block/iscsi: handle zero events from iscsi_which_events
[qemu/kevin.git] / exec.c
blob874ecfc2c6fa3cb0185ea4188ebcc9b509026680
1 /*
2 * Virtual page mapping
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #ifndef _WIN32
21 #include <sys/types.h>
22 #include <sys/mman.h>
23 #endif
25 #include "qemu-common.h"
26 #include "cpu.h"
27 #include "tcg.h"
28 #include "hw/hw.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #endif
32 #include "hw/qdev.h"
33 #include "qemu/osdep.h"
34 #include "sysemu/kvm.h"
35 #include "sysemu/sysemu.h"
36 #include "hw/xen/xen.h"
37 #include "qemu/timer.h"
38 #include "qemu/config-file.h"
39 #include "qemu/error-report.h"
40 #include "exec/memory.h"
41 #include "sysemu/dma.h"
42 #include "exec/address-spaces.h"
43 #if defined(CONFIG_USER_ONLY)
44 #include <qemu.h>
45 #else /* !CONFIG_USER_ONLY */
46 #include "sysemu/xen-mapcache.h"
47 #include "trace.h"
48 #endif
49 #include "exec/cpu-all.h"
50 #include "qemu/rcu_queue.h"
51 #include "exec/cputlb.h"
52 #include "translate-all.h"
54 #include "exec/memory-internal.h"
55 #include "exec/ram_addr.h"
57 #include "qemu/range.h"
59 //#define DEBUG_SUBPAGE
61 #if !defined(CONFIG_USER_ONLY)
62 static bool in_migration;
64 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
65 * are protected by the ramlist lock.
67 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
69 static MemoryRegion *system_memory;
70 static MemoryRegion *system_io;
72 AddressSpace address_space_io;
73 AddressSpace address_space_memory;
75 MemoryRegion io_mem_rom, io_mem_notdirty;
76 static MemoryRegion io_mem_unassigned;
78 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
79 #define RAM_PREALLOC (1 << 0)
81 /* RAM is mmap-ed with MAP_SHARED */
82 #define RAM_SHARED (1 << 1)
84 /* Only a portion of RAM (used_length) is actually used, and migrated.
85 * This used_length size can change across reboots.
87 #define RAM_RESIZEABLE (1 << 2)
89 #endif
91 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
92 /* current CPU in the current thread. It is only valid inside
93 cpu_exec() */
94 DEFINE_TLS(CPUState *, current_cpu);
95 /* 0 = Do not count executed instructions.
96 1 = Precise instruction counting.
97 2 = Adaptive rate instruction counting. */
98 int use_icount;
100 #if !defined(CONFIG_USER_ONLY)
102 typedef struct PhysPageEntry PhysPageEntry;
104 struct PhysPageEntry {
105 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
106 uint32_t skip : 6;
107 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
108 uint32_t ptr : 26;
111 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
113 /* Size of the L2 (and L3, etc) page tables. */
114 #define ADDR_SPACE_BITS 64
116 #define P_L2_BITS 9
117 #define P_L2_SIZE (1 << P_L2_BITS)
119 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
121 typedef PhysPageEntry Node[P_L2_SIZE];
123 typedef struct PhysPageMap {
124 struct rcu_head rcu;
126 unsigned sections_nb;
127 unsigned sections_nb_alloc;
128 unsigned nodes_nb;
129 unsigned nodes_nb_alloc;
130 Node *nodes;
131 MemoryRegionSection *sections;
132 } PhysPageMap;
134 struct AddressSpaceDispatch {
135 struct rcu_head rcu;
137 /* This is a multi-level map on the physical address space.
138 * The bottom level has pointers to MemoryRegionSections.
140 PhysPageEntry phys_map;
141 PhysPageMap map;
142 AddressSpace *as;
145 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
146 typedef struct subpage_t {
147 MemoryRegion iomem;
148 AddressSpace *as;
149 hwaddr base;
150 uint16_t sub_section[TARGET_PAGE_SIZE];
151 } subpage_t;
153 #define PHYS_SECTION_UNASSIGNED 0
154 #define PHYS_SECTION_NOTDIRTY 1
155 #define PHYS_SECTION_ROM 2
156 #define PHYS_SECTION_WATCH 3
158 static void io_mem_init(void);
159 static void memory_map_init(void);
160 static void tcg_commit(MemoryListener *listener);
162 static MemoryRegion io_mem_watch;
163 #endif
165 #if !defined(CONFIG_USER_ONLY)
167 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
169 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
170 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc * 2, 16);
171 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
172 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
176 static uint32_t phys_map_node_alloc(PhysPageMap *map)
178 unsigned i;
179 uint32_t ret;
181 ret = map->nodes_nb++;
182 assert(ret != PHYS_MAP_NODE_NIL);
183 assert(ret != map->nodes_nb_alloc);
184 for (i = 0; i < P_L2_SIZE; ++i) {
185 map->nodes[ret][i].skip = 1;
186 map->nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
188 return ret;
191 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
192 hwaddr *index, hwaddr *nb, uint16_t leaf,
193 int level)
195 PhysPageEntry *p;
196 int i;
197 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
199 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
200 lp->ptr = phys_map_node_alloc(map);
201 p = map->nodes[lp->ptr];
202 if (level == 0) {
203 for (i = 0; i < P_L2_SIZE; i++) {
204 p[i].skip = 0;
205 p[i].ptr = PHYS_SECTION_UNASSIGNED;
208 } else {
209 p = map->nodes[lp->ptr];
211 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
213 while (*nb && lp < &p[P_L2_SIZE]) {
214 if ((*index & (step - 1)) == 0 && *nb >= step) {
215 lp->skip = 0;
216 lp->ptr = leaf;
217 *index += step;
218 *nb -= step;
219 } else {
220 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
222 ++lp;
226 static void phys_page_set(AddressSpaceDispatch *d,
227 hwaddr index, hwaddr nb,
228 uint16_t leaf)
230 /* Wildly overreserve - it doesn't matter much. */
231 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
233 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
236 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
237 * and update our entry so we can skip it and go directly to the destination.
239 static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted)
241 unsigned valid_ptr = P_L2_SIZE;
242 int valid = 0;
243 PhysPageEntry *p;
244 int i;
246 if (lp->ptr == PHYS_MAP_NODE_NIL) {
247 return;
250 p = nodes[lp->ptr];
251 for (i = 0; i < P_L2_SIZE; i++) {
252 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
253 continue;
256 valid_ptr = i;
257 valid++;
258 if (p[i].skip) {
259 phys_page_compact(&p[i], nodes, compacted);
263 /* We can only compress if there's only one child. */
264 if (valid != 1) {
265 return;
268 assert(valid_ptr < P_L2_SIZE);
270 /* Don't compress if it won't fit in the # of bits we have. */
271 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
272 return;
275 lp->ptr = p[valid_ptr].ptr;
276 if (!p[valid_ptr].skip) {
277 /* If our only child is a leaf, make this a leaf. */
278 /* By design, we should have made this node a leaf to begin with so we
279 * should never reach here.
280 * But since it's so simple to handle this, let's do it just in case we
281 * change this rule.
283 lp->skip = 0;
284 } else {
285 lp->skip += p[valid_ptr].skip;
289 static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
291 DECLARE_BITMAP(compacted, nodes_nb);
293 if (d->phys_map.skip) {
294 phys_page_compact(&d->phys_map, d->map.nodes, compacted);
298 static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
299 Node *nodes, MemoryRegionSection *sections)
301 PhysPageEntry *p;
302 hwaddr index = addr >> TARGET_PAGE_BITS;
303 int i;
305 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
306 if (lp.ptr == PHYS_MAP_NODE_NIL) {
307 return &sections[PHYS_SECTION_UNASSIGNED];
309 p = nodes[lp.ptr];
310 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
313 if (sections[lp.ptr].size.hi ||
314 range_covers_byte(sections[lp.ptr].offset_within_address_space,
315 sections[lp.ptr].size.lo, addr)) {
316 return &sections[lp.ptr];
317 } else {
318 return &sections[PHYS_SECTION_UNASSIGNED];
322 bool memory_region_is_unassigned(MemoryRegion *mr)
324 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
325 && mr != &io_mem_watch;
328 /* Called from RCU critical section */
329 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
330 hwaddr addr,
331 bool resolve_subpage)
333 MemoryRegionSection *section;
334 subpage_t *subpage;
336 section = phys_page_find(d->phys_map, addr, d->map.nodes, d->map.sections);
337 if (resolve_subpage && section->mr->subpage) {
338 subpage = container_of(section->mr, subpage_t, iomem);
339 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
341 return section;
344 /* Called from RCU critical section */
345 static MemoryRegionSection *
346 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
347 hwaddr *plen, bool resolve_subpage)
349 MemoryRegionSection *section;
350 Int128 diff;
352 section = address_space_lookup_region(d, addr, resolve_subpage);
353 /* Compute offset within MemoryRegionSection */
354 addr -= section->offset_within_address_space;
356 /* Compute offset within MemoryRegion */
357 *xlat = addr + section->offset_within_region;
359 diff = int128_sub(section->mr->size, int128_make64(addr));
360 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
361 return section;
364 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
366 if (memory_region_is_ram(mr)) {
367 return !(is_write && mr->readonly);
369 if (memory_region_is_romd(mr)) {
370 return !is_write;
373 return false;
376 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
377 hwaddr *xlat, hwaddr *plen,
378 bool is_write)
380 IOMMUTLBEntry iotlb;
381 MemoryRegionSection *section;
382 MemoryRegion *mr;
383 hwaddr len = *plen;
385 rcu_read_lock();
386 for (;;) {
387 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
388 section = address_space_translate_internal(d, addr, &addr, plen, true);
389 mr = section->mr;
391 if (!mr->iommu_ops) {
392 break;
395 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
396 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
397 | (addr & iotlb.addr_mask));
398 len = MIN(len, (addr | iotlb.addr_mask) - addr + 1);
399 if (!(iotlb.perm & (1 << is_write))) {
400 mr = &io_mem_unassigned;
401 break;
404 as = iotlb.target_as;
407 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
408 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
409 len = MIN(page, len);
412 *plen = len;
413 *xlat = addr;
414 rcu_read_unlock();
415 return mr;
418 /* Called from RCU critical section */
419 MemoryRegionSection *
420 address_space_translate_for_iotlb(CPUState *cpu, hwaddr addr,
421 hwaddr *xlat, hwaddr *plen)
423 MemoryRegionSection *section;
424 section = address_space_translate_internal(cpu->memory_dispatch,
425 addr, xlat, plen, false);
427 assert(!section->mr->iommu_ops);
428 return section;
430 #endif
432 void cpu_exec_init_all(void)
434 #if !defined(CONFIG_USER_ONLY)
435 qemu_mutex_init(&ram_list.mutex);
436 memory_map_init();
437 io_mem_init();
438 #endif
441 #if !defined(CONFIG_USER_ONLY)
443 static int cpu_common_post_load(void *opaque, int version_id)
445 CPUState *cpu = opaque;
447 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
448 version_id is increased. */
449 cpu->interrupt_request &= ~0x01;
450 tlb_flush(cpu, 1);
452 return 0;
455 static int cpu_common_pre_load(void *opaque)
457 CPUState *cpu = opaque;
459 cpu->exception_index = -1;
461 return 0;
464 static bool cpu_common_exception_index_needed(void *opaque)
466 CPUState *cpu = opaque;
468 return tcg_enabled() && cpu->exception_index != -1;
471 static const VMStateDescription vmstate_cpu_common_exception_index = {
472 .name = "cpu_common/exception_index",
473 .version_id = 1,
474 .minimum_version_id = 1,
475 .fields = (VMStateField[]) {
476 VMSTATE_INT32(exception_index, CPUState),
477 VMSTATE_END_OF_LIST()
481 const VMStateDescription vmstate_cpu_common = {
482 .name = "cpu_common",
483 .version_id = 1,
484 .minimum_version_id = 1,
485 .pre_load = cpu_common_pre_load,
486 .post_load = cpu_common_post_load,
487 .fields = (VMStateField[]) {
488 VMSTATE_UINT32(halted, CPUState),
489 VMSTATE_UINT32(interrupt_request, CPUState),
490 VMSTATE_END_OF_LIST()
492 .subsections = (VMStateSubsection[]) {
494 .vmsd = &vmstate_cpu_common_exception_index,
495 .needed = cpu_common_exception_index_needed,
496 } , {
497 /* empty */
502 #endif
504 CPUState *qemu_get_cpu(int index)
506 CPUState *cpu;
508 CPU_FOREACH(cpu) {
509 if (cpu->cpu_index == index) {
510 return cpu;
514 return NULL;
517 #if !defined(CONFIG_USER_ONLY)
518 void tcg_cpu_address_space_init(CPUState *cpu, AddressSpace *as)
520 /* We only support one address space per cpu at the moment. */
521 assert(cpu->as == as);
523 if (cpu->tcg_as_listener) {
524 memory_listener_unregister(cpu->tcg_as_listener);
525 } else {
526 cpu->tcg_as_listener = g_new0(MemoryListener, 1);
528 cpu->tcg_as_listener->commit = tcg_commit;
529 memory_listener_register(cpu->tcg_as_listener, as);
531 #endif
533 void cpu_exec_init(CPUArchState *env)
535 CPUState *cpu = ENV_GET_CPU(env);
536 CPUClass *cc = CPU_GET_CLASS(cpu);
537 CPUState *some_cpu;
538 int cpu_index;
540 #if defined(CONFIG_USER_ONLY)
541 cpu_list_lock();
542 #endif
543 cpu_index = 0;
544 CPU_FOREACH(some_cpu) {
545 cpu_index++;
547 cpu->cpu_index = cpu_index;
548 cpu->numa_node = 0;
549 QTAILQ_INIT(&cpu->breakpoints);
550 QTAILQ_INIT(&cpu->watchpoints);
551 #ifndef CONFIG_USER_ONLY
552 cpu->as = &address_space_memory;
553 cpu->thread_id = qemu_get_thread_id();
554 cpu_reload_memory_map(cpu);
555 #endif
556 QTAILQ_INSERT_TAIL(&cpus, cpu, node);
557 #if defined(CONFIG_USER_ONLY)
558 cpu_list_unlock();
559 #endif
560 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
561 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
563 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
564 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
565 cpu_save, cpu_load, env);
566 assert(cc->vmsd == NULL);
567 assert(qdev_get_vmsd(DEVICE(cpu)) == NULL);
568 #endif
569 if (cc->vmsd != NULL) {
570 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
574 #if defined(CONFIG_USER_ONLY)
575 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
577 tb_invalidate_phys_page_range(pc, pc + 1, 0);
579 #else
580 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
582 hwaddr phys = cpu_get_phys_page_debug(cpu, pc);
583 if (phys != -1) {
584 tb_invalidate_phys_addr(cpu->as,
585 phys | (pc & ~TARGET_PAGE_MASK));
588 #endif
590 #if defined(CONFIG_USER_ONLY)
591 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
596 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
597 int flags)
599 return -ENOSYS;
602 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
606 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
607 int flags, CPUWatchpoint **watchpoint)
609 return -ENOSYS;
611 #else
612 /* Add a watchpoint. */
613 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
614 int flags, CPUWatchpoint **watchpoint)
616 CPUWatchpoint *wp;
618 /* forbid ranges which are empty or run off the end of the address space */
619 if (len == 0 || (addr + len - 1) < addr) {
620 error_report("tried to set invalid watchpoint at %"
621 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
622 return -EINVAL;
624 wp = g_malloc(sizeof(*wp));
626 wp->vaddr = addr;
627 wp->len = len;
628 wp->flags = flags;
630 /* keep all GDB-injected watchpoints in front */
631 if (flags & BP_GDB) {
632 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
633 } else {
634 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
637 tlb_flush_page(cpu, addr);
639 if (watchpoint)
640 *watchpoint = wp;
641 return 0;
644 /* Remove a specific watchpoint. */
645 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
646 int flags)
648 CPUWatchpoint *wp;
650 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
651 if (addr == wp->vaddr && len == wp->len
652 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
653 cpu_watchpoint_remove_by_ref(cpu, wp);
654 return 0;
657 return -ENOENT;
660 /* Remove a specific watchpoint by reference. */
661 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
663 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
665 tlb_flush_page(cpu, watchpoint->vaddr);
667 g_free(watchpoint);
670 /* Remove all matching watchpoints. */
671 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
673 CPUWatchpoint *wp, *next;
675 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
676 if (wp->flags & mask) {
677 cpu_watchpoint_remove_by_ref(cpu, wp);
682 /* Return true if this watchpoint address matches the specified
683 * access (ie the address range covered by the watchpoint overlaps
684 * partially or completely with the address range covered by the
685 * access).
687 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
688 vaddr addr,
689 vaddr len)
691 /* We know the lengths are non-zero, but a little caution is
692 * required to avoid errors in the case where the range ends
693 * exactly at the top of the address space and so addr + len
694 * wraps round to zero.
696 vaddr wpend = wp->vaddr + wp->len - 1;
697 vaddr addrend = addr + len - 1;
699 return !(addr > wpend || wp->vaddr > addrend);
702 #endif
704 /* Add a breakpoint. */
705 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
706 CPUBreakpoint **breakpoint)
708 CPUBreakpoint *bp;
710 bp = g_malloc(sizeof(*bp));
712 bp->pc = pc;
713 bp->flags = flags;
715 /* keep all GDB-injected breakpoints in front */
716 if (flags & BP_GDB) {
717 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
718 } else {
719 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
722 breakpoint_invalidate(cpu, pc);
724 if (breakpoint) {
725 *breakpoint = bp;
727 return 0;
730 /* Remove a specific breakpoint. */
731 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
733 CPUBreakpoint *bp;
735 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
736 if (bp->pc == pc && bp->flags == flags) {
737 cpu_breakpoint_remove_by_ref(cpu, bp);
738 return 0;
741 return -ENOENT;
744 /* Remove a specific breakpoint by reference. */
745 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
747 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
749 breakpoint_invalidate(cpu, breakpoint->pc);
751 g_free(breakpoint);
754 /* Remove all matching breakpoints. */
755 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
757 CPUBreakpoint *bp, *next;
759 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
760 if (bp->flags & mask) {
761 cpu_breakpoint_remove_by_ref(cpu, bp);
766 /* enable or disable single step mode. EXCP_DEBUG is returned by the
767 CPU loop after each instruction */
768 void cpu_single_step(CPUState *cpu, int enabled)
770 if (cpu->singlestep_enabled != enabled) {
771 cpu->singlestep_enabled = enabled;
772 if (kvm_enabled()) {
773 kvm_update_guest_debug(cpu, 0);
774 } else {
775 /* must flush all the translated code to avoid inconsistencies */
776 /* XXX: only flush what is necessary */
777 CPUArchState *env = cpu->env_ptr;
778 tb_flush(env);
783 void cpu_abort(CPUState *cpu, const char *fmt, ...)
785 va_list ap;
786 va_list ap2;
788 va_start(ap, fmt);
789 va_copy(ap2, ap);
790 fprintf(stderr, "qemu: fatal: ");
791 vfprintf(stderr, fmt, ap);
792 fprintf(stderr, "\n");
793 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
794 if (qemu_log_enabled()) {
795 qemu_log("qemu: fatal: ");
796 qemu_log_vprintf(fmt, ap2);
797 qemu_log("\n");
798 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
799 qemu_log_flush();
800 qemu_log_close();
802 va_end(ap2);
803 va_end(ap);
804 #if defined(CONFIG_USER_ONLY)
806 struct sigaction act;
807 sigfillset(&act.sa_mask);
808 act.sa_handler = SIG_DFL;
809 sigaction(SIGABRT, &act, NULL);
811 #endif
812 abort();
815 #if !defined(CONFIG_USER_ONLY)
816 /* Called from RCU critical section */
817 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
819 RAMBlock *block;
821 block = atomic_rcu_read(&ram_list.mru_block);
822 if (block && addr - block->offset < block->max_length) {
823 goto found;
825 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
826 if (addr - block->offset < block->max_length) {
827 goto found;
831 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
832 abort();
834 found:
835 /* It is safe to write mru_block outside the iothread lock. This
836 * is what happens:
838 * mru_block = xxx
839 * rcu_read_unlock()
840 * xxx removed from list
841 * rcu_read_lock()
842 * read mru_block
843 * mru_block = NULL;
844 * call_rcu(reclaim_ramblock, xxx);
845 * rcu_read_unlock()
847 * atomic_rcu_set is not needed here. The block was already published
848 * when it was placed into the list. Here we're just making an extra
849 * copy of the pointer.
851 ram_list.mru_block = block;
852 return block;
855 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
857 ram_addr_t start1;
858 RAMBlock *block;
859 ram_addr_t end;
861 end = TARGET_PAGE_ALIGN(start + length);
862 start &= TARGET_PAGE_MASK;
864 rcu_read_lock();
865 block = qemu_get_ram_block(start);
866 assert(block == qemu_get_ram_block(end - 1));
867 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
868 cpu_tlb_reset_dirty_all(start1, length);
869 rcu_read_unlock();
872 /* Note: start and end must be within the same ram block. */
873 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t length,
874 unsigned client)
876 if (length == 0)
877 return;
878 cpu_physical_memory_clear_dirty_range_type(start, length, client);
880 if (tcg_enabled()) {
881 tlb_reset_dirty_range_all(start, length);
885 static void cpu_physical_memory_set_dirty_tracking(bool enable)
887 in_migration = enable;
890 /* Called from RCU critical section */
891 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
892 MemoryRegionSection *section,
893 target_ulong vaddr,
894 hwaddr paddr, hwaddr xlat,
895 int prot,
896 target_ulong *address)
898 hwaddr iotlb;
899 CPUWatchpoint *wp;
901 if (memory_region_is_ram(section->mr)) {
902 /* Normal RAM. */
903 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
904 + xlat;
905 if (!section->readonly) {
906 iotlb |= PHYS_SECTION_NOTDIRTY;
907 } else {
908 iotlb |= PHYS_SECTION_ROM;
910 } else {
911 iotlb = section - section->address_space->dispatch->map.sections;
912 iotlb += xlat;
915 /* Make accesses to pages with watchpoints go via the
916 watchpoint trap routines. */
917 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
918 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
919 /* Avoid trapping reads of pages with a write breakpoint. */
920 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
921 iotlb = PHYS_SECTION_WATCH + paddr;
922 *address |= TLB_MMIO;
923 break;
928 return iotlb;
930 #endif /* defined(CONFIG_USER_ONLY) */
932 #if !defined(CONFIG_USER_ONLY)
934 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
935 uint16_t section);
936 static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
938 static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
939 qemu_anon_ram_alloc;
942 * Set a custom physical guest memory alloator.
943 * Accelerators with unusual needs may need this. Hopefully, we can
944 * get rid of it eventually.
946 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
948 phys_mem_alloc = alloc;
951 static uint16_t phys_section_add(PhysPageMap *map,
952 MemoryRegionSection *section)
954 /* The physical section number is ORed with a page-aligned
955 * pointer to produce the iotlb entries. Thus it should
956 * never overflow into the page-aligned value.
958 assert(map->sections_nb < TARGET_PAGE_SIZE);
960 if (map->sections_nb == map->sections_nb_alloc) {
961 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
962 map->sections = g_renew(MemoryRegionSection, map->sections,
963 map->sections_nb_alloc);
965 map->sections[map->sections_nb] = *section;
966 memory_region_ref(section->mr);
967 return map->sections_nb++;
970 static void phys_section_destroy(MemoryRegion *mr)
972 memory_region_unref(mr);
974 if (mr->subpage) {
975 subpage_t *subpage = container_of(mr, subpage_t, iomem);
976 object_unref(OBJECT(&subpage->iomem));
977 g_free(subpage);
981 static void phys_sections_free(PhysPageMap *map)
983 while (map->sections_nb > 0) {
984 MemoryRegionSection *section = &map->sections[--map->sections_nb];
985 phys_section_destroy(section->mr);
987 g_free(map->sections);
988 g_free(map->nodes);
991 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
993 subpage_t *subpage;
994 hwaddr base = section->offset_within_address_space
995 & TARGET_PAGE_MASK;
996 MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
997 d->map.nodes, d->map.sections);
998 MemoryRegionSection subsection = {
999 .offset_within_address_space = base,
1000 .size = int128_make64(TARGET_PAGE_SIZE),
1002 hwaddr start, end;
1004 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1006 if (!(existing->mr->subpage)) {
1007 subpage = subpage_init(d->as, base);
1008 subsection.address_space = d->as;
1009 subsection.mr = &subpage->iomem;
1010 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1011 phys_section_add(&d->map, &subsection));
1012 } else {
1013 subpage = container_of(existing->mr, subpage_t, iomem);
1015 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1016 end = start + int128_get64(section->size) - 1;
1017 subpage_register(subpage, start, end,
1018 phys_section_add(&d->map, section));
1022 static void register_multipage(AddressSpaceDispatch *d,
1023 MemoryRegionSection *section)
1025 hwaddr start_addr = section->offset_within_address_space;
1026 uint16_t section_index = phys_section_add(&d->map, section);
1027 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1028 TARGET_PAGE_BITS));
1030 assert(num_pages);
1031 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1034 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
1036 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1037 AddressSpaceDispatch *d = as->next_dispatch;
1038 MemoryRegionSection now = *section, remain = *section;
1039 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1041 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1042 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1043 - now.offset_within_address_space;
1045 now.size = int128_min(int128_make64(left), now.size);
1046 register_subpage(d, &now);
1047 } else {
1048 now.size = int128_zero();
1050 while (int128_ne(remain.size, now.size)) {
1051 remain.size = int128_sub(remain.size, now.size);
1052 remain.offset_within_address_space += int128_get64(now.size);
1053 remain.offset_within_region += int128_get64(now.size);
1054 now = remain;
1055 if (int128_lt(remain.size, page_size)) {
1056 register_subpage(d, &now);
1057 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1058 now.size = page_size;
1059 register_subpage(d, &now);
1060 } else {
1061 now.size = int128_and(now.size, int128_neg(page_size));
1062 register_multipage(d, &now);
1067 void qemu_flush_coalesced_mmio_buffer(void)
1069 if (kvm_enabled())
1070 kvm_flush_coalesced_mmio_buffer();
1073 void qemu_mutex_lock_ramlist(void)
1075 qemu_mutex_lock(&ram_list.mutex);
1078 void qemu_mutex_unlock_ramlist(void)
1080 qemu_mutex_unlock(&ram_list.mutex);
1083 #ifdef __linux__
1085 #include <sys/vfs.h>
1087 #define HUGETLBFS_MAGIC 0x958458f6
1089 static long gethugepagesize(const char *path, Error **errp)
1091 struct statfs fs;
1092 int ret;
1094 do {
1095 ret = statfs(path, &fs);
1096 } while (ret != 0 && errno == EINTR);
1098 if (ret != 0) {
1099 error_setg_errno(errp, errno, "failed to get page size of file %s",
1100 path);
1101 return 0;
1104 if (fs.f_type != HUGETLBFS_MAGIC)
1105 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
1107 return fs.f_bsize;
1110 static void *file_ram_alloc(RAMBlock *block,
1111 ram_addr_t memory,
1112 const char *path,
1113 Error **errp)
1115 char *filename;
1116 char *sanitized_name;
1117 char *c;
1118 void *area = NULL;
1119 int fd;
1120 uint64_t hpagesize;
1121 Error *local_err = NULL;
1123 hpagesize = gethugepagesize(path, &local_err);
1124 if (local_err) {
1125 error_propagate(errp, local_err);
1126 goto error;
1128 block->mr->align = hpagesize;
1130 if (memory < hpagesize) {
1131 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1132 "or larger than huge page size 0x%" PRIx64,
1133 memory, hpagesize);
1134 goto error;
1137 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1138 error_setg(errp,
1139 "host lacks kvm mmu notifiers, -mem-path unsupported");
1140 goto error;
1143 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1144 sanitized_name = g_strdup(memory_region_name(block->mr));
1145 for (c = sanitized_name; *c != '\0'; c++) {
1146 if (*c == '/')
1147 *c = '_';
1150 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1151 sanitized_name);
1152 g_free(sanitized_name);
1154 fd = mkstemp(filename);
1155 if (fd < 0) {
1156 error_setg_errno(errp, errno,
1157 "unable to create backing store for hugepages");
1158 g_free(filename);
1159 goto error;
1161 unlink(filename);
1162 g_free(filename);
1164 memory = (memory+hpagesize-1) & ~(hpagesize-1);
1167 * ftruncate is not supported by hugetlbfs in older
1168 * hosts, so don't bother bailing out on errors.
1169 * If anything goes wrong with it under other filesystems,
1170 * mmap will fail.
1172 if (ftruncate(fd, memory)) {
1173 perror("ftruncate");
1176 area = mmap(0, memory, PROT_READ | PROT_WRITE,
1177 (block->flags & RAM_SHARED ? MAP_SHARED : MAP_PRIVATE),
1178 fd, 0);
1179 if (area == MAP_FAILED) {
1180 error_setg_errno(errp, errno,
1181 "unable to map backing store for hugepages");
1182 close(fd);
1183 goto error;
1186 if (mem_prealloc) {
1187 os_mem_prealloc(fd, area, memory);
1190 block->fd = fd;
1191 return area;
1193 error:
1194 if (mem_prealloc) {
1195 error_report("%s", error_get_pretty(*errp));
1196 exit(1);
1198 return NULL;
1200 #endif
1202 /* Called with the ramlist lock held. */
1203 static ram_addr_t find_ram_offset(ram_addr_t size)
1205 RAMBlock *block, *next_block;
1206 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1208 assert(size != 0); /* it would hand out same offset multiple times */
1210 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1211 return 0;
1214 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1215 ram_addr_t end, next = RAM_ADDR_MAX;
1217 end = block->offset + block->max_length;
1219 QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) {
1220 if (next_block->offset >= end) {
1221 next = MIN(next, next_block->offset);
1224 if (next - end >= size && next - end < mingap) {
1225 offset = end;
1226 mingap = next - end;
1230 if (offset == RAM_ADDR_MAX) {
1231 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1232 (uint64_t)size);
1233 abort();
1236 return offset;
1239 ram_addr_t last_ram_offset(void)
1241 RAMBlock *block;
1242 ram_addr_t last = 0;
1244 rcu_read_lock();
1245 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1246 last = MAX(last, block->offset + block->max_length);
1248 rcu_read_unlock();
1249 return last;
1252 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1254 int ret;
1256 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1257 if (!machine_dump_guest_core(current_machine)) {
1258 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1259 if (ret) {
1260 perror("qemu_madvise");
1261 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1262 "but dump_guest_core=off specified\n");
1267 /* Called within an RCU critical section, or while the ramlist lock
1268 * is held.
1270 static RAMBlock *find_ram_block(ram_addr_t addr)
1272 RAMBlock *block;
1274 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1275 if (block->offset == addr) {
1276 return block;
1280 return NULL;
1283 /* Called with iothread lock held. */
1284 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1286 RAMBlock *new_block, *block;
1288 rcu_read_lock();
1289 new_block = find_ram_block(addr);
1290 assert(new_block);
1291 assert(!new_block->idstr[0]);
1293 if (dev) {
1294 char *id = qdev_get_dev_path(dev);
1295 if (id) {
1296 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1297 g_free(id);
1300 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1302 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1303 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
1304 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1305 new_block->idstr);
1306 abort();
1309 rcu_read_unlock();
1312 /* Called with iothread lock held. */
1313 void qemu_ram_unset_idstr(ram_addr_t addr)
1315 RAMBlock *block;
1317 /* FIXME: arch_init.c assumes that this is not called throughout
1318 * migration. Ignore the problem since hot-unplug during migration
1319 * does not work anyway.
1322 rcu_read_lock();
1323 block = find_ram_block(addr);
1324 if (block) {
1325 memset(block->idstr, 0, sizeof(block->idstr));
1327 rcu_read_unlock();
1330 static int memory_try_enable_merging(void *addr, size_t len)
1332 if (!machine_mem_merge(current_machine)) {
1333 /* disabled by the user */
1334 return 0;
1337 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1340 /* Only legal before guest might have detected the memory size: e.g. on
1341 * incoming migration, or right after reset.
1343 * As memory core doesn't know how is memory accessed, it is up to
1344 * resize callback to update device state and/or add assertions to detect
1345 * misuse, if necessary.
1347 int qemu_ram_resize(ram_addr_t base, ram_addr_t newsize, Error **errp)
1349 RAMBlock *block = find_ram_block(base);
1351 assert(block);
1353 newsize = TARGET_PAGE_ALIGN(newsize);
1355 if (block->used_length == newsize) {
1356 return 0;
1359 if (!(block->flags & RAM_RESIZEABLE)) {
1360 error_setg_errno(errp, EINVAL,
1361 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1362 " in != 0x" RAM_ADDR_FMT, block->idstr,
1363 newsize, block->used_length);
1364 return -EINVAL;
1367 if (block->max_length < newsize) {
1368 error_setg_errno(errp, EINVAL,
1369 "Length too large: %s: 0x" RAM_ADDR_FMT
1370 " > 0x" RAM_ADDR_FMT, block->idstr,
1371 newsize, block->max_length);
1372 return -EINVAL;
1375 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1376 block->used_length = newsize;
1377 cpu_physical_memory_set_dirty_range(block->offset, block->used_length);
1378 memory_region_set_size(block->mr, newsize);
1379 if (block->resized) {
1380 block->resized(block->idstr, newsize, block->host);
1382 return 0;
1385 static ram_addr_t ram_block_add(RAMBlock *new_block, Error **errp)
1387 RAMBlock *block;
1388 RAMBlock *last_block = NULL;
1389 ram_addr_t old_ram_size, new_ram_size;
1391 old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
1393 qemu_mutex_lock_ramlist();
1394 new_block->offset = find_ram_offset(new_block->max_length);
1396 if (!new_block->host) {
1397 if (xen_enabled()) {
1398 xen_ram_alloc(new_block->offset, new_block->max_length,
1399 new_block->mr);
1400 } else {
1401 new_block->host = phys_mem_alloc(new_block->max_length,
1402 &new_block->mr->align);
1403 if (!new_block->host) {
1404 error_setg_errno(errp, errno,
1405 "cannot set up guest memory '%s'",
1406 memory_region_name(new_block->mr));
1407 qemu_mutex_unlock_ramlist();
1408 return -1;
1410 memory_try_enable_merging(new_block->host, new_block->max_length);
1414 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1415 * QLIST (which has an RCU-friendly variant) does not have insertion at
1416 * tail, so save the last element in last_block.
1418 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1419 last_block = block;
1420 if (block->max_length < new_block->max_length) {
1421 break;
1424 if (block) {
1425 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1426 } else if (last_block) {
1427 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1428 } else { /* list is empty */
1429 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1431 ram_list.mru_block = NULL;
1433 /* Write list before version */
1434 smp_wmb();
1435 ram_list.version++;
1436 qemu_mutex_unlock_ramlist();
1438 new_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
1440 if (new_ram_size > old_ram_size) {
1441 int i;
1443 /* ram_list.dirty_memory[] is protected by the iothread lock. */
1444 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1445 ram_list.dirty_memory[i] =
1446 bitmap_zero_extend(ram_list.dirty_memory[i],
1447 old_ram_size, new_ram_size);
1450 cpu_physical_memory_set_dirty_range(new_block->offset,
1451 new_block->used_length);
1453 if (new_block->host) {
1454 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1455 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1456 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
1457 if (kvm_enabled()) {
1458 kvm_setup_guest_memory(new_block->host, new_block->max_length);
1462 return new_block->offset;
1465 #ifdef __linux__
1466 ram_addr_t qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1467 bool share, const char *mem_path,
1468 Error **errp)
1470 RAMBlock *new_block;
1471 ram_addr_t addr;
1472 Error *local_err = NULL;
1474 if (xen_enabled()) {
1475 error_setg(errp, "-mem-path not supported with Xen");
1476 return -1;
1479 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1481 * file_ram_alloc() needs to allocate just like
1482 * phys_mem_alloc, but we haven't bothered to provide
1483 * a hook there.
1485 error_setg(errp,
1486 "-mem-path not supported with this accelerator");
1487 return -1;
1490 size = TARGET_PAGE_ALIGN(size);
1491 new_block = g_malloc0(sizeof(*new_block));
1492 new_block->mr = mr;
1493 new_block->used_length = size;
1494 new_block->max_length = size;
1495 new_block->flags = share ? RAM_SHARED : 0;
1496 new_block->host = file_ram_alloc(new_block, size,
1497 mem_path, errp);
1498 if (!new_block->host) {
1499 g_free(new_block);
1500 return -1;
1503 addr = ram_block_add(new_block, &local_err);
1504 if (local_err) {
1505 g_free(new_block);
1506 error_propagate(errp, local_err);
1507 return -1;
1509 return addr;
1511 #endif
1513 static
1514 ram_addr_t qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
1515 void (*resized)(const char*,
1516 uint64_t length,
1517 void *host),
1518 void *host, bool resizeable,
1519 MemoryRegion *mr, Error **errp)
1521 RAMBlock *new_block;
1522 ram_addr_t addr;
1523 Error *local_err = NULL;
1525 size = TARGET_PAGE_ALIGN(size);
1526 max_size = TARGET_PAGE_ALIGN(max_size);
1527 new_block = g_malloc0(sizeof(*new_block));
1528 new_block->mr = mr;
1529 new_block->resized = resized;
1530 new_block->used_length = size;
1531 new_block->max_length = max_size;
1532 assert(max_size >= size);
1533 new_block->fd = -1;
1534 new_block->host = host;
1535 if (host) {
1536 new_block->flags |= RAM_PREALLOC;
1538 if (resizeable) {
1539 new_block->flags |= RAM_RESIZEABLE;
1541 addr = ram_block_add(new_block, &local_err);
1542 if (local_err) {
1543 g_free(new_block);
1544 error_propagate(errp, local_err);
1545 return -1;
1547 return addr;
1550 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1551 MemoryRegion *mr, Error **errp)
1553 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
1556 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
1558 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
1561 ram_addr_t qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
1562 void (*resized)(const char*,
1563 uint64_t length,
1564 void *host),
1565 MemoryRegion *mr, Error **errp)
1567 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
1570 void qemu_ram_free_from_ptr(ram_addr_t addr)
1572 RAMBlock *block;
1574 qemu_mutex_lock_ramlist();
1575 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1576 if (addr == block->offset) {
1577 QLIST_REMOVE_RCU(block, next);
1578 ram_list.mru_block = NULL;
1579 /* Write list before version */
1580 smp_wmb();
1581 ram_list.version++;
1582 g_free_rcu(block, rcu);
1583 break;
1586 qemu_mutex_unlock_ramlist();
1589 static void reclaim_ramblock(RAMBlock *block)
1591 if (block->flags & RAM_PREALLOC) {
1593 } else if (xen_enabled()) {
1594 xen_invalidate_map_cache_entry(block->host);
1595 #ifndef _WIN32
1596 } else if (block->fd >= 0) {
1597 munmap(block->host, block->max_length);
1598 close(block->fd);
1599 #endif
1600 } else {
1601 qemu_anon_ram_free(block->host, block->max_length);
1603 g_free(block);
1606 void qemu_ram_free(ram_addr_t addr)
1608 RAMBlock *block;
1610 qemu_mutex_lock_ramlist();
1611 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1612 if (addr == block->offset) {
1613 QLIST_REMOVE_RCU(block, next);
1614 ram_list.mru_block = NULL;
1615 /* Write list before version */
1616 smp_wmb();
1617 ram_list.version++;
1618 call_rcu(block, reclaim_ramblock, rcu);
1619 break;
1622 qemu_mutex_unlock_ramlist();
1625 #ifndef _WIN32
1626 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1628 RAMBlock *block;
1629 ram_addr_t offset;
1630 int flags;
1631 void *area, *vaddr;
1633 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1634 offset = addr - block->offset;
1635 if (offset < block->max_length) {
1636 vaddr = ramblock_ptr(block, offset);
1637 if (block->flags & RAM_PREALLOC) {
1639 } else if (xen_enabled()) {
1640 abort();
1641 } else {
1642 flags = MAP_FIXED;
1643 if (block->fd >= 0) {
1644 flags |= (block->flags & RAM_SHARED ?
1645 MAP_SHARED : MAP_PRIVATE);
1646 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1647 flags, block->fd, offset);
1648 } else {
1650 * Remap needs to match alloc. Accelerators that
1651 * set phys_mem_alloc never remap. If they did,
1652 * we'd need a remap hook here.
1654 assert(phys_mem_alloc == qemu_anon_ram_alloc);
1656 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1657 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1658 flags, -1, 0);
1660 if (area != vaddr) {
1661 fprintf(stderr, "Could not remap addr: "
1662 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1663 length, addr);
1664 exit(1);
1666 memory_try_enable_merging(vaddr, length);
1667 qemu_ram_setup_dump(vaddr, length);
1672 #endif /* !_WIN32 */
1674 int qemu_get_ram_fd(ram_addr_t addr)
1676 RAMBlock *block;
1677 int fd;
1679 rcu_read_lock();
1680 block = qemu_get_ram_block(addr);
1681 fd = block->fd;
1682 rcu_read_unlock();
1683 return fd;
1686 void *qemu_get_ram_block_host_ptr(ram_addr_t addr)
1688 RAMBlock *block;
1689 void *ptr;
1691 rcu_read_lock();
1692 block = qemu_get_ram_block(addr);
1693 ptr = ramblock_ptr(block, 0);
1694 rcu_read_unlock();
1695 return ptr;
1698 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1699 * This should not be used for general purpose DMA. Use address_space_map
1700 * or address_space_rw instead. For local memory (e.g. video ram) that the
1701 * device owns, use memory_region_get_ram_ptr.
1703 * By the time this function returns, the returned pointer is not protected
1704 * by RCU anymore. If the caller is not within an RCU critical section and
1705 * does not hold the iothread lock, it must have other means of protecting the
1706 * pointer, such as a reference to the region that includes the incoming
1707 * ram_addr_t.
1709 void *qemu_get_ram_ptr(ram_addr_t addr)
1711 RAMBlock *block;
1712 void *ptr;
1714 rcu_read_lock();
1715 block = qemu_get_ram_block(addr);
1717 if (xen_enabled() && block->host == NULL) {
1718 /* We need to check if the requested address is in the RAM
1719 * because we don't want to map the entire memory in QEMU.
1720 * In that case just map until the end of the page.
1722 if (block->offset == 0) {
1723 ptr = xen_map_cache(addr, 0, 0);
1724 goto unlock;
1727 block->host = xen_map_cache(block->offset, block->max_length, 1);
1729 ptr = ramblock_ptr(block, addr - block->offset);
1731 unlock:
1732 rcu_read_unlock();
1733 return ptr;
1736 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1737 * but takes a size argument.
1739 * By the time this function returns, the returned pointer is not protected
1740 * by RCU anymore. If the caller is not within an RCU critical section and
1741 * does not hold the iothread lock, it must have other means of protecting the
1742 * pointer, such as a reference to the region that includes the incoming
1743 * ram_addr_t.
1745 static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size)
1747 void *ptr;
1748 if (*size == 0) {
1749 return NULL;
1751 if (xen_enabled()) {
1752 return xen_map_cache(addr, *size, 1);
1753 } else {
1754 RAMBlock *block;
1755 rcu_read_lock();
1756 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1757 if (addr - block->offset < block->max_length) {
1758 if (addr - block->offset + *size > block->max_length)
1759 *size = block->max_length - addr + block->offset;
1760 ptr = ramblock_ptr(block, addr - block->offset);
1761 rcu_read_unlock();
1762 return ptr;
1766 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1767 abort();
1771 /* Some of the softmmu routines need to translate from a host pointer
1772 * (typically a TLB entry) back to a ram offset.
1774 * By the time this function returns, the returned pointer is not protected
1775 * by RCU anymore. If the caller is not within an RCU critical section and
1776 * does not hold the iothread lock, it must have other means of protecting the
1777 * pointer, such as a reference to the region that includes the incoming
1778 * ram_addr_t.
1780 MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
1782 RAMBlock *block;
1783 uint8_t *host = ptr;
1784 MemoryRegion *mr;
1786 if (xen_enabled()) {
1787 rcu_read_lock();
1788 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1789 mr = qemu_get_ram_block(*ram_addr)->mr;
1790 rcu_read_unlock();
1791 return mr;
1794 rcu_read_lock();
1795 block = atomic_rcu_read(&ram_list.mru_block);
1796 if (block && block->host && host - block->host < block->max_length) {
1797 goto found;
1800 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1801 /* This case append when the block is not mapped. */
1802 if (block->host == NULL) {
1803 continue;
1805 if (host - block->host < block->max_length) {
1806 goto found;
1810 rcu_read_unlock();
1811 return NULL;
1813 found:
1814 *ram_addr = block->offset + (host - block->host);
1815 mr = block->mr;
1816 rcu_read_unlock();
1817 return mr;
1820 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
1821 uint64_t val, unsigned size)
1823 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
1824 tb_invalidate_phys_page_fast(ram_addr, size);
1826 switch (size) {
1827 case 1:
1828 stb_p(qemu_get_ram_ptr(ram_addr), val);
1829 break;
1830 case 2:
1831 stw_p(qemu_get_ram_ptr(ram_addr), val);
1832 break;
1833 case 4:
1834 stl_p(qemu_get_ram_ptr(ram_addr), val);
1835 break;
1836 default:
1837 abort();
1839 cpu_physical_memory_set_dirty_range_nocode(ram_addr, size);
1840 /* we remove the notdirty callback only if the code has been
1841 flushed */
1842 if (!cpu_physical_memory_is_clean(ram_addr)) {
1843 CPUArchState *env = current_cpu->env_ptr;
1844 tlb_set_dirty(env, current_cpu->mem_io_vaddr);
1848 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1849 unsigned size, bool is_write)
1851 return is_write;
1854 static const MemoryRegionOps notdirty_mem_ops = {
1855 .write = notdirty_mem_write,
1856 .valid.accepts = notdirty_mem_accepts,
1857 .endianness = DEVICE_NATIVE_ENDIAN,
1860 /* Generate a debug exception if a watchpoint has been hit. */
1861 static void check_watchpoint(int offset, int len, int flags)
1863 CPUState *cpu = current_cpu;
1864 CPUArchState *env = cpu->env_ptr;
1865 target_ulong pc, cs_base;
1866 target_ulong vaddr;
1867 CPUWatchpoint *wp;
1868 int cpu_flags;
1870 if (cpu->watchpoint_hit) {
1871 /* We re-entered the check after replacing the TB. Now raise
1872 * the debug interrupt so that is will trigger after the
1873 * current instruction. */
1874 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
1875 return;
1877 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
1878 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1879 if (cpu_watchpoint_address_matches(wp, vaddr, len)
1880 && (wp->flags & flags)) {
1881 if (flags == BP_MEM_READ) {
1882 wp->flags |= BP_WATCHPOINT_HIT_READ;
1883 } else {
1884 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
1886 wp->hitaddr = vaddr;
1887 if (!cpu->watchpoint_hit) {
1888 cpu->watchpoint_hit = wp;
1889 tb_check_watchpoint(cpu);
1890 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
1891 cpu->exception_index = EXCP_DEBUG;
1892 cpu_loop_exit(cpu);
1893 } else {
1894 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
1895 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
1896 cpu_resume_from_signal(cpu, NULL);
1899 } else {
1900 wp->flags &= ~BP_WATCHPOINT_HIT;
1905 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1906 so these check for a hit then pass through to the normal out-of-line
1907 phys routines. */
1908 static uint64_t watch_mem_read(void *opaque, hwaddr addr,
1909 unsigned size)
1911 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, BP_MEM_READ);
1912 switch (size) {
1913 case 1: return ldub_phys(&address_space_memory, addr);
1914 case 2: return lduw_phys(&address_space_memory, addr);
1915 case 4: return ldl_phys(&address_space_memory, addr);
1916 default: abort();
1920 static void watch_mem_write(void *opaque, hwaddr addr,
1921 uint64_t val, unsigned size)
1923 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, BP_MEM_WRITE);
1924 switch (size) {
1925 case 1:
1926 stb_phys(&address_space_memory, addr, val);
1927 break;
1928 case 2:
1929 stw_phys(&address_space_memory, addr, val);
1930 break;
1931 case 4:
1932 stl_phys(&address_space_memory, addr, val);
1933 break;
1934 default: abort();
1938 static const MemoryRegionOps watch_mem_ops = {
1939 .read = watch_mem_read,
1940 .write = watch_mem_write,
1941 .endianness = DEVICE_NATIVE_ENDIAN,
1944 static uint64_t subpage_read(void *opaque, hwaddr addr,
1945 unsigned len)
1947 subpage_t *subpage = opaque;
1948 uint8_t buf[8];
1950 #if defined(DEBUG_SUBPAGE)
1951 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
1952 subpage, len, addr);
1953 #endif
1954 address_space_read(subpage->as, addr + subpage->base, buf, len);
1955 switch (len) {
1956 case 1:
1957 return ldub_p(buf);
1958 case 2:
1959 return lduw_p(buf);
1960 case 4:
1961 return ldl_p(buf);
1962 case 8:
1963 return ldq_p(buf);
1964 default:
1965 abort();
1969 static void subpage_write(void *opaque, hwaddr addr,
1970 uint64_t value, unsigned len)
1972 subpage_t *subpage = opaque;
1973 uint8_t buf[8];
1975 #if defined(DEBUG_SUBPAGE)
1976 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
1977 " value %"PRIx64"\n",
1978 __func__, subpage, len, addr, value);
1979 #endif
1980 switch (len) {
1981 case 1:
1982 stb_p(buf, value);
1983 break;
1984 case 2:
1985 stw_p(buf, value);
1986 break;
1987 case 4:
1988 stl_p(buf, value);
1989 break;
1990 case 8:
1991 stq_p(buf, value);
1992 break;
1993 default:
1994 abort();
1996 address_space_write(subpage->as, addr + subpage->base, buf, len);
1999 static bool subpage_accepts(void *opaque, hwaddr addr,
2000 unsigned len, bool is_write)
2002 subpage_t *subpage = opaque;
2003 #if defined(DEBUG_SUBPAGE)
2004 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2005 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2006 #endif
2008 return address_space_access_valid(subpage->as, addr + subpage->base,
2009 len, is_write);
2012 static const MemoryRegionOps subpage_ops = {
2013 .read = subpage_read,
2014 .write = subpage_write,
2015 .impl.min_access_size = 1,
2016 .impl.max_access_size = 8,
2017 .valid.min_access_size = 1,
2018 .valid.max_access_size = 8,
2019 .valid.accepts = subpage_accepts,
2020 .endianness = DEVICE_NATIVE_ENDIAN,
2023 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2024 uint16_t section)
2026 int idx, eidx;
2028 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2029 return -1;
2030 idx = SUBPAGE_IDX(start);
2031 eidx = SUBPAGE_IDX(end);
2032 #if defined(DEBUG_SUBPAGE)
2033 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2034 __func__, mmio, start, end, idx, eidx, section);
2035 #endif
2036 for (; idx <= eidx; idx++) {
2037 mmio->sub_section[idx] = section;
2040 return 0;
2043 static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
2045 subpage_t *mmio;
2047 mmio = g_malloc0(sizeof(subpage_t));
2049 mmio->as = as;
2050 mmio->base = base;
2051 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2052 NULL, TARGET_PAGE_SIZE);
2053 mmio->iomem.subpage = true;
2054 #if defined(DEBUG_SUBPAGE)
2055 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2056 mmio, base, TARGET_PAGE_SIZE);
2057 #endif
2058 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2060 return mmio;
2063 static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as,
2064 MemoryRegion *mr)
2066 assert(as);
2067 MemoryRegionSection section = {
2068 .address_space = as,
2069 .mr = mr,
2070 .offset_within_address_space = 0,
2071 .offset_within_region = 0,
2072 .size = int128_2_64(),
2075 return phys_section_add(map, &section);
2078 MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index)
2080 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->memory_dispatch);
2081 MemoryRegionSection *sections = d->map.sections;
2083 return sections[index & ~TARGET_PAGE_MASK].mr;
2086 static void io_mem_init(void)
2088 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2089 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2090 NULL, UINT64_MAX);
2091 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
2092 NULL, UINT64_MAX);
2093 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
2094 NULL, UINT64_MAX);
2097 static void mem_begin(MemoryListener *listener)
2099 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
2100 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2101 uint16_t n;
2103 n = dummy_section(&d->map, as, &io_mem_unassigned);
2104 assert(n == PHYS_SECTION_UNASSIGNED);
2105 n = dummy_section(&d->map, as, &io_mem_notdirty);
2106 assert(n == PHYS_SECTION_NOTDIRTY);
2107 n = dummy_section(&d->map, as, &io_mem_rom);
2108 assert(n == PHYS_SECTION_ROM);
2109 n = dummy_section(&d->map, as, &io_mem_watch);
2110 assert(n == PHYS_SECTION_WATCH);
2112 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2113 d->as = as;
2114 as->next_dispatch = d;
2117 static void address_space_dispatch_free(AddressSpaceDispatch *d)
2119 phys_sections_free(&d->map);
2120 g_free(d);
2123 static void mem_commit(MemoryListener *listener)
2125 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
2126 AddressSpaceDispatch *cur = as->dispatch;
2127 AddressSpaceDispatch *next = as->next_dispatch;
2129 phys_page_compact_all(next, next->map.nodes_nb);
2131 atomic_rcu_set(&as->dispatch, next);
2132 if (cur) {
2133 call_rcu(cur, address_space_dispatch_free, rcu);
2137 static void tcg_commit(MemoryListener *listener)
2139 CPUState *cpu;
2141 /* since each CPU stores ram addresses in its TLB cache, we must
2142 reset the modified entries */
2143 /* XXX: slow ! */
2144 CPU_FOREACH(cpu) {
2145 /* FIXME: Disentangle the cpu.h circular files deps so we can
2146 directly get the right CPU from listener. */
2147 if (cpu->tcg_as_listener != listener) {
2148 continue;
2150 cpu_reload_memory_map(cpu);
2154 static void core_log_global_start(MemoryListener *listener)
2156 cpu_physical_memory_set_dirty_tracking(true);
2159 static void core_log_global_stop(MemoryListener *listener)
2161 cpu_physical_memory_set_dirty_tracking(false);
2164 static MemoryListener core_memory_listener = {
2165 .log_global_start = core_log_global_start,
2166 .log_global_stop = core_log_global_stop,
2167 .priority = 1,
2170 void address_space_init_dispatch(AddressSpace *as)
2172 as->dispatch = NULL;
2173 as->dispatch_listener = (MemoryListener) {
2174 .begin = mem_begin,
2175 .commit = mem_commit,
2176 .region_add = mem_add,
2177 .region_nop = mem_add,
2178 .priority = 0,
2180 memory_listener_register(&as->dispatch_listener, as);
2183 void address_space_unregister(AddressSpace *as)
2185 memory_listener_unregister(&as->dispatch_listener);
2188 void address_space_destroy_dispatch(AddressSpace *as)
2190 AddressSpaceDispatch *d = as->dispatch;
2192 atomic_rcu_set(&as->dispatch, NULL);
2193 if (d) {
2194 call_rcu(d, address_space_dispatch_free, rcu);
2198 static void memory_map_init(void)
2200 system_memory = g_malloc(sizeof(*system_memory));
2202 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2203 address_space_init(&address_space_memory, system_memory, "memory");
2205 system_io = g_malloc(sizeof(*system_io));
2206 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2207 65536);
2208 address_space_init(&address_space_io, system_io, "I/O");
2210 memory_listener_register(&core_memory_listener, &address_space_memory);
2213 MemoryRegion *get_system_memory(void)
2215 return system_memory;
2218 MemoryRegion *get_system_io(void)
2220 return system_io;
2223 #endif /* !defined(CONFIG_USER_ONLY) */
2225 /* physical memory access (slow version, mainly for debug) */
2226 #if defined(CONFIG_USER_ONLY)
2227 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2228 uint8_t *buf, int len, int is_write)
2230 int l, flags;
2231 target_ulong page;
2232 void * p;
2234 while (len > 0) {
2235 page = addr & TARGET_PAGE_MASK;
2236 l = (page + TARGET_PAGE_SIZE) - addr;
2237 if (l > len)
2238 l = len;
2239 flags = page_get_flags(page);
2240 if (!(flags & PAGE_VALID))
2241 return -1;
2242 if (is_write) {
2243 if (!(flags & PAGE_WRITE))
2244 return -1;
2245 /* XXX: this code should not depend on lock_user */
2246 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2247 return -1;
2248 memcpy(p, buf, l);
2249 unlock_user(p, addr, l);
2250 } else {
2251 if (!(flags & PAGE_READ))
2252 return -1;
2253 /* XXX: this code should not depend on lock_user */
2254 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2255 return -1;
2256 memcpy(buf, p, l);
2257 unlock_user(p, addr, 0);
2259 len -= l;
2260 buf += l;
2261 addr += l;
2263 return 0;
2266 #else
2268 static void invalidate_and_set_dirty(hwaddr addr,
2269 hwaddr length)
2271 if (cpu_physical_memory_range_includes_clean(addr, length)) {
2272 tb_invalidate_phys_range(addr, addr + length, 0);
2273 cpu_physical_memory_set_dirty_range_nocode(addr, length);
2275 xen_modified_memory(addr, length);
2278 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2280 unsigned access_size_max = mr->ops->valid.max_access_size;
2282 /* Regions are assumed to support 1-4 byte accesses unless
2283 otherwise specified. */
2284 if (access_size_max == 0) {
2285 access_size_max = 4;
2288 /* Bound the maximum access by the alignment of the address. */
2289 if (!mr->ops->impl.unaligned) {
2290 unsigned align_size_max = addr & -addr;
2291 if (align_size_max != 0 && align_size_max < access_size_max) {
2292 access_size_max = align_size_max;
2296 /* Don't attempt accesses larger than the maximum. */
2297 if (l > access_size_max) {
2298 l = access_size_max;
2300 if (l & (l - 1)) {
2301 l = 1 << (qemu_fls(l) - 1);
2304 return l;
2307 bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
2308 int len, bool is_write)
2310 hwaddr l;
2311 uint8_t *ptr;
2312 uint64_t val;
2313 hwaddr addr1;
2314 MemoryRegion *mr;
2315 bool error = false;
2317 while (len > 0) {
2318 l = len;
2319 mr = address_space_translate(as, addr, &addr1, &l, is_write);
2321 if (is_write) {
2322 if (!memory_access_is_direct(mr, is_write)) {
2323 l = memory_access_size(mr, l, addr1);
2324 /* XXX: could force current_cpu to NULL to avoid
2325 potential bugs */
2326 switch (l) {
2327 case 8:
2328 /* 64 bit write access */
2329 val = ldq_p(buf);
2330 error |= io_mem_write(mr, addr1, val, 8);
2331 break;
2332 case 4:
2333 /* 32 bit write access */
2334 val = ldl_p(buf);
2335 error |= io_mem_write(mr, addr1, val, 4);
2336 break;
2337 case 2:
2338 /* 16 bit write access */
2339 val = lduw_p(buf);
2340 error |= io_mem_write(mr, addr1, val, 2);
2341 break;
2342 case 1:
2343 /* 8 bit write access */
2344 val = ldub_p(buf);
2345 error |= io_mem_write(mr, addr1, val, 1);
2346 break;
2347 default:
2348 abort();
2350 } else {
2351 addr1 += memory_region_get_ram_addr(mr);
2352 /* RAM case */
2353 ptr = qemu_get_ram_ptr(addr1);
2354 memcpy(ptr, buf, l);
2355 invalidate_and_set_dirty(addr1, l);
2357 } else {
2358 if (!memory_access_is_direct(mr, is_write)) {
2359 /* I/O case */
2360 l = memory_access_size(mr, l, addr1);
2361 switch (l) {
2362 case 8:
2363 /* 64 bit read access */
2364 error |= io_mem_read(mr, addr1, &val, 8);
2365 stq_p(buf, val);
2366 break;
2367 case 4:
2368 /* 32 bit read access */
2369 error |= io_mem_read(mr, addr1, &val, 4);
2370 stl_p(buf, val);
2371 break;
2372 case 2:
2373 /* 16 bit read access */
2374 error |= io_mem_read(mr, addr1, &val, 2);
2375 stw_p(buf, val);
2376 break;
2377 case 1:
2378 /* 8 bit read access */
2379 error |= io_mem_read(mr, addr1, &val, 1);
2380 stb_p(buf, val);
2381 break;
2382 default:
2383 abort();
2385 } else {
2386 /* RAM case */
2387 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
2388 memcpy(buf, ptr, l);
2391 len -= l;
2392 buf += l;
2393 addr += l;
2396 return error;
2399 bool address_space_write(AddressSpace *as, hwaddr addr,
2400 const uint8_t *buf, int len)
2402 return address_space_rw(as, addr, (uint8_t *)buf, len, true);
2405 bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
2407 return address_space_rw(as, addr, buf, len, false);
2411 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
2412 int len, int is_write)
2414 address_space_rw(&address_space_memory, addr, buf, len, is_write);
2417 enum write_rom_type {
2418 WRITE_DATA,
2419 FLUSH_CACHE,
2422 static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
2423 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
2425 hwaddr l;
2426 uint8_t *ptr;
2427 hwaddr addr1;
2428 MemoryRegion *mr;
2430 while (len > 0) {
2431 l = len;
2432 mr = address_space_translate(as, addr, &addr1, &l, true);
2434 if (!(memory_region_is_ram(mr) ||
2435 memory_region_is_romd(mr))) {
2436 /* do nothing */
2437 } else {
2438 addr1 += memory_region_get_ram_addr(mr);
2439 /* ROM/RAM case */
2440 ptr = qemu_get_ram_ptr(addr1);
2441 switch (type) {
2442 case WRITE_DATA:
2443 memcpy(ptr, buf, l);
2444 invalidate_and_set_dirty(addr1, l);
2445 break;
2446 case FLUSH_CACHE:
2447 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
2448 break;
2451 len -= l;
2452 buf += l;
2453 addr += l;
2457 /* used for ROM loading : can write in RAM and ROM */
2458 void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
2459 const uint8_t *buf, int len)
2461 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
2464 void cpu_flush_icache_range(hwaddr start, int len)
2467 * This function should do the same thing as an icache flush that was
2468 * triggered from within the guest. For TCG we are always cache coherent,
2469 * so there is no need to flush anything. For KVM / Xen we need to flush
2470 * the host's instruction cache at least.
2472 if (tcg_enabled()) {
2473 return;
2476 cpu_physical_memory_write_rom_internal(&address_space_memory,
2477 start, NULL, len, FLUSH_CACHE);
2480 typedef struct {
2481 MemoryRegion *mr;
2482 void *buffer;
2483 hwaddr addr;
2484 hwaddr len;
2485 } BounceBuffer;
2487 static BounceBuffer bounce;
2489 typedef struct MapClient {
2490 void *opaque;
2491 void (*callback)(void *opaque);
2492 QLIST_ENTRY(MapClient) link;
2493 } MapClient;
2495 static QLIST_HEAD(map_client_list, MapClient) map_client_list
2496 = QLIST_HEAD_INITIALIZER(map_client_list);
2498 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
2500 MapClient *client = g_malloc(sizeof(*client));
2502 client->opaque = opaque;
2503 client->callback = callback;
2504 QLIST_INSERT_HEAD(&map_client_list, client, link);
2505 return client;
2508 static void cpu_unregister_map_client(void *_client)
2510 MapClient *client = (MapClient *)_client;
2512 QLIST_REMOVE(client, link);
2513 g_free(client);
2516 static void cpu_notify_map_clients(void)
2518 MapClient *client;
2520 while (!QLIST_EMPTY(&map_client_list)) {
2521 client = QLIST_FIRST(&map_client_list);
2522 client->callback(client->opaque);
2523 cpu_unregister_map_client(client);
2527 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2529 MemoryRegion *mr;
2530 hwaddr l, xlat;
2532 while (len > 0) {
2533 l = len;
2534 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2535 if (!memory_access_is_direct(mr, is_write)) {
2536 l = memory_access_size(mr, l, addr);
2537 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
2538 return false;
2542 len -= l;
2543 addr += l;
2545 return true;
2548 /* Map a physical memory region into a host virtual address.
2549 * May map a subset of the requested range, given by and returned in *plen.
2550 * May return NULL if resources needed to perform the mapping are exhausted.
2551 * Use only for reads OR writes - not for read-modify-write operations.
2552 * Use cpu_register_map_client() to know when retrying the map operation is
2553 * likely to succeed.
2555 void *address_space_map(AddressSpace *as,
2556 hwaddr addr,
2557 hwaddr *plen,
2558 bool is_write)
2560 hwaddr len = *plen;
2561 hwaddr done = 0;
2562 hwaddr l, xlat, base;
2563 MemoryRegion *mr, *this_mr;
2564 ram_addr_t raddr;
2566 if (len == 0) {
2567 return NULL;
2570 l = len;
2571 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2572 if (!memory_access_is_direct(mr, is_write)) {
2573 if (bounce.buffer) {
2574 return NULL;
2576 /* Avoid unbounded allocations */
2577 l = MIN(l, TARGET_PAGE_SIZE);
2578 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
2579 bounce.addr = addr;
2580 bounce.len = l;
2582 memory_region_ref(mr);
2583 bounce.mr = mr;
2584 if (!is_write) {
2585 address_space_read(as, addr, bounce.buffer, l);
2588 *plen = l;
2589 return bounce.buffer;
2592 base = xlat;
2593 raddr = memory_region_get_ram_addr(mr);
2595 for (;;) {
2596 len -= l;
2597 addr += l;
2598 done += l;
2599 if (len == 0) {
2600 break;
2603 l = len;
2604 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
2605 if (this_mr != mr || xlat != base + done) {
2606 break;
2610 memory_region_ref(mr);
2611 *plen = done;
2612 return qemu_ram_ptr_length(raddr + base, plen);
2615 /* Unmaps a memory region previously mapped by address_space_map().
2616 * Will also mark the memory as dirty if is_write == 1. access_len gives
2617 * the amount of memory that was actually read or written by the caller.
2619 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2620 int is_write, hwaddr access_len)
2622 if (buffer != bounce.buffer) {
2623 MemoryRegion *mr;
2624 ram_addr_t addr1;
2626 mr = qemu_ram_addr_from_host(buffer, &addr1);
2627 assert(mr != NULL);
2628 if (is_write) {
2629 invalidate_and_set_dirty(addr1, access_len);
2631 if (xen_enabled()) {
2632 xen_invalidate_map_cache_entry(buffer);
2634 memory_region_unref(mr);
2635 return;
2637 if (is_write) {
2638 address_space_write(as, bounce.addr, bounce.buffer, access_len);
2640 qemu_vfree(bounce.buffer);
2641 bounce.buffer = NULL;
2642 memory_region_unref(bounce.mr);
2643 cpu_notify_map_clients();
2646 void *cpu_physical_memory_map(hwaddr addr,
2647 hwaddr *plen,
2648 int is_write)
2650 return address_space_map(&address_space_memory, addr, plen, is_write);
2653 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2654 int is_write, hwaddr access_len)
2656 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2659 /* warning: addr must be aligned */
2660 static inline uint32_t ldl_phys_internal(AddressSpace *as, hwaddr addr,
2661 enum device_endian endian)
2663 uint8_t *ptr;
2664 uint64_t val;
2665 MemoryRegion *mr;
2666 hwaddr l = 4;
2667 hwaddr addr1;
2669 mr = address_space_translate(as, addr, &addr1, &l, false);
2670 if (l < 4 || !memory_access_is_direct(mr, false)) {
2671 /* I/O case */
2672 io_mem_read(mr, addr1, &val, 4);
2673 #if defined(TARGET_WORDS_BIGENDIAN)
2674 if (endian == DEVICE_LITTLE_ENDIAN) {
2675 val = bswap32(val);
2677 #else
2678 if (endian == DEVICE_BIG_ENDIAN) {
2679 val = bswap32(val);
2681 #endif
2682 } else {
2683 /* RAM case */
2684 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2685 & TARGET_PAGE_MASK)
2686 + addr1);
2687 switch (endian) {
2688 case DEVICE_LITTLE_ENDIAN:
2689 val = ldl_le_p(ptr);
2690 break;
2691 case DEVICE_BIG_ENDIAN:
2692 val = ldl_be_p(ptr);
2693 break;
2694 default:
2695 val = ldl_p(ptr);
2696 break;
2699 return val;
2702 uint32_t ldl_phys(AddressSpace *as, hwaddr addr)
2704 return ldl_phys_internal(as, addr, DEVICE_NATIVE_ENDIAN);
2707 uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr)
2709 return ldl_phys_internal(as, addr, DEVICE_LITTLE_ENDIAN);
2712 uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr)
2714 return ldl_phys_internal(as, addr, DEVICE_BIG_ENDIAN);
2717 /* warning: addr must be aligned */
2718 static inline uint64_t ldq_phys_internal(AddressSpace *as, hwaddr addr,
2719 enum device_endian endian)
2721 uint8_t *ptr;
2722 uint64_t val;
2723 MemoryRegion *mr;
2724 hwaddr l = 8;
2725 hwaddr addr1;
2727 mr = address_space_translate(as, addr, &addr1, &l,
2728 false);
2729 if (l < 8 || !memory_access_is_direct(mr, false)) {
2730 /* I/O case */
2731 io_mem_read(mr, addr1, &val, 8);
2732 #if defined(TARGET_WORDS_BIGENDIAN)
2733 if (endian == DEVICE_LITTLE_ENDIAN) {
2734 val = bswap64(val);
2736 #else
2737 if (endian == DEVICE_BIG_ENDIAN) {
2738 val = bswap64(val);
2740 #endif
2741 } else {
2742 /* RAM case */
2743 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2744 & TARGET_PAGE_MASK)
2745 + addr1);
2746 switch (endian) {
2747 case DEVICE_LITTLE_ENDIAN:
2748 val = ldq_le_p(ptr);
2749 break;
2750 case DEVICE_BIG_ENDIAN:
2751 val = ldq_be_p(ptr);
2752 break;
2753 default:
2754 val = ldq_p(ptr);
2755 break;
2758 return val;
2761 uint64_t ldq_phys(AddressSpace *as, hwaddr addr)
2763 return ldq_phys_internal(as, addr, DEVICE_NATIVE_ENDIAN);
2766 uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr)
2768 return ldq_phys_internal(as, addr, DEVICE_LITTLE_ENDIAN);
2771 uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr)
2773 return ldq_phys_internal(as, addr, DEVICE_BIG_ENDIAN);
2776 /* XXX: optimize */
2777 uint32_t ldub_phys(AddressSpace *as, hwaddr addr)
2779 uint8_t val;
2780 address_space_rw(as, addr, &val, 1, 0);
2781 return val;
2784 /* warning: addr must be aligned */
2785 static inline uint32_t lduw_phys_internal(AddressSpace *as, hwaddr addr,
2786 enum device_endian endian)
2788 uint8_t *ptr;
2789 uint64_t val;
2790 MemoryRegion *mr;
2791 hwaddr l = 2;
2792 hwaddr addr1;
2794 mr = address_space_translate(as, addr, &addr1, &l,
2795 false);
2796 if (l < 2 || !memory_access_is_direct(mr, false)) {
2797 /* I/O case */
2798 io_mem_read(mr, addr1, &val, 2);
2799 #if defined(TARGET_WORDS_BIGENDIAN)
2800 if (endian == DEVICE_LITTLE_ENDIAN) {
2801 val = bswap16(val);
2803 #else
2804 if (endian == DEVICE_BIG_ENDIAN) {
2805 val = bswap16(val);
2807 #endif
2808 } else {
2809 /* RAM case */
2810 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2811 & TARGET_PAGE_MASK)
2812 + addr1);
2813 switch (endian) {
2814 case DEVICE_LITTLE_ENDIAN:
2815 val = lduw_le_p(ptr);
2816 break;
2817 case DEVICE_BIG_ENDIAN:
2818 val = lduw_be_p(ptr);
2819 break;
2820 default:
2821 val = lduw_p(ptr);
2822 break;
2825 return val;
2828 uint32_t lduw_phys(AddressSpace *as, hwaddr addr)
2830 return lduw_phys_internal(as, addr, DEVICE_NATIVE_ENDIAN);
2833 uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr)
2835 return lduw_phys_internal(as, addr, DEVICE_LITTLE_ENDIAN);
2838 uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr)
2840 return lduw_phys_internal(as, addr, DEVICE_BIG_ENDIAN);
2843 /* warning: addr must be aligned. The ram page is not masked as dirty
2844 and the code inside is not invalidated. It is useful if the dirty
2845 bits are used to track modified PTEs */
2846 void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val)
2848 uint8_t *ptr;
2849 MemoryRegion *mr;
2850 hwaddr l = 4;
2851 hwaddr addr1;
2853 mr = address_space_translate(as, addr, &addr1, &l,
2854 true);
2855 if (l < 4 || !memory_access_is_direct(mr, true)) {
2856 io_mem_write(mr, addr1, val, 4);
2857 } else {
2858 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2859 ptr = qemu_get_ram_ptr(addr1);
2860 stl_p(ptr, val);
2862 if (unlikely(in_migration)) {
2863 if (cpu_physical_memory_is_clean(addr1)) {
2864 /* invalidate code */
2865 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2866 /* set dirty bit */
2867 cpu_physical_memory_set_dirty_range_nocode(addr1, 4);
2873 /* warning: addr must be aligned */
2874 static inline void stl_phys_internal(AddressSpace *as,
2875 hwaddr addr, uint32_t val,
2876 enum device_endian endian)
2878 uint8_t *ptr;
2879 MemoryRegion *mr;
2880 hwaddr l = 4;
2881 hwaddr addr1;
2883 mr = address_space_translate(as, addr, &addr1, &l,
2884 true);
2885 if (l < 4 || !memory_access_is_direct(mr, true)) {
2886 #if defined(TARGET_WORDS_BIGENDIAN)
2887 if (endian == DEVICE_LITTLE_ENDIAN) {
2888 val = bswap32(val);
2890 #else
2891 if (endian == DEVICE_BIG_ENDIAN) {
2892 val = bswap32(val);
2894 #endif
2895 io_mem_write(mr, addr1, val, 4);
2896 } else {
2897 /* RAM case */
2898 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2899 ptr = qemu_get_ram_ptr(addr1);
2900 switch (endian) {
2901 case DEVICE_LITTLE_ENDIAN:
2902 stl_le_p(ptr, val);
2903 break;
2904 case DEVICE_BIG_ENDIAN:
2905 stl_be_p(ptr, val);
2906 break;
2907 default:
2908 stl_p(ptr, val);
2909 break;
2911 invalidate_and_set_dirty(addr1, 4);
2915 void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val)
2917 stl_phys_internal(as, addr, val, DEVICE_NATIVE_ENDIAN);
2920 void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
2922 stl_phys_internal(as, addr, val, DEVICE_LITTLE_ENDIAN);
2925 void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
2927 stl_phys_internal(as, addr, val, DEVICE_BIG_ENDIAN);
2930 /* XXX: optimize */
2931 void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val)
2933 uint8_t v = val;
2934 address_space_rw(as, addr, &v, 1, 1);
2937 /* warning: addr must be aligned */
2938 static inline void stw_phys_internal(AddressSpace *as,
2939 hwaddr addr, uint32_t val,
2940 enum device_endian endian)
2942 uint8_t *ptr;
2943 MemoryRegion *mr;
2944 hwaddr l = 2;
2945 hwaddr addr1;
2947 mr = address_space_translate(as, addr, &addr1, &l, true);
2948 if (l < 2 || !memory_access_is_direct(mr, true)) {
2949 #if defined(TARGET_WORDS_BIGENDIAN)
2950 if (endian == DEVICE_LITTLE_ENDIAN) {
2951 val = bswap16(val);
2953 #else
2954 if (endian == DEVICE_BIG_ENDIAN) {
2955 val = bswap16(val);
2957 #endif
2958 io_mem_write(mr, addr1, val, 2);
2959 } else {
2960 /* RAM case */
2961 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2962 ptr = qemu_get_ram_ptr(addr1);
2963 switch (endian) {
2964 case DEVICE_LITTLE_ENDIAN:
2965 stw_le_p(ptr, val);
2966 break;
2967 case DEVICE_BIG_ENDIAN:
2968 stw_be_p(ptr, val);
2969 break;
2970 default:
2971 stw_p(ptr, val);
2972 break;
2974 invalidate_and_set_dirty(addr1, 2);
2978 void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val)
2980 stw_phys_internal(as, addr, val, DEVICE_NATIVE_ENDIAN);
2983 void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
2985 stw_phys_internal(as, addr, val, DEVICE_LITTLE_ENDIAN);
2988 void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
2990 stw_phys_internal(as, addr, val, DEVICE_BIG_ENDIAN);
2993 /* XXX: optimize */
2994 void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val)
2996 val = tswap64(val);
2997 address_space_rw(as, addr, (void *) &val, 8, 1);
3000 void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3002 val = cpu_to_le64(val);
3003 address_space_rw(as, addr, (void *) &val, 8, 1);
3006 void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3008 val = cpu_to_be64(val);
3009 address_space_rw(as, addr, (void *) &val, 8, 1);
3012 /* virtual memory access for debug (includes writing to ROM) */
3013 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3014 uint8_t *buf, int len, int is_write)
3016 int l;
3017 hwaddr phys_addr;
3018 target_ulong page;
3020 while (len > 0) {
3021 page = addr & TARGET_PAGE_MASK;
3022 phys_addr = cpu_get_phys_page_debug(cpu, page);
3023 /* if no physical page mapped, return an error */
3024 if (phys_addr == -1)
3025 return -1;
3026 l = (page + TARGET_PAGE_SIZE) - addr;
3027 if (l > len)
3028 l = len;
3029 phys_addr += (addr & ~TARGET_PAGE_MASK);
3030 if (is_write) {
3031 cpu_physical_memory_write_rom(cpu->as, phys_addr, buf, l);
3032 } else {
3033 address_space_rw(cpu->as, phys_addr, buf, l, 0);
3035 len -= l;
3036 buf += l;
3037 addr += l;
3039 return 0;
3041 #endif
3044 * A helper function for the _utterly broken_ virtio device model to find out if
3045 * it's running on a big endian machine. Don't do this at home kids!
3047 bool target_words_bigendian(void);
3048 bool target_words_bigendian(void)
3050 #if defined(TARGET_WORDS_BIGENDIAN)
3051 return true;
3052 #else
3053 return false;
3054 #endif
3057 #ifndef CONFIG_USER_ONLY
3058 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3060 MemoryRegion*mr;
3061 hwaddr l = 1;
3063 mr = address_space_translate(&address_space_memory,
3064 phys_addr, &phys_addr, &l, false);
3066 return !(memory_region_is_ram(mr) ||
3067 memory_region_is_romd(mr));
3070 void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3072 RAMBlock *block;
3074 rcu_read_lock();
3075 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
3076 func(block->host, block->offset, block->used_length, opaque);
3078 rcu_read_unlock();
3080 #endif