spice: avoid .set_mm_time on >= 0.12.6
[qemu/kevin.git] / migration / rdma.c
blob5110ec828d26fb6da710216f7618276290b6ab91
1 /*
2 * RDMA protocol and interfaces
4 * Copyright IBM, Corp. 2010-2013
5 * Copyright Red Hat, Inc. 2015-2016
7 * Authors:
8 * Michael R. Hines <mrhines@us.ibm.com>
9 * Jiuxing Liu <jl@us.ibm.com>
10 * Daniel P. Berrange <berrange@redhat.com>
12 * This work is licensed under the terms of the GNU GPL, version 2 or
13 * later. See the COPYING file in the top-level directory.
16 #include "qemu/osdep.h"
17 #include "qapi/error.h"
18 #include "qemu-common.h"
19 #include "qemu/cutils.h"
20 #include "migration/migration.h"
21 #include "migration/qemu-file.h"
22 #include "exec/cpu-common.h"
23 #include "qemu/error-report.h"
24 #include "qemu/main-loop.h"
25 #include "qemu/sockets.h"
26 #include "qemu/bitmap.h"
27 #include "qemu/coroutine.h"
28 #include <sys/socket.h>
29 #include <netdb.h>
30 #include <arpa/inet.h>
31 #include <rdma/rdma_cma.h>
32 #include "trace.h"
35 * Print and error on both the Monitor and the Log file.
37 #define ERROR(errp, fmt, ...) \
38 do { \
39 fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
40 if (errp && (*(errp) == NULL)) { \
41 error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
42 } \
43 } while (0)
45 #define RDMA_RESOLVE_TIMEOUT_MS 10000
47 /* Do not merge data if larger than this. */
48 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
49 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
51 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
54 * This is only for non-live state being migrated.
55 * Instead of RDMA_WRITE messages, we use RDMA_SEND
56 * messages for that state, which requires a different
57 * delivery design than main memory.
59 #define RDMA_SEND_INCREMENT 32768
62 * Maximum size infiniband SEND message
64 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
65 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
67 #define RDMA_CONTROL_VERSION_CURRENT 1
69 * Capabilities for negotiation.
71 #define RDMA_CAPABILITY_PIN_ALL 0x01
74 * Add the other flags above to this list of known capabilities
75 * as they are introduced.
77 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
79 #define CHECK_ERROR_STATE() \
80 do { \
81 if (rdma->error_state) { \
82 if (!rdma->error_reported) { \
83 error_report("RDMA is in an error state waiting migration" \
84 " to abort!"); \
85 rdma->error_reported = 1; \
86 } \
87 return rdma->error_state; \
88 } \
89 } while (0);
92 * A work request ID is 64-bits and we split up these bits
93 * into 3 parts:
95 * bits 0-15 : type of control message, 2^16
96 * bits 16-29: ram block index, 2^14
97 * bits 30-63: ram block chunk number, 2^34
99 * The last two bit ranges are only used for RDMA writes,
100 * in order to track their completion and potentially
101 * also track unregistration status of the message.
103 #define RDMA_WRID_TYPE_SHIFT 0UL
104 #define RDMA_WRID_BLOCK_SHIFT 16UL
105 #define RDMA_WRID_CHUNK_SHIFT 30UL
107 #define RDMA_WRID_TYPE_MASK \
108 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
110 #define RDMA_WRID_BLOCK_MASK \
111 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
113 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
116 * RDMA migration protocol:
117 * 1. RDMA Writes (data messages, i.e. RAM)
118 * 2. IB Send/Recv (control channel messages)
120 enum {
121 RDMA_WRID_NONE = 0,
122 RDMA_WRID_RDMA_WRITE = 1,
123 RDMA_WRID_SEND_CONTROL = 2000,
124 RDMA_WRID_RECV_CONTROL = 4000,
127 static const char *wrid_desc[] = {
128 [RDMA_WRID_NONE] = "NONE",
129 [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
130 [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
131 [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
135 * Work request IDs for IB SEND messages only (not RDMA writes).
136 * This is used by the migration protocol to transmit
137 * control messages (such as device state and registration commands)
139 * We could use more WRs, but we have enough for now.
141 enum {
142 RDMA_WRID_READY = 0,
143 RDMA_WRID_DATA,
144 RDMA_WRID_CONTROL,
145 RDMA_WRID_MAX,
149 * SEND/RECV IB Control Messages.
151 enum {
152 RDMA_CONTROL_NONE = 0,
153 RDMA_CONTROL_ERROR,
154 RDMA_CONTROL_READY, /* ready to receive */
155 RDMA_CONTROL_QEMU_FILE, /* QEMUFile-transmitted bytes */
156 RDMA_CONTROL_RAM_BLOCKS_REQUEST, /* RAMBlock synchronization */
157 RDMA_CONTROL_RAM_BLOCKS_RESULT, /* RAMBlock synchronization */
158 RDMA_CONTROL_COMPRESS, /* page contains repeat values */
159 RDMA_CONTROL_REGISTER_REQUEST, /* dynamic page registration */
160 RDMA_CONTROL_REGISTER_RESULT, /* key to use after registration */
161 RDMA_CONTROL_REGISTER_FINISHED, /* current iteration finished */
162 RDMA_CONTROL_UNREGISTER_REQUEST, /* dynamic UN-registration */
163 RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
166 static const char *control_desc[] = {
167 [RDMA_CONTROL_NONE] = "NONE",
168 [RDMA_CONTROL_ERROR] = "ERROR",
169 [RDMA_CONTROL_READY] = "READY",
170 [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
171 [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
172 [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
173 [RDMA_CONTROL_COMPRESS] = "COMPRESS",
174 [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
175 [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
176 [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
177 [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
178 [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
182 * Memory and MR structures used to represent an IB Send/Recv work request.
183 * This is *not* used for RDMA writes, only IB Send/Recv.
185 typedef struct {
186 uint8_t control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
187 struct ibv_mr *control_mr; /* registration metadata */
188 size_t control_len; /* length of the message */
189 uint8_t *control_curr; /* start of unconsumed bytes */
190 } RDMAWorkRequestData;
193 * Negotiate RDMA capabilities during connection-setup time.
195 typedef struct {
196 uint32_t version;
197 uint32_t flags;
198 } RDMACapabilities;
200 static void caps_to_network(RDMACapabilities *cap)
202 cap->version = htonl(cap->version);
203 cap->flags = htonl(cap->flags);
206 static void network_to_caps(RDMACapabilities *cap)
208 cap->version = ntohl(cap->version);
209 cap->flags = ntohl(cap->flags);
213 * Representation of a RAMBlock from an RDMA perspective.
214 * This is not transmitted, only local.
215 * This and subsequent structures cannot be linked lists
216 * because we're using a single IB message to transmit
217 * the information. It's small anyway, so a list is overkill.
219 typedef struct RDMALocalBlock {
220 char *block_name;
221 uint8_t *local_host_addr; /* local virtual address */
222 uint64_t remote_host_addr; /* remote virtual address */
223 uint64_t offset;
224 uint64_t length;
225 struct ibv_mr **pmr; /* MRs for chunk-level registration */
226 struct ibv_mr *mr; /* MR for non-chunk-level registration */
227 uint32_t *remote_keys; /* rkeys for chunk-level registration */
228 uint32_t remote_rkey; /* rkeys for non-chunk-level registration */
229 int index; /* which block are we */
230 unsigned int src_index; /* (Only used on dest) */
231 bool is_ram_block;
232 int nb_chunks;
233 unsigned long *transit_bitmap;
234 unsigned long *unregister_bitmap;
235 } RDMALocalBlock;
238 * Also represents a RAMblock, but only on the dest.
239 * This gets transmitted by the dest during connection-time
240 * to the source VM and then is used to populate the
241 * corresponding RDMALocalBlock with
242 * the information needed to perform the actual RDMA.
244 typedef struct QEMU_PACKED RDMADestBlock {
245 uint64_t remote_host_addr;
246 uint64_t offset;
247 uint64_t length;
248 uint32_t remote_rkey;
249 uint32_t padding;
250 } RDMADestBlock;
252 static uint64_t htonll(uint64_t v)
254 union { uint32_t lv[2]; uint64_t llv; } u;
255 u.lv[0] = htonl(v >> 32);
256 u.lv[1] = htonl(v & 0xFFFFFFFFULL);
257 return u.llv;
260 static uint64_t ntohll(uint64_t v) {
261 union { uint32_t lv[2]; uint64_t llv; } u;
262 u.llv = v;
263 return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
266 static void dest_block_to_network(RDMADestBlock *db)
268 db->remote_host_addr = htonll(db->remote_host_addr);
269 db->offset = htonll(db->offset);
270 db->length = htonll(db->length);
271 db->remote_rkey = htonl(db->remote_rkey);
274 static void network_to_dest_block(RDMADestBlock *db)
276 db->remote_host_addr = ntohll(db->remote_host_addr);
277 db->offset = ntohll(db->offset);
278 db->length = ntohll(db->length);
279 db->remote_rkey = ntohl(db->remote_rkey);
283 * Virtual address of the above structures used for transmitting
284 * the RAMBlock descriptions at connection-time.
285 * This structure is *not* transmitted.
287 typedef struct RDMALocalBlocks {
288 int nb_blocks;
289 bool init; /* main memory init complete */
290 RDMALocalBlock *block;
291 } RDMALocalBlocks;
294 * Main data structure for RDMA state.
295 * While there is only one copy of this structure being allocated right now,
296 * this is the place where one would start if you wanted to consider
297 * having more than one RDMA connection open at the same time.
299 typedef struct RDMAContext {
300 char *host;
301 int port;
303 RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
306 * This is used by *_exchange_send() to figure out whether or not
307 * the initial "READY" message has already been received or not.
308 * This is because other functions may potentially poll() and detect
309 * the READY message before send() does, in which case we need to
310 * know if it completed.
312 int control_ready_expected;
314 /* number of outstanding writes */
315 int nb_sent;
317 /* store info about current buffer so that we can
318 merge it with future sends */
319 uint64_t current_addr;
320 uint64_t current_length;
321 /* index of ram block the current buffer belongs to */
322 int current_index;
323 /* index of the chunk in the current ram block */
324 int current_chunk;
326 bool pin_all;
329 * infiniband-specific variables for opening the device
330 * and maintaining connection state and so forth.
332 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
333 * cm_id->verbs, cm_id->channel, and cm_id->qp.
335 struct rdma_cm_id *cm_id; /* connection manager ID */
336 struct rdma_cm_id *listen_id;
337 bool connected;
339 struct ibv_context *verbs;
340 struct rdma_event_channel *channel;
341 struct ibv_qp *qp; /* queue pair */
342 struct ibv_comp_channel *comp_channel; /* completion channel */
343 struct ibv_pd *pd; /* protection domain */
344 struct ibv_cq *cq; /* completion queue */
347 * If a previous write failed (perhaps because of a failed
348 * memory registration, then do not attempt any future work
349 * and remember the error state.
351 int error_state;
352 int error_reported;
355 * Description of ram blocks used throughout the code.
357 RDMALocalBlocks local_ram_blocks;
358 RDMADestBlock *dest_blocks;
360 /* Index of the next RAMBlock received during block registration */
361 unsigned int next_src_index;
364 * Migration on *destination* started.
365 * Then use coroutine yield function.
366 * Source runs in a thread, so we don't care.
368 int migration_started_on_destination;
370 int total_registrations;
371 int total_writes;
373 int unregister_current, unregister_next;
374 uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
376 GHashTable *blockmap;
377 } RDMAContext;
379 #define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma"
380 #define QIO_CHANNEL_RDMA(obj) \
381 OBJECT_CHECK(QIOChannelRDMA, (obj), TYPE_QIO_CHANNEL_RDMA)
383 typedef struct QIOChannelRDMA QIOChannelRDMA;
386 struct QIOChannelRDMA {
387 QIOChannel parent;
388 RDMAContext *rdma;
389 QEMUFile *file;
390 size_t len;
391 bool blocking; /* XXX we don't actually honour this yet */
395 * Main structure for IB Send/Recv control messages.
396 * This gets prepended at the beginning of every Send/Recv.
398 typedef struct QEMU_PACKED {
399 uint32_t len; /* Total length of data portion */
400 uint32_t type; /* which control command to perform */
401 uint32_t repeat; /* number of commands in data portion of same type */
402 uint32_t padding;
403 } RDMAControlHeader;
405 static void control_to_network(RDMAControlHeader *control)
407 control->type = htonl(control->type);
408 control->len = htonl(control->len);
409 control->repeat = htonl(control->repeat);
412 static void network_to_control(RDMAControlHeader *control)
414 control->type = ntohl(control->type);
415 control->len = ntohl(control->len);
416 control->repeat = ntohl(control->repeat);
420 * Register a single Chunk.
421 * Information sent by the source VM to inform the dest
422 * to register an single chunk of memory before we can perform
423 * the actual RDMA operation.
425 typedef struct QEMU_PACKED {
426 union QEMU_PACKED {
427 uint64_t current_addr; /* offset into the ram_addr_t space */
428 uint64_t chunk; /* chunk to lookup if unregistering */
429 } key;
430 uint32_t current_index; /* which ramblock the chunk belongs to */
431 uint32_t padding;
432 uint64_t chunks; /* how many sequential chunks to register */
433 } RDMARegister;
435 static void register_to_network(RDMAContext *rdma, RDMARegister *reg)
437 RDMALocalBlock *local_block;
438 local_block = &rdma->local_ram_blocks.block[reg->current_index];
440 if (local_block->is_ram_block) {
442 * current_addr as passed in is an address in the local ram_addr_t
443 * space, we need to translate this for the destination
445 reg->key.current_addr -= local_block->offset;
446 reg->key.current_addr += rdma->dest_blocks[reg->current_index].offset;
448 reg->key.current_addr = htonll(reg->key.current_addr);
449 reg->current_index = htonl(reg->current_index);
450 reg->chunks = htonll(reg->chunks);
453 static void network_to_register(RDMARegister *reg)
455 reg->key.current_addr = ntohll(reg->key.current_addr);
456 reg->current_index = ntohl(reg->current_index);
457 reg->chunks = ntohll(reg->chunks);
460 typedef struct QEMU_PACKED {
461 uint32_t value; /* if zero, we will madvise() */
462 uint32_t block_idx; /* which ram block index */
463 uint64_t offset; /* Address in remote ram_addr_t space */
464 uint64_t length; /* length of the chunk */
465 } RDMACompress;
467 static void compress_to_network(RDMAContext *rdma, RDMACompress *comp)
469 comp->value = htonl(comp->value);
471 * comp->offset as passed in is an address in the local ram_addr_t
472 * space, we need to translate this for the destination
474 comp->offset -= rdma->local_ram_blocks.block[comp->block_idx].offset;
475 comp->offset += rdma->dest_blocks[comp->block_idx].offset;
476 comp->block_idx = htonl(comp->block_idx);
477 comp->offset = htonll(comp->offset);
478 comp->length = htonll(comp->length);
481 static void network_to_compress(RDMACompress *comp)
483 comp->value = ntohl(comp->value);
484 comp->block_idx = ntohl(comp->block_idx);
485 comp->offset = ntohll(comp->offset);
486 comp->length = ntohll(comp->length);
490 * The result of the dest's memory registration produces an "rkey"
491 * which the source VM must reference in order to perform
492 * the RDMA operation.
494 typedef struct QEMU_PACKED {
495 uint32_t rkey;
496 uint32_t padding;
497 uint64_t host_addr;
498 } RDMARegisterResult;
500 static void result_to_network(RDMARegisterResult *result)
502 result->rkey = htonl(result->rkey);
503 result->host_addr = htonll(result->host_addr);
506 static void network_to_result(RDMARegisterResult *result)
508 result->rkey = ntohl(result->rkey);
509 result->host_addr = ntohll(result->host_addr);
512 const char *print_wrid(int wrid);
513 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
514 uint8_t *data, RDMAControlHeader *resp,
515 int *resp_idx,
516 int (*callback)(RDMAContext *rdma));
518 static inline uint64_t ram_chunk_index(const uint8_t *start,
519 const uint8_t *host)
521 return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
524 static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block,
525 uint64_t i)
527 return (uint8_t *)(uintptr_t)(rdma_ram_block->local_host_addr +
528 (i << RDMA_REG_CHUNK_SHIFT));
531 static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block,
532 uint64_t i)
534 uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
535 (1UL << RDMA_REG_CHUNK_SHIFT);
537 if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
538 result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
541 return result;
544 static int rdma_add_block(RDMAContext *rdma, const char *block_name,
545 void *host_addr,
546 ram_addr_t block_offset, uint64_t length)
548 RDMALocalBlocks *local = &rdma->local_ram_blocks;
549 RDMALocalBlock *block;
550 RDMALocalBlock *old = local->block;
552 local->block = g_new0(RDMALocalBlock, local->nb_blocks + 1);
554 if (local->nb_blocks) {
555 int x;
557 if (rdma->blockmap) {
558 for (x = 0; x < local->nb_blocks; x++) {
559 g_hash_table_remove(rdma->blockmap,
560 (void *)(uintptr_t)old[x].offset);
561 g_hash_table_insert(rdma->blockmap,
562 (void *)(uintptr_t)old[x].offset,
563 &local->block[x]);
566 memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
567 g_free(old);
570 block = &local->block[local->nb_blocks];
572 block->block_name = g_strdup(block_name);
573 block->local_host_addr = host_addr;
574 block->offset = block_offset;
575 block->length = length;
576 block->index = local->nb_blocks;
577 block->src_index = ~0U; /* Filled in by the receipt of the block list */
578 block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
579 block->transit_bitmap = bitmap_new(block->nb_chunks);
580 bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
581 block->unregister_bitmap = bitmap_new(block->nb_chunks);
582 bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
583 block->remote_keys = g_new0(uint32_t, block->nb_chunks);
585 block->is_ram_block = local->init ? false : true;
587 if (rdma->blockmap) {
588 g_hash_table_insert(rdma->blockmap, (void *)(uintptr_t)block_offset, block);
591 trace_rdma_add_block(block_name, local->nb_blocks,
592 (uintptr_t) block->local_host_addr,
593 block->offset, block->length,
594 (uintptr_t) (block->local_host_addr + block->length),
595 BITS_TO_LONGS(block->nb_chunks) *
596 sizeof(unsigned long) * 8,
597 block->nb_chunks);
599 local->nb_blocks++;
601 return 0;
605 * Memory regions need to be registered with the device and queue pairs setup
606 * in advanced before the migration starts. This tells us where the RAM blocks
607 * are so that we can register them individually.
609 static int qemu_rdma_init_one_block(const char *block_name, void *host_addr,
610 ram_addr_t block_offset, ram_addr_t length, void *opaque)
612 return rdma_add_block(opaque, block_name, host_addr, block_offset, length);
616 * Identify the RAMBlocks and their quantity. They will be references to
617 * identify chunk boundaries inside each RAMBlock and also be referenced
618 * during dynamic page registration.
620 static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
622 RDMALocalBlocks *local = &rdma->local_ram_blocks;
624 assert(rdma->blockmap == NULL);
625 memset(local, 0, sizeof *local);
626 qemu_ram_foreach_block(qemu_rdma_init_one_block, rdma);
627 trace_qemu_rdma_init_ram_blocks(local->nb_blocks);
628 rdma->dest_blocks = g_new0(RDMADestBlock,
629 rdma->local_ram_blocks.nb_blocks);
630 local->init = true;
631 return 0;
635 * Note: If used outside of cleanup, the caller must ensure that the destination
636 * block structures are also updated
638 static int rdma_delete_block(RDMAContext *rdma, RDMALocalBlock *block)
640 RDMALocalBlocks *local = &rdma->local_ram_blocks;
641 RDMALocalBlock *old = local->block;
642 int x;
644 if (rdma->blockmap) {
645 g_hash_table_remove(rdma->blockmap, (void *)(uintptr_t)block->offset);
647 if (block->pmr) {
648 int j;
650 for (j = 0; j < block->nb_chunks; j++) {
651 if (!block->pmr[j]) {
652 continue;
654 ibv_dereg_mr(block->pmr[j]);
655 rdma->total_registrations--;
657 g_free(block->pmr);
658 block->pmr = NULL;
661 if (block->mr) {
662 ibv_dereg_mr(block->mr);
663 rdma->total_registrations--;
664 block->mr = NULL;
667 g_free(block->transit_bitmap);
668 block->transit_bitmap = NULL;
670 g_free(block->unregister_bitmap);
671 block->unregister_bitmap = NULL;
673 g_free(block->remote_keys);
674 block->remote_keys = NULL;
676 g_free(block->block_name);
677 block->block_name = NULL;
679 if (rdma->blockmap) {
680 for (x = 0; x < local->nb_blocks; x++) {
681 g_hash_table_remove(rdma->blockmap,
682 (void *)(uintptr_t)old[x].offset);
686 if (local->nb_blocks > 1) {
688 local->block = g_new0(RDMALocalBlock, local->nb_blocks - 1);
690 if (block->index) {
691 memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
694 if (block->index < (local->nb_blocks - 1)) {
695 memcpy(local->block + block->index, old + (block->index + 1),
696 sizeof(RDMALocalBlock) *
697 (local->nb_blocks - (block->index + 1)));
699 } else {
700 assert(block == local->block);
701 local->block = NULL;
704 trace_rdma_delete_block(block, (uintptr_t)block->local_host_addr,
705 block->offset, block->length,
706 (uintptr_t)(block->local_host_addr + block->length),
707 BITS_TO_LONGS(block->nb_chunks) *
708 sizeof(unsigned long) * 8, block->nb_chunks);
710 g_free(old);
712 local->nb_blocks--;
714 if (local->nb_blocks && rdma->blockmap) {
715 for (x = 0; x < local->nb_blocks; x++) {
716 g_hash_table_insert(rdma->blockmap,
717 (void *)(uintptr_t)local->block[x].offset,
718 &local->block[x]);
722 return 0;
726 * Put in the log file which RDMA device was opened and the details
727 * associated with that device.
729 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
731 struct ibv_port_attr port;
733 if (ibv_query_port(verbs, 1, &port)) {
734 error_report("Failed to query port information");
735 return;
738 printf("%s RDMA Device opened: kernel name %s "
739 "uverbs device name %s, "
740 "infiniband_verbs class device path %s, "
741 "infiniband class device path %s, "
742 "transport: (%d) %s\n",
743 who,
744 verbs->device->name,
745 verbs->device->dev_name,
746 verbs->device->dev_path,
747 verbs->device->ibdev_path,
748 port.link_layer,
749 (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" :
750 ((port.link_layer == IBV_LINK_LAYER_ETHERNET)
751 ? "Ethernet" : "Unknown"));
755 * Put in the log file the RDMA gid addressing information,
756 * useful for folks who have trouble understanding the
757 * RDMA device hierarchy in the kernel.
759 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
761 char sgid[33];
762 char dgid[33];
763 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
764 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
765 trace_qemu_rdma_dump_gid(who, sgid, dgid);
769 * As of now, IPv6 over RoCE / iWARP is not supported by linux.
770 * We will try the next addrinfo struct, and fail if there are
771 * no other valid addresses to bind against.
773 * If user is listening on '[::]', then we will not have a opened a device
774 * yet and have no way of verifying if the device is RoCE or not.
776 * In this case, the source VM will throw an error for ALL types of
777 * connections (both IPv4 and IPv6) if the destination machine does not have
778 * a regular infiniband network available for use.
780 * The only way to guarantee that an error is thrown for broken kernels is
781 * for the management software to choose a *specific* interface at bind time
782 * and validate what time of hardware it is.
784 * Unfortunately, this puts the user in a fix:
786 * If the source VM connects with an IPv4 address without knowing that the
787 * destination has bound to '[::]' the migration will unconditionally fail
788 * unless the management software is explicitly listening on the IPv4
789 * address while using a RoCE-based device.
791 * If the source VM connects with an IPv6 address, then we're OK because we can
792 * throw an error on the source (and similarly on the destination).
794 * But in mixed environments, this will be broken for a while until it is fixed
795 * inside linux.
797 * We do provide a *tiny* bit of help in this function: We can list all of the
798 * devices in the system and check to see if all the devices are RoCE or
799 * Infiniband.
801 * If we detect that we have a *pure* RoCE environment, then we can safely
802 * thrown an error even if the management software has specified '[::]' as the
803 * bind address.
805 * However, if there is are multiple hetergeneous devices, then we cannot make
806 * this assumption and the user just has to be sure they know what they are
807 * doing.
809 * Patches are being reviewed on linux-rdma.
811 static int qemu_rdma_broken_ipv6_kernel(Error **errp, struct ibv_context *verbs)
813 struct ibv_port_attr port_attr;
815 /* This bug only exists in linux, to our knowledge. */
816 #ifdef CONFIG_LINUX
819 * Verbs are only NULL if management has bound to '[::]'.
821 * Let's iterate through all the devices and see if there any pure IB
822 * devices (non-ethernet).
824 * If not, then we can safely proceed with the migration.
825 * Otherwise, there are no guarantees until the bug is fixed in linux.
827 if (!verbs) {
828 int num_devices, x;
829 struct ibv_device ** dev_list = ibv_get_device_list(&num_devices);
830 bool roce_found = false;
831 bool ib_found = false;
833 for (x = 0; x < num_devices; x++) {
834 verbs = ibv_open_device(dev_list[x]);
835 if (!verbs) {
836 if (errno == EPERM) {
837 continue;
838 } else {
839 return -EINVAL;
843 if (ibv_query_port(verbs, 1, &port_attr)) {
844 ibv_close_device(verbs);
845 ERROR(errp, "Could not query initial IB port");
846 return -EINVAL;
849 if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
850 ib_found = true;
851 } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
852 roce_found = true;
855 ibv_close_device(verbs);
859 if (roce_found) {
860 if (ib_found) {
861 fprintf(stderr, "WARN: migrations may fail:"
862 " IPv6 over RoCE / iWARP in linux"
863 " is broken. But since you appear to have a"
864 " mixed RoCE / IB environment, be sure to only"
865 " migrate over the IB fabric until the kernel "
866 " fixes the bug.\n");
867 } else {
868 ERROR(errp, "You only have RoCE / iWARP devices in your systems"
869 " and your management software has specified '[::]'"
870 ", but IPv6 over RoCE / iWARP is not supported in Linux.");
871 return -ENONET;
875 return 0;
879 * If we have a verbs context, that means that some other than '[::]' was
880 * used by the management software for binding. In which case we can
881 * actually warn the user about a potentially broken kernel.
884 /* IB ports start with 1, not 0 */
885 if (ibv_query_port(verbs, 1, &port_attr)) {
886 ERROR(errp, "Could not query initial IB port");
887 return -EINVAL;
890 if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
891 ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 "
892 "(but patches on linux-rdma in progress)");
893 return -ENONET;
896 #endif
898 return 0;
902 * Figure out which RDMA device corresponds to the requested IP hostname
903 * Also create the initial connection manager identifiers for opening
904 * the connection.
906 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
908 int ret;
909 struct rdma_addrinfo *res;
910 char port_str[16];
911 struct rdma_cm_event *cm_event;
912 char ip[40] = "unknown";
913 struct rdma_addrinfo *e;
915 if (rdma->host == NULL || !strcmp(rdma->host, "")) {
916 ERROR(errp, "RDMA hostname has not been set");
917 return -EINVAL;
920 /* create CM channel */
921 rdma->channel = rdma_create_event_channel();
922 if (!rdma->channel) {
923 ERROR(errp, "could not create CM channel");
924 return -EINVAL;
927 /* create CM id */
928 ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
929 if (ret) {
930 ERROR(errp, "could not create channel id");
931 goto err_resolve_create_id;
934 snprintf(port_str, 16, "%d", rdma->port);
935 port_str[15] = '\0';
937 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
938 if (ret < 0) {
939 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
940 goto err_resolve_get_addr;
943 for (e = res; e != NULL; e = e->ai_next) {
944 inet_ntop(e->ai_family,
945 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
946 trace_qemu_rdma_resolve_host_trying(rdma->host, ip);
948 ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
949 RDMA_RESOLVE_TIMEOUT_MS);
950 if (!ret) {
951 if (e->ai_family == AF_INET6) {
952 ret = qemu_rdma_broken_ipv6_kernel(errp, rdma->cm_id->verbs);
953 if (ret) {
954 continue;
957 goto route;
961 ERROR(errp, "could not resolve address %s", rdma->host);
962 goto err_resolve_get_addr;
964 route:
965 qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
967 ret = rdma_get_cm_event(rdma->channel, &cm_event);
968 if (ret) {
969 ERROR(errp, "could not perform event_addr_resolved");
970 goto err_resolve_get_addr;
973 if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
974 ERROR(errp, "result not equal to event_addr_resolved %s",
975 rdma_event_str(cm_event->event));
976 perror("rdma_resolve_addr");
977 rdma_ack_cm_event(cm_event);
978 ret = -EINVAL;
979 goto err_resolve_get_addr;
981 rdma_ack_cm_event(cm_event);
983 /* resolve route */
984 ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
985 if (ret) {
986 ERROR(errp, "could not resolve rdma route");
987 goto err_resolve_get_addr;
990 ret = rdma_get_cm_event(rdma->channel, &cm_event);
991 if (ret) {
992 ERROR(errp, "could not perform event_route_resolved");
993 goto err_resolve_get_addr;
995 if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
996 ERROR(errp, "result not equal to event_route_resolved: %s",
997 rdma_event_str(cm_event->event));
998 rdma_ack_cm_event(cm_event);
999 ret = -EINVAL;
1000 goto err_resolve_get_addr;
1002 rdma_ack_cm_event(cm_event);
1003 rdma->verbs = rdma->cm_id->verbs;
1004 qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
1005 qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
1006 return 0;
1008 err_resolve_get_addr:
1009 rdma_destroy_id(rdma->cm_id);
1010 rdma->cm_id = NULL;
1011 err_resolve_create_id:
1012 rdma_destroy_event_channel(rdma->channel);
1013 rdma->channel = NULL;
1014 return ret;
1018 * Create protection domain and completion queues
1020 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
1022 /* allocate pd */
1023 rdma->pd = ibv_alloc_pd(rdma->verbs);
1024 if (!rdma->pd) {
1025 error_report("failed to allocate protection domain");
1026 return -1;
1029 /* create completion channel */
1030 rdma->comp_channel = ibv_create_comp_channel(rdma->verbs);
1031 if (!rdma->comp_channel) {
1032 error_report("failed to allocate completion channel");
1033 goto err_alloc_pd_cq;
1037 * Completion queue can be filled by both read and write work requests,
1038 * so must reflect the sum of both possible queue sizes.
1040 rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1041 NULL, rdma->comp_channel, 0);
1042 if (!rdma->cq) {
1043 error_report("failed to allocate completion queue");
1044 goto err_alloc_pd_cq;
1047 return 0;
1049 err_alloc_pd_cq:
1050 if (rdma->pd) {
1051 ibv_dealloc_pd(rdma->pd);
1053 if (rdma->comp_channel) {
1054 ibv_destroy_comp_channel(rdma->comp_channel);
1056 rdma->pd = NULL;
1057 rdma->comp_channel = NULL;
1058 return -1;
1063 * Create queue pairs.
1065 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
1067 struct ibv_qp_init_attr attr = { 0 };
1068 int ret;
1070 attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
1071 attr.cap.max_recv_wr = 3;
1072 attr.cap.max_send_sge = 1;
1073 attr.cap.max_recv_sge = 1;
1074 attr.send_cq = rdma->cq;
1075 attr.recv_cq = rdma->cq;
1076 attr.qp_type = IBV_QPT_RC;
1078 ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
1079 if (ret) {
1080 return -1;
1083 rdma->qp = rdma->cm_id->qp;
1084 return 0;
1087 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
1089 int i;
1090 RDMALocalBlocks *local = &rdma->local_ram_blocks;
1092 for (i = 0; i < local->nb_blocks; i++) {
1093 local->block[i].mr =
1094 ibv_reg_mr(rdma->pd,
1095 local->block[i].local_host_addr,
1096 local->block[i].length,
1097 IBV_ACCESS_LOCAL_WRITE |
1098 IBV_ACCESS_REMOTE_WRITE
1100 if (!local->block[i].mr) {
1101 perror("Failed to register local dest ram block!\n");
1102 break;
1104 rdma->total_registrations++;
1107 if (i >= local->nb_blocks) {
1108 return 0;
1111 for (i--; i >= 0; i--) {
1112 ibv_dereg_mr(local->block[i].mr);
1113 rdma->total_registrations--;
1116 return -1;
1121 * Find the ram block that corresponds to the page requested to be
1122 * transmitted by QEMU.
1124 * Once the block is found, also identify which 'chunk' within that
1125 * block that the page belongs to.
1127 * This search cannot fail or the migration will fail.
1129 static int qemu_rdma_search_ram_block(RDMAContext *rdma,
1130 uintptr_t block_offset,
1131 uint64_t offset,
1132 uint64_t length,
1133 uint64_t *block_index,
1134 uint64_t *chunk_index)
1136 uint64_t current_addr = block_offset + offset;
1137 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
1138 (void *) block_offset);
1139 assert(block);
1140 assert(current_addr >= block->offset);
1141 assert((current_addr + length) <= (block->offset + block->length));
1143 *block_index = block->index;
1144 *chunk_index = ram_chunk_index(block->local_host_addr,
1145 block->local_host_addr + (current_addr - block->offset));
1147 return 0;
1151 * Register a chunk with IB. If the chunk was already registered
1152 * previously, then skip.
1154 * Also return the keys associated with the registration needed
1155 * to perform the actual RDMA operation.
1157 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
1158 RDMALocalBlock *block, uintptr_t host_addr,
1159 uint32_t *lkey, uint32_t *rkey, int chunk,
1160 uint8_t *chunk_start, uint8_t *chunk_end)
1162 if (block->mr) {
1163 if (lkey) {
1164 *lkey = block->mr->lkey;
1166 if (rkey) {
1167 *rkey = block->mr->rkey;
1169 return 0;
1172 /* allocate memory to store chunk MRs */
1173 if (!block->pmr) {
1174 block->pmr = g_new0(struct ibv_mr *, block->nb_chunks);
1178 * If 'rkey', then we're the destination, so grant access to the source.
1180 * If 'lkey', then we're the source VM, so grant access only to ourselves.
1182 if (!block->pmr[chunk]) {
1183 uint64_t len = chunk_end - chunk_start;
1185 trace_qemu_rdma_register_and_get_keys(len, chunk_start);
1187 block->pmr[chunk] = ibv_reg_mr(rdma->pd,
1188 chunk_start, len,
1189 (rkey ? (IBV_ACCESS_LOCAL_WRITE |
1190 IBV_ACCESS_REMOTE_WRITE) : 0));
1192 if (!block->pmr[chunk]) {
1193 perror("Failed to register chunk!");
1194 fprintf(stderr, "Chunk details: block: %d chunk index %d"
1195 " start %" PRIuPTR " end %" PRIuPTR
1196 " host %" PRIuPTR
1197 " local %" PRIuPTR " registrations: %d\n",
1198 block->index, chunk, (uintptr_t)chunk_start,
1199 (uintptr_t)chunk_end, host_addr,
1200 (uintptr_t)block->local_host_addr,
1201 rdma->total_registrations);
1202 return -1;
1204 rdma->total_registrations++;
1207 if (lkey) {
1208 *lkey = block->pmr[chunk]->lkey;
1210 if (rkey) {
1211 *rkey = block->pmr[chunk]->rkey;
1213 return 0;
1217 * Register (at connection time) the memory used for control
1218 * channel messages.
1220 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1222 rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1223 rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1224 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1225 if (rdma->wr_data[idx].control_mr) {
1226 rdma->total_registrations++;
1227 return 0;
1229 error_report("qemu_rdma_reg_control failed");
1230 return -1;
1233 const char *print_wrid(int wrid)
1235 if (wrid >= RDMA_WRID_RECV_CONTROL) {
1236 return wrid_desc[RDMA_WRID_RECV_CONTROL];
1238 return wrid_desc[wrid];
1242 * RDMA requires memory registration (mlock/pinning), but this is not good for
1243 * overcommitment.
1245 * In preparation for the future where LRU information or workload-specific
1246 * writable writable working set memory access behavior is available to QEMU
1247 * it would be nice to have in place the ability to UN-register/UN-pin
1248 * particular memory regions from the RDMA hardware when it is determine that
1249 * those regions of memory will likely not be accessed again in the near future.
1251 * While we do not yet have such information right now, the following
1252 * compile-time option allows us to perform a non-optimized version of this
1253 * behavior.
1255 * By uncommenting this option, you will cause *all* RDMA transfers to be
1256 * unregistered immediately after the transfer completes on both sides of the
1257 * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1259 * This will have a terrible impact on migration performance, so until future
1260 * workload information or LRU information is available, do not attempt to use
1261 * this feature except for basic testing.
1263 //#define RDMA_UNREGISTRATION_EXAMPLE
1266 * Perform a non-optimized memory unregistration after every transfer
1267 * for demonstration purposes, only if pin-all is not requested.
1269 * Potential optimizations:
1270 * 1. Start a new thread to run this function continuously
1271 - for bit clearing
1272 - and for receipt of unregister messages
1273 * 2. Use an LRU.
1274 * 3. Use workload hints.
1276 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1278 while (rdma->unregistrations[rdma->unregister_current]) {
1279 int ret;
1280 uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1281 uint64_t chunk =
1282 (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1283 uint64_t index =
1284 (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1285 RDMALocalBlock *block =
1286 &(rdma->local_ram_blocks.block[index]);
1287 RDMARegister reg = { .current_index = index };
1288 RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1290 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1291 .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1292 .repeat = 1,
1295 trace_qemu_rdma_unregister_waiting_proc(chunk,
1296 rdma->unregister_current);
1298 rdma->unregistrations[rdma->unregister_current] = 0;
1299 rdma->unregister_current++;
1301 if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1302 rdma->unregister_current = 0;
1307 * Unregistration is speculative (because migration is single-threaded
1308 * and we cannot break the protocol's inifinband message ordering).
1309 * Thus, if the memory is currently being used for transmission,
1310 * then abort the attempt to unregister and try again
1311 * later the next time a completion is received for this memory.
1313 clear_bit(chunk, block->unregister_bitmap);
1315 if (test_bit(chunk, block->transit_bitmap)) {
1316 trace_qemu_rdma_unregister_waiting_inflight(chunk);
1317 continue;
1320 trace_qemu_rdma_unregister_waiting_send(chunk);
1322 ret = ibv_dereg_mr(block->pmr[chunk]);
1323 block->pmr[chunk] = NULL;
1324 block->remote_keys[chunk] = 0;
1326 if (ret != 0) {
1327 perror("unregistration chunk failed");
1328 return -ret;
1330 rdma->total_registrations--;
1332 reg.key.chunk = chunk;
1333 register_to_network(rdma, &reg);
1334 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1335 &resp, NULL, NULL);
1336 if (ret < 0) {
1337 return ret;
1340 trace_qemu_rdma_unregister_waiting_complete(chunk);
1343 return 0;
1346 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1347 uint64_t chunk)
1349 uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1351 result |= (index << RDMA_WRID_BLOCK_SHIFT);
1352 result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1354 return result;
1358 * Set bit for unregistration in the next iteration.
1359 * We cannot transmit right here, but will unpin later.
1361 static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index,
1362 uint64_t chunk, uint64_t wr_id)
1364 if (rdma->unregistrations[rdma->unregister_next] != 0) {
1365 error_report("rdma migration: queue is full");
1366 } else {
1367 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1369 if (!test_and_set_bit(chunk, block->unregister_bitmap)) {
1370 trace_qemu_rdma_signal_unregister_append(chunk,
1371 rdma->unregister_next);
1373 rdma->unregistrations[rdma->unregister_next++] =
1374 qemu_rdma_make_wrid(wr_id, index, chunk);
1376 if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) {
1377 rdma->unregister_next = 0;
1379 } else {
1380 trace_qemu_rdma_signal_unregister_already(chunk);
1386 * Consult the connection manager to see a work request
1387 * (of any kind) has completed.
1388 * Return the work request ID that completed.
1390 static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out,
1391 uint32_t *byte_len)
1393 int ret;
1394 struct ibv_wc wc;
1395 uint64_t wr_id;
1397 ret = ibv_poll_cq(rdma->cq, 1, &wc);
1399 if (!ret) {
1400 *wr_id_out = RDMA_WRID_NONE;
1401 return 0;
1404 if (ret < 0) {
1405 error_report("ibv_poll_cq return %d", ret);
1406 return ret;
1409 wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1411 if (wc.status != IBV_WC_SUCCESS) {
1412 fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1413 wc.status, ibv_wc_status_str(wc.status));
1414 fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
1416 return -1;
1419 if (rdma->control_ready_expected &&
1420 (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1421 trace_qemu_rdma_poll_recv(wrid_desc[RDMA_WRID_RECV_CONTROL],
1422 wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
1423 rdma->control_ready_expected = 0;
1426 if (wr_id == RDMA_WRID_RDMA_WRITE) {
1427 uint64_t chunk =
1428 (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1429 uint64_t index =
1430 (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1431 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1433 trace_qemu_rdma_poll_write(print_wrid(wr_id), wr_id, rdma->nb_sent,
1434 index, chunk, block->local_host_addr,
1435 (void *)(uintptr_t)block->remote_host_addr);
1437 clear_bit(chunk, block->transit_bitmap);
1439 if (rdma->nb_sent > 0) {
1440 rdma->nb_sent--;
1443 if (!rdma->pin_all) {
1445 * FYI: If one wanted to signal a specific chunk to be unregistered
1446 * using LRU or workload-specific information, this is the function
1447 * you would call to do so. That chunk would then get asynchronously
1448 * unregistered later.
1450 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1451 qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id);
1452 #endif
1454 } else {
1455 trace_qemu_rdma_poll_other(print_wrid(wr_id), wr_id, rdma->nb_sent);
1458 *wr_id_out = wc.wr_id;
1459 if (byte_len) {
1460 *byte_len = wc.byte_len;
1463 return 0;
1467 * Block until the next work request has completed.
1469 * First poll to see if a work request has already completed,
1470 * otherwise block.
1472 * If we encounter completed work requests for IDs other than
1473 * the one we're interested in, then that's generally an error.
1475 * The only exception is actual RDMA Write completions. These
1476 * completions only need to be recorded, but do not actually
1477 * need further processing.
1479 static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested,
1480 uint32_t *byte_len)
1482 int num_cq_events = 0, ret = 0;
1483 struct ibv_cq *cq;
1484 void *cq_ctx;
1485 uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1487 if (ibv_req_notify_cq(rdma->cq, 0)) {
1488 return -1;
1490 /* poll cq first */
1491 while (wr_id != wrid_requested) {
1492 ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1493 if (ret < 0) {
1494 return ret;
1497 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1499 if (wr_id == RDMA_WRID_NONE) {
1500 break;
1502 if (wr_id != wrid_requested) {
1503 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1504 wrid_requested, print_wrid(wr_id), wr_id);
1508 if (wr_id == wrid_requested) {
1509 return 0;
1512 while (1) {
1514 * Coroutine doesn't start until migration_fd_process_incoming()
1515 * so don't yield unless we know we're running inside of a coroutine.
1517 if (rdma->migration_started_on_destination) {
1518 yield_until_fd_readable(rdma->comp_channel->fd);
1521 if (ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx)) {
1522 perror("ibv_get_cq_event");
1523 goto err_block_for_wrid;
1526 num_cq_events++;
1528 if (ibv_req_notify_cq(cq, 0)) {
1529 goto err_block_for_wrid;
1532 while (wr_id != wrid_requested) {
1533 ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1534 if (ret < 0) {
1535 goto err_block_for_wrid;
1538 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1540 if (wr_id == RDMA_WRID_NONE) {
1541 break;
1543 if (wr_id != wrid_requested) {
1544 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1545 wrid_requested, print_wrid(wr_id), wr_id);
1549 if (wr_id == wrid_requested) {
1550 goto success_block_for_wrid;
1554 success_block_for_wrid:
1555 if (num_cq_events) {
1556 ibv_ack_cq_events(cq, num_cq_events);
1558 return 0;
1560 err_block_for_wrid:
1561 if (num_cq_events) {
1562 ibv_ack_cq_events(cq, num_cq_events);
1564 return ret;
1568 * Post a SEND message work request for the control channel
1569 * containing some data and block until the post completes.
1571 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1572 RDMAControlHeader *head)
1574 int ret = 0;
1575 RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1576 struct ibv_send_wr *bad_wr;
1577 struct ibv_sge sge = {
1578 .addr = (uintptr_t)(wr->control),
1579 .length = head->len + sizeof(RDMAControlHeader),
1580 .lkey = wr->control_mr->lkey,
1582 struct ibv_send_wr send_wr = {
1583 .wr_id = RDMA_WRID_SEND_CONTROL,
1584 .opcode = IBV_WR_SEND,
1585 .send_flags = IBV_SEND_SIGNALED,
1586 .sg_list = &sge,
1587 .num_sge = 1,
1590 trace_qemu_rdma_post_send_control(control_desc[head->type]);
1593 * We don't actually need to do a memcpy() in here if we used
1594 * the "sge" properly, but since we're only sending control messages
1595 * (not RAM in a performance-critical path), then its OK for now.
1597 * The copy makes the RDMAControlHeader simpler to manipulate
1598 * for the time being.
1600 assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1601 memcpy(wr->control, head, sizeof(RDMAControlHeader));
1602 control_to_network((void *) wr->control);
1604 if (buf) {
1605 memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1609 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1611 if (ret > 0) {
1612 error_report("Failed to use post IB SEND for control");
1613 return -ret;
1616 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1617 if (ret < 0) {
1618 error_report("rdma migration: send polling control error");
1621 return ret;
1625 * Post a RECV work request in anticipation of some future receipt
1626 * of data on the control channel.
1628 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1630 struct ibv_recv_wr *bad_wr;
1631 struct ibv_sge sge = {
1632 .addr = (uintptr_t)(rdma->wr_data[idx].control),
1633 .length = RDMA_CONTROL_MAX_BUFFER,
1634 .lkey = rdma->wr_data[idx].control_mr->lkey,
1637 struct ibv_recv_wr recv_wr = {
1638 .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1639 .sg_list = &sge,
1640 .num_sge = 1,
1644 if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1645 return -1;
1648 return 0;
1652 * Block and wait for a RECV control channel message to arrive.
1654 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1655 RDMAControlHeader *head, int expecting, int idx)
1657 uint32_t byte_len;
1658 int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1659 &byte_len);
1661 if (ret < 0) {
1662 error_report("rdma migration: recv polling control error!");
1663 return ret;
1666 network_to_control((void *) rdma->wr_data[idx].control);
1667 memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1669 trace_qemu_rdma_exchange_get_response_start(control_desc[expecting]);
1671 if (expecting == RDMA_CONTROL_NONE) {
1672 trace_qemu_rdma_exchange_get_response_none(control_desc[head->type],
1673 head->type);
1674 } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1675 error_report("Was expecting a %s (%d) control message"
1676 ", but got: %s (%d), length: %d",
1677 control_desc[expecting], expecting,
1678 control_desc[head->type], head->type, head->len);
1679 return -EIO;
1681 if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1682 error_report("too long length: %d", head->len);
1683 return -EINVAL;
1685 if (sizeof(*head) + head->len != byte_len) {
1686 error_report("Malformed length: %d byte_len %d", head->len, byte_len);
1687 return -EINVAL;
1690 return 0;
1694 * When a RECV work request has completed, the work request's
1695 * buffer is pointed at the header.
1697 * This will advance the pointer to the data portion
1698 * of the control message of the work request's buffer that
1699 * was populated after the work request finished.
1701 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1702 RDMAControlHeader *head)
1704 rdma->wr_data[idx].control_len = head->len;
1705 rdma->wr_data[idx].control_curr =
1706 rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1710 * This is an 'atomic' high-level operation to deliver a single, unified
1711 * control-channel message.
1713 * Additionally, if the user is expecting some kind of reply to this message,
1714 * they can request a 'resp' response message be filled in by posting an
1715 * additional work request on behalf of the user and waiting for an additional
1716 * completion.
1718 * The extra (optional) response is used during registration to us from having
1719 * to perform an *additional* exchange of message just to provide a response by
1720 * instead piggy-backing on the acknowledgement.
1722 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1723 uint8_t *data, RDMAControlHeader *resp,
1724 int *resp_idx,
1725 int (*callback)(RDMAContext *rdma))
1727 int ret = 0;
1730 * Wait until the dest is ready before attempting to deliver the message
1731 * by waiting for a READY message.
1733 if (rdma->control_ready_expected) {
1734 RDMAControlHeader resp;
1735 ret = qemu_rdma_exchange_get_response(rdma,
1736 &resp, RDMA_CONTROL_READY, RDMA_WRID_READY);
1737 if (ret < 0) {
1738 return ret;
1743 * If the user is expecting a response, post a WR in anticipation of it.
1745 if (resp) {
1746 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1747 if (ret) {
1748 error_report("rdma migration: error posting"
1749 " extra control recv for anticipated result!");
1750 return ret;
1755 * Post a WR to replace the one we just consumed for the READY message.
1757 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1758 if (ret) {
1759 error_report("rdma migration: error posting first control recv!");
1760 return ret;
1764 * Deliver the control message that was requested.
1766 ret = qemu_rdma_post_send_control(rdma, data, head);
1768 if (ret < 0) {
1769 error_report("Failed to send control buffer!");
1770 return ret;
1774 * If we're expecting a response, block and wait for it.
1776 if (resp) {
1777 if (callback) {
1778 trace_qemu_rdma_exchange_send_issue_callback();
1779 ret = callback(rdma);
1780 if (ret < 0) {
1781 return ret;
1785 trace_qemu_rdma_exchange_send_waiting(control_desc[resp->type]);
1786 ret = qemu_rdma_exchange_get_response(rdma, resp,
1787 resp->type, RDMA_WRID_DATA);
1789 if (ret < 0) {
1790 return ret;
1793 qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1794 if (resp_idx) {
1795 *resp_idx = RDMA_WRID_DATA;
1797 trace_qemu_rdma_exchange_send_received(control_desc[resp->type]);
1800 rdma->control_ready_expected = 1;
1802 return 0;
1806 * This is an 'atomic' high-level operation to receive a single, unified
1807 * control-channel message.
1809 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1810 int expecting)
1812 RDMAControlHeader ready = {
1813 .len = 0,
1814 .type = RDMA_CONTROL_READY,
1815 .repeat = 1,
1817 int ret;
1820 * Inform the source that we're ready to receive a message.
1822 ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
1824 if (ret < 0) {
1825 error_report("Failed to send control buffer!");
1826 return ret;
1830 * Block and wait for the message.
1832 ret = qemu_rdma_exchange_get_response(rdma, head,
1833 expecting, RDMA_WRID_READY);
1835 if (ret < 0) {
1836 return ret;
1839 qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
1842 * Post a new RECV work request to replace the one we just consumed.
1844 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1845 if (ret) {
1846 error_report("rdma migration: error posting second control recv!");
1847 return ret;
1850 return 0;
1854 * Write an actual chunk of memory using RDMA.
1856 * If we're using dynamic registration on the dest-side, we have to
1857 * send a registration command first.
1859 static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
1860 int current_index, uint64_t current_addr,
1861 uint64_t length)
1863 struct ibv_sge sge;
1864 struct ibv_send_wr send_wr = { 0 };
1865 struct ibv_send_wr *bad_wr;
1866 int reg_result_idx, ret, count = 0;
1867 uint64_t chunk, chunks;
1868 uint8_t *chunk_start, *chunk_end;
1869 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
1870 RDMARegister reg;
1871 RDMARegisterResult *reg_result;
1872 RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
1873 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1874 .type = RDMA_CONTROL_REGISTER_REQUEST,
1875 .repeat = 1,
1878 retry:
1879 sge.addr = (uintptr_t)(block->local_host_addr +
1880 (current_addr - block->offset));
1881 sge.length = length;
1883 chunk = ram_chunk_index(block->local_host_addr,
1884 (uint8_t *)(uintptr_t)sge.addr);
1885 chunk_start = ram_chunk_start(block, chunk);
1887 if (block->is_ram_block) {
1888 chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
1890 if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1891 chunks--;
1893 } else {
1894 chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
1896 if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1897 chunks--;
1901 trace_qemu_rdma_write_one_top(chunks + 1,
1902 (chunks + 1) *
1903 (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
1905 chunk_end = ram_chunk_end(block, chunk + chunks);
1907 if (!rdma->pin_all) {
1908 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1909 qemu_rdma_unregister_waiting(rdma);
1910 #endif
1913 while (test_bit(chunk, block->transit_bitmap)) {
1914 (void)count;
1915 trace_qemu_rdma_write_one_block(count++, current_index, chunk,
1916 sge.addr, length, rdma->nb_sent, block->nb_chunks);
1918 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
1920 if (ret < 0) {
1921 error_report("Failed to Wait for previous write to complete "
1922 "block %d chunk %" PRIu64
1923 " current %" PRIu64 " len %" PRIu64 " %d",
1924 current_index, chunk, sge.addr, length, rdma->nb_sent);
1925 return ret;
1929 if (!rdma->pin_all || !block->is_ram_block) {
1930 if (!block->remote_keys[chunk]) {
1932 * This chunk has not yet been registered, so first check to see
1933 * if the entire chunk is zero. If so, tell the other size to
1934 * memset() + madvise() the entire chunk without RDMA.
1937 if (can_use_buffer_find_nonzero_offset((void *)(uintptr_t)sge.addr,
1938 length)
1939 && buffer_find_nonzero_offset((void *)(uintptr_t)sge.addr,
1940 length) == length) {
1941 RDMACompress comp = {
1942 .offset = current_addr,
1943 .value = 0,
1944 .block_idx = current_index,
1945 .length = length,
1948 head.len = sizeof(comp);
1949 head.type = RDMA_CONTROL_COMPRESS;
1951 trace_qemu_rdma_write_one_zero(chunk, sge.length,
1952 current_index, current_addr);
1954 compress_to_network(rdma, &comp);
1955 ret = qemu_rdma_exchange_send(rdma, &head,
1956 (uint8_t *) &comp, NULL, NULL, NULL);
1958 if (ret < 0) {
1959 return -EIO;
1962 acct_update_position(f, sge.length, true);
1964 return 1;
1968 * Otherwise, tell other side to register.
1970 reg.current_index = current_index;
1971 if (block->is_ram_block) {
1972 reg.key.current_addr = current_addr;
1973 } else {
1974 reg.key.chunk = chunk;
1976 reg.chunks = chunks;
1978 trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index,
1979 current_addr);
1981 register_to_network(rdma, &reg);
1982 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1983 &resp, &reg_result_idx, NULL);
1984 if (ret < 0) {
1985 return ret;
1988 /* try to overlap this single registration with the one we sent. */
1989 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
1990 &sge.lkey, NULL, chunk,
1991 chunk_start, chunk_end)) {
1992 error_report("cannot get lkey");
1993 return -EINVAL;
1996 reg_result = (RDMARegisterResult *)
1997 rdma->wr_data[reg_result_idx].control_curr;
1999 network_to_result(reg_result);
2001 trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk],
2002 reg_result->rkey, chunk);
2004 block->remote_keys[chunk] = reg_result->rkey;
2005 block->remote_host_addr = reg_result->host_addr;
2006 } else {
2007 /* already registered before */
2008 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2009 &sge.lkey, NULL, chunk,
2010 chunk_start, chunk_end)) {
2011 error_report("cannot get lkey!");
2012 return -EINVAL;
2016 send_wr.wr.rdma.rkey = block->remote_keys[chunk];
2017 } else {
2018 send_wr.wr.rdma.rkey = block->remote_rkey;
2020 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2021 &sge.lkey, NULL, chunk,
2022 chunk_start, chunk_end)) {
2023 error_report("cannot get lkey!");
2024 return -EINVAL;
2029 * Encode the ram block index and chunk within this wrid.
2030 * We will use this information at the time of completion
2031 * to figure out which bitmap to check against and then which
2032 * chunk in the bitmap to look for.
2034 send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
2035 current_index, chunk);
2037 send_wr.opcode = IBV_WR_RDMA_WRITE;
2038 send_wr.send_flags = IBV_SEND_SIGNALED;
2039 send_wr.sg_list = &sge;
2040 send_wr.num_sge = 1;
2041 send_wr.wr.rdma.remote_addr = block->remote_host_addr +
2042 (current_addr - block->offset);
2044 trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr,
2045 sge.length);
2048 * ibv_post_send() does not return negative error numbers,
2049 * per the specification they are positive - no idea why.
2051 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
2053 if (ret == ENOMEM) {
2054 trace_qemu_rdma_write_one_queue_full();
2055 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2056 if (ret < 0) {
2057 error_report("rdma migration: failed to make "
2058 "room in full send queue! %d", ret);
2059 return ret;
2062 goto retry;
2064 } else if (ret > 0) {
2065 perror("rdma migration: post rdma write failed");
2066 return -ret;
2069 set_bit(chunk, block->transit_bitmap);
2070 acct_update_position(f, sge.length, false);
2071 rdma->total_writes++;
2073 return 0;
2077 * Push out any unwritten RDMA operations.
2079 * We support sending out multiple chunks at the same time.
2080 * Not all of them need to get signaled in the completion queue.
2082 static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
2084 int ret;
2086 if (!rdma->current_length) {
2087 return 0;
2090 ret = qemu_rdma_write_one(f, rdma,
2091 rdma->current_index, rdma->current_addr, rdma->current_length);
2093 if (ret < 0) {
2094 return ret;
2097 if (ret == 0) {
2098 rdma->nb_sent++;
2099 trace_qemu_rdma_write_flush(rdma->nb_sent);
2102 rdma->current_length = 0;
2103 rdma->current_addr = 0;
2105 return 0;
2108 static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
2109 uint64_t offset, uint64_t len)
2111 RDMALocalBlock *block;
2112 uint8_t *host_addr;
2113 uint8_t *chunk_end;
2115 if (rdma->current_index < 0) {
2116 return 0;
2119 if (rdma->current_chunk < 0) {
2120 return 0;
2123 block = &(rdma->local_ram_blocks.block[rdma->current_index]);
2124 host_addr = block->local_host_addr + (offset - block->offset);
2125 chunk_end = ram_chunk_end(block, rdma->current_chunk);
2127 if (rdma->current_length == 0) {
2128 return 0;
2132 * Only merge into chunk sequentially.
2134 if (offset != (rdma->current_addr + rdma->current_length)) {
2135 return 0;
2138 if (offset < block->offset) {
2139 return 0;
2142 if ((offset + len) > (block->offset + block->length)) {
2143 return 0;
2146 if ((host_addr + len) > chunk_end) {
2147 return 0;
2150 return 1;
2154 * We're not actually writing here, but doing three things:
2156 * 1. Identify the chunk the buffer belongs to.
2157 * 2. If the chunk is full or the buffer doesn't belong to the current
2158 * chunk, then start a new chunk and flush() the old chunk.
2159 * 3. To keep the hardware busy, we also group chunks into batches
2160 * and only require that a batch gets acknowledged in the completion
2161 * qeueue instead of each individual chunk.
2163 static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
2164 uint64_t block_offset, uint64_t offset,
2165 uint64_t len)
2167 uint64_t current_addr = block_offset + offset;
2168 uint64_t index = rdma->current_index;
2169 uint64_t chunk = rdma->current_chunk;
2170 int ret;
2172 /* If we cannot merge it, we flush the current buffer first. */
2173 if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
2174 ret = qemu_rdma_write_flush(f, rdma);
2175 if (ret) {
2176 return ret;
2178 rdma->current_length = 0;
2179 rdma->current_addr = current_addr;
2181 ret = qemu_rdma_search_ram_block(rdma, block_offset,
2182 offset, len, &index, &chunk);
2183 if (ret) {
2184 error_report("ram block search failed");
2185 return ret;
2187 rdma->current_index = index;
2188 rdma->current_chunk = chunk;
2191 /* merge it */
2192 rdma->current_length += len;
2194 /* flush it if buffer is too large */
2195 if (rdma->current_length >= RDMA_MERGE_MAX) {
2196 return qemu_rdma_write_flush(f, rdma);
2199 return 0;
2202 static void qemu_rdma_cleanup(RDMAContext *rdma)
2204 struct rdma_cm_event *cm_event;
2205 int ret, idx;
2207 if (rdma->cm_id && rdma->connected) {
2208 if (rdma->error_state) {
2209 RDMAControlHeader head = { .len = 0,
2210 .type = RDMA_CONTROL_ERROR,
2211 .repeat = 1,
2213 error_report("Early error. Sending error.");
2214 qemu_rdma_post_send_control(rdma, NULL, &head);
2217 ret = rdma_disconnect(rdma->cm_id);
2218 if (!ret) {
2219 trace_qemu_rdma_cleanup_waiting_for_disconnect();
2220 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2221 if (!ret) {
2222 rdma_ack_cm_event(cm_event);
2225 trace_qemu_rdma_cleanup_disconnect();
2226 rdma->connected = false;
2229 g_free(rdma->dest_blocks);
2230 rdma->dest_blocks = NULL;
2232 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2233 if (rdma->wr_data[idx].control_mr) {
2234 rdma->total_registrations--;
2235 ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2237 rdma->wr_data[idx].control_mr = NULL;
2240 if (rdma->local_ram_blocks.block) {
2241 while (rdma->local_ram_blocks.nb_blocks) {
2242 rdma_delete_block(rdma, &rdma->local_ram_blocks.block[0]);
2246 if (rdma->qp) {
2247 rdma_destroy_qp(rdma->cm_id);
2248 rdma->qp = NULL;
2250 if (rdma->cq) {
2251 ibv_destroy_cq(rdma->cq);
2252 rdma->cq = NULL;
2254 if (rdma->comp_channel) {
2255 ibv_destroy_comp_channel(rdma->comp_channel);
2256 rdma->comp_channel = NULL;
2258 if (rdma->pd) {
2259 ibv_dealloc_pd(rdma->pd);
2260 rdma->pd = NULL;
2262 if (rdma->cm_id) {
2263 rdma_destroy_id(rdma->cm_id);
2264 rdma->cm_id = NULL;
2266 if (rdma->listen_id) {
2267 rdma_destroy_id(rdma->listen_id);
2268 rdma->listen_id = NULL;
2270 if (rdma->channel) {
2271 rdma_destroy_event_channel(rdma->channel);
2272 rdma->channel = NULL;
2274 g_free(rdma->host);
2275 rdma->host = NULL;
2279 static int qemu_rdma_source_init(RDMAContext *rdma, Error **errp, bool pin_all)
2281 int ret, idx;
2282 Error *local_err = NULL, **temp = &local_err;
2285 * Will be validated against destination's actual capabilities
2286 * after the connect() completes.
2288 rdma->pin_all = pin_all;
2290 ret = qemu_rdma_resolve_host(rdma, temp);
2291 if (ret) {
2292 goto err_rdma_source_init;
2295 ret = qemu_rdma_alloc_pd_cq(rdma);
2296 if (ret) {
2297 ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
2298 " limits may be too low. Please check $ ulimit -a # and "
2299 "search for 'ulimit -l' in the output");
2300 goto err_rdma_source_init;
2303 ret = qemu_rdma_alloc_qp(rdma);
2304 if (ret) {
2305 ERROR(temp, "rdma migration: error allocating qp!");
2306 goto err_rdma_source_init;
2309 ret = qemu_rdma_init_ram_blocks(rdma);
2310 if (ret) {
2311 ERROR(temp, "rdma migration: error initializing ram blocks!");
2312 goto err_rdma_source_init;
2315 /* Build the hash that maps from offset to RAMBlock */
2316 rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
2317 for (idx = 0; idx < rdma->local_ram_blocks.nb_blocks; idx++) {
2318 g_hash_table_insert(rdma->blockmap,
2319 (void *)(uintptr_t)rdma->local_ram_blocks.block[idx].offset,
2320 &rdma->local_ram_blocks.block[idx]);
2323 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2324 ret = qemu_rdma_reg_control(rdma, idx);
2325 if (ret) {
2326 ERROR(temp, "rdma migration: error registering %d control!",
2327 idx);
2328 goto err_rdma_source_init;
2332 return 0;
2334 err_rdma_source_init:
2335 error_propagate(errp, local_err);
2336 qemu_rdma_cleanup(rdma);
2337 return -1;
2340 static int qemu_rdma_connect(RDMAContext *rdma, Error **errp)
2342 RDMACapabilities cap = {
2343 .version = RDMA_CONTROL_VERSION_CURRENT,
2344 .flags = 0,
2346 struct rdma_conn_param conn_param = { .initiator_depth = 2,
2347 .retry_count = 5,
2348 .private_data = &cap,
2349 .private_data_len = sizeof(cap),
2351 struct rdma_cm_event *cm_event;
2352 int ret;
2355 * Only negotiate the capability with destination if the user
2356 * on the source first requested the capability.
2358 if (rdma->pin_all) {
2359 trace_qemu_rdma_connect_pin_all_requested();
2360 cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2363 caps_to_network(&cap);
2365 ret = rdma_connect(rdma->cm_id, &conn_param);
2366 if (ret) {
2367 perror("rdma_connect");
2368 ERROR(errp, "connecting to destination!");
2369 goto err_rdma_source_connect;
2372 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2373 if (ret) {
2374 perror("rdma_get_cm_event after rdma_connect");
2375 ERROR(errp, "connecting to destination!");
2376 rdma_ack_cm_event(cm_event);
2377 goto err_rdma_source_connect;
2380 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2381 perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2382 ERROR(errp, "connecting to destination!");
2383 rdma_ack_cm_event(cm_event);
2384 goto err_rdma_source_connect;
2386 rdma->connected = true;
2388 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2389 network_to_caps(&cap);
2392 * Verify that the *requested* capabilities are supported by the destination
2393 * and disable them otherwise.
2395 if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2396 ERROR(errp, "Server cannot support pinning all memory. "
2397 "Will register memory dynamically.");
2398 rdma->pin_all = false;
2401 trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all);
2403 rdma_ack_cm_event(cm_event);
2405 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2406 if (ret) {
2407 ERROR(errp, "posting second control recv!");
2408 goto err_rdma_source_connect;
2411 rdma->control_ready_expected = 1;
2412 rdma->nb_sent = 0;
2413 return 0;
2415 err_rdma_source_connect:
2416 qemu_rdma_cleanup(rdma);
2417 return -1;
2420 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2422 int ret, idx;
2423 struct rdma_cm_id *listen_id;
2424 char ip[40] = "unknown";
2425 struct rdma_addrinfo *res, *e;
2426 char port_str[16];
2428 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2429 rdma->wr_data[idx].control_len = 0;
2430 rdma->wr_data[idx].control_curr = NULL;
2433 if (!rdma->host || !rdma->host[0]) {
2434 ERROR(errp, "RDMA host is not set!");
2435 rdma->error_state = -EINVAL;
2436 return -1;
2438 /* create CM channel */
2439 rdma->channel = rdma_create_event_channel();
2440 if (!rdma->channel) {
2441 ERROR(errp, "could not create rdma event channel");
2442 rdma->error_state = -EINVAL;
2443 return -1;
2446 /* create CM id */
2447 ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2448 if (ret) {
2449 ERROR(errp, "could not create cm_id!");
2450 goto err_dest_init_create_listen_id;
2453 snprintf(port_str, 16, "%d", rdma->port);
2454 port_str[15] = '\0';
2456 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
2457 if (ret < 0) {
2458 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
2459 goto err_dest_init_bind_addr;
2462 for (e = res; e != NULL; e = e->ai_next) {
2463 inet_ntop(e->ai_family,
2464 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
2465 trace_qemu_rdma_dest_init_trying(rdma->host, ip);
2466 ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
2467 if (ret) {
2468 continue;
2470 if (e->ai_family == AF_INET6) {
2471 ret = qemu_rdma_broken_ipv6_kernel(errp, listen_id->verbs);
2472 if (ret) {
2473 continue;
2476 break;
2479 if (!e) {
2480 ERROR(errp, "Error: could not rdma_bind_addr!");
2481 goto err_dest_init_bind_addr;
2484 rdma->listen_id = listen_id;
2485 qemu_rdma_dump_gid("dest_init", listen_id);
2486 return 0;
2488 err_dest_init_bind_addr:
2489 rdma_destroy_id(listen_id);
2490 err_dest_init_create_listen_id:
2491 rdma_destroy_event_channel(rdma->channel);
2492 rdma->channel = NULL;
2493 rdma->error_state = ret;
2494 return ret;
2498 static void *qemu_rdma_data_init(const char *host_port, Error **errp)
2500 RDMAContext *rdma = NULL;
2501 InetSocketAddress *addr;
2503 if (host_port) {
2504 rdma = g_new0(RDMAContext, 1);
2505 rdma->current_index = -1;
2506 rdma->current_chunk = -1;
2508 addr = inet_parse(host_port, NULL);
2509 if (addr != NULL) {
2510 rdma->port = atoi(addr->port);
2511 rdma->host = g_strdup(addr->host);
2512 } else {
2513 ERROR(errp, "bad RDMA migration address '%s'", host_port);
2514 g_free(rdma);
2515 rdma = NULL;
2518 qapi_free_InetSocketAddress(addr);
2521 return rdma;
2525 * QEMUFile interface to the control channel.
2526 * SEND messages for control only.
2527 * VM's ram is handled with regular RDMA messages.
2529 static ssize_t qio_channel_rdma_writev(QIOChannel *ioc,
2530 const struct iovec *iov,
2531 size_t niov,
2532 int *fds,
2533 size_t nfds,
2534 Error **errp)
2536 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2537 QEMUFile *f = rioc->file;
2538 RDMAContext *rdma = rioc->rdma;
2539 int ret;
2540 ssize_t done = 0;
2541 size_t i;
2543 CHECK_ERROR_STATE();
2546 * Push out any writes that
2547 * we're queued up for VM's ram.
2549 ret = qemu_rdma_write_flush(f, rdma);
2550 if (ret < 0) {
2551 rdma->error_state = ret;
2552 return ret;
2555 for (i = 0; i < niov; i++) {
2556 size_t remaining = iov[i].iov_len;
2557 uint8_t * data = (void *)iov[i].iov_base;
2558 while (remaining) {
2559 RDMAControlHeader head;
2561 rioc->len = MIN(remaining, RDMA_SEND_INCREMENT);
2562 remaining -= rioc->len;
2564 head.len = rioc->len;
2565 head.type = RDMA_CONTROL_QEMU_FILE;
2567 ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2569 if (ret < 0) {
2570 rdma->error_state = ret;
2571 return ret;
2574 data += rioc->len;
2575 done += rioc->len;
2579 return done;
2582 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2583 size_t size, int idx)
2585 size_t len = 0;
2587 if (rdma->wr_data[idx].control_len) {
2588 trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size);
2590 len = MIN(size, rdma->wr_data[idx].control_len);
2591 memcpy(buf, rdma->wr_data[idx].control_curr, len);
2592 rdma->wr_data[idx].control_curr += len;
2593 rdma->wr_data[idx].control_len -= len;
2596 return len;
2600 * QEMUFile interface to the control channel.
2601 * RDMA links don't use bytestreams, so we have to
2602 * return bytes to QEMUFile opportunistically.
2604 static ssize_t qio_channel_rdma_readv(QIOChannel *ioc,
2605 const struct iovec *iov,
2606 size_t niov,
2607 int **fds,
2608 size_t *nfds,
2609 Error **errp)
2611 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2612 RDMAContext *rdma = rioc->rdma;
2613 RDMAControlHeader head;
2614 int ret = 0;
2615 ssize_t i;
2616 size_t done = 0;
2618 CHECK_ERROR_STATE();
2620 for (i = 0; i < niov; i++) {
2621 size_t want = iov[i].iov_len;
2622 uint8_t *data = (void *)iov[i].iov_base;
2625 * First, we hold on to the last SEND message we
2626 * were given and dish out the bytes until we run
2627 * out of bytes.
2629 ret = qemu_rdma_fill(rioc->rdma, data, want, 0);
2630 done += ret;
2631 want -= ret;
2632 /* Got what we needed, so go to next iovec */
2633 if (want == 0) {
2634 continue;
2637 /* If we got any data so far, then don't wait
2638 * for more, just return what we have */
2639 if (done > 0) {
2640 break;
2644 /* We've got nothing at all, so lets wait for
2645 * more to arrive
2647 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2649 if (ret < 0) {
2650 rdma->error_state = ret;
2651 return ret;
2655 * SEND was received with new bytes, now try again.
2657 ret = qemu_rdma_fill(rioc->rdma, data, want, 0);
2658 done += ret;
2659 want -= ret;
2661 /* Still didn't get enough, so lets just return */
2662 if (want) {
2663 if (done == 0) {
2664 return QIO_CHANNEL_ERR_BLOCK;
2665 } else {
2666 break;
2670 rioc->len = done;
2671 return rioc->len;
2675 * Block until all the outstanding chunks have been delivered by the hardware.
2677 static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
2679 int ret;
2681 if (qemu_rdma_write_flush(f, rdma) < 0) {
2682 return -EIO;
2685 while (rdma->nb_sent) {
2686 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2687 if (ret < 0) {
2688 error_report("rdma migration: complete polling error!");
2689 return -EIO;
2693 qemu_rdma_unregister_waiting(rdma);
2695 return 0;
2699 static int qio_channel_rdma_set_blocking(QIOChannel *ioc,
2700 bool blocking,
2701 Error **errp)
2703 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2704 /* XXX we should make readv/writev actually honour this :-) */
2705 rioc->blocking = blocking;
2706 return 0;
2710 typedef struct QIOChannelRDMASource QIOChannelRDMASource;
2711 struct QIOChannelRDMASource {
2712 GSource parent;
2713 QIOChannelRDMA *rioc;
2714 GIOCondition condition;
2717 static gboolean
2718 qio_channel_rdma_source_prepare(GSource *source,
2719 gint *timeout)
2721 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2722 RDMAContext *rdma = rsource->rioc->rdma;
2723 GIOCondition cond = 0;
2724 *timeout = -1;
2726 if (rdma->wr_data[0].control_len) {
2727 cond |= G_IO_IN;
2729 cond |= G_IO_OUT;
2731 return cond & rsource->condition;
2734 static gboolean
2735 qio_channel_rdma_source_check(GSource *source)
2737 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2738 RDMAContext *rdma = rsource->rioc->rdma;
2739 GIOCondition cond = 0;
2741 if (rdma->wr_data[0].control_len) {
2742 cond |= G_IO_IN;
2744 cond |= G_IO_OUT;
2746 return cond & rsource->condition;
2749 static gboolean
2750 qio_channel_rdma_source_dispatch(GSource *source,
2751 GSourceFunc callback,
2752 gpointer user_data)
2754 QIOChannelFunc func = (QIOChannelFunc)callback;
2755 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2756 RDMAContext *rdma = rsource->rioc->rdma;
2757 GIOCondition cond = 0;
2759 if (rdma->wr_data[0].control_len) {
2760 cond |= G_IO_IN;
2762 cond |= G_IO_OUT;
2764 return (*func)(QIO_CHANNEL(rsource->rioc),
2765 (cond & rsource->condition),
2766 user_data);
2769 static void
2770 qio_channel_rdma_source_finalize(GSource *source)
2772 QIOChannelRDMASource *ssource = (QIOChannelRDMASource *)source;
2774 object_unref(OBJECT(ssource->rioc));
2777 GSourceFuncs qio_channel_rdma_source_funcs = {
2778 qio_channel_rdma_source_prepare,
2779 qio_channel_rdma_source_check,
2780 qio_channel_rdma_source_dispatch,
2781 qio_channel_rdma_source_finalize
2784 static GSource *qio_channel_rdma_create_watch(QIOChannel *ioc,
2785 GIOCondition condition)
2787 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2788 QIOChannelRDMASource *ssource;
2789 GSource *source;
2791 source = g_source_new(&qio_channel_rdma_source_funcs,
2792 sizeof(QIOChannelRDMASource));
2793 ssource = (QIOChannelRDMASource *)source;
2795 ssource->rioc = rioc;
2796 object_ref(OBJECT(rioc));
2798 ssource->condition = condition;
2800 return source;
2804 static int qio_channel_rdma_close(QIOChannel *ioc,
2805 Error **errp)
2807 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2808 trace_qemu_rdma_close();
2809 if (rioc->rdma) {
2810 qemu_rdma_cleanup(rioc->rdma);
2811 g_free(rioc->rdma);
2812 rioc->rdma = NULL;
2814 return 0;
2818 * Parameters:
2819 * @offset == 0 :
2820 * This means that 'block_offset' is a full virtual address that does not
2821 * belong to a RAMBlock of the virtual machine and instead
2822 * represents a private malloc'd memory area that the caller wishes to
2823 * transfer.
2825 * @offset != 0 :
2826 * Offset is an offset to be added to block_offset and used
2827 * to also lookup the corresponding RAMBlock.
2829 * @size > 0 :
2830 * Initiate an transfer this size.
2832 * @size == 0 :
2833 * A 'hint' or 'advice' that means that we wish to speculatively
2834 * and asynchronously unregister this memory. In this case, there is no
2835 * guarantee that the unregister will actually happen, for example,
2836 * if the memory is being actively transmitted. Additionally, the memory
2837 * may be re-registered at any future time if a write within the same
2838 * chunk was requested again, even if you attempted to unregister it
2839 * here.
2841 * @size < 0 : TODO, not yet supported
2842 * Unregister the memory NOW. This means that the caller does not
2843 * expect there to be any future RDMA transfers and we just want to clean
2844 * things up. This is used in case the upper layer owns the memory and
2845 * cannot wait for qemu_fclose() to occur.
2847 * @bytes_sent : User-specificed pointer to indicate how many bytes were
2848 * sent. Usually, this will not be more than a few bytes of
2849 * the protocol because most transfers are sent asynchronously.
2851 static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque,
2852 ram_addr_t block_offset, ram_addr_t offset,
2853 size_t size, uint64_t *bytes_sent)
2855 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
2856 RDMAContext *rdma = rioc->rdma;
2857 int ret;
2859 CHECK_ERROR_STATE();
2861 qemu_fflush(f);
2863 if (size > 0) {
2865 * Add this page to the current 'chunk'. If the chunk
2866 * is full, or the page doen't belong to the current chunk,
2867 * an actual RDMA write will occur and a new chunk will be formed.
2869 ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
2870 if (ret < 0) {
2871 error_report("rdma migration: write error! %d", ret);
2872 goto err;
2876 * We always return 1 bytes because the RDMA
2877 * protocol is completely asynchronous. We do not yet know
2878 * whether an identified chunk is zero or not because we're
2879 * waiting for other pages to potentially be merged with
2880 * the current chunk. So, we have to call qemu_update_position()
2881 * later on when the actual write occurs.
2883 if (bytes_sent) {
2884 *bytes_sent = 1;
2886 } else {
2887 uint64_t index, chunk;
2889 /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
2890 if (size < 0) {
2891 ret = qemu_rdma_drain_cq(f, rdma);
2892 if (ret < 0) {
2893 fprintf(stderr, "rdma: failed to synchronously drain"
2894 " completion queue before unregistration.\n");
2895 goto err;
2900 ret = qemu_rdma_search_ram_block(rdma, block_offset,
2901 offset, size, &index, &chunk);
2903 if (ret) {
2904 error_report("ram block search failed");
2905 goto err;
2908 qemu_rdma_signal_unregister(rdma, index, chunk, 0);
2911 * TODO: Synchronous, guaranteed unregistration (should not occur during
2912 * fast-path). Otherwise, unregisters will process on the next call to
2913 * qemu_rdma_drain_cq()
2914 if (size < 0) {
2915 qemu_rdma_unregister_waiting(rdma);
2921 * Drain the Completion Queue if possible, but do not block,
2922 * just poll.
2924 * If nothing to poll, the end of the iteration will do this
2925 * again to make sure we don't overflow the request queue.
2927 while (1) {
2928 uint64_t wr_id, wr_id_in;
2929 int ret = qemu_rdma_poll(rdma, &wr_id_in, NULL);
2930 if (ret < 0) {
2931 error_report("rdma migration: polling error! %d", ret);
2932 goto err;
2935 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
2937 if (wr_id == RDMA_WRID_NONE) {
2938 break;
2942 return RAM_SAVE_CONTROL_DELAYED;
2943 err:
2944 rdma->error_state = ret;
2945 return ret;
2948 static int qemu_rdma_accept(RDMAContext *rdma)
2950 RDMACapabilities cap;
2951 struct rdma_conn_param conn_param = {
2952 .responder_resources = 2,
2953 .private_data = &cap,
2954 .private_data_len = sizeof(cap),
2956 struct rdma_cm_event *cm_event;
2957 struct ibv_context *verbs;
2958 int ret = -EINVAL;
2959 int idx;
2961 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2962 if (ret) {
2963 goto err_rdma_dest_wait;
2966 if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
2967 rdma_ack_cm_event(cm_event);
2968 goto err_rdma_dest_wait;
2971 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2973 network_to_caps(&cap);
2975 if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
2976 error_report("Unknown source RDMA version: %d, bailing...",
2977 cap.version);
2978 rdma_ack_cm_event(cm_event);
2979 goto err_rdma_dest_wait;
2983 * Respond with only the capabilities this version of QEMU knows about.
2985 cap.flags &= known_capabilities;
2988 * Enable the ones that we do know about.
2989 * Add other checks here as new ones are introduced.
2991 if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
2992 rdma->pin_all = true;
2995 rdma->cm_id = cm_event->id;
2996 verbs = cm_event->id->verbs;
2998 rdma_ack_cm_event(cm_event);
3000 trace_qemu_rdma_accept_pin_state(rdma->pin_all);
3002 caps_to_network(&cap);
3004 trace_qemu_rdma_accept_pin_verbsc(verbs);
3006 if (!rdma->verbs) {
3007 rdma->verbs = verbs;
3008 } else if (rdma->verbs != verbs) {
3009 error_report("ibv context not matching %p, %p!", rdma->verbs,
3010 verbs);
3011 goto err_rdma_dest_wait;
3014 qemu_rdma_dump_id("dest_init", verbs);
3016 ret = qemu_rdma_alloc_pd_cq(rdma);
3017 if (ret) {
3018 error_report("rdma migration: error allocating pd and cq!");
3019 goto err_rdma_dest_wait;
3022 ret = qemu_rdma_alloc_qp(rdma);
3023 if (ret) {
3024 error_report("rdma migration: error allocating qp!");
3025 goto err_rdma_dest_wait;
3028 ret = qemu_rdma_init_ram_blocks(rdma);
3029 if (ret) {
3030 error_report("rdma migration: error initializing ram blocks!");
3031 goto err_rdma_dest_wait;
3034 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
3035 ret = qemu_rdma_reg_control(rdma, idx);
3036 if (ret) {
3037 error_report("rdma: error registering %d control", idx);
3038 goto err_rdma_dest_wait;
3042 qemu_set_fd_handler(rdma->channel->fd, NULL, NULL, NULL);
3044 ret = rdma_accept(rdma->cm_id, &conn_param);
3045 if (ret) {
3046 error_report("rdma_accept returns %d", ret);
3047 goto err_rdma_dest_wait;
3050 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3051 if (ret) {
3052 error_report("rdma_accept get_cm_event failed %d", ret);
3053 goto err_rdma_dest_wait;
3056 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
3057 error_report("rdma_accept not event established");
3058 rdma_ack_cm_event(cm_event);
3059 goto err_rdma_dest_wait;
3062 rdma_ack_cm_event(cm_event);
3063 rdma->connected = true;
3065 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
3066 if (ret) {
3067 error_report("rdma migration: error posting second control recv");
3068 goto err_rdma_dest_wait;
3071 qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
3073 return 0;
3075 err_rdma_dest_wait:
3076 rdma->error_state = ret;
3077 qemu_rdma_cleanup(rdma);
3078 return ret;
3081 static int dest_ram_sort_func(const void *a, const void *b)
3083 unsigned int a_index = ((const RDMALocalBlock *)a)->src_index;
3084 unsigned int b_index = ((const RDMALocalBlock *)b)->src_index;
3086 return (a_index < b_index) ? -1 : (a_index != b_index);
3090 * During each iteration of the migration, we listen for instructions
3091 * by the source VM to perform dynamic page registrations before they
3092 * can perform RDMA operations.
3094 * We respond with the 'rkey'.
3096 * Keep doing this until the source tells us to stop.
3098 static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque)
3100 RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
3101 .type = RDMA_CONTROL_REGISTER_RESULT,
3102 .repeat = 0,
3104 RDMAControlHeader unreg_resp = { .len = 0,
3105 .type = RDMA_CONTROL_UNREGISTER_FINISHED,
3106 .repeat = 0,
3108 RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
3109 .repeat = 1 };
3110 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3111 RDMAContext *rdma = rioc->rdma;
3112 RDMALocalBlocks *local = &rdma->local_ram_blocks;
3113 RDMAControlHeader head;
3114 RDMARegister *reg, *registers;
3115 RDMACompress *comp;
3116 RDMARegisterResult *reg_result;
3117 static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
3118 RDMALocalBlock *block;
3119 void *host_addr;
3120 int ret = 0;
3121 int idx = 0;
3122 int count = 0;
3123 int i = 0;
3125 CHECK_ERROR_STATE();
3127 do {
3128 trace_qemu_rdma_registration_handle_wait();
3130 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
3132 if (ret < 0) {
3133 break;
3136 if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
3137 error_report("rdma: Too many requests in this message (%d)."
3138 "Bailing.", head.repeat);
3139 ret = -EIO;
3140 break;
3143 switch (head.type) {
3144 case RDMA_CONTROL_COMPRESS:
3145 comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
3146 network_to_compress(comp);
3148 trace_qemu_rdma_registration_handle_compress(comp->length,
3149 comp->block_idx,
3150 comp->offset);
3151 if (comp->block_idx >= rdma->local_ram_blocks.nb_blocks) {
3152 error_report("rdma: 'compress' bad block index %u (vs %d)",
3153 (unsigned int)comp->block_idx,
3154 rdma->local_ram_blocks.nb_blocks);
3155 ret = -EIO;
3156 goto out;
3158 block = &(rdma->local_ram_blocks.block[comp->block_idx]);
3160 host_addr = block->local_host_addr +
3161 (comp->offset - block->offset);
3163 ram_handle_compressed(host_addr, comp->value, comp->length);
3164 break;
3166 case RDMA_CONTROL_REGISTER_FINISHED:
3167 trace_qemu_rdma_registration_handle_finished();
3168 goto out;
3170 case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
3171 trace_qemu_rdma_registration_handle_ram_blocks();
3173 /* Sort our local RAM Block list so it's the same as the source,
3174 * we can do this since we've filled in a src_index in the list
3175 * as we received the RAMBlock list earlier.
3177 qsort(rdma->local_ram_blocks.block,
3178 rdma->local_ram_blocks.nb_blocks,
3179 sizeof(RDMALocalBlock), dest_ram_sort_func);
3180 if (rdma->pin_all) {
3181 ret = qemu_rdma_reg_whole_ram_blocks(rdma);
3182 if (ret) {
3183 error_report("rdma migration: error dest "
3184 "registering ram blocks");
3185 goto out;
3190 * Dest uses this to prepare to transmit the RAMBlock descriptions
3191 * to the source VM after connection setup.
3192 * Both sides use the "remote" structure to communicate and update
3193 * their "local" descriptions with what was sent.
3195 for (i = 0; i < local->nb_blocks; i++) {
3196 rdma->dest_blocks[i].remote_host_addr =
3197 (uintptr_t)(local->block[i].local_host_addr);
3199 if (rdma->pin_all) {
3200 rdma->dest_blocks[i].remote_rkey = local->block[i].mr->rkey;
3203 rdma->dest_blocks[i].offset = local->block[i].offset;
3204 rdma->dest_blocks[i].length = local->block[i].length;
3206 dest_block_to_network(&rdma->dest_blocks[i]);
3207 trace_qemu_rdma_registration_handle_ram_blocks_loop(
3208 local->block[i].block_name,
3209 local->block[i].offset,
3210 local->block[i].length,
3211 local->block[i].local_host_addr,
3212 local->block[i].src_index);
3215 blocks.len = rdma->local_ram_blocks.nb_blocks
3216 * sizeof(RDMADestBlock);
3219 ret = qemu_rdma_post_send_control(rdma,
3220 (uint8_t *) rdma->dest_blocks, &blocks);
3222 if (ret < 0) {
3223 error_report("rdma migration: error sending remote info");
3224 goto out;
3227 break;
3228 case RDMA_CONTROL_REGISTER_REQUEST:
3229 trace_qemu_rdma_registration_handle_register(head.repeat);
3231 reg_resp.repeat = head.repeat;
3232 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3234 for (count = 0; count < head.repeat; count++) {
3235 uint64_t chunk;
3236 uint8_t *chunk_start, *chunk_end;
3238 reg = &registers[count];
3239 network_to_register(reg);
3241 reg_result = &results[count];
3243 trace_qemu_rdma_registration_handle_register_loop(count,
3244 reg->current_index, reg->key.current_addr, reg->chunks);
3246 if (reg->current_index >= rdma->local_ram_blocks.nb_blocks) {
3247 error_report("rdma: 'register' bad block index %u (vs %d)",
3248 (unsigned int)reg->current_index,
3249 rdma->local_ram_blocks.nb_blocks);
3250 ret = -ENOENT;
3251 goto out;
3253 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3254 if (block->is_ram_block) {
3255 if (block->offset > reg->key.current_addr) {
3256 error_report("rdma: bad register address for block %s"
3257 " offset: %" PRIx64 " current_addr: %" PRIx64,
3258 block->block_name, block->offset,
3259 reg->key.current_addr);
3260 ret = -ERANGE;
3261 goto out;
3263 host_addr = (block->local_host_addr +
3264 (reg->key.current_addr - block->offset));
3265 chunk = ram_chunk_index(block->local_host_addr,
3266 (uint8_t *) host_addr);
3267 } else {
3268 chunk = reg->key.chunk;
3269 host_addr = block->local_host_addr +
3270 (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
3271 /* Check for particularly bad chunk value */
3272 if (host_addr < (void *)block->local_host_addr) {
3273 error_report("rdma: bad chunk for block %s"
3274 " chunk: %" PRIx64,
3275 block->block_name, reg->key.chunk);
3276 ret = -ERANGE;
3277 goto out;
3280 chunk_start = ram_chunk_start(block, chunk);
3281 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
3282 if (qemu_rdma_register_and_get_keys(rdma, block,
3283 (uintptr_t)host_addr, NULL, &reg_result->rkey,
3284 chunk, chunk_start, chunk_end)) {
3285 error_report("cannot get rkey");
3286 ret = -EINVAL;
3287 goto out;
3290 reg_result->host_addr = (uintptr_t)block->local_host_addr;
3292 trace_qemu_rdma_registration_handle_register_rkey(
3293 reg_result->rkey);
3295 result_to_network(reg_result);
3298 ret = qemu_rdma_post_send_control(rdma,
3299 (uint8_t *) results, &reg_resp);
3301 if (ret < 0) {
3302 error_report("Failed to send control buffer");
3303 goto out;
3305 break;
3306 case RDMA_CONTROL_UNREGISTER_REQUEST:
3307 trace_qemu_rdma_registration_handle_unregister(head.repeat);
3308 unreg_resp.repeat = head.repeat;
3309 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3311 for (count = 0; count < head.repeat; count++) {
3312 reg = &registers[count];
3313 network_to_register(reg);
3315 trace_qemu_rdma_registration_handle_unregister_loop(count,
3316 reg->current_index, reg->key.chunk);
3318 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3320 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
3321 block->pmr[reg->key.chunk] = NULL;
3323 if (ret != 0) {
3324 perror("rdma unregistration chunk failed");
3325 ret = -ret;
3326 goto out;
3329 rdma->total_registrations--;
3331 trace_qemu_rdma_registration_handle_unregister_success(
3332 reg->key.chunk);
3335 ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
3337 if (ret < 0) {
3338 error_report("Failed to send control buffer");
3339 goto out;
3341 break;
3342 case RDMA_CONTROL_REGISTER_RESULT:
3343 error_report("Invalid RESULT message at dest.");
3344 ret = -EIO;
3345 goto out;
3346 default:
3347 error_report("Unknown control message %s", control_desc[head.type]);
3348 ret = -EIO;
3349 goto out;
3351 } while (1);
3352 out:
3353 if (ret < 0) {
3354 rdma->error_state = ret;
3356 return ret;
3359 /* Destination:
3360 * Called via a ram_control_load_hook during the initial RAM load section which
3361 * lists the RAMBlocks by name. This lets us know the order of the RAMBlocks
3362 * on the source.
3363 * We've already built our local RAMBlock list, but not yet sent the list to
3364 * the source.
3366 static int
3367 rdma_block_notification_handle(QIOChannelRDMA *rioc, const char *name)
3369 RDMAContext *rdma = rioc->rdma;
3370 int curr;
3371 int found = -1;
3373 /* Find the matching RAMBlock in our local list */
3374 for (curr = 0; curr < rdma->local_ram_blocks.nb_blocks; curr++) {
3375 if (!strcmp(rdma->local_ram_blocks.block[curr].block_name, name)) {
3376 found = curr;
3377 break;
3381 if (found == -1) {
3382 error_report("RAMBlock '%s' not found on destination", name);
3383 return -ENOENT;
3386 rdma->local_ram_blocks.block[curr].src_index = rdma->next_src_index;
3387 trace_rdma_block_notification_handle(name, rdma->next_src_index);
3388 rdma->next_src_index++;
3390 return 0;
3393 static int rdma_load_hook(QEMUFile *f, void *opaque, uint64_t flags, void *data)
3395 switch (flags) {
3396 case RAM_CONTROL_BLOCK_REG:
3397 return rdma_block_notification_handle(opaque, data);
3399 case RAM_CONTROL_HOOK:
3400 return qemu_rdma_registration_handle(f, opaque);
3402 default:
3403 /* Shouldn't be called with any other values */
3404 abort();
3408 static int qemu_rdma_registration_start(QEMUFile *f, void *opaque,
3409 uint64_t flags, void *data)
3411 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3412 RDMAContext *rdma = rioc->rdma;
3414 CHECK_ERROR_STATE();
3416 trace_qemu_rdma_registration_start(flags);
3417 qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3418 qemu_fflush(f);
3420 return 0;
3424 * Inform dest that dynamic registrations are done for now.
3425 * First, flush writes, if any.
3427 static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque,
3428 uint64_t flags, void *data)
3430 Error *local_err = NULL, **errp = &local_err;
3431 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3432 RDMAContext *rdma = rioc->rdma;
3433 RDMAControlHeader head = { .len = 0, .repeat = 1 };
3434 int ret = 0;
3436 CHECK_ERROR_STATE();
3438 qemu_fflush(f);
3439 ret = qemu_rdma_drain_cq(f, rdma);
3441 if (ret < 0) {
3442 goto err;
3445 if (flags == RAM_CONTROL_SETUP) {
3446 RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3447 RDMALocalBlocks *local = &rdma->local_ram_blocks;
3448 int reg_result_idx, i, nb_dest_blocks;
3450 head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3451 trace_qemu_rdma_registration_stop_ram();
3454 * Make sure that we parallelize the pinning on both sides.
3455 * For very large guests, doing this serially takes a really
3456 * long time, so we have to 'interleave' the pinning locally
3457 * with the control messages by performing the pinning on this
3458 * side before we receive the control response from the other
3459 * side that the pinning has completed.
3461 ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3462 &reg_result_idx, rdma->pin_all ?
3463 qemu_rdma_reg_whole_ram_blocks : NULL);
3464 if (ret < 0) {
3465 ERROR(errp, "receiving remote info!");
3466 return ret;
3469 nb_dest_blocks = resp.len / sizeof(RDMADestBlock);
3472 * The protocol uses two different sets of rkeys (mutually exclusive):
3473 * 1. One key to represent the virtual address of the entire ram block.
3474 * (dynamic chunk registration disabled - pin everything with one rkey.)
3475 * 2. One to represent individual chunks within a ram block.
3476 * (dynamic chunk registration enabled - pin individual chunks.)
3478 * Once the capability is successfully negotiated, the destination transmits
3479 * the keys to use (or sends them later) including the virtual addresses
3480 * and then propagates the remote ram block descriptions to his local copy.
3483 if (local->nb_blocks != nb_dest_blocks) {
3484 ERROR(errp, "ram blocks mismatch (Number of blocks %d vs %d) "
3485 "Your QEMU command line parameters are probably "
3486 "not identical on both the source and destination.",
3487 local->nb_blocks, nb_dest_blocks);
3488 rdma->error_state = -EINVAL;
3489 return -EINVAL;
3492 qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3493 memcpy(rdma->dest_blocks,
3494 rdma->wr_data[reg_result_idx].control_curr, resp.len);
3495 for (i = 0; i < nb_dest_blocks; i++) {
3496 network_to_dest_block(&rdma->dest_blocks[i]);
3498 /* We require that the blocks are in the same order */
3499 if (rdma->dest_blocks[i].length != local->block[i].length) {
3500 ERROR(errp, "Block %s/%d has a different length %" PRIu64
3501 "vs %" PRIu64, local->block[i].block_name, i,
3502 local->block[i].length,
3503 rdma->dest_blocks[i].length);
3504 rdma->error_state = -EINVAL;
3505 return -EINVAL;
3507 local->block[i].remote_host_addr =
3508 rdma->dest_blocks[i].remote_host_addr;
3509 local->block[i].remote_rkey = rdma->dest_blocks[i].remote_rkey;
3513 trace_qemu_rdma_registration_stop(flags);
3515 head.type = RDMA_CONTROL_REGISTER_FINISHED;
3516 ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
3518 if (ret < 0) {
3519 goto err;
3522 return 0;
3523 err:
3524 rdma->error_state = ret;
3525 return ret;
3528 static const QEMUFileHooks rdma_read_hooks = {
3529 .hook_ram_load = rdma_load_hook,
3532 static const QEMUFileHooks rdma_write_hooks = {
3533 .before_ram_iterate = qemu_rdma_registration_start,
3534 .after_ram_iterate = qemu_rdma_registration_stop,
3535 .save_page = qemu_rdma_save_page,
3539 static void qio_channel_rdma_finalize(Object *obj)
3541 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(obj);
3542 if (rioc->rdma) {
3543 qemu_rdma_cleanup(rioc->rdma);
3544 g_free(rioc->rdma);
3545 rioc->rdma = NULL;
3549 static void qio_channel_rdma_class_init(ObjectClass *klass,
3550 void *class_data G_GNUC_UNUSED)
3552 QIOChannelClass *ioc_klass = QIO_CHANNEL_CLASS(klass);
3554 ioc_klass->io_writev = qio_channel_rdma_writev;
3555 ioc_klass->io_readv = qio_channel_rdma_readv;
3556 ioc_klass->io_set_blocking = qio_channel_rdma_set_blocking;
3557 ioc_klass->io_close = qio_channel_rdma_close;
3558 ioc_klass->io_create_watch = qio_channel_rdma_create_watch;
3561 static const TypeInfo qio_channel_rdma_info = {
3562 .parent = TYPE_QIO_CHANNEL,
3563 .name = TYPE_QIO_CHANNEL_RDMA,
3564 .instance_size = sizeof(QIOChannelRDMA),
3565 .instance_finalize = qio_channel_rdma_finalize,
3566 .class_init = qio_channel_rdma_class_init,
3569 static void qio_channel_rdma_register_types(void)
3571 type_register_static(&qio_channel_rdma_info);
3574 type_init(qio_channel_rdma_register_types);
3576 static QEMUFile *qemu_fopen_rdma(RDMAContext *rdma, const char *mode)
3578 QIOChannelRDMA *rioc;
3580 if (qemu_file_mode_is_not_valid(mode)) {
3581 return NULL;
3584 rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
3585 rioc->rdma = rdma;
3587 if (mode[0] == 'w') {
3588 rioc->file = qemu_fopen_channel_output(QIO_CHANNEL(rioc));
3589 qemu_file_set_hooks(rioc->file, &rdma_write_hooks);
3590 } else {
3591 rioc->file = qemu_fopen_channel_input(QIO_CHANNEL(rioc));
3592 qemu_file_set_hooks(rioc->file, &rdma_read_hooks);
3595 return rioc->file;
3598 static void rdma_accept_incoming_migration(void *opaque)
3600 RDMAContext *rdma = opaque;
3601 int ret;
3602 QEMUFile *f;
3603 Error *local_err = NULL, **errp = &local_err;
3605 trace_qemu_rdma_accept_incoming_migration();
3606 ret = qemu_rdma_accept(rdma);
3608 if (ret) {
3609 ERROR(errp, "RDMA Migration initialization failed!");
3610 return;
3613 trace_qemu_rdma_accept_incoming_migration_accepted();
3615 f = qemu_fopen_rdma(rdma, "rb");
3616 if (f == NULL) {
3617 ERROR(errp, "could not qemu_fopen_rdma!");
3618 qemu_rdma_cleanup(rdma);
3619 return;
3622 rdma->migration_started_on_destination = 1;
3623 migration_fd_process_incoming(f);
3626 void rdma_start_incoming_migration(const char *host_port, Error **errp)
3628 int ret;
3629 RDMAContext *rdma;
3630 Error *local_err = NULL;
3632 trace_rdma_start_incoming_migration();
3633 rdma = qemu_rdma_data_init(host_port, &local_err);
3635 if (rdma == NULL) {
3636 goto err;
3639 ret = qemu_rdma_dest_init(rdma, &local_err);
3641 if (ret) {
3642 goto err;
3645 trace_rdma_start_incoming_migration_after_dest_init();
3647 ret = rdma_listen(rdma->listen_id, 5);
3649 if (ret) {
3650 ERROR(errp, "listening on socket!");
3651 goto err;
3654 trace_rdma_start_incoming_migration_after_rdma_listen();
3656 qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
3657 NULL, (void *)(intptr_t)rdma);
3658 return;
3659 err:
3660 error_propagate(errp, local_err);
3661 g_free(rdma);
3664 void rdma_start_outgoing_migration(void *opaque,
3665 const char *host_port, Error **errp)
3667 MigrationState *s = opaque;
3668 RDMAContext *rdma = qemu_rdma_data_init(host_port, errp);
3669 int ret = 0;
3671 if (rdma == NULL) {
3672 goto err;
3675 ret = qemu_rdma_source_init(rdma, errp,
3676 s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL]);
3678 if (ret) {
3679 goto err;
3682 trace_rdma_start_outgoing_migration_after_rdma_source_init();
3683 ret = qemu_rdma_connect(rdma, errp);
3685 if (ret) {
3686 goto err;
3689 trace_rdma_start_outgoing_migration_after_rdma_connect();
3691 s->to_dst_file = qemu_fopen_rdma(rdma, "wb");
3692 migrate_fd_connect(s);
3693 return;
3694 err:
3695 g_free(rdma);