.travis.yml: Shorten the runtime of the problematic jobs
[qemu/kevin.git] / hw / intc / spapr_xive.c
blobd7e56bfb20e61192c99243e57bc0f428eae6010b
1 /*
2 * QEMU PowerPC sPAPR XIVE interrupt controller model
4 * Copyright (c) 2017-2018, IBM Corporation.
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "qemu/error-report.h"
15 #include "target/ppc/cpu.h"
16 #include "sysemu/cpus.h"
17 #include "sysemu/reset.h"
18 #include "migration/vmstate.h"
19 #include "monitor/monitor.h"
20 #include "hw/ppc/fdt.h"
21 #include "hw/ppc/spapr.h"
22 #include "hw/ppc/spapr_cpu_core.h"
23 #include "hw/ppc/spapr_xive.h"
24 #include "hw/ppc/xive.h"
25 #include "hw/ppc/xive_regs.h"
26 #include "hw/qdev-properties.h"
27 #include "trace.h"
30 * XIVE Virtualization Controller BAR and Thread Management BAR that we
31 * use for the ESB pages and the TIMA pages
33 #define SPAPR_XIVE_VC_BASE 0x0006010000000000ull
34 #define SPAPR_XIVE_TM_BASE 0x0006030203180000ull
37 * The allocation of VP blocks is a complex operation in OPAL and the
38 * VP identifiers have a relation with the number of HW chips, the
39 * size of the VP blocks, VP grouping, etc. The QEMU sPAPR XIVE
40 * controller model does not have the same constraints and can use a
41 * simple mapping scheme of the CPU vcpu_id
43 * These identifiers are never returned to the OS.
46 #define SPAPR_XIVE_NVT_BASE 0x400
49 * sPAPR NVT and END indexing helpers
51 static uint32_t spapr_xive_nvt_to_target(uint8_t nvt_blk, uint32_t nvt_idx)
53 return nvt_idx - SPAPR_XIVE_NVT_BASE;
56 static void spapr_xive_cpu_to_nvt(PowerPCCPU *cpu,
57 uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
59 assert(cpu);
61 if (out_nvt_blk) {
62 *out_nvt_blk = SPAPR_XIVE_BLOCK_ID;
65 if (out_nvt_blk) {
66 *out_nvt_idx = SPAPR_XIVE_NVT_BASE + cpu->vcpu_id;
70 static int spapr_xive_target_to_nvt(uint32_t target,
71 uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
73 PowerPCCPU *cpu = spapr_find_cpu(target);
75 if (!cpu) {
76 return -1;
79 spapr_xive_cpu_to_nvt(cpu, out_nvt_blk, out_nvt_idx);
80 return 0;
84 * sPAPR END indexing uses a simple mapping of the CPU vcpu_id, 8
85 * priorities per CPU
87 int spapr_xive_end_to_target(uint8_t end_blk, uint32_t end_idx,
88 uint32_t *out_server, uint8_t *out_prio)
91 assert(end_blk == SPAPR_XIVE_BLOCK_ID);
93 if (out_server) {
94 *out_server = end_idx >> 3;
97 if (out_prio) {
98 *out_prio = end_idx & 0x7;
100 return 0;
103 static void spapr_xive_cpu_to_end(PowerPCCPU *cpu, uint8_t prio,
104 uint8_t *out_end_blk, uint32_t *out_end_idx)
106 assert(cpu);
108 if (out_end_blk) {
109 *out_end_blk = SPAPR_XIVE_BLOCK_ID;
112 if (out_end_idx) {
113 *out_end_idx = (cpu->vcpu_id << 3) + prio;
117 static int spapr_xive_target_to_end(uint32_t target, uint8_t prio,
118 uint8_t *out_end_blk, uint32_t *out_end_idx)
120 PowerPCCPU *cpu = spapr_find_cpu(target);
122 if (!cpu) {
123 return -1;
126 spapr_xive_cpu_to_end(cpu, prio, out_end_blk, out_end_idx);
127 return 0;
131 * On sPAPR machines, use a simplified output for the XIVE END
132 * structure dumping only the information related to the OS EQ.
134 static void spapr_xive_end_pic_print_info(SpaprXive *xive, XiveEND *end,
135 Monitor *mon)
137 uint64_t qaddr_base = xive_end_qaddr(end);
138 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
139 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
140 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
141 uint32_t qentries = 1 << (qsize + 10);
142 uint32_t nvt = xive_get_field32(END_W6_NVT_INDEX, end->w6);
143 uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
145 monitor_printf(mon, "%3d/%d % 6d/%5d @%"PRIx64" ^%d",
146 spapr_xive_nvt_to_target(0, nvt),
147 priority, qindex, qentries, qaddr_base, qgen);
149 xive_end_queue_pic_print_info(end, 6, mon);
153 * kvm_irqchip_in_kernel() will cause the compiler to turn this
154 * info a nop if CONFIG_KVM isn't defined.
156 #define spapr_xive_in_kernel(xive) \
157 (kvm_irqchip_in_kernel() && (xive)->fd != -1)
159 static void spapr_xive_pic_print_info(SpaprXive *xive, Monitor *mon)
161 XiveSource *xsrc = &xive->source;
162 int i;
164 if (spapr_xive_in_kernel(xive)) {
165 Error *local_err = NULL;
167 kvmppc_xive_synchronize_state(xive, &local_err);
168 if (local_err) {
169 error_report_err(local_err);
170 return;
174 monitor_printf(mon, " LISN PQ EISN CPU/PRIO EQ\n");
176 for (i = 0; i < xive->nr_irqs; i++) {
177 uint8_t pq = xive_source_esb_get(xsrc, i);
178 XiveEAS *eas = &xive->eat[i];
180 if (!xive_eas_is_valid(eas)) {
181 continue;
184 monitor_printf(mon, " %08x %s %c%c%c %s %08x ", i,
185 xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
186 pq & XIVE_ESB_VAL_P ? 'P' : '-',
187 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
188 xive_source_is_asserted(xsrc, i) ? 'A' : ' ',
189 xive_eas_is_masked(eas) ? "M" : " ",
190 (int) xive_get_field64(EAS_END_DATA, eas->w));
192 if (!xive_eas_is_masked(eas)) {
193 uint32_t end_idx = xive_get_field64(EAS_END_INDEX, eas->w);
194 XiveEND *end;
196 assert(end_idx < xive->nr_ends);
197 end = &xive->endt[end_idx];
199 if (xive_end_is_valid(end)) {
200 spapr_xive_end_pic_print_info(xive, end, mon);
203 monitor_printf(mon, "\n");
207 void spapr_xive_mmio_set_enabled(SpaprXive *xive, bool enable)
209 memory_region_set_enabled(&xive->source.esb_mmio, enable);
210 memory_region_set_enabled(&xive->tm_mmio, enable);
212 /* Disable the END ESBs until a guest OS makes use of them */
213 memory_region_set_enabled(&xive->end_source.esb_mmio, false);
216 static void spapr_xive_tm_write(void *opaque, hwaddr offset,
217 uint64_t value, unsigned size)
219 XiveTCTX *tctx = spapr_cpu_state(POWERPC_CPU(current_cpu))->tctx;
221 xive_tctx_tm_write(XIVE_PRESENTER(opaque), tctx, offset, value, size);
224 static uint64_t spapr_xive_tm_read(void *opaque, hwaddr offset, unsigned size)
226 XiveTCTX *tctx = spapr_cpu_state(POWERPC_CPU(current_cpu))->tctx;
228 return xive_tctx_tm_read(XIVE_PRESENTER(opaque), tctx, offset, size);
231 const MemoryRegionOps spapr_xive_tm_ops = {
232 .read = spapr_xive_tm_read,
233 .write = spapr_xive_tm_write,
234 .endianness = DEVICE_BIG_ENDIAN,
235 .valid = {
236 .min_access_size = 1,
237 .max_access_size = 8,
239 .impl = {
240 .min_access_size = 1,
241 .max_access_size = 8,
245 static void spapr_xive_end_reset(XiveEND *end)
247 memset(end, 0, sizeof(*end));
249 /* switch off the escalation and notification ESBs */
250 end->w1 = cpu_to_be32(END_W1_ESe_Q | END_W1_ESn_Q);
253 static void spapr_xive_reset(void *dev)
255 SpaprXive *xive = SPAPR_XIVE(dev);
256 int i;
259 * The XiveSource has its own reset handler, which mask off all
260 * IRQs (!P|Q)
263 /* Mask all valid EASs in the IRQ number space. */
264 for (i = 0; i < xive->nr_irqs; i++) {
265 XiveEAS *eas = &xive->eat[i];
266 if (xive_eas_is_valid(eas)) {
267 eas->w = cpu_to_be64(EAS_VALID | EAS_MASKED);
268 } else {
269 eas->w = 0;
273 /* Clear all ENDs */
274 for (i = 0; i < xive->nr_ends; i++) {
275 spapr_xive_end_reset(&xive->endt[i]);
279 static void spapr_xive_instance_init(Object *obj)
281 SpaprXive *xive = SPAPR_XIVE(obj);
283 object_initialize_child(obj, "source", &xive->source, TYPE_XIVE_SOURCE);
285 object_initialize_child(obj, "end_source", &xive->end_source,
286 TYPE_XIVE_END_SOURCE);
288 /* Not connected to the KVM XIVE device */
289 xive->fd = -1;
292 static void spapr_xive_realize(DeviceState *dev, Error **errp)
294 SpaprXive *xive = SPAPR_XIVE(dev);
295 SpaprXiveClass *sxc = SPAPR_XIVE_GET_CLASS(xive);
296 XiveSource *xsrc = &xive->source;
297 XiveENDSource *end_xsrc = &xive->end_source;
298 Error *local_err = NULL;
300 /* Set by spapr_irq_init() */
301 g_assert(xive->nr_irqs);
302 g_assert(xive->nr_ends);
304 sxc->parent_realize(dev, &local_err);
305 if (local_err) {
306 error_propagate(errp, local_err);
307 return;
311 * Initialize the internal sources, for IPIs and virtual devices.
313 object_property_set_int(OBJECT(xsrc), "nr-irqs", xive->nr_irqs,
314 &error_fatal);
315 object_property_set_link(OBJECT(xsrc), "xive", OBJECT(xive), &error_abort);
316 if (!qdev_realize(DEVICE(xsrc), NULL, errp)) {
317 return;
321 * Initialize the END ESB source
323 object_property_set_int(OBJECT(end_xsrc), "nr-ends", xive->nr_irqs,
324 &error_fatal);
325 object_property_set_link(OBJECT(end_xsrc), "xive", OBJECT(xive),
326 &error_abort);
327 if (!qdev_realize(DEVICE(end_xsrc), NULL, errp)) {
328 return;
331 /* Set the mapping address of the END ESB pages after the source ESBs */
332 xive->end_base = xive->vc_base + xive_source_esb_len(xsrc);
335 * Allocate the routing tables
337 xive->eat = g_new0(XiveEAS, xive->nr_irqs);
338 xive->endt = g_new0(XiveEND, xive->nr_ends);
340 xive->nodename = g_strdup_printf("interrupt-controller@%" PRIx64,
341 xive->tm_base + XIVE_TM_USER_PAGE * (1 << TM_SHIFT));
343 qemu_register_reset(spapr_xive_reset, dev);
345 /* TIMA initialization */
346 memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &spapr_xive_tm_ops,
347 xive, "xive.tima", 4ull << TM_SHIFT);
350 * Map all regions. These will be enabled or disabled at reset and
351 * can also be overridden by KVM memory regions if active
353 memory_region_add_subregion(get_system_memory(), xive->vc_base,
354 &xsrc->esb_mmio);
355 memory_region_add_subregion(get_system_memory(), xive->end_base,
356 &end_xsrc->esb_mmio);
357 memory_region_add_subregion(get_system_memory(), xive->tm_base,
358 &xive->tm_mmio);
361 static int spapr_xive_get_eas(XiveRouter *xrtr, uint8_t eas_blk,
362 uint32_t eas_idx, XiveEAS *eas)
364 SpaprXive *xive = SPAPR_XIVE(xrtr);
366 if (eas_idx >= xive->nr_irqs) {
367 return -1;
370 *eas = xive->eat[eas_idx];
371 return 0;
374 static int spapr_xive_get_end(XiveRouter *xrtr,
375 uint8_t end_blk, uint32_t end_idx, XiveEND *end)
377 SpaprXive *xive = SPAPR_XIVE(xrtr);
379 if (end_idx >= xive->nr_ends) {
380 return -1;
383 memcpy(end, &xive->endt[end_idx], sizeof(XiveEND));
384 return 0;
387 static int spapr_xive_write_end(XiveRouter *xrtr, uint8_t end_blk,
388 uint32_t end_idx, XiveEND *end,
389 uint8_t word_number)
391 SpaprXive *xive = SPAPR_XIVE(xrtr);
393 if (end_idx >= xive->nr_ends) {
394 return -1;
397 memcpy(&xive->endt[end_idx], end, sizeof(XiveEND));
398 return 0;
401 static int spapr_xive_get_nvt(XiveRouter *xrtr,
402 uint8_t nvt_blk, uint32_t nvt_idx, XiveNVT *nvt)
404 uint32_t vcpu_id = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
405 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
407 if (!cpu) {
408 /* TODO: should we assert() if we can find a NVT ? */
409 return -1;
413 * sPAPR does not maintain a NVT table. Return that the NVT is
414 * valid if we have found a matching CPU
416 nvt->w0 = cpu_to_be32(NVT_W0_VALID);
417 return 0;
420 static int spapr_xive_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk,
421 uint32_t nvt_idx, XiveNVT *nvt,
422 uint8_t word_number)
425 * We don't need to write back to the NVTs because the sPAPR
426 * machine should never hit a non-scheduled NVT. It should never
427 * get called.
429 g_assert_not_reached();
432 static int spapr_xive_match_nvt(XivePresenter *xptr, uint8_t format,
433 uint8_t nvt_blk, uint32_t nvt_idx,
434 bool cam_ignore, uint8_t priority,
435 uint32_t logic_serv, XiveTCTXMatch *match)
437 CPUState *cs;
438 int count = 0;
440 CPU_FOREACH(cs) {
441 PowerPCCPU *cpu = POWERPC_CPU(cs);
442 XiveTCTX *tctx = spapr_cpu_state(cpu)->tctx;
443 int ring;
446 * Skip partially initialized vCPUs. This can happen when
447 * vCPUs are hotplugged.
449 if (!tctx) {
450 continue;
454 * Check the thread context CAM lines and record matches.
456 ring = xive_presenter_tctx_match(xptr, tctx, format, nvt_blk, nvt_idx,
457 cam_ignore, logic_serv);
459 * Save the matching thread interrupt context and follow on to
460 * check for duplicates which are invalid.
462 if (ring != -1) {
463 if (match->tctx) {
464 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a thread "
465 "context NVT %x/%x\n", nvt_blk, nvt_idx);
466 return -1;
469 match->ring = ring;
470 match->tctx = tctx;
471 count++;
475 return count;
478 static uint32_t spapr_xive_presenter_get_config(XivePresenter *xptr)
480 uint32_t cfg = 0;
483 * Let's claim GEN1 TIMA format. If running with KVM on P10, the
484 * correct answer is deep in the hardware and not accessible to
485 * us. But it shouldn't matter as it only affects the presenter
486 * as seen by a guest OS.
488 cfg |= XIVE_PRESENTER_GEN1_TIMA_OS;
490 return cfg;
493 static uint8_t spapr_xive_get_block_id(XiveRouter *xrtr)
495 return SPAPR_XIVE_BLOCK_ID;
498 static int spapr_xive_get_pq(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
499 uint8_t *pq)
501 SpaprXive *xive = SPAPR_XIVE(xrtr);
503 assert(SPAPR_XIVE_BLOCK_ID == blk);
505 *pq = xive_source_esb_get(&xive->source, idx);
506 return 0;
509 static int spapr_xive_set_pq(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
510 uint8_t *pq)
512 SpaprXive *xive = SPAPR_XIVE(xrtr);
514 assert(SPAPR_XIVE_BLOCK_ID == blk);
516 *pq = xive_source_esb_set(&xive->source, idx, *pq);
517 return 0;
521 static const VMStateDescription vmstate_spapr_xive_end = {
522 .name = TYPE_SPAPR_XIVE "/end",
523 .version_id = 1,
524 .minimum_version_id = 1,
525 .fields = (const VMStateField []) {
526 VMSTATE_UINT32(w0, XiveEND),
527 VMSTATE_UINT32(w1, XiveEND),
528 VMSTATE_UINT32(w2, XiveEND),
529 VMSTATE_UINT32(w3, XiveEND),
530 VMSTATE_UINT32(w4, XiveEND),
531 VMSTATE_UINT32(w5, XiveEND),
532 VMSTATE_UINT32(w6, XiveEND),
533 VMSTATE_UINT32(w7, XiveEND),
534 VMSTATE_END_OF_LIST()
538 static const VMStateDescription vmstate_spapr_xive_eas = {
539 .name = TYPE_SPAPR_XIVE "/eas",
540 .version_id = 1,
541 .minimum_version_id = 1,
542 .fields = (const VMStateField []) {
543 VMSTATE_UINT64(w, XiveEAS),
544 VMSTATE_END_OF_LIST()
548 static int vmstate_spapr_xive_pre_save(void *opaque)
550 SpaprXive *xive = SPAPR_XIVE(opaque);
552 if (spapr_xive_in_kernel(xive)) {
553 return kvmppc_xive_pre_save(xive);
556 return 0;
560 * Called by the sPAPR IRQ backend 'post_load' method at the machine
561 * level.
563 static int spapr_xive_post_load(SpaprInterruptController *intc, int version_id)
565 SpaprXive *xive = SPAPR_XIVE(intc);
567 if (spapr_xive_in_kernel(xive)) {
568 return kvmppc_xive_post_load(xive, version_id);
571 return 0;
574 static const VMStateDescription vmstate_spapr_xive = {
575 .name = TYPE_SPAPR_XIVE,
576 .version_id = 1,
577 .minimum_version_id = 1,
578 .pre_save = vmstate_spapr_xive_pre_save,
579 .post_load = NULL, /* handled at the machine level */
580 .fields = (const VMStateField[]) {
581 VMSTATE_UINT32_EQUAL(nr_irqs, SpaprXive, NULL),
582 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(eat, SpaprXive, nr_irqs,
583 vmstate_spapr_xive_eas, XiveEAS),
584 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(endt, SpaprXive, nr_ends,
585 vmstate_spapr_xive_end, XiveEND),
586 VMSTATE_END_OF_LIST()
590 static int spapr_xive_claim_irq(SpaprInterruptController *intc, int lisn,
591 bool lsi, Error **errp)
593 SpaprXive *xive = SPAPR_XIVE(intc);
594 XiveSource *xsrc = &xive->source;
596 assert(lisn < xive->nr_irqs);
598 trace_spapr_xive_claim_irq(lisn, lsi);
600 if (xive_eas_is_valid(&xive->eat[lisn])) {
601 error_setg(errp, "IRQ %d is not free", lisn);
602 return -EBUSY;
606 * Set default values when allocating an IRQ number
608 xive->eat[lisn].w |= cpu_to_be64(EAS_VALID | EAS_MASKED);
609 if (lsi) {
610 xive_source_irq_set_lsi(xsrc, lisn);
613 if (spapr_xive_in_kernel(xive)) {
614 return kvmppc_xive_source_reset_one(xsrc, lisn, errp);
617 return 0;
620 static void spapr_xive_free_irq(SpaprInterruptController *intc, int lisn)
622 SpaprXive *xive = SPAPR_XIVE(intc);
623 assert(lisn < xive->nr_irqs);
625 trace_spapr_xive_free_irq(lisn);
627 xive->eat[lisn].w &= cpu_to_be64(~EAS_VALID);
630 static Property spapr_xive_properties[] = {
631 DEFINE_PROP_UINT32("nr-irqs", SpaprXive, nr_irqs, 0),
632 DEFINE_PROP_UINT32("nr-ends", SpaprXive, nr_ends, 0),
633 DEFINE_PROP_UINT64("vc-base", SpaprXive, vc_base, SPAPR_XIVE_VC_BASE),
634 DEFINE_PROP_UINT64("tm-base", SpaprXive, tm_base, SPAPR_XIVE_TM_BASE),
635 DEFINE_PROP_UINT8("hv-prio", SpaprXive, hv_prio, 7),
636 DEFINE_PROP_END_OF_LIST(),
639 static int spapr_xive_cpu_intc_create(SpaprInterruptController *intc,
640 PowerPCCPU *cpu, Error **errp)
642 SpaprXive *xive = SPAPR_XIVE(intc);
643 Object *obj;
644 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
646 obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(xive), errp);
647 if (!obj) {
648 return -1;
651 spapr_cpu->tctx = XIVE_TCTX(obj);
652 return 0;
655 static void xive_tctx_set_os_cam(XiveTCTX *tctx, uint32_t os_cam)
657 uint32_t qw1w2 = cpu_to_be32(TM_QW1W2_VO | os_cam);
658 memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4);
661 static void spapr_xive_cpu_intc_reset(SpaprInterruptController *intc,
662 PowerPCCPU *cpu)
664 XiveTCTX *tctx = spapr_cpu_state(cpu)->tctx;
665 uint8_t nvt_blk;
666 uint32_t nvt_idx;
668 xive_tctx_reset(tctx);
671 * When a Virtual Processor is scheduled to run on a HW thread,
672 * the hypervisor pushes its identifier in the OS CAM line.
673 * Emulate the same behavior under QEMU.
675 spapr_xive_cpu_to_nvt(cpu, &nvt_blk, &nvt_idx);
677 xive_tctx_set_os_cam(tctx, xive_nvt_cam_line(nvt_blk, nvt_idx));
680 static void spapr_xive_cpu_intc_destroy(SpaprInterruptController *intc,
681 PowerPCCPU *cpu)
683 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
685 xive_tctx_destroy(spapr_cpu->tctx);
686 spapr_cpu->tctx = NULL;
689 static void spapr_xive_set_irq(SpaprInterruptController *intc, int irq, int val)
691 SpaprXive *xive = SPAPR_XIVE(intc);
693 trace_spapr_xive_set_irq(irq, val);
695 if (spapr_xive_in_kernel(xive)) {
696 kvmppc_xive_source_set_irq(&xive->source, irq, val);
697 } else {
698 xive_source_set_irq(&xive->source, irq, val);
702 static void spapr_xive_print_info(SpaprInterruptController *intc, Monitor *mon)
704 SpaprXive *xive = SPAPR_XIVE(intc);
705 CPUState *cs;
707 CPU_FOREACH(cs) {
708 PowerPCCPU *cpu = POWERPC_CPU(cs);
710 xive_tctx_pic_print_info(spapr_cpu_state(cpu)->tctx, mon);
713 spapr_xive_pic_print_info(xive, mon);
716 static void spapr_xive_dt(SpaprInterruptController *intc, uint32_t nr_servers,
717 void *fdt, uint32_t phandle)
719 SpaprXive *xive = SPAPR_XIVE(intc);
720 int node;
721 uint64_t timas[2 * 2];
722 /* Interrupt number ranges for the IPIs */
723 uint32_t lisn_ranges[] = {
724 cpu_to_be32(SPAPR_IRQ_IPI),
725 cpu_to_be32(SPAPR_IRQ_IPI + nr_servers),
728 * EQ size - the sizes of pages supported by the system 4K, 64K,
729 * 2M, 16M. We only advertise 64K for the moment.
731 uint32_t eq_sizes[] = {
732 cpu_to_be32(16), /* 64K */
735 * QEMU/KVM only needs to define a single range to reserve the
736 * escalation priority. A priority bitmask would have been more
737 * appropriate.
739 uint32_t plat_res_int_priorities[] = {
740 cpu_to_be32(xive->hv_prio), /* start */
741 cpu_to_be32(0xff - xive->hv_prio), /* count */
744 /* Thread Interrupt Management Area : User (ring 3) and OS (ring 2) */
745 timas[0] = cpu_to_be64(xive->tm_base +
746 XIVE_TM_USER_PAGE * (1ull << TM_SHIFT));
747 timas[1] = cpu_to_be64(1ull << TM_SHIFT);
748 timas[2] = cpu_to_be64(xive->tm_base +
749 XIVE_TM_OS_PAGE * (1ull << TM_SHIFT));
750 timas[3] = cpu_to_be64(1ull << TM_SHIFT);
752 _FDT(node = fdt_add_subnode(fdt, 0, xive->nodename));
754 _FDT(fdt_setprop_string(fdt, node, "device_type", "power-ivpe"));
755 _FDT(fdt_setprop(fdt, node, "reg", timas, sizeof(timas)));
757 _FDT(fdt_setprop_string(fdt, node, "compatible", "ibm,power-ivpe"));
758 _FDT(fdt_setprop(fdt, node, "ibm,xive-eq-sizes", eq_sizes,
759 sizeof(eq_sizes)));
760 _FDT(fdt_setprop(fdt, node, "ibm,xive-lisn-ranges", lisn_ranges,
761 sizeof(lisn_ranges)));
763 /* For Linux to link the LSIs to the interrupt controller. */
764 _FDT(fdt_setprop(fdt, node, "interrupt-controller", NULL, 0));
765 _FDT(fdt_setprop_cell(fdt, node, "#interrupt-cells", 2));
767 /* For SLOF */
768 _FDT(fdt_setprop_cell(fdt, node, "linux,phandle", phandle));
769 _FDT(fdt_setprop_cell(fdt, node, "phandle", phandle));
772 * The "ibm,plat-res-int-priorities" property defines the priority
773 * ranges reserved by the hypervisor
775 _FDT(fdt_setprop(fdt, 0, "ibm,plat-res-int-priorities",
776 plat_res_int_priorities, sizeof(plat_res_int_priorities)));
779 static int spapr_xive_activate(SpaprInterruptController *intc,
780 uint32_t nr_servers, Error **errp)
782 SpaprXive *xive = SPAPR_XIVE(intc);
784 if (kvm_enabled()) {
785 int rc = spapr_irq_init_kvm(kvmppc_xive_connect, intc, nr_servers,
786 errp);
787 if (rc < 0) {
788 return rc;
792 /* Activate the XIVE MMIOs */
793 spapr_xive_mmio_set_enabled(xive, true);
795 return 0;
798 static void spapr_xive_deactivate(SpaprInterruptController *intc)
800 SpaprXive *xive = SPAPR_XIVE(intc);
802 spapr_xive_mmio_set_enabled(xive, false);
804 if (spapr_xive_in_kernel(xive)) {
805 kvmppc_xive_disconnect(intc);
809 static bool spapr_xive_in_kernel_xptr(const XivePresenter *xptr)
811 return spapr_xive_in_kernel(SPAPR_XIVE(xptr));
814 static void spapr_xive_class_init(ObjectClass *klass, void *data)
816 DeviceClass *dc = DEVICE_CLASS(klass);
817 XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
818 SpaprInterruptControllerClass *sicc = SPAPR_INTC_CLASS(klass);
819 XivePresenterClass *xpc = XIVE_PRESENTER_CLASS(klass);
820 SpaprXiveClass *sxc = SPAPR_XIVE_CLASS(klass);
822 dc->desc = "sPAPR XIVE Interrupt Controller";
823 device_class_set_props(dc, spapr_xive_properties);
824 device_class_set_parent_realize(dc, spapr_xive_realize,
825 &sxc->parent_realize);
826 dc->vmsd = &vmstate_spapr_xive;
828 xrc->get_eas = spapr_xive_get_eas;
829 xrc->get_pq = spapr_xive_get_pq;
830 xrc->set_pq = spapr_xive_set_pq;
831 xrc->get_end = spapr_xive_get_end;
832 xrc->write_end = spapr_xive_write_end;
833 xrc->get_nvt = spapr_xive_get_nvt;
834 xrc->write_nvt = spapr_xive_write_nvt;
835 xrc->get_block_id = spapr_xive_get_block_id;
837 sicc->activate = spapr_xive_activate;
838 sicc->deactivate = spapr_xive_deactivate;
839 sicc->cpu_intc_create = spapr_xive_cpu_intc_create;
840 sicc->cpu_intc_reset = spapr_xive_cpu_intc_reset;
841 sicc->cpu_intc_destroy = spapr_xive_cpu_intc_destroy;
842 sicc->claim_irq = spapr_xive_claim_irq;
843 sicc->free_irq = spapr_xive_free_irq;
844 sicc->set_irq = spapr_xive_set_irq;
845 sicc->print_info = spapr_xive_print_info;
846 sicc->dt = spapr_xive_dt;
847 sicc->post_load = spapr_xive_post_load;
849 xpc->match_nvt = spapr_xive_match_nvt;
850 xpc->get_config = spapr_xive_presenter_get_config;
851 xpc->in_kernel = spapr_xive_in_kernel_xptr;
854 static const TypeInfo spapr_xive_info = {
855 .name = TYPE_SPAPR_XIVE,
856 .parent = TYPE_XIVE_ROUTER,
857 .instance_init = spapr_xive_instance_init,
858 .instance_size = sizeof(SpaprXive),
859 .class_init = spapr_xive_class_init,
860 .class_size = sizeof(SpaprXiveClass),
861 .interfaces = (InterfaceInfo[]) {
862 { TYPE_SPAPR_INTC },
867 static void spapr_xive_register_types(void)
869 type_register_static(&spapr_xive_info);
872 type_init(spapr_xive_register_types)
875 * XIVE hcalls
877 * The terminology used by the XIVE hcalls is the following :
879 * TARGET vCPU number
880 * EQ Event Queue assigned by OS to receive event data
881 * ESB page for source interrupt management
882 * LISN Logical Interrupt Source Number identifying a source in the
883 * machine
884 * EISN Effective Interrupt Source Number used by guest OS to
885 * identify source in the guest
887 * The EAS, END, NVT structures are not exposed.
891 * On POWER9, the KVM XIVE device uses priority 7 for the escalation
892 * interrupts. So we only allow the guest to use priorities [0..6].
894 static bool spapr_xive_priority_is_reserved(SpaprXive *xive, uint8_t priority)
896 return priority >= xive->hv_prio;
900 * The H_INT_GET_SOURCE_INFO hcall() is used to obtain the logical
901 * real address of the MMIO page through which the Event State Buffer
902 * entry associated with the value of the "lisn" parameter is managed.
904 * Parameters:
905 * Input
906 * - R4: "flags"
907 * Bits 0-63 reserved
908 * - R5: "lisn" is per "interrupts", "interrupt-map", or
909 * "ibm,xive-lisn-ranges" properties, or as returned by the
910 * ibm,query-interrupt-source-number RTAS call, or as returned
911 * by the H_ALLOCATE_VAS_WINDOW hcall
913 * Output
914 * - R4: "flags"
915 * Bits 0-59: Reserved
916 * Bit 60: H_INT_ESB must be used for Event State Buffer
917 * management
918 * Bit 61: 1 == LSI 0 == MSI
919 * Bit 62: the full function page supports trigger
920 * Bit 63: Store EOI Supported
921 * - R5: Logical Real address of full function Event State Buffer
922 * management page, -1 if H_INT_ESB hcall flag is set to 1.
923 * - R6: Logical Real Address of trigger only Event State Buffer
924 * management page or -1.
925 * - R7: Power of 2 page size for the ESB management pages returned in
926 * R5 and R6.
929 #define SPAPR_XIVE_SRC_H_INT_ESB PPC_BIT(60) /* ESB manage with H_INT_ESB */
930 #define SPAPR_XIVE_SRC_LSI PPC_BIT(61) /* Virtual LSI type */
931 #define SPAPR_XIVE_SRC_TRIGGER PPC_BIT(62) /* Trigger and management
932 on same page */
933 #define SPAPR_XIVE_SRC_STORE_EOI PPC_BIT(63) /* Store EOI support */
935 static target_ulong h_int_get_source_info(PowerPCCPU *cpu,
936 SpaprMachineState *spapr,
937 target_ulong opcode,
938 target_ulong *args)
940 SpaprXive *xive = spapr->xive;
941 XiveSource *xsrc = &xive->source;
942 target_ulong flags = args[0];
943 target_ulong lisn = args[1];
945 trace_spapr_xive_get_source_info(flags, lisn);
947 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
948 return H_FUNCTION;
951 if (flags) {
952 return H_PARAMETER;
955 if (lisn >= xive->nr_irqs) {
956 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
957 lisn);
958 return H_P2;
961 if (!xive_eas_is_valid(&xive->eat[lisn])) {
962 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
963 lisn);
964 return H_P2;
968 * All sources are emulated under the main XIVE object and share
969 * the same characteristics.
971 args[0] = 0;
972 if (!xive_source_esb_has_2page(xsrc)) {
973 args[0] |= SPAPR_XIVE_SRC_TRIGGER;
975 if (xsrc->esb_flags & XIVE_SRC_STORE_EOI) {
976 args[0] |= SPAPR_XIVE_SRC_STORE_EOI;
980 * Force the use of the H_INT_ESB hcall in case of an LSI
981 * interrupt. This is necessary under KVM to re-trigger the
982 * interrupt if the level is still asserted
984 if (xive_source_irq_is_lsi(xsrc, lisn)) {
985 args[0] |= SPAPR_XIVE_SRC_H_INT_ESB | SPAPR_XIVE_SRC_LSI;
988 if (!(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
989 args[1] = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn);
990 } else {
991 args[1] = -1;
994 if (xive_source_esb_has_2page(xsrc) &&
995 !(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
996 args[2] = xive->vc_base + xive_source_esb_page(xsrc, lisn);
997 } else {
998 args[2] = -1;
1001 if (xive_source_esb_has_2page(xsrc)) {
1002 args[3] = xsrc->esb_shift - 1;
1003 } else {
1004 args[3] = xsrc->esb_shift;
1007 return H_SUCCESS;
1011 * The H_INT_SET_SOURCE_CONFIG hcall() is used to assign a Logical
1012 * Interrupt Source to a target. The Logical Interrupt Source is
1013 * designated with the "lisn" parameter and the target is designated
1014 * with the "target" and "priority" parameters. Upon return from the
1015 * hcall(), no additional interrupts will be directed to the old EQ.
1017 * Parameters:
1018 * Input:
1019 * - R4: "flags"
1020 * Bits 0-61: Reserved
1021 * Bit 62: set the "eisn" in the EAS
1022 * Bit 63: masks the interrupt source in the hardware interrupt
1023 * control structure. An interrupt masked by this mechanism will
1024 * be dropped, but it's source state bits will still be
1025 * set. There is no race-free way of unmasking and restoring the
1026 * source. Thus this should only be used in interrupts that are
1027 * also masked at the source, and only in cases where the
1028 * interrupt is not meant to be used for a large amount of time
1029 * because no valid target exists for it for example
1030 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1031 * "ibm,xive-lisn-ranges" properties, or as returned by the
1032 * ibm,query-interrupt-source-number RTAS call, or as returned by
1033 * the H_ALLOCATE_VAS_WINDOW hcall
1034 * - R6: "target" is per "ibm,ppc-interrupt-server#s" or
1035 * "ibm,ppc-interrupt-gserver#s"
1036 * - R7: "priority" is a valid priority not in
1037 * "ibm,plat-res-int-priorities"
1038 * - R8: "eisn" is the guest EISN associated with the "lisn"
1040 * Output:
1041 * - None
1044 #define SPAPR_XIVE_SRC_SET_EISN PPC_BIT(62)
1045 #define SPAPR_XIVE_SRC_MASK PPC_BIT(63)
1047 static target_ulong h_int_set_source_config(PowerPCCPU *cpu,
1048 SpaprMachineState *spapr,
1049 target_ulong opcode,
1050 target_ulong *args)
1052 SpaprXive *xive = spapr->xive;
1053 XiveEAS eas, new_eas;
1054 target_ulong flags = args[0];
1055 target_ulong lisn = args[1];
1056 target_ulong target = args[2];
1057 target_ulong priority = args[3];
1058 target_ulong eisn = args[4];
1059 uint8_t end_blk;
1060 uint32_t end_idx;
1062 trace_spapr_xive_set_source_config(flags, lisn, target, priority, eisn);
1064 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1065 return H_FUNCTION;
1068 if (flags & ~(SPAPR_XIVE_SRC_SET_EISN | SPAPR_XIVE_SRC_MASK)) {
1069 return H_PARAMETER;
1072 if (lisn >= xive->nr_irqs) {
1073 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1074 lisn);
1075 return H_P2;
1078 eas = xive->eat[lisn];
1079 if (!xive_eas_is_valid(&eas)) {
1080 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1081 lisn);
1082 return H_P2;
1085 /* priority 0xff is used to reset the EAS */
1086 if (priority == 0xff) {
1087 new_eas.w = cpu_to_be64(EAS_VALID | EAS_MASKED);
1088 goto out;
1091 if (flags & SPAPR_XIVE_SRC_MASK) {
1092 new_eas.w = eas.w | cpu_to_be64(EAS_MASKED);
1093 } else {
1094 new_eas.w = eas.w & cpu_to_be64(~EAS_MASKED);
1097 if (spapr_xive_priority_is_reserved(xive, priority)) {
1098 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1099 " is reserved\n", priority);
1100 return H_P4;
1104 * Validate that "target" is part of the list of threads allocated
1105 * to the partition. For that, find the END corresponding to the
1106 * target.
1108 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1109 return H_P3;
1112 new_eas.w = xive_set_field64(EAS_END_BLOCK, new_eas.w, end_blk);
1113 new_eas.w = xive_set_field64(EAS_END_INDEX, new_eas.w, end_idx);
1115 if (flags & SPAPR_XIVE_SRC_SET_EISN) {
1116 new_eas.w = xive_set_field64(EAS_END_DATA, new_eas.w, eisn);
1119 if (spapr_xive_in_kernel(xive)) {
1120 Error *local_err = NULL;
1122 kvmppc_xive_set_source_config(xive, lisn, &new_eas, &local_err);
1123 if (local_err) {
1124 error_report_err(local_err);
1125 return H_HARDWARE;
1129 out:
1130 xive->eat[lisn] = new_eas;
1131 return H_SUCCESS;
1135 * The H_INT_GET_SOURCE_CONFIG hcall() is used to determine to which
1136 * target/priority pair is assigned to the specified Logical Interrupt
1137 * Source.
1139 * Parameters:
1140 * Input:
1141 * - R4: "flags"
1142 * Bits 0-63 Reserved
1143 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1144 * "ibm,xive-lisn-ranges" properties, or as returned by the
1145 * ibm,query-interrupt-source-number RTAS call, or as
1146 * returned by the H_ALLOCATE_VAS_WINDOW hcall
1148 * Output:
1149 * - R4: Target to which the specified Logical Interrupt Source is
1150 * assigned
1151 * - R5: Priority to which the specified Logical Interrupt Source is
1152 * assigned
1153 * - R6: EISN for the specified Logical Interrupt Source (this will be
1154 * equivalent to the LISN if not changed by H_INT_SET_SOURCE_CONFIG)
1156 static target_ulong h_int_get_source_config(PowerPCCPU *cpu,
1157 SpaprMachineState *spapr,
1158 target_ulong opcode,
1159 target_ulong *args)
1161 SpaprXive *xive = spapr->xive;
1162 target_ulong flags = args[0];
1163 target_ulong lisn = args[1];
1164 XiveEAS eas;
1165 XiveEND *end;
1166 uint8_t nvt_blk;
1167 uint32_t end_idx, nvt_idx;
1169 trace_spapr_xive_get_source_config(flags, lisn);
1171 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1172 return H_FUNCTION;
1175 if (flags) {
1176 return H_PARAMETER;
1179 if (lisn >= xive->nr_irqs) {
1180 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1181 lisn);
1182 return H_P2;
1185 eas = xive->eat[lisn];
1186 if (!xive_eas_is_valid(&eas)) {
1187 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1188 lisn);
1189 return H_P2;
1192 /* EAS_END_BLOCK is unused on sPAPR */
1193 end_idx = xive_get_field64(EAS_END_INDEX, eas.w);
1195 assert(end_idx < xive->nr_ends);
1196 end = &xive->endt[end_idx];
1198 nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
1199 nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
1200 args[0] = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
1202 if (xive_eas_is_masked(&eas)) {
1203 args[1] = 0xff;
1204 } else {
1205 args[1] = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
1208 args[2] = xive_get_field64(EAS_END_DATA, eas.w);
1210 return H_SUCCESS;
1214 * The H_INT_GET_QUEUE_INFO hcall() is used to get the logical real
1215 * address of the notification management page associated with the
1216 * specified target and priority.
1218 * Parameters:
1219 * Input:
1220 * - R4: "flags"
1221 * Bits 0-63 Reserved
1222 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1223 * "ibm,ppc-interrupt-gserver#s"
1224 * - R6: "priority" is a valid priority not in
1225 * "ibm,plat-res-int-priorities"
1227 * Output:
1228 * - R4: Logical real address of notification page
1229 * - R5: Power of 2 page size of the notification page
1231 static target_ulong h_int_get_queue_info(PowerPCCPU *cpu,
1232 SpaprMachineState *spapr,
1233 target_ulong opcode,
1234 target_ulong *args)
1236 SpaprXive *xive = spapr->xive;
1237 XiveENDSource *end_xsrc = &xive->end_source;
1238 target_ulong flags = args[0];
1239 target_ulong target = args[1];
1240 target_ulong priority = args[2];
1241 XiveEND *end;
1242 uint8_t end_blk;
1243 uint32_t end_idx;
1245 trace_spapr_xive_get_queue_info(flags, target, priority);
1247 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1248 return H_FUNCTION;
1251 if (flags) {
1252 return H_PARAMETER;
1256 * H_STATE should be returned if a H_INT_RESET is in progress.
1257 * This is not needed when running the emulation under QEMU
1260 if (spapr_xive_priority_is_reserved(xive, priority)) {
1261 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1262 " is reserved\n", priority);
1263 return H_P3;
1267 * Validate that "target" is part of the list of threads allocated
1268 * to the partition. For that, find the END corresponding to the
1269 * target.
1271 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1272 return H_P2;
1275 assert(end_idx < xive->nr_ends);
1276 end = &xive->endt[end_idx];
1278 args[0] = xive->end_base + (1ull << (end_xsrc->esb_shift + 1)) * end_idx;
1279 if (xive_end_is_enqueue(end)) {
1280 args[1] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
1281 } else {
1282 args[1] = 0;
1285 return H_SUCCESS;
1289 * The H_INT_SET_QUEUE_CONFIG hcall() is used to set or reset a EQ for
1290 * a given "target" and "priority". It is also used to set the
1291 * notification config associated with the EQ. An EQ size of 0 is
1292 * used to reset the EQ config for a given target and priority. If
1293 * resetting the EQ config, the END associated with the given "target"
1294 * and "priority" will be changed to disable queueing.
1296 * Upon return from the hcall(), no additional interrupts will be
1297 * directed to the old EQ (if one was set). The old EQ (if one was
1298 * set) should be investigated for interrupts that occurred prior to
1299 * or during the hcall().
1301 * Parameters:
1302 * Input:
1303 * - R4: "flags"
1304 * Bits 0-62: Reserved
1305 * Bit 63: Unconditional Notify (n) per the XIVE spec
1306 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1307 * "ibm,ppc-interrupt-gserver#s"
1308 * - R6: "priority" is a valid priority not in
1309 * "ibm,plat-res-int-priorities"
1310 * - R7: "eventQueue": The logical real address of the start of the EQ
1311 * - R8: "eventQueueSize": The power of 2 EQ size per "ibm,xive-eq-sizes"
1313 * Output:
1314 * - None
1317 #define SPAPR_XIVE_END_ALWAYS_NOTIFY PPC_BIT(63)
1319 static target_ulong h_int_set_queue_config(PowerPCCPU *cpu,
1320 SpaprMachineState *spapr,
1321 target_ulong opcode,
1322 target_ulong *args)
1324 SpaprXive *xive = spapr->xive;
1325 target_ulong flags = args[0];
1326 target_ulong target = args[1];
1327 target_ulong priority = args[2];
1328 target_ulong qpage = args[3];
1329 target_ulong qsize = args[4];
1330 XiveEND end;
1331 uint8_t end_blk, nvt_blk;
1332 uint32_t end_idx, nvt_idx;
1334 trace_spapr_xive_set_queue_config(flags, target, priority, qpage, qsize);
1336 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1337 return H_FUNCTION;
1340 if (flags & ~SPAPR_XIVE_END_ALWAYS_NOTIFY) {
1341 return H_PARAMETER;
1345 * H_STATE should be returned if a H_INT_RESET is in progress.
1346 * This is not needed when running the emulation under QEMU
1349 if (spapr_xive_priority_is_reserved(xive, priority)) {
1350 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1351 " is reserved\n", priority);
1352 return H_P3;
1356 * Validate that "target" is part of the list of threads allocated
1357 * to the partition. For that, find the END corresponding to the
1358 * target.
1361 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1362 return H_P2;
1365 assert(end_idx < xive->nr_ends);
1366 memcpy(&end, &xive->endt[end_idx], sizeof(XiveEND));
1368 switch (qsize) {
1369 case 12:
1370 case 16:
1371 case 21:
1372 case 24:
1373 if (!QEMU_IS_ALIGNED(qpage, 1ul << qsize)) {
1374 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: EQ @0x%" HWADDR_PRIx
1375 " is not naturally aligned with %" HWADDR_PRIx "\n",
1376 qpage, (hwaddr)1 << qsize);
1377 return H_P4;
1379 end.w2 = cpu_to_be32((qpage >> 32) & 0x0fffffff);
1380 end.w3 = cpu_to_be32(qpage & 0xffffffff);
1381 end.w0 |= cpu_to_be32(END_W0_ENQUEUE);
1382 end.w0 = xive_set_field32(END_W0_QSIZE, end.w0, qsize - 12);
1383 break;
1384 case 0:
1385 /* reset queue and disable queueing */
1386 spapr_xive_end_reset(&end);
1387 goto out;
1389 default:
1390 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid EQ size %"PRIx64"\n",
1391 qsize);
1392 return H_P5;
1395 if (qsize) {
1396 hwaddr plen = 1 << qsize;
1397 void *eq;
1400 * Validate the guest EQ. We should also check that the queue
1401 * has been zeroed by the OS.
1403 eq = address_space_map(CPU(cpu)->as, qpage, &plen, true,
1404 MEMTXATTRS_UNSPECIFIED);
1405 if (plen != 1 << qsize) {
1406 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to map EQ @0x%"
1407 HWADDR_PRIx "\n", qpage);
1408 return H_P4;
1410 address_space_unmap(CPU(cpu)->as, eq, plen, true, plen);
1413 /* "target" should have been validated above */
1414 if (spapr_xive_target_to_nvt(target, &nvt_blk, &nvt_idx)) {
1415 g_assert_not_reached();
1419 * Ensure the priority and target are correctly set (they will not
1420 * be right after allocation)
1422 end.w6 = xive_set_field32(END_W6_NVT_BLOCK, 0ul, nvt_blk) |
1423 xive_set_field32(END_W6_NVT_INDEX, 0ul, nvt_idx);
1424 end.w7 = xive_set_field32(END_W7_F0_PRIORITY, 0ul, priority);
1426 if (flags & SPAPR_XIVE_END_ALWAYS_NOTIFY) {
1427 end.w0 |= cpu_to_be32(END_W0_UCOND_NOTIFY);
1428 } else {
1429 end.w0 &= cpu_to_be32((uint32_t)~END_W0_UCOND_NOTIFY);
1433 * The generation bit for the END starts at 1 and The END page
1434 * offset counter starts at 0.
1436 end.w1 = cpu_to_be32(END_W1_GENERATION) |
1437 xive_set_field32(END_W1_PAGE_OFF, 0ul, 0ul);
1438 end.w0 |= cpu_to_be32(END_W0_VALID);
1441 * TODO: issue syncs required to ensure all in-flight interrupts
1442 * are complete on the old END
1445 out:
1446 if (spapr_xive_in_kernel(xive)) {
1447 Error *local_err = NULL;
1449 kvmppc_xive_set_queue_config(xive, end_blk, end_idx, &end, &local_err);
1450 if (local_err) {
1451 error_report_err(local_err);
1452 return H_HARDWARE;
1456 /* Update END */
1457 memcpy(&xive->endt[end_idx], &end, sizeof(XiveEND));
1458 return H_SUCCESS;
1462 * The H_INT_GET_QUEUE_CONFIG hcall() is used to get a EQ for a given
1463 * target and priority.
1465 * Parameters:
1466 * Input:
1467 * - R4: "flags"
1468 * Bits 0-62: Reserved
1469 * Bit 63: Debug: Return debug data
1470 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1471 * "ibm,ppc-interrupt-gserver#s"
1472 * - R6: "priority" is a valid priority not in
1473 * "ibm,plat-res-int-priorities"
1475 * Output:
1476 * - R4: "flags":
1477 * Bits 0-61: Reserved
1478 * Bit 62: The value of Event Queue Generation Number (g) per
1479 * the XIVE spec if "Debug" = 1
1480 * Bit 63: The value of Unconditional Notify (n) per the XIVE spec
1481 * - R5: The logical real address of the start of the EQ
1482 * - R6: The power of 2 EQ size per "ibm,xive-eq-sizes"
1483 * - R7: The value of Event Queue Offset Counter per XIVE spec
1484 * if "Debug" = 1, else 0
1488 #define SPAPR_XIVE_END_DEBUG PPC_BIT(63)
1490 static target_ulong h_int_get_queue_config(PowerPCCPU *cpu,
1491 SpaprMachineState *spapr,
1492 target_ulong opcode,
1493 target_ulong *args)
1495 SpaprXive *xive = spapr->xive;
1496 target_ulong flags = args[0];
1497 target_ulong target = args[1];
1498 target_ulong priority = args[2];
1499 XiveEND *end;
1500 uint8_t end_blk;
1501 uint32_t end_idx;
1503 trace_spapr_xive_get_queue_config(flags, target, priority);
1505 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1506 return H_FUNCTION;
1509 if (flags & ~SPAPR_XIVE_END_DEBUG) {
1510 return H_PARAMETER;
1514 * H_STATE should be returned if a H_INT_RESET is in progress.
1515 * This is not needed when running the emulation under QEMU
1518 if (spapr_xive_priority_is_reserved(xive, priority)) {
1519 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1520 " is reserved\n", priority);
1521 return H_P3;
1525 * Validate that "target" is part of the list of threads allocated
1526 * to the partition. For that, find the END corresponding to the
1527 * target.
1529 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1530 return H_P2;
1533 assert(end_idx < xive->nr_ends);
1534 end = &xive->endt[end_idx];
1536 args[0] = 0;
1537 if (xive_end_is_notify(end)) {
1538 args[0] |= SPAPR_XIVE_END_ALWAYS_NOTIFY;
1541 if (xive_end_is_enqueue(end)) {
1542 args[1] = xive_end_qaddr(end);
1543 args[2] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
1544 } else {
1545 args[1] = 0;
1546 args[2] = 0;
1549 if (spapr_xive_in_kernel(xive)) {
1550 Error *local_err = NULL;
1552 kvmppc_xive_get_queue_config(xive, end_blk, end_idx, end, &local_err);
1553 if (local_err) {
1554 error_report_err(local_err);
1555 return H_HARDWARE;
1559 /* TODO: do we need any locking on the END ? */
1560 if (flags & SPAPR_XIVE_END_DEBUG) {
1561 /* Load the event queue generation number into the return flags */
1562 args[0] |= (uint64_t)xive_get_field32(END_W1_GENERATION, end->w1) << 62;
1564 /* Load R7 with the event queue offset counter */
1565 args[3] = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1566 } else {
1567 args[3] = 0;
1570 return H_SUCCESS;
1574 * The H_INT_SET_OS_REPORTING_LINE hcall() is used to set the
1575 * reporting cache line pair for the calling thread. The reporting
1576 * cache lines will contain the OS interrupt context when the OS
1577 * issues a CI store byte to @TIMA+0xC10 to acknowledge the OS
1578 * interrupt. The reporting cache lines can be reset by inputting -1
1579 * in "reportingLine". Issuing the CI store byte without reporting
1580 * cache lines registered will result in the data not being accessible
1581 * to the OS.
1583 * Parameters:
1584 * Input:
1585 * - R4: "flags"
1586 * Bits 0-63: Reserved
1587 * - R5: "reportingLine": The logical real address of the reporting cache
1588 * line pair
1590 * Output:
1591 * - None
1593 static target_ulong h_int_set_os_reporting_line(PowerPCCPU *cpu,
1594 SpaprMachineState *spapr,
1595 target_ulong opcode,
1596 target_ulong *args)
1598 target_ulong flags = args[0];
1600 trace_spapr_xive_set_os_reporting_line(flags);
1602 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1603 return H_FUNCTION;
1607 * H_STATE should be returned if a H_INT_RESET is in progress.
1608 * This is not needed when running the emulation under QEMU
1611 /* TODO: H_INT_SET_OS_REPORTING_LINE */
1612 return H_FUNCTION;
1616 * The H_INT_GET_OS_REPORTING_LINE hcall() is used to get the logical
1617 * real address of the reporting cache line pair set for the input
1618 * "target". If no reporting cache line pair has been set, -1 is
1619 * returned.
1621 * Parameters:
1622 * Input:
1623 * - R4: "flags"
1624 * Bits 0-63: Reserved
1625 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1626 * "ibm,ppc-interrupt-gserver#s"
1627 * - R6: "reportingLine": The logical real address of the reporting
1628 * cache line pair
1630 * Output:
1631 * - R4: The logical real address of the reporting line if set, else -1
1633 static target_ulong h_int_get_os_reporting_line(PowerPCCPU *cpu,
1634 SpaprMachineState *spapr,
1635 target_ulong opcode,
1636 target_ulong *args)
1638 target_ulong flags = args[0];
1640 trace_spapr_xive_get_os_reporting_line(flags);
1642 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1643 return H_FUNCTION;
1647 * H_STATE should be returned if a H_INT_RESET is in progress.
1648 * This is not needed when running the emulation under QEMU
1651 /* TODO: H_INT_GET_OS_REPORTING_LINE */
1652 return H_FUNCTION;
1656 * The H_INT_ESB hcall() is used to issue a load or store to the ESB
1657 * page for the input "lisn". This hcall is only supported for LISNs
1658 * that have the ESB hcall flag set to 1 when returned from hcall()
1659 * H_INT_GET_SOURCE_INFO.
1661 * Parameters:
1662 * Input:
1663 * - R4: "flags"
1664 * Bits 0-62: Reserved
1665 * bit 63: Store: Store=1, store operation, else load operation
1666 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1667 * "ibm,xive-lisn-ranges" properties, or as returned by the
1668 * ibm,query-interrupt-source-number RTAS call, or as
1669 * returned by the H_ALLOCATE_VAS_WINDOW hcall
1670 * - R6: "esbOffset" is the offset into the ESB page for the load or
1671 * store operation
1672 * - R7: "storeData" is the data to write for a store operation
1674 * Output:
1675 * - R4: The value of the load if load operation, else -1
1678 #define SPAPR_XIVE_ESB_STORE PPC_BIT(63)
1680 static target_ulong h_int_esb(PowerPCCPU *cpu,
1681 SpaprMachineState *spapr,
1682 target_ulong opcode,
1683 target_ulong *args)
1685 SpaprXive *xive = spapr->xive;
1686 XiveEAS eas;
1687 target_ulong flags = args[0];
1688 target_ulong lisn = args[1];
1689 target_ulong offset = args[2];
1690 target_ulong data = args[3];
1691 hwaddr mmio_addr;
1692 XiveSource *xsrc = &xive->source;
1694 trace_spapr_xive_esb(flags, lisn, offset, data);
1696 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1697 return H_FUNCTION;
1700 if (flags & ~SPAPR_XIVE_ESB_STORE) {
1701 return H_PARAMETER;
1704 if (lisn >= xive->nr_irqs) {
1705 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1706 lisn);
1707 return H_P2;
1710 eas = xive->eat[lisn];
1711 if (!xive_eas_is_valid(&eas)) {
1712 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1713 lisn);
1714 return H_P2;
1717 if (offset > (1ull << xsrc->esb_shift)) {
1718 return H_P3;
1721 if (spapr_xive_in_kernel(xive)) {
1722 args[0] = kvmppc_xive_esb_rw(xsrc, lisn, offset, data,
1723 flags & SPAPR_XIVE_ESB_STORE);
1724 } else {
1725 mmio_addr = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn) + offset;
1727 if (dma_memory_rw(&address_space_memory, mmio_addr, &data, 8,
1728 (flags & SPAPR_XIVE_ESB_STORE),
1729 MEMTXATTRS_UNSPECIFIED)) {
1730 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to access ESB @0x%"
1731 HWADDR_PRIx "\n", mmio_addr);
1732 return H_HARDWARE;
1734 args[0] = (flags & SPAPR_XIVE_ESB_STORE) ? -1 : data;
1736 return H_SUCCESS;
1740 * The H_INT_SYNC hcall() is used to issue hardware syncs that will
1741 * ensure any in flight events for the input lisn are in the event
1742 * queue.
1744 * Parameters:
1745 * Input:
1746 * - R4: "flags"
1747 * Bits 0-63: Reserved
1748 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1749 * "ibm,xive-lisn-ranges" properties, or as returned by the
1750 * ibm,query-interrupt-source-number RTAS call, or as
1751 * returned by the H_ALLOCATE_VAS_WINDOW hcall
1753 * Output:
1754 * - None
1756 static target_ulong h_int_sync(PowerPCCPU *cpu,
1757 SpaprMachineState *spapr,
1758 target_ulong opcode,
1759 target_ulong *args)
1761 SpaprXive *xive = spapr->xive;
1762 XiveEAS eas;
1763 target_ulong flags = args[0];
1764 target_ulong lisn = args[1];
1766 trace_spapr_xive_sync(flags, lisn);
1768 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1769 return H_FUNCTION;
1772 if (flags) {
1773 return H_PARAMETER;
1776 if (lisn >= xive->nr_irqs) {
1777 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1778 lisn);
1779 return H_P2;
1782 eas = xive->eat[lisn];
1783 if (!xive_eas_is_valid(&eas)) {
1784 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1785 lisn);
1786 return H_P2;
1790 * H_STATE should be returned if a H_INT_RESET is in progress.
1791 * This is not needed when running the emulation under QEMU
1795 * This is not real hardware. Nothing to be done unless when
1796 * under KVM
1799 if (spapr_xive_in_kernel(xive)) {
1800 Error *local_err = NULL;
1802 kvmppc_xive_sync_source(xive, lisn, &local_err);
1803 if (local_err) {
1804 error_report_err(local_err);
1805 return H_HARDWARE;
1808 return H_SUCCESS;
1812 * The H_INT_RESET hcall() is used to reset all of the partition's
1813 * interrupt exploitation structures to their initial state. This
1814 * means losing all previously set interrupt state set via
1815 * H_INT_SET_SOURCE_CONFIG and H_INT_SET_QUEUE_CONFIG.
1817 * Parameters:
1818 * Input:
1819 * - R4: "flags"
1820 * Bits 0-63: Reserved
1822 * Output:
1823 * - None
1825 static target_ulong h_int_reset(PowerPCCPU *cpu,
1826 SpaprMachineState *spapr,
1827 target_ulong opcode,
1828 target_ulong *args)
1830 SpaprXive *xive = spapr->xive;
1831 target_ulong flags = args[0];
1833 trace_spapr_xive_reset(flags);
1835 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1836 return H_FUNCTION;
1839 if (flags) {
1840 return H_PARAMETER;
1843 device_cold_reset(DEVICE(xive));
1845 if (spapr_xive_in_kernel(xive)) {
1846 Error *local_err = NULL;
1848 kvmppc_xive_reset(xive, &local_err);
1849 if (local_err) {
1850 error_report_err(local_err);
1851 return H_HARDWARE;
1854 return H_SUCCESS;
1857 void spapr_xive_hcall_init(SpaprMachineState *spapr)
1859 spapr_register_hypercall(H_INT_GET_SOURCE_INFO, h_int_get_source_info);
1860 spapr_register_hypercall(H_INT_SET_SOURCE_CONFIG, h_int_set_source_config);
1861 spapr_register_hypercall(H_INT_GET_SOURCE_CONFIG, h_int_get_source_config);
1862 spapr_register_hypercall(H_INT_GET_QUEUE_INFO, h_int_get_queue_info);
1863 spapr_register_hypercall(H_INT_SET_QUEUE_CONFIG, h_int_set_queue_config);
1864 spapr_register_hypercall(H_INT_GET_QUEUE_CONFIG, h_int_get_queue_config);
1865 spapr_register_hypercall(H_INT_SET_OS_REPORTING_LINE,
1866 h_int_set_os_reporting_line);
1867 spapr_register_hypercall(H_INT_GET_OS_REPORTING_LINE,
1868 h_int_get_os_reporting_line);
1869 spapr_register_hypercall(H_INT_ESB, h_int_esb);
1870 spapr_register_hypercall(H_INT_SYNC, h_int_sync);
1871 spapr_register_hypercall(H_INT_RESET, h_int_reset);