spapr: Don't use bus number for building DRC ids
[qemu/kevin.git] / exec.c
blob4e734770c20fe1a0a9b5b28d4a56b4d90f50ff0a
1 /*
2 * Virtual page mapping
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
22 #include "qemu/cutils.h"
23 #include "cpu.h"
24 #include "exec/exec-all.h"
25 #include "exec/target_page.h"
26 #include "tcg.h"
27 #include "hw/qdev-core.h"
28 #include "hw/qdev-properties.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #include "hw/xen/xen.h"
32 #endif
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #include "qemu/qemu-print.h"
39 #if defined(CONFIG_USER_ONLY)
40 #include "qemu.h"
41 #else /* !CONFIG_USER_ONLY */
42 #include "hw/hw.h"
43 #include "exec/memory.h"
44 #include "exec/ioport.h"
45 #include "sysemu/dma.h"
46 #include "sysemu/numa.h"
47 #include "sysemu/hw_accel.h"
48 #include "exec/address-spaces.h"
49 #include "sysemu/xen-mapcache.h"
50 #include "trace-root.h"
52 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
53 #include <linux/falloc.h>
54 #endif
56 #endif
57 #include "qemu/rcu_queue.h"
58 #include "qemu/main-loop.h"
59 #include "translate-all.h"
60 #include "sysemu/replay.h"
62 #include "exec/memory-internal.h"
63 #include "exec/ram_addr.h"
64 #include "exec/log.h"
66 #include "migration/vmstate.h"
68 #include "qemu/range.h"
69 #ifndef _WIN32
70 #include "qemu/mmap-alloc.h"
71 #endif
73 #include "monitor/monitor.h"
75 //#define DEBUG_SUBPAGE
77 #if !defined(CONFIG_USER_ONLY)
78 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
79 * are protected by the ramlist lock.
81 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
83 static MemoryRegion *system_memory;
84 static MemoryRegion *system_io;
86 AddressSpace address_space_io;
87 AddressSpace address_space_memory;
89 MemoryRegion io_mem_rom, io_mem_notdirty;
90 static MemoryRegion io_mem_unassigned;
91 #endif
93 #ifdef TARGET_PAGE_BITS_VARY
94 int target_page_bits;
95 bool target_page_bits_decided;
96 #endif
98 CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
100 /* current CPU in the current thread. It is only valid inside
101 cpu_exec() */
102 __thread CPUState *current_cpu;
103 /* 0 = Do not count executed instructions.
104 1 = Precise instruction counting.
105 2 = Adaptive rate instruction counting. */
106 int use_icount;
108 uintptr_t qemu_host_page_size;
109 intptr_t qemu_host_page_mask;
111 bool set_preferred_target_page_bits(int bits)
113 /* The target page size is the lowest common denominator for all
114 * the CPUs in the system, so we can only make it smaller, never
115 * larger. And we can't make it smaller once we've committed to
116 * a particular size.
118 #ifdef TARGET_PAGE_BITS_VARY
119 assert(bits >= TARGET_PAGE_BITS_MIN);
120 if (target_page_bits == 0 || target_page_bits > bits) {
121 if (target_page_bits_decided) {
122 return false;
124 target_page_bits = bits;
126 #endif
127 return true;
130 #if !defined(CONFIG_USER_ONLY)
132 static void finalize_target_page_bits(void)
134 #ifdef TARGET_PAGE_BITS_VARY
135 if (target_page_bits == 0) {
136 target_page_bits = TARGET_PAGE_BITS_MIN;
138 target_page_bits_decided = true;
139 #endif
142 typedef struct PhysPageEntry PhysPageEntry;
144 struct PhysPageEntry {
145 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
146 uint32_t skip : 6;
147 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
148 uint32_t ptr : 26;
151 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
153 /* Size of the L2 (and L3, etc) page tables. */
154 #define ADDR_SPACE_BITS 64
156 #define P_L2_BITS 9
157 #define P_L2_SIZE (1 << P_L2_BITS)
159 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
161 typedef PhysPageEntry Node[P_L2_SIZE];
163 typedef struct PhysPageMap {
164 struct rcu_head rcu;
166 unsigned sections_nb;
167 unsigned sections_nb_alloc;
168 unsigned nodes_nb;
169 unsigned nodes_nb_alloc;
170 Node *nodes;
171 MemoryRegionSection *sections;
172 } PhysPageMap;
174 struct AddressSpaceDispatch {
175 MemoryRegionSection *mru_section;
176 /* This is a multi-level map on the physical address space.
177 * The bottom level has pointers to MemoryRegionSections.
179 PhysPageEntry phys_map;
180 PhysPageMap map;
183 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
184 typedef struct subpage_t {
185 MemoryRegion iomem;
186 FlatView *fv;
187 hwaddr base;
188 uint16_t sub_section[];
189 } subpage_t;
191 #define PHYS_SECTION_UNASSIGNED 0
192 #define PHYS_SECTION_NOTDIRTY 1
193 #define PHYS_SECTION_ROM 2
194 #define PHYS_SECTION_WATCH 3
196 static void io_mem_init(void);
197 static void memory_map_init(void);
198 static void tcg_commit(MemoryListener *listener);
200 static MemoryRegion io_mem_watch;
203 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
204 * @cpu: the CPU whose AddressSpace this is
205 * @as: the AddressSpace itself
206 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
207 * @tcg_as_listener: listener for tracking changes to the AddressSpace
209 struct CPUAddressSpace {
210 CPUState *cpu;
211 AddressSpace *as;
212 struct AddressSpaceDispatch *memory_dispatch;
213 MemoryListener tcg_as_listener;
216 struct DirtyBitmapSnapshot {
217 ram_addr_t start;
218 ram_addr_t end;
219 unsigned long dirty[];
222 #endif
224 #if !defined(CONFIG_USER_ONLY)
226 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
228 static unsigned alloc_hint = 16;
229 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
230 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
231 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
232 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
233 alloc_hint = map->nodes_nb_alloc;
237 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
239 unsigned i;
240 uint32_t ret;
241 PhysPageEntry e;
242 PhysPageEntry *p;
244 ret = map->nodes_nb++;
245 p = map->nodes[ret];
246 assert(ret != PHYS_MAP_NODE_NIL);
247 assert(ret != map->nodes_nb_alloc);
249 e.skip = leaf ? 0 : 1;
250 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
251 for (i = 0; i < P_L2_SIZE; ++i) {
252 memcpy(&p[i], &e, sizeof(e));
254 return ret;
257 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
258 hwaddr *index, hwaddr *nb, uint16_t leaf,
259 int level)
261 PhysPageEntry *p;
262 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
264 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
265 lp->ptr = phys_map_node_alloc(map, level == 0);
267 p = map->nodes[lp->ptr];
268 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
270 while (*nb && lp < &p[P_L2_SIZE]) {
271 if ((*index & (step - 1)) == 0 && *nb >= step) {
272 lp->skip = 0;
273 lp->ptr = leaf;
274 *index += step;
275 *nb -= step;
276 } else {
277 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
279 ++lp;
283 static void phys_page_set(AddressSpaceDispatch *d,
284 hwaddr index, hwaddr nb,
285 uint16_t leaf)
287 /* Wildly overreserve - it doesn't matter much. */
288 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
290 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
293 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
294 * and update our entry so we can skip it and go directly to the destination.
296 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
298 unsigned valid_ptr = P_L2_SIZE;
299 int valid = 0;
300 PhysPageEntry *p;
301 int i;
303 if (lp->ptr == PHYS_MAP_NODE_NIL) {
304 return;
307 p = nodes[lp->ptr];
308 for (i = 0; i < P_L2_SIZE; i++) {
309 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
310 continue;
313 valid_ptr = i;
314 valid++;
315 if (p[i].skip) {
316 phys_page_compact(&p[i], nodes);
320 /* We can only compress if there's only one child. */
321 if (valid != 1) {
322 return;
325 assert(valid_ptr < P_L2_SIZE);
327 /* Don't compress if it won't fit in the # of bits we have. */
328 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
329 return;
332 lp->ptr = p[valid_ptr].ptr;
333 if (!p[valid_ptr].skip) {
334 /* If our only child is a leaf, make this a leaf. */
335 /* By design, we should have made this node a leaf to begin with so we
336 * should never reach here.
337 * But since it's so simple to handle this, let's do it just in case we
338 * change this rule.
340 lp->skip = 0;
341 } else {
342 lp->skip += p[valid_ptr].skip;
346 void address_space_dispatch_compact(AddressSpaceDispatch *d)
348 if (d->phys_map.skip) {
349 phys_page_compact(&d->phys_map, d->map.nodes);
353 static inline bool section_covers_addr(const MemoryRegionSection *section,
354 hwaddr addr)
356 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
357 * the section must cover the entire address space.
359 return int128_gethi(section->size) ||
360 range_covers_byte(section->offset_within_address_space,
361 int128_getlo(section->size), addr);
364 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
366 PhysPageEntry lp = d->phys_map, *p;
367 Node *nodes = d->map.nodes;
368 MemoryRegionSection *sections = d->map.sections;
369 hwaddr index = addr >> TARGET_PAGE_BITS;
370 int i;
372 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
373 if (lp.ptr == PHYS_MAP_NODE_NIL) {
374 return &sections[PHYS_SECTION_UNASSIGNED];
376 p = nodes[lp.ptr];
377 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
380 if (section_covers_addr(&sections[lp.ptr], addr)) {
381 return &sections[lp.ptr];
382 } else {
383 return &sections[PHYS_SECTION_UNASSIGNED];
387 /* Called from RCU critical section */
388 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
389 hwaddr addr,
390 bool resolve_subpage)
392 MemoryRegionSection *section = atomic_read(&d->mru_section);
393 subpage_t *subpage;
395 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
396 !section_covers_addr(section, addr)) {
397 section = phys_page_find(d, addr);
398 atomic_set(&d->mru_section, section);
400 if (resolve_subpage && section->mr->subpage) {
401 subpage = container_of(section->mr, subpage_t, iomem);
402 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
404 return section;
407 /* Called from RCU critical section */
408 static MemoryRegionSection *
409 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
410 hwaddr *plen, bool resolve_subpage)
412 MemoryRegionSection *section;
413 MemoryRegion *mr;
414 Int128 diff;
416 section = address_space_lookup_region(d, addr, resolve_subpage);
417 /* Compute offset within MemoryRegionSection */
418 addr -= section->offset_within_address_space;
420 /* Compute offset within MemoryRegion */
421 *xlat = addr + section->offset_within_region;
423 mr = section->mr;
425 /* MMIO registers can be expected to perform full-width accesses based only
426 * on their address, without considering adjacent registers that could
427 * decode to completely different MemoryRegions. When such registers
428 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
429 * regions overlap wildly. For this reason we cannot clamp the accesses
430 * here.
432 * If the length is small (as is the case for address_space_ldl/stl),
433 * everything works fine. If the incoming length is large, however,
434 * the caller really has to do the clamping through memory_access_size.
436 if (memory_region_is_ram(mr)) {
437 diff = int128_sub(section->size, int128_make64(addr));
438 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
440 return section;
444 * address_space_translate_iommu - translate an address through an IOMMU
445 * memory region and then through the target address space.
447 * @iommu_mr: the IOMMU memory region that we start the translation from
448 * @addr: the address to be translated through the MMU
449 * @xlat: the translated address offset within the destination memory region.
450 * It cannot be %NULL.
451 * @plen_out: valid read/write length of the translated address. It
452 * cannot be %NULL.
453 * @page_mask_out: page mask for the translated address. This
454 * should only be meaningful for IOMMU translated
455 * addresses, since there may be huge pages that this bit
456 * would tell. It can be %NULL if we don't care about it.
457 * @is_write: whether the translation operation is for write
458 * @is_mmio: whether this can be MMIO, set true if it can
459 * @target_as: the address space targeted by the IOMMU
460 * @attrs: transaction attributes
462 * This function is called from RCU critical section. It is the common
463 * part of flatview_do_translate and address_space_translate_cached.
465 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
466 hwaddr *xlat,
467 hwaddr *plen_out,
468 hwaddr *page_mask_out,
469 bool is_write,
470 bool is_mmio,
471 AddressSpace **target_as,
472 MemTxAttrs attrs)
474 MemoryRegionSection *section;
475 hwaddr page_mask = (hwaddr)-1;
477 do {
478 hwaddr addr = *xlat;
479 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
480 int iommu_idx = 0;
481 IOMMUTLBEntry iotlb;
483 if (imrc->attrs_to_index) {
484 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
487 iotlb = imrc->translate(iommu_mr, addr, is_write ?
488 IOMMU_WO : IOMMU_RO, iommu_idx);
490 if (!(iotlb.perm & (1 << is_write))) {
491 goto unassigned;
494 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
495 | (addr & iotlb.addr_mask));
496 page_mask &= iotlb.addr_mask;
497 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
498 *target_as = iotlb.target_as;
500 section = address_space_translate_internal(
501 address_space_to_dispatch(iotlb.target_as), addr, xlat,
502 plen_out, is_mmio);
504 iommu_mr = memory_region_get_iommu(section->mr);
505 } while (unlikely(iommu_mr));
507 if (page_mask_out) {
508 *page_mask_out = page_mask;
510 return *section;
512 unassigned:
513 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
517 * flatview_do_translate - translate an address in FlatView
519 * @fv: the flat view that we want to translate on
520 * @addr: the address to be translated in above address space
521 * @xlat: the translated address offset within memory region. It
522 * cannot be @NULL.
523 * @plen_out: valid read/write length of the translated address. It
524 * can be @NULL when we don't care about it.
525 * @page_mask_out: page mask for the translated address. This
526 * should only be meaningful for IOMMU translated
527 * addresses, since there may be huge pages that this bit
528 * would tell. It can be @NULL if we don't care about it.
529 * @is_write: whether the translation operation is for write
530 * @is_mmio: whether this can be MMIO, set true if it can
531 * @target_as: the address space targeted by the IOMMU
532 * @attrs: memory transaction attributes
534 * This function is called from RCU critical section
536 static MemoryRegionSection flatview_do_translate(FlatView *fv,
537 hwaddr addr,
538 hwaddr *xlat,
539 hwaddr *plen_out,
540 hwaddr *page_mask_out,
541 bool is_write,
542 bool is_mmio,
543 AddressSpace **target_as,
544 MemTxAttrs attrs)
546 MemoryRegionSection *section;
547 IOMMUMemoryRegion *iommu_mr;
548 hwaddr plen = (hwaddr)(-1);
550 if (!plen_out) {
551 plen_out = &plen;
554 section = address_space_translate_internal(
555 flatview_to_dispatch(fv), addr, xlat,
556 plen_out, is_mmio);
558 iommu_mr = memory_region_get_iommu(section->mr);
559 if (unlikely(iommu_mr)) {
560 return address_space_translate_iommu(iommu_mr, xlat,
561 plen_out, page_mask_out,
562 is_write, is_mmio,
563 target_as, attrs);
565 if (page_mask_out) {
566 /* Not behind an IOMMU, use default page size. */
567 *page_mask_out = ~TARGET_PAGE_MASK;
570 return *section;
573 /* Called from RCU critical section */
574 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
575 bool is_write, MemTxAttrs attrs)
577 MemoryRegionSection section;
578 hwaddr xlat, page_mask;
581 * This can never be MMIO, and we don't really care about plen,
582 * but page mask.
584 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
585 NULL, &page_mask, is_write, false, &as,
586 attrs);
588 /* Illegal translation */
589 if (section.mr == &io_mem_unassigned) {
590 goto iotlb_fail;
593 /* Convert memory region offset into address space offset */
594 xlat += section.offset_within_address_space -
595 section.offset_within_region;
597 return (IOMMUTLBEntry) {
598 .target_as = as,
599 .iova = addr & ~page_mask,
600 .translated_addr = xlat & ~page_mask,
601 .addr_mask = page_mask,
602 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
603 .perm = IOMMU_RW,
606 iotlb_fail:
607 return (IOMMUTLBEntry) {0};
610 /* Called from RCU critical section */
611 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
612 hwaddr *plen, bool is_write,
613 MemTxAttrs attrs)
615 MemoryRegion *mr;
616 MemoryRegionSection section;
617 AddressSpace *as = NULL;
619 /* This can be MMIO, so setup MMIO bit. */
620 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
621 is_write, true, &as, attrs);
622 mr = section.mr;
624 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
625 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
626 *plen = MIN(page, *plen);
629 return mr;
632 typedef struct TCGIOMMUNotifier {
633 IOMMUNotifier n;
634 MemoryRegion *mr;
635 CPUState *cpu;
636 int iommu_idx;
637 bool active;
638 } TCGIOMMUNotifier;
640 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
642 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
644 if (!notifier->active) {
645 return;
647 tlb_flush(notifier->cpu);
648 notifier->active = false;
649 /* We leave the notifier struct on the list to avoid reallocating it later.
650 * Generally the number of IOMMUs a CPU deals with will be small.
651 * In any case we can't unregister the iommu notifier from a notify
652 * callback.
656 static void tcg_register_iommu_notifier(CPUState *cpu,
657 IOMMUMemoryRegion *iommu_mr,
658 int iommu_idx)
660 /* Make sure this CPU has an IOMMU notifier registered for this
661 * IOMMU/IOMMU index combination, so that we can flush its TLB
662 * when the IOMMU tells us the mappings we've cached have changed.
664 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
665 TCGIOMMUNotifier *notifier;
666 int i;
668 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
669 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
670 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
671 break;
674 if (i == cpu->iommu_notifiers->len) {
675 /* Not found, add a new entry at the end of the array */
676 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
677 notifier = g_new0(TCGIOMMUNotifier, 1);
678 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
680 notifier->mr = mr;
681 notifier->iommu_idx = iommu_idx;
682 notifier->cpu = cpu;
683 /* Rather than trying to register interest in the specific part
684 * of the iommu's address space that we've accessed and then
685 * expand it later as subsequent accesses touch more of it, we
686 * just register interest in the whole thing, on the assumption
687 * that iommu reconfiguration will be rare.
689 iommu_notifier_init(&notifier->n,
690 tcg_iommu_unmap_notify,
691 IOMMU_NOTIFIER_UNMAP,
693 HWADDR_MAX,
694 iommu_idx);
695 memory_region_register_iommu_notifier(notifier->mr, &notifier->n);
698 if (!notifier->active) {
699 notifier->active = true;
703 static void tcg_iommu_free_notifier_list(CPUState *cpu)
705 /* Destroy the CPU's notifier list */
706 int i;
707 TCGIOMMUNotifier *notifier;
709 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
710 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
711 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
712 g_free(notifier);
714 g_array_free(cpu->iommu_notifiers, true);
717 /* Called from RCU critical section */
718 MemoryRegionSection *
719 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
720 hwaddr *xlat, hwaddr *plen,
721 MemTxAttrs attrs, int *prot)
723 MemoryRegionSection *section;
724 IOMMUMemoryRegion *iommu_mr;
725 IOMMUMemoryRegionClass *imrc;
726 IOMMUTLBEntry iotlb;
727 int iommu_idx;
728 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
730 for (;;) {
731 section = address_space_translate_internal(d, addr, &addr, plen, false);
733 iommu_mr = memory_region_get_iommu(section->mr);
734 if (!iommu_mr) {
735 break;
738 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
740 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
741 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
742 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
743 * doesn't short-cut its translation table walk.
745 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
746 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
747 | (addr & iotlb.addr_mask));
748 /* Update the caller's prot bits to remove permissions the IOMMU
749 * is giving us a failure response for. If we get down to no
750 * permissions left at all we can give up now.
752 if (!(iotlb.perm & IOMMU_RO)) {
753 *prot &= ~(PAGE_READ | PAGE_EXEC);
755 if (!(iotlb.perm & IOMMU_WO)) {
756 *prot &= ~PAGE_WRITE;
759 if (!*prot) {
760 goto translate_fail;
763 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
766 assert(!memory_region_is_iommu(section->mr));
767 *xlat = addr;
768 return section;
770 translate_fail:
771 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
773 #endif
775 #if !defined(CONFIG_USER_ONLY)
777 static int cpu_common_post_load(void *opaque, int version_id)
779 CPUState *cpu = opaque;
781 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
782 version_id is increased. */
783 cpu->interrupt_request &= ~0x01;
784 tlb_flush(cpu);
786 /* loadvm has just updated the content of RAM, bypassing the
787 * usual mechanisms that ensure we flush TBs for writes to
788 * memory we've translated code from. So we must flush all TBs,
789 * which will now be stale.
791 tb_flush(cpu);
793 return 0;
796 static int cpu_common_pre_load(void *opaque)
798 CPUState *cpu = opaque;
800 cpu->exception_index = -1;
802 return 0;
805 static bool cpu_common_exception_index_needed(void *opaque)
807 CPUState *cpu = opaque;
809 return tcg_enabled() && cpu->exception_index != -1;
812 static const VMStateDescription vmstate_cpu_common_exception_index = {
813 .name = "cpu_common/exception_index",
814 .version_id = 1,
815 .minimum_version_id = 1,
816 .needed = cpu_common_exception_index_needed,
817 .fields = (VMStateField[]) {
818 VMSTATE_INT32(exception_index, CPUState),
819 VMSTATE_END_OF_LIST()
823 static bool cpu_common_crash_occurred_needed(void *opaque)
825 CPUState *cpu = opaque;
827 return cpu->crash_occurred;
830 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
831 .name = "cpu_common/crash_occurred",
832 .version_id = 1,
833 .minimum_version_id = 1,
834 .needed = cpu_common_crash_occurred_needed,
835 .fields = (VMStateField[]) {
836 VMSTATE_BOOL(crash_occurred, CPUState),
837 VMSTATE_END_OF_LIST()
841 const VMStateDescription vmstate_cpu_common = {
842 .name = "cpu_common",
843 .version_id = 1,
844 .minimum_version_id = 1,
845 .pre_load = cpu_common_pre_load,
846 .post_load = cpu_common_post_load,
847 .fields = (VMStateField[]) {
848 VMSTATE_UINT32(halted, CPUState),
849 VMSTATE_UINT32(interrupt_request, CPUState),
850 VMSTATE_END_OF_LIST()
852 .subsections = (const VMStateDescription*[]) {
853 &vmstate_cpu_common_exception_index,
854 &vmstate_cpu_common_crash_occurred,
855 NULL
859 #endif
861 CPUState *qemu_get_cpu(int index)
863 CPUState *cpu;
865 CPU_FOREACH(cpu) {
866 if (cpu->cpu_index == index) {
867 return cpu;
871 return NULL;
874 #if !defined(CONFIG_USER_ONLY)
875 void cpu_address_space_init(CPUState *cpu, int asidx,
876 const char *prefix, MemoryRegion *mr)
878 CPUAddressSpace *newas;
879 AddressSpace *as = g_new0(AddressSpace, 1);
880 char *as_name;
882 assert(mr);
883 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
884 address_space_init(as, mr, as_name);
885 g_free(as_name);
887 /* Target code should have set num_ases before calling us */
888 assert(asidx < cpu->num_ases);
890 if (asidx == 0) {
891 /* address space 0 gets the convenience alias */
892 cpu->as = as;
895 /* KVM cannot currently support multiple address spaces. */
896 assert(asidx == 0 || !kvm_enabled());
898 if (!cpu->cpu_ases) {
899 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
902 newas = &cpu->cpu_ases[asidx];
903 newas->cpu = cpu;
904 newas->as = as;
905 if (tcg_enabled()) {
906 newas->tcg_as_listener.commit = tcg_commit;
907 memory_listener_register(&newas->tcg_as_listener, as);
911 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
913 /* Return the AddressSpace corresponding to the specified index */
914 return cpu->cpu_ases[asidx].as;
916 #endif
918 void cpu_exec_unrealizefn(CPUState *cpu)
920 CPUClass *cc = CPU_GET_CLASS(cpu);
922 cpu_list_remove(cpu);
924 if (cc->vmsd != NULL) {
925 vmstate_unregister(NULL, cc->vmsd, cpu);
927 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
928 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
930 #ifndef CONFIG_USER_ONLY
931 tcg_iommu_free_notifier_list(cpu);
932 #endif
935 Property cpu_common_props[] = {
936 #ifndef CONFIG_USER_ONLY
937 /* Create a memory property for softmmu CPU object,
938 * so users can wire up its memory. (This can't go in qom/cpu.c
939 * because that file is compiled only once for both user-mode
940 * and system builds.) The default if no link is set up is to use
941 * the system address space.
943 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
944 MemoryRegion *),
945 #endif
946 DEFINE_PROP_END_OF_LIST(),
949 void cpu_exec_initfn(CPUState *cpu)
951 cpu->as = NULL;
952 cpu->num_ases = 0;
954 #ifndef CONFIG_USER_ONLY
955 cpu->thread_id = qemu_get_thread_id();
956 cpu->memory = system_memory;
957 object_ref(OBJECT(cpu->memory));
958 #endif
961 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
963 CPUClass *cc = CPU_GET_CLASS(cpu);
964 static bool tcg_target_initialized;
966 cpu_list_add(cpu);
968 if (tcg_enabled() && !tcg_target_initialized) {
969 tcg_target_initialized = true;
970 cc->tcg_initialize();
972 tlb_init(cpu);
974 #ifndef CONFIG_USER_ONLY
975 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
976 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
978 if (cc->vmsd != NULL) {
979 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
982 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
983 #endif
986 const char *parse_cpu_option(const char *cpu_option)
988 ObjectClass *oc;
989 CPUClass *cc;
990 gchar **model_pieces;
991 const char *cpu_type;
993 model_pieces = g_strsplit(cpu_option, ",", 2);
994 if (!model_pieces[0]) {
995 error_report("-cpu option cannot be empty");
996 exit(1);
999 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
1000 if (oc == NULL) {
1001 error_report("unable to find CPU model '%s'", model_pieces[0]);
1002 g_strfreev(model_pieces);
1003 exit(EXIT_FAILURE);
1006 cpu_type = object_class_get_name(oc);
1007 cc = CPU_CLASS(oc);
1008 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
1009 g_strfreev(model_pieces);
1010 return cpu_type;
1013 #if defined(CONFIG_USER_ONLY)
1014 void tb_invalidate_phys_addr(target_ulong addr)
1016 mmap_lock();
1017 tb_invalidate_phys_page_range(addr, addr + 1, 0);
1018 mmap_unlock();
1021 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1023 tb_invalidate_phys_addr(pc);
1025 #else
1026 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1028 ram_addr_t ram_addr;
1029 MemoryRegion *mr;
1030 hwaddr l = 1;
1032 if (!tcg_enabled()) {
1033 return;
1036 rcu_read_lock();
1037 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1038 if (!(memory_region_is_ram(mr)
1039 || memory_region_is_romd(mr))) {
1040 rcu_read_unlock();
1041 return;
1043 ram_addr = memory_region_get_ram_addr(mr) + addr;
1044 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1045 rcu_read_unlock();
1048 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1050 MemTxAttrs attrs;
1051 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
1052 int asidx = cpu_asidx_from_attrs(cpu, attrs);
1053 if (phys != -1) {
1054 /* Locks grabbed by tb_invalidate_phys_addr */
1055 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
1056 phys | (pc & ~TARGET_PAGE_MASK), attrs);
1059 #endif
1061 #if defined(CONFIG_USER_ONLY)
1062 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1067 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1068 int flags)
1070 return -ENOSYS;
1073 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1077 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1078 int flags, CPUWatchpoint **watchpoint)
1080 return -ENOSYS;
1082 #else
1083 /* Add a watchpoint. */
1084 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1085 int flags, CPUWatchpoint **watchpoint)
1087 CPUWatchpoint *wp;
1089 /* forbid ranges which are empty or run off the end of the address space */
1090 if (len == 0 || (addr + len - 1) < addr) {
1091 error_report("tried to set invalid watchpoint at %"
1092 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1093 return -EINVAL;
1095 wp = g_malloc(sizeof(*wp));
1097 wp->vaddr = addr;
1098 wp->len = len;
1099 wp->flags = flags;
1101 /* keep all GDB-injected watchpoints in front */
1102 if (flags & BP_GDB) {
1103 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1104 } else {
1105 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1108 tlb_flush_page(cpu, addr);
1110 if (watchpoint)
1111 *watchpoint = wp;
1112 return 0;
1115 /* Remove a specific watchpoint. */
1116 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1117 int flags)
1119 CPUWatchpoint *wp;
1121 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1122 if (addr == wp->vaddr && len == wp->len
1123 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1124 cpu_watchpoint_remove_by_ref(cpu, wp);
1125 return 0;
1128 return -ENOENT;
1131 /* Remove a specific watchpoint by reference. */
1132 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1134 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1136 tlb_flush_page(cpu, watchpoint->vaddr);
1138 g_free(watchpoint);
1141 /* Remove all matching watchpoints. */
1142 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1144 CPUWatchpoint *wp, *next;
1146 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1147 if (wp->flags & mask) {
1148 cpu_watchpoint_remove_by_ref(cpu, wp);
1153 /* Return true if this watchpoint address matches the specified
1154 * access (ie the address range covered by the watchpoint overlaps
1155 * partially or completely with the address range covered by the
1156 * access).
1158 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
1159 vaddr addr,
1160 vaddr len)
1162 /* We know the lengths are non-zero, but a little caution is
1163 * required to avoid errors in the case where the range ends
1164 * exactly at the top of the address space and so addr + len
1165 * wraps round to zero.
1167 vaddr wpend = wp->vaddr + wp->len - 1;
1168 vaddr addrend = addr + len - 1;
1170 return !(addr > wpend || wp->vaddr > addrend);
1173 #endif
1175 /* Add a breakpoint. */
1176 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1177 CPUBreakpoint **breakpoint)
1179 CPUBreakpoint *bp;
1181 bp = g_malloc(sizeof(*bp));
1183 bp->pc = pc;
1184 bp->flags = flags;
1186 /* keep all GDB-injected breakpoints in front */
1187 if (flags & BP_GDB) {
1188 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1189 } else {
1190 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1193 breakpoint_invalidate(cpu, pc);
1195 if (breakpoint) {
1196 *breakpoint = bp;
1198 return 0;
1201 /* Remove a specific breakpoint. */
1202 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1204 CPUBreakpoint *bp;
1206 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1207 if (bp->pc == pc && bp->flags == flags) {
1208 cpu_breakpoint_remove_by_ref(cpu, bp);
1209 return 0;
1212 return -ENOENT;
1215 /* Remove a specific breakpoint by reference. */
1216 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
1218 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1220 breakpoint_invalidate(cpu, breakpoint->pc);
1222 g_free(breakpoint);
1225 /* Remove all matching breakpoints. */
1226 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1228 CPUBreakpoint *bp, *next;
1230 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1231 if (bp->flags & mask) {
1232 cpu_breakpoint_remove_by_ref(cpu, bp);
1237 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1238 CPU loop after each instruction */
1239 void cpu_single_step(CPUState *cpu, int enabled)
1241 if (cpu->singlestep_enabled != enabled) {
1242 cpu->singlestep_enabled = enabled;
1243 if (kvm_enabled()) {
1244 kvm_update_guest_debug(cpu, 0);
1245 } else {
1246 /* must flush all the translated code to avoid inconsistencies */
1247 /* XXX: only flush what is necessary */
1248 tb_flush(cpu);
1253 void cpu_abort(CPUState *cpu, const char *fmt, ...)
1255 va_list ap;
1256 va_list ap2;
1258 va_start(ap, fmt);
1259 va_copy(ap2, ap);
1260 fprintf(stderr, "qemu: fatal: ");
1261 vfprintf(stderr, fmt, ap);
1262 fprintf(stderr, "\n");
1263 cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1264 if (qemu_log_separate()) {
1265 qemu_log_lock();
1266 qemu_log("qemu: fatal: ");
1267 qemu_log_vprintf(fmt, ap2);
1268 qemu_log("\n");
1269 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1270 qemu_log_flush();
1271 qemu_log_unlock();
1272 qemu_log_close();
1274 va_end(ap2);
1275 va_end(ap);
1276 replay_finish();
1277 #if defined(CONFIG_USER_ONLY)
1279 struct sigaction act;
1280 sigfillset(&act.sa_mask);
1281 act.sa_handler = SIG_DFL;
1282 act.sa_flags = 0;
1283 sigaction(SIGABRT, &act, NULL);
1285 #endif
1286 abort();
1289 #if !defined(CONFIG_USER_ONLY)
1290 /* Called from RCU critical section */
1291 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1293 RAMBlock *block;
1295 block = atomic_rcu_read(&ram_list.mru_block);
1296 if (block && addr - block->offset < block->max_length) {
1297 return block;
1299 RAMBLOCK_FOREACH(block) {
1300 if (addr - block->offset < block->max_length) {
1301 goto found;
1305 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1306 abort();
1308 found:
1309 /* It is safe to write mru_block outside the iothread lock. This
1310 * is what happens:
1312 * mru_block = xxx
1313 * rcu_read_unlock()
1314 * xxx removed from list
1315 * rcu_read_lock()
1316 * read mru_block
1317 * mru_block = NULL;
1318 * call_rcu(reclaim_ramblock, xxx);
1319 * rcu_read_unlock()
1321 * atomic_rcu_set is not needed here. The block was already published
1322 * when it was placed into the list. Here we're just making an extra
1323 * copy of the pointer.
1325 ram_list.mru_block = block;
1326 return block;
1329 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1331 CPUState *cpu;
1332 ram_addr_t start1;
1333 RAMBlock *block;
1334 ram_addr_t end;
1336 assert(tcg_enabled());
1337 end = TARGET_PAGE_ALIGN(start + length);
1338 start &= TARGET_PAGE_MASK;
1340 rcu_read_lock();
1341 block = qemu_get_ram_block(start);
1342 assert(block == qemu_get_ram_block(end - 1));
1343 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1344 CPU_FOREACH(cpu) {
1345 tlb_reset_dirty(cpu, start1, length);
1347 rcu_read_unlock();
1350 /* Note: start and end must be within the same ram block. */
1351 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1352 ram_addr_t length,
1353 unsigned client)
1355 DirtyMemoryBlocks *blocks;
1356 unsigned long end, page;
1357 bool dirty = false;
1359 if (length == 0) {
1360 return false;
1363 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1364 page = start >> TARGET_PAGE_BITS;
1366 rcu_read_lock();
1368 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1370 while (page < end) {
1371 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1372 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1373 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1375 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1376 offset, num);
1377 page += num;
1380 rcu_read_unlock();
1382 if (dirty && tcg_enabled()) {
1383 tlb_reset_dirty_range_all(start, length);
1386 return dirty;
1389 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1390 (ram_addr_t start, ram_addr_t length, unsigned client)
1392 DirtyMemoryBlocks *blocks;
1393 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1394 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1395 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1396 DirtyBitmapSnapshot *snap;
1397 unsigned long page, end, dest;
1399 snap = g_malloc0(sizeof(*snap) +
1400 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1401 snap->start = first;
1402 snap->end = last;
1404 page = first >> TARGET_PAGE_BITS;
1405 end = last >> TARGET_PAGE_BITS;
1406 dest = 0;
1408 rcu_read_lock();
1410 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1412 while (page < end) {
1413 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1414 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1415 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1417 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1418 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1419 offset >>= BITS_PER_LEVEL;
1421 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1422 blocks->blocks[idx] + offset,
1423 num);
1424 page += num;
1425 dest += num >> BITS_PER_LEVEL;
1428 rcu_read_unlock();
1430 if (tcg_enabled()) {
1431 tlb_reset_dirty_range_all(start, length);
1434 return snap;
1437 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1438 ram_addr_t start,
1439 ram_addr_t length)
1441 unsigned long page, end;
1443 assert(start >= snap->start);
1444 assert(start + length <= snap->end);
1446 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1447 page = (start - snap->start) >> TARGET_PAGE_BITS;
1449 while (page < end) {
1450 if (test_bit(page, snap->dirty)) {
1451 return true;
1453 page++;
1455 return false;
1458 /* Called from RCU critical section */
1459 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1460 MemoryRegionSection *section,
1461 target_ulong vaddr,
1462 hwaddr paddr, hwaddr xlat,
1463 int prot,
1464 target_ulong *address)
1466 hwaddr iotlb;
1467 CPUWatchpoint *wp;
1469 if (memory_region_is_ram(section->mr)) {
1470 /* Normal RAM. */
1471 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1472 if (!section->readonly) {
1473 iotlb |= PHYS_SECTION_NOTDIRTY;
1474 } else {
1475 iotlb |= PHYS_SECTION_ROM;
1477 } else {
1478 AddressSpaceDispatch *d;
1480 d = flatview_to_dispatch(section->fv);
1481 iotlb = section - d->map.sections;
1482 iotlb += xlat;
1485 /* Make accesses to pages with watchpoints go via the
1486 watchpoint trap routines. */
1487 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1488 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1489 /* Avoid trapping reads of pages with a write breakpoint. */
1490 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1491 iotlb = PHYS_SECTION_WATCH + paddr;
1492 *address |= TLB_MMIO;
1493 break;
1498 return iotlb;
1500 #endif /* defined(CONFIG_USER_ONLY) */
1502 #if !defined(CONFIG_USER_ONLY)
1504 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1505 uint16_t section);
1506 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1508 static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1509 qemu_anon_ram_alloc;
1512 * Set a custom physical guest memory alloator.
1513 * Accelerators with unusual needs may need this. Hopefully, we can
1514 * get rid of it eventually.
1516 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1518 phys_mem_alloc = alloc;
1521 static uint16_t phys_section_add(PhysPageMap *map,
1522 MemoryRegionSection *section)
1524 /* The physical section number is ORed with a page-aligned
1525 * pointer to produce the iotlb entries. Thus it should
1526 * never overflow into the page-aligned value.
1528 assert(map->sections_nb < TARGET_PAGE_SIZE);
1530 if (map->sections_nb == map->sections_nb_alloc) {
1531 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1532 map->sections = g_renew(MemoryRegionSection, map->sections,
1533 map->sections_nb_alloc);
1535 map->sections[map->sections_nb] = *section;
1536 memory_region_ref(section->mr);
1537 return map->sections_nb++;
1540 static void phys_section_destroy(MemoryRegion *mr)
1542 bool have_sub_page = mr->subpage;
1544 memory_region_unref(mr);
1546 if (have_sub_page) {
1547 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1548 object_unref(OBJECT(&subpage->iomem));
1549 g_free(subpage);
1553 static void phys_sections_free(PhysPageMap *map)
1555 while (map->sections_nb > 0) {
1556 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1557 phys_section_destroy(section->mr);
1559 g_free(map->sections);
1560 g_free(map->nodes);
1563 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1565 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1566 subpage_t *subpage;
1567 hwaddr base = section->offset_within_address_space
1568 & TARGET_PAGE_MASK;
1569 MemoryRegionSection *existing = phys_page_find(d, base);
1570 MemoryRegionSection subsection = {
1571 .offset_within_address_space = base,
1572 .size = int128_make64(TARGET_PAGE_SIZE),
1574 hwaddr start, end;
1576 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1578 if (!(existing->mr->subpage)) {
1579 subpage = subpage_init(fv, base);
1580 subsection.fv = fv;
1581 subsection.mr = &subpage->iomem;
1582 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1583 phys_section_add(&d->map, &subsection));
1584 } else {
1585 subpage = container_of(existing->mr, subpage_t, iomem);
1587 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1588 end = start + int128_get64(section->size) - 1;
1589 subpage_register(subpage, start, end,
1590 phys_section_add(&d->map, section));
1594 static void register_multipage(FlatView *fv,
1595 MemoryRegionSection *section)
1597 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1598 hwaddr start_addr = section->offset_within_address_space;
1599 uint16_t section_index = phys_section_add(&d->map, section);
1600 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1601 TARGET_PAGE_BITS));
1603 assert(num_pages);
1604 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1608 * The range in *section* may look like this:
1610 * |s|PPPPPPP|s|
1612 * where s stands for subpage and P for page.
1614 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1616 MemoryRegionSection remain = *section;
1617 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1619 /* register first subpage */
1620 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1621 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1622 - remain.offset_within_address_space;
1624 MemoryRegionSection now = remain;
1625 now.size = int128_min(int128_make64(left), now.size);
1626 register_subpage(fv, &now);
1627 if (int128_eq(remain.size, now.size)) {
1628 return;
1630 remain.size = int128_sub(remain.size, now.size);
1631 remain.offset_within_address_space += int128_get64(now.size);
1632 remain.offset_within_region += int128_get64(now.size);
1635 /* register whole pages */
1636 if (int128_ge(remain.size, page_size)) {
1637 MemoryRegionSection now = remain;
1638 now.size = int128_and(now.size, int128_neg(page_size));
1639 register_multipage(fv, &now);
1640 if (int128_eq(remain.size, now.size)) {
1641 return;
1643 remain.size = int128_sub(remain.size, now.size);
1644 remain.offset_within_address_space += int128_get64(now.size);
1645 remain.offset_within_region += int128_get64(now.size);
1648 /* register last subpage */
1649 register_subpage(fv, &remain);
1652 void qemu_flush_coalesced_mmio_buffer(void)
1654 if (kvm_enabled())
1655 kvm_flush_coalesced_mmio_buffer();
1658 void qemu_mutex_lock_ramlist(void)
1660 qemu_mutex_lock(&ram_list.mutex);
1663 void qemu_mutex_unlock_ramlist(void)
1665 qemu_mutex_unlock(&ram_list.mutex);
1668 void ram_block_dump(Monitor *mon)
1670 RAMBlock *block;
1671 char *psize;
1673 rcu_read_lock();
1674 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1675 "Block Name", "PSize", "Offset", "Used", "Total");
1676 RAMBLOCK_FOREACH(block) {
1677 psize = size_to_str(block->page_size);
1678 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1679 " 0x%016" PRIx64 "\n", block->idstr, psize,
1680 (uint64_t)block->offset,
1681 (uint64_t)block->used_length,
1682 (uint64_t)block->max_length);
1683 g_free(psize);
1685 rcu_read_unlock();
1688 #ifdef __linux__
1690 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1691 * may or may not name the same files / on the same filesystem now as
1692 * when we actually open and map them. Iterate over the file
1693 * descriptors instead, and use qemu_fd_getpagesize().
1695 static int find_min_backend_pagesize(Object *obj, void *opaque)
1697 long *hpsize_min = opaque;
1699 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1700 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1701 long hpsize = host_memory_backend_pagesize(backend);
1703 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1704 *hpsize_min = hpsize;
1708 return 0;
1711 static int find_max_backend_pagesize(Object *obj, void *opaque)
1713 long *hpsize_max = opaque;
1715 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1716 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1717 long hpsize = host_memory_backend_pagesize(backend);
1719 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1720 *hpsize_max = hpsize;
1724 return 0;
1728 * TODO: We assume right now that all mapped host memory backends are
1729 * used as RAM, however some might be used for different purposes.
1731 long qemu_minrampagesize(void)
1733 long hpsize = LONG_MAX;
1734 long mainrampagesize;
1735 Object *memdev_root;
1737 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1739 /* it's possible we have memory-backend objects with
1740 * hugepage-backed RAM. these may get mapped into system
1741 * address space via -numa parameters or memory hotplug
1742 * hooks. we want to take these into account, but we
1743 * also want to make sure these supported hugepage
1744 * sizes are applicable across the entire range of memory
1745 * we may boot from, so we take the min across all
1746 * backends, and assume normal pages in cases where a
1747 * backend isn't backed by hugepages.
1749 memdev_root = object_resolve_path("/objects", NULL);
1750 if (memdev_root) {
1751 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1753 if (hpsize == LONG_MAX) {
1754 /* No additional memory regions found ==> Report main RAM page size */
1755 return mainrampagesize;
1758 /* If NUMA is disabled or the NUMA nodes are not backed with a
1759 * memory-backend, then there is at least one node using "normal" RAM,
1760 * so if its page size is smaller we have got to report that size instead.
1762 if (hpsize > mainrampagesize &&
1763 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1764 static bool warned;
1765 if (!warned) {
1766 error_report("Huge page support disabled (n/a for main memory).");
1767 warned = true;
1769 return mainrampagesize;
1772 return hpsize;
1775 long qemu_maxrampagesize(void)
1777 long pagesize = qemu_mempath_getpagesize(mem_path);
1778 Object *memdev_root = object_resolve_path("/objects", NULL);
1780 if (memdev_root) {
1781 object_child_foreach(memdev_root, find_max_backend_pagesize,
1782 &pagesize);
1784 return pagesize;
1786 #else
1787 long qemu_minrampagesize(void)
1789 return getpagesize();
1791 long qemu_maxrampagesize(void)
1793 return getpagesize();
1795 #endif
1797 #ifdef CONFIG_POSIX
1798 static int64_t get_file_size(int fd)
1800 int64_t size = lseek(fd, 0, SEEK_END);
1801 if (size < 0) {
1802 return -errno;
1804 return size;
1807 static int file_ram_open(const char *path,
1808 const char *region_name,
1809 bool *created,
1810 Error **errp)
1812 char *filename;
1813 char *sanitized_name;
1814 char *c;
1815 int fd = -1;
1817 *created = false;
1818 for (;;) {
1819 fd = open(path, O_RDWR);
1820 if (fd >= 0) {
1821 /* @path names an existing file, use it */
1822 break;
1824 if (errno == ENOENT) {
1825 /* @path names a file that doesn't exist, create it */
1826 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1827 if (fd >= 0) {
1828 *created = true;
1829 break;
1831 } else if (errno == EISDIR) {
1832 /* @path names a directory, create a file there */
1833 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1834 sanitized_name = g_strdup(region_name);
1835 for (c = sanitized_name; *c != '\0'; c++) {
1836 if (*c == '/') {
1837 *c = '_';
1841 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1842 sanitized_name);
1843 g_free(sanitized_name);
1845 fd = mkstemp(filename);
1846 if (fd >= 0) {
1847 unlink(filename);
1848 g_free(filename);
1849 break;
1851 g_free(filename);
1853 if (errno != EEXIST && errno != EINTR) {
1854 error_setg_errno(errp, errno,
1855 "can't open backing store %s for guest RAM",
1856 path);
1857 return -1;
1860 * Try again on EINTR and EEXIST. The latter happens when
1861 * something else creates the file between our two open().
1865 return fd;
1868 static void *file_ram_alloc(RAMBlock *block,
1869 ram_addr_t memory,
1870 int fd,
1871 bool truncate,
1872 Error **errp)
1874 void *area;
1876 block->page_size = qemu_fd_getpagesize(fd);
1877 if (block->mr->align % block->page_size) {
1878 error_setg(errp, "alignment 0x%" PRIx64
1879 " must be multiples of page size 0x%zx",
1880 block->mr->align, block->page_size);
1881 return NULL;
1882 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1883 error_setg(errp, "alignment 0x%" PRIx64
1884 " must be a power of two", block->mr->align);
1885 return NULL;
1887 block->mr->align = MAX(block->page_size, block->mr->align);
1888 #if defined(__s390x__)
1889 if (kvm_enabled()) {
1890 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1892 #endif
1894 if (memory < block->page_size) {
1895 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1896 "or larger than page size 0x%zx",
1897 memory, block->page_size);
1898 return NULL;
1901 memory = ROUND_UP(memory, block->page_size);
1904 * ftruncate is not supported by hugetlbfs in older
1905 * hosts, so don't bother bailing out on errors.
1906 * If anything goes wrong with it under other filesystems,
1907 * mmap will fail.
1909 * Do not truncate the non-empty backend file to avoid corrupting
1910 * the existing data in the file. Disabling shrinking is not
1911 * enough. For example, the current vNVDIMM implementation stores
1912 * the guest NVDIMM labels at the end of the backend file. If the
1913 * backend file is later extended, QEMU will not be able to find
1914 * those labels. Therefore, extending the non-empty backend file
1915 * is disabled as well.
1917 if (truncate && ftruncate(fd, memory)) {
1918 perror("ftruncate");
1921 area = qemu_ram_mmap(fd, memory, block->mr->align,
1922 block->flags & RAM_SHARED, block->flags & RAM_PMEM);
1923 if (area == MAP_FAILED) {
1924 error_setg_errno(errp, errno,
1925 "unable to map backing store for guest RAM");
1926 return NULL;
1929 if (mem_prealloc) {
1930 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
1931 if (errp && *errp) {
1932 qemu_ram_munmap(fd, area, memory);
1933 return NULL;
1937 block->fd = fd;
1938 return area;
1940 #endif
1942 /* Allocate space within the ram_addr_t space that governs the
1943 * dirty bitmaps.
1944 * Called with the ramlist lock held.
1946 static ram_addr_t find_ram_offset(ram_addr_t size)
1948 RAMBlock *block, *next_block;
1949 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1951 assert(size != 0); /* it would hand out same offset multiple times */
1953 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1954 return 0;
1957 RAMBLOCK_FOREACH(block) {
1958 ram_addr_t candidate, next = RAM_ADDR_MAX;
1960 /* Align blocks to start on a 'long' in the bitmap
1961 * which makes the bitmap sync'ing take the fast path.
1963 candidate = block->offset + block->max_length;
1964 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1966 /* Search for the closest following block
1967 * and find the gap.
1969 RAMBLOCK_FOREACH(next_block) {
1970 if (next_block->offset >= candidate) {
1971 next = MIN(next, next_block->offset);
1975 /* If it fits remember our place and remember the size
1976 * of gap, but keep going so that we might find a smaller
1977 * gap to fill so avoiding fragmentation.
1979 if (next - candidate >= size && next - candidate < mingap) {
1980 offset = candidate;
1981 mingap = next - candidate;
1984 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1987 if (offset == RAM_ADDR_MAX) {
1988 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1989 (uint64_t)size);
1990 abort();
1993 trace_find_ram_offset(size, offset);
1995 return offset;
1998 static unsigned long last_ram_page(void)
2000 RAMBlock *block;
2001 ram_addr_t last = 0;
2003 rcu_read_lock();
2004 RAMBLOCK_FOREACH(block) {
2005 last = MAX(last, block->offset + block->max_length);
2007 rcu_read_unlock();
2008 return last >> TARGET_PAGE_BITS;
2011 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
2013 int ret;
2015 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
2016 if (!machine_dump_guest_core(current_machine)) {
2017 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
2018 if (ret) {
2019 perror("qemu_madvise");
2020 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
2021 "but dump_guest_core=off specified\n");
2026 const char *qemu_ram_get_idstr(RAMBlock *rb)
2028 return rb->idstr;
2031 void *qemu_ram_get_host_addr(RAMBlock *rb)
2033 return rb->host;
2036 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
2038 return rb->offset;
2041 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
2043 return rb->used_length;
2046 bool qemu_ram_is_shared(RAMBlock *rb)
2048 return rb->flags & RAM_SHARED;
2051 /* Note: Only set at the start of postcopy */
2052 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
2054 return rb->flags & RAM_UF_ZEROPAGE;
2057 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
2059 rb->flags |= RAM_UF_ZEROPAGE;
2062 bool qemu_ram_is_migratable(RAMBlock *rb)
2064 return rb->flags & RAM_MIGRATABLE;
2067 void qemu_ram_set_migratable(RAMBlock *rb)
2069 rb->flags |= RAM_MIGRATABLE;
2072 void qemu_ram_unset_migratable(RAMBlock *rb)
2074 rb->flags &= ~RAM_MIGRATABLE;
2077 /* Called with iothread lock held. */
2078 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
2080 RAMBlock *block;
2082 assert(new_block);
2083 assert(!new_block->idstr[0]);
2085 if (dev) {
2086 char *id = qdev_get_dev_path(dev);
2087 if (id) {
2088 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2089 g_free(id);
2092 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2094 rcu_read_lock();
2095 RAMBLOCK_FOREACH(block) {
2096 if (block != new_block &&
2097 !strcmp(block->idstr, new_block->idstr)) {
2098 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2099 new_block->idstr);
2100 abort();
2103 rcu_read_unlock();
2106 /* Called with iothread lock held. */
2107 void qemu_ram_unset_idstr(RAMBlock *block)
2109 /* FIXME: arch_init.c assumes that this is not called throughout
2110 * migration. Ignore the problem since hot-unplug during migration
2111 * does not work anyway.
2113 if (block) {
2114 memset(block->idstr, 0, sizeof(block->idstr));
2118 size_t qemu_ram_pagesize(RAMBlock *rb)
2120 return rb->page_size;
2123 /* Returns the largest size of page in use */
2124 size_t qemu_ram_pagesize_largest(void)
2126 RAMBlock *block;
2127 size_t largest = 0;
2129 RAMBLOCK_FOREACH(block) {
2130 largest = MAX(largest, qemu_ram_pagesize(block));
2133 return largest;
2136 static int memory_try_enable_merging(void *addr, size_t len)
2138 if (!machine_mem_merge(current_machine)) {
2139 /* disabled by the user */
2140 return 0;
2143 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2146 /* Only legal before guest might have detected the memory size: e.g. on
2147 * incoming migration, or right after reset.
2149 * As memory core doesn't know how is memory accessed, it is up to
2150 * resize callback to update device state and/or add assertions to detect
2151 * misuse, if necessary.
2153 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2155 assert(block);
2157 newsize = HOST_PAGE_ALIGN(newsize);
2159 if (block->used_length == newsize) {
2160 return 0;
2163 if (!(block->flags & RAM_RESIZEABLE)) {
2164 error_setg_errno(errp, EINVAL,
2165 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2166 " in != 0x" RAM_ADDR_FMT, block->idstr,
2167 newsize, block->used_length);
2168 return -EINVAL;
2171 if (block->max_length < newsize) {
2172 error_setg_errno(errp, EINVAL,
2173 "Length too large: %s: 0x" RAM_ADDR_FMT
2174 " > 0x" RAM_ADDR_FMT, block->idstr,
2175 newsize, block->max_length);
2176 return -EINVAL;
2179 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2180 block->used_length = newsize;
2181 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2182 DIRTY_CLIENTS_ALL);
2183 memory_region_set_size(block->mr, newsize);
2184 if (block->resized) {
2185 block->resized(block->idstr, newsize, block->host);
2187 return 0;
2190 /* Called with ram_list.mutex held */
2191 static void dirty_memory_extend(ram_addr_t old_ram_size,
2192 ram_addr_t new_ram_size)
2194 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2195 DIRTY_MEMORY_BLOCK_SIZE);
2196 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2197 DIRTY_MEMORY_BLOCK_SIZE);
2198 int i;
2200 /* Only need to extend if block count increased */
2201 if (new_num_blocks <= old_num_blocks) {
2202 return;
2205 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2206 DirtyMemoryBlocks *old_blocks;
2207 DirtyMemoryBlocks *new_blocks;
2208 int j;
2210 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2211 new_blocks = g_malloc(sizeof(*new_blocks) +
2212 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2214 if (old_num_blocks) {
2215 memcpy(new_blocks->blocks, old_blocks->blocks,
2216 old_num_blocks * sizeof(old_blocks->blocks[0]));
2219 for (j = old_num_blocks; j < new_num_blocks; j++) {
2220 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2223 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2225 if (old_blocks) {
2226 g_free_rcu(old_blocks, rcu);
2231 static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2233 RAMBlock *block;
2234 RAMBlock *last_block = NULL;
2235 ram_addr_t old_ram_size, new_ram_size;
2236 Error *err = NULL;
2238 old_ram_size = last_ram_page();
2240 qemu_mutex_lock_ramlist();
2241 new_block->offset = find_ram_offset(new_block->max_length);
2243 if (!new_block->host) {
2244 if (xen_enabled()) {
2245 xen_ram_alloc(new_block->offset, new_block->max_length,
2246 new_block->mr, &err);
2247 if (err) {
2248 error_propagate(errp, err);
2249 qemu_mutex_unlock_ramlist();
2250 return;
2252 } else {
2253 new_block->host = phys_mem_alloc(new_block->max_length,
2254 &new_block->mr->align, shared);
2255 if (!new_block->host) {
2256 error_setg_errno(errp, errno,
2257 "cannot set up guest memory '%s'",
2258 memory_region_name(new_block->mr));
2259 qemu_mutex_unlock_ramlist();
2260 return;
2262 memory_try_enable_merging(new_block->host, new_block->max_length);
2266 new_ram_size = MAX(old_ram_size,
2267 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2268 if (new_ram_size > old_ram_size) {
2269 dirty_memory_extend(old_ram_size, new_ram_size);
2271 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2272 * QLIST (which has an RCU-friendly variant) does not have insertion at
2273 * tail, so save the last element in last_block.
2275 RAMBLOCK_FOREACH(block) {
2276 last_block = block;
2277 if (block->max_length < new_block->max_length) {
2278 break;
2281 if (block) {
2282 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2283 } else if (last_block) {
2284 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2285 } else { /* list is empty */
2286 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2288 ram_list.mru_block = NULL;
2290 /* Write list before version */
2291 smp_wmb();
2292 ram_list.version++;
2293 qemu_mutex_unlock_ramlist();
2295 cpu_physical_memory_set_dirty_range(new_block->offset,
2296 new_block->used_length,
2297 DIRTY_CLIENTS_ALL);
2299 if (new_block->host) {
2300 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2301 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2302 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2303 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
2304 ram_block_notify_add(new_block->host, new_block->max_length);
2308 #ifdef CONFIG_POSIX
2309 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2310 uint32_t ram_flags, int fd,
2311 Error **errp)
2313 RAMBlock *new_block;
2314 Error *local_err = NULL;
2315 int64_t file_size;
2317 /* Just support these ram flags by now. */
2318 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2320 if (xen_enabled()) {
2321 error_setg(errp, "-mem-path not supported with Xen");
2322 return NULL;
2325 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2326 error_setg(errp,
2327 "host lacks kvm mmu notifiers, -mem-path unsupported");
2328 return NULL;
2331 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2333 * file_ram_alloc() needs to allocate just like
2334 * phys_mem_alloc, but we haven't bothered to provide
2335 * a hook there.
2337 error_setg(errp,
2338 "-mem-path not supported with this accelerator");
2339 return NULL;
2342 size = HOST_PAGE_ALIGN(size);
2343 file_size = get_file_size(fd);
2344 if (file_size > 0 && file_size < size) {
2345 error_setg(errp, "backing store %s size 0x%" PRIx64
2346 " does not match 'size' option 0x" RAM_ADDR_FMT,
2347 mem_path, file_size, size);
2348 return NULL;
2351 new_block = g_malloc0(sizeof(*new_block));
2352 new_block->mr = mr;
2353 new_block->used_length = size;
2354 new_block->max_length = size;
2355 new_block->flags = ram_flags;
2356 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2357 if (!new_block->host) {
2358 g_free(new_block);
2359 return NULL;
2362 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
2363 if (local_err) {
2364 g_free(new_block);
2365 error_propagate(errp, local_err);
2366 return NULL;
2368 return new_block;
2373 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2374 uint32_t ram_flags, const char *mem_path,
2375 Error **errp)
2377 int fd;
2378 bool created;
2379 RAMBlock *block;
2381 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2382 if (fd < 0) {
2383 return NULL;
2386 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
2387 if (!block) {
2388 if (created) {
2389 unlink(mem_path);
2391 close(fd);
2392 return NULL;
2395 return block;
2397 #endif
2399 static
2400 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2401 void (*resized)(const char*,
2402 uint64_t length,
2403 void *host),
2404 void *host, bool resizeable, bool share,
2405 MemoryRegion *mr, Error **errp)
2407 RAMBlock *new_block;
2408 Error *local_err = NULL;
2410 size = HOST_PAGE_ALIGN(size);
2411 max_size = HOST_PAGE_ALIGN(max_size);
2412 new_block = g_malloc0(sizeof(*new_block));
2413 new_block->mr = mr;
2414 new_block->resized = resized;
2415 new_block->used_length = size;
2416 new_block->max_length = max_size;
2417 assert(max_size >= size);
2418 new_block->fd = -1;
2419 new_block->page_size = getpagesize();
2420 new_block->host = host;
2421 if (host) {
2422 new_block->flags |= RAM_PREALLOC;
2424 if (resizeable) {
2425 new_block->flags |= RAM_RESIZEABLE;
2427 ram_block_add(new_block, &local_err, share);
2428 if (local_err) {
2429 g_free(new_block);
2430 error_propagate(errp, local_err);
2431 return NULL;
2433 return new_block;
2436 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2437 MemoryRegion *mr, Error **errp)
2439 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2440 false, mr, errp);
2443 RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2444 MemoryRegion *mr, Error **errp)
2446 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2447 share, mr, errp);
2450 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2451 void (*resized)(const char*,
2452 uint64_t length,
2453 void *host),
2454 MemoryRegion *mr, Error **errp)
2456 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2457 false, mr, errp);
2460 static void reclaim_ramblock(RAMBlock *block)
2462 if (block->flags & RAM_PREALLOC) {
2464 } else if (xen_enabled()) {
2465 xen_invalidate_map_cache_entry(block->host);
2466 #ifndef _WIN32
2467 } else if (block->fd >= 0) {
2468 qemu_ram_munmap(block->fd, block->host, block->max_length);
2469 close(block->fd);
2470 #endif
2471 } else {
2472 qemu_anon_ram_free(block->host, block->max_length);
2474 g_free(block);
2477 void qemu_ram_free(RAMBlock *block)
2479 if (!block) {
2480 return;
2483 if (block->host) {
2484 ram_block_notify_remove(block->host, block->max_length);
2487 qemu_mutex_lock_ramlist();
2488 QLIST_REMOVE_RCU(block, next);
2489 ram_list.mru_block = NULL;
2490 /* Write list before version */
2491 smp_wmb();
2492 ram_list.version++;
2493 call_rcu(block, reclaim_ramblock, rcu);
2494 qemu_mutex_unlock_ramlist();
2497 #ifndef _WIN32
2498 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2500 RAMBlock *block;
2501 ram_addr_t offset;
2502 int flags;
2503 void *area, *vaddr;
2505 RAMBLOCK_FOREACH(block) {
2506 offset = addr - block->offset;
2507 if (offset < block->max_length) {
2508 vaddr = ramblock_ptr(block, offset);
2509 if (block->flags & RAM_PREALLOC) {
2511 } else if (xen_enabled()) {
2512 abort();
2513 } else {
2514 flags = MAP_FIXED;
2515 if (block->fd >= 0) {
2516 flags |= (block->flags & RAM_SHARED ?
2517 MAP_SHARED : MAP_PRIVATE);
2518 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2519 flags, block->fd, offset);
2520 } else {
2522 * Remap needs to match alloc. Accelerators that
2523 * set phys_mem_alloc never remap. If they did,
2524 * we'd need a remap hook here.
2526 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2528 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2529 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2530 flags, -1, 0);
2532 if (area != vaddr) {
2533 error_report("Could not remap addr: "
2534 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2535 length, addr);
2536 exit(1);
2538 memory_try_enable_merging(vaddr, length);
2539 qemu_ram_setup_dump(vaddr, length);
2544 #endif /* !_WIN32 */
2546 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2547 * This should not be used for general purpose DMA. Use address_space_map
2548 * or address_space_rw instead. For local memory (e.g. video ram) that the
2549 * device owns, use memory_region_get_ram_ptr.
2551 * Called within RCU critical section.
2553 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2555 RAMBlock *block = ram_block;
2557 if (block == NULL) {
2558 block = qemu_get_ram_block(addr);
2559 addr -= block->offset;
2562 if (xen_enabled() && block->host == NULL) {
2563 /* We need to check if the requested address is in the RAM
2564 * because we don't want to map the entire memory in QEMU.
2565 * In that case just map until the end of the page.
2567 if (block->offset == 0) {
2568 return xen_map_cache(addr, 0, 0, false);
2571 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2573 return ramblock_ptr(block, addr);
2576 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2577 * but takes a size argument.
2579 * Called within RCU critical section.
2581 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2582 hwaddr *size, bool lock)
2584 RAMBlock *block = ram_block;
2585 if (*size == 0) {
2586 return NULL;
2589 if (block == NULL) {
2590 block = qemu_get_ram_block(addr);
2591 addr -= block->offset;
2593 *size = MIN(*size, block->max_length - addr);
2595 if (xen_enabled() && block->host == NULL) {
2596 /* We need to check if the requested address is in the RAM
2597 * because we don't want to map the entire memory in QEMU.
2598 * In that case just map the requested area.
2600 if (block->offset == 0) {
2601 return xen_map_cache(addr, *size, lock, lock);
2604 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2607 return ramblock_ptr(block, addr);
2610 /* Return the offset of a hostpointer within a ramblock */
2611 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2613 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2614 assert((uintptr_t)host >= (uintptr_t)rb->host);
2615 assert(res < rb->max_length);
2617 return res;
2621 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2622 * in that RAMBlock.
2624 * ptr: Host pointer to look up
2625 * round_offset: If true round the result offset down to a page boundary
2626 * *ram_addr: set to result ram_addr
2627 * *offset: set to result offset within the RAMBlock
2629 * Returns: RAMBlock (or NULL if not found)
2631 * By the time this function returns, the returned pointer is not protected
2632 * by RCU anymore. If the caller is not within an RCU critical section and
2633 * does not hold the iothread lock, it must have other means of protecting the
2634 * pointer, such as a reference to the region that includes the incoming
2635 * ram_addr_t.
2637 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2638 ram_addr_t *offset)
2640 RAMBlock *block;
2641 uint8_t *host = ptr;
2643 if (xen_enabled()) {
2644 ram_addr_t ram_addr;
2645 rcu_read_lock();
2646 ram_addr = xen_ram_addr_from_mapcache(ptr);
2647 block = qemu_get_ram_block(ram_addr);
2648 if (block) {
2649 *offset = ram_addr - block->offset;
2651 rcu_read_unlock();
2652 return block;
2655 rcu_read_lock();
2656 block = atomic_rcu_read(&ram_list.mru_block);
2657 if (block && block->host && host - block->host < block->max_length) {
2658 goto found;
2661 RAMBLOCK_FOREACH(block) {
2662 /* This case append when the block is not mapped. */
2663 if (block->host == NULL) {
2664 continue;
2666 if (host - block->host < block->max_length) {
2667 goto found;
2671 rcu_read_unlock();
2672 return NULL;
2674 found:
2675 *offset = (host - block->host);
2676 if (round_offset) {
2677 *offset &= TARGET_PAGE_MASK;
2679 rcu_read_unlock();
2680 return block;
2684 * Finds the named RAMBlock
2686 * name: The name of RAMBlock to find
2688 * Returns: RAMBlock (or NULL if not found)
2690 RAMBlock *qemu_ram_block_by_name(const char *name)
2692 RAMBlock *block;
2694 RAMBLOCK_FOREACH(block) {
2695 if (!strcmp(name, block->idstr)) {
2696 return block;
2700 return NULL;
2703 /* Some of the softmmu routines need to translate from a host pointer
2704 (typically a TLB entry) back to a ram offset. */
2705 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2707 RAMBlock *block;
2708 ram_addr_t offset;
2710 block = qemu_ram_block_from_host(ptr, false, &offset);
2711 if (!block) {
2712 return RAM_ADDR_INVALID;
2715 return block->offset + offset;
2718 /* Called within RCU critical section. */
2719 void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2720 CPUState *cpu,
2721 vaddr mem_vaddr,
2722 ram_addr_t ram_addr,
2723 unsigned size)
2725 ndi->cpu = cpu;
2726 ndi->ram_addr = ram_addr;
2727 ndi->mem_vaddr = mem_vaddr;
2728 ndi->size = size;
2729 ndi->pages = NULL;
2731 assert(tcg_enabled());
2732 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2733 ndi->pages = page_collection_lock(ram_addr, ram_addr + size);
2734 tb_invalidate_phys_page_fast(ndi->pages, ram_addr, size);
2738 /* Called within RCU critical section. */
2739 void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2741 if (ndi->pages) {
2742 assert(tcg_enabled());
2743 page_collection_unlock(ndi->pages);
2744 ndi->pages = NULL;
2747 /* Set both VGA and migration bits for simplicity and to remove
2748 * the notdirty callback faster.
2750 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2751 DIRTY_CLIENTS_NOCODE);
2752 /* we remove the notdirty callback only if the code has been
2753 flushed */
2754 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2755 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2759 /* Called within RCU critical section. */
2760 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2761 uint64_t val, unsigned size)
2763 NotDirtyInfo ndi;
2765 memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2766 ram_addr, size);
2768 stn_p(qemu_map_ram_ptr(NULL, ram_addr), size, val);
2769 memory_notdirty_write_complete(&ndi);
2772 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2773 unsigned size, bool is_write,
2774 MemTxAttrs attrs)
2776 return is_write;
2779 static const MemoryRegionOps notdirty_mem_ops = {
2780 .write = notdirty_mem_write,
2781 .valid.accepts = notdirty_mem_accepts,
2782 .endianness = DEVICE_NATIVE_ENDIAN,
2783 .valid = {
2784 .min_access_size = 1,
2785 .max_access_size = 8,
2786 .unaligned = false,
2788 .impl = {
2789 .min_access_size = 1,
2790 .max_access_size = 8,
2791 .unaligned = false,
2795 /* Generate a debug exception if a watchpoint has been hit. */
2796 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2798 CPUState *cpu = current_cpu;
2799 CPUClass *cc = CPU_GET_CLASS(cpu);
2800 target_ulong vaddr;
2801 CPUWatchpoint *wp;
2803 assert(tcg_enabled());
2804 if (cpu->watchpoint_hit) {
2805 /* We re-entered the check after replacing the TB. Now raise
2806 * the debug interrupt so that is will trigger after the
2807 * current instruction. */
2808 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2809 return;
2811 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2812 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2813 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2814 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2815 && (wp->flags & flags)) {
2816 if (flags == BP_MEM_READ) {
2817 wp->flags |= BP_WATCHPOINT_HIT_READ;
2818 } else {
2819 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2821 wp->hitaddr = vaddr;
2822 wp->hitattrs = attrs;
2823 if (!cpu->watchpoint_hit) {
2824 if (wp->flags & BP_CPU &&
2825 !cc->debug_check_watchpoint(cpu, wp)) {
2826 wp->flags &= ~BP_WATCHPOINT_HIT;
2827 continue;
2829 cpu->watchpoint_hit = wp;
2831 mmap_lock();
2832 tb_check_watchpoint(cpu);
2833 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2834 cpu->exception_index = EXCP_DEBUG;
2835 mmap_unlock();
2836 cpu_loop_exit(cpu);
2837 } else {
2838 /* Force execution of one insn next time. */
2839 cpu->cflags_next_tb = 1 | curr_cflags();
2840 mmap_unlock();
2841 cpu_loop_exit_noexc(cpu);
2844 } else {
2845 wp->flags &= ~BP_WATCHPOINT_HIT;
2850 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2851 so these check for a hit then pass through to the normal out-of-line
2852 phys routines. */
2853 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2854 unsigned size, MemTxAttrs attrs)
2856 MemTxResult res;
2857 uint64_t data;
2858 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2859 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2861 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2862 switch (size) {
2863 case 1:
2864 data = address_space_ldub(as, addr, attrs, &res);
2865 break;
2866 case 2:
2867 data = address_space_lduw(as, addr, attrs, &res);
2868 break;
2869 case 4:
2870 data = address_space_ldl(as, addr, attrs, &res);
2871 break;
2872 case 8:
2873 data = address_space_ldq(as, addr, attrs, &res);
2874 break;
2875 default: abort();
2877 *pdata = data;
2878 return res;
2881 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2882 uint64_t val, unsigned size,
2883 MemTxAttrs attrs)
2885 MemTxResult res;
2886 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2887 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2889 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2890 switch (size) {
2891 case 1:
2892 address_space_stb(as, addr, val, attrs, &res);
2893 break;
2894 case 2:
2895 address_space_stw(as, addr, val, attrs, &res);
2896 break;
2897 case 4:
2898 address_space_stl(as, addr, val, attrs, &res);
2899 break;
2900 case 8:
2901 address_space_stq(as, addr, val, attrs, &res);
2902 break;
2903 default: abort();
2905 return res;
2908 static const MemoryRegionOps watch_mem_ops = {
2909 .read_with_attrs = watch_mem_read,
2910 .write_with_attrs = watch_mem_write,
2911 .endianness = DEVICE_NATIVE_ENDIAN,
2912 .valid = {
2913 .min_access_size = 1,
2914 .max_access_size = 8,
2915 .unaligned = false,
2917 .impl = {
2918 .min_access_size = 1,
2919 .max_access_size = 8,
2920 .unaligned = false,
2924 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2925 MemTxAttrs attrs, uint8_t *buf, hwaddr len);
2926 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2927 const uint8_t *buf, hwaddr len);
2928 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2929 bool is_write, MemTxAttrs attrs);
2931 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2932 unsigned len, MemTxAttrs attrs)
2934 subpage_t *subpage = opaque;
2935 uint8_t buf[8];
2936 MemTxResult res;
2938 #if defined(DEBUG_SUBPAGE)
2939 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2940 subpage, len, addr);
2941 #endif
2942 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2943 if (res) {
2944 return res;
2946 *data = ldn_p(buf, len);
2947 return MEMTX_OK;
2950 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2951 uint64_t value, unsigned len, MemTxAttrs attrs)
2953 subpage_t *subpage = opaque;
2954 uint8_t buf[8];
2956 #if defined(DEBUG_SUBPAGE)
2957 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2958 " value %"PRIx64"\n",
2959 __func__, subpage, len, addr, value);
2960 #endif
2961 stn_p(buf, len, value);
2962 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2965 static bool subpage_accepts(void *opaque, hwaddr addr,
2966 unsigned len, bool is_write,
2967 MemTxAttrs attrs)
2969 subpage_t *subpage = opaque;
2970 #if defined(DEBUG_SUBPAGE)
2971 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2972 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2973 #endif
2975 return flatview_access_valid(subpage->fv, addr + subpage->base,
2976 len, is_write, attrs);
2979 static const MemoryRegionOps subpage_ops = {
2980 .read_with_attrs = subpage_read,
2981 .write_with_attrs = subpage_write,
2982 .impl.min_access_size = 1,
2983 .impl.max_access_size = 8,
2984 .valid.min_access_size = 1,
2985 .valid.max_access_size = 8,
2986 .valid.accepts = subpage_accepts,
2987 .endianness = DEVICE_NATIVE_ENDIAN,
2990 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2991 uint16_t section)
2993 int idx, eidx;
2995 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2996 return -1;
2997 idx = SUBPAGE_IDX(start);
2998 eidx = SUBPAGE_IDX(end);
2999 #if defined(DEBUG_SUBPAGE)
3000 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
3001 __func__, mmio, start, end, idx, eidx, section);
3002 #endif
3003 for (; idx <= eidx; idx++) {
3004 mmio->sub_section[idx] = section;
3007 return 0;
3010 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
3012 subpage_t *mmio;
3014 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
3015 mmio->fv = fv;
3016 mmio->base = base;
3017 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
3018 NULL, TARGET_PAGE_SIZE);
3019 mmio->iomem.subpage = true;
3020 #if defined(DEBUG_SUBPAGE)
3021 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
3022 mmio, base, TARGET_PAGE_SIZE);
3023 #endif
3024 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
3026 return mmio;
3029 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
3031 assert(fv);
3032 MemoryRegionSection section = {
3033 .fv = fv,
3034 .mr = mr,
3035 .offset_within_address_space = 0,
3036 .offset_within_region = 0,
3037 .size = int128_2_64(),
3040 return phys_section_add(map, &section);
3043 static void readonly_mem_write(void *opaque, hwaddr addr,
3044 uint64_t val, unsigned size)
3046 /* Ignore any write to ROM. */
3049 static bool readonly_mem_accepts(void *opaque, hwaddr addr,
3050 unsigned size, bool is_write,
3051 MemTxAttrs attrs)
3053 return is_write;
3056 /* This will only be used for writes, because reads are special cased
3057 * to directly access the underlying host ram.
3059 static const MemoryRegionOps readonly_mem_ops = {
3060 .write = readonly_mem_write,
3061 .valid.accepts = readonly_mem_accepts,
3062 .endianness = DEVICE_NATIVE_ENDIAN,
3063 .valid = {
3064 .min_access_size = 1,
3065 .max_access_size = 8,
3066 .unaligned = false,
3068 .impl = {
3069 .min_access_size = 1,
3070 .max_access_size = 8,
3071 .unaligned = false,
3075 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
3076 hwaddr index, MemTxAttrs attrs)
3078 int asidx = cpu_asidx_from_attrs(cpu, attrs);
3079 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
3080 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
3081 MemoryRegionSection *sections = d->map.sections;
3083 return &sections[index & ~TARGET_PAGE_MASK];
3086 static void io_mem_init(void)
3088 memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
3089 NULL, NULL, UINT64_MAX);
3090 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
3091 NULL, UINT64_MAX);
3093 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
3094 * which can be called without the iothread mutex.
3096 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
3097 NULL, UINT64_MAX);
3098 memory_region_clear_global_locking(&io_mem_notdirty);
3100 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
3101 NULL, UINT64_MAX);
3104 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
3106 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
3107 uint16_t n;
3109 n = dummy_section(&d->map, fv, &io_mem_unassigned);
3110 assert(n == PHYS_SECTION_UNASSIGNED);
3111 n = dummy_section(&d->map, fv, &io_mem_notdirty);
3112 assert(n == PHYS_SECTION_NOTDIRTY);
3113 n = dummy_section(&d->map, fv, &io_mem_rom);
3114 assert(n == PHYS_SECTION_ROM);
3115 n = dummy_section(&d->map, fv, &io_mem_watch);
3116 assert(n == PHYS_SECTION_WATCH);
3118 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
3120 return d;
3123 void address_space_dispatch_free(AddressSpaceDispatch *d)
3125 phys_sections_free(&d->map);
3126 g_free(d);
3129 static void tcg_commit(MemoryListener *listener)
3131 CPUAddressSpace *cpuas;
3132 AddressSpaceDispatch *d;
3134 assert(tcg_enabled());
3135 /* since each CPU stores ram addresses in its TLB cache, we must
3136 reset the modified entries */
3137 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
3138 cpu_reloading_memory_map();
3139 /* The CPU and TLB are protected by the iothread lock.
3140 * We reload the dispatch pointer now because cpu_reloading_memory_map()
3141 * may have split the RCU critical section.
3143 d = address_space_to_dispatch(cpuas->as);
3144 atomic_rcu_set(&cpuas->memory_dispatch, d);
3145 tlb_flush(cpuas->cpu);
3148 static void memory_map_init(void)
3150 system_memory = g_malloc(sizeof(*system_memory));
3152 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
3153 address_space_init(&address_space_memory, system_memory, "memory");
3155 system_io = g_malloc(sizeof(*system_io));
3156 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
3157 65536);
3158 address_space_init(&address_space_io, system_io, "I/O");
3161 MemoryRegion *get_system_memory(void)
3163 return system_memory;
3166 MemoryRegion *get_system_io(void)
3168 return system_io;
3171 #endif /* !defined(CONFIG_USER_ONLY) */
3173 /* physical memory access (slow version, mainly for debug) */
3174 #if defined(CONFIG_USER_ONLY)
3175 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3176 uint8_t *buf, target_ulong len, int is_write)
3178 int flags;
3179 target_ulong l, page;
3180 void * p;
3182 while (len > 0) {
3183 page = addr & TARGET_PAGE_MASK;
3184 l = (page + TARGET_PAGE_SIZE) - addr;
3185 if (l > len)
3186 l = len;
3187 flags = page_get_flags(page);
3188 if (!(flags & PAGE_VALID))
3189 return -1;
3190 if (is_write) {
3191 if (!(flags & PAGE_WRITE))
3192 return -1;
3193 /* XXX: this code should not depend on lock_user */
3194 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3195 return -1;
3196 memcpy(p, buf, l);
3197 unlock_user(p, addr, l);
3198 } else {
3199 if (!(flags & PAGE_READ))
3200 return -1;
3201 /* XXX: this code should not depend on lock_user */
3202 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3203 return -1;
3204 memcpy(buf, p, l);
3205 unlock_user(p, addr, 0);
3207 len -= l;
3208 buf += l;
3209 addr += l;
3211 return 0;
3214 #else
3216 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
3217 hwaddr length)
3219 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3220 addr += memory_region_get_ram_addr(mr);
3222 /* No early return if dirty_log_mask is or becomes 0, because
3223 * cpu_physical_memory_set_dirty_range will still call
3224 * xen_modified_memory.
3226 if (dirty_log_mask) {
3227 dirty_log_mask =
3228 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3230 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3231 assert(tcg_enabled());
3232 tb_invalidate_phys_range(addr, addr + length);
3233 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3235 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3238 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
3241 * In principle this function would work on other memory region types too,
3242 * but the ROM device use case is the only one where this operation is
3243 * necessary. Other memory regions should use the
3244 * address_space_read/write() APIs.
3246 assert(memory_region_is_romd(mr));
3248 invalidate_and_set_dirty(mr, addr, size);
3251 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3253 unsigned access_size_max = mr->ops->valid.max_access_size;
3255 /* Regions are assumed to support 1-4 byte accesses unless
3256 otherwise specified. */
3257 if (access_size_max == 0) {
3258 access_size_max = 4;
3261 /* Bound the maximum access by the alignment of the address. */
3262 if (!mr->ops->impl.unaligned) {
3263 unsigned align_size_max = addr & -addr;
3264 if (align_size_max != 0 && align_size_max < access_size_max) {
3265 access_size_max = align_size_max;
3269 /* Don't attempt accesses larger than the maximum. */
3270 if (l > access_size_max) {
3271 l = access_size_max;
3273 l = pow2floor(l);
3275 return l;
3278 static bool prepare_mmio_access(MemoryRegion *mr)
3280 bool unlocked = !qemu_mutex_iothread_locked();
3281 bool release_lock = false;
3283 if (unlocked && mr->global_locking) {
3284 qemu_mutex_lock_iothread();
3285 unlocked = false;
3286 release_lock = true;
3288 if (mr->flush_coalesced_mmio) {
3289 if (unlocked) {
3290 qemu_mutex_lock_iothread();
3292 qemu_flush_coalesced_mmio_buffer();
3293 if (unlocked) {
3294 qemu_mutex_unlock_iothread();
3298 return release_lock;
3301 /* Called within RCU critical section. */
3302 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3303 MemTxAttrs attrs,
3304 const uint8_t *buf,
3305 hwaddr len, hwaddr addr1,
3306 hwaddr l, MemoryRegion *mr)
3308 uint8_t *ptr;
3309 uint64_t val;
3310 MemTxResult result = MEMTX_OK;
3311 bool release_lock = false;
3313 for (;;) {
3314 if (!memory_access_is_direct(mr, true)) {
3315 release_lock |= prepare_mmio_access(mr);
3316 l = memory_access_size(mr, l, addr1);
3317 /* XXX: could force current_cpu to NULL to avoid
3318 potential bugs */
3319 val = ldn_p(buf, l);
3320 result |= memory_region_dispatch_write(mr, addr1, val, l, attrs);
3321 } else {
3322 /* RAM case */
3323 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3324 memcpy(ptr, buf, l);
3325 invalidate_and_set_dirty(mr, addr1, l);
3328 if (release_lock) {
3329 qemu_mutex_unlock_iothread();
3330 release_lock = false;
3333 len -= l;
3334 buf += l;
3335 addr += l;
3337 if (!len) {
3338 break;
3341 l = len;
3342 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3345 return result;
3348 /* Called from RCU critical section. */
3349 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3350 const uint8_t *buf, hwaddr len)
3352 hwaddr l;
3353 hwaddr addr1;
3354 MemoryRegion *mr;
3355 MemTxResult result = MEMTX_OK;
3357 l = len;
3358 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3359 result = flatview_write_continue(fv, addr, attrs, buf, len,
3360 addr1, l, mr);
3362 return result;
3365 /* Called within RCU critical section. */
3366 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3367 MemTxAttrs attrs, uint8_t *buf,
3368 hwaddr len, hwaddr addr1, hwaddr l,
3369 MemoryRegion *mr)
3371 uint8_t *ptr;
3372 uint64_t val;
3373 MemTxResult result = MEMTX_OK;
3374 bool release_lock = false;
3376 for (;;) {
3377 if (!memory_access_is_direct(mr, false)) {
3378 /* I/O case */
3379 release_lock |= prepare_mmio_access(mr);
3380 l = memory_access_size(mr, l, addr1);
3381 result |= memory_region_dispatch_read(mr, addr1, &val, l, attrs);
3382 stn_p(buf, l, val);
3383 } else {
3384 /* RAM case */
3385 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3386 memcpy(buf, ptr, l);
3389 if (release_lock) {
3390 qemu_mutex_unlock_iothread();
3391 release_lock = false;
3394 len -= l;
3395 buf += l;
3396 addr += l;
3398 if (!len) {
3399 break;
3402 l = len;
3403 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3406 return result;
3409 /* Called from RCU critical section. */
3410 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3411 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3413 hwaddr l;
3414 hwaddr addr1;
3415 MemoryRegion *mr;
3417 l = len;
3418 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3419 return flatview_read_continue(fv, addr, attrs, buf, len,
3420 addr1, l, mr);
3423 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3424 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3426 MemTxResult result = MEMTX_OK;
3427 FlatView *fv;
3429 if (len > 0) {
3430 rcu_read_lock();
3431 fv = address_space_to_flatview(as);
3432 result = flatview_read(fv, addr, attrs, buf, len);
3433 rcu_read_unlock();
3436 return result;
3439 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3440 MemTxAttrs attrs,
3441 const uint8_t *buf, hwaddr len)
3443 MemTxResult result = MEMTX_OK;
3444 FlatView *fv;
3446 if (len > 0) {
3447 rcu_read_lock();
3448 fv = address_space_to_flatview(as);
3449 result = flatview_write(fv, addr, attrs, buf, len);
3450 rcu_read_unlock();
3453 return result;
3456 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3457 uint8_t *buf, hwaddr len, bool is_write)
3459 if (is_write) {
3460 return address_space_write(as, addr, attrs, buf, len);
3461 } else {
3462 return address_space_read_full(as, addr, attrs, buf, len);
3466 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3467 hwaddr len, int is_write)
3469 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3470 buf, len, is_write);
3473 enum write_rom_type {
3474 WRITE_DATA,
3475 FLUSH_CACHE,
3478 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3479 hwaddr addr,
3480 MemTxAttrs attrs,
3481 const uint8_t *buf,
3482 hwaddr len,
3483 enum write_rom_type type)
3485 hwaddr l;
3486 uint8_t *ptr;
3487 hwaddr addr1;
3488 MemoryRegion *mr;
3490 rcu_read_lock();
3491 while (len > 0) {
3492 l = len;
3493 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3495 if (!(memory_region_is_ram(mr) ||
3496 memory_region_is_romd(mr))) {
3497 l = memory_access_size(mr, l, addr1);
3498 } else {
3499 /* ROM/RAM case */
3500 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3501 switch (type) {
3502 case WRITE_DATA:
3503 memcpy(ptr, buf, l);
3504 invalidate_and_set_dirty(mr, addr1, l);
3505 break;
3506 case FLUSH_CACHE:
3507 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3508 break;
3511 len -= l;
3512 buf += l;
3513 addr += l;
3515 rcu_read_unlock();
3516 return MEMTX_OK;
3519 /* used for ROM loading : can write in RAM and ROM */
3520 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3521 MemTxAttrs attrs,
3522 const uint8_t *buf, hwaddr len)
3524 return address_space_write_rom_internal(as, addr, attrs,
3525 buf, len, WRITE_DATA);
3528 void cpu_flush_icache_range(hwaddr start, hwaddr len)
3531 * This function should do the same thing as an icache flush that was
3532 * triggered from within the guest. For TCG we are always cache coherent,
3533 * so there is no need to flush anything. For KVM / Xen we need to flush
3534 * the host's instruction cache at least.
3536 if (tcg_enabled()) {
3537 return;
3540 address_space_write_rom_internal(&address_space_memory,
3541 start, MEMTXATTRS_UNSPECIFIED,
3542 NULL, len, FLUSH_CACHE);
3545 typedef struct {
3546 MemoryRegion *mr;
3547 void *buffer;
3548 hwaddr addr;
3549 hwaddr len;
3550 bool in_use;
3551 } BounceBuffer;
3553 static BounceBuffer bounce;
3555 typedef struct MapClient {
3556 QEMUBH *bh;
3557 QLIST_ENTRY(MapClient) link;
3558 } MapClient;
3560 QemuMutex map_client_list_lock;
3561 static QLIST_HEAD(, MapClient) map_client_list
3562 = QLIST_HEAD_INITIALIZER(map_client_list);
3564 static void cpu_unregister_map_client_do(MapClient *client)
3566 QLIST_REMOVE(client, link);
3567 g_free(client);
3570 static void cpu_notify_map_clients_locked(void)
3572 MapClient *client;
3574 while (!QLIST_EMPTY(&map_client_list)) {
3575 client = QLIST_FIRST(&map_client_list);
3576 qemu_bh_schedule(client->bh);
3577 cpu_unregister_map_client_do(client);
3581 void cpu_register_map_client(QEMUBH *bh)
3583 MapClient *client = g_malloc(sizeof(*client));
3585 qemu_mutex_lock(&map_client_list_lock);
3586 client->bh = bh;
3587 QLIST_INSERT_HEAD(&map_client_list, client, link);
3588 if (!atomic_read(&bounce.in_use)) {
3589 cpu_notify_map_clients_locked();
3591 qemu_mutex_unlock(&map_client_list_lock);
3594 void cpu_exec_init_all(void)
3596 qemu_mutex_init(&ram_list.mutex);
3597 /* The data structures we set up here depend on knowing the page size,
3598 * so no more changes can be made after this point.
3599 * In an ideal world, nothing we did before we had finished the
3600 * machine setup would care about the target page size, and we could
3601 * do this much later, rather than requiring board models to state
3602 * up front what their requirements are.
3604 finalize_target_page_bits();
3605 io_mem_init();
3606 memory_map_init();
3607 qemu_mutex_init(&map_client_list_lock);
3610 void cpu_unregister_map_client(QEMUBH *bh)
3612 MapClient *client;
3614 qemu_mutex_lock(&map_client_list_lock);
3615 QLIST_FOREACH(client, &map_client_list, link) {
3616 if (client->bh == bh) {
3617 cpu_unregister_map_client_do(client);
3618 break;
3621 qemu_mutex_unlock(&map_client_list_lock);
3624 static void cpu_notify_map_clients(void)
3626 qemu_mutex_lock(&map_client_list_lock);
3627 cpu_notify_map_clients_locked();
3628 qemu_mutex_unlock(&map_client_list_lock);
3631 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3632 bool is_write, MemTxAttrs attrs)
3634 MemoryRegion *mr;
3635 hwaddr l, xlat;
3637 while (len > 0) {
3638 l = len;
3639 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3640 if (!memory_access_is_direct(mr, is_write)) {
3641 l = memory_access_size(mr, l, addr);
3642 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3643 return false;
3647 len -= l;
3648 addr += l;
3650 return true;
3653 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3654 hwaddr len, bool is_write,
3655 MemTxAttrs attrs)
3657 FlatView *fv;
3658 bool result;
3660 rcu_read_lock();
3661 fv = address_space_to_flatview(as);
3662 result = flatview_access_valid(fv, addr, len, is_write, attrs);
3663 rcu_read_unlock();
3664 return result;
3667 static hwaddr
3668 flatview_extend_translation(FlatView *fv, hwaddr addr,
3669 hwaddr target_len,
3670 MemoryRegion *mr, hwaddr base, hwaddr len,
3671 bool is_write, MemTxAttrs attrs)
3673 hwaddr done = 0;
3674 hwaddr xlat;
3675 MemoryRegion *this_mr;
3677 for (;;) {
3678 target_len -= len;
3679 addr += len;
3680 done += len;
3681 if (target_len == 0) {
3682 return done;
3685 len = target_len;
3686 this_mr = flatview_translate(fv, addr, &xlat,
3687 &len, is_write, attrs);
3688 if (this_mr != mr || xlat != base + done) {
3689 return done;
3694 /* Map a physical memory region into a host virtual address.
3695 * May map a subset of the requested range, given by and returned in *plen.
3696 * May return NULL if resources needed to perform the mapping are exhausted.
3697 * Use only for reads OR writes - not for read-modify-write operations.
3698 * Use cpu_register_map_client() to know when retrying the map operation is
3699 * likely to succeed.
3701 void *address_space_map(AddressSpace *as,
3702 hwaddr addr,
3703 hwaddr *plen,
3704 bool is_write,
3705 MemTxAttrs attrs)
3707 hwaddr len = *plen;
3708 hwaddr l, xlat;
3709 MemoryRegion *mr;
3710 void *ptr;
3711 FlatView *fv;
3713 if (len == 0) {
3714 return NULL;
3717 l = len;
3718 rcu_read_lock();
3719 fv = address_space_to_flatview(as);
3720 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3722 if (!memory_access_is_direct(mr, is_write)) {
3723 if (atomic_xchg(&bounce.in_use, true)) {
3724 rcu_read_unlock();
3725 return NULL;
3727 /* Avoid unbounded allocations */
3728 l = MIN(l, TARGET_PAGE_SIZE);
3729 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3730 bounce.addr = addr;
3731 bounce.len = l;
3733 memory_region_ref(mr);
3734 bounce.mr = mr;
3735 if (!is_write) {
3736 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3737 bounce.buffer, l);
3740 rcu_read_unlock();
3741 *plen = l;
3742 return bounce.buffer;
3746 memory_region_ref(mr);
3747 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3748 l, is_write, attrs);
3749 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3750 rcu_read_unlock();
3752 return ptr;
3755 /* Unmaps a memory region previously mapped by address_space_map().
3756 * Will also mark the memory as dirty if is_write == 1. access_len gives
3757 * the amount of memory that was actually read or written by the caller.
3759 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3760 int is_write, hwaddr access_len)
3762 if (buffer != bounce.buffer) {
3763 MemoryRegion *mr;
3764 ram_addr_t addr1;
3766 mr = memory_region_from_host(buffer, &addr1);
3767 assert(mr != NULL);
3768 if (is_write) {
3769 invalidate_and_set_dirty(mr, addr1, access_len);
3771 if (xen_enabled()) {
3772 xen_invalidate_map_cache_entry(buffer);
3774 memory_region_unref(mr);
3775 return;
3777 if (is_write) {
3778 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3779 bounce.buffer, access_len);
3781 qemu_vfree(bounce.buffer);
3782 bounce.buffer = NULL;
3783 memory_region_unref(bounce.mr);
3784 atomic_mb_set(&bounce.in_use, false);
3785 cpu_notify_map_clients();
3788 void *cpu_physical_memory_map(hwaddr addr,
3789 hwaddr *plen,
3790 int is_write)
3792 return address_space_map(&address_space_memory, addr, plen, is_write,
3793 MEMTXATTRS_UNSPECIFIED);
3796 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3797 int is_write, hwaddr access_len)
3799 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3802 #define ARG1_DECL AddressSpace *as
3803 #define ARG1 as
3804 #define SUFFIX
3805 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3806 #define RCU_READ_LOCK(...) rcu_read_lock()
3807 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3808 #include "memory_ldst.inc.c"
3810 int64_t address_space_cache_init(MemoryRegionCache *cache,
3811 AddressSpace *as,
3812 hwaddr addr,
3813 hwaddr len,
3814 bool is_write)
3816 AddressSpaceDispatch *d;
3817 hwaddr l;
3818 MemoryRegion *mr;
3820 assert(len > 0);
3822 l = len;
3823 cache->fv = address_space_get_flatview(as);
3824 d = flatview_to_dispatch(cache->fv);
3825 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3827 mr = cache->mrs.mr;
3828 memory_region_ref(mr);
3829 if (memory_access_is_direct(mr, is_write)) {
3830 /* We don't care about the memory attributes here as we're only
3831 * doing this if we found actual RAM, which behaves the same
3832 * regardless of attributes; so UNSPECIFIED is fine.
3834 l = flatview_extend_translation(cache->fv, addr, len, mr,
3835 cache->xlat, l, is_write,
3836 MEMTXATTRS_UNSPECIFIED);
3837 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3838 } else {
3839 cache->ptr = NULL;
3842 cache->len = l;
3843 cache->is_write = is_write;
3844 return l;
3847 void address_space_cache_invalidate(MemoryRegionCache *cache,
3848 hwaddr addr,
3849 hwaddr access_len)
3851 assert(cache->is_write);
3852 if (likely(cache->ptr)) {
3853 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3857 void address_space_cache_destroy(MemoryRegionCache *cache)
3859 if (!cache->mrs.mr) {
3860 return;
3863 if (xen_enabled()) {
3864 xen_invalidate_map_cache_entry(cache->ptr);
3866 memory_region_unref(cache->mrs.mr);
3867 flatview_unref(cache->fv);
3868 cache->mrs.mr = NULL;
3869 cache->fv = NULL;
3872 /* Called from RCU critical section. This function has the same
3873 * semantics as address_space_translate, but it only works on a
3874 * predefined range of a MemoryRegion that was mapped with
3875 * address_space_cache_init.
3877 static inline MemoryRegion *address_space_translate_cached(
3878 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3879 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3881 MemoryRegionSection section;
3882 MemoryRegion *mr;
3883 IOMMUMemoryRegion *iommu_mr;
3884 AddressSpace *target_as;
3886 assert(!cache->ptr);
3887 *xlat = addr + cache->xlat;
3889 mr = cache->mrs.mr;
3890 iommu_mr = memory_region_get_iommu(mr);
3891 if (!iommu_mr) {
3892 /* MMIO region. */
3893 return mr;
3896 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3897 NULL, is_write, true,
3898 &target_as, attrs);
3899 return section.mr;
3902 /* Called from RCU critical section. address_space_read_cached uses this
3903 * out of line function when the target is an MMIO or IOMMU region.
3905 void
3906 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3907 void *buf, hwaddr len)
3909 hwaddr addr1, l;
3910 MemoryRegion *mr;
3912 l = len;
3913 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3914 MEMTXATTRS_UNSPECIFIED);
3915 flatview_read_continue(cache->fv,
3916 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3917 addr1, l, mr);
3920 /* Called from RCU critical section. address_space_write_cached uses this
3921 * out of line function when the target is an MMIO or IOMMU region.
3923 void
3924 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3925 const void *buf, hwaddr len)
3927 hwaddr addr1, l;
3928 MemoryRegion *mr;
3930 l = len;
3931 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3932 MEMTXATTRS_UNSPECIFIED);
3933 flatview_write_continue(cache->fv,
3934 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3935 addr1, l, mr);
3938 #define ARG1_DECL MemoryRegionCache *cache
3939 #define ARG1 cache
3940 #define SUFFIX _cached_slow
3941 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3942 #define RCU_READ_LOCK() ((void)0)
3943 #define RCU_READ_UNLOCK() ((void)0)
3944 #include "memory_ldst.inc.c"
3946 /* virtual memory access for debug (includes writing to ROM) */
3947 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3948 uint8_t *buf, target_ulong len, int is_write)
3950 hwaddr phys_addr;
3951 target_ulong l, page;
3953 cpu_synchronize_state(cpu);
3954 while (len > 0) {
3955 int asidx;
3956 MemTxAttrs attrs;
3958 page = addr & TARGET_PAGE_MASK;
3959 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3960 asidx = cpu_asidx_from_attrs(cpu, attrs);
3961 /* if no physical page mapped, return an error */
3962 if (phys_addr == -1)
3963 return -1;
3964 l = (page + TARGET_PAGE_SIZE) - addr;
3965 if (l > len)
3966 l = len;
3967 phys_addr += (addr & ~TARGET_PAGE_MASK);
3968 if (is_write) {
3969 address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3970 attrs, buf, l);
3971 } else {
3972 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3973 attrs, buf, l, 0);
3975 len -= l;
3976 buf += l;
3977 addr += l;
3979 return 0;
3983 * Allows code that needs to deal with migration bitmaps etc to still be built
3984 * target independent.
3986 size_t qemu_target_page_size(void)
3988 return TARGET_PAGE_SIZE;
3991 int qemu_target_page_bits(void)
3993 return TARGET_PAGE_BITS;
3996 int qemu_target_page_bits_min(void)
3998 return TARGET_PAGE_BITS_MIN;
4000 #endif
4002 bool target_words_bigendian(void)
4004 #if defined(TARGET_WORDS_BIGENDIAN)
4005 return true;
4006 #else
4007 return false;
4008 #endif
4011 #ifndef CONFIG_USER_ONLY
4012 bool cpu_physical_memory_is_io(hwaddr phys_addr)
4014 MemoryRegion*mr;
4015 hwaddr l = 1;
4016 bool res;
4018 rcu_read_lock();
4019 mr = address_space_translate(&address_space_memory,
4020 phys_addr, &phys_addr, &l, false,
4021 MEMTXATTRS_UNSPECIFIED);
4023 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
4024 rcu_read_unlock();
4025 return res;
4028 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
4030 RAMBlock *block;
4031 int ret = 0;
4033 rcu_read_lock();
4034 RAMBLOCK_FOREACH(block) {
4035 ret = func(block, opaque);
4036 if (ret) {
4037 break;
4040 rcu_read_unlock();
4041 return ret;
4045 * Unmap pages of memory from start to start+length such that
4046 * they a) read as 0, b) Trigger whatever fault mechanism
4047 * the OS provides for postcopy.
4048 * The pages must be unmapped by the end of the function.
4049 * Returns: 0 on success, none-0 on failure
4052 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
4054 int ret = -1;
4056 uint8_t *host_startaddr = rb->host + start;
4058 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
4059 error_report("ram_block_discard_range: Unaligned start address: %p",
4060 host_startaddr);
4061 goto err;
4064 if ((start + length) <= rb->used_length) {
4065 bool need_madvise, need_fallocate;
4066 uint8_t *host_endaddr = host_startaddr + length;
4067 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
4068 error_report("ram_block_discard_range: Unaligned end address: %p",
4069 host_endaddr);
4070 goto err;
4073 errno = ENOTSUP; /* If we are missing MADVISE etc */
4075 /* The logic here is messy;
4076 * madvise DONTNEED fails for hugepages
4077 * fallocate works on hugepages and shmem
4079 need_madvise = (rb->page_size == qemu_host_page_size);
4080 need_fallocate = rb->fd != -1;
4081 if (need_fallocate) {
4082 /* For a file, this causes the area of the file to be zero'd
4083 * if read, and for hugetlbfs also causes it to be unmapped
4084 * so a userfault will trigger.
4086 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
4087 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
4088 start, length);
4089 if (ret) {
4090 ret = -errno;
4091 error_report("ram_block_discard_range: Failed to fallocate "
4092 "%s:%" PRIx64 " +%zx (%d)",
4093 rb->idstr, start, length, ret);
4094 goto err;
4096 #else
4097 ret = -ENOSYS;
4098 error_report("ram_block_discard_range: fallocate not available/file"
4099 "%s:%" PRIx64 " +%zx (%d)",
4100 rb->idstr, start, length, ret);
4101 goto err;
4102 #endif
4104 if (need_madvise) {
4105 /* For normal RAM this causes it to be unmapped,
4106 * for shared memory it causes the local mapping to disappear
4107 * and to fall back on the file contents (which we just
4108 * fallocate'd away).
4110 #if defined(CONFIG_MADVISE)
4111 ret = madvise(host_startaddr, length, MADV_DONTNEED);
4112 if (ret) {
4113 ret = -errno;
4114 error_report("ram_block_discard_range: Failed to discard range "
4115 "%s:%" PRIx64 " +%zx (%d)",
4116 rb->idstr, start, length, ret);
4117 goto err;
4119 #else
4120 ret = -ENOSYS;
4121 error_report("ram_block_discard_range: MADVISE not available"
4122 "%s:%" PRIx64 " +%zx (%d)",
4123 rb->idstr, start, length, ret);
4124 goto err;
4125 #endif
4127 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
4128 need_madvise, need_fallocate, ret);
4129 } else {
4130 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
4131 "/%zx/" RAM_ADDR_FMT")",
4132 rb->idstr, start, length, rb->used_length);
4135 err:
4136 return ret;
4139 bool ramblock_is_pmem(RAMBlock *rb)
4141 return rb->flags & RAM_PMEM;
4144 #endif
4146 void page_size_init(void)
4148 /* NOTE: we can always suppose that qemu_host_page_size >=
4149 TARGET_PAGE_SIZE */
4150 if (qemu_host_page_size == 0) {
4151 qemu_host_page_size = qemu_real_host_page_size;
4153 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
4154 qemu_host_page_size = TARGET_PAGE_SIZE;
4156 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
4159 #if !defined(CONFIG_USER_ONLY)
4161 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
4163 if (start == end - 1) {
4164 qemu_printf("\t%3d ", start);
4165 } else {
4166 qemu_printf("\t%3d..%-3d ", start, end - 1);
4168 qemu_printf(" skip=%d ", skip);
4169 if (ptr == PHYS_MAP_NODE_NIL) {
4170 qemu_printf(" ptr=NIL");
4171 } else if (!skip) {
4172 qemu_printf(" ptr=#%d", ptr);
4173 } else {
4174 qemu_printf(" ptr=[%d]", ptr);
4176 qemu_printf("\n");
4179 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4180 int128_sub((size), int128_one())) : 0)
4182 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
4184 int i;
4186 qemu_printf(" Dispatch\n");
4187 qemu_printf(" Physical sections\n");
4189 for (i = 0; i < d->map.sections_nb; ++i) {
4190 MemoryRegionSection *s = d->map.sections + i;
4191 const char *names[] = { " [unassigned]", " [not dirty]",
4192 " [ROM]", " [watch]" };
4194 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
4195 " %s%s%s%s%s",
4197 s->offset_within_address_space,
4198 s->offset_within_address_space + MR_SIZE(s->mr->size),
4199 s->mr->name ? s->mr->name : "(noname)",
4200 i < ARRAY_SIZE(names) ? names[i] : "",
4201 s->mr == root ? " [ROOT]" : "",
4202 s == d->mru_section ? " [MRU]" : "",
4203 s->mr->is_iommu ? " [iommu]" : "");
4205 if (s->mr->alias) {
4206 qemu_printf(" alias=%s", s->mr->alias->name ?
4207 s->mr->alias->name : "noname");
4209 qemu_printf("\n");
4212 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4213 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4214 for (i = 0; i < d->map.nodes_nb; ++i) {
4215 int j, jprev;
4216 PhysPageEntry prev;
4217 Node *n = d->map.nodes + i;
4219 qemu_printf(" [%d]\n", i);
4221 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4222 PhysPageEntry *pe = *n + j;
4224 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4225 continue;
4228 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4230 jprev = j;
4231 prev = *pe;
4234 if (jprev != ARRAY_SIZE(*n)) {
4235 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4240 #endif