2 * ARM Generic Interrupt Controller v3
4 * Copyright (c) 2015 Huawei.
5 * Copyright (c) 2016 Linaro Limited
6 * Written by Shlomo Pongratz, Peter Maydell
8 * This code is licensed under the GPL, version 2 or (at your option)
12 /* This file contains implementation code for an interrupt controller
13 * which implements the GICv3 architecture. Specifically this is where
14 * the device class itself and the functions for handling interrupts
15 * coming in and going out live.
18 #include "qemu/osdep.h"
19 #include "qapi/error.h"
20 #include "hw/sysbus.h"
21 #include "hw/intc/arm_gicv3.h"
22 #include "gicv3_internal.h"
24 static bool irqbetter(GICv3CPUState
*cs
, int irq
, uint8_t prio
)
26 /* Return true if this IRQ at this priority should take
27 * precedence over the current recorded highest priority
28 * pending interrupt for this CPU. We also return true if
29 * the current recorded highest priority pending interrupt
30 * is the same as this one (a property which the calling code
33 if (prio
< cs
->hppi
.prio
) {
36 /* If multiple pending interrupts have the same priority then it is an
37 * IMPDEF choice which of them to signal to the CPU. We choose to
38 * signal the one with the lowest interrupt number.
40 if (prio
== cs
->hppi
.prio
&& irq
<= cs
->hppi
.irq
) {
46 static uint32_t gicd_int_pending(GICv3State
*s
, int irq
)
48 /* Recalculate which distributor interrupts are actually pending
49 * in the group of 32 interrupts starting at irq (which should be a multiple
50 * of 32), and return a 32-bit integer which has a bit set for each
51 * interrupt that is eligible to be signaled to the CPU interface.
53 * An interrupt is pending if:
54 * + the PENDING latch is set OR it is level triggered and the input is 1
55 * + its ENABLE bit is set
56 * + the GICD enable bit for its group is set
57 * Conveniently we can bulk-calculate this with bitwise operations.
59 uint32_t pend
, grpmask
;
60 uint32_t pending
= *gic_bmp_ptr32(s
->pending
, irq
);
61 uint32_t edge_trigger
= *gic_bmp_ptr32(s
->edge_trigger
, irq
);
62 uint32_t level
= *gic_bmp_ptr32(s
->level
, irq
);
63 uint32_t group
= *gic_bmp_ptr32(s
->group
, irq
);
64 uint32_t grpmod
= *gic_bmp_ptr32(s
->grpmod
, irq
);
65 uint32_t enable
= *gic_bmp_ptr32(s
->enabled
, irq
);
67 pend
= pending
| (~edge_trigger
& level
);
70 if (s
->gicd_ctlr
& GICD_CTLR_DS
) {
75 if (s
->gicd_ctlr
& GICD_CTLR_EN_GRP1NS
) {
78 if (s
->gicd_ctlr
& GICD_CTLR_EN_GRP1S
) {
79 grpmask
|= (~group
& grpmod
);
81 if (s
->gicd_ctlr
& GICD_CTLR_EN_GRP0
) {
82 grpmask
|= (~group
& ~grpmod
);
89 static uint32_t gicr_int_pending(GICv3CPUState
*cs
)
91 /* Recalculate which redistributor interrupts are actually pending,
92 * and return a 32-bit integer which has a bit set for each interrupt
93 * that is eligible to be signaled to the CPU interface.
95 * An interrupt is pending if:
96 * + the PENDING latch is set OR it is level triggered and the input is 1
97 * + its ENABLE bit is set
98 * + the GICD enable bit for its group is set
99 * Conveniently we can bulk-calculate this with bitwise operations.
101 uint32_t pend
, grpmask
, grpmod
;
103 pend
= cs
->gicr_ipendr0
| (~cs
->edge_trigger
& cs
->level
);
104 pend
&= cs
->gicr_ienabler0
;
106 if (cs
->gic
->gicd_ctlr
& GICD_CTLR_DS
) {
109 grpmod
= cs
->gicr_igrpmodr0
;
113 if (cs
->gic
->gicd_ctlr
& GICD_CTLR_EN_GRP1NS
) {
114 grpmask
|= cs
->gicr_igroupr0
;
116 if (cs
->gic
->gicd_ctlr
& GICD_CTLR_EN_GRP1S
) {
117 grpmask
|= (~cs
->gicr_igroupr0
& grpmod
);
119 if (cs
->gic
->gicd_ctlr
& GICD_CTLR_EN_GRP0
) {
120 grpmask
|= (~cs
->gicr_igroupr0
& ~grpmod
);
127 /* Update the interrupt status after state in a redistributor
128 * or CPU interface has changed, but don't tell the CPU i/f.
130 static void gicv3_redist_update_noirqset(GICv3CPUState
*cs
)
132 /* Find the highest priority pending interrupt among the
133 * redistributor interrupts (SGIs and PPIs).
135 bool seenbetter
= false;
140 /* Find out which redistributor interrupts are eligible to be
141 * signaled to the CPU interface.
143 pend
= gicr_int_pending(cs
);
146 for (i
= 0; i
< GIC_INTERNAL
; i
++) {
147 if (!(pend
& (1 << i
))) {
150 prio
= cs
->gicr_ipriorityr
[i
];
151 if (irqbetter(cs
, i
, prio
)) {
153 cs
->hppi
.prio
= prio
;
160 cs
->hppi
.grp
= gicv3_irq_group(cs
->gic
, cs
, cs
->hppi
.irq
);
163 /* If the best interrupt we just found would preempt whatever
164 * was the previous best interrupt before this update, then
165 * we know it's definitely the best one now.
166 * If we didn't find an interrupt that would preempt the previous
167 * best, and the previous best is outside our range (or there was no
168 * previous pending interrupt at all), then that is still valid, and
169 * we leave it as the best.
170 * Otherwise, we need to do a full update (because the previous best
171 * interrupt has reduced in priority and any other interrupt could
172 * now be the new best one).
174 if (!seenbetter
&& cs
->hppi
.prio
!= 0xff && cs
->hppi
.irq
< GIC_INTERNAL
) {
175 gicv3_full_update_noirqset(cs
->gic
);
179 /* Update the GIC status after state in a redistributor or
180 * CPU interface has changed, and inform the CPU i/f of
181 * its new highest priority pending interrupt.
183 void gicv3_redist_update(GICv3CPUState
*cs
)
185 gicv3_redist_update_noirqset(cs
);
186 gicv3_cpuif_update(cs
);
189 /* Update the GIC status after state in the distributor has
190 * changed affecting @len interrupts starting at @start,
191 * but don't tell the CPU i/f.
193 static void gicv3_update_noirqset(GICv3State
*s
, int start
, int len
)
199 assert(start
>= GIC_INTERNAL
);
202 for (i
= 0; i
< s
->num_cpu
; i
++) {
203 s
->cpu
[i
].seenbetter
= false;
206 /* Find the highest priority pending interrupt in this range. */
207 for (i
= start
; i
< start
+ len
; i
++) {
210 if (i
== start
|| (i
& 0x1f) == 0) {
211 /* Calculate the next 32 bits worth of pending status */
212 pend
= gicd_int_pending(s
, i
& ~0x1f);
215 if (!(pend
& (1 << (i
& 0x1f)))) {
218 cs
= s
->gicd_irouter_target
[i
];
220 /* Interrupts targeting no implemented CPU should remain pending
221 * and not be forwarded to any CPU.
225 prio
= s
->gicd_ipriority
[i
];
226 if (irqbetter(cs
, i
, prio
)) {
228 cs
->hppi
.prio
= prio
;
229 cs
->seenbetter
= true;
233 /* If the best interrupt we just found would preempt whatever
234 * was the previous best interrupt before this update, then
235 * we know it's definitely the best one now.
236 * If we didn't find an interrupt that would preempt the previous
237 * best, and the previous best is outside our range (or there was
238 * no previous pending interrupt at all), then that
239 * is still valid, and we leave it as the best.
240 * Otherwise, we need to do a full update (because the previous best
241 * interrupt has reduced in priority and any other interrupt could
242 * now be the new best one).
244 for (i
= 0; i
< s
->num_cpu
; i
++) {
245 GICv3CPUState
*cs
= &s
->cpu
[i
];
247 if (cs
->seenbetter
) {
248 cs
->hppi
.grp
= gicv3_irq_group(cs
->gic
, cs
, cs
->hppi
.irq
);
251 if (!cs
->seenbetter
&& cs
->hppi
.prio
!= 0xff &&
252 cs
->hppi
.irq
>= start
&& cs
->hppi
.irq
< start
+ len
) {
253 gicv3_full_update_noirqset(s
);
259 void gicv3_update(GICv3State
*s
, int start
, int len
)
263 gicv3_update_noirqset(s
, start
, len
);
264 for (i
= 0; i
< s
->num_cpu
; i
++) {
265 gicv3_cpuif_update(&s
->cpu
[i
]);
269 void gicv3_full_update_noirqset(GICv3State
*s
)
271 /* Completely recalculate the GIC status from scratch, but
272 * don't update any outbound IRQ lines.
276 for (i
= 0; i
< s
->num_cpu
; i
++) {
277 s
->cpu
[i
].hppi
.prio
= 0xff;
280 /* Note that we can guarantee that these functions will not
281 * recursively call back into gicv3_full_update(), because
282 * at each point the "previous best" is always outside the
283 * range we ask them to update.
285 gicv3_update_noirqset(s
, GIC_INTERNAL
, s
->num_irq
- GIC_INTERNAL
);
287 for (i
= 0; i
< s
->num_cpu
; i
++) {
288 gicv3_redist_update_noirqset(&s
->cpu
[i
]);
292 void gicv3_full_update(GICv3State
*s
)
294 /* Completely recalculate the GIC status from scratch, including
295 * updating outbound IRQ lines.
299 gicv3_full_update_noirqset(s
);
300 for (i
= 0; i
< s
->num_cpu
; i
++) {
301 gicv3_cpuif_update(&s
->cpu
[i
]);
305 /* Process a change in an external IRQ input. */
306 static void gicv3_set_irq(void *opaque
, int irq
, int level
)
308 /* Meaning of the 'irq' parameter:
309 * [0..N-1] : external interrupts
310 * [N..N+31] : PPI (internal) interrupts for CPU 0
311 * [N+32..N+63] : PPI (internal interrupts for CPU 1
314 GICv3State
*s
= opaque
;
316 if (irq
< (s
->num_irq
- GIC_INTERNAL
)) {
317 /* external interrupt (SPI) */
318 gicv3_dist_set_irq(s
, irq
+ GIC_INTERNAL
, level
);
320 /* per-cpu interrupt (PPI) */
323 irq
-= (s
->num_irq
- GIC_INTERNAL
);
324 cpu
= irq
/ GIC_INTERNAL
;
326 assert(cpu
< s
->num_cpu
);
327 /* Raising SGIs via this function would be a bug in how the board
328 * model wires up interrupts.
330 assert(irq
>= GIC_NR_SGIS
);
331 gicv3_redist_set_irq(&s
->cpu
[cpu
], irq
, level
);
335 static void arm_gicv3_post_load(GICv3State
*s
)
337 /* Recalculate our cached idea of the current highest priority
338 * pending interrupt, but don't set IRQ or FIQ lines.
340 gicv3_full_update_noirqset(s
);
341 /* Repopulate the cache of GICv3CPUState pointers for target CPUs */
342 gicv3_cache_all_target_cpustates(s
);
345 static const MemoryRegionOps gic_ops
[] = {
347 .read_with_attrs
= gicv3_dist_read
,
348 .write_with_attrs
= gicv3_dist_write
,
349 .endianness
= DEVICE_NATIVE_ENDIAN
,
352 .read_with_attrs
= gicv3_redist_read
,
353 .write_with_attrs
= gicv3_redist_write
,
354 .endianness
= DEVICE_NATIVE_ENDIAN
,
358 static void arm_gic_realize(DeviceState
*dev
, Error
**errp
)
360 /* Device instance realize function for the GIC sysbus device */
361 GICv3State
*s
= ARM_GICV3(dev
);
362 ARMGICv3Class
*agc
= ARM_GICV3_GET_CLASS(s
);
363 Error
*local_err
= NULL
;
365 agc
->parent_realize(dev
, &local_err
);
367 error_propagate(errp
, local_err
);
371 gicv3_init_irqs_and_mmio(s
, gicv3_set_irq
, gic_ops
);
376 static void arm_gicv3_class_init(ObjectClass
*klass
, void *data
)
378 DeviceClass
*dc
= DEVICE_CLASS(klass
);
379 ARMGICv3CommonClass
*agcc
= ARM_GICV3_COMMON_CLASS(klass
);
380 ARMGICv3Class
*agc
= ARM_GICV3_CLASS(klass
);
382 agcc
->post_load
= arm_gicv3_post_load
;
383 agc
->parent_realize
= dc
->realize
;
384 dc
->realize
= arm_gic_realize
;
387 static const TypeInfo arm_gicv3_info
= {
388 .name
= TYPE_ARM_GICV3
,
389 .parent
= TYPE_ARM_GICV3_COMMON
,
390 .instance_size
= sizeof(GICv3State
),
391 .class_init
= arm_gicv3_class_init
,
392 .class_size
= sizeof(ARMGICv3Class
),
395 static void arm_gicv3_register_types(void)
397 type_register_static(&arm_gicv3_info
);
400 type_init(arm_gicv3_register_types
)