiny pages.
1847 #define TARGET_PAGE_BITS_VARY
1848 #define TARGET_PAGE_BITS_MIN 10
1849 #endif
1851 #if defined(TARGET_AARCH64)
1852 # define TARGET_PHYS_ADDR_SPACE_BITS 48
1853 # define TARGET_VIRT_ADDR_SPACE_BITS 64
1854 #else
1855 # define TARGET_PHYS_ADDR_SPACE_BITS 40
1856 # define TARGET_VIRT_ADDR_SPACE_BITS 32
1857 #endif
1859 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
1860 unsigned int target_el)
1862 CPUARMState *env = cs->env_ptr;
1863 unsigned int cur_el = arm_current_el(env);
1864 bool secure = arm_is_secure(env);
1865 bool pstate_unmasked;
1866 int8_t unmasked = 0;
1868 /* Don't take exceptions if they target a lower EL.
1869 * This check should catch any exceptions that would not be taken but left
1870 * pending.
1872 if (cur_el > target_el) {
1873 return false;
1876 switch (excp_idx) {
1877 case EXCP_FIQ:
1878 pstate_unmasked = !(env->daif & PSTATE_F);
1879 break;
1881 case EXCP_IRQ:
1882 pstate_unmasked = !(env->daif & PSTATE_I);
1883 break;
1885 case EXCP_VFIQ:
1886 if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
1887 /* VFIQs are only taken when hypervized and non-secure. */
1888 return false;
1890 return !(env->daif & PSTATE_F);
1891 case EXCP_VIRQ:
1892 if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
1893 /* VIRQs are only taken when hypervized and non-secure. */
1894 return false;
1896 return !(env->daif & PSTATE_I);
1897 default:
1898 g_assert_not_reached();
1901 /* Use the target EL, current execution state and SCR/HCR settings to
1902 * determine whether the corresponding CPSR bit is used to mask the
1903 * interrupt.
1905 if ((target_el > cur_el) && (target_el != 1)) {
1906 /* Exceptions targeting a higher EL may not be maskable */
1907 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
1908 /* 64-bit masking rules are simple: exceptions to EL3
1909 * can't be masked, and exceptions to EL2 can only be
1910 * masked from Secure state. The HCR and SCR settings
1911 * don't affect the masking logic, only the interrupt routing.
1913 if (target_el == 3 || !secure) {
1914 unmasked = 1;
1916 } else {
1917 /* The old 32-bit-only environment has a more complicated
1918 * masking setup. HCR and SCR bits not only affect interrupt
1919 * routing but also change the behaviour of masking.
1921 bool hcr, scr;
1923 switch (excp_idx) {
1924 case EXCP_FIQ:
1925 /* If FIQs are routed to EL3 or EL2 then there are cases where
1926 * we override the CPSR.F in determining if the exception is
1927 * masked or not. If neither of these are set then we fall back
1928 * to the CPSR.F setting otherwise we further assess the state
1929 * below.
1931 hcr = (env->cp15.hcr_el2 & HCR_FMO);
1932 scr = (env->cp15.scr_el3 & SCR_FIQ);
1934 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
1935 * CPSR.F bit masks FIQ interrupts when taken in non-secure
1936 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
1937 * when non-secure but only when FIQs are only routed to EL3.
1939 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
1940 break;
1941 case EXCP_IRQ:
1942 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
1943 * we may override the CPSR.I masking when in non-secure state.
1944 * The SCR.IRQ setting has already been taken into consideration
1945 * when setting the target EL, so it does not have a further
1946 * affect here.
1948 hcr = (env->cp15.hcr_el2 & HCR_IMO);
1949 scr = false;
1950 break;
1951 default:
1952 g_assert_not_reached();
1955 if ((scr || hcr) && !secure) {
1956 unmasked = 1;
1961 /* The PSTATE bits only mask the interrupt if we have not overriden the
1962 * ability above.
1964 return unmasked || pstate_unmasked;
1967 #define cpu_init(cpu_model) CPU(cpu_arm_init(cpu_model))
1969 #define cpu_signal_handler cpu_arm_signal_handler
1970 #define cpu_list arm_cpu_list
1972 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
1974 * If EL3 is 64-bit:
1975 * + NonSecure EL1 & 0 stage 1
1976 * + NonSecure EL1 & 0 stage 2
1977 * + NonSecure EL2
1978 * + Secure EL1 & EL0
1979 * + Secure EL3
1980 * If EL3 is 32-bit:
1981 * + NonSecure PL1 & 0 stage 1
1982 * + NonSecure PL1 & 0 stage 2
1983 * + NonSecure PL2
1984 * + Secure PL0 & PL1
1985 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
1987 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
1988 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
1989 * may differ in access permissions even if the VA->PA map is the same
1990 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
1991 * translation, which means that we have one mmu_idx that deals with two
1992 * concatenated translation regimes [this sort of combined s1+2 TLB is
1993 * architecturally permitted]
1994 * 3. we don't need to allocate an mmu_idx to translations that we won't be
1995 * handling via the TLB. The only way to do a stage 1 translation without
1996 * the immediate stage 2 translation is via the ATS or AT system insns,
1997 * which can be slow-pathed and always do a page table walk.
1998 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
1999 * translation regimes, because they map reasonably well to each other
2000 * and they can't both be active at the same time.
2001 * This gives us the following list of mmu_idx values:
2003 * NS EL0 (aka NS PL0) stage 1+2
2004 * NS EL1 (aka NS PL1) stage 1+2
2005 * NS EL2 (aka NS PL2)
2006 * S EL3 (aka S PL1)
2007 * S EL0 (aka S PL0)
2008 * S EL1 (not used if EL3 is 32 bit)
2009 * NS EL0+1 stage 2
2011 * (The last of these is an mmu_idx because we want to be able to use the TLB
2012 * for the accesses done as part of a stage 1 page table walk, rather than
2013 * having to walk the stage 2 page table over and over.)
2015 * Our enumeration includes at the end some entries which are not "true"
2016 * mmu_idx values in that they don't have corresponding TLBs and are only
2017 * valid for doing slow path page table walks.
2019 * The constant names here are patterned after the general style of the names
2020 * of the AT/ATS operations.
2021 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2023 typedef enum ARMMMUIdx {
2024 ARMMMUIdx_S12NSE0 = 0,
2025 ARMMMUIdx_S12NSE1 = 1,
2026 ARMMMUIdx_S1E2 = 2,
2027 ARMMMUIdx_S1E3 = 3,
2028 ARMMMUIdx_S1SE0 = 4,
2029 ARMMMUIdx_S1SE1 = 5,
2030 ARMMMUIdx_S2NS = 6,
2031 /* Indexes below here don't have TLBs and are used only for AT system
2032 * instructions or for the first stage of an S12 page table walk.
2034 ARMMMUIdx_S1NSE0 = 7,
2035 ARMMMUIdx_S1NSE1 = 8,
2036 } ARMMMUIdx;
2038 #define MMU_USER_IDX 0
2040 /* Return the exception level we're running at if this is our mmu_idx */
2041 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2043 assert(mmu_idx < ARMMMUIdx_S2NS);
2044 return mmu_idx & 3;
2047 /* Determine the current mmu_idx to use for normal loads/stores */
2048 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
2050 int el = arm_current_el(env);
2052 if (el < 2 && arm_is_secure_below_el3(env)) {
2053 return ARMMMUIdx_S1SE0 + el;
2055 return el;
2058 /* Indexes used when registering address spaces with cpu_address_space_init */
2059 typedef enum ARMASIdx {
2060 ARMASIdx_NS = 0,
2061 ARMASIdx_S = 1,
2062 } ARMASIdx;
2064 /* Return the Exception Level targeted by debug exceptions. */
2065 static inline int arm_debug_target_el(CPUARMState *env)
2067 bool secure = arm_is_secure(env);
2068 bool route_to_el2 = false;
2070 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2071 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2072 env->cp15.mdcr_el2 & (1 << 8);
2075 if (route_to_el2) {
2076 return 2;
2077 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2078 !arm_el_is_aa64(env, 3) && secure) {
2079 return 3;
2080 } else {
2081 return 1;
2085 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2087 if (arm_is_secure(env)) {
2088 /* MDCR_EL3.SDD disables debug events from Secure state */
2089 if (extract32(env->cp15.mdcr_el3, 16, 1) != 0
2090 || arm_current_el(env) == 3) {
2091 return false;
2095 if (arm_current_el(env) == arm_debug_target_el(env)) {
2096 if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
2097 || (env->daif & PSTATE_D)) {
2098 return false;
2101 return true;
2104 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2106 int el = arm_current_el(env);
2108 if (el == 0 && arm_el_is_aa64(env, 1)) {
2109 return aa64_generate_debug_exceptions(env);
2112 if (arm_is_secure(env)) {
2113 int spd;
2115 if (el == 0 && (env->cp15.sder & 1)) {
2116 /* SDER.SUIDEN means debug exceptions from Secure EL0
2117 * are always enabled. Otherwise they are controlled by
2118 * SDCR.SPD like those from other Secure ELs.
2120 return true;
2123 spd = extract32(env->cp15.mdcr_el3, 14, 2);
2124 switch (spd) {
2125 case 1:
2126 /* SPD == 0b01 is reserved, but behaves as 0b00. */
2127 case 0:
2128 /* For 0b00 we return true if external secure invasive debug
2129 * is enabled. On real hardware this is controlled by external
2130 * signals to the core. QEMU always permits debug, and behaves
2131 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2133 return true;
2134 case 2:
2135 return false;
2136 case 3:
2137 return true;
2141 return el != 2;
2144 /* Return true if debugging exceptions are currently enabled.
2145 * This corresponds to what in ARM ARM pseudocode would be
2146 * if UsingAArch32() then
2147 * return AArch32.GenerateDebugExceptions()
2148 * else
2149 * return AArch64.GenerateDebugExceptions()
2150 * We choose to push the if() down into this function for clarity,
2151 * since the pseudocode has it at all callsites except for the one in
2152 * CheckSoftwareStep(), where it is elided because both branches would
2153 * always return the same value.
2155 * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
2156 * don't yet implement those exception levels or their associated trap bits.
2158 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
2160 if (env->aarch64) {
2161 return aa64_generate_debug_exceptions(env);
2162 } else {
2163 return aa32_generate_debug_exceptions(env);
2167 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
2168 * implicitly means this always returns false in pre-v8 CPUs.)
2170 static inline bool arm_singlestep_active(CPUARMState *env)
2172 return extract32(env->cp15.mdscr_el1, 0, 1)
2173 && arm_el_is_aa64(env, arm_debug_target_el(env))
2174 && arm_generate_debug_exceptions(env);
2177 static inline bool arm_sctlr_b(CPUARMState *env)
2179 return
2180 /* We need not implement SCTLR.ITD in user-mode emulation, so
2181 * let linux-user ignore the fact that it conflicts with SCTLR_B.
2182 * This lets people run BE32 binaries with "-cpu any".
2184 #ifndef CONFIG_USER_ONLY
2185 !arm_feature(env, ARM_FEATURE_V7) &&
2186 #endif
2187 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2190 /* Return true if the processor is in big-endian mode. */
2191 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2193 int cur_el;
2195 /* In 32bit endianness is determined by looking at CPSR's E bit */
2196 if (!is_a64(env)) {
2197 return
2198 #ifdef CONFIG_USER_ONLY
2199 /* In system mode, BE32 is modelled in line with the
2200 * architecture (as word-invariant big-endianness), where loads
2201 * and stores are done little endian but from addresses which
2202 * are adjusted by XORing with the appropriate constant. So the
2203 * endianness to use for the raw data access is not affected by
2204 * SCTLR.B.
2205 * In user mode, however, we model BE32 as byte-invariant
2206 * big-endianness (because user-only code cannot tell the
2207 * difference), and so we need to use a data access endianness
2208 * that depends on SCTLR.B.
2210 arm_sctlr_b(env) ||
2211 #endif
2212 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
2215 cur_el = arm_current_el(env);
2217 if (cur_el == 0) {
2218 return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
2221 return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
2224 #include "exec/cpu-all.h"
2226 /* Bit usage in the TB flags field: bit 31 indicates whether we are
2227 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
2228 * We put flags which are shared between 32 and 64 bit mode at the top
2229 * of the word, and flags which apply to only one mode at the bottom.
2231 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
2232 #define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
2233 #define ARM_TBFLAG_MMUIDX_SHIFT 28
2234 #define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
2235 #define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
2236 #define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
2237 #define ARM_TBFLAG_PSTATE_SS_SHIFT 26
2238 #define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
2239 /* Target EL if we take a floating-point-disabled exception */
2240 #define ARM_TBFLAG_FPEXC_EL_SHIFT 24
2241 #define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
2243 /* Bit usage when in AArch32 state: */
2244 #define ARM_TBFLAG_THUMB_SHIFT 0
2245 #define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
2246 #define ARM_TBFLAG_VECLEN_SHIFT 1
2247 #define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
2248 #define ARM_TBFLAG_VECSTRIDE_SHIFT 4
2249 #define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
2250 #define ARM_TBFLAG_VFPEN_SHIFT 7
2251 #define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
2252 #define ARM_TBFLAG_CONDEXEC_SHIFT 8
2253 #define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
2254 #define ARM_TBFLAG_SCTLR_B_SHIFT 16
2255 #define ARM_TBFLAG_SCTLR_B_MASK (1 << ARM_TBFLAG_SCTLR_B_SHIFT)
2256 /* We store the bottom two bits of the CPAR as TB flags and handle
2257 * checks on the other bits at runtime
2259 #define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
2260 #define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2261 /* Indicates whether cp register reads and writes by guest code should access
2262 * the secure or nonsecure bank of banked registers; note that this is not
2263 * the same thing as the current security state of the processor!
2265 #define ARM_TBFLAG_NS_SHIFT 19
2266 #define ARM_TBFLAG_NS_MASK (1 << ARM_TBFLAG_NS_SHIFT)
2267 #define ARM_TBFLAG_BE_DATA_SHIFT 20
2268 #define ARM_TBFLAG_BE_DATA_MASK (1 << ARM_TBFLAG_BE_DATA_SHIFT)
2270 /* Bit usage when in AArch64 state */
2271 #define ARM_TBFLAG_TBI0_SHIFT 0 /* TBI0 for EL0/1 or TBI for EL2/3 */
2272 #define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT)
2273 #define ARM_TBFLAG_TBI1_SHIFT 1 /* TBI1 for EL0/1 */
2274 #define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT)
2276 /* some convenience accessor macros */
2277 #define ARM_TBFLAG_AARCH64_STATE(F) \
2278 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
2279 #define ARM_TBFLAG_MMUIDX(F) \
2280 (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
2281 #define ARM_TBFLAG_SS_ACTIVE(F) \
2282 (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
2283 #define ARM_TBFLAG_PSTATE_SS(F) \
2284 (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
2285 #define ARM_TBFLAG_FPEXC_EL(F) \
2286 (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
2287 #define ARM_TBFLAG_THUMB(F) \
2288 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
2289 #define ARM_TBFLAG_VECLEN(F) \
2290 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
2291 #define ARM_TBFLAG_VECSTRIDE(F) \
2292 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
2293 #define ARM_TBFLAG_VFPEN(F) \
2294 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
2295 #define ARM_TBFLAG_CONDEXEC(F) \
2296 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
2297 #define ARM_TBFLAG_SCTLR_B(F) \
2298 (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT)
2299 #define ARM_TBFLAG_XSCALE_CPAR(F) \
2300 (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2301 #define ARM_TBFLAG_NS(F) \
2302 (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
2303 #define ARM_TBFLAG_BE_DATA(F) \
2304 (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT)
2305 #define ARM_TBFLAG_TBI0(F) \
2306 (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT)
2307 #define ARM_TBFLAG_TBI1(F) \
2308 (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT)
2310 static inline bool bswap_code(bool sctlr_b)
2312 #ifdef CONFIG_USER_ONLY
2313 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
2314 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
2315 * would also end up as a mixed-endian mode with BE code, LE data.
2317 return
2318 #ifdef TARGET_WORDS_BIGENDIAN
2320 #endif
2321 sctlr_b;
2322 #else
2323 /* All code access in ARM is little endian, and there are no loaders
2324 * doing swaps that need to be reversed
2326 return 0;
2327 #endif
2330 /* Return the exception level to which FP-disabled exceptions should
2331 * be taken, or 0 if FP is enabled.
2333 static inline int fp_exception_el(CPUARMState *env)
2335 int fpen;
2336 int cur_el = arm_current_el(env);
2338 /* CPACR and the CPTR registers don't exist before v6, so FP is
2339 * always accessible
2341 if (!arm_feature(env, ARM_FEATURE_V6)) {
2342 return 0;
2345 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
2346 * 0, 2 : trap EL0 and EL1/PL1 accesses
2347 * 1 : trap only EL0 accesses
2348 * 3 : trap no accesses
2350 fpen = extract32(env->cp15.cpacr_el1, 20, 2);
2351 switch (fpen) {
2352 case 0:
2353 case 2:
2354 if (cur_el == 0 || cur_el == 1) {
2355 /* Trap to PL1, which might be EL1 or EL3 */
2356 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2357 return 3;
2359 return 1;
2361 if (cur_el == 3 && !is_a64(env)) {
2362 /* Secure PL1 running at EL3 */
2363 return 3;
2365 break;
2366 case 1:
2367 if (cur_el == 0) {
2368 return 1;
2370 break;
2371 case 3:
2372 break;
2375 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
2376 * check because zero bits in the registers mean "don't trap".
2379 /* CPTR_EL2 : present in v7VE or v8 */
2380 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
2381 && !arm_is_secure_below_el3(env)) {
2382 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
2383 return 2;
2386 /* CPTR_EL3 : present in v8 */
2387 if (extract32(env->cp15.cptr_el[3], 10, 1)) {
2388 /* Trap all FP ops to EL3 */
2389 return 3;
2392 return 0;
2395 #ifdef CONFIG_USER_ONLY
2396 static inline bool arm_cpu_bswap_data(CPUARMState *env)
2398 return
2399 #ifdef TARGET_WORDS_BIGENDIAN
2401 #endif
2402 arm_cpu_data_is_big_endian(env);
2404 #endif
2406 #ifndef CONFIG_USER_ONLY
2408 * arm_regime_tbi0:
2409 * @env: CPUARMState
2410 * @mmu_idx: MMU index indicating required translation regime
2412 * Extracts the TBI0 value from the appropriate TCR for the current EL
2414 * Returns: the TBI0 value.
2416 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx);
2419 * arm_regime_tbi1:
2420 * @env: CPUARMState
2421 * @mmu_idx: MMU index indicating required translation regime
2423 * Extracts the TBI1 value from the appropriate TCR for the current EL
2425 * Returns: the TBI1 value.
2427 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx);
2428 #else
2429 /* We can't handle tagged addresses properly in user-only mode */
2430 static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
2432 return 0;
2435 static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
2437 return 0;
2439 #endif
2441 static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
2442 target_ulong *cs_base, uint32_t *flags)
2444 ARMMMUIdx mmu_idx = cpu_mmu_index(env, false);
2445 if (is_a64(env)) {
2446 *pc = env->pc;
2447 *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
2448 /* Get control bits for tagged addresses */
2449 *flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT);
2450 *flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT);
2451 } else {
2452 *pc = env->regs[15];
2453 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
2454 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
2455 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
2456 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
2457 | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT);
2458 if (!(access_secure_reg(env))) {
2459 *flags |= ARM_TBFLAG_NS_MASK;
2461 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
2462 || arm_el_is_aa64(env, 1)) {
2463 *flags |= ARM_TBFLAG_VFPEN_MASK;
2465 *flags |= (extract32(env->cp15.c15_cpar, 0, 2)
2466 << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
2469 *flags |= (mmu_idx << ARM_TBFLAG_MMUIDX_SHIFT);
2471 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
2472 * states defined in the ARM ARM for software singlestep:
2473 * SS_ACTIVE PSTATE.SS State
2474 * 0 x Inactive (the TB flag for SS is always 0)
2475 * 1 0 Active-pending
2476 * 1 1 Active-not-pending
2478 if (arm_singlestep_active(env)) {
2479 *flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
2480 if (is_a64(env)) {
2481 if (env->pstate & PSTATE_SS) {
2482 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
2484 } else {
2485 if (env->uncached_cpsr & PSTATE_SS) {
2486 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
2490 if (arm_cpu_data_is_big_endian(env)) {
2491 *flags |= ARM_TBFLAG_BE_DATA_MASK;
2493 *flags |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT;
2495 *cs_base = 0;
2498 enum {
2499 QEMU_PSCI_CONDUIT_DISABLED = 0,
2500 QEMU_PSCI_CONDUIT_SMC = 1,
2501 QEMU_PSCI_CONDUIT_HVC = 2,
2504 #ifndef CONFIG_USER_ONLY
2505 /* Return the address space index to use for a memory access */
2506 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
2508 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
2511 /* Return the AddressSpace to use for a memory access
2512 * (which depends on whether the access is S or NS, and whether
2513 * the board gave us a separate AddressSpace for S accesses).
2515 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
2517 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
2519 #endif
2522 * arm_register_el_change_hook:
2523 * Register a hook function which will be called back whenever this
2524 * CPU changes exception level or mode. The hook function will be
2525 * passed a pointer to the ARMCPU and the opaque data pointer passed
2526 * to this function when the hook was registered.
2528 * Note that we currently only support registering a single hook function,
2529 * and will assert if this function is called twice.
2530 * This facility is intended for the use of the GICv3 emulation.
2532 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook,
2533 void *opaque);
2536 * arm_get_el_change_hook_opaque:
2537 * Return the opaque data that will be used by the el_change_hook
2538 * for this CPU.
2540 static inline void *arm_get_el_change_hook_opaque(ARMCPU *cpu)
2542 return cpu->el_change_hook_opaque;
2545 #endif