4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
24 #include "qemu/cutils.h"
26 #include "exec/exec-all.h"
27 #include "exec/target_page.h"
29 #include "hw/qdev-core.h"
30 #include "hw/qdev-properties.h"
31 #if !defined(CONFIG_USER_ONLY)
32 #include "hw/boards.h"
33 #include "hw/xen/xen.h"
35 #include "sysemu/kvm.h"
36 #include "sysemu/sysemu.h"
37 #include "qemu/timer.h"
38 #include "qemu/config-file.h"
39 #include "qemu/error-report.h"
40 #if defined(CONFIG_USER_ONLY)
42 #else /* !CONFIG_USER_ONLY */
44 #include "exec/memory.h"
45 #include "exec/ioport.h"
46 #include "sysemu/dma.h"
47 #include "sysemu/numa.h"
48 #include "sysemu/hw_accel.h"
49 #include "exec/address-spaces.h"
50 #include "sysemu/xen-mapcache.h"
51 #include "trace-root.h"
53 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
55 #include <linux/falloc.h>
59 #include "qemu/rcu_queue.h"
60 #include "qemu/main-loop.h"
61 #include "translate-all.h"
62 #include "sysemu/replay.h"
64 #include "exec/memory-internal.h"
65 #include "exec/ram_addr.h"
68 #include "migration/vmstate.h"
70 #include "qemu/range.h"
72 #include "qemu/mmap-alloc.h"
75 #include "monitor/monitor.h"
77 //#define DEBUG_SUBPAGE
79 #if !defined(CONFIG_USER_ONLY)
80 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
81 * are protected by the ramlist lock.
83 RAMList ram_list
= { .blocks
= QLIST_HEAD_INITIALIZER(ram_list
.blocks
) };
85 static MemoryRegion
*system_memory
;
86 static MemoryRegion
*system_io
;
88 AddressSpace address_space_io
;
89 AddressSpace address_space_memory
;
91 MemoryRegion io_mem_rom
, io_mem_notdirty
;
92 static MemoryRegion io_mem_unassigned
;
94 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
95 #define RAM_PREALLOC (1 << 0)
97 /* RAM is mmap-ed with MAP_SHARED */
98 #define RAM_SHARED (1 << 1)
100 /* Only a portion of RAM (used_length) is actually used, and migrated.
101 * This used_length size can change across reboots.
103 #define RAM_RESIZEABLE (1 << 2)
107 #ifdef TARGET_PAGE_BITS_VARY
108 int target_page_bits
;
109 bool target_page_bits_decided
;
112 struct CPUTailQ cpus
= QTAILQ_HEAD_INITIALIZER(cpus
);
113 /* current CPU in the current thread. It is only valid inside
115 __thread CPUState
*current_cpu
;
116 /* 0 = Do not count executed instructions.
117 1 = Precise instruction counting.
118 2 = Adaptive rate instruction counting. */
121 uintptr_t qemu_host_page_size
;
122 intptr_t qemu_host_page_mask
;
123 uintptr_t qemu_real_host_page_size
;
124 intptr_t qemu_real_host_page_mask
;
126 bool set_preferred_target_page_bits(int bits
)
128 /* The target page size is the lowest common denominator for all
129 * the CPUs in the system, so we can only make it smaller, never
130 * larger. And we can't make it smaller once we've committed to
133 #ifdef TARGET_PAGE_BITS_VARY
134 assert(bits
>= TARGET_PAGE_BITS_MIN
);
135 if (target_page_bits
== 0 || target_page_bits
> bits
) {
136 if (target_page_bits_decided
) {
139 target_page_bits
= bits
;
145 #if !defined(CONFIG_USER_ONLY)
147 static void finalize_target_page_bits(void)
149 #ifdef TARGET_PAGE_BITS_VARY
150 if (target_page_bits
== 0) {
151 target_page_bits
= TARGET_PAGE_BITS_MIN
;
153 target_page_bits_decided
= true;
157 typedef struct PhysPageEntry PhysPageEntry
;
159 struct PhysPageEntry
{
160 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
162 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
166 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
168 /* Size of the L2 (and L3, etc) page tables. */
169 #define ADDR_SPACE_BITS 64
172 #define P_L2_SIZE (1 << P_L2_BITS)
174 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
176 typedef PhysPageEntry Node
[P_L2_SIZE
];
178 typedef struct PhysPageMap
{
181 unsigned sections_nb
;
182 unsigned sections_nb_alloc
;
184 unsigned nodes_nb_alloc
;
186 MemoryRegionSection
*sections
;
189 struct AddressSpaceDispatch
{
190 MemoryRegionSection
*mru_section
;
191 /* This is a multi-level map on the physical address space.
192 * The bottom level has pointers to MemoryRegionSections.
194 PhysPageEntry phys_map
;
198 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
199 typedef struct subpage_t
{
203 uint16_t sub_section
[];
206 #define PHYS_SECTION_UNASSIGNED 0
207 #define PHYS_SECTION_NOTDIRTY 1
208 #define PHYS_SECTION_ROM 2
209 #define PHYS_SECTION_WATCH 3
211 static void io_mem_init(void);
212 static void memory_map_init(void);
213 static void tcg_commit(MemoryListener
*listener
);
215 static MemoryRegion io_mem_watch
;
218 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
219 * @cpu: the CPU whose AddressSpace this is
220 * @as: the AddressSpace itself
221 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
222 * @tcg_as_listener: listener for tracking changes to the AddressSpace
224 struct CPUAddressSpace
{
227 struct AddressSpaceDispatch
*memory_dispatch
;
228 MemoryListener tcg_as_listener
;
231 struct DirtyBitmapSnapshot
{
234 unsigned long dirty
[];
239 #if !defined(CONFIG_USER_ONLY)
241 static void phys_map_node_reserve(PhysPageMap
*map
, unsigned nodes
)
243 static unsigned alloc_hint
= 16;
244 if (map
->nodes_nb
+ nodes
> map
->nodes_nb_alloc
) {
245 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, alloc_hint
);
246 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, map
->nodes_nb
+ nodes
);
247 map
->nodes
= g_renew(Node
, map
->nodes
, map
->nodes_nb_alloc
);
248 alloc_hint
= map
->nodes_nb_alloc
;
252 static uint32_t phys_map_node_alloc(PhysPageMap
*map
, bool leaf
)
259 ret
= map
->nodes_nb
++;
261 assert(ret
!= PHYS_MAP_NODE_NIL
);
262 assert(ret
!= map
->nodes_nb_alloc
);
264 e
.skip
= leaf
? 0 : 1;
265 e
.ptr
= leaf
? PHYS_SECTION_UNASSIGNED
: PHYS_MAP_NODE_NIL
;
266 for (i
= 0; i
< P_L2_SIZE
; ++i
) {
267 memcpy(&p
[i
], &e
, sizeof(e
));
272 static void phys_page_set_level(PhysPageMap
*map
, PhysPageEntry
*lp
,
273 hwaddr
*index
, hwaddr
*nb
, uint16_t leaf
,
277 hwaddr step
= (hwaddr
)1 << (level
* P_L2_BITS
);
279 if (lp
->skip
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
280 lp
->ptr
= phys_map_node_alloc(map
, level
== 0);
282 p
= map
->nodes
[lp
->ptr
];
283 lp
= &p
[(*index
>> (level
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
285 while (*nb
&& lp
< &p
[P_L2_SIZE
]) {
286 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
292 phys_page_set_level(map
, lp
, index
, nb
, leaf
, level
- 1);
298 static void phys_page_set(AddressSpaceDispatch
*d
,
299 hwaddr index
, hwaddr nb
,
302 /* Wildly overreserve - it doesn't matter much. */
303 phys_map_node_reserve(&d
->map
, 3 * P_L2_LEVELS
);
305 phys_page_set_level(&d
->map
, &d
->phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
308 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
309 * and update our entry so we can skip it and go directly to the destination.
311 static void phys_page_compact(PhysPageEntry
*lp
, Node
*nodes
)
313 unsigned valid_ptr
= P_L2_SIZE
;
318 if (lp
->ptr
== PHYS_MAP_NODE_NIL
) {
323 for (i
= 0; i
< P_L2_SIZE
; i
++) {
324 if (p
[i
].ptr
== PHYS_MAP_NODE_NIL
) {
331 phys_page_compact(&p
[i
], nodes
);
335 /* We can only compress if there's only one child. */
340 assert(valid_ptr
< P_L2_SIZE
);
342 /* Don't compress if it won't fit in the # of bits we have. */
343 if (lp
->skip
+ p
[valid_ptr
].skip
>= (1 << 3)) {
347 lp
->ptr
= p
[valid_ptr
].ptr
;
348 if (!p
[valid_ptr
].skip
) {
349 /* If our only child is a leaf, make this a leaf. */
350 /* By design, we should have made this node a leaf to begin with so we
351 * should never reach here.
352 * But since it's so simple to handle this, let's do it just in case we
357 lp
->skip
+= p
[valid_ptr
].skip
;
361 void address_space_dispatch_compact(AddressSpaceDispatch
*d
)
363 if (d
->phys_map
.skip
) {
364 phys_page_compact(&d
->phys_map
, d
->map
.nodes
);
368 static inline bool section_covers_addr(const MemoryRegionSection
*section
,
371 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
372 * the section must cover the entire address space.
374 return int128_gethi(section
->size
) ||
375 range_covers_byte(section
->offset_within_address_space
,
376 int128_getlo(section
->size
), addr
);
379 static MemoryRegionSection
*phys_page_find(AddressSpaceDispatch
*d
, hwaddr addr
)
381 PhysPageEntry lp
= d
->phys_map
, *p
;
382 Node
*nodes
= d
->map
.nodes
;
383 MemoryRegionSection
*sections
= d
->map
.sections
;
384 hwaddr index
= addr
>> TARGET_PAGE_BITS
;
387 for (i
= P_L2_LEVELS
; lp
.skip
&& (i
-= lp
.skip
) >= 0;) {
388 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
389 return §ions
[PHYS_SECTION_UNASSIGNED
];
392 lp
= p
[(index
>> (i
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
395 if (section_covers_addr(§ions
[lp
.ptr
], addr
)) {
396 return §ions
[lp
.ptr
];
398 return §ions
[PHYS_SECTION_UNASSIGNED
];
402 bool memory_region_is_unassigned(MemoryRegion
*mr
)
404 return mr
!= &io_mem_rom
&& mr
!= &io_mem_notdirty
&& !mr
->rom_device
405 && mr
!= &io_mem_watch
;
408 /* Called from RCU critical section */
409 static MemoryRegionSection
*address_space_lookup_region(AddressSpaceDispatch
*d
,
411 bool resolve_subpage
)
413 MemoryRegionSection
*section
= atomic_read(&d
->mru_section
);
417 if (section
&& section
!= &d
->map
.sections
[PHYS_SECTION_UNASSIGNED
] &&
418 section_covers_addr(section
, addr
)) {
421 section
= phys_page_find(d
, addr
);
424 if (resolve_subpage
&& section
->mr
->subpage
) {
425 subpage
= container_of(section
->mr
, subpage_t
, iomem
);
426 section
= &d
->map
.sections
[subpage
->sub_section
[SUBPAGE_IDX(addr
)]];
429 atomic_set(&d
->mru_section
, section
);
434 /* Called from RCU critical section */
435 static MemoryRegionSection
*
436 address_space_translate_internal(AddressSpaceDispatch
*d
, hwaddr addr
, hwaddr
*xlat
,
437 hwaddr
*plen
, bool resolve_subpage
)
439 MemoryRegionSection
*section
;
443 section
= address_space_lookup_region(d
, addr
, resolve_subpage
);
444 /* Compute offset within MemoryRegionSection */
445 addr
-= section
->offset_within_address_space
;
447 /* Compute offset within MemoryRegion */
448 *xlat
= addr
+ section
->offset_within_region
;
452 /* MMIO registers can be expected to perform full-width accesses based only
453 * on their address, without considering adjacent registers that could
454 * decode to completely different MemoryRegions. When such registers
455 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
456 * regions overlap wildly. For this reason we cannot clamp the accesses
459 * If the length is small (as is the case for address_space_ldl/stl),
460 * everything works fine. If the incoming length is large, however,
461 * the caller really has to do the clamping through memory_access_size.
463 if (memory_region_is_ram(mr
)) {
464 diff
= int128_sub(section
->size
, int128_make64(addr
));
465 *plen
= int128_get64(int128_min(diff
, int128_make64(*plen
)));
470 /* Called from RCU critical section */
471 static MemoryRegionSection
flatview_do_translate(FlatView
*fv
,
477 AddressSpace
**target_as
)
480 MemoryRegionSection
*section
;
481 IOMMUMemoryRegion
*iommu_mr
;
482 IOMMUMemoryRegionClass
*imrc
;
485 section
= address_space_translate_internal(
486 flatview_to_dispatch(fv
), addr
, &addr
,
489 iommu_mr
= memory_region_get_iommu(section
->mr
);
493 imrc
= memory_region_get_iommu_class_nocheck(iommu_mr
);
495 iotlb
= imrc
->translate(iommu_mr
, addr
, is_write
?
496 IOMMU_WO
: IOMMU_RO
);
497 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
498 | (addr
& iotlb
.addr_mask
));
499 *plen
= MIN(*plen
, (addr
| iotlb
.addr_mask
) - addr
+ 1);
500 if (!(iotlb
.perm
& (1 << is_write
))) {
504 fv
= address_space_to_flatview(iotlb
.target_as
);
505 *target_as
= iotlb
.target_as
;
513 return (MemoryRegionSection
) { .mr
= &io_mem_unassigned
};
516 /* Called from RCU critical section */
517 IOMMUTLBEntry
address_space_get_iotlb_entry(AddressSpace
*as
, hwaddr addr
,
520 MemoryRegionSection section
;
523 /* Try to get maximum page mask during translation. */
526 /* This can never be MMIO. */
527 section
= flatview_do_translate(address_space_to_flatview(as
), addr
,
528 &xlat
, &plen
, is_write
, false, &as
);
530 /* Illegal translation */
531 if (section
.mr
== &io_mem_unassigned
) {
535 /* Convert memory region offset into address space offset */
536 xlat
+= section
.offset_within_address_space
-
537 section
.offset_within_region
;
539 if (plen
== (hwaddr
)-1) {
541 * We use default page size here. Logically it only happens
542 * for identity mappings.
544 plen
= TARGET_PAGE_SIZE
;
547 /* Convert to address mask */
550 return (IOMMUTLBEntry
) {
552 .iova
= addr
& ~plen
,
553 .translated_addr
= xlat
& ~plen
,
555 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
560 return (IOMMUTLBEntry
) {0};
563 /* Called from RCU critical section */
564 MemoryRegion
*flatview_translate(FlatView
*fv
, hwaddr addr
, hwaddr
*xlat
,
565 hwaddr
*plen
, bool is_write
)
568 MemoryRegionSection section
;
569 AddressSpace
*as
= NULL
;
571 /* This can be MMIO, so setup MMIO bit. */
572 section
= flatview_do_translate(fv
, addr
, xlat
, plen
, is_write
, true, &as
);
575 if (xen_enabled() && memory_access_is_direct(mr
, is_write
)) {
576 hwaddr page
= ((addr
& TARGET_PAGE_MASK
) + TARGET_PAGE_SIZE
) - addr
;
577 *plen
= MIN(page
, *plen
);
583 /* Called from RCU critical section */
584 MemoryRegionSection
*
585 address_space_translate_for_iotlb(CPUState
*cpu
, int asidx
, hwaddr addr
,
586 hwaddr
*xlat
, hwaddr
*plen
)
588 MemoryRegionSection
*section
;
589 AddressSpaceDispatch
*d
= atomic_rcu_read(&cpu
->cpu_ases
[asidx
].memory_dispatch
);
591 section
= address_space_translate_internal(d
, addr
, xlat
, plen
, false);
593 assert(!memory_region_is_iommu(section
->mr
));
598 #if !defined(CONFIG_USER_ONLY)
600 static int cpu_common_post_load(void *opaque
, int version_id
)
602 CPUState
*cpu
= opaque
;
604 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
605 version_id is increased. */
606 cpu
->interrupt_request
&= ~0x01;
612 static int cpu_common_pre_load(void *opaque
)
614 CPUState
*cpu
= opaque
;
616 cpu
->exception_index
= -1;
621 static bool cpu_common_exception_index_needed(void *opaque
)
623 CPUState
*cpu
= opaque
;
625 return tcg_enabled() && cpu
->exception_index
!= -1;
628 static const VMStateDescription vmstate_cpu_common_exception_index
= {
629 .name
= "cpu_common/exception_index",
631 .minimum_version_id
= 1,
632 .needed
= cpu_common_exception_index_needed
,
633 .fields
= (VMStateField
[]) {
634 VMSTATE_INT32(exception_index
, CPUState
),
635 VMSTATE_END_OF_LIST()
639 static bool cpu_common_crash_occurred_needed(void *opaque
)
641 CPUState
*cpu
= opaque
;
643 return cpu
->crash_occurred
;
646 static const VMStateDescription vmstate_cpu_common_crash_occurred
= {
647 .name
= "cpu_common/crash_occurred",
649 .minimum_version_id
= 1,
650 .needed
= cpu_common_crash_occurred_needed
,
651 .fields
= (VMStateField
[]) {
652 VMSTATE_BOOL(crash_occurred
, CPUState
),
653 VMSTATE_END_OF_LIST()
657 const VMStateDescription vmstate_cpu_common
= {
658 .name
= "cpu_common",
660 .minimum_version_id
= 1,
661 .pre_load
= cpu_common_pre_load
,
662 .post_load
= cpu_common_post_load
,
663 .fields
= (VMStateField
[]) {
664 VMSTATE_UINT32(halted
, CPUState
),
665 VMSTATE_UINT32(interrupt_request
, CPUState
),
666 VMSTATE_END_OF_LIST()
668 .subsections
= (const VMStateDescription
*[]) {
669 &vmstate_cpu_common_exception_index
,
670 &vmstate_cpu_common_crash_occurred
,
677 CPUState
*qemu_get_cpu(int index
)
682 if (cpu
->cpu_index
== index
) {
690 #if !defined(CONFIG_USER_ONLY)
691 void cpu_address_space_init(CPUState
*cpu
, AddressSpace
*as
, int asidx
)
693 CPUAddressSpace
*newas
;
695 /* Target code should have set num_ases before calling us */
696 assert(asidx
< cpu
->num_ases
);
699 /* address space 0 gets the convenience alias */
703 /* KVM cannot currently support multiple address spaces. */
704 assert(asidx
== 0 || !kvm_enabled());
706 if (!cpu
->cpu_ases
) {
707 cpu
->cpu_ases
= g_new0(CPUAddressSpace
, cpu
->num_ases
);
710 newas
= &cpu
->cpu_ases
[asidx
];
714 newas
->tcg_as_listener
.commit
= tcg_commit
;
715 memory_listener_register(&newas
->tcg_as_listener
, as
);
719 AddressSpace
*cpu_get_address_space(CPUState
*cpu
, int asidx
)
721 /* Return the AddressSpace corresponding to the specified index */
722 return cpu
->cpu_ases
[asidx
].as
;
726 void cpu_exec_unrealizefn(CPUState
*cpu
)
728 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
730 cpu_list_remove(cpu
);
732 if (cc
->vmsd
!= NULL
) {
733 vmstate_unregister(NULL
, cc
->vmsd
, cpu
);
735 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
736 vmstate_unregister(NULL
, &vmstate_cpu_common
, cpu
);
740 Property cpu_common_props
[] = {
741 #ifndef CONFIG_USER_ONLY
742 /* Create a memory property for softmmu CPU object,
743 * so users can wire up its memory. (This can't go in qom/cpu.c
744 * because that file is compiled only once for both user-mode
745 * and system builds.) The default if no link is set up is to use
746 * the system address space.
748 DEFINE_PROP_LINK("memory", CPUState
, memory
, TYPE_MEMORY_REGION
,
751 DEFINE_PROP_END_OF_LIST(),
754 void cpu_exec_initfn(CPUState
*cpu
)
759 #ifndef CONFIG_USER_ONLY
760 cpu
->thread_id
= qemu_get_thread_id();
761 cpu
->memory
= system_memory
;
762 object_ref(OBJECT(cpu
->memory
));
766 void cpu_exec_realizefn(CPUState
*cpu
, Error
**errp
)
768 CPUClass
*cc ATTRIBUTE_UNUSED
= CPU_GET_CLASS(cpu
);
772 #ifndef CONFIG_USER_ONLY
773 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
774 vmstate_register(NULL
, cpu
->cpu_index
, &vmstate_cpu_common
, cpu
);
776 if (cc
->vmsd
!= NULL
) {
777 vmstate_register(NULL
, cpu
->cpu_index
, cc
->vmsd
, cpu
);
782 #if defined(CONFIG_USER_ONLY)
783 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
787 tb_invalidate_phys_page_range(pc
, pc
+ 1, 0);
792 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
795 hwaddr phys
= cpu_get_phys_page_attrs_debug(cpu
, pc
, &attrs
);
796 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
798 /* Locks grabbed by tb_invalidate_phys_addr */
799 tb_invalidate_phys_addr(cpu
->cpu_ases
[asidx
].as
,
800 phys
| (pc
& ~TARGET_PAGE_MASK
));
805 #if defined(CONFIG_USER_ONLY)
806 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
811 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
817 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
821 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
822 int flags
, CPUWatchpoint
**watchpoint
)
827 /* Add a watchpoint. */
828 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
829 int flags
, CPUWatchpoint
**watchpoint
)
833 /* forbid ranges which are empty or run off the end of the address space */
834 if (len
== 0 || (addr
+ len
- 1) < addr
) {
835 error_report("tried to set invalid watchpoint at %"
836 VADDR_PRIx
", len=%" VADDR_PRIu
, addr
, len
);
839 wp
= g_malloc(sizeof(*wp
));
845 /* keep all GDB-injected watchpoints in front */
846 if (flags
& BP_GDB
) {
847 QTAILQ_INSERT_HEAD(&cpu
->watchpoints
, wp
, entry
);
849 QTAILQ_INSERT_TAIL(&cpu
->watchpoints
, wp
, entry
);
852 tlb_flush_page(cpu
, addr
);
859 /* Remove a specific watchpoint. */
860 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
865 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
866 if (addr
== wp
->vaddr
&& len
== wp
->len
867 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
868 cpu_watchpoint_remove_by_ref(cpu
, wp
);
875 /* Remove a specific watchpoint by reference. */
876 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
878 QTAILQ_REMOVE(&cpu
->watchpoints
, watchpoint
, entry
);
880 tlb_flush_page(cpu
, watchpoint
->vaddr
);
885 /* Remove all matching watchpoints. */
886 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
888 CPUWatchpoint
*wp
, *next
;
890 QTAILQ_FOREACH_SAFE(wp
, &cpu
->watchpoints
, entry
, next
) {
891 if (wp
->flags
& mask
) {
892 cpu_watchpoint_remove_by_ref(cpu
, wp
);
897 /* Return true if this watchpoint address matches the specified
898 * access (ie the address range covered by the watchpoint overlaps
899 * partially or completely with the address range covered by the
902 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint
*wp
,
906 /* We know the lengths are non-zero, but a little caution is
907 * required to avoid errors in the case where the range ends
908 * exactly at the top of the address space and so addr + len
909 * wraps round to zero.
911 vaddr wpend
= wp
->vaddr
+ wp
->len
- 1;
912 vaddr addrend
= addr
+ len
- 1;
914 return !(addr
> wpend
|| wp
->vaddr
> addrend
);
919 /* Add a breakpoint. */
920 int cpu_breakpoint_insert(CPUState
*cpu
, vaddr pc
, int flags
,
921 CPUBreakpoint
**breakpoint
)
925 bp
= g_malloc(sizeof(*bp
));
930 /* keep all GDB-injected breakpoints in front */
931 if (flags
& BP_GDB
) {
932 QTAILQ_INSERT_HEAD(&cpu
->breakpoints
, bp
, entry
);
934 QTAILQ_INSERT_TAIL(&cpu
->breakpoints
, bp
, entry
);
937 breakpoint_invalidate(cpu
, pc
);
945 /* Remove a specific breakpoint. */
946 int cpu_breakpoint_remove(CPUState
*cpu
, vaddr pc
, int flags
)
950 QTAILQ_FOREACH(bp
, &cpu
->breakpoints
, entry
) {
951 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
952 cpu_breakpoint_remove_by_ref(cpu
, bp
);
959 /* Remove a specific breakpoint by reference. */
960 void cpu_breakpoint_remove_by_ref(CPUState
*cpu
, CPUBreakpoint
*breakpoint
)
962 QTAILQ_REMOVE(&cpu
->breakpoints
, breakpoint
, entry
);
964 breakpoint_invalidate(cpu
, breakpoint
->pc
);
969 /* Remove all matching breakpoints. */
970 void cpu_breakpoint_remove_all(CPUState
*cpu
, int mask
)
972 CPUBreakpoint
*bp
, *next
;
974 QTAILQ_FOREACH_SAFE(bp
, &cpu
->breakpoints
, entry
, next
) {
975 if (bp
->flags
& mask
) {
976 cpu_breakpoint_remove_by_ref(cpu
, bp
);
981 /* enable or disable single step mode. EXCP_DEBUG is returned by the
982 CPU loop after each instruction */
983 void cpu_single_step(CPUState
*cpu
, int enabled
)
985 if (cpu
->singlestep_enabled
!= enabled
) {
986 cpu
->singlestep_enabled
= enabled
;
988 kvm_update_guest_debug(cpu
, 0);
990 /* must flush all the translated code to avoid inconsistencies */
991 /* XXX: only flush what is necessary */
997 void cpu_abort(CPUState
*cpu
, const char *fmt
, ...)
1004 fprintf(stderr
, "qemu: fatal: ");
1005 vfprintf(stderr
, fmt
, ap
);
1006 fprintf(stderr
, "\n");
1007 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
1008 if (qemu_log_separate()) {
1010 qemu_log("qemu: fatal: ");
1011 qemu_log_vprintf(fmt
, ap2
);
1013 log_cpu_state(cpu
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
1021 #if defined(CONFIG_USER_ONLY)
1023 struct sigaction act
;
1024 sigfillset(&act
.sa_mask
);
1025 act
.sa_handler
= SIG_DFL
;
1026 sigaction(SIGABRT
, &act
, NULL
);
1032 #if !defined(CONFIG_USER_ONLY)
1033 /* Called from RCU critical section */
1034 static RAMBlock
*qemu_get_ram_block(ram_addr_t addr
)
1038 block
= atomic_rcu_read(&ram_list
.mru_block
);
1039 if (block
&& addr
- block
->offset
< block
->max_length
) {
1042 RAMBLOCK_FOREACH(block
) {
1043 if (addr
- block
->offset
< block
->max_length
) {
1048 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
1052 /* It is safe to write mru_block outside the iothread lock. This
1057 * xxx removed from list
1061 * call_rcu(reclaim_ramblock, xxx);
1064 * atomic_rcu_set is not needed here. The block was already published
1065 * when it was placed into the list. Here we're just making an extra
1066 * copy of the pointer.
1068 ram_list
.mru_block
= block
;
1072 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t length
)
1079 end
= TARGET_PAGE_ALIGN(start
+ length
);
1080 start
&= TARGET_PAGE_MASK
;
1083 block
= qemu_get_ram_block(start
);
1084 assert(block
== qemu_get_ram_block(end
- 1));
1085 start1
= (uintptr_t)ramblock_ptr(block
, start
- block
->offset
);
1087 tlb_reset_dirty(cpu
, start1
, length
);
1092 /* Note: start and end must be within the same ram block. */
1093 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start
,
1097 DirtyMemoryBlocks
*blocks
;
1098 unsigned long end
, page
;
1105 end
= TARGET_PAGE_ALIGN(start
+ length
) >> TARGET_PAGE_BITS
;
1106 page
= start
>> TARGET_PAGE_BITS
;
1110 blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[client
]);
1112 while (page
< end
) {
1113 unsigned long idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
1114 unsigned long offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
1115 unsigned long num
= MIN(end
- page
, DIRTY_MEMORY_BLOCK_SIZE
- offset
);
1117 dirty
|= bitmap_test_and_clear_atomic(blocks
->blocks
[idx
],
1124 if (dirty
&& tcg_enabled()) {
1125 tlb_reset_dirty_range_all(start
, length
);
1131 DirtyBitmapSnapshot
*cpu_physical_memory_snapshot_and_clear_dirty
1132 (ram_addr_t start
, ram_addr_t length
, unsigned client
)
1134 DirtyMemoryBlocks
*blocks
;
1135 unsigned long align
= 1UL << (TARGET_PAGE_BITS
+ BITS_PER_LEVEL
);
1136 ram_addr_t first
= QEMU_ALIGN_DOWN(start
, align
);
1137 ram_addr_t last
= QEMU_ALIGN_UP(start
+ length
, align
);
1138 DirtyBitmapSnapshot
*snap
;
1139 unsigned long page
, end
, dest
;
1141 snap
= g_malloc0(sizeof(*snap
) +
1142 ((last
- first
) >> (TARGET_PAGE_BITS
+ 3)));
1143 snap
->start
= first
;
1146 page
= first
>> TARGET_PAGE_BITS
;
1147 end
= last
>> TARGET_PAGE_BITS
;
1152 blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[client
]);
1154 while (page
< end
) {
1155 unsigned long idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
1156 unsigned long offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
1157 unsigned long num
= MIN(end
- page
, DIRTY_MEMORY_BLOCK_SIZE
- offset
);
1159 assert(QEMU_IS_ALIGNED(offset
, (1 << BITS_PER_LEVEL
)));
1160 assert(QEMU_IS_ALIGNED(num
, (1 << BITS_PER_LEVEL
)));
1161 offset
>>= BITS_PER_LEVEL
;
1163 bitmap_copy_and_clear_atomic(snap
->dirty
+ dest
,
1164 blocks
->blocks
[idx
] + offset
,
1167 dest
+= num
>> BITS_PER_LEVEL
;
1172 if (tcg_enabled()) {
1173 tlb_reset_dirty_range_all(start
, length
);
1179 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot
*snap
,
1183 unsigned long page
, end
;
1185 assert(start
>= snap
->start
);
1186 assert(start
+ length
<= snap
->end
);
1188 end
= TARGET_PAGE_ALIGN(start
+ length
- snap
->start
) >> TARGET_PAGE_BITS
;
1189 page
= (start
- snap
->start
) >> TARGET_PAGE_BITS
;
1191 while (page
< end
) {
1192 if (test_bit(page
, snap
->dirty
)) {
1200 /* Called from RCU critical section */
1201 hwaddr
memory_region_section_get_iotlb(CPUState
*cpu
,
1202 MemoryRegionSection
*section
,
1204 hwaddr paddr
, hwaddr xlat
,
1206 target_ulong
*address
)
1211 if (memory_region_is_ram(section
->mr
)) {
1213 iotlb
= memory_region_get_ram_addr(section
->mr
) + xlat
;
1214 if (!section
->readonly
) {
1215 iotlb
|= PHYS_SECTION_NOTDIRTY
;
1217 iotlb
|= PHYS_SECTION_ROM
;
1220 AddressSpaceDispatch
*d
;
1222 d
= flatview_to_dispatch(section
->fv
);
1223 iotlb
= section
- d
->map
.sections
;
1227 /* Make accesses to pages with watchpoints go via the
1228 watchpoint trap routines. */
1229 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
1230 if (cpu_watchpoint_address_matches(wp
, vaddr
, TARGET_PAGE_SIZE
)) {
1231 /* Avoid trapping reads of pages with a write breakpoint. */
1232 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
1233 iotlb
= PHYS_SECTION_WATCH
+ paddr
;
1234 *address
|= TLB_MMIO
;
1242 #endif /* defined(CONFIG_USER_ONLY) */
1244 #if !defined(CONFIG_USER_ONLY)
1246 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
1248 static subpage_t
*subpage_init(FlatView
*fv
, hwaddr base
);
1250 static void *(*phys_mem_alloc
)(size_t size
, uint64_t *align
) =
1251 qemu_anon_ram_alloc
;
1254 * Set a custom physical guest memory alloator.
1255 * Accelerators with unusual needs may need this. Hopefully, we can
1256 * get rid of it eventually.
1258 void phys_mem_set_alloc(void *(*alloc
)(size_t, uint64_t *align
))
1260 phys_mem_alloc
= alloc
;
1263 static uint16_t phys_section_add(PhysPageMap
*map
,
1264 MemoryRegionSection
*section
)
1266 /* The physical section number is ORed with a page-aligned
1267 * pointer to produce the iotlb entries. Thus it should
1268 * never overflow into the page-aligned value.
1270 assert(map
->sections_nb
< TARGET_PAGE_SIZE
);
1272 if (map
->sections_nb
== map
->sections_nb_alloc
) {
1273 map
->sections_nb_alloc
= MAX(map
->sections_nb_alloc
* 2, 16);
1274 map
->sections
= g_renew(MemoryRegionSection
, map
->sections
,
1275 map
->sections_nb_alloc
);
1277 map
->sections
[map
->sections_nb
] = *section
;
1278 memory_region_ref(section
->mr
);
1279 return map
->sections_nb
++;
1282 static void phys_section_destroy(MemoryRegion
*mr
)
1284 bool have_sub_page
= mr
->subpage
;
1286 memory_region_unref(mr
);
1288 if (have_sub_page
) {
1289 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
1290 object_unref(OBJECT(&subpage
->iomem
));
1295 static void phys_sections_free(PhysPageMap
*map
)
1297 while (map
->sections_nb
> 0) {
1298 MemoryRegionSection
*section
= &map
->sections
[--map
->sections_nb
];
1299 phys_section_destroy(section
->mr
);
1301 g_free(map
->sections
);
1305 static void register_subpage(FlatView
*fv
, MemoryRegionSection
*section
)
1307 AddressSpaceDispatch
*d
= flatview_to_dispatch(fv
);
1309 hwaddr base
= section
->offset_within_address_space
1311 MemoryRegionSection
*existing
= phys_page_find(d
, base
);
1312 MemoryRegionSection subsection
= {
1313 .offset_within_address_space
= base
,
1314 .size
= int128_make64(TARGET_PAGE_SIZE
),
1318 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
1320 if (!(existing
->mr
->subpage
)) {
1321 subpage
= subpage_init(fv
, base
);
1323 subsection
.mr
= &subpage
->iomem
;
1324 phys_page_set(d
, base
>> TARGET_PAGE_BITS
, 1,
1325 phys_section_add(&d
->map
, &subsection
));
1327 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
1329 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
1330 end
= start
+ int128_get64(section
->size
) - 1;
1331 subpage_register(subpage
, start
, end
,
1332 phys_section_add(&d
->map
, section
));
1336 static void register_multipage(FlatView
*fv
,
1337 MemoryRegionSection
*section
)
1339 AddressSpaceDispatch
*d
= flatview_to_dispatch(fv
);
1340 hwaddr start_addr
= section
->offset_within_address_space
;
1341 uint16_t section_index
= phys_section_add(&d
->map
, section
);
1342 uint64_t num_pages
= int128_get64(int128_rshift(section
->size
,
1346 phys_page_set(d
, start_addr
>> TARGET_PAGE_BITS
, num_pages
, section_index
);
1349 void flatview_add_to_dispatch(FlatView
*fv
, MemoryRegionSection
*section
)
1351 MemoryRegionSection now
= *section
, remain
= *section
;
1352 Int128 page_size
= int128_make64(TARGET_PAGE_SIZE
);
1354 if (now
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1355 uint64_t left
= TARGET_PAGE_ALIGN(now
.offset_within_address_space
)
1356 - now
.offset_within_address_space
;
1358 now
.size
= int128_min(int128_make64(left
), now
.size
);
1359 register_subpage(fv
, &now
);
1361 now
.size
= int128_zero();
1363 while (int128_ne(remain
.size
, now
.size
)) {
1364 remain
.size
= int128_sub(remain
.size
, now
.size
);
1365 remain
.offset_within_address_space
+= int128_get64(now
.size
);
1366 remain
.offset_within_region
+= int128_get64(now
.size
);
1368 if (int128_lt(remain
.size
, page_size
)) {
1369 register_subpage(fv
, &now
);
1370 } else if (remain
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1371 now
.size
= page_size
;
1372 register_subpage(fv
, &now
);
1374 now
.size
= int128_and(now
.size
, int128_neg(page_size
));
1375 register_multipage(fv
, &now
);
1380 void qemu_flush_coalesced_mmio_buffer(void)
1383 kvm_flush_coalesced_mmio_buffer();
1386 void qemu_mutex_lock_ramlist(void)
1388 qemu_mutex_lock(&ram_list
.mutex
);
1391 void qemu_mutex_unlock_ramlist(void)
1393 qemu_mutex_unlock(&ram_list
.mutex
);
1396 void ram_block_dump(Monitor
*mon
)
1402 monitor_printf(mon
, "%24s %8s %18s %18s %18s\n",
1403 "Block Name", "PSize", "Offset", "Used", "Total");
1404 RAMBLOCK_FOREACH(block
) {
1405 psize
= size_to_str(block
->page_size
);
1406 monitor_printf(mon
, "%24s %8s 0x%016" PRIx64
" 0x%016" PRIx64
1407 " 0x%016" PRIx64
"\n", block
->idstr
, psize
,
1408 (uint64_t)block
->offset
,
1409 (uint64_t)block
->used_length
,
1410 (uint64_t)block
->max_length
);
1418 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1419 * may or may not name the same files / on the same filesystem now as
1420 * when we actually open and map them. Iterate over the file
1421 * descriptors instead, and use qemu_fd_getpagesize().
1423 static int find_max_supported_pagesize(Object
*obj
, void *opaque
)
1426 long *hpsize_min
= opaque
;
1428 if (object_dynamic_cast(obj
, TYPE_MEMORY_BACKEND
)) {
1429 mem_path
= object_property_get_str(obj
, "mem-path", NULL
);
1431 long hpsize
= qemu_mempath_getpagesize(mem_path
);
1432 if (hpsize
< *hpsize_min
) {
1433 *hpsize_min
= hpsize
;
1436 *hpsize_min
= getpagesize();
1443 long qemu_getrampagesize(void)
1445 long hpsize
= LONG_MAX
;
1446 long mainrampagesize
;
1447 Object
*memdev_root
;
1450 mainrampagesize
= qemu_mempath_getpagesize(mem_path
);
1452 mainrampagesize
= getpagesize();
1455 /* it's possible we have memory-backend objects with
1456 * hugepage-backed RAM. these may get mapped into system
1457 * address space via -numa parameters or memory hotplug
1458 * hooks. we want to take these into account, but we
1459 * also want to make sure these supported hugepage
1460 * sizes are applicable across the entire range of memory
1461 * we may boot from, so we take the min across all
1462 * backends, and assume normal pages in cases where a
1463 * backend isn't backed by hugepages.
1465 memdev_root
= object_resolve_path("/objects", NULL
);
1467 object_child_foreach(memdev_root
, find_max_supported_pagesize
, &hpsize
);
1469 if (hpsize
== LONG_MAX
) {
1470 /* No additional memory regions found ==> Report main RAM page size */
1471 return mainrampagesize
;
1474 /* If NUMA is disabled or the NUMA nodes are not backed with a
1475 * memory-backend, then there is at least one node using "normal" RAM,
1476 * so if its page size is smaller we have got to report that size instead.
1478 if (hpsize
> mainrampagesize
&&
1479 (nb_numa_nodes
== 0 || numa_info
[0].node_memdev
== NULL
)) {
1482 error_report("Huge page support disabled (n/a for main memory).");
1485 return mainrampagesize
;
1491 long qemu_getrampagesize(void)
1493 return getpagesize();
1498 static int64_t get_file_size(int fd
)
1500 int64_t size
= lseek(fd
, 0, SEEK_END
);
1507 static int file_ram_open(const char *path
,
1508 const char *region_name
,
1513 char *sanitized_name
;
1519 fd
= open(path
, O_RDWR
);
1521 /* @path names an existing file, use it */
1524 if (errno
== ENOENT
) {
1525 /* @path names a file that doesn't exist, create it */
1526 fd
= open(path
, O_RDWR
| O_CREAT
| O_EXCL
, 0644);
1531 } else if (errno
== EISDIR
) {
1532 /* @path names a directory, create a file there */
1533 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1534 sanitized_name
= g_strdup(region_name
);
1535 for (c
= sanitized_name
; *c
!= '\0'; c
++) {
1541 filename
= g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path
,
1543 g_free(sanitized_name
);
1545 fd
= mkstemp(filename
);
1553 if (errno
!= EEXIST
&& errno
!= EINTR
) {
1554 error_setg_errno(errp
, errno
,
1555 "can't open backing store %s for guest RAM",
1560 * Try again on EINTR and EEXIST. The latter happens when
1561 * something else creates the file between our two open().
1568 static void *file_ram_alloc(RAMBlock
*block
,
1576 block
->page_size
= qemu_fd_getpagesize(fd
);
1577 block
->mr
->align
= block
->page_size
;
1578 #if defined(__s390x__)
1579 if (kvm_enabled()) {
1580 block
->mr
->align
= MAX(block
->mr
->align
, QEMU_VMALLOC_ALIGN
);
1584 if (memory
< block
->page_size
) {
1585 error_setg(errp
, "memory size 0x" RAM_ADDR_FMT
" must be equal to "
1586 "or larger than page size 0x%zx",
1587 memory
, block
->page_size
);
1591 memory
= ROUND_UP(memory
, block
->page_size
);
1594 * ftruncate is not supported by hugetlbfs in older
1595 * hosts, so don't bother bailing out on errors.
1596 * If anything goes wrong with it under other filesystems,
1599 * Do not truncate the non-empty backend file to avoid corrupting
1600 * the existing data in the file. Disabling shrinking is not
1601 * enough. For example, the current vNVDIMM implementation stores
1602 * the guest NVDIMM labels at the end of the backend file. If the
1603 * backend file is later extended, QEMU will not be able to find
1604 * those labels. Therefore, extending the non-empty backend file
1605 * is disabled as well.
1607 if (truncate
&& ftruncate(fd
, memory
)) {
1608 perror("ftruncate");
1611 area
= qemu_ram_mmap(fd
, memory
, block
->mr
->align
,
1612 block
->flags
& RAM_SHARED
);
1613 if (area
== MAP_FAILED
) {
1614 error_setg_errno(errp
, errno
,
1615 "unable to map backing store for guest RAM");
1620 os_mem_prealloc(fd
, area
, memory
, smp_cpus
, errp
);
1621 if (errp
&& *errp
) {
1622 qemu_ram_munmap(area
, memory
);
1632 /* Called with the ramlist lock held. */
1633 static ram_addr_t
find_ram_offset(ram_addr_t size
)
1635 RAMBlock
*block
, *next_block
;
1636 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
1638 assert(size
!= 0); /* it would hand out same offset multiple times */
1640 if (QLIST_EMPTY_RCU(&ram_list
.blocks
)) {
1644 RAMBLOCK_FOREACH(block
) {
1645 ram_addr_t end
, next
= RAM_ADDR_MAX
;
1647 end
= block
->offset
+ block
->max_length
;
1649 RAMBLOCK_FOREACH(next_block
) {
1650 if (next_block
->offset
>= end
) {
1651 next
= MIN(next
, next_block
->offset
);
1654 if (next
- end
>= size
&& next
- end
< mingap
) {
1656 mingap
= next
- end
;
1660 if (offset
== RAM_ADDR_MAX
) {
1661 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
1669 unsigned long last_ram_page(void)
1672 ram_addr_t last
= 0;
1675 RAMBLOCK_FOREACH(block
) {
1676 last
= MAX(last
, block
->offset
+ block
->max_length
);
1679 return last
>> TARGET_PAGE_BITS
;
1682 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
1686 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1687 if (!machine_dump_guest_core(current_machine
)) {
1688 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
1690 perror("qemu_madvise");
1691 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
1692 "but dump_guest_core=off specified\n");
1697 const char *qemu_ram_get_idstr(RAMBlock
*rb
)
1702 bool qemu_ram_is_shared(RAMBlock
*rb
)
1704 return rb
->flags
& RAM_SHARED
;
1707 /* Called with iothread lock held. */
1708 void qemu_ram_set_idstr(RAMBlock
*new_block
, const char *name
, DeviceState
*dev
)
1713 assert(!new_block
->idstr
[0]);
1716 char *id
= qdev_get_dev_path(dev
);
1718 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
1722 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
1725 RAMBLOCK_FOREACH(block
) {
1726 if (block
!= new_block
&&
1727 !strcmp(block
->idstr
, new_block
->idstr
)) {
1728 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
1736 /* Called with iothread lock held. */
1737 void qemu_ram_unset_idstr(RAMBlock
*block
)
1739 /* FIXME: arch_init.c assumes that this is not called throughout
1740 * migration. Ignore the problem since hot-unplug during migration
1741 * does not work anyway.
1744 memset(block
->idstr
, 0, sizeof(block
->idstr
));
1748 size_t qemu_ram_pagesize(RAMBlock
*rb
)
1750 return rb
->page_size
;
1753 /* Returns the largest size of page in use */
1754 size_t qemu_ram_pagesize_largest(void)
1759 RAMBLOCK_FOREACH(block
) {
1760 largest
= MAX(largest
, qemu_ram_pagesize(block
));
1766 static int memory_try_enable_merging(void *addr
, size_t len
)
1768 if (!machine_mem_merge(current_machine
)) {
1769 /* disabled by the user */
1773 return qemu_madvise(addr
, len
, QEMU_MADV_MERGEABLE
);
1776 /* Only legal before guest might have detected the memory size: e.g. on
1777 * incoming migration, or right after reset.
1779 * As memory core doesn't know how is memory accessed, it is up to
1780 * resize callback to update device state and/or add assertions to detect
1781 * misuse, if necessary.
1783 int qemu_ram_resize(RAMBlock
*block
, ram_addr_t newsize
, Error
**errp
)
1787 newsize
= HOST_PAGE_ALIGN(newsize
);
1789 if (block
->used_length
== newsize
) {
1793 if (!(block
->flags
& RAM_RESIZEABLE
)) {
1794 error_setg_errno(errp
, EINVAL
,
1795 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1796 " in != 0x" RAM_ADDR_FMT
, block
->idstr
,
1797 newsize
, block
->used_length
);
1801 if (block
->max_length
< newsize
) {
1802 error_setg_errno(errp
, EINVAL
,
1803 "Length too large: %s: 0x" RAM_ADDR_FMT
1804 " > 0x" RAM_ADDR_FMT
, block
->idstr
,
1805 newsize
, block
->max_length
);
1809 cpu_physical_memory_clear_dirty_range(block
->offset
, block
->used_length
);
1810 block
->used_length
= newsize
;
1811 cpu_physical_memory_set_dirty_range(block
->offset
, block
->used_length
,
1813 memory_region_set_size(block
->mr
, newsize
);
1814 if (block
->resized
) {
1815 block
->resized(block
->idstr
, newsize
, block
->host
);
1820 /* Called with ram_list.mutex held */
1821 static void dirty_memory_extend(ram_addr_t old_ram_size
,
1822 ram_addr_t new_ram_size
)
1824 ram_addr_t old_num_blocks
= DIV_ROUND_UP(old_ram_size
,
1825 DIRTY_MEMORY_BLOCK_SIZE
);
1826 ram_addr_t new_num_blocks
= DIV_ROUND_UP(new_ram_size
,
1827 DIRTY_MEMORY_BLOCK_SIZE
);
1830 /* Only need to extend if block count increased */
1831 if (new_num_blocks
<= old_num_blocks
) {
1835 for (i
= 0; i
< DIRTY_MEMORY_NUM
; i
++) {
1836 DirtyMemoryBlocks
*old_blocks
;
1837 DirtyMemoryBlocks
*new_blocks
;
1840 old_blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[i
]);
1841 new_blocks
= g_malloc(sizeof(*new_blocks
) +
1842 sizeof(new_blocks
->blocks
[0]) * new_num_blocks
);
1844 if (old_num_blocks
) {
1845 memcpy(new_blocks
->blocks
, old_blocks
->blocks
,
1846 old_num_blocks
* sizeof(old_blocks
->blocks
[0]));
1849 for (j
= old_num_blocks
; j
< new_num_blocks
; j
++) {
1850 new_blocks
->blocks
[j
] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE
);
1853 atomic_rcu_set(&ram_list
.dirty_memory
[i
], new_blocks
);
1856 g_free_rcu(old_blocks
, rcu
);
1861 static void ram_block_add(RAMBlock
*new_block
, Error
**errp
)
1864 RAMBlock
*last_block
= NULL
;
1865 ram_addr_t old_ram_size
, new_ram_size
;
1868 old_ram_size
= last_ram_page();
1870 qemu_mutex_lock_ramlist();
1871 new_block
->offset
= find_ram_offset(new_block
->max_length
);
1873 if (!new_block
->host
) {
1874 if (xen_enabled()) {
1875 xen_ram_alloc(new_block
->offset
, new_block
->max_length
,
1876 new_block
->mr
, &err
);
1878 error_propagate(errp
, err
);
1879 qemu_mutex_unlock_ramlist();
1883 new_block
->host
= phys_mem_alloc(new_block
->max_length
,
1884 &new_block
->mr
->align
);
1885 if (!new_block
->host
) {
1886 error_setg_errno(errp
, errno
,
1887 "cannot set up guest memory '%s'",
1888 memory_region_name(new_block
->mr
));
1889 qemu_mutex_unlock_ramlist();
1892 memory_try_enable_merging(new_block
->host
, new_block
->max_length
);
1896 new_ram_size
= MAX(old_ram_size
,
1897 (new_block
->offset
+ new_block
->max_length
) >> TARGET_PAGE_BITS
);
1898 if (new_ram_size
> old_ram_size
) {
1899 dirty_memory_extend(old_ram_size
, new_ram_size
);
1901 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1902 * QLIST (which has an RCU-friendly variant) does not have insertion at
1903 * tail, so save the last element in last_block.
1905 RAMBLOCK_FOREACH(block
) {
1907 if (block
->max_length
< new_block
->max_length
) {
1912 QLIST_INSERT_BEFORE_RCU(block
, new_block
, next
);
1913 } else if (last_block
) {
1914 QLIST_INSERT_AFTER_RCU(last_block
, new_block
, next
);
1915 } else { /* list is empty */
1916 QLIST_INSERT_HEAD_RCU(&ram_list
.blocks
, new_block
, next
);
1918 ram_list
.mru_block
= NULL
;
1920 /* Write list before version */
1923 qemu_mutex_unlock_ramlist();
1925 cpu_physical_memory_set_dirty_range(new_block
->offset
,
1926 new_block
->used_length
,
1929 if (new_block
->host
) {
1930 qemu_ram_setup_dump(new_block
->host
, new_block
->max_length
);
1931 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_HUGEPAGE
);
1932 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
1933 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_DONTFORK
);
1934 ram_block_notify_add(new_block
->host
, new_block
->max_length
);
1939 RAMBlock
*qemu_ram_alloc_from_fd(ram_addr_t size
, MemoryRegion
*mr
,
1943 RAMBlock
*new_block
;
1944 Error
*local_err
= NULL
;
1947 if (xen_enabled()) {
1948 error_setg(errp
, "-mem-path not supported with Xen");
1952 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1954 "host lacks kvm mmu notifiers, -mem-path unsupported");
1958 if (phys_mem_alloc
!= qemu_anon_ram_alloc
) {
1960 * file_ram_alloc() needs to allocate just like
1961 * phys_mem_alloc, but we haven't bothered to provide
1965 "-mem-path not supported with this accelerator");
1969 size
= HOST_PAGE_ALIGN(size
);
1970 file_size
= get_file_size(fd
);
1971 if (file_size
> 0 && file_size
< size
) {
1972 error_setg(errp
, "backing store %s size 0x%" PRIx64
1973 " does not match 'size' option 0x" RAM_ADDR_FMT
,
1974 mem_path
, file_size
, size
);
1978 new_block
= g_malloc0(sizeof(*new_block
));
1980 new_block
->used_length
= size
;
1981 new_block
->max_length
= size
;
1982 new_block
->flags
= share
? RAM_SHARED
: 0;
1983 new_block
->host
= file_ram_alloc(new_block
, size
, fd
, !file_size
, errp
);
1984 if (!new_block
->host
) {
1989 ram_block_add(new_block
, &local_err
);
1992 error_propagate(errp
, local_err
);
2000 RAMBlock
*qemu_ram_alloc_from_file(ram_addr_t size
, MemoryRegion
*mr
,
2001 bool share
, const char *mem_path
,
2008 fd
= file_ram_open(mem_path
, memory_region_name(mr
), &created
, errp
);
2013 block
= qemu_ram_alloc_from_fd(size
, mr
, share
, fd
, errp
);
2027 RAMBlock
*qemu_ram_alloc_internal(ram_addr_t size
, ram_addr_t max_size
,
2028 void (*resized
)(const char*,
2031 void *host
, bool resizeable
,
2032 MemoryRegion
*mr
, Error
**errp
)
2034 RAMBlock
*new_block
;
2035 Error
*local_err
= NULL
;
2037 size
= HOST_PAGE_ALIGN(size
);
2038 max_size
= HOST_PAGE_ALIGN(max_size
);
2039 new_block
= g_malloc0(sizeof(*new_block
));
2041 new_block
->resized
= resized
;
2042 new_block
->used_length
= size
;
2043 new_block
->max_length
= max_size
;
2044 assert(max_size
>= size
);
2046 new_block
->page_size
= getpagesize();
2047 new_block
->host
= host
;
2049 new_block
->flags
|= RAM_PREALLOC
;
2052 new_block
->flags
|= RAM_RESIZEABLE
;
2054 ram_block_add(new_block
, &local_err
);
2057 error_propagate(errp
, local_err
);
2063 RAMBlock
*qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
2064 MemoryRegion
*mr
, Error
**errp
)
2066 return qemu_ram_alloc_internal(size
, size
, NULL
, host
, false, mr
, errp
);
2069 RAMBlock
*qemu_ram_alloc(ram_addr_t size
, MemoryRegion
*mr
, Error
**errp
)
2071 return qemu_ram_alloc_internal(size
, size
, NULL
, NULL
, false, mr
, errp
);
2074 RAMBlock
*qemu_ram_alloc_resizeable(ram_addr_t size
, ram_addr_t maxsz
,
2075 void (*resized
)(const char*,
2078 MemoryRegion
*mr
, Error
**errp
)
2080 return qemu_ram_alloc_internal(size
, maxsz
, resized
, NULL
, true, mr
, errp
);
2083 static void reclaim_ramblock(RAMBlock
*block
)
2085 if (block
->flags
& RAM_PREALLOC
) {
2087 } else if (xen_enabled()) {
2088 xen_invalidate_map_cache_entry(block
->host
);
2090 } else if (block
->fd
>= 0) {
2091 qemu_ram_munmap(block
->host
, block
->max_length
);
2095 qemu_anon_ram_free(block
->host
, block
->max_length
);
2100 void qemu_ram_free(RAMBlock
*block
)
2107 ram_block_notify_remove(block
->host
, block
->max_length
);
2110 qemu_mutex_lock_ramlist();
2111 QLIST_REMOVE_RCU(block
, next
);
2112 ram_list
.mru_block
= NULL
;
2113 /* Write list before version */
2116 call_rcu(block
, reclaim_ramblock
, rcu
);
2117 qemu_mutex_unlock_ramlist();
2121 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
2128 RAMBLOCK_FOREACH(block
) {
2129 offset
= addr
- block
->offset
;
2130 if (offset
< block
->max_length
) {
2131 vaddr
= ramblock_ptr(block
, offset
);
2132 if (block
->flags
& RAM_PREALLOC
) {
2134 } else if (xen_enabled()) {
2138 if (block
->fd
>= 0) {
2139 flags
|= (block
->flags
& RAM_SHARED
?
2140 MAP_SHARED
: MAP_PRIVATE
);
2141 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2142 flags
, block
->fd
, offset
);
2145 * Remap needs to match alloc. Accelerators that
2146 * set phys_mem_alloc never remap. If they did,
2147 * we'd need a remap hook here.
2149 assert(phys_mem_alloc
== qemu_anon_ram_alloc
);
2151 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
2152 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2155 if (area
!= vaddr
) {
2156 fprintf(stderr
, "Could not remap addr: "
2157 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"\n",
2161 memory_try_enable_merging(vaddr
, length
);
2162 qemu_ram_setup_dump(vaddr
, length
);
2167 #endif /* !_WIN32 */
2169 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2170 * This should not be used for general purpose DMA. Use address_space_map
2171 * or address_space_rw instead. For local memory (e.g. video ram) that the
2172 * device owns, use memory_region_get_ram_ptr.
2174 * Called within RCU critical section.
2176 void *qemu_map_ram_ptr(RAMBlock
*ram_block
, ram_addr_t addr
)
2178 RAMBlock
*block
= ram_block
;
2180 if (block
== NULL
) {
2181 block
= qemu_get_ram_block(addr
);
2182 addr
-= block
->offset
;
2185 if (xen_enabled() && block
->host
== NULL
) {
2186 /* We need to check if the requested address is in the RAM
2187 * because we don't want to map the entire memory in QEMU.
2188 * In that case just map until the end of the page.
2190 if (block
->offset
== 0) {
2191 return xen_map_cache(addr
, 0, 0, false);
2194 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1, false);
2196 return ramblock_ptr(block
, addr
);
2199 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2200 * but takes a size argument.
2202 * Called within RCU critical section.
2204 static void *qemu_ram_ptr_length(RAMBlock
*ram_block
, ram_addr_t addr
,
2205 hwaddr
*size
, bool lock
)
2207 RAMBlock
*block
= ram_block
;
2212 if (block
== NULL
) {
2213 block
= qemu_get_ram_block(addr
);
2214 addr
-= block
->offset
;
2216 *size
= MIN(*size
, block
->max_length
- addr
);
2218 if (xen_enabled() && block
->host
== NULL
) {
2219 /* We need to check if the requested address is in the RAM
2220 * because we don't want to map the entire memory in QEMU.
2221 * In that case just map the requested area.
2223 if (block
->offset
== 0) {
2224 return xen_map_cache(addr
, *size
, lock
, lock
);
2227 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1, lock
);
2230 return ramblock_ptr(block
, addr
);
2234 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2237 * ptr: Host pointer to look up
2238 * round_offset: If true round the result offset down to a page boundary
2239 * *ram_addr: set to result ram_addr
2240 * *offset: set to result offset within the RAMBlock
2242 * Returns: RAMBlock (or NULL if not found)
2244 * By the time this function returns, the returned pointer is not protected
2245 * by RCU anymore. If the caller is not within an RCU critical section and
2246 * does not hold the iothread lock, it must have other means of protecting the
2247 * pointer, such as a reference to the region that includes the incoming
2250 RAMBlock
*qemu_ram_block_from_host(void *ptr
, bool round_offset
,
2254 uint8_t *host
= ptr
;
2256 if (xen_enabled()) {
2257 ram_addr_t ram_addr
;
2259 ram_addr
= xen_ram_addr_from_mapcache(ptr
);
2260 block
= qemu_get_ram_block(ram_addr
);
2262 *offset
= ram_addr
- block
->offset
;
2269 block
= atomic_rcu_read(&ram_list
.mru_block
);
2270 if (block
&& block
->host
&& host
- block
->host
< block
->max_length
) {
2274 RAMBLOCK_FOREACH(block
) {
2275 /* This case append when the block is not mapped. */
2276 if (block
->host
== NULL
) {
2279 if (host
- block
->host
< block
->max_length
) {
2288 *offset
= (host
- block
->host
);
2290 *offset
&= TARGET_PAGE_MASK
;
2297 * Finds the named RAMBlock
2299 * name: The name of RAMBlock to find
2301 * Returns: RAMBlock (or NULL if not found)
2303 RAMBlock
*qemu_ram_block_by_name(const char *name
)
2307 RAMBLOCK_FOREACH(block
) {
2308 if (!strcmp(name
, block
->idstr
)) {
2316 /* Some of the softmmu routines need to translate from a host pointer
2317 (typically a TLB entry) back to a ram offset. */
2318 ram_addr_t
qemu_ram_addr_from_host(void *ptr
)
2323 block
= qemu_ram_block_from_host(ptr
, false, &offset
);
2325 return RAM_ADDR_INVALID
;
2328 return block
->offset
+ offset
;
2331 /* Called within RCU critical section. */
2332 static void notdirty_mem_write(void *opaque
, hwaddr ram_addr
,
2333 uint64_t val
, unsigned size
)
2335 bool locked
= false;
2337 assert(tcg_enabled());
2338 if (!cpu_physical_memory_get_dirty_flag(ram_addr
, DIRTY_MEMORY_CODE
)) {
2341 tb_invalidate_phys_page_fast(ram_addr
, size
);
2345 stb_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
2348 stw_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
2351 stl_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
2361 /* Set both VGA and migration bits for simplicity and to remove
2362 * the notdirty callback faster.
2364 cpu_physical_memory_set_dirty_range(ram_addr
, size
,
2365 DIRTY_CLIENTS_NOCODE
);
2366 /* we remove the notdirty callback only if the code has been
2368 if (!cpu_physical_memory_is_clean(ram_addr
)) {
2369 tlb_set_dirty(current_cpu
, current_cpu
->mem_io_vaddr
);
2373 static bool notdirty_mem_accepts(void *opaque
, hwaddr addr
,
2374 unsigned size
, bool is_write
)
2379 static const MemoryRegionOps notdirty_mem_ops
= {
2380 .write
= notdirty_mem_write
,
2381 .valid
.accepts
= notdirty_mem_accepts
,
2382 .endianness
= DEVICE_NATIVE_ENDIAN
,
2385 /* Generate a debug exception if a watchpoint has been hit. */
2386 static void check_watchpoint(int offset
, int len
, MemTxAttrs attrs
, int flags
)
2388 CPUState
*cpu
= current_cpu
;
2389 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
2390 CPUArchState
*env
= cpu
->env_ptr
;
2391 target_ulong pc
, cs_base
;
2396 assert(tcg_enabled());
2397 if (cpu
->watchpoint_hit
) {
2398 /* We re-entered the check after replacing the TB. Now raise
2399 * the debug interrupt so that is will trigger after the
2400 * current instruction. */
2401 cpu_interrupt(cpu
, CPU_INTERRUPT_DEBUG
);
2404 vaddr
= (cpu
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
2405 vaddr
= cc
->adjust_watchpoint_address(cpu
, vaddr
, len
);
2406 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
2407 if (cpu_watchpoint_address_matches(wp
, vaddr
, len
)
2408 && (wp
->flags
& flags
)) {
2409 if (flags
== BP_MEM_READ
) {
2410 wp
->flags
|= BP_WATCHPOINT_HIT_READ
;
2412 wp
->flags
|= BP_WATCHPOINT_HIT_WRITE
;
2414 wp
->hitaddr
= vaddr
;
2415 wp
->hitattrs
= attrs
;
2416 if (!cpu
->watchpoint_hit
) {
2417 if (wp
->flags
& BP_CPU
&&
2418 !cc
->debug_check_watchpoint(cpu
, wp
)) {
2419 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2422 cpu
->watchpoint_hit
= wp
;
2424 /* Both tb_lock and iothread_mutex will be reset when
2425 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2426 * back into the cpu_exec main loop.
2429 tb_check_watchpoint(cpu
);
2430 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
2431 cpu
->exception_index
= EXCP_DEBUG
;
2434 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
2435 tb_gen_code(cpu
, pc
, cs_base
, cpu_flags
, 1);
2436 cpu_loop_exit_noexc(cpu
);
2440 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2445 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2446 so these check for a hit then pass through to the normal out-of-line
2448 static MemTxResult
watch_mem_read(void *opaque
, hwaddr addr
, uint64_t *pdata
,
2449 unsigned size
, MemTxAttrs attrs
)
2453 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2454 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2456 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_READ
);
2459 data
= address_space_ldub(as
, addr
, attrs
, &res
);
2462 data
= address_space_lduw(as
, addr
, attrs
, &res
);
2465 data
= address_space_ldl(as
, addr
, attrs
, &res
);
2473 static MemTxResult
watch_mem_write(void *opaque
, hwaddr addr
,
2474 uint64_t val
, unsigned size
,
2478 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2479 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2481 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_WRITE
);
2484 address_space_stb(as
, addr
, val
, attrs
, &res
);
2487 address_space_stw(as
, addr
, val
, attrs
, &res
);
2490 address_space_stl(as
, addr
, val
, attrs
, &res
);
2497 static const MemoryRegionOps watch_mem_ops
= {
2498 .read_with_attrs
= watch_mem_read
,
2499 .write_with_attrs
= watch_mem_write
,
2500 .endianness
= DEVICE_NATIVE_ENDIAN
,
2503 static MemTxResult
flatview_write(FlatView
*fv
, hwaddr addr
, MemTxAttrs attrs
,
2504 const uint8_t *buf
, int len
);
2505 static bool flatview_access_valid(FlatView
*fv
, hwaddr addr
, int len
,
2508 static MemTxResult
subpage_read(void *opaque
, hwaddr addr
, uint64_t *data
,
2509 unsigned len
, MemTxAttrs attrs
)
2511 subpage_t
*subpage
= opaque
;
2515 #if defined(DEBUG_SUBPAGE)
2516 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
"\n", __func__
,
2517 subpage
, len
, addr
);
2519 res
= flatview_read(subpage
->fv
, addr
+ subpage
->base
, attrs
, buf
, len
);
2525 *data
= ldub_p(buf
);
2528 *data
= lduw_p(buf
);
2541 static MemTxResult
subpage_write(void *opaque
, hwaddr addr
,
2542 uint64_t value
, unsigned len
, MemTxAttrs attrs
)
2544 subpage_t
*subpage
= opaque
;
2547 #if defined(DEBUG_SUBPAGE)
2548 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2549 " value %"PRIx64
"\n",
2550 __func__
, subpage
, len
, addr
, value
);
2568 return flatview_write(subpage
->fv
, addr
+ subpage
->base
, attrs
, buf
, len
);
2571 static bool subpage_accepts(void *opaque
, hwaddr addr
,
2572 unsigned len
, bool is_write
)
2574 subpage_t
*subpage
= opaque
;
2575 #if defined(DEBUG_SUBPAGE)
2576 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx
"\n",
2577 __func__
, subpage
, is_write
? 'w' : 'r', len
, addr
);
2580 return flatview_access_valid(subpage
->fv
, addr
+ subpage
->base
,
2584 static const MemoryRegionOps subpage_ops
= {
2585 .read_with_attrs
= subpage_read
,
2586 .write_with_attrs
= subpage_write
,
2587 .impl
.min_access_size
= 1,
2588 .impl
.max_access_size
= 8,
2589 .valid
.min_access_size
= 1,
2590 .valid
.max_access_size
= 8,
2591 .valid
.accepts
= subpage_accepts
,
2592 .endianness
= DEVICE_NATIVE_ENDIAN
,
2595 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2600 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
2602 idx
= SUBPAGE_IDX(start
);
2603 eidx
= SUBPAGE_IDX(end
);
2604 #if defined(DEBUG_SUBPAGE)
2605 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2606 __func__
, mmio
, start
, end
, idx
, eidx
, section
);
2608 for (; idx
<= eidx
; idx
++) {
2609 mmio
->sub_section
[idx
] = section
;
2615 static subpage_t
*subpage_init(FlatView
*fv
, hwaddr base
)
2619 mmio
= g_malloc0(sizeof(subpage_t
) + TARGET_PAGE_SIZE
* sizeof(uint16_t));
2622 memory_region_init_io(&mmio
->iomem
, NULL
, &subpage_ops
, mmio
,
2623 NULL
, TARGET_PAGE_SIZE
);
2624 mmio
->iomem
.subpage
= true;
2625 #if defined(DEBUG_SUBPAGE)
2626 printf("%s: %p base " TARGET_FMT_plx
" len %08x\n", __func__
,
2627 mmio
, base
, TARGET_PAGE_SIZE
);
2629 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, PHYS_SECTION_UNASSIGNED
);
2634 static uint16_t dummy_section(PhysPageMap
*map
, FlatView
*fv
, MemoryRegion
*mr
)
2637 MemoryRegionSection section
= {
2640 .offset_within_address_space
= 0,
2641 .offset_within_region
= 0,
2642 .size
= int128_2_64(),
2645 return phys_section_add(map
, §ion
);
2648 MemoryRegion
*iotlb_to_region(CPUState
*cpu
, hwaddr index
, MemTxAttrs attrs
)
2650 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
2651 CPUAddressSpace
*cpuas
= &cpu
->cpu_ases
[asidx
];
2652 AddressSpaceDispatch
*d
= atomic_rcu_read(&cpuas
->memory_dispatch
);
2653 MemoryRegionSection
*sections
= d
->map
.sections
;
2655 return sections
[index
& ~TARGET_PAGE_MASK
].mr
;
2658 static void io_mem_init(void)
2660 memory_region_init_io(&io_mem_rom
, NULL
, &unassigned_mem_ops
, NULL
, NULL
, UINT64_MAX
);
2661 memory_region_init_io(&io_mem_unassigned
, NULL
, &unassigned_mem_ops
, NULL
,
2664 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2665 * which can be called without the iothread mutex.
2667 memory_region_init_io(&io_mem_notdirty
, NULL
, ¬dirty_mem_ops
, NULL
,
2669 memory_region_clear_global_locking(&io_mem_notdirty
);
2671 memory_region_init_io(&io_mem_watch
, NULL
, &watch_mem_ops
, NULL
,
2675 AddressSpaceDispatch
*address_space_dispatch_new(FlatView
*fv
)
2677 AddressSpaceDispatch
*d
= g_new0(AddressSpaceDispatch
, 1);
2680 n
= dummy_section(&d
->map
, fv
, &io_mem_unassigned
);
2681 assert(n
== PHYS_SECTION_UNASSIGNED
);
2682 n
= dummy_section(&d
->map
, fv
, &io_mem_notdirty
);
2683 assert(n
== PHYS_SECTION_NOTDIRTY
);
2684 n
= dummy_section(&d
->map
, fv
, &io_mem_rom
);
2685 assert(n
== PHYS_SECTION_ROM
);
2686 n
= dummy_section(&d
->map
, fv
, &io_mem_watch
);
2687 assert(n
== PHYS_SECTION_WATCH
);
2689 d
->phys_map
= (PhysPageEntry
) { .ptr
= PHYS_MAP_NODE_NIL
, .skip
= 1 };
2694 void address_space_dispatch_free(AddressSpaceDispatch
*d
)
2696 phys_sections_free(&d
->map
);
2700 static void tcg_commit(MemoryListener
*listener
)
2702 CPUAddressSpace
*cpuas
;
2703 AddressSpaceDispatch
*d
;
2705 /* since each CPU stores ram addresses in its TLB cache, we must
2706 reset the modified entries */
2707 cpuas
= container_of(listener
, CPUAddressSpace
, tcg_as_listener
);
2708 cpu_reloading_memory_map();
2709 /* The CPU and TLB are protected by the iothread lock.
2710 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2711 * may have split the RCU critical section.
2713 d
= address_space_to_dispatch(cpuas
->as
);
2714 atomic_rcu_set(&cpuas
->memory_dispatch
, d
);
2715 tlb_flush(cpuas
->cpu
);
2718 static void memory_map_init(void)
2720 system_memory
= g_malloc(sizeof(*system_memory
));
2722 memory_region_init(system_memory
, NULL
, "system", UINT64_MAX
);
2723 address_space_init(&address_space_memory
, system_memory
, "memory");
2725 system_io
= g_malloc(sizeof(*system_io
));
2726 memory_region_init_io(system_io
, NULL
, &unassigned_io_ops
, NULL
, "io",
2728 address_space_init(&address_space_io
, system_io
, "I/O");
2731 MemoryRegion
*get_system_memory(void)
2733 return system_memory
;
2736 MemoryRegion
*get_system_io(void)
2741 #endif /* !defined(CONFIG_USER_ONLY) */
2743 /* physical memory access (slow version, mainly for debug) */
2744 #if defined(CONFIG_USER_ONLY)
2745 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
2746 uint8_t *buf
, int len
, int is_write
)
2753 page
= addr
& TARGET_PAGE_MASK
;
2754 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2757 flags
= page_get_flags(page
);
2758 if (!(flags
& PAGE_VALID
))
2761 if (!(flags
& PAGE_WRITE
))
2763 /* XXX: this code should not depend on lock_user */
2764 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
2767 unlock_user(p
, addr
, l
);
2769 if (!(flags
& PAGE_READ
))
2771 /* XXX: this code should not depend on lock_user */
2772 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
2775 unlock_user(p
, addr
, 0);
2786 static void invalidate_and_set_dirty(MemoryRegion
*mr
, hwaddr addr
,
2789 uint8_t dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
2790 addr
+= memory_region_get_ram_addr(mr
);
2792 /* No early return if dirty_log_mask is or becomes 0, because
2793 * cpu_physical_memory_set_dirty_range will still call
2794 * xen_modified_memory.
2796 if (dirty_log_mask
) {
2798 cpu_physical_memory_range_includes_clean(addr
, length
, dirty_log_mask
);
2800 if (dirty_log_mask
& (1 << DIRTY_MEMORY_CODE
)) {
2801 assert(tcg_enabled());
2803 tb_invalidate_phys_range(addr
, addr
+ length
);
2805 dirty_log_mask
&= ~(1 << DIRTY_MEMORY_CODE
);
2807 cpu_physical_memory_set_dirty_range(addr
, length
, dirty_log_mask
);
2810 static int memory_access_size(MemoryRegion
*mr
, unsigned l
, hwaddr addr
)
2812 unsigned access_size_max
= mr
->ops
->valid
.max_access_size
;
2814 /* Regions are assumed to support 1-4 byte accesses unless
2815 otherwise specified. */
2816 if (access_size_max
== 0) {
2817 access_size_max
= 4;
2820 /* Bound the maximum access by the alignment of the address. */
2821 if (!mr
->ops
->impl
.unaligned
) {
2822 unsigned align_size_max
= addr
& -addr
;
2823 if (align_size_max
!= 0 && align_size_max
< access_size_max
) {
2824 access_size_max
= align_size_max
;
2828 /* Don't attempt accesses larger than the maximum. */
2829 if (l
> access_size_max
) {
2830 l
= access_size_max
;
2837 static bool prepare_mmio_access(MemoryRegion
*mr
)
2839 bool unlocked
= !qemu_mutex_iothread_locked();
2840 bool release_lock
= false;
2842 if (unlocked
&& mr
->global_locking
) {
2843 qemu_mutex_lock_iothread();
2845 release_lock
= true;
2847 if (mr
->flush_coalesced_mmio
) {
2849 qemu_mutex_lock_iothread();
2851 qemu_flush_coalesced_mmio_buffer();
2853 qemu_mutex_unlock_iothread();
2857 return release_lock
;
2860 /* Called within RCU critical section. */
2861 static MemTxResult
flatview_write_continue(FlatView
*fv
, hwaddr addr
,
2864 int len
, hwaddr addr1
,
2865 hwaddr l
, MemoryRegion
*mr
)
2869 MemTxResult result
= MEMTX_OK
;
2870 bool release_lock
= false;
2873 if (!memory_access_is_direct(mr
, true)) {
2874 release_lock
|= prepare_mmio_access(mr
);
2875 l
= memory_access_size(mr
, l
, addr1
);
2876 /* XXX: could force current_cpu to NULL to avoid
2880 /* 64 bit write access */
2882 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 8,
2886 /* 32 bit write access */
2887 val
= (uint32_t)ldl_p(buf
);
2888 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 4,
2892 /* 16 bit write access */
2894 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 2,
2898 /* 8 bit write access */
2900 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 1,
2908 ptr
= qemu_ram_ptr_length(mr
->ram_block
, addr1
, &l
, false);
2909 memcpy(ptr
, buf
, l
);
2910 invalidate_and_set_dirty(mr
, addr1
, l
);
2914 qemu_mutex_unlock_iothread();
2915 release_lock
= false;
2927 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, true);
2933 static MemTxResult
flatview_write(FlatView
*fv
, hwaddr addr
, MemTxAttrs attrs
,
2934 const uint8_t *buf
, int len
)
2939 MemTxResult result
= MEMTX_OK
;
2944 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, true);
2945 result
= flatview_write_continue(fv
, addr
, attrs
, buf
, len
,
2953 MemTxResult
address_space_write(AddressSpace
*as
, hwaddr addr
,
2955 const uint8_t *buf
, int len
)
2957 return flatview_write(address_space_to_flatview(as
), addr
, attrs
, buf
, len
);
2960 /* Called within RCU critical section. */
2961 MemTxResult
flatview_read_continue(FlatView
*fv
, hwaddr addr
,
2962 MemTxAttrs attrs
, uint8_t *buf
,
2963 int len
, hwaddr addr1
, hwaddr l
,
2968 MemTxResult result
= MEMTX_OK
;
2969 bool release_lock
= false;
2972 if (!memory_access_is_direct(mr
, false)) {
2974 release_lock
|= prepare_mmio_access(mr
);
2975 l
= memory_access_size(mr
, l
, addr1
);
2978 /* 64 bit read access */
2979 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 8,
2984 /* 32 bit read access */
2985 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 4,
2990 /* 16 bit read access */
2991 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 2,
2996 /* 8 bit read access */
2997 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 1,
3006 ptr
= qemu_ram_ptr_length(mr
->ram_block
, addr1
, &l
, false);
3007 memcpy(buf
, ptr
, l
);
3011 qemu_mutex_unlock_iothread();
3012 release_lock
= false;
3024 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, false);
3030 MemTxResult
flatview_read_full(FlatView
*fv
, hwaddr addr
,
3031 MemTxAttrs attrs
, uint8_t *buf
, int len
)
3036 MemTxResult result
= MEMTX_OK
;
3041 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, false);
3042 result
= flatview_read_continue(fv
, addr
, attrs
, buf
, len
,
3050 static MemTxResult
flatview_rw(FlatView
*fv
, hwaddr addr
, MemTxAttrs attrs
,
3051 uint8_t *buf
, int len
, bool is_write
)
3054 return flatview_write(fv
, addr
, attrs
, (uint8_t *)buf
, len
);
3056 return flatview_read(fv
, addr
, attrs
, (uint8_t *)buf
, len
);
3060 MemTxResult
address_space_rw(AddressSpace
*as
, hwaddr addr
,
3061 MemTxAttrs attrs
, uint8_t *buf
,
3062 int len
, bool is_write
)
3064 return flatview_rw(address_space_to_flatview(as
),
3065 addr
, attrs
, buf
, len
, is_write
);
3068 void cpu_physical_memory_rw(hwaddr addr
, uint8_t *buf
,
3069 int len
, int is_write
)
3071 address_space_rw(&address_space_memory
, addr
, MEMTXATTRS_UNSPECIFIED
,
3072 buf
, len
, is_write
);
3075 enum write_rom_type
{
3080 static inline void cpu_physical_memory_write_rom_internal(AddressSpace
*as
,
3081 hwaddr addr
, const uint8_t *buf
, int len
, enum write_rom_type type
)
3091 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
3093 if (!(memory_region_is_ram(mr
) ||
3094 memory_region_is_romd(mr
))) {
3095 l
= memory_access_size(mr
, l
, addr1
);
3098 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3101 memcpy(ptr
, buf
, l
);
3102 invalidate_and_set_dirty(mr
, addr1
, l
);
3105 flush_icache_range((uintptr_t)ptr
, (uintptr_t)ptr
+ l
);
3116 /* used for ROM loading : can write in RAM and ROM */
3117 void cpu_physical_memory_write_rom(AddressSpace
*as
, hwaddr addr
,
3118 const uint8_t *buf
, int len
)
3120 cpu_physical_memory_write_rom_internal(as
, addr
, buf
, len
, WRITE_DATA
);
3123 void cpu_flush_icache_range(hwaddr start
, int len
)
3126 * This function should do the same thing as an icache flush that was
3127 * triggered from within the guest. For TCG we are always cache coherent,
3128 * so there is no need to flush anything. For KVM / Xen we need to flush
3129 * the host's instruction cache at least.
3131 if (tcg_enabled()) {
3135 cpu_physical_memory_write_rom_internal(&address_space_memory
,
3136 start
, NULL
, len
, FLUSH_CACHE
);
3147 static BounceBuffer bounce
;
3149 typedef struct MapClient
{
3151 QLIST_ENTRY(MapClient
) link
;
3154 QemuMutex map_client_list_lock
;
3155 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
3156 = QLIST_HEAD_INITIALIZER(map_client_list
);
3158 static void cpu_unregister_map_client_do(MapClient
*client
)
3160 QLIST_REMOVE(client
, link
);
3164 static void cpu_notify_map_clients_locked(void)
3168 while (!QLIST_EMPTY(&map_client_list
)) {
3169 client
= QLIST_FIRST(&map_client_list
);
3170 qemu_bh_schedule(client
->bh
);
3171 cpu_unregister_map_client_do(client
);
3175 void cpu_register_map_client(QEMUBH
*bh
)
3177 MapClient
*client
= g_malloc(sizeof(*client
));
3179 qemu_mutex_lock(&map_client_list_lock
);
3181 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
3182 if (!atomic_read(&bounce
.in_use
)) {
3183 cpu_notify_map_clients_locked();
3185 qemu_mutex_unlock(&map_client_list_lock
);
3188 void cpu_exec_init_all(void)
3190 qemu_mutex_init(&ram_list
.mutex
);
3191 /* The data structures we set up here depend on knowing the page size,
3192 * so no more changes can be made after this point.
3193 * In an ideal world, nothing we did before we had finished the
3194 * machine setup would care about the target page size, and we could
3195 * do this much later, rather than requiring board models to state
3196 * up front what their requirements are.
3198 finalize_target_page_bits();
3201 qemu_mutex_init(&map_client_list_lock
);
3204 void cpu_unregister_map_client(QEMUBH
*bh
)
3208 qemu_mutex_lock(&map_client_list_lock
);
3209 QLIST_FOREACH(client
, &map_client_list
, link
) {
3210 if (client
->bh
== bh
) {
3211 cpu_unregister_map_client_do(client
);
3215 qemu_mutex_unlock(&map_client_list_lock
);
3218 static void cpu_notify_map_clients(void)
3220 qemu_mutex_lock(&map_client_list_lock
);
3221 cpu_notify_map_clients_locked();
3222 qemu_mutex_unlock(&map_client_list_lock
);
3225 static bool flatview_access_valid(FlatView
*fv
, hwaddr addr
, int len
,
3234 mr
= flatview_translate(fv
, addr
, &xlat
, &l
, is_write
);
3235 if (!memory_access_is_direct(mr
, is_write
)) {
3236 l
= memory_access_size(mr
, l
, addr
);
3237 if (!memory_region_access_valid(mr
, xlat
, l
, is_write
)) {
3250 bool address_space_access_valid(AddressSpace
*as
, hwaddr addr
,
3251 int len
, bool is_write
)
3253 return flatview_access_valid(address_space_to_flatview(as
),
3254 addr
, len
, is_write
);
3258 flatview_extend_translation(FlatView
*fv
, hwaddr addr
,
3260 MemoryRegion
*mr
, hwaddr base
, hwaddr len
,
3265 MemoryRegion
*this_mr
;
3271 if (target_len
== 0) {
3276 this_mr
= flatview_translate(fv
, addr
, &xlat
,
3278 if (this_mr
!= mr
|| xlat
!= base
+ done
) {
3284 /* Map a physical memory region into a host virtual address.
3285 * May map a subset of the requested range, given by and returned in *plen.
3286 * May return NULL if resources needed to perform the mapping are exhausted.
3287 * Use only for reads OR writes - not for read-modify-write operations.
3288 * Use cpu_register_map_client() to know when retrying the map operation is
3289 * likely to succeed.
3291 void *address_space_map(AddressSpace
*as
,
3300 FlatView
*fv
= address_space_to_flatview(as
);
3308 mr
= flatview_translate(fv
, addr
, &xlat
, &l
, is_write
);
3310 if (!memory_access_is_direct(mr
, is_write
)) {
3311 if (atomic_xchg(&bounce
.in_use
, true)) {
3315 /* Avoid unbounded allocations */
3316 l
= MIN(l
, TARGET_PAGE_SIZE
);
3317 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, l
);
3321 memory_region_ref(mr
);
3324 flatview_read(fv
, addr
, MEMTXATTRS_UNSPECIFIED
,
3330 return bounce
.buffer
;
3334 memory_region_ref(mr
);
3335 *plen
= flatview_extend_translation(fv
, addr
, len
, mr
, xlat
,
3337 ptr
= qemu_ram_ptr_length(mr
->ram_block
, xlat
, plen
, true);
3343 /* Unmaps a memory region previously mapped by address_space_map().
3344 * Will also mark the memory as dirty if is_write == 1. access_len gives
3345 * the amount of memory that was actually read or written by the caller.
3347 void address_space_unmap(AddressSpace
*as
, void *buffer
, hwaddr len
,
3348 int is_write
, hwaddr access_len
)
3350 if (buffer
!= bounce
.buffer
) {
3354 mr
= memory_region_from_host(buffer
, &addr1
);
3357 invalidate_and_set_dirty(mr
, addr1
, access_len
);
3359 if (xen_enabled()) {
3360 xen_invalidate_map_cache_entry(buffer
);
3362 memory_region_unref(mr
);
3366 address_space_write(as
, bounce
.addr
, MEMTXATTRS_UNSPECIFIED
,
3367 bounce
.buffer
, access_len
);
3369 qemu_vfree(bounce
.buffer
);
3370 bounce
.buffer
= NULL
;
3371 memory_region_unref(bounce
.mr
);
3372 atomic_mb_set(&bounce
.in_use
, false);
3373 cpu_notify_map_clients();
3376 void *cpu_physical_memory_map(hwaddr addr
,
3380 return address_space_map(&address_space_memory
, addr
, plen
, is_write
);
3383 void cpu_physical_memory_unmap(void *buffer
, hwaddr len
,
3384 int is_write
, hwaddr access_len
)
3386 return address_space_unmap(&address_space_memory
, buffer
, len
, is_write
, access_len
);
3389 #define ARG1_DECL AddressSpace *as
3392 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3393 #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3394 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3395 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3396 #define RCU_READ_LOCK(...) rcu_read_lock()
3397 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3398 #include "memory_ldst.inc.c"
3400 int64_t address_space_cache_init(MemoryRegionCache
*cache
,
3412 void address_space_cache_invalidate(MemoryRegionCache
*cache
,
3418 void address_space_cache_destroy(MemoryRegionCache
*cache
)
3423 #define ARG1_DECL MemoryRegionCache *cache
3425 #define SUFFIX _cached
3426 #define TRANSLATE(addr, ...) \
3427 address_space_translate(cache->as, cache->xlat + (addr), __VA_ARGS__)
3428 #define IS_DIRECT(mr, is_write) true
3429 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3430 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3431 #define RCU_READ_LOCK() rcu_read_lock()
3432 #define RCU_READ_UNLOCK() rcu_read_unlock()
3433 #include "memory_ldst.inc.c"
3435 /* virtual memory access for debug (includes writing to ROM) */
3436 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
3437 uint8_t *buf
, int len
, int is_write
)
3443 cpu_synchronize_state(cpu
);
3448 page
= addr
& TARGET_PAGE_MASK
;
3449 phys_addr
= cpu_get_phys_page_attrs_debug(cpu
, page
, &attrs
);
3450 asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
3451 /* if no physical page mapped, return an error */
3452 if (phys_addr
== -1)
3454 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3457 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
3459 cpu_physical_memory_write_rom(cpu
->cpu_ases
[asidx
].as
,
3462 address_space_rw(cpu
->cpu_ases
[asidx
].as
, phys_addr
,
3463 MEMTXATTRS_UNSPECIFIED
,
3474 * Allows code that needs to deal with migration bitmaps etc to still be built
3475 * target independent.
3477 size_t qemu_target_page_size(void)
3479 return TARGET_PAGE_SIZE
;
3482 int qemu_target_page_bits(void)
3484 return TARGET_PAGE_BITS
;
3487 int qemu_target_page_bits_min(void)
3489 return TARGET_PAGE_BITS_MIN
;
3494 * A helper function for the _utterly broken_ virtio device model to find out if
3495 * it's running on a big endian machine. Don't do this at home kids!
3497 bool target_words_bigendian(void);
3498 bool target_words_bigendian(void)
3500 #if defined(TARGET_WORDS_BIGENDIAN)
3507 #ifndef CONFIG_USER_ONLY
3508 bool cpu_physical_memory_is_io(hwaddr phys_addr
)
3515 mr
= address_space_translate(&address_space_memory
,
3516 phys_addr
, &phys_addr
, &l
, false);
3518 res
= !(memory_region_is_ram(mr
) || memory_region_is_romd(mr
));
3523 int qemu_ram_foreach_block(RAMBlockIterFunc func
, void *opaque
)
3529 RAMBLOCK_FOREACH(block
) {
3530 ret
= func(block
->idstr
, block
->host
, block
->offset
,
3531 block
->used_length
, opaque
);
3541 * Unmap pages of memory from start to start+length such that
3542 * they a) read as 0, b) Trigger whatever fault mechanism
3543 * the OS provides for postcopy.
3544 * The pages must be unmapped by the end of the function.
3545 * Returns: 0 on success, none-0 on failure
3548 int ram_block_discard_range(RAMBlock
*rb
, uint64_t start
, size_t length
)
3552 uint8_t *host_startaddr
= rb
->host
+ start
;
3554 if ((uintptr_t)host_startaddr
& (rb
->page_size
- 1)) {
3555 error_report("ram_block_discard_range: Unaligned start address: %p",
3560 if ((start
+ length
) <= rb
->used_length
) {
3561 uint8_t *host_endaddr
= host_startaddr
+ length
;
3562 if ((uintptr_t)host_endaddr
& (rb
->page_size
- 1)) {
3563 error_report("ram_block_discard_range: Unaligned end address: %p",
3568 errno
= ENOTSUP
; /* If we are missing MADVISE etc */
3570 if (rb
->page_size
== qemu_host_page_size
) {
3571 #if defined(CONFIG_MADVISE)
3572 /* Note: We need the madvise MADV_DONTNEED behaviour of definitely
3575 ret
= madvise(host_startaddr
, length
, MADV_DONTNEED
);
3578 /* Huge page case - unfortunately it can't do DONTNEED, but
3579 * it can do the equivalent by FALLOC_FL_PUNCH_HOLE in the
3582 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3583 ret
= fallocate(rb
->fd
, FALLOC_FL_PUNCH_HOLE
| FALLOC_FL_KEEP_SIZE
,
3589 error_report("ram_block_discard_range: Failed to discard range "
3590 "%s:%" PRIx64
" +%zx (%d)",
3591 rb
->idstr
, start
, length
, ret
);
3594 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3595 "/%zx/" RAM_ADDR_FMT
")",
3596 rb
->idstr
, start
, length
, rb
->used_length
);
3605 void page_size_init(void)
3607 /* NOTE: we can always suppose that qemu_host_page_size >=
3609 qemu_real_host_page_size
= getpagesize();
3610 qemu_real_host_page_mask
= -(intptr_t)qemu_real_host_page_size
;
3611 if (qemu_host_page_size
== 0) {
3612 qemu_host_page_size
= qemu_real_host_page_size
;
3614 if (qemu_host_page_size
< TARGET_PAGE_SIZE
) {
3615 qemu_host_page_size
= TARGET_PAGE_SIZE
;
3617 qemu_host_page_mask
= -(intptr_t)qemu_host_page_size
;
3620 #if !defined(CONFIG_USER_ONLY)
3622 static void mtree_print_phys_entries(fprintf_function mon
, void *f
,
3623 int start
, int end
, int skip
, int ptr
)
3625 if (start
== end
- 1) {
3626 mon(f
, "\t%3d ", start
);
3628 mon(f
, "\t%3d..%-3d ", start
, end
- 1);
3630 mon(f
, " skip=%d ", skip
);
3631 if (ptr
== PHYS_MAP_NODE_NIL
) {
3634 mon(f
, " ptr=#%d", ptr
);
3636 mon(f
, " ptr=[%d]", ptr
);
3641 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3642 int128_sub((size), int128_one())) : 0)
3644 void mtree_print_dispatch(fprintf_function mon
, void *f
,
3645 AddressSpaceDispatch
*d
, MemoryRegion
*root
)
3649 mon(f
, " Dispatch\n");
3650 mon(f
, " Physical sections\n");
3652 for (i
= 0; i
< d
->map
.sections_nb
; ++i
) {
3653 MemoryRegionSection
*s
= d
->map
.sections
+ i
;
3654 const char *names
[] = { " [unassigned]", " [not dirty]",
3655 " [ROM]", " [watch]" };
3657 mon(f
, " #%d @" TARGET_FMT_plx
".." TARGET_FMT_plx
" %s%s%s%s%s",
3659 s
->offset_within_address_space
,
3660 s
->offset_within_address_space
+ MR_SIZE(s
->mr
->size
),
3661 s
->mr
->name
? s
->mr
->name
: "(noname)",
3662 i
< ARRAY_SIZE(names
) ? names
[i
] : "",
3663 s
->mr
== root
? " [ROOT]" : "",
3664 s
== d
->mru_section
? " [MRU]" : "",
3665 s
->mr
->is_iommu
? " [iommu]" : "");
3668 mon(f
, " alias=%s", s
->mr
->alias
->name
?
3669 s
->mr
->alias
->name
: "noname");
3674 mon(f
, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3675 P_L2_BITS
, P_L2_LEVELS
, d
->phys_map
.ptr
, d
->phys_map
.skip
);
3676 for (i
= 0; i
< d
->map
.nodes_nb
; ++i
) {
3679 Node
*n
= d
->map
.nodes
+ i
;
3681 mon(f
, " [%d]\n", i
);
3683 for (j
= 0, jprev
= 0, prev
= *n
[0]; j
< ARRAY_SIZE(*n
); ++j
) {
3684 PhysPageEntry
*pe
= *n
+ j
;
3686 if (pe
->ptr
== prev
.ptr
&& pe
->skip
== prev
.skip
) {
3690 mtree_print_phys_entries(mon
, f
, jprev
, j
, prev
.skip
, prev
.ptr
);
3696 if (jprev
!= ARRAY_SIZE(*n
)) {
3697 mtree_print_phys_entries(mon
, f
, jprev
, j
, prev
.skip
, prev
.ptr
);