tests/docker: convert riscv64-cross to lcitool
[qemu/kevin.git] / softmmu / physmem.c
blobbda475a719d5d4db3b5773bc12b1c95287bad345
1 /*
2 * RAM allocation and memory access
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "exec/page-vary.h"
22 #include "qapi/error.h"
24 #include "qemu/cutils.h"
25 #include "qemu/cacheflush.h"
26 #include "qemu/hbitmap.h"
27 #include "qemu/madvise.h"
29 #ifdef CONFIG_TCG
30 #include "hw/core/tcg-cpu-ops.h"
31 #endif /* CONFIG_TCG */
33 #include "exec/exec-all.h"
34 #include "exec/target_page.h"
35 #include "hw/qdev-core.h"
36 #include "hw/qdev-properties.h"
37 #include "hw/boards.h"
38 #include "hw/xen/xen.h"
39 #include "sysemu/kvm.h"
40 #include "sysemu/tcg.h"
41 #include "sysemu/qtest.h"
42 #include "qemu/timer.h"
43 #include "qemu/config-file.h"
44 #include "qemu/error-report.h"
45 #include "qemu/qemu-print.h"
46 #include "qemu/log.h"
47 #include "qemu/memalign.h"
48 #include "exec/memory.h"
49 #include "exec/ioport.h"
50 #include "sysemu/dma.h"
51 #include "sysemu/hostmem.h"
52 #include "sysemu/hw_accel.h"
53 #include "sysemu/xen-mapcache.h"
54 #include "trace/trace-root.h"
56 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
57 #include <linux/falloc.h>
58 #endif
60 #include "qemu/rcu_queue.h"
61 #include "qemu/main-loop.h"
62 #include "exec/translate-all.h"
63 #include "sysemu/replay.h"
65 #include "exec/memory-internal.h"
66 #include "exec/ram_addr.h"
68 #include "qemu/pmem.h"
70 #include "migration/vmstate.h"
72 #include "qemu/range.h"
73 #ifndef _WIN32
74 #include "qemu/mmap-alloc.h"
75 #endif
77 #include "monitor/monitor.h"
79 #ifdef CONFIG_LIBDAXCTL
80 #include <daxctl/libdaxctl.h>
81 #endif
83 //#define DEBUG_SUBPAGE
85 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
86 * are protected by the ramlist lock.
88 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
90 static MemoryRegion *system_memory;
91 static MemoryRegion *system_io;
93 AddressSpace address_space_io;
94 AddressSpace address_space_memory;
96 static MemoryRegion io_mem_unassigned;
98 typedef struct PhysPageEntry PhysPageEntry;
100 struct PhysPageEntry {
101 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
102 uint32_t skip : 6;
103 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
104 uint32_t ptr : 26;
107 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
109 /* Size of the L2 (and L3, etc) page tables. */
110 #define ADDR_SPACE_BITS 64
112 #define P_L2_BITS 9
113 #define P_L2_SIZE (1 << P_L2_BITS)
115 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
117 typedef PhysPageEntry Node[P_L2_SIZE];
119 typedef struct PhysPageMap {
120 struct rcu_head rcu;
122 unsigned sections_nb;
123 unsigned sections_nb_alloc;
124 unsigned nodes_nb;
125 unsigned nodes_nb_alloc;
126 Node *nodes;
127 MemoryRegionSection *sections;
128 } PhysPageMap;
130 struct AddressSpaceDispatch {
131 MemoryRegionSection *mru_section;
132 /* This is a multi-level map on the physical address space.
133 * The bottom level has pointers to MemoryRegionSections.
135 PhysPageEntry phys_map;
136 PhysPageMap map;
139 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
140 typedef struct subpage_t {
141 MemoryRegion iomem;
142 FlatView *fv;
143 hwaddr base;
144 uint16_t sub_section[];
145 } subpage_t;
147 #define PHYS_SECTION_UNASSIGNED 0
149 static void io_mem_init(void);
150 static void memory_map_init(void);
151 static void tcg_log_global_after_sync(MemoryListener *listener);
152 static void tcg_commit(MemoryListener *listener);
155 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
156 * @cpu: the CPU whose AddressSpace this is
157 * @as: the AddressSpace itself
158 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
159 * @tcg_as_listener: listener for tracking changes to the AddressSpace
161 struct CPUAddressSpace {
162 CPUState *cpu;
163 AddressSpace *as;
164 struct AddressSpaceDispatch *memory_dispatch;
165 MemoryListener tcg_as_listener;
168 struct DirtyBitmapSnapshot {
169 ram_addr_t start;
170 ram_addr_t end;
171 unsigned long dirty[];
174 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
176 static unsigned alloc_hint = 16;
177 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
178 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
179 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
180 alloc_hint = map->nodes_nb_alloc;
184 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
186 unsigned i;
187 uint32_t ret;
188 PhysPageEntry e;
189 PhysPageEntry *p;
191 ret = map->nodes_nb++;
192 p = map->nodes[ret];
193 assert(ret != PHYS_MAP_NODE_NIL);
194 assert(ret != map->nodes_nb_alloc);
196 e.skip = leaf ? 0 : 1;
197 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
198 for (i = 0; i < P_L2_SIZE; ++i) {
199 memcpy(&p[i], &e, sizeof(e));
201 return ret;
204 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
205 hwaddr *index, uint64_t *nb, uint16_t leaf,
206 int level)
208 PhysPageEntry *p;
209 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
211 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
212 lp->ptr = phys_map_node_alloc(map, level == 0);
214 p = map->nodes[lp->ptr];
215 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
217 while (*nb && lp < &p[P_L2_SIZE]) {
218 if ((*index & (step - 1)) == 0 && *nb >= step) {
219 lp->skip = 0;
220 lp->ptr = leaf;
221 *index += step;
222 *nb -= step;
223 } else {
224 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
226 ++lp;
230 static void phys_page_set(AddressSpaceDispatch *d,
231 hwaddr index, uint64_t nb,
232 uint16_t leaf)
234 /* Wildly overreserve - it doesn't matter much. */
235 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
237 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
240 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
241 * and update our entry so we can skip it and go directly to the destination.
243 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
245 unsigned valid_ptr = P_L2_SIZE;
246 int valid = 0;
247 PhysPageEntry *p;
248 int i;
250 if (lp->ptr == PHYS_MAP_NODE_NIL) {
251 return;
254 p = nodes[lp->ptr];
255 for (i = 0; i < P_L2_SIZE; i++) {
256 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
257 continue;
260 valid_ptr = i;
261 valid++;
262 if (p[i].skip) {
263 phys_page_compact(&p[i], nodes);
267 /* We can only compress if there's only one child. */
268 if (valid != 1) {
269 return;
272 assert(valid_ptr < P_L2_SIZE);
274 /* Don't compress if it won't fit in the # of bits we have. */
275 if (P_L2_LEVELS >= (1 << 6) &&
276 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
277 return;
280 lp->ptr = p[valid_ptr].ptr;
281 if (!p[valid_ptr].skip) {
282 /* If our only child is a leaf, make this a leaf. */
283 /* By design, we should have made this node a leaf to begin with so we
284 * should never reach here.
285 * But since it's so simple to handle this, let's do it just in case we
286 * change this rule.
288 lp->skip = 0;
289 } else {
290 lp->skip += p[valid_ptr].skip;
294 void address_space_dispatch_compact(AddressSpaceDispatch *d)
296 if (d->phys_map.skip) {
297 phys_page_compact(&d->phys_map, d->map.nodes);
301 static inline bool section_covers_addr(const MemoryRegionSection *section,
302 hwaddr addr)
304 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
305 * the section must cover the entire address space.
307 return int128_gethi(section->size) ||
308 range_covers_byte(section->offset_within_address_space,
309 int128_getlo(section->size), addr);
312 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
314 PhysPageEntry lp = d->phys_map, *p;
315 Node *nodes = d->map.nodes;
316 MemoryRegionSection *sections = d->map.sections;
317 hwaddr index = addr >> TARGET_PAGE_BITS;
318 int i;
320 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
321 if (lp.ptr == PHYS_MAP_NODE_NIL) {
322 return &sections[PHYS_SECTION_UNASSIGNED];
324 p = nodes[lp.ptr];
325 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
328 if (section_covers_addr(&sections[lp.ptr], addr)) {
329 return &sections[lp.ptr];
330 } else {
331 return &sections[PHYS_SECTION_UNASSIGNED];
335 /* Called from RCU critical section */
336 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
337 hwaddr addr,
338 bool resolve_subpage)
340 MemoryRegionSection *section = qatomic_read(&d->mru_section);
341 subpage_t *subpage;
343 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
344 !section_covers_addr(section, addr)) {
345 section = phys_page_find(d, addr);
346 qatomic_set(&d->mru_section, section);
348 if (resolve_subpage && section->mr->subpage) {
349 subpage = container_of(section->mr, subpage_t, iomem);
350 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
352 return section;
355 /* Called from RCU critical section */
356 static MemoryRegionSection *
357 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
358 hwaddr *plen, bool resolve_subpage)
360 MemoryRegionSection *section;
361 MemoryRegion *mr;
362 Int128 diff;
364 section = address_space_lookup_region(d, addr, resolve_subpage);
365 /* Compute offset within MemoryRegionSection */
366 addr -= section->offset_within_address_space;
368 /* Compute offset within MemoryRegion */
369 *xlat = addr + section->offset_within_region;
371 mr = section->mr;
373 /* MMIO registers can be expected to perform full-width accesses based only
374 * on their address, without considering adjacent registers that could
375 * decode to completely different MemoryRegions. When such registers
376 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
377 * regions overlap wildly. For this reason we cannot clamp the accesses
378 * here.
380 * If the length is small (as is the case for address_space_ldl/stl),
381 * everything works fine. If the incoming length is large, however,
382 * the caller really has to do the clamping through memory_access_size.
384 if (memory_region_is_ram(mr)) {
385 diff = int128_sub(section->size, int128_make64(addr));
386 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
388 return section;
392 * address_space_translate_iommu - translate an address through an IOMMU
393 * memory region and then through the target address space.
395 * @iommu_mr: the IOMMU memory region that we start the translation from
396 * @addr: the address to be translated through the MMU
397 * @xlat: the translated address offset within the destination memory region.
398 * It cannot be %NULL.
399 * @plen_out: valid read/write length of the translated address. It
400 * cannot be %NULL.
401 * @page_mask_out: page mask for the translated address. This
402 * should only be meaningful for IOMMU translated
403 * addresses, since there may be huge pages that this bit
404 * would tell. It can be %NULL if we don't care about it.
405 * @is_write: whether the translation operation is for write
406 * @is_mmio: whether this can be MMIO, set true if it can
407 * @target_as: the address space targeted by the IOMMU
408 * @attrs: transaction attributes
410 * This function is called from RCU critical section. It is the common
411 * part of flatview_do_translate and address_space_translate_cached.
413 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
414 hwaddr *xlat,
415 hwaddr *plen_out,
416 hwaddr *page_mask_out,
417 bool is_write,
418 bool is_mmio,
419 AddressSpace **target_as,
420 MemTxAttrs attrs)
422 MemoryRegionSection *section;
423 hwaddr page_mask = (hwaddr)-1;
425 do {
426 hwaddr addr = *xlat;
427 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
428 int iommu_idx = 0;
429 IOMMUTLBEntry iotlb;
431 if (imrc->attrs_to_index) {
432 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
435 iotlb = imrc->translate(iommu_mr, addr, is_write ?
436 IOMMU_WO : IOMMU_RO, iommu_idx);
438 if (!(iotlb.perm & (1 << is_write))) {
439 goto unassigned;
442 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
443 | (addr & iotlb.addr_mask));
444 page_mask &= iotlb.addr_mask;
445 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
446 *target_as = iotlb.target_as;
448 section = address_space_translate_internal(
449 address_space_to_dispatch(iotlb.target_as), addr, xlat,
450 plen_out, is_mmio);
452 iommu_mr = memory_region_get_iommu(section->mr);
453 } while (unlikely(iommu_mr));
455 if (page_mask_out) {
456 *page_mask_out = page_mask;
458 return *section;
460 unassigned:
461 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
465 * flatview_do_translate - translate an address in FlatView
467 * @fv: the flat view that we want to translate on
468 * @addr: the address to be translated in above address space
469 * @xlat: the translated address offset within memory region. It
470 * cannot be @NULL.
471 * @plen_out: valid read/write length of the translated address. It
472 * can be @NULL when we don't care about it.
473 * @page_mask_out: page mask for the translated address. This
474 * should only be meaningful for IOMMU translated
475 * addresses, since there may be huge pages that this bit
476 * would tell. It can be @NULL if we don't care about it.
477 * @is_write: whether the translation operation is for write
478 * @is_mmio: whether this can be MMIO, set true if it can
479 * @target_as: the address space targeted by the IOMMU
480 * @attrs: memory transaction attributes
482 * This function is called from RCU critical section
484 static MemoryRegionSection flatview_do_translate(FlatView *fv,
485 hwaddr addr,
486 hwaddr *xlat,
487 hwaddr *plen_out,
488 hwaddr *page_mask_out,
489 bool is_write,
490 bool is_mmio,
491 AddressSpace **target_as,
492 MemTxAttrs attrs)
494 MemoryRegionSection *section;
495 IOMMUMemoryRegion *iommu_mr;
496 hwaddr plen = (hwaddr)(-1);
498 if (!plen_out) {
499 plen_out = &plen;
502 section = address_space_translate_internal(
503 flatview_to_dispatch(fv), addr, xlat,
504 plen_out, is_mmio);
506 iommu_mr = memory_region_get_iommu(section->mr);
507 if (unlikely(iommu_mr)) {
508 return address_space_translate_iommu(iommu_mr, xlat,
509 plen_out, page_mask_out,
510 is_write, is_mmio,
511 target_as, attrs);
513 if (page_mask_out) {
514 /* Not behind an IOMMU, use default page size. */
515 *page_mask_out = ~TARGET_PAGE_MASK;
518 return *section;
521 /* Called from RCU critical section */
522 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
523 bool is_write, MemTxAttrs attrs)
525 MemoryRegionSection section;
526 hwaddr xlat, page_mask;
529 * This can never be MMIO, and we don't really care about plen,
530 * but page mask.
532 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
533 NULL, &page_mask, is_write, false, &as,
534 attrs);
536 /* Illegal translation */
537 if (section.mr == &io_mem_unassigned) {
538 goto iotlb_fail;
541 /* Convert memory region offset into address space offset */
542 xlat += section.offset_within_address_space -
543 section.offset_within_region;
545 return (IOMMUTLBEntry) {
546 .target_as = as,
547 .iova = addr & ~page_mask,
548 .translated_addr = xlat & ~page_mask,
549 .addr_mask = page_mask,
550 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
551 .perm = IOMMU_RW,
554 iotlb_fail:
555 return (IOMMUTLBEntry) {0};
558 /* Called from RCU critical section */
559 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
560 hwaddr *plen, bool is_write,
561 MemTxAttrs attrs)
563 MemoryRegion *mr;
564 MemoryRegionSection section;
565 AddressSpace *as = NULL;
567 /* This can be MMIO, so setup MMIO bit. */
568 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
569 is_write, true, &as, attrs);
570 mr = section.mr;
572 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
573 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
574 *plen = MIN(page, *plen);
577 return mr;
580 typedef struct TCGIOMMUNotifier {
581 IOMMUNotifier n;
582 MemoryRegion *mr;
583 CPUState *cpu;
584 int iommu_idx;
585 bool active;
586 } TCGIOMMUNotifier;
588 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
590 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
592 if (!notifier->active) {
593 return;
595 tlb_flush(notifier->cpu);
596 notifier->active = false;
597 /* We leave the notifier struct on the list to avoid reallocating it later.
598 * Generally the number of IOMMUs a CPU deals with will be small.
599 * In any case we can't unregister the iommu notifier from a notify
600 * callback.
604 static void tcg_register_iommu_notifier(CPUState *cpu,
605 IOMMUMemoryRegion *iommu_mr,
606 int iommu_idx)
608 /* Make sure this CPU has an IOMMU notifier registered for this
609 * IOMMU/IOMMU index combination, so that we can flush its TLB
610 * when the IOMMU tells us the mappings we've cached have changed.
612 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
613 TCGIOMMUNotifier *notifier = NULL;
614 int i;
616 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
617 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
618 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
619 break;
622 if (i == cpu->iommu_notifiers->len) {
623 /* Not found, add a new entry at the end of the array */
624 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
625 notifier = g_new0(TCGIOMMUNotifier, 1);
626 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
628 notifier->mr = mr;
629 notifier->iommu_idx = iommu_idx;
630 notifier->cpu = cpu;
631 /* Rather than trying to register interest in the specific part
632 * of the iommu's address space that we've accessed and then
633 * expand it later as subsequent accesses touch more of it, we
634 * just register interest in the whole thing, on the assumption
635 * that iommu reconfiguration will be rare.
637 iommu_notifier_init(&notifier->n,
638 tcg_iommu_unmap_notify,
639 IOMMU_NOTIFIER_UNMAP,
641 HWADDR_MAX,
642 iommu_idx);
643 memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
644 &error_fatal);
647 if (!notifier->active) {
648 notifier->active = true;
652 void tcg_iommu_free_notifier_list(CPUState *cpu)
654 /* Destroy the CPU's notifier list */
655 int i;
656 TCGIOMMUNotifier *notifier;
658 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
659 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
660 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
661 g_free(notifier);
663 g_array_free(cpu->iommu_notifiers, true);
666 void tcg_iommu_init_notifier_list(CPUState *cpu)
668 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
671 /* Called from RCU critical section */
672 MemoryRegionSection *
673 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr,
674 hwaddr *xlat, hwaddr *plen,
675 MemTxAttrs attrs, int *prot)
677 MemoryRegionSection *section;
678 IOMMUMemoryRegion *iommu_mr;
679 IOMMUMemoryRegionClass *imrc;
680 IOMMUTLBEntry iotlb;
681 int iommu_idx;
682 hwaddr addr = orig_addr;
683 AddressSpaceDispatch *d =
684 qatomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
686 for (;;) {
687 section = address_space_translate_internal(d, addr, &addr, plen, false);
689 iommu_mr = memory_region_get_iommu(section->mr);
690 if (!iommu_mr) {
691 break;
694 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
696 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
697 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
698 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
699 * doesn't short-cut its translation table walk.
701 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
702 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
703 | (addr & iotlb.addr_mask));
704 /* Update the caller's prot bits to remove permissions the IOMMU
705 * is giving us a failure response for. If we get down to no
706 * permissions left at all we can give up now.
708 if (!(iotlb.perm & IOMMU_RO)) {
709 *prot &= ~(PAGE_READ | PAGE_EXEC);
711 if (!(iotlb.perm & IOMMU_WO)) {
712 *prot &= ~PAGE_WRITE;
715 if (!*prot) {
716 goto translate_fail;
719 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
722 assert(!memory_region_is_iommu(section->mr));
723 *xlat = addr;
724 return section;
726 translate_fail:
728 * We should be given a page-aligned address -- certainly
729 * tlb_set_page_with_attrs() does so. The page offset of xlat
730 * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0.
731 * The page portion of xlat will be logged by memory_region_access_valid()
732 * when this memory access is rejected, so use the original untranslated
733 * physical address.
735 assert((orig_addr & ~TARGET_PAGE_MASK) == 0);
736 *xlat = orig_addr;
737 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
740 void cpu_address_space_init(CPUState *cpu, int asidx,
741 const char *prefix, MemoryRegion *mr)
743 CPUAddressSpace *newas;
744 AddressSpace *as = g_new0(AddressSpace, 1);
745 char *as_name;
747 assert(mr);
748 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
749 address_space_init(as, mr, as_name);
750 g_free(as_name);
752 /* Target code should have set num_ases before calling us */
753 assert(asidx < cpu->num_ases);
755 if (asidx == 0) {
756 /* address space 0 gets the convenience alias */
757 cpu->as = as;
760 /* KVM cannot currently support multiple address spaces. */
761 assert(asidx == 0 || !kvm_enabled());
763 if (!cpu->cpu_ases) {
764 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
767 newas = &cpu->cpu_ases[asidx];
768 newas->cpu = cpu;
769 newas->as = as;
770 if (tcg_enabled()) {
771 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
772 newas->tcg_as_listener.commit = tcg_commit;
773 newas->tcg_as_listener.name = "tcg";
774 memory_listener_register(&newas->tcg_as_listener, as);
778 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
780 /* Return the AddressSpace corresponding to the specified index */
781 return cpu->cpu_ases[asidx].as;
784 /* Called from RCU critical section */
785 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
787 RAMBlock *block;
789 block = qatomic_rcu_read(&ram_list.mru_block);
790 if (block && addr - block->offset < block->max_length) {
791 return block;
793 RAMBLOCK_FOREACH(block) {
794 if (addr - block->offset < block->max_length) {
795 goto found;
799 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
800 abort();
802 found:
803 /* It is safe to write mru_block outside the iothread lock. This
804 * is what happens:
806 * mru_block = xxx
807 * rcu_read_unlock()
808 * xxx removed from list
809 * rcu_read_lock()
810 * read mru_block
811 * mru_block = NULL;
812 * call_rcu(reclaim_ramblock, xxx);
813 * rcu_read_unlock()
815 * qatomic_rcu_set is not needed here. The block was already published
816 * when it was placed into the list. Here we're just making an extra
817 * copy of the pointer.
819 ram_list.mru_block = block;
820 return block;
823 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
825 CPUState *cpu;
826 ram_addr_t start1;
827 RAMBlock *block;
828 ram_addr_t end;
830 assert(tcg_enabled());
831 end = TARGET_PAGE_ALIGN(start + length);
832 start &= TARGET_PAGE_MASK;
834 RCU_READ_LOCK_GUARD();
835 block = qemu_get_ram_block(start);
836 assert(block == qemu_get_ram_block(end - 1));
837 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
838 CPU_FOREACH(cpu) {
839 tlb_reset_dirty(cpu, start1, length);
843 /* Note: start and end must be within the same ram block. */
844 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
845 ram_addr_t length,
846 unsigned client)
848 DirtyMemoryBlocks *blocks;
849 unsigned long end, page, start_page;
850 bool dirty = false;
851 RAMBlock *ramblock;
852 uint64_t mr_offset, mr_size;
854 if (length == 0) {
855 return false;
858 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
859 start_page = start >> TARGET_PAGE_BITS;
860 page = start_page;
862 WITH_RCU_READ_LOCK_GUARD() {
863 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
864 ramblock = qemu_get_ram_block(start);
865 /* Range sanity check on the ramblock */
866 assert(start >= ramblock->offset &&
867 start + length <= ramblock->offset + ramblock->used_length);
869 while (page < end) {
870 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
871 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
872 unsigned long num = MIN(end - page,
873 DIRTY_MEMORY_BLOCK_SIZE - offset);
875 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
876 offset, num);
877 page += num;
880 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
881 mr_size = (end - start_page) << TARGET_PAGE_BITS;
882 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
885 if (dirty && tcg_enabled()) {
886 tlb_reset_dirty_range_all(start, length);
889 return dirty;
892 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
893 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
895 DirtyMemoryBlocks *blocks;
896 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
897 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
898 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
899 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
900 DirtyBitmapSnapshot *snap;
901 unsigned long page, end, dest;
903 snap = g_malloc0(sizeof(*snap) +
904 ((last - first) >> (TARGET_PAGE_BITS + 3)));
905 snap->start = first;
906 snap->end = last;
908 page = first >> TARGET_PAGE_BITS;
909 end = last >> TARGET_PAGE_BITS;
910 dest = 0;
912 WITH_RCU_READ_LOCK_GUARD() {
913 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
915 while (page < end) {
916 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
917 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
918 unsigned long num = MIN(end - page,
919 DIRTY_MEMORY_BLOCK_SIZE - offset);
921 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
922 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
923 offset >>= BITS_PER_LEVEL;
925 bitmap_copy_and_clear_atomic(snap->dirty + dest,
926 blocks->blocks[idx] + offset,
927 num);
928 page += num;
929 dest += num >> BITS_PER_LEVEL;
933 if (tcg_enabled()) {
934 tlb_reset_dirty_range_all(start, length);
937 memory_region_clear_dirty_bitmap(mr, offset, length);
939 return snap;
942 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
943 ram_addr_t start,
944 ram_addr_t length)
946 unsigned long page, end;
948 assert(start >= snap->start);
949 assert(start + length <= snap->end);
951 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
952 page = (start - snap->start) >> TARGET_PAGE_BITS;
954 while (page < end) {
955 if (test_bit(page, snap->dirty)) {
956 return true;
958 page++;
960 return false;
963 /* Called from RCU critical section */
964 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
965 MemoryRegionSection *section)
967 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
968 return section - d->map.sections;
971 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
972 uint16_t section);
973 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
975 static uint16_t phys_section_add(PhysPageMap *map,
976 MemoryRegionSection *section)
978 /* The physical section number is ORed with a page-aligned
979 * pointer to produce the iotlb entries. Thus it should
980 * never overflow into the page-aligned value.
982 assert(map->sections_nb < TARGET_PAGE_SIZE);
984 if (map->sections_nb == map->sections_nb_alloc) {
985 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
986 map->sections = g_renew(MemoryRegionSection, map->sections,
987 map->sections_nb_alloc);
989 map->sections[map->sections_nb] = *section;
990 memory_region_ref(section->mr);
991 return map->sections_nb++;
994 static void phys_section_destroy(MemoryRegion *mr)
996 bool have_sub_page = mr->subpage;
998 memory_region_unref(mr);
1000 if (have_sub_page) {
1001 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1002 object_unref(OBJECT(&subpage->iomem));
1003 g_free(subpage);
1007 static void phys_sections_free(PhysPageMap *map)
1009 while (map->sections_nb > 0) {
1010 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1011 phys_section_destroy(section->mr);
1013 g_free(map->sections);
1014 g_free(map->nodes);
1017 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1019 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1020 subpage_t *subpage;
1021 hwaddr base = section->offset_within_address_space
1022 & TARGET_PAGE_MASK;
1023 MemoryRegionSection *existing = phys_page_find(d, base);
1024 MemoryRegionSection subsection = {
1025 .offset_within_address_space = base,
1026 .size = int128_make64(TARGET_PAGE_SIZE),
1028 hwaddr start, end;
1030 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1032 if (!(existing->mr->subpage)) {
1033 subpage = subpage_init(fv, base);
1034 subsection.fv = fv;
1035 subsection.mr = &subpage->iomem;
1036 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1037 phys_section_add(&d->map, &subsection));
1038 } else {
1039 subpage = container_of(existing->mr, subpage_t, iomem);
1041 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1042 end = start + int128_get64(section->size) - 1;
1043 subpage_register(subpage, start, end,
1044 phys_section_add(&d->map, section));
1048 static void register_multipage(FlatView *fv,
1049 MemoryRegionSection *section)
1051 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1052 hwaddr start_addr = section->offset_within_address_space;
1053 uint16_t section_index = phys_section_add(&d->map, section);
1054 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1055 TARGET_PAGE_BITS));
1057 assert(num_pages);
1058 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1062 * The range in *section* may look like this:
1064 * |s|PPPPPPP|s|
1066 * where s stands for subpage and P for page.
1068 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1070 MemoryRegionSection remain = *section;
1071 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1073 /* register first subpage */
1074 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1075 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1076 - remain.offset_within_address_space;
1078 MemoryRegionSection now = remain;
1079 now.size = int128_min(int128_make64(left), now.size);
1080 register_subpage(fv, &now);
1081 if (int128_eq(remain.size, now.size)) {
1082 return;
1084 remain.size = int128_sub(remain.size, now.size);
1085 remain.offset_within_address_space += int128_get64(now.size);
1086 remain.offset_within_region += int128_get64(now.size);
1089 /* register whole pages */
1090 if (int128_ge(remain.size, page_size)) {
1091 MemoryRegionSection now = remain;
1092 now.size = int128_and(now.size, int128_neg(page_size));
1093 register_multipage(fv, &now);
1094 if (int128_eq(remain.size, now.size)) {
1095 return;
1097 remain.size = int128_sub(remain.size, now.size);
1098 remain.offset_within_address_space += int128_get64(now.size);
1099 remain.offset_within_region += int128_get64(now.size);
1102 /* register last subpage */
1103 register_subpage(fv, &remain);
1106 void qemu_flush_coalesced_mmio_buffer(void)
1108 if (kvm_enabled())
1109 kvm_flush_coalesced_mmio_buffer();
1112 void qemu_mutex_lock_ramlist(void)
1114 qemu_mutex_lock(&ram_list.mutex);
1117 void qemu_mutex_unlock_ramlist(void)
1119 qemu_mutex_unlock(&ram_list.mutex);
1122 GString *ram_block_format(void)
1124 RAMBlock *block;
1125 char *psize;
1126 GString *buf = g_string_new("");
1128 RCU_READ_LOCK_GUARD();
1129 g_string_append_printf(buf, "%24s %8s %18s %18s %18s %18s %3s\n",
1130 "Block Name", "PSize", "Offset", "Used", "Total",
1131 "HVA", "RO");
1133 RAMBLOCK_FOREACH(block) {
1134 psize = size_to_str(block->page_size);
1135 g_string_append_printf(buf, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1136 " 0x%016" PRIx64 " 0x%016" PRIx64 " %3s\n",
1137 block->idstr, psize,
1138 (uint64_t)block->offset,
1139 (uint64_t)block->used_length,
1140 (uint64_t)block->max_length,
1141 (uint64_t)(uintptr_t)block->host,
1142 block->mr->readonly ? "ro" : "rw");
1144 g_free(psize);
1147 return buf;
1150 static int find_min_backend_pagesize(Object *obj, void *opaque)
1152 long *hpsize_min = opaque;
1154 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1155 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1156 long hpsize = host_memory_backend_pagesize(backend);
1158 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1159 *hpsize_min = hpsize;
1163 return 0;
1166 static int find_max_backend_pagesize(Object *obj, void *opaque)
1168 long *hpsize_max = opaque;
1170 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1171 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1172 long hpsize = host_memory_backend_pagesize(backend);
1174 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1175 *hpsize_max = hpsize;
1179 return 0;
1183 * TODO: We assume right now that all mapped host memory backends are
1184 * used as RAM, however some might be used for different purposes.
1186 long qemu_minrampagesize(void)
1188 long hpsize = LONG_MAX;
1189 Object *memdev_root = object_resolve_path("/objects", NULL);
1191 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1192 return hpsize;
1195 long qemu_maxrampagesize(void)
1197 long pagesize = 0;
1198 Object *memdev_root = object_resolve_path("/objects", NULL);
1200 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1201 return pagesize;
1204 #ifdef CONFIG_POSIX
1205 static int64_t get_file_size(int fd)
1207 int64_t size;
1208 #if defined(__linux__)
1209 struct stat st;
1211 if (fstat(fd, &st) < 0) {
1212 return -errno;
1215 /* Special handling for devdax character devices */
1216 if (S_ISCHR(st.st_mode)) {
1217 g_autofree char *subsystem_path = NULL;
1218 g_autofree char *subsystem = NULL;
1220 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1221 major(st.st_rdev), minor(st.st_rdev));
1222 subsystem = g_file_read_link(subsystem_path, NULL);
1224 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1225 g_autofree char *size_path = NULL;
1226 g_autofree char *size_str = NULL;
1228 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1229 major(st.st_rdev), minor(st.st_rdev));
1231 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1232 return g_ascii_strtoll(size_str, NULL, 0);
1236 #endif /* defined(__linux__) */
1238 /* st.st_size may be zero for special files yet lseek(2) works */
1239 size = lseek(fd, 0, SEEK_END);
1240 if (size < 0) {
1241 return -errno;
1243 return size;
1246 static int64_t get_file_align(int fd)
1248 int64_t align = -1;
1249 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1250 struct stat st;
1252 if (fstat(fd, &st) < 0) {
1253 return -errno;
1256 /* Special handling for devdax character devices */
1257 if (S_ISCHR(st.st_mode)) {
1258 g_autofree char *path = NULL;
1259 g_autofree char *rpath = NULL;
1260 struct daxctl_ctx *ctx;
1261 struct daxctl_region *region;
1262 int rc = 0;
1264 path = g_strdup_printf("/sys/dev/char/%d:%d",
1265 major(st.st_rdev), minor(st.st_rdev));
1266 rpath = realpath(path, NULL);
1267 if (!rpath) {
1268 return -errno;
1271 rc = daxctl_new(&ctx);
1272 if (rc) {
1273 return -1;
1276 daxctl_region_foreach(ctx, region) {
1277 if (strstr(rpath, daxctl_region_get_path(region))) {
1278 align = daxctl_region_get_align(region);
1279 break;
1282 daxctl_unref(ctx);
1284 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1286 return align;
1289 static int file_ram_open(const char *path,
1290 const char *region_name,
1291 bool readonly,
1292 bool *created,
1293 Error **errp)
1295 char *filename;
1296 char *sanitized_name;
1297 char *c;
1298 int fd = -1;
1300 *created = false;
1301 for (;;) {
1302 fd = open(path, readonly ? O_RDONLY : O_RDWR);
1303 if (fd >= 0) {
1304 /* @path names an existing file, use it */
1305 break;
1307 if (errno == ENOENT) {
1308 /* @path names a file that doesn't exist, create it */
1309 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1310 if (fd >= 0) {
1311 *created = true;
1312 break;
1314 } else if (errno == EISDIR) {
1315 /* @path names a directory, create a file there */
1316 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1317 sanitized_name = g_strdup(region_name);
1318 for (c = sanitized_name; *c != '\0'; c++) {
1319 if (*c == '/') {
1320 *c = '_';
1324 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1325 sanitized_name);
1326 g_free(sanitized_name);
1328 fd = mkstemp(filename);
1329 if (fd >= 0) {
1330 unlink(filename);
1331 g_free(filename);
1332 break;
1334 g_free(filename);
1336 if (errno != EEXIST && errno != EINTR) {
1337 error_setg_errno(errp, errno,
1338 "can't open backing store %s for guest RAM",
1339 path);
1340 return -1;
1343 * Try again on EINTR and EEXIST. The latter happens when
1344 * something else creates the file between our two open().
1348 return fd;
1351 static void *file_ram_alloc(RAMBlock *block,
1352 ram_addr_t memory,
1353 int fd,
1354 bool readonly,
1355 bool truncate,
1356 off_t offset,
1357 Error **errp)
1359 uint32_t qemu_map_flags;
1360 void *area;
1362 block->page_size = qemu_fd_getpagesize(fd);
1363 if (block->mr->align % block->page_size) {
1364 error_setg(errp, "alignment 0x%" PRIx64
1365 " must be multiples of page size 0x%zx",
1366 block->mr->align, block->page_size);
1367 return NULL;
1368 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1369 error_setg(errp, "alignment 0x%" PRIx64
1370 " must be a power of two", block->mr->align);
1371 return NULL;
1372 } else if (offset % block->page_size) {
1373 error_setg(errp, "offset 0x%" PRIx64
1374 " must be multiples of page size 0x%zx",
1375 offset, block->page_size);
1376 return NULL;
1378 block->mr->align = MAX(block->page_size, block->mr->align);
1379 #if defined(__s390x__)
1380 if (kvm_enabled()) {
1381 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1383 #endif
1385 if (memory < block->page_size) {
1386 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1387 "or larger than page size 0x%zx",
1388 memory, block->page_size);
1389 return NULL;
1392 memory = ROUND_UP(memory, block->page_size);
1395 * ftruncate is not supported by hugetlbfs in older
1396 * hosts, so don't bother bailing out on errors.
1397 * If anything goes wrong with it under other filesystems,
1398 * mmap will fail.
1400 * Do not truncate the non-empty backend file to avoid corrupting
1401 * the existing data in the file. Disabling shrinking is not
1402 * enough. For example, the current vNVDIMM implementation stores
1403 * the guest NVDIMM labels at the end of the backend file. If the
1404 * backend file is later extended, QEMU will not be able to find
1405 * those labels. Therefore, extending the non-empty backend file
1406 * is disabled as well.
1408 if (truncate && ftruncate(fd, offset + memory)) {
1409 perror("ftruncate");
1412 qemu_map_flags = readonly ? QEMU_MAP_READONLY : 0;
1413 qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0;
1414 qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0;
1415 qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0;
1416 area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset);
1417 if (area == MAP_FAILED) {
1418 error_setg_errno(errp, errno,
1419 "unable to map backing store for guest RAM");
1420 return NULL;
1423 block->fd = fd;
1424 block->fd_offset = offset;
1425 return area;
1427 #endif
1429 /* Allocate space within the ram_addr_t space that governs the
1430 * dirty bitmaps.
1431 * Called with the ramlist lock held.
1433 static ram_addr_t find_ram_offset(ram_addr_t size)
1435 RAMBlock *block, *next_block;
1436 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1438 assert(size != 0); /* it would hand out same offset multiple times */
1440 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1441 return 0;
1444 RAMBLOCK_FOREACH(block) {
1445 ram_addr_t candidate, next = RAM_ADDR_MAX;
1447 /* Align blocks to start on a 'long' in the bitmap
1448 * which makes the bitmap sync'ing take the fast path.
1450 candidate = block->offset + block->max_length;
1451 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1453 /* Search for the closest following block
1454 * and find the gap.
1456 RAMBLOCK_FOREACH(next_block) {
1457 if (next_block->offset >= candidate) {
1458 next = MIN(next, next_block->offset);
1462 /* If it fits remember our place and remember the size
1463 * of gap, but keep going so that we might find a smaller
1464 * gap to fill so avoiding fragmentation.
1466 if (next - candidate >= size && next - candidate < mingap) {
1467 offset = candidate;
1468 mingap = next - candidate;
1471 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1474 if (offset == RAM_ADDR_MAX) {
1475 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1476 (uint64_t)size);
1477 abort();
1480 trace_find_ram_offset(size, offset);
1482 return offset;
1485 static unsigned long last_ram_page(void)
1487 RAMBlock *block;
1488 ram_addr_t last = 0;
1490 RCU_READ_LOCK_GUARD();
1491 RAMBLOCK_FOREACH(block) {
1492 last = MAX(last, block->offset + block->max_length);
1494 return last >> TARGET_PAGE_BITS;
1497 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1499 int ret;
1501 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1502 if (!machine_dump_guest_core(current_machine)) {
1503 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1504 if (ret) {
1505 perror("qemu_madvise");
1506 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1507 "but dump_guest_core=off specified\n");
1512 const char *qemu_ram_get_idstr(RAMBlock *rb)
1514 return rb->idstr;
1517 void *qemu_ram_get_host_addr(RAMBlock *rb)
1519 return rb->host;
1522 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1524 return rb->offset;
1527 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1529 return rb->used_length;
1532 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb)
1534 return rb->max_length;
1537 bool qemu_ram_is_shared(RAMBlock *rb)
1539 return rb->flags & RAM_SHARED;
1542 bool qemu_ram_is_noreserve(RAMBlock *rb)
1544 return rb->flags & RAM_NORESERVE;
1547 /* Note: Only set at the start of postcopy */
1548 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1550 return rb->flags & RAM_UF_ZEROPAGE;
1553 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1555 rb->flags |= RAM_UF_ZEROPAGE;
1558 bool qemu_ram_is_migratable(RAMBlock *rb)
1560 return rb->flags & RAM_MIGRATABLE;
1563 void qemu_ram_set_migratable(RAMBlock *rb)
1565 rb->flags |= RAM_MIGRATABLE;
1568 void qemu_ram_unset_migratable(RAMBlock *rb)
1570 rb->flags &= ~RAM_MIGRATABLE;
1573 bool qemu_ram_is_named_file(RAMBlock *rb)
1575 return rb->flags & RAM_NAMED_FILE;
1578 int qemu_ram_get_fd(RAMBlock *rb)
1580 return rb->fd;
1583 /* Called with iothread lock held. */
1584 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1586 RAMBlock *block;
1588 assert(new_block);
1589 assert(!new_block->idstr[0]);
1591 if (dev) {
1592 char *id = qdev_get_dev_path(dev);
1593 if (id) {
1594 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1595 g_free(id);
1598 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1600 RCU_READ_LOCK_GUARD();
1601 RAMBLOCK_FOREACH(block) {
1602 if (block != new_block &&
1603 !strcmp(block->idstr, new_block->idstr)) {
1604 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1605 new_block->idstr);
1606 abort();
1611 /* Called with iothread lock held. */
1612 void qemu_ram_unset_idstr(RAMBlock *block)
1614 /* FIXME: arch_init.c assumes that this is not called throughout
1615 * migration. Ignore the problem since hot-unplug during migration
1616 * does not work anyway.
1618 if (block) {
1619 memset(block->idstr, 0, sizeof(block->idstr));
1623 size_t qemu_ram_pagesize(RAMBlock *rb)
1625 return rb->page_size;
1628 /* Returns the largest size of page in use */
1629 size_t qemu_ram_pagesize_largest(void)
1631 RAMBlock *block;
1632 size_t largest = 0;
1634 RAMBLOCK_FOREACH(block) {
1635 largest = MAX(largest, qemu_ram_pagesize(block));
1638 return largest;
1641 static int memory_try_enable_merging(void *addr, size_t len)
1643 if (!machine_mem_merge(current_machine)) {
1644 /* disabled by the user */
1645 return 0;
1648 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1652 * Resizing RAM while migrating can result in the migration being canceled.
1653 * Care has to be taken if the guest might have already detected the memory.
1655 * As memory core doesn't know how is memory accessed, it is up to
1656 * resize callback to update device state and/or add assertions to detect
1657 * misuse, if necessary.
1659 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1661 const ram_addr_t oldsize = block->used_length;
1662 const ram_addr_t unaligned_size = newsize;
1664 assert(block);
1666 newsize = HOST_PAGE_ALIGN(newsize);
1668 if (block->used_length == newsize) {
1670 * We don't have to resize the ram block (which only knows aligned
1671 * sizes), however, we have to notify if the unaligned size changed.
1673 if (unaligned_size != memory_region_size(block->mr)) {
1674 memory_region_set_size(block->mr, unaligned_size);
1675 if (block->resized) {
1676 block->resized(block->idstr, unaligned_size, block->host);
1679 return 0;
1682 if (!(block->flags & RAM_RESIZEABLE)) {
1683 error_setg_errno(errp, EINVAL,
1684 "Size mismatch: %s: 0x" RAM_ADDR_FMT
1685 " != 0x" RAM_ADDR_FMT, block->idstr,
1686 newsize, block->used_length);
1687 return -EINVAL;
1690 if (block->max_length < newsize) {
1691 error_setg_errno(errp, EINVAL,
1692 "Size too large: %s: 0x" RAM_ADDR_FMT
1693 " > 0x" RAM_ADDR_FMT, block->idstr,
1694 newsize, block->max_length);
1695 return -EINVAL;
1698 /* Notify before modifying the ram block and touching the bitmaps. */
1699 if (block->host) {
1700 ram_block_notify_resize(block->host, oldsize, newsize);
1703 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1704 block->used_length = newsize;
1705 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1706 DIRTY_CLIENTS_ALL);
1707 memory_region_set_size(block->mr, unaligned_size);
1708 if (block->resized) {
1709 block->resized(block->idstr, unaligned_size, block->host);
1711 return 0;
1715 * Trigger sync on the given ram block for range [start, start + length]
1716 * with the backing store if one is available.
1717 * Otherwise no-op.
1718 * @Note: this is supposed to be a synchronous op.
1720 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
1722 /* The requested range should fit in within the block range */
1723 g_assert((start + length) <= block->used_length);
1725 #ifdef CONFIG_LIBPMEM
1726 /* The lack of support for pmem should not block the sync */
1727 if (ramblock_is_pmem(block)) {
1728 void *addr = ramblock_ptr(block, start);
1729 pmem_persist(addr, length);
1730 return;
1732 #endif
1733 if (block->fd >= 0) {
1735 * Case there is no support for PMEM or the memory has not been
1736 * specified as persistent (or is not one) - use the msync.
1737 * Less optimal but still achieves the same goal
1739 void *addr = ramblock_ptr(block, start);
1740 if (qemu_msync(addr, length, block->fd)) {
1741 warn_report("%s: failed to sync memory range: start: "
1742 RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
1743 __func__, start, length);
1748 /* Called with ram_list.mutex held */
1749 static void dirty_memory_extend(ram_addr_t old_ram_size,
1750 ram_addr_t new_ram_size)
1752 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1753 DIRTY_MEMORY_BLOCK_SIZE);
1754 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1755 DIRTY_MEMORY_BLOCK_SIZE);
1756 int i;
1758 /* Only need to extend if block count increased */
1759 if (new_num_blocks <= old_num_blocks) {
1760 return;
1763 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1764 DirtyMemoryBlocks *old_blocks;
1765 DirtyMemoryBlocks *new_blocks;
1766 int j;
1768 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
1769 new_blocks = g_malloc(sizeof(*new_blocks) +
1770 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1772 if (old_num_blocks) {
1773 memcpy(new_blocks->blocks, old_blocks->blocks,
1774 old_num_blocks * sizeof(old_blocks->blocks[0]));
1777 for (j = old_num_blocks; j < new_num_blocks; j++) {
1778 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1781 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1783 if (old_blocks) {
1784 g_free_rcu(old_blocks, rcu);
1789 static void ram_block_add(RAMBlock *new_block, Error **errp)
1791 const bool noreserve = qemu_ram_is_noreserve(new_block);
1792 const bool shared = qemu_ram_is_shared(new_block);
1793 RAMBlock *block;
1794 RAMBlock *last_block = NULL;
1795 ram_addr_t old_ram_size, new_ram_size;
1796 Error *err = NULL;
1798 old_ram_size = last_ram_page();
1800 qemu_mutex_lock_ramlist();
1801 new_block->offset = find_ram_offset(new_block->max_length);
1803 if (!new_block->host) {
1804 if (xen_enabled()) {
1805 xen_ram_alloc(new_block->offset, new_block->max_length,
1806 new_block->mr, &err);
1807 if (err) {
1808 error_propagate(errp, err);
1809 qemu_mutex_unlock_ramlist();
1810 return;
1812 } else {
1813 new_block->host = qemu_anon_ram_alloc(new_block->max_length,
1814 &new_block->mr->align,
1815 shared, noreserve);
1816 if (!new_block->host) {
1817 error_setg_errno(errp, errno,
1818 "cannot set up guest memory '%s'",
1819 memory_region_name(new_block->mr));
1820 qemu_mutex_unlock_ramlist();
1821 return;
1823 memory_try_enable_merging(new_block->host, new_block->max_length);
1827 new_ram_size = MAX(old_ram_size,
1828 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1829 if (new_ram_size > old_ram_size) {
1830 dirty_memory_extend(old_ram_size, new_ram_size);
1832 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1833 * QLIST (which has an RCU-friendly variant) does not have insertion at
1834 * tail, so save the last element in last_block.
1836 RAMBLOCK_FOREACH(block) {
1837 last_block = block;
1838 if (block->max_length < new_block->max_length) {
1839 break;
1842 if (block) {
1843 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1844 } else if (last_block) {
1845 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1846 } else { /* list is empty */
1847 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1849 ram_list.mru_block = NULL;
1851 /* Write list before version */
1852 smp_wmb();
1853 ram_list.version++;
1854 qemu_mutex_unlock_ramlist();
1856 cpu_physical_memory_set_dirty_range(new_block->offset,
1857 new_block->used_length,
1858 DIRTY_CLIENTS_ALL);
1860 if (new_block->host) {
1861 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1862 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1864 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
1865 * Configure it unless the machine is a qtest server, in which case
1866 * KVM is not used and it may be forked (eg for fuzzing purposes).
1868 if (!qtest_enabled()) {
1869 qemu_madvise(new_block->host, new_block->max_length,
1870 QEMU_MADV_DONTFORK);
1872 ram_block_notify_add(new_block->host, new_block->used_length,
1873 new_block->max_length);
1877 #ifdef CONFIG_POSIX
1878 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
1879 uint32_t ram_flags, int fd, off_t offset,
1880 bool readonly, Error **errp)
1882 RAMBlock *new_block;
1883 Error *local_err = NULL;
1884 int64_t file_size, file_align;
1886 /* Just support these ram flags by now. */
1887 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE |
1888 RAM_PROTECTED | RAM_NAMED_FILE)) == 0);
1890 if (xen_enabled()) {
1891 error_setg(errp, "-mem-path not supported with Xen");
1892 return NULL;
1895 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1896 error_setg(errp,
1897 "host lacks kvm mmu notifiers, -mem-path unsupported");
1898 return NULL;
1901 size = HOST_PAGE_ALIGN(size);
1902 file_size = get_file_size(fd);
1903 if (file_size > offset && file_size < (offset + size)) {
1904 error_setg(errp, "backing store size 0x%" PRIx64
1905 " does not match 'size' option 0x" RAM_ADDR_FMT,
1906 file_size, size);
1907 return NULL;
1910 file_align = get_file_align(fd);
1911 if (file_align > 0 && file_align > mr->align) {
1912 error_setg(errp, "backing store align 0x%" PRIx64
1913 " is larger than 'align' option 0x%" PRIx64,
1914 file_align, mr->align);
1915 return NULL;
1918 new_block = g_malloc0(sizeof(*new_block));
1919 new_block->mr = mr;
1920 new_block->used_length = size;
1921 new_block->max_length = size;
1922 new_block->flags = ram_flags;
1923 new_block->host = file_ram_alloc(new_block, size, fd, readonly,
1924 !file_size, offset, errp);
1925 if (!new_block->host) {
1926 g_free(new_block);
1927 return NULL;
1930 ram_block_add(new_block, &local_err);
1931 if (local_err) {
1932 g_free(new_block);
1933 error_propagate(errp, local_err);
1934 return NULL;
1936 return new_block;
1941 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1942 uint32_t ram_flags, const char *mem_path,
1943 off_t offset, bool readonly, Error **errp)
1945 int fd;
1946 bool created;
1947 RAMBlock *block;
1949 fd = file_ram_open(mem_path, memory_region_name(mr), readonly, &created,
1950 errp);
1951 if (fd < 0) {
1952 return NULL;
1955 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset, readonly,
1956 errp);
1957 if (!block) {
1958 if (created) {
1959 unlink(mem_path);
1961 close(fd);
1962 return NULL;
1965 return block;
1967 #endif
1969 static
1970 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
1971 void (*resized)(const char*,
1972 uint64_t length,
1973 void *host),
1974 void *host, uint32_t ram_flags,
1975 MemoryRegion *mr, Error **errp)
1977 RAMBlock *new_block;
1978 Error *local_err = NULL;
1980 assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC |
1981 RAM_NORESERVE)) == 0);
1982 assert(!host ^ (ram_flags & RAM_PREALLOC));
1984 size = HOST_PAGE_ALIGN(size);
1985 max_size = HOST_PAGE_ALIGN(max_size);
1986 new_block = g_malloc0(sizeof(*new_block));
1987 new_block->mr = mr;
1988 new_block->resized = resized;
1989 new_block->used_length = size;
1990 new_block->max_length = max_size;
1991 assert(max_size >= size);
1992 new_block->fd = -1;
1993 new_block->page_size = qemu_real_host_page_size();
1994 new_block->host = host;
1995 new_block->flags = ram_flags;
1996 ram_block_add(new_block, &local_err);
1997 if (local_err) {
1998 g_free(new_block);
1999 error_propagate(errp, local_err);
2000 return NULL;
2002 return new_block;
2005 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2006 MemoryRegion *mr, Error **errp)
2008 return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr,
2009 errp);
2012 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags,
2013 MemoryRegion *mr, Error **errp)
2015 assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE)) == 0);
2016 return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp);
2019 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2020 void (*resized)(const char*,
2021 uint64_t length,
2022 void *host),
2023 MemoryRegion *mr, Error **errp)
2025 return qemu_ram_alloc_internal(size, maxsz, resized, NULL,
2026 RAM_RESIZEABLE, mr, errp);
2029 static void reclaim_ramblock(RAMBlock *block)
2031 if (block->flags & RAM_PREALLOC) {
2033 } else if (xen_enabled()) {
2034 xen_invalidate_map_cache_entry(block->host);
2035 #ifndef _WIN32
2036 } else if (block->fd >= 0) {
2037 qemu_ram_munmap(block->fd, block->host, block->max_length);
2038 close(block->fd);
2039 #endif
2040 } else {
2041 qemu_anon_ram_free(block->host, block->max_length);
2043 g_free(block);
2046 void qemu_ram_free(RAMBlock *block)
2048 if (!block) {
2049 return;
2052 if (block->host) {
2053 ram_block_notify_remove(block->host, block->used_length,
2054 block->max_length);
2057 qemu_mutex_lock_ramlist();
2058 QLIST_REMOVE_RCU(block, next);
2059 ram_list.mru_block = NULL;
2060 /* Write list before version */
2061 smp_wmb();
2062 ram_list.version++;
2063 call_rcu(block, reclaim_ramblock, rcu);
2064 qemu_mutex_unlock_ramlist();
2067 #ifndef _WIN32
2068 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2070 RAMBlock *block;
2071 ram_addr_t offset;
2072 int flags;
2073 void *area, *vaddr;
2075 RAMBLOCK_FOREACH(block) {
2076 offset = addr - block->offset;
2077 if (offset < block->max_length) {
2078 vaddr = ramblock_ptr(block, offset);
2079 if (block->flags & RAM_PREALLOC) {
2081 } else if (xen_enabled()) {
2082 abort();
2083 } else {
2084 flags = MAP_FIXED;
2085 flags |= block->flags & RAM_SHARED ?
2086 MAP_SHARED : MAP_PRIVATE;
2087 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0;
2088 if (block->fd >= 0) {
2089 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2090 flags, block->fd, offset + block->fd_offset);
2091 } else {
2092 flags |= MAP_ANONYMOUS;
2093 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2094 flags, -1, 0);
2096 if (area != vaddr) {
2097 error_report("Could not remap addr: "
2098 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2099 length, addr);
2100 exit(1);
2102 memory_try_enable_merging(vaddr, length);
2103 qemu_ram_setup_dump(vaddr, length);
2108 #endif /* !_WIN32 */
2110 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2111 * This should not be used for general purpose DMA. Use address_space_map
2112 * or address_space_rw instead. For local memory (e.g. video ram) that the
2113 * device owns, use memory_region_get_ram_ptr.
2115 * Called within RCU critical section.
2117 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2119 RAMBlock *block = ram_block;
2121 if (block == NULL) {
2122 block = qemu_get_ram_block(addr);
2123 addr -= block->offset;
2126 if (xen_enabled() && block->host == NULL) {
2127 /* We need to check if the requested address is in the RAM
2128 * because we don't want to map the entire memory in QEMU.
2129 * In that case just map until the end of the page.
2131 if (block->offset == 0) {
2132 return xen_map_cache(addr, 0, 0, false);
2135 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2137 return ramblock_ptr(block, addr);
2140 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2141 * but takes a size argument.
2143 * Called within RCU critical section.
2145 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2146 hwaddr *size, bool lock)
2148 RAMBlock *block = ram_block;
2149 if (*size == 0) {
2150 return NULL;
2153 if (block == NULL) {
2154 block = qemu_get_ram_block(addr);
2155 addr -= block->offset;
2157 *size = MIN(*size, block->max_length - addr);
2159 if (xen_enabled() && block->host == NULL) {
2160 /* We need to check if the requested address is in the RAM
2161 * because we don't want to map the entire memory in QEMU.
2162 * In that case just map the requested area.
2164 if (block->offset == 0) {
2165 return xen_map_cache(addr, *size, lock, lock);
2168 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2171 return ramblock_ptr(block, addr);
2174 /* Return the offset of a hostpointer within a ramblock */
2175 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2177 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2178 assert((uintptr_t)host >= (uintptr_t)rb->host);
2179 assert(res < rb->max_length);
2181 return res;
2185 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2186 * in that RAMBlock.
2188 * ptr: Host pointer to look up
2189 * round_offset: If true round the result offset down to a page boundary
2190 * *ram_addr: set to result ram_addr
2191 * *offset: set to result offset within the RAMBlock
2193 * Returns: RAMBlock (or NULL if not found)
2195 * By the time this function returns, the returned pointer is not protected
2196 * by RCU anymore. If the caller is not within an RCU critical section and
2197 * does not hold the iothread lock, it must have other means of protecting the
2198 * pointer, such as a reference to the region that includes the incoming
2199 * ram_addr_t.
2201 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2202 ram_addr_t *offset)
2204 RAMBlock *block;
2205 uint8_t *host = ptr;
2207 if (xen_enabled()) {
2208 ram_addr_t ram_addr;
2209 RCU_READ_LOCK_GUARD();
2210 ram_addr = xen_ram_addr_from_mapcache(ptr);
2211 block = qemu_get_ram_block(ram_addr);
2212 if (block) {
2213 *offset = ram_addr - block->offset;
2215 return block;
2218 RCU_READ_LOCK_GUARD();
2219 block = qatomic_rcu_read(&ram_list.mru_block);
2220 if (block && block->host && host - block->host < block->max_length) {
2221 goto found;
2224 RAMBLOCK_FOREACH(block) {
2225 /* This case append when the block is not mapped. */
2226 if (block->host == NULL) {
2227 continue;
2229 if (host - block->host < block->max_length) {
2230 goto found;
2234 return NULL;
2236 found:
2237 *offset = (host - block->host);
2238 if (round_offset) {
2239 *offset &= TARGET_PAGE_MASK;
2241 return block;
2245 * Finds the named RAMBlock
2247 * name: The name of RAMBlock to find
2249 * Returns: RAMBlock (or NULL if not found)
2251 RAMBlock *qemu_ram_block_by_name(const char *name)
2253 RAMBlock *block;
2255 RAMBLOCK_FOREACH(block) {
2256 if (!strcmp(name, block->idstr)) {
2257 return block;
2261 return NULL;
2264 /* Some of the softmmu routines need to translate from a host pointer
2265 (typically a TLB entry) back to a ram offset. */
2266 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2268 RAMBlock *block;
2269 ram_addr_t offset;
2271 block = qemu_ram_block_from_host(ptr, false, &offset);
2272 if (!block) {
2273 return RAM_ADDR_INVALID;
2276 return block->offset + offset;
2279 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2281 ram_addr_t ram_addr;
2283 ram_addr = qemu_ram_addr_from_host(ptr);
2284 if (ram_addr == RAM_ADDR_INVALID) {
2285 error_report("Bad ram pointer %p", ptr);
2286 abort();
2288 return ram_addr;
2291 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2292 MemTxAttrs attrs, void *buf, hwaddr len);
2293 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2294 const void *buf, hwaddr len);
2295 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2296 bool is_write, MemTxAttrs attrs);
2298 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2299 unsigned len, MemTxAttrs attrs)
2301 subpage_t *subpage = opaque;
2302 uint8_t buf[8];
2303 MemTxResult res;
2305 #if defined(DEBUG_SUBPAGE)
2306 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__,
2307 subpage, len, addr);
2308 #endif
2309 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2310 if (res) {
2311 return res;
2313 *data = ldn_p(buf, len);
2314 return MEMTX_OK;
2317 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2318 uint64_t value, unsigned len, MemTxAttrs attrs)
2320 subpage_t *subpage = opaque;
2321 uint8_t buf[8];
2323 #if defined(DEBUG_SUBPAGE)
2324 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx
2325 " value %"PRIx64"\n",
2326 __func__, subpage, len, addr, value);
2327 #endif
2328 stn_p(buf, len, value);
2329 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2332 static bool subpage_accepts(void *opaque, hwaddr addr,
2333 unsigned len, bool is_write,
2334 MemTxAttrs attrs)
2336 subpage_t *subpage = opaque;
2337 #if defined(DEBUG_SUBPAGE)
2338 printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n",
2339 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2340 #endif
2342 return flatview_access_valid(subpage->fv, addr + subpage->base,
2343 len, is_write, attrs);
2346 static const MemoryRegionOps subpage_ops = {
2347 .read_with_attrs = subpage_read,
2348 .write_with_attrs = subpage_write,
2349 .impl.min_access_size = 1,
2350 .impl.max_access_size = 8,
2351 .valid.min_access_size = 1,
2352 .valid.max_access_size = 8,
2353 .valid.accepts = subpage_accepts,
2354 .endianness = DEVICE_NATIVE_ENDIAN,
2357 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2358 uint16_t section)
2360 int idx, eidx;
2362 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2363 return -1;
2364 idx = SUBPAGE_IDX(start);
2365 eidx = SUBPAGE_IDX(end);
2366 #if defined(DEBUG_SUBPAGE)
2367 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2368 __func__, mmio, start, end, idx, eidx, section);
2369 #endif
2370 for (; idx <= eidx; idx++) {
2371 mmio->sub_section[idx] = section;
2374 return 0;
2377 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2379 subpage_t *mmio;
2381 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2382 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2383 mmio->fv = fv;
2384 mmio->base = base;
2385 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2386 NULL, TARGET_PAGE_SIZE);
2387 mmio->iomem.subpage = true;
2388 #if defined(DEBUG_SUBPAGE)
2389 printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__,
2390 mmio, base, TARGET_PAGE_SIZE);
2391 #endif
2393 return mmio;
2396 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2398 assert(fv);
2399 MemoryRegionSection section = {
2400 .fv = fv,
2401 .mr = mr,
2402 .offset_within_address_space = 0,
2403 .offset_within_region = 0,
2404 .size = int128_2_64(),
2407 return phys_section_add(map, &section);
2410 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2411 hwaddr index, MemTxAttrs attrs)
2413 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2414 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2415 AddressSpaceDispatch *d = qatomic_rcu_read(&cpuas->memory_dispatch);
2416 MemoryRegionSection *sections = d->map.sections;
2418 return &sections[index & ~TARGET_PAGE_MASK];
2421 static void io_mem_init(void)
2423 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2424 NULL, UINT64_MAX);
2427 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2429 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2430 uint16_t n;
2432 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2433 assert(n == PHYS_SECTION_UNASSIGNED);
2435 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2437 return d;
2440 void address_space_dispatch_free(AddressSpaceDispatch *d)
2442 phys_sections_free(&d->map);
2443 g_free(d);
2446 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2450 static void tcg_log_global_after_sync(MemoryListener *listener)
2452 CPUAddressSpace *cpuas;
2454 /* Wait for the CPU to end the current TB. This avoids the following
2455 * incorrect race:
2457 * vCPU migration
2458 * ---------------------- -------------------------
2459 * TLB check -> slow path
2460 * notdirty_mem_write
2461 * write to RAM
2462 * mark dirty
2463 * clear dirty flag
2464 * TLB check -> fast path
2465 * read memory
2466 * write to RAM
2468 * by pushing the migration thread's memory read after the vCPU thread has
2469 * written the memory.
2471 if (replay_mode == REPLAY_MODE_NONE) {
2473 * VGA can make calls to this function while updating the screen.
2474 * In record/replay mode this causes a deadlock, because
2475 * run_on_cpu waits for rr mutex. Therefore no races are possible
2476 * in this case and no need for making run_on_cpu when
2477 * record/replay is enabled.
2479 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2480 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2484 static void tcg_commit(MemoryListener *listener)
2486 CPUAddressSpace *cpuas;
2487 AddressSpaceDispatch *d;
2489 assert(tcg_enabled());
2490 /* since each CPU stores ram addresses in its TLB cache, we must
2491 reset the modified entries */
2492 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2493 cpu_reloading_memory_map();
2494 /* The CPU and TLB are protected by the iothread lock.
2495 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2496 * may have split the RCU critical section.
2498 d = address_space_to_dispatch(cpuas->as);
2499 qatomic_rcu_set(&cpuas->memory_dispatch, d);
2500 tlb_flush(cpuas->cpu);
2503 static void memory_map_init(void)
2505 system_memory = g_malloc(sizeof(*system_memory));
2507 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2508 address_space_init(&address_space_memory, system_memory, "memory");
2510 system_io = g_malloc(sizeof(*system_io));
2511 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2512 65536);
2513 address_space_init(&address_space_io, system_io, "I/O");
2516 MemoryRegion *get_system_memory(void)
2518 return system_memory;
2521 MemoryRegion *get_system_io(void)
2523 return system_io;
2526 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2527 hwaddr length)
2529 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2530 addr += memory_region_get_ram_addr(mr);
2532 /* No early return if dirty_log_mask is or becomes 0, because
2533 * cpu_physical_memory_set_dirty_range will still call
2534 * xen_modified_memory.
2536 if (dirty_log_mask) {
2537 dirty_log_mask =
2538 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2540 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2541 assert(tcg_enabled());
2542 tb_invalidate_phys_range(addr, addr + length - 1);
2543 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2545 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2548 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
2551 * In principle this function would work on other memory region types too,
2552 * but the ROM device use case is the only one where this operation is
2553 * necessary. Other memory regions should use the
2554 * address_space_read/write() APIs.
2556 assert(memory_region_is_romd(mr));
2558 invalidate_and_set_dirty(mr, addr, size);
2561 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2563 unsigned access_size_max = mr->ops->valid.max_access_size;
2565 /* Regions are assumed to support 1-4 byte accesses unless
2566 otherwise specified. */
2567 if (access_size_max == 0) {
2568 access_size_max = 4;
2571 /* Bound the maximum access by the alignment of the address. */
2572 if (!mr->ops->impl.unaligned) {
2573 unsigned align_size_max = addr & -addr;
2574 if (align_size_max != 0 && align_size_max < access_size_max) {
2575 access_size_max = align_size_max;
2579 /* Don't attempt accesses larger than the maximum. */
2580 if (l > access_size_max) {
2581 l = access_size_max;
2583 l = pow2floor(l);
2585 return l;
2588 bool prepare_mmio_access(MemoryRegion *mr)
2590 bool release_lock = false;
2592 if (!qemu_mutex_iothread_locked()) {
2593 qemu_mutex_lock_iothread();
2594 release_lock = true;
2596 if (mr->flush_coalesced_mmio) {
2597 qemu_flush_coalesced_mmio_buffer();
2600 return release_lock;
2604 * flatview_access_allowed
2605 * @mr: #MemoryRegion to be accessed
2606 * @attrs: memory transaction attributes
2607 * @addr: address within that memory region
2608 * @len: the number of bytes to access
2610 * Check if a memory transaction is allowed.
2612 * Returns: true if transaction is allowed, false if denied.
2614 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs,
2615 hwaddr addr, hwaddr len)
2617 if (likely(!attrs.memory)) {
2618 return true;
2620 if (memory_region_is_ram(mr)) {
2621 return true;
2623 qemu_log_mask(LOG_GUEST_ERROR,
2624 "Invalid access to non-RAM device at "
2625 "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", "
2626 "region '%s'\n", addr, len, memory_region_name(mr));
2627 return false;
2630 /* Called within RCU critical section. */
2631 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2632 MemTxAttrs attrs,
2633 const void *ptr,
2634 hwaddr len, hwaddr addr1,
2635 hwaddr l, MemoryRegion *mr)
2637 uint8_t *ram_ptr;
2638 uint64_t val;
2639 MemTxResult result = MEMTX_OK;
2640 bool release_lock = false;
2641 const uint8_t *buf = ptr;
2643 for (;;) {
2644 if (!flatview_access_allowed(mr, attrs, addr1, l)) {
2645 result |= MEMTX_ACCESS_ERROR;
2646 /* Keep going. */
2647 } else if (!memory_access_is_direct(mr, true)) {
2648 release_lock |= prepare_mmio_access(mr);
2649 l = memory_access_size(mr, l, addr1);
2650 /* XXX: could force current_cpu to NULL to avoid
2651 potential bugs */
2652 val = ldn_he_p(buf, l);
2653 result |= memory_region_dispatch_write(mr, addr1, val,
2654 size_memop(l), attrs);
2655 } else {
2656 /* RAM case */
2657 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2658 memmove(ram_ptr, buf, l);
2659 invalidate_and_set_dirty(mr, addr1, l);
2662 if (release_lock) {
2663 qemu_mutex_unlock_iothread();
2664 release_lock = false;
2667 len -= l;
2668 buf += l;
2669 addr += l;
2671 if (!len) {
2672 break;
2675 l = len;
2676 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2679 return result;
2682 /* Called from RCU critical section. */
2683 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2684 const void *buf, hwaddr len)
2686 hwaddr l;
2687 hwaddr addr1;
2688 MemoryRegion *mr;
2690 l = len;
2691 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2692 if (!flatview_access_allowed(mr, attrs, addr, len)) {
2693 return MEMTX_ACCESS_ERROR;
2695 return flatview_write_continue(fv, addr, attrs, buf, len,
2696 addr1, l, mr);
2699 /* Called within RCU critical section. */
2700 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2701 MemTxAttrs attrs, void *ptr,
2702 hwaddr len, hwaddr addr1, hwaddr l,
2703 MemoryRegion *mr)
2705 uint8_t *ram_ptr;
2706 uint64_t val;
2707 MemTxResult result = MEMTX_OK;
2708 bool release_lock = false;
2709 uint8_t *buf = ptr;
2711 fuzz_dma_read_cb(addr, len, mr);
2712 for (;;) {
2713 if (!flatview_access_allowed(mr, attrs, addr1, l)) {
2714 result |= MEMTX_ACCESS_ERROR;
2715 /* Keep going. */
2716 } else if (!memory_access_is_direct(mr, false)) {
2717 /* I/O case */
2718 release_lock |= prepare_mmio_access(mr);
2719 l = memory_access_size(mr, l, addr1);
2720 result |= memory_region_dispatch_read(mr, addr1, &val,
2721 size_memop(l), attrs);
2722 stn_he_p(buf, l, val);
2723 } else {
2724 /* RAM case */
2725 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2726 memcpy(buf, ram_ptr, l);
2729 if (release_lock) {
2730 qemu_mutex_unlock_iothread();
2731 release_lock = false;
2734 len -= l;
2735 buf += l;
2736 addr += l;
2738 if (!len) {
2739 break;
2742 l = len;
2743 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2746 return result;
2749 /* Called from RCU critical section. */
2750 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2751 MemTxAttrs attrs, void *buf, hwaddr len)
2753 hwaddr l;
2754 hwaddr addr1;
2755 MemoryRegion *mr;
2757 l = len;
2758 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2759 if (!flatview_access_allowed(mr, attrs, addr, len)) {
2760 return MEMTX_ACCESS_ERROR;
2762 return flatview_read_continue(fv, addr, attrs, buf, len,
2763 addr1, l, mr);
2766 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2767 MemTxAttrs attrs, void *buf, hwaddr len)
2769 MemTxResult result = MEMTX_OK;
2770 FlatView *fv;
2772 if (len > 0) {
2773 RCU_READ_LOCK_GUARD();
2774 fv = address_space_to_flatview(as);
2775 result = flatview_read(fv, addr, attrs, buf, len);
2778 return result;
2781 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2782 MemTxAttrs attrs,
2783 const void *buf, hwaddr len)
2785 MemTxResult result = MEMTX_OK;
2786 FlatView *fv;
2788 if (len > 0) {
2789 RCU_READ_LOCK_GUARD();
2790 fv = address_space_to_flatview(as);
2791 result = flatview_write(fv, addr, attrs, buf, len);
2794 return result;
2797 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2798 void *buf, hwaddr len, bool is_write)
2800 if (is_write) {
2801 return address_space_write(as, addr, attrs, buf, len);
2802 } else {
2803 return address_space_read_full(as, addr, attrs, buf, len);
2807 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
2808 uint8_t c, hwaddr len, MemTxAttrs attrs)
2810 #define FILLBUF_SIZE 512
2811 uint8_t fillbuf[FILLBUF_SIZE];
2812 int l;
2813 MemTxResult error = MEMTX_OK;
2815 memset(fillbuf, c, FILLBUF_SIZE);
2816 while (len > 0) {
2817 l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE;
2818 error |= address_space_write(as, addr, attrs, fillbuf, l);
2819 len -= l;
2820 addr += l;
2823 return error;
2826 void cpu_physical_memory_rw(hwaddr addr, void *buf,
2827 hwaddr len, bool is_write)
2829 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2830 buf, len, is_write);
2833 enum write_rom_type {
2834 WRITE_DATA,
2835 FLUSH_CACHE,
2838 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
2839 hwaddr addr,
2840 MemTxAttrs attrs,
2841 const void *ptr,
2842 hwaddr len,
2843 enum write_rom_type type)
2845 hwaddr l;
2846 uint8_t *ram_ptr;
2847 hwaddr addr1;
2848 MemoryRegion *mr;
2849 const uint8_t *buf = ptr;
2851 RCU_READ_LOCK_GUARD();
2852 while (len > 0) {
2853 l = len;
2854 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
2856 if (!(memory_region_is_ram(mr) ||
2857 memory_region_is_romd(mr))) {
2858 l = memory_access_size(mr, l, addr1);
2859 } else {
2860 /* ROM/RAM case */
2861 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2862 switch (type) {
2863 case WRITE_DATA:
2864 memcpy(ram_ptr, buf, l);
2865 invalidate_and_set_dirty(mr, addr1, l);
2866 break;
2867 case FLUSH_CACHE:
2868 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
2869 break;
2872 len -= l;
2873 buf += l;
2874 addr += l;
2876 return MEMTX_OK;
2879 /* used for ROM loading : can write in RAM and ROM */
2880 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2881 MemTxAttrs attrs,
2882 const void *buf, hwaddr len)
2884 return address_space_write_rom_internal(as, addr, attrs,
2885 buf, len, WRITE_DATA);
2888 void cpu_flush_icache_range(hwaddr start, hwaddr len)
2891 * This function should do the same thing as an icache flush that was
2892 * triggered from within the guest. For TCG we are always cache coherent,
2893 * so there is no need to flush anything. For KVM / Xen we need to flush
2894 * the host's instruction cache at least.
2896 if (tcg_enabled()) {
2897 return;
2900 address_space_write_rom_internal(&address_space_memory,
2901 start, MEMTXATTRS_UNSPECIFIED,
2902 NULL, len, FLUSH_CACHE);
2905 typedef struct {
2906 MemoryRegion *mr;
2907 void *buffer;
2908 hwaddr addr;
2909 hwaddr len;
2910 bool in_use;
2911 } BounceBuffer;
2913 static BounceBuffer bounce;
2915 typedef struct MapClient {
2916 QEMUBH *bh;
2917 QLIST_ENTRY(MapClient) link;
2918 } MapClient;
2920 QemuMutex map_client_list_lock;
2921 static QLIST_HEAD(, MapClient) map_client_list
2922 = QLIST_HEAD_INITIALIZER(map_client_list);
2924 static void cpu_unregister_map_client_do(MapClient *client)
2926 QLIST_REMOVE(client, link);
2927 g_free(client);
2930 static void cpu_notify_map_clients_locked(void)
2932 MapClient *client;
2934 while (!QLIST_EMPTY(&map_client_list)) {
2935 client = QLIST_FIRST(&map_client_list);
2936 qemu_bh_schedule(client->bh);
2937 cpu_unregister_map_client_do(client);
2941 void cpu_register_map_client(QEMUBH *bh)
2943 MapClient *client = g_malloc(sizeof(*client));
2945 qemu_mutex_lock(&map_client_list_lock);
2946 client->bh = bh;
2947 QLIST_INSERT_HEAD(&map_client_list, client, link);
2948 /* Write map_client_list before reading in_use. */
2949 smp_mb();
2950 if (!qatomic_read(&bounce.in_use)) {
2951 cpu_notify_map_clients_locked();
2953 qemu_mutex_unlock(&map_client_list_lock);
2956 void cpu_exec_init_all(void)
2958 qemu_mutex_init(&ram_list.mutex);
2959 /* The data structures we set up here depend on knowing the page size,
2960 * so no more changes can be made after this point.
2961 * In an ideal world, nothing we did before we had finished the
2962 * machine setup would care about the target page size, and we could
2963 * do this much later, rather than requiring board models to state
2964 * up front what their requirements are.
2966 finalize_target_page_bits();
2967 io_mem_init();
2968 memory_map_init();
2969 qemu_mutex_init(&map_client_list_lock);
2972 void cpu_unregister_map_client(QEMUBH *bh)
2974 MapClient *client;
2976 qemu_mutex_lock(&map_client_list_lock);
2977 QLIST_FOREACH(client, &map_client_list, link) {
2978 if (client->bh == bh) {
2979 cpu_unregister_map_client_do(client);
2980 break;
2983 qemu_mutex_unlock(&map_client_list_lock);
2986 static void cpu_notify_map_clients(void)
2988 qemu_mutex_lock(&map_client_list_lock);
2989 cpu_notify_map_clients_locked();
2990 qemu_mutex_unlock(&map_client_list_lock);
2993 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2994 bool is_write, MemTxAttrs attrs)
2996 MemoryRegion *mr;
2997 hwaddr l, xlat;
2999 while (len > 0) {
3000 l = len;
3001 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3002 if (!memory_access_is_direct(mr, is_write)) {
3003 l = memory_access_size(mr, l, addr);
3004 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3005 return false;
3009 len -= l;
3010 addr += l;
3012 return true;
3015 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3016 hwaddr len, bool is_write,
3017 MemTxAttrs attrs)
3019 FlatView *fv;
3021 RCU_READ_LOCK_GUARD();
3022 fv = address_space_to_flatview(as);
3023 return flatview_access_valid(fv, addr, len, is_write, attrs);
3026 static hwaddr
3027 flatview_extend_translation(FlatView *fv, hwaddr addr,
3028 hwaddr target_len,
3029 MemoryRegion *mr, hwaddr base, hwaddr len,
3030 bool is_write, MemTxAttrs attrs)
3032 hwaddr done = 0;
3033 hwaddr xlat;
3034 MemoryRegion *this_mr;
3036 for (;;) {
3037 target_len -= len;
3038 addr += len;
3039 done += len;
3040 if (target_len == 0) {
3041 return done;
3044 len = target_len;
3045 this_mr = flatview_translate(fv, addr, &xlat,
3046 &len, is_write, attrs);
3047 if (this_mr != mr || xlat != base + done) {
3048 return done;
3053 /* Map a physical memory region into a host virtual address.
3054 * May map a subset of the requested range, given by and returned in *plen.
3055 * May return NULL if resources needed to perform the mapping are exhausted.
3056 * Use only for reads OR writes - not for read-modify-write operations.
3057 * Use cpu_register_map_client() to know when retrying the map operation is
3058 * likely to succeed.
3060 void *address_space_map(AddressSpace *as,
3061 hwaddr addr,
3062 hwaddr *plen,
3063 bool is_write,
3064 MemTxAttrs attrs)
3066 hwaddr len = *plen;
3067 hwaddr l, xlat;
3068 MemoryRegion *mr;
3069 FlatView *fv;
3071 if (len == 0) {
3072 return NULL;
3075 l = len;
3076 RCU_READ_LOCK_GUARD();
3077 fv = address_space_to_flatview(as);
3078 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3080 if (!memory_access_is_direct(mr, is_write)) {
3081 if (qatomic_xchg(&bounce.in_use, true)) {
3082 *plen = 0;
3083 return NULL;
3085 /* Avoid unbounded allocations */
3086 l = MIN(l, TARGET_PAGE_SIZE);
3087 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3088 bounce.addr = addr;
3089 bounce.len = l;
3091 memory_region_ref(mr);
3092 bounce.mr = mr;
3093 if (!is_write) {
3094 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3095 bounce.buffer, l);
3098 *plen = l;
3099 return bounce.buffer;
3103 memory_region_ref(mr);
3104 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3105 l, is_write, attrs);
3106 fuzz_dma_read_cb(addr, *plen, mr);
3107 return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3110 /* Unmaps a memory region previously mapped by address_space_map().
3111 * Will also mark the memory as dirty if is_write is true. access_len gives
3112 * the amount of memory that was actually read or written by the caller.
3114 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3115 bool is_write, hwaddr access_len)
3117 if (buffer != bounce.buffer) {
3118 MemoryRegion *mr;
3119 ram_addr_t addr1;
3121 mr = memory_region_from_host(buffer, &addr1);
3122 assert(mr != NULL);
3123 if (is_write) {
3124 invalidate_and_set_dirty(mr, addr1, access_len);
3126 if (xen_enabled()) {
3127 xen_invalidate_map_cache_entry(buffer);
3129 memory_region_unref(mr);
3130 return;
3132 if (is_write) {
3133 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3134 bounce.buffer, access_len);
3136 qemu_vfree(bounce.buffer);
3137 bounce.buffer = NULL;
3138 memory_region_unref(bounce.mr);
3139 /* Clear in_use before reading map_client_list. */
3140 qatomic_set_mb(&bounce.in_use, false);
3141 cpu_notify_map_clients();
3144 void *cpu_physical_memory_map(hwaddr addr,
3145 hwaddr *plen,
3146 bool is_write)
3148 return address_space_map(&address_space_memory, addr, plen, is_write,
3149 MEMTXATTRS_UNSPECIFIED);
3152 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3153 bool is_write, hwaddr access_len)
3155 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3158 #define ARG1_DECL AddressSpace *as
3159 #define ARG1 as
3160 #define SUFFIX
3161 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3162 #define RCU_READ_LOCK(...) rcu_read_lock()
3163 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3164 #include "memory_ldst.c.inc"
3166 int64_t address_space_cache_init(MemoryRegionCache *cache,
3167 AddressSpace *as,
3168 hwaddr addr,
3169 hwaddr len,
3170 bool is_write)
3172 AddressSpaceDispatch *d;
3173 hwaddr l;
3174 MemoryRegion *mr;
3175 Int128 diff;
3177 assert(len > 0);
3179 l = len;
3180 cache->fv = address_space_get_flatview(as);
3181 d = flatview_to_dispatch(cache->fv);
3182 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3185 * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
3186 * Take that into account to compute how many bytes are there between
3187 * cache->xlat and the end of the section.
3189 diff = int128_sub(cache->mrs.size,
3190 int128_make64(cache->xlat - cache->mrs.offset_within_region));
3191 l = int128_get64(int128_min(diff, int128_make64(l)));
3193 mr = cache->mrs.mr;
3194 memory_region_ref(mr);
3195 if (memory_access_is_direct(mr, is_write)) {
3196 /* We don't care about the memory attributes here as we're only
3197 * doing this if we found actual RAM, which behaves the same
3198 * regardless of attributes; so UNSPECIFIED is fine.
3200 l = flatview_extend_translation(cache->fv, addr, len, mr,
3201 cache->xlat, l, is_write,
3202 MEMTXATTRS_UNSPECIFIED);
3203 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3204 } else {
3205 cache->ptr = NULL;
3208 cache->len = l;
3209 cache->is_write = is_write;
3210 return l;
3213 void address_space_cache_invalidate(MemoryRegionCache *cache,
3214 hwaddr addr,
3215 hwaddr access_len)
3217 assert(cache->is_write);
3218 if (likely(cache->ptr)) {
3219 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3223 void address_space_cache_destroy(MemoryRegionCache *cache)
3225 if (!cache->mrs.mr) {
3226 return;
3229 if (xen_enabled()) {
3230 xen_invalidate_map_cache_entry(cache->ptr);
3232 memory_region_unref(cache->mrs.mr);
3233 flatview_unref(cache->fv);
3234 cache->mrs.mr = NULL;
3235 cache->fv = NULL;
3238 /* Called from RCU critical section. This function has the same
3239 * semantics as address_space_translate, but it only works on a
3240 * predefined range of a MemoryRegion that was mapped with
3241 * address_space_cache_init.
3243 static inline MemoryRegion *address_space_translate_cached(
3244 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3245 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3247 MemoryRegionSection section;
3248 MemoryRegion *mr;
3249 IOMMUMemoryRegion *iommu_mr;
3250 AddressSpace *target_as;
3252 assert(!cache->ptr);
3253 *xlat = addr + cache->xlat;
3255 mr = cache->mrs.mr;
3256 iommu_mr = memory_region_get_iommu(mr);
3257 if (!iommu_mr) {
3258 /* MMIO region. */
3259 return mr;
3262 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3263 NULL, is_write, true,
3264 &target_as, attrs);
3265 return section.mr;
3268 /* Called from RCU critical section. address_space_read_cached uses this
3269 * out of line function when the target is an MMIO or IOMMU region.
3271 MemTxResult
3272 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3273 void *buf, hwaddr len)
3275 hwaddr addr1, l;
3276 MemoryRegion *mr;
3278 l = len;
3279 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3280 MEMTXATTRS_UNSPECIFIED);
3281 return flatview_read_continue(cache->fv,
3282 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3283 addr1, l, mr);
3286 /* Called from RCU critical section. address_space_write_cached uses this
3287 * out of line function when the target is an MMIO or IOMMU region.
3289 MemTxResult
3290 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3291 const void *buf, hwaddr len)
3293 hwaddr addr1, l;
3294 MemoryRegion *mr;
3296 l = len;
3297 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3298 MEMTXATTRS_UNSPECIFIED);
3299 return flatview_write_continue(cache->fv,
3300 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3301 addr1, l, mr);
3304 #define ARG1_DECL MemoryRegionCache *cache
3305 #define ARG1 cache
3306 #define SUFFIX _cached_slow
3307 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3308 #define RCU_READ_LOCK() ((void)0)
3309 #define RCU_READ_UNLOCK() ((void)0)
3310 #include "memory_ldst.c.inc"
3312 /* virtual memory access for debug (includes writing to ROM) */
3313 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr,
3314 void *ptr, size_t len, bool is_write)
3316 hwaddr phys_addr;
3317 vaddr l, page;
3318 uint8_t *buf = ptr;
3320 cpu_synchronize_state(cpu);
3321 while (len > 0) {
3322 int asidx;
3323 MemTxAttrs attrs;
3324 MemTxResult res;
3326 page = addr & TARGET_PAGE_MASK;
3327 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3328 asidx = cpu_asidx_from_attrs(cpu, attrs);
3329 /* if no physical page mapped, return an error */
3330 if (phys_addr == -1)
3331 return -1;
3332 l = (page + TARGET_PAGE_SIZE) - addr;
3333 if (l > len)
3334 l = len;
3335 phys_addr += (addr & ~TARGET_PAGE_MASK);
3336 if (is_write) {
3337 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3338 attrs, buf, l);
3339 } else {
3340 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
3341 attrs, buf, l);
3343 if (res != MEMTX_OK) {
3344 return -1;
3346 len -= l;
3347 buf += l;
3348 addr += l;
3350 return 0;
3354 * Allows code that needs to deal with migration bitmaps etc to still be built
3355 * target independent.
3357 size_t qemu_target_page_size(void)
3359 return TARGET_PAGE_SIZE;
3362 int qemu_target_page_mask(void)
3364 return TARGET_PAGE_MASK;
3367 int qemu_target_page_bits(void)
3369 return TARGET_PAGE_BITS;
3372 int qemu_target_page_bits_min(void)
3374 return TARGET_PAGE_BITS_MIN;
3377 /* Convert target pages to MiB (2**20). */
3378 size_t qemu_target_pages_to_MiB(size_t pages)
3380 int page_bits = TARGET_PAGE_BITS;
3382 /* So far, the largest (non-huge) page size is 64k, i.e. 16 bits. */
3383 g_assert(page_bits < 20);
3385 return pages >> (20 - page_bits);
3388 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3390 MemoryRegion*mr;
3391 hwaddr l = 1;
3393 RCU_READ_LOCK_GUARD();
3394 mr = address_space_translate(&address_space_memory,
3395 phys_addr, &phys_addr, &l, false,
3396 MEMTXATTRS_UNSPECIFIED);
3398 return !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3401 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3403 RAMBlock *block;
3404 int ret = 0;
3406 RCU_READ_LOCK_GUARD();
3407 RAMBLOCK_FOREACH(block) {
3408 ret = func(block, opaque);
3409 if (ret) {
3410 break;
3413 return ret;
3417 * Unmap pages of memory from start to start+length such that
3418 * they a) read as 0, b) Trigger whatever fault mechanism
3419 * the OS provides for postcopy.
3420 * The pages must be unmapped by the end of the function.
3421 * Returns: 0 on success, none-0 on failure
3424 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3426 int ret = -1;
3428 uint8_t *host_startaddr = rb->host + start;
3430 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3431 error_report("ram_block_discard_range: Unaligned start address: %p",
3432 host_startaddr);
3433 goto err;
3436 if ((start + length) <= rb->max_length) {
3437 bool need_madvise, need_fallocate;
3438 if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3439 error_report("ram_block_discard_range: Unaligned length: %zx",
3440 length);
3441 goto err;
3444 errno = ENOTSUP; /* If we are missing MADVISE etc */
3446 /* The logic here is messy;
3447 * madvise DONTNEED fails for hugepages
3448 * fallocate works on hugepages and shmem
3449 * shared anonymous memory requires madvise REMOVE
3451 need_madvise = (rb->page_size == qemu_host_page_size);
3452 need_fallocate = rb->fd != -1;
3453 if (need_fallocate) {
3454 /* For a file, this causes the area of the file to be zero'd
3455 * if read, and for hugetlbfs also causes it to be unmapped
3456 * so a userfault will trigger.
3458 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3459 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3460 start, length);
3461 if (ret) {
3462 ret = -errno;
3463 error_report("ram_block_discard_range: Failed to fallocate "
3464 "%s:%" PRIx64 " +%zx (%d)",
3465 rb->idstr, start, length, ret);
3466 goto err;
3468 #else
3469 ret = -ENOSYS;
3470 error_report("ram_block_discard_range: fallocate not available/file"
3471 "%s:%" PRIx64 " +%zx (%d)",
3472 rb->idstr, start, length, ret);
3473 goto err;
3474 #endif
3476 if (need_madvise) {
3477 /* For normal RAM this causes it to be unmapped,
3478 * for shared memory it causes the local mapping to disappear
3479 * and to fall back on the file contents (which we just
3480 * fallocate'd away).
3482 #if defined(CONFIG_MADVISE)
3483 if (qemu_ram_is_shared(rb) && rb->fd < 0) {
3484 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE);
3485 } else {
3486 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED);
3488 if (ret) {
3489 ret = -errno;
3490 error_report("ram_block_discard_range: Failed to discard range "
3491 "%s:%" PRIx64 " +%zx (%d)",
3492 rb->idstr, start, length, ret);
3493 goto err;
3495 #else
3496 ret = -ENOSYS;
3497 error_report("ram_block_discard_range: MADVISE not available"
3498 "%s:%" PRIx64 " +%zx (%d)",
3499 rb->idstr, start, length, ret);
3500 goto err;
3501 #endif
3503 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3504 need_madvise, need_fallocate, ret);
3505 } else {
3506 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3507 "/%zx/" RAM_ADDR_FMT")",
3508 rb->idstr, start, length, rb->max_length);
3511 err:
3512 return ret;
3515 bool ramblock_is_pmem(RAMBlock *rb)
3517 return rb->flags & RAM_PMEM;
3520 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3522 if (start == end - 1) {
3523 qemu_printf("\t%3d ", start);
3524 } else {
3525 qemu_printf("\t%3d..%-3d ", start, end - 1);
3527 qemu_printf(" skip=%d ", skip);
3528 if (ptr == PHYS_MAP_NODE_NIL) {
3529 qemu_printf(" ptr=NIL");
3530 } else if (!skip) {
3531 qemu_printf(" ptr=#%d", ptr);
3532 } else {
3533 qemu_printf(" ptr=[%d]", ptr);
3535 qemu_printf("\n");
3538 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3539 int128_sub((size), int128_one())) : 0)
3541 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
3543 int i;
3545 qemu_printf(" Dispatch\n");
3546 qemu_printf(" Physical sections\n");
3548 for (i = 0; i < d->map.sections_nb; ++i) {
3549 MemoryRegionSection *s = d->map.sections + i;
3550 const char *names[] = { " [unassigned]", " [not dirty]",
3551 " [ROM]", " [watch]" };
3553 qemu_printf(" #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx
3554 " %s%s%s%s%s",
3556 s->offset_within_address_space,
3557 s->offset_within_address_space + MR_SIZE(s->size),
3558 s->mr->name ? s->mr->name : "(noname)",
3559 i < ARRAY_SIZE(names) ? names[i] : "",
3560 s->mr == root ? " [ROOT]" : "",
3561 s == d->mru_section ? " [MRU]" : "",
3562 s->mr->is_iommu ? " [iommu]" : "");
3564 if (s->mr->alias) {
3565 qemu_printf(" alias=%s", s->mr->alias->name ?
3566 s->mr->alias->name : "noname");
3568 qemu_printf("\n");
3571 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3572 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3573 for (i = 0; i < d->map.nodes_nb; ++i) {
3574 int j, jprev;
3575 PhysPageEntry prev;
3576 Node *n = d->map.nodes + i;
3578 qemu_printf(" [%d]\n", i);
3580 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3581 PhysPageEntry *pe = *n + j;
3583 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3584 continue;
3587 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3589 jprev = j;
3590 prev = *pe;
3593 if (jprev != ARRAY_SIZE(*n)) {
3594 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3599 /* Require any discards to work. */
3600 static unsigned int ram_block_discard_required_cnt;
3601 /* Require only coordinated discards to work. */
3602 static unsigned int ram_block_coordinated_discard_required_cnt;
3603 /* Disable any discards. */
3604 static unsigned int ram_block_discard_disabled_cnt;
3605 /* Disable only uncoordinated discards. */
3606 static unsigned int ram_block_uncoordinated_discard_disabled_cnt;
3607 static QemuMutex ram_block_discard_disable_mutex;
3609 static void ram_block_discard_disable_mutex_lock(void)
3611 static gsize initialized;
3613 if (g_once_init_enter(&initialized)) {
3614 qemu_mutex_init(&ram_block_discard_disable_mutex);
3615 g_once_init_leave(&initialized, 1);
3617 qemu_mutex_lock(&ram_block_discard_disable_mutex);
3620 static void ram_block_discard_disable_mutex_unlock(void)
3622 qemu_mutex_unlock(&ram_block_discard_disable_mutex);
3625 int ram_block_discard_disable(bool state)
3627 int ret = 0;
3629 ram_block_discard_disable_mutex_lock();
3630 if (!state) {
3631 ram_block_discard_disabled_cnt--;
3632 } else if (ram_block_discard_required_cnt ||
3633 ram_block_coordinated_discard_required_cnt) {
3634 ret = -EBUSY;
3635 } else {
3636 ram_block_discard_disabled_cnt++;
3638 ram_block_discard_disable_mutex_unlock();
3639 return ret;
3642 int ram_block_uncoordinated_discard_disable(bool state)
3644 int ret = 0;
3646 ram_block_discard_disable_mutex_lock();
3647 if (!state) {
3648 ram_block_uncoordinated_discard_disabled_cnt--;
3649 } else if (ram_block_discard_required_cnt) {
3650 ret = -EBUSY;
3651 } else {
3652 ram_block_uncoordinated_discard_disabled_cnt++;
3654 ram_block_discard_disable_mutex_unlock();
3655 return ret;
3658 int ram_block_discard_require(bool state)
3660 int ret = 0;
3662 ram_block_discard_disable_mutex_lock();
3663 if (!state) {
3664 ram_block_discard_required_cnt--;
3665 } else if (ram_block_discard_disabled_cnt ||
3666 ram_block_uncoordinated_discard_disabled_cnt) {
3667 ret = -EBUSY;
3668 } else {
3669 ram_block_discard_required_cnt++;
3671 ram_block_discard_disable_mutex_unlock();
3672 return ret;
3675 int ram_block_coordinated_discard_require(bool state)
3677 int ret = 0;
3679 ram_block_discard_disable_mutex_lock();
3680 if (!state) {
3681 ram_block_coordinated_discard_required_cnt--;
3682 } else if (ram_block_discard_disabled_cnt) {
3683 ret = -EBUSY;
3684 } else {
3685 ram_block_coordinated_discard_required_cnt++;
3687 ram_block_discard_disable_mutex_unlock();
3688 return ret;
3691 bool ram_block_discard_is_disabled(void)
3693 return qatomic_read(&ram_block_discard_disabled_cnt) ||
3694 qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt);
3697 bool ram_block_discard_is_required(void)
3699 return qatomic_read(&ram_block_discard_required_cnt) ||
3700 qatomic_read(&ram_block_coordinated_discard_required_cnt);