4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qemu-version.h"
21 #include <sys/syscall.h>
22 #include <sys/resource.h>
24 #include "qapi/error.h"
26 #include "qemu/path.h"
27 #include "qemu/config-file.h"
28 #include "qemu/cutils.h"
29 #include "qemu/help_option.h"
31 #include "exec/exec-all.h"
33 #include "qemu/timer.h"
34 #include "qemu/envlist.h"
37 #include "trace/control.h"
38 #include "glib-compat.h"
43 static const char *filename
;
44 static const char *argv0
;
45 static int gdbstub_port
;
46 static envlist_t
*envlist
;
47 static const char *cpu_model
;
48 unsigned long mmap_min_addr
;
49 unsigned long guest_base
;
52 #define EXCP_DUMP(env, fmt, ...) \
54 CPUState *cs = ENV_GET_CPU(env); \
55 fprintf(stderr, fmt , ## __VA_ARGS__); \
56 cpu_dump_state(cs, stderr, fprintf, 0); \
57 if (qemu_log_separate()) { \
58 qemu_log(fmt, ## __VA_ARGS__); \
59 log_cpu_state(cs, 0); \
63 #if (TARGET_LONG_BITS == 32) && (HOST_LONG_BITS == 64)
65 * When running 32-on-64 we should make sure we can fit all of the possible
66 * guest address space into a contiguous chunk of virtual host memory.
68 * This way we will never overlap with our own libraries or binaries or stack
69 * or anything else that QEMU maps.
71 # if defined(TARGET_MIPS) || defined(TARGET_NIOS2)
73 * MIPS only supports 31 bits of virtual address space for user space.
74 * Nios2 also only supports 31 bits.
76 unsigned long reserved_va
= 0x77000000;
78 unsigned long reserved_va
= 0xf7000000;
81 unsigned long reserved_va
;
84 static void usage(int exitcode
);
86 static const char *interp_prefix
= CONFIG_QEMU_INTERP_PREFIX
;
87 const char *qemu_uname_release
;
89 /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so
90 we allocate a bigger stack. Need a better solution, for example
91 by remapping the process stack directly at the right place */
92 unsigned long guest_stack_size
= 8 * 1024 * 1024UL;
94 void gemu_log(const char *fmt
, ...)
99 vfprintf(stderr
, fmt
, ap
);
103 #if defined(TARGET_I386)
104 int cpu_get_pic_interrupt(CPUX86State
*env
)
110 /***********************************************************/
111 /* Helper routines for implementing atomic operations. */
113 /* Make sure everything is in a consistent state for calling fork(). */
114 void fork_start(void)
117 qemu_mutex_lock(&tcg_ctx
.tb_ctx
.tb_lock
);
121 void fork_end(int child
)
123 mmap_fork_end(child
);
125 CPUState
*cpu
, *next_cpu
;
126 /* Child processes created by fork() only have a single thread.
127 Discard information about the parent threads. */
128 CPU_FOREACH_SAFE(cpu
, next_cpu
) {
129 if (cpu
!= thread_cpu
) {
130 QTAILQ_REMOVE(&cpus
, cpu
, node
);
133 qemu_mutex_init(&tcg_ctx
.tb_ctx
.tb_lock
);
134 qemu_init_cpu_list();
135 gdbserver_fork(thread_cpu
);
137 qemu_mutex_unlock(&tcg_ctx
.tb_ctx
.tb_lock
);
143 /***********************************************************/
144 /* CPUX86 core interface */
146 uint64_t cpu_get_tsc(CPUX86State
*env
)
148 return cpu_get_host_ticks();
151 static void write_dt(void *ptr
, unsigned long addr
, unsigned long limit
,
156 e1
= (addr
<< 16) | (limit
& 0xffff);
157 e2
= ((addr
>> 16) & 0xff) | (addr
& 0xff000000) | (limit
& 0x000f0000);
164 static uint64_t *idt_table
;
166 static void set_gate64(void *ptr
, unsigned int type
, unsigned int dpl
,
167 uint64_t addr
, unsigned int sel
)
170 e1
= (addr
& 0xffff) | (sel
<< 16);
171 e2
= (addr
& 0xffff0000) | 0x8000 | (dpl
<< 13) | (type
<< 8);
175 p
[2] = tswap32(addr
>> 32);
178 /* only dpl matters as we do only user space emulation */
179 static void set_idt(int n
, unsigned int dpl
)
181 set_gate64(idt_table
+ n
* 2, 0, dpl
, 0, 0);
184 static void set_gate(void *ptr
, unsigned int type
, unsigned int dpl
,
185 uint32_t addr
, unsigned int sel
)
188 e1
= (addr
& 0xffff) | (sel
<< 16);
189 e2
= (addr
& 0xffff0000) | 0x8000 | (dpl
<< 13) | (type
<< 8);
195 /* only dpl matters as we do only user space emulation */
196 static void set_idt(int n
, unsigned int dpl
)
198 set_gate(idt_table
+ n
, 0, dpl
, 0, 0);
202 void cpu_loop(CPUX86State
*env
)
204 CPUState
*cs
= CPU(x86_env_get_cpu(env
));
208 target_siginfo_t info
;
212 trapnr
= cpu_exec(cs
);
214 process_queued_cpu_work(cs
);
218 /* linux syscall from int $0x80 */
219 ret
= do_syscall(env
,
228 if (ret
== -TARGET_ERESTARTSYS
) {
230 } else if (ret
!= -TARGET_QEMU_ESIGRETURN
) {
231 env
->regs
[R_EAX
] = ret
;
236 /* linux syscall from syscall instruction */
237 ret
= do_syscall(env
,
246 if (ret
== -TARGET_ERESTARTSYS
) {
248 } else if (ret
!= -TARGET_QEMU_ESIGRETURN
) {
249 env
->regs
[R_EAX
] = ret
;
255 info
.si_signo
= TARGET_SIGBUS
;
257 info
.si_code
= TARGET_SI_KERNEL
;
258 info
._sifields
._sigfault
._addr
= 0;
259 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
262 /* XXX: potential problem if ABI32 */
263 #ifndef TARGET_X86_64
264 if (env
->eflags
& VM_MASK
) {
265 handle_vm86_fault(env
);
269 info
.si_signo
= TARGET_SIGSEGV
;
271 info
.si_code
= TARGET_SI_KERNEL
;
272 info
._sifields
._sigfault
._addr
= 0;
273 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
277 info
.si_signo
= TARGET_SIGSEGV
;
279 if (!(env
->error_code
& 1))
280 info
.si_code
= TARGET_SEGV_MAPERR
;
282 info
.si_code
= TARGET_SEGV_ACCERR
;
283 info
._sifields
._sigfault
._addr
= env
->cr
[2];
284 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
287 #ifndef TARGET_X86_64
288 if (env
->eflags
& VM_MASK
) {
289 handle_vm86_trap(env
, trapnr
);
293 /* division by zero */
294 info
.si_signo
= TARGET_SIGFPE
;
296 info
.si_code
= TARGET_FPE_INTDIV
;
297 info
._sifields
._sigfault
._addr
= env
->eip
;
298 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
303 #ifndef TARGET_X86_64
304 if (env
->eflags
& VM_MASK
) {
305 handle_vm86_trap(env
, trapnr
);
309 info
.si_signo
= TARGET_SIGTRAP
;
311 if (trapnr
== EXCP01_DB
) {
312 info
.si_code
= TARGET_TRAP_BRKPT
;
313 info
._sifields
._sigfault
._addr
= env
->eip
;
315 info
.si_code
= TARGET_SI_KERNEL
;
316 info
._sifields
._sigfault
._addr
= 0;
318 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
323 #ifndef TARGET_X86_64
324 if (env
->eflags
& VM_MASK
) {
325 handle_vm86_trap(env
, trapnr
);
329 info
.si_signo
= TARGET_SIGSEGV
;
331 info
.si_code
= TARGET_SI_KERNEL
;
332 info
._sifields
._sigfault
._addr
= 0;
333 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
337 info
.si_signo
= TARGET_SIGILL
;
339 info
.si_code
= TARGET_ILL_ILLOPN
;
340 info
._sifields
._sigfault
._addr
= env
->eip
;
341 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
344 /* just indicate that signals should be handled asap */
350 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
355 info
.si_code
= TARGET_TRAP_BRKPT
;
356 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
361 cpu_exec_step_atomic(cs
);
364 pc
= env
->segs
[R_CS
].base
+ env
->eip
;
365 EXCP_DUMP(env
, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n",
369 process_pending_signals(env
);
376 #define get_user_code_u32(x, gaddr, env) \
377 ({ abi_long __r = get_user_u32((x), (gaddr)); \
378 if (!__r && bswap_code(arm_sctlr_b(env))) { \
384 #define get_user_code_u16(x, gaddr, env) \
385 ({ abi_long __r = get_user_u16((x), (gaddr)); \
386 if (!__r && bswap_code(arm_sctlr_b(env))) { \
392 #define get_user_data_u32(x, gaddr, env) \
393 ({ abi_long __r = get_user_u32((x), (gaddr)); \
394 if (!__r && arm_cpu_bswap_data(env)) { \
400 #define get_user_data_u16(x, gaddr, env) \
401 ({ abi_long __r = get_user_u16((x), (gaddr)); \
402 if (!__r && arm_cpu_bswap_data(env)) { \
408 #define put_user_data_u32(x, gaddr, env) \
409 ({ typeof(x) __x = (x); \
410 if (arm_cpu_bswap_data(env)) { \
411 __x = bswap32(__x); \
413 put_user_u32(__x, (gaddr)); \
416 #define put_user_data_u16(x, gaddr, env) \
417 ({ typeof(x) __x = (x); \
418 if (arm_cpu_bswap_data(env)) { \
419 __x = bswap16(__x); \
421 put_user_u16(__x, (gaddr)); \
425 /* Commpage handling -- there is no commpage for AArch64 */
428 * See the Linux kernel's Documentation/arm/kernel_user_helpers.txt
430 * r0 = pointer to oldval
431 * r1 = pointer to newval
432 * r2 = pointer to target value
435 * r0 = 0 if *ptr was changed, non-0 if no exchange happened
436 * C set if *ptr was changed, clear if no exchange happened
438 * Note segv's in kernel helpers are a bit tricky, we can set the
439 * data address sensibly but the PC address is just the entry point.
441 static void arm_kernel_cmpxchg64_helper(CPUARMState
*env
)
443 uint64_t oldval
, newval
, val
;
445 target_siginfo_t info
;
447 /* Based on the 32 bit code in do_kernel_trap */
449 /* XXX: This only works between threads, not between processes.
450 It's probably possible to implement this with native host
451 operations. However things like ldrex/strex are much harder so
452 there's not much point trying. */
454 cpsr
= cpsr_read(env
);
457 if (get_user_u64(oldval
, env
->regs
[0])) {
458 env
->exception
.vaddress
= env
->regs
[0];
462 if (get_user_u64(newval
, env
->regs
[1])) {
463 env
->exception
.vaddress
= env
->regs
[1];
467 if (get_user_u64(val
, addr
)) {
468 env
->exception
.vaddress
= addr
;
475 if (put_user_u64(val
, addr
)) {
476 env
->exception
.vaddress
= addr
;
486 cpsr_write(env
, cpsr
, CPSR_C
, CPSRWriteByInstr
);
492 /* We get the PC of the entry address - which is as good as anything,
493 on a real kernel what you get depends on which mode it uses. */
494 info
.si_signo
= TARGET_SIGSEGV
;
496 /* XXX: check env->error_code */
497 info
.si_code
= TARGET_SEGV_MAPERR
;
498 info
._sifields
._sigfault
._addr
= env
->exception
.vaddress
;
499 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
502 /* Handle a jump to the kernel code page. */
504 do_kernel_trap(CPUARMState
*env
)
510 switch (env
->regs
[15]) {
511 case 0xffff0fa0: /* __kernel_memory_barrier */
512 /* ??? No-op. Will need to do better for SMP. */
514 case 0xffff0fc0: /* __kernel_cmpxchg */
515 /* XXX: This only works between threads, not between processes.
516 It's probably possible to implement this with native host
517 operations. However things like ldrex/strex are much harder so
518 there's not much point trying. */
520 cpsr
= cpsr_read(env
);
522 /* FIXME: This should SEGV if the access fails. */
523 if (get_user_u32(val
, addr
))
525 if (val
== env
->regs
[0]) {
527 /* FIXME: Check for segfaults. */
528 put_user_u32(val
, addr
);
535 cpsr_write(env
, cpsr
, CPSR_C
, CPSRWriteByInstr
);
538 case 0xffff0fe0: /* __kernel_get_tls */
539 env
->regs
[0] = cpu_get_tls(env
);
541 case 0xffff0f60: /* __kernel_cmpxchg64 */
542 arm_kernel_cmpxchg64_helper(env
);
548 /* Jump back to the caller. */
549 addr
= env
->regs
[14];
554 env
->regs
[15] = addr
;
559 void cpu_loop(CPUARMState
*env
)
561 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
563 unsigned int n
, insn
;
564 target_siginfo_t info
;
570 trapnr
= cpu_exec(cs
);
572 process_queued_cpu_work(cs
);
578 TaskState
*ts
= cs
->opaque
;
582 /* we handle the FPU emulation here, as Linux */
583 /* we get the opcode */
584 /* FIXME - what to do if get_user() fails? */
585 get_user_code_u32(opcode
, env
->regs
[15], env
);
587 rc
= EmulateAll(opcode
, &ts
->fpa
, env
);
588 if (rc
== 0) { /* illegal instruction */
589 info
.si_signo
= TARGET_SIGILL
;
591 info
.si_code
= TARGET_ILL_ILLOPN
;
592 info
._sifields
._sigfault
._addr
= env
->regs
[15];
593 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
594 } else if (rc
< 0) { /* FP exception */
597 /* translate softfloat flags to FPSR flags */
598 if (-rc
& float_flag_invalid
)
600 if (-rc
& float_flag_divbyzero
)
602 if (-rc
& float_flag_overflow
)
604 if (-rc
& float_flag_underflow
)
606 if (-rc
& float_flag_inexact
)
609 FPSR fpsr
= ts
->fpa
.fpsr
;
610 //printf("fpsr 0x%x, arm_fpe 0x%x\n",fpsr,arm_fpe);
612 if (fpsr
& (arm_fpe
<< 16)) { /* exception enabled? */
613 info
.si_signo
= TARGET_SIGFPE
;
616 /* ordered by priority, least first */
617 if (arm_fpe
& BIT_IXC
) info
.si_code
= TARGET_FPE_FLTRES
;
618 if (arm_fpe
& BIT_UFC
) info
.si_code
= TARGET_FPE_FLTUND
;
619 if (arm_fpe
& BIT_OFC
) info
.si_code
= TARGET_FPE_FLTOVF
;
620 if (arm_fpe
& BIT_DZC
) info
.si_code
= TARGET_FPE_FLTDIV
;
621 if (arm_fpe
& BIT_IOC
) info
.si_code
= TARGET_FPE_FLTINV
;
623 info
._sifields
._sigfault
._addr
= env
->regs
[15];
624 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
629 /* accumulate unenabled exceptions */
630 if ((!(fpsr
& BIT_IXE
)) && (arm_fpe
& BIT_IXC
))
632 if ((!(fpsr
& BIT_UFE
)) && (arm_fpe
& BIT_UFC
))
634 if ((!(fpsr
& BIT_OFE
)) && (arm_fpe
& BIT_OFC
))
636 if ((!(fpsr
& BIT_DZE
)) && (arm_fpe
& BIT_DZC
))
638 if ((!(fpsr
& BIT_IOE
)) && (arm_fpe
& BIT_IOC
))
641 } else { /* everything OK */
652 if (trapnr
== EXCP_BKPT
) {
654 /* FIXME - what to do if get_user() fails? */
655 get_user_code_u16(insn
, env
->regs
[15], env
);
659 /* FIXME - what to do if get_user() fails? */
660 get_user_code_u32(insn
, env
->regs
[15], env
);
661 n
= (insn
& 0xf) | ((insn
>> 4) & 0xff0);
666 /* FIXME - what to do if get_user() fails? */
667 get_user_code_u16(insn
, env
->regs
[15] - 2, env
);
670 /* FIXME - what to do if get_user() fails? */
671 get_user_code_u32(insn
, env
->regs
[15] - 4, env
);
676 if (n
== ARM_NR_cacheflush
) {
678 } else if (n
== ARM_NR_semihosting
679 || n
== ARM_NR_thumb_semihosting
) {
680 env
->regs
[0] = do_arm_semihosting (env
);
681 } else if (n
== 0 || n
>= ARM_SYSCALL_BASE
|| env
->thumb
) {
683 if (env
->thumb
|| n
== 0) {
686 n
-= ARM_SYSCALL_BASE
;
689 if ( n
> ARM_NR_BASE
) {
691 case ARM_NR_cacheflush
:
695 cpu_set_tls(env
, env
->regs
[0]);
698 case ARM_NR_breakpoint
:
699 env
->regs
[15] -= env
->thumb
? 2 : 4;
702 gemu_log("qemu: Unsupported ARM syscall: 0x%x\n",
704 env
->regs
[0] = -TARGET_ENOSYS
;
708 ret
= do_syscall(env
,
717 if (ret
== -TARGET_ERESTARTSYS
) {
718 env
->regs
[15] -= env
->thumb
? 2 : 4;
719 } else if (ret
!= -TARGET_QEMU_ESIGRETURN
) {
729 env
->regs
[0] = do_arm_semihosting(env
);
732 /* just indicate that signals should be handled asap */
734 case EXCP_PREFETCH_ABORT
:
735 case EXCP_DATA_ABORT
:
736 addr
= env
->exception
.vaddress
;
738 info
.si_signo
= TARGET_SIGSEGV
;
740 /* XXX: check env->error_code */
741 info
.si_code
= TARGET_SEGV_MAPERR
;
742 info
._sifields
._sigfault
._addr
= addr
;
743 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
751 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
756 info
.si_code
= TARGET_TRAP_BRKPT
;
757 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
761 case EXCP_KERNEL_TRAP
:
762 if (do_kernel_trap(env
))
766 /* nothing to do here for user-mode, just resume guest code */
769 cpu_exec_step_atomic(cs
);
773 EXCP_DUMP(env
, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr
);
776 process_pending_signals(env
);
782 /* AArch64 main loop */
783 void cpu_loop(CPUARMState
*env
)
785 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
788 target_siginfo_t info
;
792 trapnr
= cpu_exec(cs
);
794 process_queued_cpu_work(cs
);
798 ret
= do_syscall(env
,
807 if (ret
== -TARGET_ERESTARTSYS
) {
809 } else if (ret
!= -TARGET_QEMU_ESIGRETURN
) {
814 /* just indicate that signals should be handled asap */
817 info
.si_signo
= TARGET_SIGILL
;
819 info
.si_code
= TARGET_ILL_ILLOPN
;
820 info
._sifields
._sigfault
._addr
= env
->pc
;
821 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
823 case EXCP_PREFETCH_ABORT
:
824 case EXCP_DATA_ABORT
:
825 info
.si_signo
= TARGET_SIGSEGV
;
827 /* XXX: check env->error_code */
828 info
.si_code
= TARGET_SEGV_MAPERR
;
829 info
._sifields
._sigfault
._addr
= env
->exception
.vaddress
;
830 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
834 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
838 info
.si_code
= TARGET_TRAP_BRKPT
;
839 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
843 env
->xregs
[0] = do_arm_semihosting(env
);
846 /* nothing to do here for user-mode, just resume guest code */
849 cpu_exec_step_atomic(cs
);
852 EXCP_DUMP(env
, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr
);
855 process_pending_signals(env
);
856 /* Exception return on AArch64 always clears the exclusive monitor,
857 * so any return to running guest code implies this.
859 env
->exclusive_addr
= -1;
862 #endif /* ndef TARGET_ABI32 */
866 #ifdef TARGET_UNICORE32
868 void cpu_loop(CPUUniCore32State
*env
)
870 CPUState
*cs
= CPU(uc32_env_get_cpu(env
));
872 unsigned int n
, insn
;
873 target_siginfo_t info
;
877 trapnr
= cpu_exec(cs
);
879 process_queued_cpu_work(cs
);
885 get_user_u32(insn
, env
->regs
[31] - 4);
888 if (n
>= UC32_SYSCALL_BASE
) {
890 n
-= UC32_SYSCALL_BASE
;
891 if (n
== UC32_SYSCALL_NR_set_tls
) {
892 cpu_set_tls(env
, env
->regs
[0]);
895 abi_long ret
= do_syscall(env
,
904 if (ret
== -TARGET_ERESTARTSYS
) {
906 } else if (ret
!= -TARGET_QEMU_ESIGRETURN
) {
915 case UC32_EXCP_DTRAP
:
916 case UC32_EXCP_ITRAP
:
917 info
.si_signo
= TARGET_SIGSEGV
;
919 /* XXX: check env->error_code */
920 info
.si_code
= TARGET_SEGV_MAPERR
;
921 info
._sifields
._sigfault
._addr
= env
->cp0
.c4_faultaddr
;
922 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
925 /* just indicate that signals should be handled asap */
931 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
935 info
.si_code
= TARGET_TRAP_BRKPT
;
936 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
941 cpu_exec_step_atomic(cs
);
946 process_pending_signals(env
);
950 EXCP_DUMP(env
, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr
);
956 #define SPARC64_STACK_BIAS 2047
960 /* WARNING: dealing with register windows _is_ complicated. More info
961 can be found at http://www.sics.se/~psm/sparcstack.html */
962 static inline int get_reg_index(CPUSPARCState
*env
, int cwp
, int index
)
964 index
= (index
+ cwp
* 16) % (16 * env
->nwindows
);
965 /* wrap handling : if cwp is on the last window, then we use the
966 registers 'after' the end */
967 if (index
< 8 && env
->cwp
== env
->nwindows
- 1)
968 index
+= 16 * env
->nwindows
;
972 /* save the register window 'cwp1' */
973 static inline void save_window_offset(CPUSPARCState
*env
, int cwp1
)
978 sp_ptr
= env
->regbase
[get_reg_index(env
, cwp1
, 6)];
979 #ifdef TARGET_SPARC64
981 sp_ptr
+= SPARC64_STACK_BIAS
;
983 #if defined(DEBUG_WIN)
984 printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx
" save_cwp=%d\n",
987 for(i
= 0; i
< 16; i
++) {
988 /* FIXME - what to do if put_user() fails? */
989 put_user_ual(env
->regbase
[get_reg_index(env
, cwp1
, 8 + i
)], sp_ptr
);
990 sp_ptr
+= sizeof(abi_ulong
);
994 static void save_window(CPUSPARCState
*env
)
996 #ifndef TARGET_SPARC64
997 unsigned int new_wim
;
998 new_wim
= ((env
->wim
>> 1) | (env
->wim
<< (env
->nwindows
- 1))) &
999 ((1LL << env
->nwindows
) - 1);
1000 save_window_offset(env
, cpu_cwp_dec(env
, env
->cwp
- 2));
1003 save_window_offset(env
, cpu_cwp_dec(env
, env
->cwp
- 2));
1009 static void restore_window(CPUSPARCState
*env
)
1011 #ifndef TARGET_SPARC64
1012 unsigned int new_wim
;
1014 unsigned int i
, cwp1
;
1017 #ifndef TARGET_SPARC64
1018 new_wim
= ((env
->wim
<< 1) | (env
->wim
>> (env
->nwindows
- 1))) &
1019 ((1LL << env
->nwindows
) - 1);
1022 /* restore the invalid window */
1023 cwp1
= cpu_cwp_inc(env
, env
->cwp
+ 1);
1024 sp_ptr
= env
->regbase
[get_reg_index(env
, cwp1
, 6)];
1025 #ifdef TARGET_SPARC64
1027 sp_ptr
+= SPARC64_STACK_BIAS
;
1029 #if defined(DEBUG_WIN)
1030 printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx
" load_cwp=%d\n",
1033 for(i
= 0; i
< 16; i
++) {
1034 /* FIXME - what to do if get_user() fails? */
1035 get_user_ual(env
->regbase
[get_reg_index(env
, cwp1
, 8 + i
)], sp_ptr
);
1036 sp_ptr
+= sizeof(abi_ulong
);
1038 #ifdef TARGET_SPARC64
1040 if (env
->cleanwin
< env
->nwindows
- 1)
1048 static void flush_windows(CPUSPARCState
*env
)
1054 /* if restore would invoke restore_window(), then we can stop */
1055 cwp1
= cpu_cwp_inc(env
, env
->cwp
+ offset
);
1056 #ifndef TARGET_SPARC64
1057 if (env
->wim
& (1 << cwp1
))
1060 if (env
->canrestore
== 0)
1065 save_window_offset(env
, cwp1
);
1068 cwp1
= cpu_cwp_inc(env
, env
->cwp
+ 1);
1069 #ifndef TARGET_SPARC64
1070 /* set wim so that restore will reload the registers */
1071 env
->wim
= 1 << cwp1
;
1073 #if defined(DEBUG_WIN)
1074 printf("flush_windows: nb=%d\n", offset
- 1);
1078 void cpu_loop (CPUSPARCState
*env
)
1080 CPUState
*cs
= CPU(sparc_env_get_cpu(env
));
1083 target_siginfo_t info
;
1087 trapnr
= cpu_exec(cs
);
1089 process_queued_cpu_work(cs
);
1091 /* Compute PSR before exposing state. */
1092 if (env
->cc_op
!= CC_OP_FLAGS
) {
1097 #ifndef TARGET_SPARC64
1104 ret
= do_syscall (env
, env
->gregs
[1],
1105 env
->regwptr
[0], env
->regwptr
[1],
1106 env
->regwptr
[2], env
->regwptr
[3],
1107 env
->regwptr
[4], env
->regwptr
[5],
1109 if (ret
== -TARGET_ERESTARTSYS
|| ret
== -TARGET_QEMU_ESIGRETURN
) {
1112 if ((abi_ulong
)ret
>= (abi_ulong
)(-515)) {
1113 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
1114 env
->xcc
|= PSR_CARRY
;
1116 env
->psr
|= PSR_CARRY
;
1120 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
1121 env
->xcc
&= ~PSR_CARRY
;
1123 env
->psr
&= ~PSR_CARRY
;
1126 env
->regwptr
[0] = ret
;
1127 /* next instruction */
1129 env
->npc
= env
->npc
+ 4;
1131 case 0x83: /* flush windows */
1136 /* next instruction */
1138 env
->npc
= env
->npc
+ 4;
1140 #ifndef TARGET_SPARC64
1141 case TT_WIN_OVF
: /* window overflow */
1144 case TT_WIN_UNF
: /* window underflow */
1145 restore_window(env
);
1150 info
.si_signo
= TARGET_SIGSEGV
;
1152 /* XXX: check env->error_code */
1153 info
.si_code
= TARGET_SEGV_MAPERR
;
1154 info
._sifields
._sigfault
._addr
= env
->mmuregs
[4];
1155 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
1159 case TT_SPILL
: /* window overflow */
1162 case TT_FILL
: /* window underflow */
1163 restore_window(env
);
1168 info
.si_signo
= TARGET_SIGSEGV
;
1170 /* XXX: check env->error_code */
1171 info
.si_code
= TARGET_SEGV_MAPERR
;
1172 if (trapnr
== TT_DFAULT
)
1173 info
._sifields
._sigfault
._addr
= env
->dmmu
.mmuregs
[4];
1175 info
._sifields
._sigfault
._addr
= cpu_tsptr(env
)->tpc
;
1176 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
1179 #ifndef TARGET_ABI32
1182 sparc64_get_context(env
);
1186 sparc64_set_context(env
);
1190 case EXCP_INTERRUPT
:
1191 /* just indicate that signals should be handled asap */
1195 info
.si_signo
= TARGET_SIGILL
;
1197 info
.si_code
= TARGET_ILL_ILLOPC
;
1198 info
._sifields
._sigfault
._addr
= env
->pc
;
1199 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
1206 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
1209 info
.si_signo
= sig
;
1211 info
.si_code
= TARGET_TRAP_BRKPT
;
1212 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
1217 cpu_exec_step_atomic(cs
);
1220 printf ("Unhandled trap: 0x%x\n", trapnr
);
1221 cpu_dump_state(cs
, stderr
, fprintf
, 0);
1224 process_pending_signals (env
);
1231 static inline uint64_t cpu_ppc_get_tb(CPUPPCState
*env
)
1233 return cpu_get_host_ticks();
1236 uint64_t cpu_ppc_load_tbl(CPUPPCState
*env
)
1238 return cpu_ppc_get_tb(env
);
1241 uint32_t cpu_ppc_load_tbu(CPUPPCState
*env
)
1243 return cpu_ppc_get_tb(env
) >> 32;
1246 uint64_t cpu_ppc_load_atbl(CPUPPCState
*env
)
1248 return cpu_ppc_get_tb(env
);
1251 uint32_t cpu_ppc_load_atbu(CPUPPCState
*env
)
1253 return cpu_ppc_get_tb(env
) >> 32;
1256 uint32_t cpu_ppc601_load_rtcu(CPUPPCState
*env
)
1257 __attribute__ (( alias ("cpu_ppc_load_tbu") ));
1259 uint32_t cpu_ppc601_load_rtcl(CPUPPCState
*env
)
1261 return cpu_ppc_load_tbl(env
) & 0x3FFFFF80;
1264 /* XXX: to be fixed */
1265 int ppc_dcr_read (ppc_dcr_t
*dcr_env
, int dcrn
, uint32_t *valp
)
1270 int ppc_dcr_write (ppc_dcr_t
*dcr_env
, int dcrn
, uint32_t val
)
1275 static int do_store_exclusive(CPUPPCState
*env
)
1278 target_ulong page_addr
;
1279 target_ulong val
, val2
__attribute__((unused
)) = 0;
1283 addr
= env
->reserve_ea
;
1284 page_addr
= addr
& TARGET_PAGE_MASK
;
1287 flags
= page_get_flags(page_addr
);
1288 if ((flags
& PAGE_READ
) == 0) {
1291 int reg
= env
->reserve_info
& 0x1f;
1292 int size
= env
->reserve_info
>> 5;
1295 if (addr
== env
->reserve_addr
) {
1297 case 1: segv
= get_user_u8(val
, addr
); break;
1298 case 2: segv
= get_user_u16(val
, addr
); break;
1299 case 4: segv
= get_user_u32(val
, addr
); break;
1300 #if defined(TARGET_PPC64)
1301 case 8: segv
= get_user_u64(val
, addr
); break;
1303 segv
= get_user_u64(val
, addr
);
1305 segv
= get_user_u64(val2
, addr
+ 8);
1312 if (!segv
&& val
== env
->reserve_val
) {
1313 val
= env
->gpr
[reg
];
1315 case 1: segv
= put_user_u8(val
, addr
); break;
1316 case 2: segv
= put_user_u16(val
, addr
); break;
1317 case 4: segv
= put_user_u32(val
, addr
); break;
1318 #if defined(TARGET_PPC64)
1319 case 8: segv
= put_user_u64(val
, addr
); break;
1321 if (val2
== env
->reserve_val2
) {
1324 val
= env
->gpr
[reg
+1];
1326 val2
= env
->gpr
[reg
+1];
1328 segv
= put_user_u64(val
, addr
);
1330 segv
= put_user_u64(val2
, addr
+ 8);
1343 env
->crf
[0] = (stored
<< 1) | xer_so
;
1344 env
->reserve_addr
= (target_ulong
)-1;
1354 void cpu_loop(CPUPPCState
*env
)
1356 CPUState
*cs
= CPU(ppc_env_get_cpu(env
));
1357 target_siginfo_t info
;
1363 trapnr
= cpu_exec(cs
);
1365 process_queued_cpu_work(cs
);
1368 case POWERPC_EXCP_NONE
:
1371 case POWERPC_EXCP_CRITICAL
: /* Critical input */
1372 cpu_abort(cs
, "Critical interrupt while in user mode. "
1375 case POWERPC_EXCP_MCHECK
: /* Machine check exception */
1376 cpu_abort(cs
, "Machine check exception while in user mode. "
1379 case POWERPC_EXCP_DSI
: /* Data storage exception */
1380 /* XXX: check this. Seems bugged */
1381 switch (env
->error_code
& 0xFF000000) {
1384 info
.si_signo
= TARGET_SIGSEGV
;
1386 info
.si_code
= TARGET_SEGV_MAPERR
;
1389 info
.si_signo
= TARGET_SIGILL
;
1391 info
.si_code
= TARGET_ILL_ILLADR
;
1394 info
.si_signo
= TARGET_SIGSEGV
;
1396 info
.si_code
= TARGET_SEGV_ACCERR
;
1399 /* Let's send a regular segfault... */
1400 EXCP_DUMP(env
, "Invalid segfault errno (%02x)\n",
1402 info
.si_signo
= TARGET_SIGSEGV
;
1404 info
.si_code
= TARGET_SEGV_MAPERR
;
1407 info
._sifields
._sigfault
._addr
= env
->nip
;
1408 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
1410 case POWERPC_EXCP_ISI
: /* Instruction storage exception */
1411 /* XXX: check this */
1412 switch (env
->error_code
& 0xFF000000) {
1414 info
.si_signo
= TARGET_SIGSEGV
;
1416 info
.si_code
= TARGET_SEGV_MAPERR
;
1420 info
.si_signo
= TARGET_SIGSEGV
;
1422 info
.si_code
= TARGET_SEGV_ACCERR
;
1425 /* Let's send a regular segfault... */
1426 EXCP_DUMP(env
, "Invalid segfault errno (%02x)\n",
1428 info
.si_signo
= TARGET_SIGSEGV
;
1430 info
.si_code
= TARGET_SEGV_MAPERR
;
1433 info
._sifields
._sigfault
._addr
= env
->nip
- 4;
1434 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
1436 case POWERPC_EXCP_EXTERNAL
: /* External input */
1437 cpu_abort(cs
, "External interrupt while in user mode. "
1440 case POWERPC_EXCP_ALIGN
: /* Alignment exception */
1441 /* XXX: check this */
1442 info
.si_signo
= TARGET_SIGBUS
;
1444 info
.si_code
= TARGET_BUS_ADRALN
;
1445 info
._sifields
._sigfault
._addr
= env
->nip
;
1446 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
1448 case POWERPC_EXCP_PROGRAM
: /* Program exception */
1449 case POWERPC_EXCP_HV_EMU
: /* HV emulation */
1450 /* XXX: check this */
1451 switch (env
->error_code
& ~0xF) {
1452 case POWERPC_EXCP_FP
:
1453 info
.si_signo
= TARGET_SIGFPE
;
1455 switch (env
->error_code
& 0xF) {
1456 case POWERPC_EXCP_FP_OX
:
1457 info
.si_code
= TARGET_FPE_FLTOVF
;
1459 case POWERPC_EXCP_FP_UX
:
1460 info
.si_code
= TARGET_FPE_FLTUND
;
1462 case POWERPC_EXCP_FP_ZX
:
1463 case POWERPC_EXCP_FP_VXZDZ
:
1464 info
.si_code
= TARGET_FPE_FLTDIV
;
1466 case POWERPC_EXCP_FP_XX
:
1467 info
.si_code
= TARGET_FPE_FLTRES
;
1469 case POWERPC_EXCP_FP_VXSOFT
:
1470 info
.si_code
= TARGET_FPE_FLTINV
;
1472 case POWERPC_EXCP_FP_VXSNAN
:
1473 case POWERPC_EXCP_FP_VXISI
:
1474 case POWERPC_EXCP_FP_VXIDI
:
1475 case POWERPC_EXCP_FP_VXIMZ
:
1476 case POWERPC_EXCP_FP_VXVC
:
1477 case POWERPC_EXCP_FP_VXSQRT
:
1478 case POWERPC_EXCP_FP_VXCVI
:
1479 info
.si_code
= TARGET_FPE_FLTSUB
;
1482 EXCP_DUMP(env
, "Unknown floating point exception (%02x)\n",
1487 case POWERPC_EXCP_INVAL
:
1488 info
.si_signo
= TARGET_SIGILL
;
1490 switch (env
->error_code
& 0xF) {
1491 case POWERPC_EXCP_INVAL_INVAL
:
1492 info
.si_code
= TARGET_ILL_ILLOPC
;
1494 case POWERPC_EXCP_INVAL_LSWX
:
1495 info
.si_code
= TARGET_ILL_ILLOPN
;
1497 case POWERPC_EXCP_INVAL_SPR
:
1498 info
.si_code
= TARGET_ILL_PRVREG
;
1500 case POWERPC_EXCP_INVAL_FP
:
1501 info
.si_code
= TARGET_ILL_COPROC
;
1504 EXCP_DUMP(env
, "Unknown invalid operation (%02x)\n",
1505 env
->error_code
& 0xF);
1506 info
.si_code
= TARGET_ILL_ILLADR
;
1510 case POWERPC_EXCP_PRIV
:
1511 info
.si_signo
= TARGET_SIGILL
;
1513 switch (env
->error_code
& 0xF) {
1514 case POWERPC_EXCP_PRIV_OPC
:
1515 info
.si_code
= TARGET_ILL_PRVOPC
;
1517 case POWERPC_EXCP_PRIV_REG
:
1518 info
.si_code
= TARGET_ILL_PRVREG
;
1521 EXCP_DUMP(env
, "Unknown privilege violation (%02x)\n",
1522 env
->error_code
& 0xF);
1523 info
.si_code
= TARGET_ILL_PRVOPC
;
1527 case POWERPC_EXCP_TRAP
:
1528 cpu_abort(cs
, "Tried to call a TRAP\n");
1531 /* Should not happen ! */
1532 cpu_abort(cs
, "Unknown program exception (%02x)\n",
1536 info
._sifields
._sigfault
._addr
= env
->nip
;
1537 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
1539 case POWERPC_EXCP_FPU
: /* Floating-point unavailable exception */
1540 info
.si_signo
= TARGET_SIGILL
;
1542 info
.si_code
= TARGET_ILL_COPROC
;
1543 info
._sifields
._sigfault
._addr
= env
->nip
;
1544 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
1546 case POWERPC_EXCP_SYSCALL
: /* System call exception */
1547 cpu_abort(cs
, "Syscall exception while in user mode. "
1550 case POWERPC_EXCP_APU
: /* Auxiliary processor unavailable */
1551 info
.si_signo
= TARGET_SIGILL
;
1553 info
.si_code
= TARGET_ILL_COPROC
;
1554 info
._sifields
._sigfault
._addr
= env
->nip
;
1555 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
1557 case POWERPC_EXCP_DECR
: /* Decrementer exception */
1558 cpu_abort(cs
, "Decrementer interrupt while in user mode. "
1561 case POWERPC_EXCP_FIT
: /* Fixed-interval timer interrupt */
1562 cpu_abort(cs
, "Fix interval timer interrupt while in user mode. "
1565 case POWERPC_EXCP_WDT
: /* Watchdog timer interrupt */
1566 cpu_abort(cs
, "Watchdog timer interrupt while in user mode. "
1569 case POWERPC_EXCP_DTLB
: /* Data TLB error */
1570 cpu_abort(cs
, "Data TLB exception while in user mode. "
1573 case POWERPC_EXCP_ITLB
: /* Instruction TLB error */
1574 cpu_abort(cs
, "Instruction TLB exception while in user mode. "
1577 case POWERPC_EXCP_SPEU
: /* SPE/embedded floating-point unavail. */
1578 info
.si_signo
= TARGET_SIGILL
;
1580 info
.si_code
= TARGET_ILL_COPROC
;
1581 info
._sifields
._sigfault
._addr
= env
->nip
;
1582 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
1584 case POWERPC_EXCP_EFPDI
: /* Embedded floating-point data IRQ */
1585 cpu_abort(cs
, "Embedded floating-point data IRQ not handled\n");
1587 case POWERPC_EXCP_EFPRI
: /* Embedded floating-point round IRQ */
1588 cpu_abort(cs
, "Embedded floating-point round IRQ not handled\n");
1590 case POWERPC_EXCP_EPERFM
: /* Embedded performance monitor IRQ */
1591 cpu_abort(cs
, "Performance monitor exception not handled\n");
1593 case POWERPC_EXCP_DOORI
: /* Embedded doorbell interrupt */
1594 cpu_abort(cs
, "Doorbell interrupt while in user mode. "
1597 case POWERPC_EXCP_DOORCI
: /* Embedded doorbell critical interrupt */
1598 cpu_abort(cs
, "Doorbell critical interrupt while in user mode. "
1601 case POWERPC_EXCP_RESET
: /* System reset exception */
1602 cpu_abort(cs
, "Reset interrupt while in user mode. "
1605 case POWERPC_EXCP_DSEG
: /* Data segment exception */
1606 cpu_abort(cs
, "Data segment exception while in user mode. "
1609 case POWERPC_EXCP_ISEG
: /* Instruction segment exception */
1610 cpu_abort(cs
, "Instruction segment exception "
1611 "while in user mode. Aborting\n");
1613 /* PowerPC 64 with hypervisor mode support */
1614 case POWERPC_EXCP_HDECR
: /* Hypervisor decrementer exception */
1615 cpu_abort(cs
, "Hypervisor decrementer interrupt "
1616 "while in user mode. Aborting\n");
1618 case POWERPC_EXCP_TRACE
: /* Trace exception */
1620 * we use this exception to emulate step-by-step execution mode.
1623 /* PowerPC 64 with hypervisor mode support */
1624 case POWERPC_EXCP_HDSI
: /* Hypervisor data storage exception */
1625 cpu_abort(cs
, "Hypervisor data storage exception "
1626 "while in user mode. Aborting\n");
1628 case POWERPC_EXCP_HISI
: /* Hypervisor instruction storage excp */
1629 cpu_abort(cs
, "Hypervisor instruction storage exception "
1630 "while in user mode. Aborting\n");
1632 case POWERPC_EXCP_HDSEG
: /* Hypervisor data segment exception */
1633 cpu_abort(cs
, "Hypervisor data segment exception "
1634 "while in user mode. Aborting\n");
1636 case POWERPC_EXCP_HISEG
: /* Hypervisor instruction segment excp */
1637 cpu_abort(cs
, "Hypervisor instruction segment exception "
1638 "while in user mode. Aborting\n");
1640 case POWERPC_EXCP_VPU
: /* Vector unavailable exception */
1641 info
.si_signo
= TARGET_SIGILL
;
1643 info
.si_code
= TARGET_ILL_COPROC
;
1644 info
._sifields
._sigfault
._addr
= env
->nip
;
1645 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
1647 case POWERPC_EXCP_PIT
: /* Programmable interval timer IRQ */
1648 cpu_abort(cs
, "Programmable interval timer interrupt "
1649 "while in user mode. Aborting\n");
1651 case POWERPC_EXCP_IO
: /* IO error exception */
1652 cpu_abort(cs
, "IO error exception while in user mode. "
1655 case POWERPC_EXCP_RUNM
: /* Run mode exception */
1656 cpu_abort(cs
, "Run mode exception while in user mode. "
1659 case POWERPC_EXCP_EMUL
: /* Emulation trap exception */
1660 cpu_abort(cs
, "Emulation trap exception not handled\n");
1662 case POWERPC_EXCP_IFTLB
: /* Instruction fetch TLB error */
1663 cpu_abort(cs
, "Instruction fetch TLB exception "
1664 "while in user-mode. Aborting");
1666 case POWERPC_EXCP_DLTLB
: /* Data load TLB miss */
1667 cpu_abort(cs
, "Data load TLB exception while in user-mode. "
1670 case POWERPC_EXCP_DSTLB
: /* Data store TLB miss */
1671 cpu_abort(cs
, "Data store TLB exception while in user-mode. "
1674 case POWERPC_EXCP_FPA
: /* Floating-point assist exception */
1675 cpu_abort(cs
, "Floating-point assist exception not handled\n");
1677 case POWERPC_EXCP_IABR
: /* Instruction address breakpoint */
1678 cpu_abort(cs
, "Instruction address breakpoint exception "
1681 case POWERPC_EXCP_SMI
: /* System management interrupt */
1682 cpu_abort(cs
, "System management interrupt while in user mode. "
1685 case POWERPC_EXCP_THERM
: /* Thermal interrupt */
1686 cpu_abort(cs
, "Thermal interrupt interrupt while in user mode. "
1689 case POWERPC_EXCP_PERFM
: /* Embedded performance monitor IRQ */
1690 cpu_abort(cs
, "Performance monitor exception not handled\n");
1692 case POWERPC_EXCP_VPUA
: /* Vector assist exception */
1693 cpu_abort(cs
, "Vector assist exception not handled\n");
1695 case POWERPC_EXCP_SOFTP
: /* Soft patch exception */
1696 cpu_abort(cs
, "Soft patch exception not handled\n");
1698 case POWERPC_EXCP_MAINT
: /* Maintenance exception */
1699 cpu_abort(cs
, "Maintenance exception while in user mode. "
1702 case POWERPC_EXCP_STOP
: /* stop translation */
1703 /* We did invalidate the instruction cache. Go on */
1705 case POWERPC_EXCP_BRANCH
: /* branch instruction: */
1706 /* We just stopped because of a branch. Go on */
1708 case POWERPC_EXCP_SYSCALL_USER
:
1709 /* system call in user-mode emulation */
1711 * PPC ABI uses overflow flag in cr0 to signal an error
1714 env
->crf
[0] &= ~0x1;
1715 ret
= do_syscall(env
, env
->gpr
[0], env
->gpr
[3], env
->gpr
[4],
1716 env
->gpr
[5], env
->gpr
[6], env
->gpr
[7],
1718 if (ret
== -TARGET_ERESTARTSYS
) {
1721 if (ret
== (target_ulong
)(-TARGET_QEMU_ESIGRETURN
)) {
1722 /* Returning from a successful sigreturn syscall.
1723 Avoid corrupting register state. */
1727 if (ret
> (target_ulong
)(-515)) {
1733 case POWERPC_EXCP_STCX
:
1734 if (do_store_exclusive(env
)) {
1735 info
.si_signo
= TARGET_SIGSEGV
;
1737 info
.si_code
= TARGET_SEGV_MAPERR
;
1738 info
._sifields
._sigfault
._addr
= env
->nip
;
1739 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
1746 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
1748 info
.si_signo
= sig
;
1750 info
.si_code
= TARGET_TRAP_BRKPT
;
1751 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
1755 case EXCP_INTERRUPT
:
1756 /* just indicate that signals should be handled asap */
1759 cpu_exec_step_atomic(cs
);
1762 cpu_abort(cs
, "Unknown exception 0x%x. Aborting\n", trapnr
);
1765 process_pending_signals(env
);
1772 # ifdef TARGET_ABI_MIPSO32
1773 # define MIPS_SYS(name, args) args,
1774 static const uint8_t mips_syscall_args
[] = {
1775 MIPS_SYS(sys_syscall
, 8) /* 4000 */
1776 MIPS_SYS(sys_exit
, 1)
1777 MIPS_SYS(sys_fork
, 0)
1778 MIPS_SYS(sys_read
, 3)
1779 MIPS_SYS(sys_write
, 3)
1780 MIPS_SYS(sys_open
, 3) /* 4005 */
1781 MIPS_SYS(sys_close
, 1)
1782 MIPS_SYS(sys_waitpid
, 3)
1783 MIPS_SYS(sys_creat
, 2)
1784 MIPS_SYS(sys_link
, 2)
1785 MIPS_SYS(sys_unlink
, 1) /* 4010 */
1786 MIPS_SYS(sys_execve
, 0)
1787 MIPS_SYS(sys_chdir
, 1)
1788 MIPS_SYS(sys_time
, 1)
1789 MIPS_SYS(sys_mknod
, 3)
1790 MIPS_SYS(sys_chmod
, 2) /* 4015 */
1791 MIPS_SYS(sys_lchown
, 3)
1792 MIPS_SYS(sys_ni_syscall
, 0)
1793 MIPS_SYS(sys_ni_syscall
, 0) /* was sys_stat */
1794 MIPS_SYS(sys_lseek
, 3)
1795 MIPS_SYS(sys_getpid
, 0) /* 4020 */
1796 MIPS_SYS(sys_mount
, 5)
1797 MIPS_SYS(sys_umount
, 1)
1798 MIPS_SYS(sys_setuid
, 1)
1799 MIPS_SYS(sys_getuid
, 0)
1800 MIPS_SYS(sys_stime
, 1) /* 4025 */
1801 MIPS_SYS(sys_ptrace
, 4)
1802 MIPS_SYS(sys_alarm
, 1)
1803 MIPS_SYS(sys_ni_syscall
, 0) /* was sys_fstat */
1804 MIPS_SYS(sys_pause
, 0)
1805 MIPS_SYS(sys_utime
, 2) /* 4030 */
1806 MIPS_SYS(sys_ni_syscall
, 0)
1807 MIPS_SYS(sys_ni_syscall
, 0)
1808 MIPS_SYS(sys_access
, 2)
1809 MIPS_SYS(sys_nice
, 1)
1810 MIPS_SYS(sys_ni_syscall
, 0) /* 4035 */
1811 MIPS_SYS(sys_sync
, 0)
1812 MIPS_SYS(sys_kill
, 2)
1813 MIPS_SYS(sys_rename
, 2)
1814 MIPS_SYS(sys_mkdir
, 2)
1815 MIPS_SYS(sys_rmdir
, 1) /* 4040 */
1816 MIPS_SYS(sys_dup
, 1)
1817 MIPS_SYS(sys_pipe
, 0)
1818 MIPS_SYS(sys_times
, 1)
1819 MIPS_SYS(sys_ni_syscall
, 0)
1820 MIPS_SYS(sys_brk
, 1) /* 4045 */
1821 MIPS_SYS(sys_setgid
, 1)
1822 MIPS_SYS(sys_getgid
, 0)
1823 MIPS_SYS(sys_ni_syscall
, 0) /* was signal(2) */
1824 MIPS_SYS(sys_geteuid
, 0)
1825 MIPS_SYS(sys_getegid
, 0) /* 4050 */
1826 MIPS_SYS(sys_acct
, 0)
1827 MIPS_SYS(sys_umount2
, 2)
1828 MIPS_SYS(sys_ni_syscall
, 0)
1829 MIPS_SYS(sys_ioctl
, 3)
1830 MIPS_SYS(sys_fcntl
, 3) /* 4055 */
1831 MIPS_SYS(sys_ni_syscall
, 2)
1832 MIPS_SYS(sys_setpgid
, 2)
1833 MIPS_SYS(sys_ni_syscall
, 0)
1834 MIPS_SYS(sys_olduname
, 1)
1835 MIPS_SYS(sys_umask
, 1) /* 4060 */
1836 MIPS_SYS(sys_chroot
, 1)
1837 MIPS_SYS(sys_ustat
, 2)
1838 MIPS_SYS(sys_dup2
, 2)
1839 MIPS_SYS(sys_getppid
, 0)
1840 MIPS_SYS(sys_getpgrp
, 0) /* 4065 */
1841 MIPS_SYS(sys_setsid
, 0)
1842 MIPS_SYS(sys_sigaction
, 3)
1843 MIPS_SYS(sys_sgetmask
, 0)
1844 MIPS_SYS(sys_ssetmask
, 1)
1845 MIPS_SYS(sys_setreuid
, 2) /* 4070 */
1846 MIPS_SYS(sys_setregid
, 2)
1847 MIPS_SYS(sys_sigsuspend
, 0)
1848 MIPS_SYS(sys_sigpending
, 1)
1849 MIPS_SYS(sys_sethostname
, 2)
1850 MIPS_SYS(sys_setrlimit
, 2) /* 4075 */
1851 MIPS_SYS(sys_getrlimit
, 2)
1852 MIPS_SYS(sys_getrusage
, 2)
1853 MIPS_SYS(sys_gettimeofday
, 2)
1854 MIPS_SYS(sys_settimeofday
, 2)
1855 MIPS_SYS(sys_getgroups
, 2) /* 4080 */
1856 MIPS_SYS(sys_setgroups
, 2)
1857 MIPS_SYS(sys_ni_syscall
, 0) /* old_select */
1858 MIPS_SYS(sys_symlink
, 2)
1859 MIPS_SYS(sys_ni_syscall
, 0) /* was sys_lstat */
1860 MIPS_SYS(sys_readlink
, 3) /* 4085 */
1861 MIPS_SYS(sys_uselib
, 1)
1862 MIPS_SYS(sys_swapon
, 2)
1863 MIPS_SYS(sys_reboot
, 3)
1864 MIPS_SYS(old_readdir
, 3)
1865 MIPS_SYS(old_mmap
, 6) /* 4090 */
1866 MIPS_SYS(sys_munmap
, 2)
1867 MIPS_SYS(sys_truncate
, 2)
1868 MIPS_SYS(sys_ftruncate
, 2)
1869 MIPS_SYS(sys_fchmod
, 2)
1870 MIPS_SYS(sys_fchown
, 3) /* 4095 */
1871 MIPS_SYS(sys_getpriority
, 2)
1872 MIPS_SYS(sys_setpriority
, 3)
1873 MIPS_SYS(sys_ni_syscall
, 0)
1874 MIPS_SYS(sys_statfs
, 2)
1875 MIPS_SYS(sys_fstatfs
, 2) /* 4100 */
1876 MIPS_SYS(sys_ni_syscall
, 0) /* was ioperm(2) */
1877 MIPS_SYS(sys_socketcall
, 2)
1878 MIPS_SYS(sys_syslog
, 3)
1879 MIPS_SYS(sys_setitimer
, 3)
1880 MIPS_SYS(sys_getitimer
, 2) /* 4105 */
1881 MIPS_SYS(sys_newstat
, 2)
1882 MIPS_SYS(sys_newlstat
, 2)
1883 MIPS_SYS(sys_newfstat
, 2)
1884 MIPS_SYS(sys_uname
, 1)
1885 MIPS_SYS(sys_ni_syscall
, 0) /* 4110 was iopl(2) */
1886 MIPS_SYS(sys_vhangup
, 0)
1887 MIPS_SYS(sys_ni_syscall
, 0) /* was sys_idle() */
1888 MIPS_SYS(sys_ni_syscall
, 0) /* was sys_vm86 */
1889 MIPS_SYS(sys_wait4
, 4)
1890 MIPS_SYS(sys_swapoff
, 1) /* 4115 */
1891 MIPS_SYS(sys_sysinfo
, 1)
1892 MIPS_SYS(sys_ipc
, 6)
1893 MIPS_SYS(sys_fsync
, 1)
1894 MIPS_SYS(sys_sigreturn
, 0)
1895 MIPS_SYS(sys_clone
, 6) /* 4120 */
1896 MIPS_SYS(sys_setdomainname
, 2)
1897 MIPS_SYS(sys_newuname
, 1)
1898 MIPS_SYS(sys_ni_syscall
, 0) /* sys_modify_ldt */
1899 MIPS_SYS(sys_adjtimex
, 1)
1900 MIPS_SYS(sys_mprotect
, 3) /* 4125 */
1901 MIPS_SYS(sys_sigprocmask
, 3)
1902 MIPS_SYS(sys_ni_syscall
, 0) /* was create_module */
1903 MIPS_SYS(sys_init_module
, 5)
1904 MIPS_SYS(sys_delete_module
, 1)
1905 MIPS_SYS(sys_ni_syscall
, 0) /* 4130 was get_kernel_syms */
1906 MIPS_SYS(sys_quotactl
, 0)
1907 MIPS_SYS(sys_getpgid
, 1)
1908 MIPS_SYS(sys_fchdir
, 1)
1909 MIPS_SYS(sys_bdflush
, 2)
1910 MIPS_SYS(sys_sysfs
, 3) /* 4135 */
1911 MIPS_SYS(sys_personality
, 1)
1912 MIPS_SYS(sys_ni_syscall
, 0) /* for afs_syscall */
1913 MIPS_SYS(sys_setfsuid
, 1)
1914 MIPS_SYS(sys_setfsgid
, 1)
1915 MIPS_SYS(sys_llseek
, 5) /* 4140 */
1916 MIPS_SYS(sys_getdents
, 3)
1917 MIPS_SYS(sys_select
, 5)
1918 MIPS_SYS(sys_flock
, 2)
1919 MIPS_SYS(sys_msync
, 3)
1920 MIPS_SYS(sys_readv
, 3) /* 4145 */
1921 MIPS_SYS(sys_writev
, 3)
1922 MIPS_SYS(sys_cacheflush
, 3)
1923 MIPS_SYS(sys_cachectl
, 3)
1924 MIPS_SYS(sys_sysmips
, 4)
1925 MIPS_SYS(sys_ni_syscall
, 0) /* 4150 */
1926 MIPS_SYS(sys_getsid
, 1)
1927 MIPS_SYS(sys_fdatasync
, 0)
1928 MIPS_SYS(sys_sysctl
, 1)
1929 MIPS_SYS(sys_mlock
, 2)
1930 MIPS_SYS(sys_munlock
, 2) /* 4155 */
1931 MIPS_SYS(sys_mlockall
, 1)
1932 MIPS_SYS(sys_munlockall
, 0)
1933 MIPS_SYS(sys_sched_setparam
, 2)
1934 MIPS_SYS(sys_sched_getparam
, 2)
1935 MIPS_SYS(sys_sched_setscheduler
, 3) /* 4160 */
1936 MIPS_SYS(sys_sched_getscheduler
, 1)
1937 MIPS_SYS(sys_sched_yield
, 0)
1938 MIPS_SYS(sys_sched_get_priority_max
, 1)
1939 MIPS_SYS(sys_sched_get_priority_min
, 1)
1940 MIPS_SYS(sys_sched_rr_get_interval
, 2) /* 4165 */
1941 MIPS_SYS(sys_nanosleep
, 2)
1942 MIPS_SYS(sys_mremap
, 5)
1943 MIPS_SYS(sys_accept
, 3)
1944 MIPS_SYS(sys_bind
, 3)
1945 MIPS_SYS(sys_connect
, 3) /* 4170 */
1946 MIPS_SYS(sys_getpeername
, 3)
1947 MIPS_SYS(sys_getsockname
, 3)
1948 MIPS_SYS(sys_getsockopt
, 5)
1949 MIPS_SYS(sys_listen
, 2)
1950 MIPS_SYS(sys_recv
, 4) /* 4175 */
1951 MIPS_SYS(sys_recvfrom
, 6)
1952 MIPS_SYS(sys_recvmsg
, 3)
1953 MIPS_SYS(sys_send
, 4)
1954 MIPS_SYS(sys_sendmsg
, 3)
1955 MIPS_SYS(sys_sendto
, 6) /* 4180 */
1956 MIPS_SYS(sys_setsockopt
, 5)
1957 MIPS_SYS(sys_shutdown
, 2)
1958 MIPS_SYS(sys_socket
, 3)
1959 MIPS_SYS(sys_socketpair
, 4)
1960 MIPS_SYS(sys_setresuid
, 3) /* 4185 */
1961 MIPS_SYS(sys_getresuid
, 3)
1962 MIPS_SYS(sys_ni_syscall
, 0) /* was sys_query_module */
1963 MIPS_SYS(sys_poll
, 3)
1964 MIPS_SYS(sys_nfsservctl
, 3)
1965 MIPS_SYS(sys_setresgid
, 3) /* 4190 */
1966 MIPS_SYS(sys_getresgid
, 3)
1967 MIPS_SYS(sys_prctl
, 5)
1968 MIPS_SYS(sys_rt_sigreturn
, 0)
1969 MIPS_SYS(sys_rt_sigaction
, 4)
1970 MIPS_SYS(sys_rt_sigprocmask
, 4) /* 4195 */
1971 MIPS_SYS(sys_rt_sigpending
, 2)
1972 MIPS_SYS(sys_rt_sigtimedwait
, 4)
1973 MIPS_SYS(sys_rt_sigqueueinfo
, 3)
1974 MIPS_SYS(sys_rt_sigsuspend
, 0)
1975 MIPS_SYS(sys_pread64
, 6) /* 4200 */
1976 MIPS_SYS(sys_pwrite64
, 6)
1977 MIPS_SYS(sys_chown
, 3)
1978 MIPS_SYS(sys_getcwd
, 2)
1979 MIPS_SYS(sys_capget
, 2)
1980 MIPS_SYS(sys_capset
, 2) /* 4205 */
1981 MIPS_SYS(sys_sigaltstack
, 2)
1982 MIPS_SYS(sys_sendfile
, 4)
1983 MIPS_SYS(sys_ni_syscall
, 0)
1984 MIPS_SYS(sys_ni_syscall
, 0)
1985 MIPS_SYS(sys_mmap2
, 6) /* 4210 */
1986 MIPS_SYS(sys_truncate64
, 4)
1987 MIPS_SYS(sys_ftruncate64
, 4)
1988 MIPS_SYS(sys_stat64
, 2)
1989 MIPS_SYS(sys_lstat64
, 2)
1990 MIPS_SYS(sys_fstat64
, 2) /* 4215 */
1991 MIPS_SYS(sys_pivot_root
, 2)
1992 MIPS_SYS(sys_mincore
, 3)
1993 MIPS_SYS(sys_madvise
, 3)
1994 MIPS_SYS(sys_getdents64
, 3)
1995 MIPS_SYS(sys_fcntl64
, 3) /* 4220 */
1996 MIPS_SYS(sys_ni_syscall
, 0)
1997 MIPS_SYS(sys_gettid
, 0)
1998 MIPS_SYS(sys_readahead
, 5)
1999 MIPS_SYS(sys_setxattr
, 5)
2000 MIPS_SYS(sys_lsetxattr
, 5) /* 4225 */
2001 MIPS_SYS(sys_fsetxattr
, 5)
2002 MIPS_SYS(sys_getxattr
, 4)
2003 MIPS_SYS(sys_lgetxattr
, 4)
2004 MIPS_SYS(sys_fgetxattr
, 4)
2005 MIPS_SYS(sys_listxattr
, 3) /* 4230 */
2006 MIPS_SYS(sys_llistxattr
, 3)
2007 MIPS_SYS(sys_flistxattr
, 3)
2008 MIPS_SYS(sys_removexattr
, 2)
2009 MIPS_SYS(sys_lremovexattr
, 2)
2010 MIPS_SYS(sys_fremovexattr
, 2) /* 4235 */
2011 MIPS_SYS(sys_tkill
, 2)
2012 MIPS_SYS(sys_sendfile64
, 5)
2013 MIPS_SYS(sys_futex
, 6)
2014 MIPS_SYS(sys_sched_setaffinity
, 3)
2015 MIPS_SYS(sys_sched_getaffinity
, 3) /* 4240 */
2016 MIPS_SYS(sys_io_setup
, 2)
2017 MIPS_SYS(sys_io_destroy
, 1)
2018 MIPS_SYS(sys_io_getevents
, 5)
2019 MIPS_SYS(sys_io_submit
, 3)
2020 MIPS_SYS(sys_io_cancel
, 3) /* 4245 */
2021 MIPS_SYS(sys_exit_group
, 1)
2022 MIPS_SYS(sys_lookup_dcookie
, 3)
2023 MIPS_SYS(sys_epoll_create
, 1)
2024 MIPS_SYS(sys_epoll_ctl
, 4)
2025 MIPS_SYS(sys_epoll_wait
, 3) /* 4250 */
2026 MIPS_SYS(sys_remap_file_pages
, 5)
2027 MIPS_SYS(sys_set_tid_address
, 1)
2028 MIPS_SYS(sys_restart_syscall
, 0)
2029 MIPS_SYS(sys_fadvise64_64
, 7)
2030 MIPS_SYS(sys_statfs64
, 3) /* 4255 */
2031 MIPS_SYS(sys_fstatfs64
, 2)
2032 MIPS_SYS(sys_timer_create
, 3)
2033 MIPS_SYS(sys_timer_settime
, 4)
2034 MIPS_SYS(sys_timer_gettime
, 2)
2035 MIPS_SYS(sys_timer_getoverrun
, 1) /* 4260 */
2036 MIPS_SYS(sys_timer_delete
, 1)
2037 MIPS_SYS(sys_clock_settime
, 2)
2038 MIPS_SYS(sys_clock_gettime
, 2)
2039 MIPS_SYS(sys_clock_getres
, 2)
2040 MIPS_SYS(sys_clock_nanosleep
, 4) /* 4265 */
2041 MIPS_SYS(sys_tgkill
, 3)
2042 MIPS_SYS(sys_utimes
, 2)
2043 MIPS_SYS(sys_mbind
, 4)
2044 MIPS_SYS(sys_ni_syscall
, 0) /* sys_get_mempolicy */
2045 MIPS_SYS(sys_ni_syscall
, 0) /* 4270 sys_set_mempolicy */
2046 MIPS_SYS(sys_mq_open
, 4)
2047 MIPS_SYS(sys_mq_unlink
, 1)
2048 MIPS_SYS(sys_mq_timedsend
, 5)
2049 MIPS_SYS(sys_mq_timedreceive
, 5)
2050 MIPS_SYS(sys_mq_notify
, 2) /* 4275 */
2051 MIPS_SYS(sys_mq_getsetattr
, 3)
2052 MIPS_SYS(sys_ni_syscall
, 0) /* sys_vserver */
2053 MIPS_SYS(sys_waitid
, 4)
2054 MIPS_SYS(sys_ni_syscall
, 0) /* available, was setaltroot */
2055 MIPS_SYS(sys_add_key
, 5)
2056 MIPS_SYS(sys_request_key
, 4)
2057 MIPS_SYS(sys_keyctl
, 5)
2058 MIPS_SYS(sys_set_thread_area
, 1)
2059 MIPS_SYS(sys_inotify_init
, 0)
2060 MIPS_SYS(sys_inotify_add_watch
, 3) /* 4285 */
2061 MIPS_SYS(sys_inotify_rm_watch
, 2)
2062 MIPS_SYS(sys_migrate_pages
, 4)
2063 MIPS_SYS(sys_openat
, 4)
2064 MIPS_SYS(sys_mkdirat
, 3)
2065 MIPS_SYS(sys_mknodat
, 4) /* 4290 */
2066 MIPS_SYS(sys_fchownat
, 5)
2067 MIPS_SYS(sys_futimesat
, 3)
2068 MIPS_SYS(sys_fstatat64
, 4)
2069 MIPS_SYS(sys_unlinkat
, 3)
2070 MIPS_SYS(sys_renameat
, 4) /* 4295 */
2071 MIPS_SYS(sys_linkat
, 5)
2072 MIPS_SYS(sys_symlinkat
, 3)
2073 MIPS_SYS(sys_readlinkat
, 4)
2074 MIPS_SYS(sys_fchmodat
, 3)
2075 MIPS_SYS(sys_faccessat
, 3) /* 4300 */
2076 MIPS_SYS(sys_pselect6
, 6)
2077 MIPS_SYS(sys_ppoll
, 5)
2078 MIPS_SYS(sys_unshare
, 1)
2079 MIPS_SYS(sys_splice
, 6)
2080 MIPS_SYS(sys_sync_file_range
, 7) /* 4305 */
2081 MIPS_SYS(sys_tee
, 4)
2082 MIPS_SYS(sys_vmsplice
, 4)
2083 MIPS_SYS(sys_move_pages
, 6)
2084 MIPS_SYS(sys_set_robust_list
, 2)
2085 MIPS_SYS(sys_get_robust_list
, 3) /* 4310 */
2086 MIPS_SYS(sys_kexec_load
, 4)
2087 MIPS_SYS(sys_getcpu
, 3)
2088 MIPS_SYS(sys_epoll_pwait
, 6)
2089 MIPS_SYS(sys_ioprio_set
, 3)
2090 MIPS_SYS(sys_ioprio_get
, 2)
2091 MIPS_SYS(sys_utimensat
, 4)
2092 MIPS_SYS(sys_signalfd
, 3)
2093 MIPS_SYS(sys_ni_syscall
, 0) /* was timerfd */
2094 MIPS_SYS(sys_eventfd
, 1)
2095 MIPS_SYS(sys_fallocate
, 6) /* 4320 */
2096 MIPS_SYS(sys_timerfd_create
, 2)
2097 MIPS_SYS(sys_timerfd_gettime
, 2)
2098 MIPS_SYS(sys_timerfd_settime
, 4)
2099 MIPS_SYS(sys_signalfd4
, 4)
2100 MIPS_SYS(sys_eventfd2
, 2) /* 4325 */
2101 MIPS_SYS(sys_epoll_create1
, 1)
2102 MIPS_SYS(sys_dup3
, 3)
2103 MIPS_SYS(sys_pipe2
, 2)
2104 MIPS_SYS(sys_inotify_init1
, 1)
2105 MIPS_SYS(sys_preadv
, 5) /* 4330 */
2106 MIPS_SYS(sys_pwritev
, 5)
2107 MIPS_SYS(sys_rt_tgsigqueueinfo
, 4)
2108 MIPS_SYS(sys_perf_event_open
, 5)
2109 MIPS_SYS(sys_accept4
, 4)
2110 MIPS_SYS(sys_recvmmsg
, 5) /* 4335 */
2111 MIPS_SYS(sys_fanotify_init
, 2)
2112 MIPS_SYS(sys_fanotify_mark
, 6)
2113 MIPS_SYS(sys_prlimit64
, 4)
2114 MIPS_SYS(sys_name_to_handle_at
, 5)
2115 MIPS_SYS(sys_open_by_handle_at
, 3) /* 4340 */
2116 MIPS_SYS(sys_clock_adjtime
, 2)
2117 MIPS_SYS(sys_syncfs
, 1)
2118 MIPS_SYS(sys_sendmmsg
, 4)
2119 MIPS_SYS(sys_setns
, 2)
2120 MIPS_SYS(sys_process_vm_readv
, 6) /* 345 */
2121 MIPS_SYS(sys_process_vm_writev
, 6)
2122 MIPS_SYS(sys_kcmp
, 5)
2123 MIPS_SYS(sys_finit_module
, 3)
2124 MIPS_SYS(sys_sched_setattr
, 2)
2125 MIPS_SYS(sys_sched_getattr
, 3) /* 350 */
2126 MIPS_SYS(sys_renameat2
, 5)
2127 MIPS_SYS(sys_seccomp
, 3)
2128 MIPS_SYS(sys_getrandom
, 3)
2129 MIPS_SYS(sys_memfd_create
, 2)
2130 MIPS_SYS(sys_bpf
, 3) /* 355 */
2131 MIPS_SYS(sys_execveat
, 5)
2132 MIPS_SYS(sys_userfaultfd
, 1)
2133 MIPS_SYS(sys_membarrier
, 2)
2134 MIPS_SYS(sys_mlock2
, 3)
2135 MIPS_SYS(sys_copy_file_range
, 6) /* 360 */
2136 MIPS_SYS(sys_preadv2
, 6)
2137 MIPS_SYS(sys_pwritev2
, 6)
2142 static int do_store_exclusive(CPUMIPSState
*env
)
2145 target_ulong page_addr
;
2153 page_addr
= addr
& TARGET_PAGE_MASK
;
2156 flags
= page_get_flags(page_addr
);
2157 if ((flags
& PAGE_READ
) == 0) {
2160 reg
= env
->llreg
& 0x1f;
2161 d
= (env
->llreg
& 0x20) != 0;
2163 segv
= get_user_s64(val
, addr
);
2165 segv
= get_user_s32(val
, addr
);
2168 if (val
!= env
->llval
) {
2169 env
->active_tc
.gpr
[reg
] = 0;
2172 segv
= put_user_u64(env
->llnewval
, addr
);
2174 segv
= put_user_u32(env
->llnewval
, addr
);
2177 env
->active_tc
.gpr
[reg
] = 1;
2184 env
->active_tc
.PC
+= 4;
2197 static int do_break(CPUMIPSState
*env
, target_siginfo_t
*info
,
2205 info
->si_signo
= TARGET_SIGFPE
;
2207 info
->si_code
= (code
== BRK_OVERFLOW
) ? FPE_INTOVF
: FPE_INTDIV
;
2208 queue_signal(env
, info
->si_signo
, QEMU_SI_FAULT
, &*info
);
2212 info
->si_signo
= TARGET_SIGTRAP
;
2214 queue_signal(env
, info
->si_signo
, QEMU_SI_FAULT
, &*info
);
2222 void cpu_loop(CPUMIPSState
*env
)
2224 CPUState
*cs
= CPU(mips_env_get_cpu(env
));
2225 target_siginfo_t info
;
2228 # ifdef TARGET_ABI_MIPSO32
2229 unsigned int syscall_num
;
2234 trapnr
= cpu_exec(cs
);
2236 process_queued_cpu_work(cs
);
2240 env
->active_tc
.PC
+= 4;
2241 # ifdef TARGET_ABI_MIPSO32
2242 syscall_num
= env
->active_tc
.gpr
[2] - 4000;
2243 if (syscall_num
>= sizeof(mips_syscall_args
)) {
2244 ret
= -TARGET_ENOSYS
;
2248 abi_ulong arg5
= 0, arg6
= 0, arg7
= 0, arg8
= 0;
2250 nb_args
= mips_syscall_args
[syscall_num
];
2251 sp_reg
= env
->active_tc
.gpr
[29];
2253 /* these arguments are taken from the stack */
2255 if ((ret
= get_user_ual(arg8
, sp_reg
+ 28)) != 0) {
2259 if ((ret
= get_user_ual(arg7
, sp_reg
+ 24)) != 0) {
2263 if ((ret
= get_user_ual(arg6
, sp_reg
+ 20)) != 0) {
2267 if ((ret
= get_user_ual(arg5
, sp_reg
+ 16)) != 0) {
2273 ret
= do_syscall(env
, env
->active_tc
.gpr
[2],
2274 env
->active_tc
.gpr
[4],
2275 env
->active_tc
.gpr
[5],
2276 env
->active_tc
.gpr
[6],
2277 env
->active_tc
.gpr
[7],
2278 arg5
, arg6
, arg7
, arg8
);
2282 ret
= do_syscall(env
, env
->active_tc
.gpr
[2],
2283 env
->active_tc
.gpr
[4], env
->active_tc
.gpr
[5],
2284 env
->active_tc
.gpr
[6], env
->active_tc
.gpr
[7],
2285 env
->active_tc
.gpr
[8], env
->active_tc
.gpr
[9],
2286 env
->active_tc
.gpr
[10], env
->active_tc
.gpr
[11]);
2288 if (ret
== -TARGET_ERESTARTSYS
) {
2289 env
->active_tc
.PC
-= 4;
2292 if (ret
== -TARGET_QEMU_ESIGRETURN
) {
2293 /* Returning from a successful sigreturn syscall.
2294 Avoid clobbering register state. */
2297 if ((abi_ulong
)ret
>= (abi_ulong
)-1133) {
2298 env
->active_tc
.gpr
[7] = 1; /* error flag */
2301 env
->active_tc
.gpr
[7] = 0; /* error flag */
2303 env
->active_tc
.gpr
[2] = ret
;
2309 info
.si_signo
= TARGET_SIGSEGV
;
2311 /* XXX: check env->error_code */
2312 info
.si_code
= TARGET_SEGV_MAPERR
;
2313 info
._sifields
._sigfault
._addr
= env
->CP0_BadVAddr
;
2314 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
2318 info
.si_signo
= TARGET_SIGILL
;
2321 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
2323 case EXCP_INTERRUPT
:
2324 /* just indicate that signals should be handled asap */
2330 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
2333 info
.si_signo
= sig
;
2335 info
.si_code
= TARGET_TRAP_BRKPT
;
2336 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
2341 if (do_store_exclusive(env
)) {
2342 info
.si_signo
= TARGET_SIGSEGV
;
2344 info
.si_code
= TARGET_SEGV_MAPERR
;
2345 info
._sifields
._sigfault
._addr
= env
->active_tc
.PC
;
2346 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
2350 info
.si_signo
= TARGET_SIGILL
;
2352 info
.si_code
= TARGET_ILL_ILLOPC
;
2353 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
2355 /* The code below was inspired by the MIPS Linux kernel trap
2356 * handling code in arch/mips/kernel/traps.c.
2360 abi_ulong trap_instr
;
2363 if (env
->hflags
& MIPS_HFLAG_M16
) {
2364 if (env
->insn_flags
& ASE_MICROMIPS
) {
2365 /* microMIPS mode */
2366 ret
= get_user_u16(trap_instr
, env
->active_tc
.PC
);
2371 if ((trap_instr
>> 10) == 0x11) {
2372 /* 16-bit instruction */
2373 code
= trap_instr
& 0xf;
2375 /* 32-bit instruction */
2378 ret
= get_user_u16(instr_lo
,
2379 env
->active_tc
.PC
+ 2);
2383 trap_instr
= (trap_instr
<< 16) | instr_lo
;
2384 code
= ((trap_instr
>> 6) & ((1 << 20) - 1));
2385 /* Unfortunately, microMIPS also suffers from
2386 the old assembler bug... */
2387 if (code
>= (1 << 10)) {
2393 ret
= get_user_u16(trap_instr
, env
->active_tc
.PC
);
2397 code
= (trap_instr
>> 6) & 0x3f;
2400 ret
= get_user_u32(trap_instr
, env
->active_tc
.PC
);
2405 /* As described in the original Linux kernel code, the
2406 * below checks on 'code' are to work around an old
2409 code
= ((trap_instr
>> 6) & ((1 << 20) - 1));
2410 if (code
>= (1 << 10)) {
2415 if (do_break(env
, &info
, code
) != 0) {
2422 abi_ulong trap_instr
;
2423 unsigned int code
= 0;
2425 if (env
->hflags
& MIPS_HFLAG_M16
) {
2426 /* microMIPS mode */
2429 ret
= get_user_u16(instr
[0], env
->active_tc
.PC
) ||
2430 get_user_u16(instr
[1], env
->active_tc
.PC
+ 2);
2432 trap_instr
= (instr
[0] << 16) | instr
[1];
2434 ret
= get_user_u32(trap_instr
, env
->active_tc
.PC
);
2441 /* The immediate versions don't provide a code. */
2442 if (!(trap_instr
& 0xFC000000)) {
2443 if (env
->hflags
& MIPS_HFLAG_M16
) {
2444 /* microMIPS mode */
2445 code
= ((trap_instr
>> 12) & ((1 << 4) - 1));
2447 code
= ((trap_instr
>> 6) & ((1 << 10) - 1));
2451 if (do_break(env
, &info
, code
) != 0) {
2457 cpu_exec_step_atomic(cs
);
2461 EXCP_DUMP(env
, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr
);
2464 process_pending_signals(env
);
2471 void cpu_loop(CPUNios2State
*env
)
2473 CPUState
*cs
= ENV_GET_CPU(env
);
2474 Nios2CPU
*cpu
= NIOS2_CPU(cs
);
2475 target_siginfo_t info
;
2476 int trapnr
, gdbsig
, ret
;
2480 trapnr
= cpu_exec(cs
);
2485 case EXCP_INTERRUPT
:
2486 /* just indicate that signals should be handled asap */
2489 if (env
->regs
[R_AT
] == 0) {
2491 qemu_log_mask(CPU_LOG_INT
, "\nSyscall\n");
2493 ret
= do_syscall(env
, env
->regs
[2],
2494 env
->regs
[4], env
->regs
[5], env
->regs
[6],
2495 env
->regs
[7], env
->regs
[8], env
->regs
[9],
2498 if (env
->regs
[2] == 0) { /* FIXME: syscall 0 workaround */
2502 env
->regs
[2] = abs(ret
);
2503 /* Return value is 0..4096 */
2504 env
->regs
[7] = (ret
> 0xfffffffffffff000ULL
);
2505 env
->regs
[CR_ESTATUS
] = env
->regs
[CR_STATUS
];
2506 env
->regs
[CR_STATUS
] &= ~0x3;
2507 env
->regs
[R_EA
] = env
->regs
[R_PC
] + 4;
2508 env
->regs
[R_PC
] += 4;
2511 qemu_log_mask(CPU_LOG_INT
, "\nTrap\n");
2513 env
->regs
[CR_ESTATUS
] = env
->regs
[CR_STATUS
];
2514 env
->regs
[CR_STATUS
] &= ~0x3;
2515 env
->regs
[R_EA
] = env
->regs
[R_PC
] + 4;
2516 env
->regs
[R_PC
] = cpu
->exception_addr
;
2518 gdbsig
= TARGET_SIGTRAP
;
2522 switch (env
->regs
[R_PC
]) {
2523 /*case 0x1000:*/ /* TODO:__kuser_helper_version */
2524 case 0x1004: /* __kuser_cmpxchg */
2526 if (env
->regs
[4] & 0x3) {
2529 ret
= get_user_u32(env
->regs
[2], env
->regs
[4]);
2534 env
->regs
[2] -= env
->regs
[5];
2535 if (env
->regs
[2] == 0) {
2536 put_user_u32(env
->regs
[6], env
->regs
[4]);
2539 env
->regs
[R_PC
] = env
->regs
[R_RA
];
2541 /*case 0x1040:*/ /* TODO:__kuser_sigtramp */
2545 info
.si_signo
= TARGET_SIGSEGV
;
2547 /* TODO: check env->error_code */
2548 info
.si_code
= TARGET_SEGV_MAPERR
;
2549 info
._sifields
._sigfault
._addr
= env
->regs
[R_PC
];
2550 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
2554 EXCP_DUMP(env
, "\nqemu: unhandled CPU exception %#x - aborting\n",
2556 gdbsig
= TARGET_SIGILL
;
2560 gdb_handlesig(cs
, gdbsig
);
2561 if (gdbsig
!= TARGET_SIGTRAP
) {
2566 process_pending_signals(env
);
2570 #endif /* TARGET_NIOS2 */
2572 #ifdef TARGET_OPENRISC
2574 void cpu_loop(CPUOpenRISCState
*env
)
2576 CPUState
*cs
= CPU(openrisc_env_get_cpu(env
));
2582 trapnr
= cpu_exec(cs
);
2584 process_queued_cpu_work(cs
);
2589 qemu_log_mask(CPU_LOG_INT
, "\nReset request, exit, pc is %#x\n", env
->pc
);
2593 qemu_log_mask(CPU_LOG_INT
, "\nBus error, exit, pc is %#x\n", env
->pc
);
2594 gdbsig
= TARGET_SIGBUS
;
2598 cpu_dump_state(cs
, stderr
, fprintf
, 0);
2599 gdbsig
= TARGET_SIGSEGV
;
2602 qemu_log_mask(CPU_LOG_INT
, "\nTick time interrupt pc is %#x\n", env
->pc
);
2605 qemu_log_mask(CPU_LOG_INT
, "\nAlignment pc is %#x\n", env
->pc
);
2606 gdbsig
= TARGET_SIGBUS
;
2609 qemu_log_mask(CPU_LOG_INT
, "\nIllegal instructionpc is %#x\n", env
->pc
);
2610 gdbsig
= TARGET_SIGILL
;
2613 qemu_log_mask(CPU_LOG_INT
, "\nExternal interruptpc is %#x\n", env
->pc
);
2617 qemu_log_mask(CPU_LOG_INT
, "\nTLB miss\n");
2620 qemu_log_mask(CPU_LOG_INT
, "\nRange\n");
2621 gdbsig
= TARGET_SIGSEGV
;
2624 env
->pc
+= 4; /* 0xc00; */
2625 ret
= do_syscall(env
,
2626 env
->gpr
[11], /* return value */
2627 env
->gpr
[3], /* r3 - r7 are params */
2633 if (ret
== -TARGET_ERESTARTSYS
) {
2635 } else if (ret
!= -TARGET_QEMU_ESIGRETURN
) {
2640 qemu_log_mask(CPU_LOG_INT
, "\nFloating point error\n");
2643 qemu_log_mask(CPU_LOG_INT
, "\nTrap\n");
2644 gdbsig
= TARGET_SIGTRAP
;
2647 qemu_log_mask(CPU_LOG_INT
, "\nNR\n");
2650 cpu_exec_step_atomic(cs
);
2653 EXCP_DUMP(env
, "\nqemu: unhandled CPU exception %#x - aborting\n",
2655 gdbsig
= TARGET_SIGILL
;
2659 gdb_handlesig(cs
, gdbsig
);
2660 if (gdbsig
!= TARGET_SIGTRAP
) {
2665 process_pending_signals(env
);
2669 #endif /* TARGET_OPENRISC */
2672 void cpu_loop(CPUSH4State
*env
)
2674 CPUState
*cs
= CPU(sh_env_get_cpu(env
));
2676 target_siginfo_t info
;
2680 trapnr
= cpu_exec(cs
);
2682 process_queued_cpu_work(cs
);
2687 ret
= do_syscall(env
,
2696 if (ret
== -TARGET_ERESTARTSYS
) {
2698 } else if (ret
!= -TARGET_QEMU_ESIGRETURN
) {
2699 env
->gregs
[0] = ret
;
2702 case EXCP_INTERRUPT
:
2703 /* just indicate that signals should be handled asap */
2709 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
2712 info
.si_signo
= sig
;
2714 info
.si_code
= TARGET_TRAP_BRKPT
;
2715 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
2721 info
.si_signo
= TARGET_SIGSEGV
;
2723 info
.si_code
= TARGET_SEGV_MAPERR
;
2724 info
._sifields
._sigfault
._addr
= env
->tea
;
2725 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
2729 cpu_exec_step_atomic(cs
);
2732 printf ("Unhandled trap: 0x%x\n", trapnr
);
2733 cpu_dump_state(cs
, stderr
, fprintf
, 0);
2736 process_pending_signals (env
);
2742 void cpu_loop(CPUCRISState
*env
)
2744 CPUState
*cs
= CPU(cris_env_get_cpu(env
));
2746 target_siginfo_t info
;
2750 trapnr
= cpu_exec(cs
);
2752 process_queued_cpu_work(cs
);
2757 info
.si_signo
= TARGET_SIGSEGV
;
2759 /* XXX: check env->error_code */
2760 info
.si_code
= TARGET_SEGV_MAPERR
;
2761 info
._sifields
._sigfault
._addr
= env
->pregs
[PR_EDA
];
2762 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
2765 case EXCP_INTERRUPT
:
2766 /* just indicate that signals should be handled asap */
2769 ret
= do_syscall(env
,
2778 if (ret
== -TARGET_ERESTARTSYS
) {
2780 } else if (ret
!= -TARGET_QEMU_ESIGRETURN
) {
2781 env
->regs
[10] = ret
;
2788 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
2791 info
.si_signo
= sig
;
2793 info
.si_code
= TARGET_TRAP_BRKPT
;
2794 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
2799 cpu_exec_step_atomic(cs
);
2802 printf ("Unhandled trap: 0x%x\n", trapnr
);
2803 cpu_dump_state(cs
, stderr
, fprintf
, 0);
2806 process_pending_signals (env
);
2811 #ifdef TARGET_MICROBLAZE
2812 void cpu_loop(CPUMBState
*env
)
2814 CPUState
*cs
= CPU(mb_env_get_cpu(env
));
2816 target_siginfo_t info
;
2820 trapnr
= cpu_exec(cs
);
2822 process_queued_cpu_work(cs
);
2827 info
.si_signo
= TARGET_SIGSEGV
;
2829 /* XXX: check env->error_code */
2830 info
.si_code
= TARGET_SEGV_MAPERR
;
2831 info
._sifields
._sigfault
._addr
= 0;
2832 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
2835 case EXCP_INTERRUPT
:
2836 /* just indicate that signals should be handled asap */
2839 /* Return address is 4 bytes after the call. */
2841 env
->sregs
[SR_PC
] = env
->regs
[14];
2842 ret
= do_syscall(env
,
2851 if (ret
== -TARGET_ERESTARTSYS
) {
2852 /* Wind back to before the syscall. */
2853 env
->sregs
[SR_PC
] -= 4;
2854 } else if (ret
!= -TARGET_QEMU_ESIGRETURN
) {
2857 /* All syscall exits result in guest r14 being equal to the
2858 * PC we return to, because the kernel syscall exit "rtbd" does
2859 * this. (This is true even for sigreturn(); note that r14 is
2860 * not a userspace-usable register, as the kernel may clobber it
2863 env
->regs
[14] = env
->sregs
[SR_PC
];
2866 env
->regs
[17] = env
->sregs
[SR_PC
] + 4;
2867 if (env
->iflags
& D_FLAG
) {
2868 env
->sregs
[SR_ESR
] |= 1 << 12;
2869 env
->sregs
[SR_PC
] -= 4;
2870 /* FIXME: if branch was immed, replay the imm as well. */
2873 env
->iflags
&= ~(IMM_FLAG
| D_FLAG
);
2875 switch (env
->sregs
[SR_ESR
] & 31) {
2876 case ESR_EC_DIVZERO
:
2877 info
.si_signo
= TARGET_SIGFPE
;
2879 info
.si_code
= TARGET_FPE_FLTDIV
;
2880 info
._sifields
._sigfault
._addr
= 0;
2881 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
2884 info
.si_signo
= TARGET_SIGFPE
;
2886 if (env
->sregs
[SR_FSR
] & FSR_IO
) {
2887 info
.si_code
= TARGET_FPE_FLTINV
;
2889 if (env
->sregs
[SR_FSR
] & FSR_DZ
) {
2890 info
.si_code
= TARGET_FPE_FLTDIV
;
2892 info
._sifields
._sigfault
._addr
= 0;
2893 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
2896 printf ("Unhandled hw-exception: 0x%x\n",
2897 env
->sregs
[SR_ESR
] & ESR_EC_MASK
);
2898 cpu_dump_state(cs
, stderr
, fprintf
, 0);
2907 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
2910 info
.si_signo
= sig
;
2912 info
.si_code
= TARGET_TRAP_BRKPT
;
2913 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
2918 cpu_exec_step_atomic(cs
);
2921 printf ("Unhandled trap: 0x%x\n", trapnr
);
2922 cpu_dump_state(cs
, stderr
, fprintf
, 0);
2925 process_pending_signals (env
);
2932 void cpu_loop(CPUM68KState
*env
)
2934 CPUState
*cs
= CPU(m68k_env_get_cpu(env
));
2937 target_siginfo_t info
;
2938 TaskState
*ts
= cs
->opaque
;
2942 trapnr
= cpu_exec(cs
);
2944 process_queued_cpu_work(cs
);
2949 if (ts
->sim_syscalls
) {
2951 get_user_u16(nr
, env
->pc
+ 2);
2953 do_m68k_simcall(env
, nr
);
2959 case EXCP_HALT_INSN
:
2960 /* Semihosing syscall. */
2962 do_m68k_semihosting(env
, env
->dregs
[0]);
2966 case EXCP_UNSUPPORTED
:
2968 info
.si_signo
= TARGET_SIGILL
;
2970 info
.si_code
= TARGET_ILL_ILLOPN
;
2971 info
._sifields
._sigfault
._addr
= env
->pc
;
2972 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
2975 info
.si_signo
= TARGET_SIGFPE
;
2977 info
.si_code
= TARGET_FPE_INTDIV
;
2978 info
._sifields
._sigfault
._addr
= env
->pc
;
2979 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
2984 ts
->sim_syscalls
= 0;
2987 ret
= do_syscall(env
,
2996 if (ret
== -TARGET_ERESTARTSYS
) {
2998 } else if (ret
!= -TARGET_QEMU_ESIGRETURN
) {
2999 env
->dregs
[0] = ret
;
3003 case EXCP_INTERRUPT
:
3004 /* just indicate that signals should be handled asap */
3008 info
.si_signo
= TARGET_SIGSEGV
;
3010 /* XXX: check env->error_code */
3011 info
.si_code
= TARGET_SEGV_MAPERR
;
3012 info
._sifields
._sigfault
._addr
= env
->mmu
.ar
;
3013 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
3020 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
3023 info
.si_signo
= sig
;
3025 info
.si_code
= TARGET_TRAP_BRKPT
;
3026 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
3031 cpu_exec_step_atomic(cs
);
3034 EXCP_DUMP(env
, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr
);
3037 process_pending_signals(env
);
3040 #endif /* TARGET_M68K */
3043 void cpu_loop(CPUAlphaState
*env
)
3045 CPUState
*cs
= CPU(alpha_env_get_cpu(env
));
3047 target_siginfo_t info
;
3052 trapnr
= cpu_exec(cs
);
3054 process_queued_cpu_work(cs
);
3056 /* All of the traps imply a transition through PALcode, which
3057 implies an REI instruction has been executed. Which means
3058 that the intr_flag should be cleared. */
3063 fprintf(stderr
, "Reset requested. Exit\n");
3067 fprintf(stderr
, "Machine check exception. Exit\n");
3070 case EXCP_SMP_INTERRUPT
:
3071 case EXCP_CLK_INTERRUPT
:
3072 case EXCP_DEV_INTERRUPT
:
3073 fprintf(stderr
, "External interrupt. Exit\n");
3077 env
->lock_addr
= -1;
3078 info
.si_signo
= TARGET_SIGSEGV
;
3080 info
.si_code
= (page_get_flags(env
->trap_arg0
) & PAGE_VALID
3081 ? TARGET_SEGV_ACCERR
: TARGET_SEGV_MAPERR
);
3082 info
._sifields
._sigfault
._addr
= env
->trap_arg0
;
3083 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
3086 env
->lock_addr
= -1;
3087 info
.si_signo
= TARGET_SIGBUS
;
3089 info
.si_code
= TARGET_BUS_ADRALN
;
3090 info
._sifields
._sigfault
._addr
= env
->trap_arg0
;
3091 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
3095 env
->lock_addr
= -1;
3096 info
.si_signo
= TARGET_SIGILL
;
3098 info
.si_code
= TARGET_ILL_ILLOPC
;
3099 info
._sifields
._sigfault
._addr
= env
->pc
;
3100 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
3103 env
->lock_addr
= -1;
3104 info
.si_signo
= TARGET_SIGFPE
;
3106 info
.si_code
= TARGET_FPE_FLTINV
;
3107 info
._sifields
._sigfault
._addr
= env
->pc
;
3108 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
3111 /* No-op. Linux simply re-enables the FPU. */
3114 env
->lock_addr
= -1;
3115 switch (env
->error_code
) {
3118 info
.si_signo
= TARGET_SIGTRAP
;
3120 info
.si_code
= TARGET_TRAP_BRKPT
;
3121 info
._sifields
._sigfault
._addr
= env
->pc
;
3122 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
3126 info
.si_signo
= TARGET_SIGTRAP
;
3129 info
._sifields
._sigfault
._addr
= env
->pc
;
3130 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
3134 trapnr
= env
->ir
[IR_V0
];
3135 sysret
= do_syscall(env
, trapnr
,
3136 env
->ir
[IR_A0
], env
->ir
[IR_A1
],
3137 env
->ir
[IR_A2
], env
->ir
[IR_A3
],
3138 env
->ir
[IR_A4
], env
->ir
[IR_A5
],
3140 if (sysret
== -TARGET_ERESTARTSYS
) {
3144 if (sysret
== -TARGET_QEMU_ESIGRETURN
) {
3147 /* Syscall writes 0 to V0 to bypass error check, similar
3148 to how this is handled internal to Linux kernel.
3149 (Ab)use trapnr temporarily as boolean indicating error. */
3150 trapnr
= (env
->ir
[IR_V0
] != 0 && sysret
< 0);
3151 env
->ir
[IR_V0
] = (trapnr
? -sysret
: sysret
);
3152 env
->ir
[IR_A3
] = trapnr
;
3156 /* ??? We can probably elide the code using page_unprotect
3157 that is checking for self-modifying code. Instead we
3158 could simply call tb_flush here. Until we work out the
3159 changes required to turn off the extra write protection,
3160 this can be a no-op. */
3164 /* Handled in the translator for usermode. */
3168 /* Handled in the translator for usermode. */
3172 info
.si_signo
= TARGET_SIGFPE
;
3173 switch (env
->ir
[IR_A0
]) {
3174 case TARGET_GEN_INTOVF
:
3175 info
.si_code
= TARGET_FPE_INTOVF
;
3177 case TARGET_GEN_INTDIV
:
3178 info
.si_code
= TARGET_FPE_INTDIV
;
3180 case TARGET_GEN_FLTOVF
:
3181 info
.si_code
= TARGET_FPE_FLTOVF
;
3183 case TARGET_GEN_FLTUND
:
3184 info
.si_code
= TARGET_FPE_FLTUND
;
3186 case TARGET_GEN_FLTINV
:
3187 info
.si_code
= TARGET_FPE_FLTINV
;
3189 case TARGET_GEN_FLTINE
:
3190 info
.si_code
= TARGET_FPE_FLTRES
;
3192 case TARGET_GEN_ROPRAND
:
3196 info
.si_signo
= TARGET_SIGTRAP
;
3201 info
._sifields
._sigfault
._addr
= env
->pc
;
3202 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
3209 info
.si_signo
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
3210 if (info
.si_signo
) {
3211 env
->lock_addr
= -1;
3213 info
.si_code
= TARGET_TRAP_BRKPT
;
3214 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
3217 case EXCP_INTERRUPT
:
3218 /* Just indicate that signals should be handled asap. */
3221 cpu_exec_step_atomic(cs
);
3224 printf ("Unhandled trap: 0x%x\n", trapnr
);
3225 cpu_dump_state(cs
, stderr
, fprintf
, 0);
3228 process_pending_signals (env
);
3231 #endif /* TARGET_ALPHA */
3234 void cpu_loop(CPUS390XState
*env
)
3236 CPUState
*cs
= CPU(s390_env_get_cpu(env
));
3238 target_siginfo_t info
;
3244 trapnr
= cpu_exec(cs
);
3246 process_queued_cpu_work(cs
);
3249 case EXCP_INTERRUPT
:
3250 /* Just indicate that signals should be handled asap. */
3254 n
= env
->int_svc_code
;
3256 /* syscalls > 255 */
3259 env
->psw
.addr
+= env
->int_svc_ilen
;
3260 ret
= do_syscall(env
, n
, env
->regs
[2], env
->regs
[3],
3261 env
->regs
[4], env
->regs
[5],
3262 env
->regs
[6], env
->regs
[7], 0, 0);
3263 if (ret
== -TARGET_ERESTARTSYS
) {
3264 env
->psw
.addr
-= env
->int_svc_ilen
;
3265 } else if (ret
!= -TARGET_QEMU_ESIGRETURN
) {
3271 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
3273 n
= TARGET_TRAP_BRKPT
;
3278 n
= env
->int_pgm_code
;
3281 case PGM_PRIVILEGED
:
3282 sig
= TARGET_SIGILL
;
3283 n
= TARGET_ILL_ILLOPC
;
3285 case PGM_PROTECTION
:
3286 case PGM_ADDRESSING
:
3287 sig
= TARGET_SIGSEGV
;
3288 /* XXX: check env->error_code */
3289 n
= TARGET_SEGV_MAPERR
;
3290 addr
= env
->__excp_addr
;
3293 case PGM_SPECIFICATION
:
3294 case PGM_SPECIAL_OP
:
3297 sig
= TARGET_SIGILL
;
3298 n
= TARGET_ILL_ILLOPN
;
3301 case PGM_FIXPT_OVERFLOW
:
3302 sig
= TARGET_SIGFPE
;
3303 n
= TARGET_FPE_INTOVF
;
3305 case PGM_FIXPT_DIVIDE
:
3306 sig
= TARGET_SIGFPE
;
3307 n
= TARGET_FPE_INTDIV
;
3311 n
= (env
->fpc
>> 8) & 0xff;
3313 /* compare-and-trap */
3316 /* An IEEE exception, simulated or otherwise. */
3318 n
= TARGET_FPE_FLTINV
;
3319 } else if (n
& 0x40) {
3320 n
= TARGET_FPE_FLTDIV
;
3321 } else if (n
& 0x20) {
3322 n
= TARGET_FPE_FLTOVF
;
3323 } else if (n
& 0x10) {
3324 n
= TARGET_FPE_FLTUND
;
3325 } else if (n
& 0x08) {
3326 n
= TARGET_FPE_FLTRES
;
3328 /* ??? Quantum exception; BFP, DFP error. */
3331 sig
= TARGET_SIGFPE
;
3336 fprintf(stderr
, "Unhandled program exception: %#x\n", n
);
3337 cpu_dump_state(cs
, stderr
, fprintf
, 0);
3343 addr
= env
->psw
.addr
;
3345 info
.si_signo
= sig
;
3348 info
._sifields
._sigfault
._addr
= addr
;
3349 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
3353 cpu_exec_step_atomic(cs
);
3356 fprintf(stderr
, "Unhandled trap: 0x%x\n", trapnr
);
3357 cpu_dump_state(cs
, stderr
, fprintf
, 0);
3360 process_pending_signals (env
);
3364 #endif /* TARGET_S390X */
3366 #ifdef TARGET_TILEGX
3368 static void gen_sigill_reg(CPUTLGState
*env
)
3370 target_siginfo_t info
;
3372 info
.si_signo
= TARGET_SIGILL
;
3374 info
.si_code
= TARGET_ILL_PRVREG
;
3375 info
._sifields
._sigfault
._addr
= env
->pc
;
3376 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
3379 static void do_signal(CPUTLGState
*env
, int signo
, int sigcode
)
3381 target_siginfo_t info
;
3383 info
.si_signo
= signo
;
3385 info
._sifields
._sigfault
._addr
= env
->pc
;
3387 if (signo
== TARGET_SIGSEGV
) {
3388 /* The passed in sigcode is a dummy; check for a page mapping
3389 and pass either MAPERR or ACCERR. */
3390 target_ulong addr
= env
->excaddr
;
3391 info
._sifields
._sigfault
._addr
= addr
;
3392 if (page_check_range(addr
, 1, PAGE_VALID
) < 0) {
3393 sigcode
= TARGET_SEGV_MAPERR
;
3395 sigcode
= TARGET_SEGV_ACCERR
;
3398 info
.si_code
= sigcode
;
3400 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
3403 static void gen_sigsegv_maperr(CPUTLGState
*env
, target_ulong addr
)
3405 env
->excaddr
= addr
;
3406 do_signal(env
, TARGET_SIGSEGV
, 0);
3409 static void set_regval(CPUTLGState
*env
, uint8_t reg
, uint64_t val
)
3411 if (unlikely(reg
>= TILEGX_R_COUNT
)) {
3422 gen_sigill_reg(env
);
3425 g_assert_not_reached();
3428 env
->regs
[reg
] = val
;
3432 * Compare the 8-byte contents of the CmpValue SPR with the 8-byte value in
3433 * memory at the address held in the first source register. If the values are
3434 * not equal, then no memory operation is performed. If the values are equal,
3435 * the 8-byte quantity from the second source register is written into memory
3436 * at the address held in the first source register. In either case, the result
3437 * of the instruction is the value read from memory. The compare and write to
3438 * memory are atomic and thus can be used for synchronization purposes. This
3439 * instruction only operates for addresses aligned to a 8-byte boundary.
3440 * Unaligned memory access causes an Unaligned Data Reference interrupt.
3442 * Functional Description (64-bit)
3443 * uint64_t memVal = memoryReadDoubleWord (rf[SrcA]);
3444 * rf[Dest] = memVal;
3445 * if (memVal == SPR[CmpValueSPR])
3446 * memoryWriteDoubleWord (rf[SrcA], rf[SrcB]);
3448 * Functional Description (32-bit)
3449 * uint64_t memVal = signExtend32 (memoryReadWord (rf[SrcA]));
3450 * rf[Dest] = memVal;
3451 * if (memVal == signExtend32 (SPR[CmpValueSPR]))
3452 * memoryWriteWord (rf[SrcA], rf[SrcB]);
3455 * This function also processes exch and exch4 which need not process SPR.
3457 static void do_exch(CPUTLGState
*env
, bool quad
, bool cmp
)
3460 target_long val
, sprval
;
3464 addr
= env
->atomic_srca
;
3465 if (quad
? get_user_s64(val
, addr
) : get_user_s32(val
, addr
)) {
3466 goto sigsegv_maperr
;
3471 sprval
= env
->spregs
[TILEGX_SPR_CMPEXCH
];
3473 sprval
= sextract64(env
->spregs
[TILEGX_SPR_CMPEXCH
], 0, 32);
3477 if (!cmp
|| val
== sprval
) {
3478 target_long valb
= env
->atomic_srcb
;
3479 if (quad
? put_user_u64(valb
, addr
) : put_user_u32(valb
, addr
)) {
3480 goto sigsegv_maperr
;
3484 set_regval(env
, env
->atomic_dstr
, val
);
3490 gen_sigsegv_maperr(env
, addr
);
3493 static void do_fetch(CPUTLGState
*env
, int trapnr
, bool quad
)
3497 target_long val
, valb
;
3501 addr
= env
->atomic_srca
;
3502 valb
= env
->atomic_srcb
;
3503 if (quad
? get_user_s64(val
, addr
) : get_user_s32(val
, addr
)) {
3504 goto sigsegv_maperr
;
3508 case TILEGX_EXCP_OPCODE_FETCHADD
:
3509 case TILEGX_EXCP_OPCODE_FETCHADD4
:
3512 case TILEGX_EXCP_OPCODE_FETCHADDGEZ
:
3518 case TILEGX_EXCP_OPCODE_FETCHADDGEZ4
:
3520 if ((int32_t)valb
< 0) {
3524 case TILEGX_EXCP_OPCODE_FETCHAND
:
3525 case TILEGX_EXCP_OPCODE_FETCHAND4
:
3528 case TILEGX_EXCP_OPCODE_FETCHOR
:
3529 case TILEGX_EXCP_OPCODE_FETCHOR4
:
3533 g_assert_not_reached();
3537 if (quad
? put_user_u64(valb
, addr
) : put_user_u32(valb
, addr
)) {
3538 goto sigsegv_maperr
;
3542 set_regval(env
, env
->atomic_dstr
, val
);
3548 gen_sigsegv_maperr(env
, addr
);
3551 void cpu_loop(CPUTLGState
*env
)
3553 CPUState
*cs
= CPU(tilegx_env_get_cpu(env
));
3558 trapnr
= cpu_exec(cs
);
3560 process_queued_cpu_work(cs
);
3563 case TILEGX_EXCP_SYSCALL
:
3565 abi_ulong ret
= do_syscall(env
, env
->regs
[TILEGX_R_NR
],
3566 env
->regs
[0], env
->regs
[1],
3567 env
->regs
[2], env
->regs
[3],
3568 env
->regs
[4], env
->regs
[5],
3569 env
->regs
[6], env
->regs
[7]);
3570 if (ret
== -TARGET_ERESTARTSYS
) {
3572 } else if (ret
!= -TARGET_QEMU_ESIGRETURN
) {
3573 env
->regs
[TILEGX_R_RE
] = ret
;
3574 env
->regs
[TILEGX_R_ERR
] = TILEGX_IS_ERRNO(ret
) ? -ret
: 0;
3578 case TILEGX_EXCP_OPCODE_EXCH
:
3579 do_exch(env
, true, false);
3581 case TILEGX_EXCP_OPCODE_EXCH4
:
3582 do_exch(env
, false, false);
3584 case TILEGX_EXCP_OPCODE_CMPEXCH
:
3585 do_exch(env
, true, true);
3587 case TILEGX_EXCP_OPCODE_CMPEXCH4
:
3588 do_exch(env
, false, true);
3590 case TILEGX_EXCP_OPCODE_FETCHADD
:
3591 case TILEGX_EXCP_OPCODE_FETCHADDGEZ
:
3592 case TILEGX_EXCP_OPCODE_FETCHAND
:
3593 case TILEGX_EXCP_OPCODE_FETCHOR
:
3594 do_fetch(env
, trapnr
, true);
3596 case TILEGX_EXCP_OPCODE_FETCHADD4
:
3597 case TILEGX_EXCP_OPCODE_FETCHADDGEZ4
:
3598 case TILEGX_EXCP_OPCODE_FETCHAND4
:
3599 case TILEGX_EXCP_OPCODE_FETCHOR4
:
3600 do_fetch(env
, trapnr
, false);
3602 case TILEGX_EXCP_SIGNAL
:
3603 do_signal(env
, env
->signo
, env
->sigcode
);
3605 case TILEGX_EXCP_REG_IDN_ACCESS
:
3606 case TILEGX_EXCP_REG_UDN_ACCESS
:
3607 gen_sigill_reg(env
);
3610 cpu_exec_step_atomic(cs
);
3613 fprintf(stderr
, "trapnr is %d[0x%x].\n", trapnr
, trapnr
);
3614 g_assert_not_reached();
3616 process_pending_signals(env
);
3624 static abi_ulong
hppa_lws(CPUHPPAState
*env
)
3626 uint32_t which
= env
->gr
[20];
3627 abi_ulong addr
= env
->gr
[26];
3628 abi_ulong old
= env
->gr
[25];
3629 abi_ulong
new = env
->gr
[24];
3630 abi_ulong size
, ret
;
3634 return -TARGET_ENOSYS
;
3636 case 0: /* elf32 atomic 32bit cmpxchg */
3637 if ((addr
& 3) || !access_ok(VERIFY_WRITE
, addr
, 4)) {
3638 return -TARGET_EFAULT
;
3642 ret
= atomic_cmpxchg((uint32_t *)g2h(addr
), old
, new);
3646 case 2: /* elf32 atomic "new" cmpxchg */
3649 return -TARGET_ENOSYS
;
3651 if (((addr
| old
| new) & ((1 << size
) - 1))
3652 || !access_ok(VERIFY_WRITE
, addr
, 1 << size
)
3653 || !access_ok(VERIFY_READ
, old
, 1 << size
)
3654 || !access_ok(VERIFY_READ
, new, 1 << size
)) {
3655 return -TARGET_EFAULT
;
3657 /* Note that below we use host-endian loads so that the cmpxchg
3658 can be host-endian as well. */
3661 old
= *(uint8_t *)g2h(old
);
3662 new = *(uint8_t *)g2h(new);
3663 ret
= atomic_cmpxchg((uint8_t *)g2h(addr
), old
, new);
3667 old
= *(uint16_t *)g2h(old
);
3668 new = *(uint16_t *)g2h(new);
3669 ret
= atomic_cmpxchg((uint16_t *)g2h(addr
), old
, new);
3673 old
= *(uint32_t *)g2h(old
);
3674 new = *(uint32_t *)g2h(new);
3675 ret
= atomic_cmpxchg((uint32_t *)g2h(addr
), old
, new);
3680 uint64_t o64
, n64
, r64
;
3681 o64
= *(uint64_t *)g2h(old
);
3682 n64
= *(uint64_t *)g2h(new);
3683 #ifdef CONFIG_ATOMIC64
3684 r64
= atomic_cmpxchg__nocheck((uint64_t *)g2h(addr
), o64
, n64
);
3688 r64
= *(uint64_t *)g2h(addr
);
3691 *(uint64_t *)g2h(addr
) = n64
;
3706 void cpu_loop(CPUHPPAState
*env
)
3708 CPUState
*cs
= CPU(hppa_env_get_cpu(env
));
3709 target_siginfo_t info
;
3715 trapnr
= cpu_exec(cs
);
3717 process_queued_cpu_work(cs
);
3721 ret
= do_syscall(env
, env
->gr
[20],
3722 env
->gr
[26], env
->gr
[25],
3723 env
->gr
[24], env
->gr
[23],
3724 env
->gr
[22], env
->gr
[21], 0, 0);
3728 /* We arrived here by faking the gateway page. Return. */
3729 env
->iaoq_f
= env
->gr
[31];
3730 env
->iaoq_b
= env
->gr
[31] + 4;
3732 case -TARGET_ERESTARTSYS
:
3733 case -TARGET_QEMU_ESIGRETURN
:
3737 case EXCP_SYSCALL_LWS
:
3738 env
->gr
[21] = hppa_lws(env
);
3739 /* We arrived here by faking the gateway page. Return. */
3740 env
->iaoq_f
= env
->gr
[31];
3741 env
->iaoq_b
= env
->gr
[31] + 4;
3744 info
.si_signo
= TARGET_SIGSEGV
;
3746 info
.si_code
= TARGET_SEGV_ACCERR
;
3747 info
._sifields
._sigfault
._addr
= env
->ior
;
3748 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
3751 info
.si_signo
= TARGET_SIGILL
;
3753 info
.si_code
= TARGET_ILL_ILLOPN
;
3754 info
._sifields
._sigfault
._addr
= env
->iaoq_f
;
3755 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
3758 info
.si_signo
= TARGET_SIGFPE
;
3761 info
._sifields
._sigfault
._addr
= env
->iaoq_f
;
3762 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
3765 trapnr
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
3767 info
.si_signo
= trapnr
;
3769 info
.si_code
= TARGET_TRAP_BRKPT
;
3770 queue_signal(env
, trapnr
, QEMU_SI_FAULT
, &info
);
3773 case EXCP_INTERRUPT
:
3774 /* just indicate that signals should be handled asap */
3777 g_assert_not_reached();
3779 process_pending_signals(env
);
3783 #endif /* TARGET_HPPA */
3785 THREAD CPUState
*thread_cpu
;
3787 bool qemu_cpu_is_self(CPUState
*cpu
)
3789 return thread_cpu
== cpu
;
3792 void qemu_cpu_kick(CPUState
*cpu
)
3797 void task_settid(TaskState
*ts
)
3799 if (ts
->ts_tid
== 0) {
3800 ts
->ts_tid
= (pid_t
)syscall(SYS_gettid
);
3804 void stop_all_tasks(void)
3807 * We trust that when using NPTL, start_exclusive()
3808 * handles thread stopping correctly.
3813 /* Assumes contents are already zeroed. */
3814 void init_task_state(TaskState
*ts
)
3819 CPUArchState
*cpu_copy(CPUArchState
*env
)
3821 CPUState
*cpu
= ENV_GET_CPU(env
);
3822 CPUState
*new_cpu
= cpu_init(cpu_model
);
3823 CPUArchState
*new_env
= new_cpu
->env_ptr
;
3827 /* Reset non arch specific state */
3830 memcpy(new_env
, env
, sizeof(CPUArchState
));
3832 /* Clone all break/watchpoints.
3833 Note: Once we support ptrace with hw-debug register access, make sure
3834 BP_CPU break/watchpoints are handled correctly on clone. */
3835 QTAILQ_INIT(&new_cpu
->breakpoints
);
3836 QTAILQ_INIT(&new_cpu
->watchpoints
);
3837 QTAILQ_FOREACH(bp
, &cpu
->breakpoints
, entry
) {
3838 cpu_breakpoint_insert(new_cpu
, bp
->pc
, bp
->flags
, NULL
);
3840 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
3841 cpu_watchpoint_insert(new_cpu
, wp
->vaddr
, wp
->len
, wp
->flags
, NULL
);
3847 static void handle_arg_help(const char *arg
)
3849 usage(EXIT_SUCCESS
);
3852 static void handle_arg_log(const char *arg
)
3856 mask
= qemu_str_to_log_mask(arg
);
3858 qemu_print_log_usage(stdout
);
3861 qemu_log_needs_buffers();
3865 static void handle_arg_log_filename(const char *arg
)
3867 qemu_set_log_filename(arg
, &error_fatal
);
3870 static void handle_arg_set_env(const char *arg
)
3872 char *r
, *p
, *token
;
3873 r
= p
= strdup(arg
);
3874 while ((token
= strsep(&p
, ",")) != NULL
) {
3875 if (envlist_setenv(envlist
, token
) != 0) {
3876 usage(EXIT_FAILURE
);
3882 static void handle_arg_unset_env(const char *arg
)
3884 char *r
, *p
, *token
;
3885 r
= p
= strdup(arg
);
3886 while ((token
= strsep(&p
, ",")) != NULL
) {
3887 if (envlist_unsetenv(envlist
, token
) != 0) {
3888 usage(EXIT_FAILURE
);
3894 static void handle_arg_argv0(const char *arg
)
3896 argv0
= strdup(arg
);
3899 static void handle_arg_stack_size(const char *arg
)
3902 guest_stack_size
= strtoul(arg
, &p
, 0);
3903 if (guest_stack_size
== 0) {
3904 usage(EXIT_FAILURE
);
3908 guest_stack_size
*= 1024 * 1024;
3909 } else if (*p
== 'k' || *p
== 'K') {
3910 guest_stack_size
*= 1024;
3914 static void handle_arg_ld_prefix(const char *arg
)
3916 interp_prefix
= strdup(arg
);
3919 static void handle_arg_pagesize(const char *arg
)
3921 qemu_host_page_size
= atoi(arg
);
3922 if (qemu_host_page_size
== 0 ||
3923 (qemu_host_page_size
& (qemu_host_page_size
- 1)) != 0) {
3924 fprintf(stderr
, "page size must be a power of two\n");
3929 static void handle_arg_randseed(const char *arg
)
3931 unsigned long long seed
;
3933 if (parse_uint_full(arg
, &seed
, 0) != 0 || seed
> UINT_MAX
) {
3934 fprintf(stderr
, "Invalid seed number: %s\n", arg
);
3940 static void handle_arg_gdb(const char *arg
)
3942 gdbstub_port
= atoi(arg
);
3945 static void handle_arg_uname(const char *arg
)
3947 qemu_uname_release
= strdup(arg
);
3950 static void handle_arg_cpu(const char *arg
)
3952 cpu_model
= strdup(arg
);
3953 if (cpu_model
== NULL
|| is_help_option(cpu_model
)) {
3954 /* XXX: implement xxx_cpu_list for targets that still miss it */
3955 #if defined(cpu_list)
3956 cpu_list(stdout
, &fprintf
);
3962 static void handle_arg_guest_base(const char *arg
)
3964 guest_base
= strtol(arg
, NULL
, 0);
3965 have_guest_base
= 1;
3968 static void handle_arg_reserved_va(const char *arg
)
3972 reserved_va
= strtoul(arg
, &p
, 0);
3986 unsigned long unshifted
= reserved_va
;
3988 reserved_va
<<= shift
;
3989 if (((reserved_va
>> shift
) != unshifted
)
3990 #if HOST_LONG_BITS > TARGET_VIRT_ADDR_SPACE_BITS
3991 || (reserved_va
> (1ul << TARGET_VIRT_ADDR_SPACE_BITS
))
3994 fprintf(stderr
, "Reserved virtual address too big\n");
3999 fprintf(stderr
, "Unrecognised -R size suffix '%s'\n", p
);
4004 static void handle_arg_singlestep(const char *arg
)
4009 static void handle_arg_strace(const char *arg
)
4014 static void handle_arg_version(const char *arg
)
4016 printf("qemu-" TARGET_NAME
" version " QEMU_VERSION QEMU_PKGVERSION
4017 "\n" QEMU_COPYRIGHT
"\n");
4021 static char *trace_file
;
4022 static void handle_arg_trace(const char *arg
)
4025 trace_file
= trace_opt_parse(arg
);
4028 struct qemu_argument
{
4032 void (*handle_opt
)(const char *arg
);
4033 const char *example
;
4037 static const struct qemu_argument arg_table
[] = {
4038 {"h", "", false, handle_arg_help
,
4039 "", "print this help"},
4040 {"help", "", false, handle_arg_help
,
4042 {"g", "QEMU_GDB", true, handle_arg_gdb
,
4043 "port", "wait gdb connection to 'port'"},
4044 {"L", "QEMU_LD_PREFIX", true, handle_arg_ld_prefix
,
4045 "path", "set the elf interpreter prefix to 'path'"},
4046 {"s", "QEMU_STACK_SIZE", true, handle_arg_stack_size
,
4047 "size", "set the stack size to 'size' bytes"},
4048 {"cpu", "QEMU_CPU", true, handle_arg_cpu
,
4049 "model", "select CPU (-cpu help for list)"},
4050 {"E", "QEMU_SET_ENV", true, handle_arg_set_env
,
4051 "var=value", "sets targets environment variable (see below)"},
4052 {"U", "QEMU_UNSET_ENV", true, handle_arg_unset_env
,
4053 "var", "unsets targets environment variable (see below)"},
4054 {"0", "QEMU_ARGV0", true, handle_arg_argv0
,
4055 "argv0", "forces target process argv[0] to be 'argv0'"},
4056 {"r", "QEMU_UNAME", true, handle_arg_uname
,
4057 "uname", "set qemu uname release string to 'uname'"},
4058 {"B", "QEMU_GUEST_BASE", true, handle_arg_guest_base
,
4059 "address", "set guest_base address to 'address'"},
4060 {"R", "QEMU_RESERVED_VA", true, handle_arg_reserved_va
,
4061 "size", "reserve 'size' bytes for guest virtual address space"},
4062 {"d", "QEMU_LOG", true, handle_arg_log
,
4063 "item[,...]", "enable logging of specified items "
4064 "(use '-d help' for a list of items)"},
4065 {"D", "QEMU_LOG_FILENAME", true, handle_arg_log_filename
,
4066 "logfile", "write logs to 'logfile' (default stderr)"},
4067 {"p", "QEMU_PAGESIZE", true, handle_arg_pagesize
,
4068 "pagesize", "set the host page size to 'pagesize'"},
4069 {"singlestep", "QEMU_SINGLESTEP", false, handle_arg_singlestep
,
4070 "", "run in singlestep mode"},
4071 {"strace", "QEMU_STRACE", false, handle_arg_strace
,
4072 "", "log system calls"},
4073 {"seed", "QEMU_RAND_SEED", true, handle_arg_randseed
,
4074 "", "Seed for pseudo-random number generator"},
4075 {"trace", "QEMU_TRACE", true, handle_arg_trace
,
4076 "", "[[enable=]<pattern>][,events=<file>][,file=<file>]"},
4077 {"version", "QEMU_VERSION", false, handle_arg_version
,
4078 "", "display version information and exit"},
4079 {NULL
, NULL
, false, NULL
, NULL
, NULL
}
4082 static void usage(int exitcode
)
4084 const struct qemu_argument
*arginfo
;
4088 printf("usage: qemu-" TARGET_NAME
" [options] program [arguments...]\n"
4089 "Linux CPU emulator (compiled for " TARGET_NAME
" emulation)\n"
4091 "Options and associated environment variables:\n"
4094 /* Calculate column widths. We must always have at least enough space
4095 * for the column header.
4097 maxarglen
= strlen("Argument");
4098 maxenvlen
= strlen("Env-variable");
4100 for (arginfo
= arg_table
; arginfo
->handle_opt
!= NULL
; arginfo
++) {
4101 int arglen
= strlen(arginfo
->argv
);
4102 if (arginfo
->has_arg
) {
4103 arglen
+= strlen(arginfo
->example
) + 1;
4105 if (strlen(arginfo
->env
) > maxenvlen
) {
4106 maxenvlen
= strlen(arginfo
->env
);
4108 if (arglen
> maxarglen
) {
4113 printf("%-*s %-*s Description\n", maxarglen
+1, "Argument",
4114 maxenvlen
, "Env-variable");
4116 for (arginfo
= arg_table
; arginfo
->handle_opt
!= NULL
; arginfo
++) {
4117 if (arginfo
->has_arg
) {
4118 printf("-%s %-*s %-*s %s\n", arginfo
->argv
,
4119 (int)(maxarglen
- strlen(arginfo
->argv
) - 1),
4120 arginfo
->example
, maxenvlen
, arginfo
->env
, arginfo
->help
);
4122 printf("-%-*s %-*s %s\n", maxarglen
, arginfo
->argv
,
4123 maxenvlen
, arginfo
->env
,
4130 "QEMU_LD_PREFIX = %s\n"
4131 "QEMU_STACK_SIZE = %ld byte\n",
4136 "You can use -E and -U options or the QEMU_SET_ENV and\n"
4137 "QEMU_UNSET_ENV environment variables to set and unset\n"
4138 "environment variables for the target process.\n"
4139 "It is possible to provide several variables by separating them\n"
4140 "by commas in getsubopt(3) style. Additionally it is possible to\n"
4141 "provide the -E and -U options multiple times.\n"
4142 "The following lines are equivalent:\n"
4143 " -E var1=val2 -E var2=val2 -U LD_PRELOAD -U LD_DEBUG\n"
4144 " -E var1=val2,var2=val2 -U LD_PRELOAD,LD_DEBUG\n"
4145 " QEMU_SET_ENV=var1=val2,var2=val2 QEMU_UNSET_ENV=LD_PRELOAD,LD_DEBUG\n"
4146 "Note that if you provide several changes to a single variable\n"
4147 "the last change will stay in effect.\n");
4152 static int parse_args(int argc
, char **argv
)
4156 const struct qemu_argument
*arginfo
;
4158 for (arginfo
= arg_table
; arginfo
->handle_opt
!= NULL
; arginfo
++) {
4159 if (arginfo
->env
== NULL
) {
4163 r
= getenv(arginfo
->env
);
4165 arginfo
->handle_opt(r
);
4171 if (optind
>= argc
) {
4180 if (!strcmp(r
, "-")) {
4183 /* Treat --foo the same as -foo. */
4188 for (arginfo
= arg_table
; arginfo
->handle_opt
!= NULL
; arginfo
++) {
4189 if (!strcmp(r
, arginfo
->argv
)) {
4190 if (arginfo
->has_arg
) {
4191 if (optind
>= argc
) {
4192 (void) fprintf(stderr
,
4193 "qemu: missing argument for option '%s'\n", r
);
4196 arginfo
->handle_opt(argv
[optind
]);
4199 arginfo
->handle_opt(NULL
);
4205 /* no option matched the current argv */
4206 if (arginfo
->handle_opt
== NULL
) {
4207 (void) fprintf(stderr
, "qemu: unknown option '%s'\n", r
);
4212 if (optind
>= argc
) {
4213 (void) fprintf(stderr
, "qemu: no user program specified\n");
4217 filename
= argv
[optind
];
4218 exec_path
= argv
[optind
];
4223 int main(int argc
, char **argv
, char **envp
)
4225 struct target_pt_regs regs1
, *regs
= ®s1
;
4226 struct image_info info1
, *info
= &info1
;
4227 struct linux_binprm bprm
;
4232 char **target_environ
, **wrk
;
4239 module_call_init(MODULE_INIT_TRACE
);
4240 qemu_init_cpu_list();
4241 module_call_init(MODULE_INIT_QOM
);
4243 if ((envlist
= envlist_create()) == NULL
) {
4244 (void) fprintf(stderr
, "Unable to allocate envlist\n");
4248 /* add current environment into the list */
4249 for (wrk
= environ
; *wrk
!= NULL
; wrk
++) {
4250 (void) envlist_setenv(envlist
, *wrk
);
4253 /* Read the stack limit from the kernel. If it's "unlimited",
4254 then we can do little else besides use the default. */
4257 if (getrlimit(RLIMIT_STACK
, &lim
) == 0
4258 && lim
.rlim_cur
!= RLIM_INFINITY
4259 && lim
.rlim_cur
== (target_long
)lim
.rlim_cur
) {
4260 guest_stack_size
= lim
.rlim_cur
;
4268 qemu_add_opts(&qemu_trace_opts
);
4270 optind
= parse_args(argc
, argv
);
4272 if (!trace_init_backends()) {
4275 trace_init_file(trace_file
);
4278 memset(regs
, 0, sizeof(struct target_pt_regs
));
4280 /* Zero out image_info */
4281 memset(info
, 0, sizeof(struct image_info
));
4283 memset(&bprm
, 0, sizeof (bprm
));
4285 /* Scan interp_prefix dir for replacement files. */
4286 init_paths(interp_prefix
);
4288 init_qemu_uname_release();
4290 if (cpu_model
== NULL
) {
4291 #if defined(TARGET_I386)
4292 #ifdef TARGET_X86_64
4293 cpu_model
= "qemu64";
4295 cpu_model
= "qemu32";
4297 #elif defined(TARGET_ARM)
4299 #elif defined(TARGET_UNICORE32)
4301 #elif defined(TARGET_M68K)
4303 #elif defined(TARGET_SPARC)
4304 #ifdef TARGET_SPARC64
4305 cpu_model
= "TI UltraSparc II";
4307 cpu_model
= "Fujitsu MB86904";
4309 #elif defined(TARGET_MIPS)
4310 #if defined(TARGET_ABI_MIPSN32) || defined(TARGET_ABI_MIPSN64)
4315 #elif defined TARGET_OPENRISC
4316 cpu_model
= "or1200";
4317 #elif defined(TARGET_PPC)
4318 # ifdef TARGET_PPC64
4319 cpu_model
= "POWER8";
4323 #elif defined TARGET_SH4
4324 cpu_model
= TYPE_SH7785_CPU
;
4330 /* NOTE: we need to init the CPU at this stage to get
4331 qemu_host_page_size */
4332 cpu
= cpu_init(cpu_model
);
4334 fprintf(stderr
, "Unable to find CPU definition\n");
4342 if (getenv("QEMU_STRACE")) {
4346 if (getenv("QEMU_RAND_SEED")) {
4347 handle_arg_randseed(getenv("QEMU_RAND_SEED"));
4350 target_environ
= envlist_to_environ(envlist
, NULL
);
4351 envlist_free(envlist
);
4354 * Now that page sizes are configured in cpu_init() we can do
4355 * proper page alignment for guest_base.
4357 guest_base
= HOST_PAGE_ALIGN(guest_base
);
4359 if (reserved_va
|| have_guest_base
) {
4360 guest_base
= init_guest_space(guest_base
, reserved_va
, 0,
4362 if (guest_base
== (unsigned long)-1) {
4363 fprintf(stderr
, "Unable to reserve 0x%lx bytes of virtual address "
4364 "space for use as guest address space (check your virtual "
4365 "memory ulimit setting or reserve less using -R option)\n",
4371 mmap_next_start
= reserved_va
;
4376 * Read in mmap_min_addr kernel parameter. This value is used
4377 * When loading the ELF image to determine whether guest_base
4378 * is needed. It is also used in mmap_find_vma.
4383 if ((fp
= fopen("/proc/sys/vm/mmap_min_addr", "r")) != NULL
) {
4385 if (fscanf(fp
, "%lu", &tmp
) == 1) {
4386 mmap_min_addr
= tmp
;
4387 qemu_log_mask(CPU_LOG_PAGE
, "host mmap_min_addr=0x%lx\n", mmap_min_addr
);
4394 * Prepare copy of argv vector for target.
4396 target_argc
= argc
- optind
;
4397 target_argv
= calloc(target_argc
+ 1, sizeof (char *));
4398 if (target_argv
== NULL
) {
4399 (void) fprintf(stderr
, "Unable to allocate memory for target_argv\n");
4404 * If argv0 is specified (using '-0' switch) we replace
4405 * argv[0] pointer with the given one.
4408 if (argv0
!= NULL
) {
4409 target_argv
[i
++] = strdup(argv0
);
4411 for (; i
< target_argc
; i
++) {
4412 target_argv
[i
] = strdup(argv
[optind
+ i
]);
4414 target_argv
[target_argc
] = NULL
;
4416 ts
= g_new0(TaskState
, 1);
4417 init_task_state(ts
);
4418 /* build Task State */
4424 execfd
= qemu_getauxval(AT_EXECFD
);
4426 execfd
= open(filename
, O_RDONLY
);
4428 printf("Error while loading %s: %s\n", filename
, strerror(errno
));
4429 _exit(EXIT_FAILURE
);
4433 ret
= loader_exec(execfd
, filename
, target_argv
, target_environ
, regs
,
4436 printf("Error while loading %s: %s\n", filename
, strerror(-ret
));
4437 _exit(EXIT_FAILURE
);
4440 for (wrk
= target_environ
; *wrk
; wrk
++) {
4444 free(target_environ
);
4446 if (qemu_loglevel_mask(CPU_LOG_PAGE
)) {
4447 qemu_log("guest_base 0x%lx\n", guest_base
);
4450 qemu_log("start_brk 0x" TARGET_ABI_FMT_lx
"\n", info
->start_brk
);
4451 qemu_log("end_code 0x" TARGET_ABI_FMT_lx
"\n", info
->end_code
);
4452 qemu_log("start_code 0x" TARGET_ABI_FMT_lx
"\n", info
->start_code
);
4453 qemu_log("start_data 0x" TARGET_ABI_FMT_lx
"\n", info
->start_data
);
4454 qemu_log("end_data 0x" TARGET_ABI_FMT_lx
"\n", info
->end_data
);
4455 qemu_log("start_stack 0x" TARGET_ABI_FMT_lx
"\n", info
->start_stack
);
4456 qemu_log("brk 0x" TARGET_ABI_FMT_lx
"\n", info
->brk
);
4457 qemu_log("entry 0x" TARGET_ABI_FMT_lx
"\n", info
->entry
);
4458 qemu_log("argv_start 0x" TARGET_ABI_FMT_lx
"\n", info
->arg_start
);
4459 qemu_log("env_start 0x" TARGET_ABI_FMT_lx
"\n",
4460 info
->arg_end
+ (abi_ulong
)sizeof(abi_ulong
));
4461 qemu_log("auxv_start 0x" TARGET_ABI_FMT_lx
"\n", info
->saved_auxv
);
4464 target_set_brk(info
->brk
);
4468 /* Now that we've loaded the binary, GUEST_BASE is fixed. Delay
4469 generating the prologue until now so that the prologue can take
4470 the real value of GUEST_BASE into account. */
4471 tcg_prologue_init(&tcg_ctx
);
4473 #if defined(TARGET_I386)
4474 env
->cr
[0] = CR0_PG_MASK
| CR0_WP_MASK
| CR0_PE_MASK
;
4475 env
->hflags
|= HF_PE_MASK
| HF_CPL_MASK
;
4476 if (env
->features
[FEAT_1_EDX
] & CPUID_SSE
) {
4477 env
->cr
[4] |= CR4_OSFXSR_MASK
;
4478 env
->hflags
|= HF_OSFXSR_MASK
;
4480 #ifndef TARGET_ABI32
4481 /* enable 64 bit mode if possible */
4482 if (!(env
->features
[FEAT_8000_0001_EDX
] & CPUID_EXT2_LM
)) {
4483 fprintf(stderr
, "The selected x86 CPU does not support 64 bit mode\n");
4486 env
->cr
[4] |= CR4_PAE_MASK
;
4487 env
->efer
|= MSR_EFER_LMA
| MSR_EFER_LME
;
4488 env
->hflags
|= HF_LMA_MASK
;
4491 /* flags setup : we activate the IRQs by default as in user mode */
4492 env
->eflags
|= IF_MASK
;
4494 /* linux register setup */
4495 #ifndef TARGET_ABI32
4496 env
->regs
[R_EAX
] = regs
->rax
;
4497 env
->regs
[R_EBX
] = regs
->rbx
;
4498 env
->regs
[R_ECX
] = regs
->rcx
;
4499 env
->regs
[R_EDX
] = regs
->rdx
;
4500 env
->regs
[R_ESI
] = regs
->rsi
;
4501 env
->regs
[R_EDI
] = regs
->rdi
;
4502 env
->regs
[R_EBP
] = regs
->rbp
;
4503 env
->regs
[R_ESP
] = regs
->rsp
;
4504 env
->eip
= regs
->rip
;
4506 env
->regs
[R_EAX
] = regs
->eax
;
4507 env
->regs
[R_EBX
] = regs
->ebx
;
4508 env
->regs
[R_ECX
] = regs
->ecx
;
4509 env
->regs
[R_EDX
] = regs
->edx
;
4510 env
->regs
[R_ESI
] = regs
->esi
;
4511 env
->regs
[R_EDI
] = regs
->edi
;
4512 env
->regs
[R_EBP
] = regs
->ebp
;
4513 env
->regs
[R_ESP
] = regs
->esp
;
4514 env
->eip
= regs
->eip
;
4517 /* linux interrupt setup */
4518 #ifndef TARGET_ABI32
4519 env
->idt
.limit
= 511;
4521 env
->idt
.limit
= 255;
4523 env
->idt
.base
= target_mmap(0, sizeof(uint64_t) * (env
->idt
.limit
+ 1),
4524 PROT_READ
|PROT_WRITE
,
4525 MAP_ANONYMOUS
|MAP_PRIVATE
, -1, 0);
4526 idt_table
= g2h(env
->idt
.base
);
4549 /* linux segment setup */
4551 uint64_t *gdt_table
;
4552 env
->gdt
.base
= target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES
,
4553 PROT_READ
|PROT_WRITE
,
4554 MAP_ANONYMOUS
|MAP_PRIVATE
, -1, 0);
4555 env
->gdt
.limit
= sizeof(uint64_t) * TARGET_GDT_ENTRIES
- 1;
4556 gdt_table
= g2h(env
->gdt
.base
);
4558 write_dt(&gdt_table
[__USER_CS
>> 3], 0, 0xfffff,
4559 DESC_G_MASK
| DESC_B_MASK
| DESC_P_MASK
| DESC_S_MASK
|
4560 (3 << DESC_DPL_SHIFT
) | (0xa << DESC_TYPE_SHIFT
));
4562 /* 64 bit code segment */
4563 write_dt(&gdt_table
[__USER_CS
>> 3], 0, 0xfffff,
4564 DESC_G_MASK
| DESC_B_MASK
| DESC_P_MASK
| DESC_S_MASK
|
4566 (3 << DESC_DPL_SHIFT
) | (0xa << DESC_TYPE_SHIFT
));
4568 write_dt(&gdt_table
[__USER_DS
>> 3], 0, 0xfffff,
4569 DESC_G_MASK
| DESC_B_MASK
| DESC_P_MASK
| DESC_S_MASK
|
4570 (3 << DESC_DPL_SHIFT
) | (0x2 << DESC_TYPE_SHIFT
));
4572 cpu_x86_load_seg(env
, R_CS
, __USER_CS
);
4573 cpu_x86_load_seg(env
, R_SS
, __USER_DS
);
4575 cpu_x86_load_seg(env
, R_DS
, __USER_DS
);
4576 cpu_x86_load_seg(env
, R_ES
, __USER_DS
);
4577 cpu_x86_load_seg(env
, R_FS
, __USER_DS
);
4578 cpu_x86_load_seg(env
, R_GS
, __USER_DS
);
4579 /* This hack makes Wine work... */
4580 env
->segs
[R_FS
].selector
= 0;
4582 cpu_x86_load_seg(env
, R_DS
, 0);
4583 cpu_x86_load_seg(env
, R_ES
, 0);
4584 cpu_x86_load_seg(env
, R_FS
, 0);
4585 cpu_x86_load_seg(env
, R_GS
, 0);
4587 #elif defined(TARGET_AARCH64)
4591 if (!(arm_feature(env
, ARM_FEATURE_AARCH64
))) {
4593 "The selected ARM CPU does not support 64 bit mode\n");
4597 for (i
= 0; i
< 31; i
++) {
4598 env
->xregs
[i
] = regs
->regs
[i
];
4601 env
->xregs
[31] = regs
->sp
;
4603 #elif defined(TARGET_ARM)
4606 cpsr_write(env
, regs
->uregs
[16], CPSR_USER
| CPSR_EXEC
,
4608 for(i
= 0; i
< 16; i
++) {
4609 env
->regs
[i
] = regs
->uregs
[i
];
4611 #ifdef TARGET_WORDS_BIGENDIAN
4613 if (EF_ARM_EABI_VERSION(info
->elf_flags
) >= EF_ARM_EABI_VER4
4614 && (info
->elf_flags
& EF_ARM_BE8
)) {
4615 env
->uncached_cpsr
|= CPSR_E
;
4616 env
->cp15
.sctlr_el
[1] |= SCTLR_E0E
;
4618 env
->cp15
.sctlr_el
[1] |= SCTLR_B
;
4622 #elif defined(TARGET_UNICORE32)
4625 cpu_asr_write(env
, regs
->uregs
[32], 0xffffffff);
4626 for (i
= 0; i
< 32; i
++) {
4627 env
->regs
[i
] = regs
->uregs
[i
];
4630 #elif defined(TARGET_SPARC)
4634 env
->npc
= regs
->npc
;
4636 for(i
= 0; i
< 8; i
++)
4637 env
->gregs
[i
] = regs
->u_regs
[i
];
4638 for(i
= 0; i
< 8; i
++)
4639 env
->regwptr
[i
] = regs
->u_regs
[i
+ 8];
4641 #elif defined(TARGET_PPC)
4645 #if defined(TARGET_PPC64)
4646 int flag
= (env
->insns_flags2
& PPC2_BOOKE206
) ? MSR_CM
: MSR_SF
;
4647 #if defined(TARGET_ABI32)
4648 env
->msr
&= ~((target_ulong
)1 << flag
);
4650 env
->msr
|= (target_ulong
)1 << flag
;
4653 env
->nip
= regs
->nip
;
4654 for(i
= 0; i
< 32; i
++) {
4655 env
->gpr
[i
] = regs
->gpr
[i
];
4658 #elif defined(TARGET_M68K)
4661 env
->dregs
[0] = regs
->d0
;
4662 env
->dregs
[1] = regs
->d1
;
4663 env
->dregs
[2] = regs
->d2
;
4664 env
->dregs
[3] = regs
->d3
;
4665 env
->dregs
[4] = regs
->d4
;
4666 env
->dregs
[5] = regs
->d5
;
4667 env
->dregs
[6] = regs
->d6
;
4668 env
->dregs
[7] = regs
->d7
;
4669 env
->aregs
[0] = regs
->a0
;
4670 env
->aregs
[1] = regs
->a1
;
4671 env
->aregs
[2] = regs
->a2
;
4672 env
->aregs
[3] = regs
->a3
;
4673 env
->aregs
[4] = regs
->a4
;
4674 env
->aregs
[5] = regs
->a5
;
4675 env
->aregs
[6] = regs
->a6
;
4676 env
->aregs
[7] = regs
->usp
;
4678 ts
->sim_syscalls
= 1;
4680 #elif defined(TARGET_MICROBLAZE)
4682 env
->regs
[0] = regs
->r0
;
4683 env
->regs
[1] = regs
->r1
;
4684 env
->regs
[2] = regs
->r2
;
4685 env
->regs
[3] = regs
->r3
;
4686 env
->regs
[4] = regs
->r4
;
4687 env
->regs
[5] = regs
->r5
;
4688 env
->regs
[6] = regs
->r6
;
4689 env
->regs
[7] = regs
->r7
;
4690 env
->regs
[8] = regs
->r8
;
4691 env
->regs
[9] = regs
->r9
;
4692 env
->regs
[10] = regs
->r10
;
4693 env
->regs
[11] = regs
->r11
;
4694 env
->regs
[12] = regs
->r12
;
4695 env
->regs
[13] = regs
->r13
;
4696 env
->regs
[14] = regs
->r14
;
4697 env
->regs
[15] = regs
->r15
;
4698 env
->regs
[16] = regs
->r16
;
4699 env
->regs
[17] = regs
->r17
;
4700 env
->regs
[18] = regs
->r18
;
4701 env
->regs
[19] = regs
->r19
;
4702 env
->regs
[20] = regs
->r20
;
4703 env
->regs
[21] = regs
->r21
;
4704 env
->regs
[22] = regs
->r22
;
4705 env
->regs
[23] = regs
->r23
;
4706 env
->regs
[24] = regs
->r24
;
4707 env
->regs
[25] = regs
->r25
;
4708 env
->regs
[26] = regs
->r26
;
4709 env
->regs
[27] = regs
->r27
;
4710 env
->regs
[28] = regs
->r28
;
4711 env
->regs
[29] = regs
->r29
;
4712 env
->regs
[30] = regs
->r30
;
4713 env
->regs
[31] = regs
->r31
;
4714 env
->sregs
[SR_PC
] = regs
->pc
;
4716 #elif defined(TARGET_MIPS)
4720 for(i
= 0; i
< 32; i
++) {
4721 env
->active_tc
.gpr
[i
] = regs
->regs
[i
];
4723 env
->active_tc
.PC
= regs
->cp0_epc
& ~(target_ulong
)1;
4724 if (regs
->cp0_epc
& 1) {
4725 env
->hflags
|= MIPS_HFLAG_M16
;
4727 if (((info
->elf_flags
& EF_MIPS_NAN2008
) != 0) !=
4728 ((env
->active_fpu
.fcr31
& (1 << FCR31_NAN2008
)) != 0)) {
4729 if ((env
->active_fpu
.fcr31_rw_bitmask
&
4730 (1 << FCR31_NAN2008
)) == 0) {
4731 fprintf(stderr
, "ELF binary's NaN mode not supported by CPU\n");
4734 if ((info
->elf_flags
& EF_MIPS_NAN2008
) != 0) {
4735 env
->active_fpu
.fcr31
|= (1 << FCR31_NAN2008
);
4737 env
->active_fpu
.fcr31
&= ~(1 << FCR31_NAN2008
);
4739 restore_snan_bit_mode(env
);
4742 #elif defined(TARGET_NIOS2)
4745 env
->regs
[1] = regs
->r1
;
4746 env
->regs
[2] = regs
->r2
;
4747 env
->regs
[3] = regs
->r3
;
4748 env
->regs
[4] = regs
->r4
;
4749 env
->regs
[5] = regs
->r5
;
4750 env
->regs
[6] = regs
->r6
;
4751 env
->regs
[7] = regs
->r7
;
4752 env
->regs
[8] = regs
->r8
;
4753 env
->regs
[9] = regs
->r9
;
4754 env
->regs
[10] = regs
->r10
;
4755 env
->regs
[11] = regs
->r11
;
4756 env
->regs
[12] = regs
->r12
;
4757 env
->regs
[13] = regs
->r13
;
4758 env
->regs
[14] = regs
->r14
;
4759 env
->regs
[15] = regs
->r15
;
4760 /* TODO: unsigned long orig_r2; */
4761 env
->regs
[R_RA
] = regs
->ra
;
4762 env
->regs
[R_FP
] = regs
->fp
;
4763 env
->regs
[R_SP
] = regs
->sp
;
4764 env
->regs
[R_GP
] = regs
->gp
;
4765 env
->regs
[CR_ESTATUS
] = regs
->estatus
;
4766 env
->regs
[R_EA
] = regs
->ea
;
4767 /* TODO: unsigned long orig_r7; */
4769 /* Emulate eret when starting thread. */
4770 env
->regs
[R_PC
] = regs
->ea
;
4772 #elif defined(TARGET_OPENRISC)
4776 for (i
= 0; i
< 32; i
++) {
4777 env
->gpr
[i
] = regs
->gpr
[i
];
4783 #elif defined(TARGET_SH4)
4787 for(i
= 0; i
< 16; i
++) {
4788 env
->gregs
[i
] = regs
->regs
[i
];
4792 #elif defined(TARGET_ALPHA)
4796 for(i
= 0; i
< 28; i
++) {
4797 env
->ir
[i
] = ((abi_ulong
*)regs
)[i
];
4799 env
->ir
[IR_SP
] = regs
->usp
;
4802 #elif defined(TARGET_CRIS)
4804 env
->regs
[0] = regs
->r0
;
4805 env
->regs
[1] = regs
->r1
;
4806 env
->regs
[2] = regs
->r2
;
4807 env
->regs
[3] = regs
->r3
;
4808 env
->regs
[4] = regs
->r4
;
4809 env
->regs
[5] = regs
->r5
;
4810 env
->regs
[6] = regs
->r6
;
4811 env
->regs
[7] = regs
->r7
;
4812 env
->regs
[8] = regs
->r8
;
4813 env
->regs
[9] = regs
->r9
;
4814 env
->regs
[10] = regs
->r10
;
4815 env
->regs
[11] = regs
->r11
;
4816 env
->regs
[12] = regs
->r12
;
4817 env
->regs
[13] = regs
->r13
;
4818 env
->regs
[14] = info
->start_stack
;
4819 env
->regs
[15] = regs
->acr
;
4820 env
->pc
= regs
->erp
;
4822 #elif defined(TARGET_S390X)
4825 for (i
= 0; i
< 16; i
++) {
4826 env
->regs
[i
] = regs
->gprs
[i
];
4828 env
->psw
.mask
= regs
->psw
.mask
;
4829 env
->psw
.addr
= regs
->psw
.addr
;
4831 #elif defined(TARGET_TILEGX)
4834 for (i
= 0; i
< TILEGX_R_COUNT
; i
++) {
4835 env
->regs
[i
] = regs
->regs
[i
];
4837 for (i
= 0; i
< TILEGX_SPR_COUNT
; i
++) {
4842 #elif defined(TARGET_HPPA)
4845 for (i
= 1; i
< 32; i
++) {
4846 env
->gr
[i
] = regs
->gr
[i
];
4848 env
->iaoq_f
= regs
->iaoq
[0];
4849 env
->iaoq_b
= regs
->iaoq
[1];
4852 #error unsupported target CPU
4855 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32)
4856 ts
->stack_base
= info
->start_stack
;
4857 ts
->heap_base
= info
->brk
;
4858 /* This will be filled in on the first SYS_HEAPINFO call. */
4863 if (gdbserver_start(gdbstub_port
) < 0) {
4864 fprintf(stderr
, "qemu: could not open gdbserver on port %d\n",
4868 gdb_handlesig(cpu
, 0);