4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
32 /* Needed early for HOST_BSD etc. */
33 #include "config-host.h"
37 #include <sys/times.h>
41 #include <sys/ioctl.h>
42 #include <sys/resource.h>
43 #include <sys/socket.h>
44 #include <netinet/in.h>
46 #if defined(__NetBSD__)
47 #include <net/if_tap.h>
50 #include <linux/if_tun.h>
52 #include <arpa/inet.h>
55 #include <sys/select.h>
58 #if defined(__FreeBSD__) || defined(__DragonFly__)
63 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
64 #include <freebsd/stdlib.h>
69 #include <linux/rtc.h>
71 /* For the benefit of older linux systems which don't supply it,
72 we use a local copy of hpet.h. */
73 /* #include <linux/hpet.h> */
76 #include <linux/ppdev.h>
77 #include <linux/parport.h>
81 #include <sys/ethernet.h>
82 #include <sys/sockio.h>
83 #include <netinet/arp.h>
84 #include <netinet/in.h>
85 #include <netinet/in_systm.h>
86 #include <netinet/ip.h>
87 #include <netinet/ip_icmp.h> // must come after ip.h
88 #include <netinet/udp.h>
89 #include <netinet/tcp.h>
97 #if defined(__OpenBSD__)
101 #if defined(CONFIG_VDE)
102 #include <libvdeplug.h>
108 #include <sys/timeb.h>
109 #include <mmsystem.h>
110 #define getopt_long_only getopt_long
111 #define memalign(align, size) malloc(size)
117 int qemu_main(int argc
, char **argv
, char **envp
);
118 int main(int argc
, char **argv
)
120 qemu_main(argc
, argv
, NULL
);
123 #define main qemu_main
125 #endif /* CONFIG_SDL */
129 #define main qemu_main
130 #endif /* CONFIG_COCOA */
133 #include "hw/boards.h"
135 #include "hw/pcmcia.h"
137 #include "hw/audiodev.h"
141 #include "hw/watchdog.h"
142 #include "hw/smbios.h"
150 #include "qemu-timer.h"
151 #include "qemu-char.h"
152 #include "cache-utils.h"
155 #include "audio/audio.h"
156 #include "migration.h"
159 #include "qemu-option.h"
163 #include "exec-all.h"
165 #include "qemu_socket.h"
167 #if defined(CONFIG_SLIRP)
168 #include "libslirp.h"
171 //#define DEBUG_UNUSED_IOPORT
172 //#define DEBUG_IOPORT
174 //#define DEBUG_SLIRP
178 # define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
180 # define LOG_IOPORT(...) do { } while (0)
183 #define DEFAULT_RAM_SIZE 128
185 /* Max number of USB devices that can be specified on the commandline. */
186 #define MAX_USB_CMDLINE 8
188 /* Max number of bluetooth switches on the commandline. */
189 #define MAX_BT_CMDLINE 10
191 /* XXX: use a two level table to limit memory usage */
192 #define MAX_IOPORTS 65536
194 const char *bios_dir
= CONFIG_QEMU_SHAREDIR
;
195 const char *bios_name
= NULL
;
196 static void *ioport_opaque
[MAX_IOPORTS
];
197 static IOPortReadFunc
*ioport_read_table
[3][MAX_IOPORTS
];
198 static IOPortWriteFunc
*ioport_write_table
[3][MAX_IOPORTS
];
199 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
200 to store the VM snapshots */
201 DriveInfo drives_table
[MAX_DRIVES
+1];
203 enum vga_retrace_method vga_retrace_method
= VGA_RETRACE_DUMB
;
204 static DisplayState
*display_state
;
205 DisplayType display_type
= DT_DEFAULT
;
206 const char* keyboard_layout
= NULL
;
207 int64_t ticks_per_sec
;
210 NICInfo nd_table
[MAX_NICS
];
212 static int autostart
;
213 static int rtc_utc
= 1;
214 static int rtc_date_offset
= -1; /* -1 means no change */
215 int cirrus_vga_enabled
= 1;
216 int std_vga_enabled
= 0;
217 int vmsvga_enabled
= 0;
218 int xenfb_enabled
= 0;
220 int graphic_width
= 1024;
221 int graphic_height
= 768;
222 int graphic_depth
= 8;
224 int graphic_width
= 800;
225 int graphic_height
= 600;
226 int graphic_depth
= 15;
228 static int full_screen
= 0;
230 static int no_frame
= 0;
233 CharDriverState
*serial_hds
[MAX_SERIAL_PORTS
];
234 CharDriverState
*parallel_hds
[MAX_PARALLEL_PORTS
];
235 CharDriverState
*virtcon_hds
[MAX_VIRTIO_CONSOLES
];
237 int win2k_install_hack
= 0;
243 const char *vnc_display
;
244 int acpi_enabled
= 1;
250 int graphic_rotate
= 0;
254 WatchdogTimerModel
*watchdog
= NULL
;
255 int watchdog_action
= WDT_RESET
;
256 const char *option_rom
[MAX_OPTION_ROMS
];
258 int semihosting_enabled
= 0;
262 const char *qemu_name
;
264 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
265 unsigned int nb_prom_envs
= 0;
266 const char *prom_envs
[MAX_PROM_ENVS
];
269 struct drive_opt drives_opt
[MAX_DRIVES
];
272 uint64_t node_mem
[MAX_NODES
];
273 uint64_t node_cpumask
[MAX_NODES
];
275 static CPUState
*cur_cpu
;
276 static CPUState
*next_cpu
;
277 static int timer_alarm_pending
= 1;
278 /* Conversion factor from emulated instructions to virtual clock ticks. */
279 static int icount_time_shift
;
280 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
281 #define MAX_ICOUNT_SHIFT 10
282 /* Compensate for varying guest execution speed. */
283 static int64_t qemu_icount_bias
;
284 static QEMUTimer
*icount_rt_timer
;
285 static QEMUTimer
*icount_vm_timer
;
286 static QEMUTimer
*nographic_timer
;
288 uint8_t qemu_uuid
[16];
290 /***********************************************************/
291 /* x86 ISA bus support */
293 target_phys_addr_t isa_mem_base
= 0;
296 static IOPortReadFunc default_ioport_readb
, default_ioport_readw
, default_ioport_readl
;
297 static IOPortWriteFunc default_ioport_writeb
, default_ioport_writew
, default_ioport_writel
;
299 static uint32_t ioport_read(int index
, uint32_t address
)
301 static IOPortReadFunc
*default_func
[3] = {
302 default_ioport_readb
,
303 default_ioport_readw
,
306 IOPortReadFunc
*func
= ioport_read_table
[index
][address
];
308 func
= default_func
[index
];
309 return func(ioport_opaque
[address
], address
);
312 static void ioport_write(int index
, uint32_t address
, uint32_t data
)
314 static IOPortWriteFunc
*default_func
[3] = {
315 default_ioport_writeb
,
316 default_ioport_writew
,
317 default_ioport_writel
319 IOPortWriteFunc
*func
= ioport_write_table
[index
][address
];
321 func
= default_func
[index
];
322 func(ioport_opaque
[address
], address
, data
);
325 static uint32_t default_ioport_readb(void *opaque
, uint32_t address
)
327 #ifdef DEBUG_UNUSED_IOPORT
328 fprintf(stderr
, "unused inb: port=0x%04x\n", address
);
333 static void default_ioport_writeb(void *opaque
, uint32_t address
, uint32_t data
)
335 #ifdef DEBUG_UNUSED_IOPORT
336 fprintf(stderr
, "unused outb: port=0x%04x data=0x%02x\n", address
, data
);
340 /* default is to make two byte accesses */
341 static uint32_t default_ioport_readw(void *opaque
, uint32_t address
)
344 data
= ioport_read(0, address
);
345 address
= (address
+ 1) & (MAX_IOPORTS
- 1);
346 data
|= ioport_read(0, address
) << 8;
350 static void default_ioport_writew(void *opaque
, uint32_t address
, uint32_t data
)
352 ioport_write(0, address
, data
& 0xff);
353 address
= (address
+ 1) & (MAX_IOPORTS
- 1);
354 ioport_write(0, address
, (data
>> 8) & 0xff);
357 static uint32_t default_ioport_readl(void *opaque
, uint32_t address
)
359 #ifdef DEBUG_UNUSED_IOPORT
360 fprintf(stderr
, "unused inl: port=0x%04x\n", address
);
365 static void default_ioport_writel(void *opaque
, uint32_t address
, uint32_t data
)
367 #ifdef DEBUG_UNUSED_IOPORT
368 fprintf(stderr
, "unused outl: port=0x%04x data=0x%02x\n", address
, data
);
372 /* size is the word size in byte */
373 int register_ioport_read(int start
, int length
, int size
,
374 IOPortReadFunc
*func
, void *opaque
)
380 } else if (size
== 2) {
382 } else if (size
== 4) {
385 hw_error("register_ioport_read: invalid size");
388 for(i
= start
; i
< start
+ length
; i
+= size
) {
389 ioport_read_table
[bsize
][i
] = func
;
390 if (ioport_opaque
[i
] != NULL
&& ioport_opaque
[i
] != opaque
)
391 hw_error("register_ioport_read: invalid opaque");
392 ioport_opaque
[i
] = opaque
;
397 /* size is the word size in byte */
398 int register_ioport_write(int start
, int length
, int size
,
399 IOPortWriteFunc
*func
, void *opaque
)
405 } else if (size
== 2) {
407 } else if (size
== 4) {
410 hw_error("register_ioport_write: invalid size");
413 for(i
= start
; i
< start
+ length
; i
+= size
) {
414 ioport_write_table
[bsize
][i
] = func
;
415 if (ioport_opaque
[i
] != NULL
&& ioport_opaque
[i
] != opaque
)
416 hw_error("register_ioport_write: invalid opaque");
417 ioport_opaque
[i
] = opaque
;
422 void isa_unassign_ioport(int start
, int length
)
426 for(i
= start
; i
< start
+ length
; i
++) {
427 ioport_read_table
[0][i
] = default_ioport_readb
;
428 ioport_read_table
[1][i
] = default_ioport_readw
;
429 ioport_read_table
[2][i
] = default_ioport_readl
;
431 ioport_write_table
[0][i
] = default_ioport_writeb
;
432 ioport_write_table
[1][i
] = default_ioport_writew
;
433 ioport_write_table
[2][i
] = default_ioport_writel
;
435 ioport_opaque
[i
] = NULL
;
439 /***********************************************************/
441 void cpu_outb(CPUState
*env
, int addr
, int val
)
443 LOG_IOPORT("outb: %04x %02x\n", addr
, val
);
444 ioport_write(0, addr
, val
);
447 env
->last_io_time
= cpu_get_time_fast();
451 void cpu_outw(CPUState
*env
, int addr
, int val
)
453 LOG_IOPORT("outw: %04x %04x\n", addr
, val
);
454 ioport_write(1, addr
, val
);
457 env
->last_io_time
= cpu_get_time_fast();
461 void cpu_outl(CPUState
*env
, int addr
, int val
)
463 LOG_IOPORT("outl: %04x %08x\n", addr
, val
);
464 ioport_write(2, addr
, val
);
467 env
->last_io_time
= cpu_get_time_fast();
471 int cpu_inb(CPUState
*env
, int addr
)
474 val
= ioport_read(0, addr
);
475 LOG_IOPORT("inb : %04x %02x\n", addr
, val
);
478 env
->last_io_time
= cpu_get_time_fast();
483 int cpu_inw(CPUState
*env
, int addr
)
486 val
= ioport_read(1, addr
);
487 LOG_IOPORT("inw : %04x %04x\n", addr
, val
);
490 env
->last_io_time
= cpu_get_time_fast();
495 int cpu_inl(CPUState
*env
, int addr
)
498 val
= ioport_read(2, addr
);
499 LOG_IOPORT("inl : %04x %08x\n", addr
, val
);
502 env
->last_io_time
= cpu_get_time_fast();
507 /***********************************************************/
508 void hw_error(const char *fmt
, ...)
514 fprintf(stderr
, "qemu: hardware error: ");
515 vfprintf(stderr
, fmt
, ap
);
516 fprintf(stderr
, "\n");
517 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
518 fprintf(stderr
, "CPU #%d:\n", env
->cpu_index
);
520 cpu_dump_state(env
, stderr
, fprintf
, X86_DUMP_FPU
);
522 cpu_dump_state(env
, stderr
, fprintf
, 0);
532 static QEMUBalloonEvent
*qemu_balloon_event
;
533 void *qemu_balloon_event_opaque
;
535 void qemu_add_balloon_handler(QEMUBalloonEvent
*func
, void *opaque
)
537 qemu_balloon_event
= func
;
538 qemu_balloon_event_opaque
= opaque
;
541 void qemu_balloon(ram_addr_t target
)
543 if (qemu_balloon_event
)
544 qemu_balloon_event(qemu_balloon_event_opaque
, target
);
547 ram_addr_t
qemu_balloon_status(void)
549 if (qemu_balloon_event
)
550 return qemu_balloon_event(qemu_balloon_event_opaque
, 0);
554 /***********************************************************/
557 static QEMUPutKBDEvent
*qemu_put_kbd_event
;
558 static void *qemu_put_kbd_event_opaque
;
559 static QEMUPutMouseEntry
*qemu_put_mouse_event_head
;
560 static QEMUPutMouseEntry
*qemu_put_mouse_event_current
;
562 void qemu_add_kbd_event_handler(QEMUPutKBDEvent
*func
, void *opaque
)
564 qemu_put_kbd_event_opaque
= opaque
;
565 qemu_put_kbd_event
= func
;
568 QEMUPutMouseEntry
*qemu_add_mouse_event_handler(QEMUPutMouseEvent
*func
,
569 void *opaque
, int absolute
,
572 QEMUPutMouseEntry
*s
, *cursor
;
574 s
= qemu_mallocz(sizeof(QEMUPutMouseEntry
));
576 s
->qemu_put_mouse_event
= func
;
577 s
->qemu_put_mouse_event_opaque
= opaque
;
578 s
->qemu_put_mouse_event_absolute
= absolute
;
579 s
->qemu_put_mouse_event_name
= qemu_strdup(name
);
582 if (!qemu_put_mouse_event_head
) {
583 qemu_put_mouse_event_head
= qemu_put_mouse_event_current
= s
;
587 cursor
= qemu_put_mouse_event_head
;
588 while (cursor
->next
!= NULL
)
589 cursor
= cursor
->next
;
592 qemu_put_mouse_event_current
= s
;
597 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry
*entry
)
599 QEMUPutMouseEntry
*prev
= NULL
, *cursor
;
601 if (!qemu_put_mouse_event_head
|| entry
== NULL
)
604 cursor
= qemu_put_mouse_event_head
;
605 while (cursor
!= NULL
&& cursor
!= entry
) {
607 cursor
= cursor
->next
;
610 if (cursor
== NULL
) // does not exist or list empty
612 else if (prev
== NULL
) { // entry is head
613 qemu_put_mouse_event_head
= cursor
->next
;
614 if (qemu_put_mouse_event_current
== entry
)
615 qemu_put_mouse_event_current
= cursor
->next
;
616 qemu_free(entry
->qemu_put_mouse_event_name
);
621 prev
->next
= entry
->next
;
623 if (qemu_put_mouse_event_current
== entry
)
624 qemu_put_mouse_event_current
= prev
;
626 qemu_free(entry
->qemu_put_mouse_event_name
);
630 void kbd_put_keycode(int keycode
)
632 if (qemu_put_kbd_event
) {
633 qemu_put_kbd_event(qemu_put_kbd_event_opaque
, keycode
);
637 void kbd_mouse_event(int dx
, int dy
, int dz
, int buttons_state
)
639 QEMUPutMouseEvent
*mouse_event
;
640 void *mouse_event_opaque
;
643 if (!qemu_put_mouse_event_current
) {
648 qemu_put_mouse_event_current
->qemu_put_mouse_event
;
650 qemu_put_mouse_event_current
->qemu_put_mouse_event_opaque
;
653 if (graphic_rotate
) {
654 if (qemu_put_mouse_event_current
->qemu_put_mouse_event_absolute
)
657 width
= graphic_width
- 1;
658 mouse_event(mouse_event_opaque
,
659 width
- dy
, dx
, dz
, buttons_state
);
661 mouse_event(mouse_event_opaque
,
662 dx
, dy
, dz
, buttons_state
);
666 int kbd_mouse_is_absolute(void)
668 if (!qemu_put_mouse_event_current
)
671 return qemu_put_mouse_event_current
->qemu_put_mouse_event_absolute
;
674 void do_info_mice(Monitor
*mon
)
676 QEMUPutMouseEntry
*cursor
;
679 if (!qemu_put_mouse_event_head
) {
680 monitor_printf(mon
, "No mouse devices connected\n");
684 monitor_printf(mon
, "Mouse devices available:\n");
685 cursor
= qemu_put_mouse_event_head
;
686 while (cursor
!= NULL
) {
687 monitor_printf(mon
, "%c Mouse #%d: %s\n",
688 (cursor
== qemu_put_mouse_event_current
? '*' : ' '),
689 index
, cursor
->qemu_put_mouse_event_name
);
691 cursor
= cursor
->next
;
695 void do_mouse_set(Monitor
*mon
, int index
)
697 QEMUPutMouseEntry
*cursor
;
700 if (!qemu_put_mouse_event_head
) {
701 monitor_printf(mon
, "No mouse devices connected\n");
705 cursor
= qemu_put_mouse_event_head
;
706 while (cursor
!= NULL
&& index
!= i
) {
708 cursor
= cursor
->next
;
712 qemu_put_mouse_event_current
= cursor
;
714 monitor_printf(mon
, "Mouse at given index not found\n");
717 /* compute with 96 bit intermediate result: (a*b)/c */
718 uint64_t muldiv64(uint64_t a
, uint32_t b
, uint32_t c
)
723 #ifdef WORDS_BIGENDIAN
733 rl
= (uint64_t)u
.l
.low
* (uint64_t)b
;
734 rh
= (uint64_t)u
.l
.high
* (uint64_t)b
;
737 res
.l
.low
= (((rh
% c
) << 32) + (rl
& 0xffffffff)) / c
;
741 /***********************************************************/
742 /* real time host monotonic timer */
744 #define QEMU_TIMER_BASE 1000000000LL
748 static int64_t clock_freq
;
750 static void init_get_clock(void)
754 ret
= QueryPerformanceFrequency(&freq
);
756 fprintf(stderr
, "Could not calibrate ticks\n");
759 clock_freq
= freq
.QuadPart
;
762 static int64_t get_clock(void)
765 QueryPerformanceCounter(&ti
);
766 return muldiv64(ti
.QuadPart
, QEMU_TIMER_BASE
, clock_freq
);
771 static int use_rt_clock
;
773 static void init_get_clock(void)
776 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
777 || defined(__DragonFly__)
780 if (clock_gettime(CLOCK_MONOTONIC
, &ts
) == 0) {
787 static int64_t get_clock(void)
789 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
790 || defined(__DragonFly__)
793 clock_gettime(CLOCK_MONOTONIC
, &ts
);
794 return ts
.tv_sec
* 1000000000LL + ts
.tv_nsec
;
798 /* XXX: using gettimeofday leads to problems if the date
799 changes, so it should be avoided. */
801 gettimeofday(&tv
, NULL
);
802 return tv
.tv_sec
* 1000000000LL + (tv
.tv_usec
* 1000);
807 /* Return the virtual CPU time, based on the instruction counter. */
808 static int64_t cpu_get_icount(void)
811 CPUState
*env
= cpu_single_env
;;
812 icount
= qemu_icount
;
815 fprintf(stderr
, "Bad clock read\n");
816 icount
-= (env
->icount_decr
.u16
.low
+ env
->icount_extra
);
818 return qemu_icount_bias
+ (icount
<< icount_time_shift
);
821 /***********************************************************/
822 /* guest cycle counter */
824 static int64_t cpu_ticks_prev
;
825 static int64_t cpu_ticks_offset
;
826 static int64_t cpu_clock_offset
;
827 static int cpu_ticks_enabled
;
829 /* return the host CPU cycle counter and handle stop/restart */
830 int64_t cpu_get_ticks(void)
833 return cpu_get_icount();
835 if (!cpu_ticks_enabled
) {
836 return cpu_ticks_offset
;
839 ticks
= cpu_get_real_ticks();
840 if (cpu_ticks_prev
> ticks
) {
841 /* Note: non increasing ticks may happen if the host uses
843 cpu_ticks_offset
+= cpu_ticks_prev
- ticks
;
845 cpu_ticks_prev
= ticks
;
846 return ticks
+ cpu_ticks_offset
;
850 /* return the host CPU monotonic timer and handle stop/restart */
851 static int64_t cpu_get_clock(void)
854 if (!cpu_ticks_enabled
) {
855 return cpu_clock_offset
;
858 return ti
+ cpu_clock_offset
;
862 /* enable cpu_get_ticks() */
863 void cpu_enable_ticks(void)
865 if (!cpu_ticks_enabled
) {
866 cpu_ticks_offset
-= cpu_get_real_ticks();
867 cpu_clock_offset
-= get_clock();
868 cpu_ticks_enabled
= 1;
872 /* disable cpu_get_ticks() : the clock is stopped. You must not call
873 cpu_get_ticks() after that. */
874 void cpu_disable_ticks(void)
876 if (cpu_ticks_enabled
) {
877 cpu_ticks_offset
= cpu_get_ticks();
878 cpu_clock_offset
= cpu_get_clock();
879 cpu_ticks_enabled
= 0;
883 /***********************************************************/
886 #define QEMU_TIMER_REALTIME 0
887 #define QEMU_TIMER_VIRTUAL 1
891 /* XXX: add frequency */
899 struct QEMUTimer
*next
;
902 struct qemu_alarm_timer
{
906 int (*start
)(struct qemu_alarm_timer
*t
);
907 void (*stop
)(struct qemu_alarm_timer
*t
);
908 void (*rearm
)(struct qemu_alarm_timer
*t
);
912 #define ALARM_FLAG_DYNTICKS 0x1
913 #define ALARM_FLAG_EXPIRED 0x2
915 static inline int alarm_has_dynticks(struct qemu_alarm_timer
*t
)
917 return t
&& (t
->flags
& ALARM_FLAG_DYNTICKS
);
920 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer
*t
)
922 if (!alarm_has_dynticks(t
))
928 /* TODO: MIN_TIMER_REARM_US should be optimized */
929 #define MIN_TIMER_REARM_US 250
931 static struct qemu_alarm_timer
*alarm_timer
;
935 struct qemu_alarm_win32
{
938 } alarm_win32_data
= {0, -1};
940 static int win32_start_timer(struct qemu_alarm_timer
*t
);
941 static void win32_stop_timer(struct qemu_alarm_timer
*t
);
942 static void win32_rearm_timer(struct qemu_alarm_timer
*t
);
946 static int unix_start_timer(struct qemu_alarm_timer
*t
);
947 static void unix_stop_timer(struct qemu_alarm_timer
*t
);
951 static int dynticks_start_timer(struct qemu_alarm_timer
*t
);
952 static void dynticks_stop_timer(struct qemu_alarm_timer
*t
);
953 static void dynticks_rearm_timer(struct qemu_alarm_timer
*t
);
955 static int hpet_start_timer(struct qemu_alarm_timer
*t
);
956 static void hpet_stop_timer(struct qemu_alarm_timer
*t
);
958 static int rtc_start_timer(struct qemu_alarm_timer
*t
);
959 static void rtc_stop_timer(struct qemu_alarm_timer
*t
);
961 #endif /* __linux__ */
965 /* Correlation between real and virtual time is always going to be
966 fairly approximate, so ignore small variation.
967 When the guest is idle real and virtual time will be aligned in
969 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
971 static void icount_adjust(void)
976 static int64_t last_delta
;
977 /* If the VM is not running, then do nothing. */
981 cur_time
= cpu_get_clock();
982 cur_icount
= qemu_get_clock(vm_clock
);
983 delta
= cur_icount
- cur_time
;
984 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
986 && last_delta
+ ICOUNT_WOBBLE
< delta
* 2
987 && icount_time_shift
> 0) {
988 /* The guest is getting too far ahead. Slow time down. */
992 && last_delta
- ICOUNT_WOBBLE
> delta
* 2
993 && icount_time_shift
< MAX_ICOUNT_SHIFT
) {
994 /* The guest is getting too far behind. Speed time up. */
998 qemu_icount_bias
= cur_icount
- (qemu_icount
<< icount_time_shift
);
1001 static void icount_adjust_rt(void * opaque
)
1003 qemu_mod_timer(icount_rt_timer
,
1004 qemu_get_clock(rt_clock
) + 1000);
1008 static void icount_adjust_vm(void * opaque
)
1010 qemu_mod_timer(icount_vm_timer
,
1011 qemu_get_clock(vm_clock
) + QEMU_TIMER_BASE
/ 10);
1015 static void init_icount_adjust(void)
1017 /* Have both realtime and virtual time triggers for speed adjustment.
1018 The realtime trigger catches emulated time passing too slowly,
1019 the virtual time trigger catches emulated time passing too fast.
1020 Realtime triggers occur even when idle, so use them less frequently
1021 than VM triggers. */
1022 icount_rt_timer
= qemu_new_timer(rt_clock
, icount_adjust_rt
, NULL
);
1023 qemu_mod_timer(icount_rt_timer
,
1024 qemu_get_clock(rt_clock
) + 1000);
1025 icount_vm_timer
= qemu_new_timer(vm_clock
, icount_adjust_vm
, NULL
);
1026 qemu_mod_timer(icount_vm_timer
,
1027 qemu_get_clock(vm_clock
) + QEMU_TIMER_BASE
/ 10);
1030 static struct qemu_alarm_timer alarm_timers
[] = {
1033 {"dynticks", ALARM_FLAG_DYNTICKS
, dynticks_start_timer
,
1034 dynticks_stop_timer
, dynticks_rearm_timer
, NULL
},
1035 /* HPET - if available - is preferred */
1036 {"hpet", 0, hpet_start_timer
, hpet_stop_timer
, NULL
, NULL
},
1037 /* ...otherwise try RTC */
1038 {"rtc", 0, rtc_start_timer
, rtc_stop_timer
, NULL
, NULL
},
1040 {"unix", 0, unix_start_timer
, unix_stop_timer
, NULL
, NULL
},
1042 {"dynticks", ALARM_FLAG_DYNTICKS
, win32_start_timer
,
1043 win32_stop_timer
, win32_rearm_timer
, &alarm_win32_data
},
1044 {"win32", 0, win32_start_timer
,
1045 win32_stop_timer
, NULL
, &alarm_win32_data
},
1050 static void show_available_alarms(void)
1054 printf("Available alarm timers, in order of precedence:\n");
1055 for (i
= 0; alarm_timers
[i
].name
; i
++)
1056 printf("%s\n", alarm_timers
[i
].name
);
1059 static void configure_alarms(char const *opt
)
1063 int count
= ARRAY_SIZE(alarm_timers
) - 1;
1066 struct qemu_alarm_timer tmp
;
1068 if (!strcmp(opt
, "?")) {
1069 show_available_alarms();
1075 /* Reorder the array */
1076 name
= strtok(arg
, ",");
1078 for (i
= 0; i
< count
&& alarm_timers
[i
].name
; i
++) {
1079 if (!strcmp(alarm_timers
[i
].name
, name
))
1084 fprintf(stderr
, "Unknown clock %s\n", name
);
1093 tmp
= alarm_timers
[i
];
1094 alarm_timers
[i
] = alarm_timers
[cur
];
1095 alarm_timers
[cur
] = tmp
;
1099 name
= strtok(NULL
, ",");
1105 /* Disable remaining timers */
1106 for (i
= cur
; i
< count
; i
++)
1107 alarm_timers
[i
].name
= NULL
;
1109 show_available_alarms();
1114 QEMUClock
*rt_clock
;
1115 QEMUClock
*vm_clock
;
1117 static QEMUTimer
*active_timers
[2];
1119 static QEMUClock
*qemu_new_clock(int type
)
1122 clock
= qemu_mallocz(sizeof(QEMUClock
));
1127 QEMUTimer
*qemu_new_timer(QEMUClock
*clock
, QEMUTimerCB
*cb
, void *opaque
)
1131 ts
= qemu_mallocz(sizeof(QEMUTimer
));
1134 ts
->opaque
= opaque
;
1138 void qemu_free_timer(QEMUTimer
*ts
)
1143 /* stop a timer, but do not dealloc it */
1144 void qemu_del_timer(QEMUTimer
*ts
)
1148 /* NOTE: this code must be signal safe because
1149 qemu_timer_expired() can be called from a signal. */
1150 pt
= &active_timers
[ts
->clock
->type
];
1163 /* modify the current timer so that it will be fired when current_time
1164 >= expire_time. The corresponding callback will be called. */
1165 void qemu_mod_timer(QEMUTimer
*ts
, int64_t expire_time
)
1171 /* add the timer in the sorted list */
1172 /* NOTE: this code must be signal safe because
1173 qemu_timer_expired() can be called from a signal. */
1174 pt
= &active_timers
[ts
->clock
->type
];
1179 if (t
->expire_time
> expire_time
)
1183 ts
->expire_time
= expire_time
;
1187 /* Rearm if necessary */
1188 if (pt
== &active_timers
[ts
->clock
->type
]) {
1189 if ((alarm_timer
->flags
& ALARM_FLAG_EXPIRED
) == 0) {
1190 qemu_rearm_alarm_timer(alarm_timer
);
1192 /* Interrupt execution to force deadline recalculation. */
1194 qemu_notify_event();
1198 int qemu_timer_pending(QEMUTimer
*ts
)
1201 for(t
= active_timers
[ts
->clock
->type
]; t
!= NULL
; t
= t
->next
) {
1208 static inline int qemu_timer_expired(QEMUTimer
*timer_head
, int64_t current_time
)
1212 return (timer_head
->expire_time
<= current_time
);
1215 static void qemu_run_timers(QEMUTimer
**ptimer_head
, int64_t current_time
)
1221 if (!ts
|| ts
->expire_time
> current_time
)
1223 /* remove timer from the list before calling the callback */
1224 *ptimer_head
= ts
->next
;
1227 /* run the callback (the timer list can be modified) */
1232 int64_t qemu_get_clock(QEMUClock
*clock
)
1234 switch(clock
->type
) {
1235 case QEMU_TIMER_REALTIME
:
1236 return get_clock() / 1000000;
1238 case QEMU_TIMER_VIRTUAL
:
1240 return cpu_get_icount();
1242 return cpu_get_clock();
1247 static void init_timers(void)
1250 ticks_per_sec
= QEMU_TIMER_BASE
;
1251 rt_clock
= qemu_new_clock(QEMU_TIMER_REALTIME
);
1252 vm_clock
= qemu_new_clock(QEMU_TIMER_VIRTUAL
);
1256 void qemu_put_timer(QEMUFile
*f
, QEMUTimer
*ts
)
1258 uint64_t expire_time
;
1260 if (qemu_timer_pending(ts
)) {
1261 expire_time
= ts
->expire_time
;
1265 qemu_put_be64(f
, expire_time
);
1268 void qemu_get_timer(QEMUFile
*f
, QEMUTimer
*ts
)
1270 uint64_t expire_time
;
1272 expire_time
= qemu_get_be64(f
);
1273 if (expire_time
!= -1) {
1274 qemu_mod_timer(ts
, expire_time
);
1280 static void timer_save(QEMUFile
*f
, void *opaque
)
1282 if (cpu_ticks_enabled
) {
1283 hw_error("cannot save state if virtual timers are running");
1285 qemu_put_be64(f
, cpu_ticks_offset
);
1286 qemu_put_be64(f
, ticks_per_sec
);
1287 qemu_put_be64(f
, cpu_clock_offset
);
1290 static int timer_load(QEMUFile
*f
, void *opaque
, int version_id
)
1292 if (version_id
!= 1 && version_id
!= 2)
1294 if (cpu_ticks_enabled
) {
1297 cpu_ticks_offset
=qemu_get_be64(f
);
1298 ticks_per_sec
=qemu_get_be64(f
);
1299 if (version_id
== 2) {
1300 cpu_clock_offset
=qemu_get_be64(f
);
1305 static void qemu_event_increment(void);
1308 static void CALLBACK
host_alarm_handler(UINT uTimerID
, UINT uMsg
,
1309 DWORD_PTR dwUser
, DWORD_PTR dw1
,
1312 static void host_alarm_handler(int host_signum
)
1316 #define DISP_FREQ 1000
1318 static int64_t delta_min
= INT64_MAX
;
1319 static int64_t delta_max
, delta_cum
, last_clock
, delta
, ti
;
1321 ti
= qemu_get_clock(vm_clock
);
1322 if (last_clock
!= 0) {
1323 delta
= ti
- last_clock
;
1324 if (delta
< delta_min
)
1326 if (delta
> delta_max
)
1329 if (++count
== DISP_FREQ
) {
1330 printf("timer: min=%" PRId64
" us max=%" PRId64
" us avg=%" PRId64
" us avg_freq=%0.3f Hz\n",
1331 muldiv64(delta_min
, 1000000, ticks_per_sec
),
1332 muldiv64(delta_max
, 1000000, ticks_per_sec
),
1333 muldiv64(delta_cum
, 1000000 / DISP_FREQ
, ticks_per_sec
),
1334 (double)ticks_per_sec
/ ((double)delta_cum
/ DISP_FREQ
));
1336 delta_min
= INT64_MAX
;
1344 if (alarm_has_dynticks(alarm_timer
) ||
1346 qemu_timer_expired(active_timers
[QEMU_TIMER_VIRTUAL
],
1347 qemu_get_clock(vm_clock
))) ||
1348 qemu_timer_expired(active_timers
[QEMU_TIMER_REALTIME
],
1349 qemu_get_clock(rt_clock
))) {
1350 qemu_event_increment();
1351 if (alarm_timer
) alarm_timer
->flags
|= ALARM_FLAG_EXPIRED
;
1353 #ifndef CONFIG_IOTHREAD
1355 /* stop the currently executing cpu because a timer occured */
1358 if (next_cpu
->kqemu_enabled
) {
1359 kqemu_cpu_interrupt(next_cpu
);
1364 timer_alarm_pending
= 1;
1365 qemu_notify_event();
1369 static int64_t qemu_next_deadline(void)
1373 if (active_timers
[QEMU_TIMER_VIRTUAL
]) {
1374 delta
= active_timers
[QEMU_TIMER_VIRTUAL
]->expire_time
-
1375 qemu_get_clock(vm_clock
);
1377 /* To avoid problems with overflow limit this to 2^32. */
1387 #if defined(__linux__) || defined(_WIN32)
1388 static uint64_t qemu_next_deadline_dyntick(void)
1396 delta
= (qemu_next_deadline() + 999) / 1000;
1398 if (active_timers
[QEMU_TIMER_REALTIME
]) {
1399 rtdelta
= (active_timers
[QEMU_TIMER_REALTIME
]->expire_time
-
1400 qemu_get_clock(rt_clock
))*1000;
1401 if (rtdelta
< delta
)
1405 if (delta
< MIN_TIMER_REARM_US
)
1406 delta
= MIN_TIMER_REARM_US
;
1414 /* Sets a specific flag */
1415 static int fcntl_setfl(int fd
, int flag
)
1419 flags
= fcntl(fd
, F_GETFL
);
1423 if (fcntl(fd
, F_SETFL
, flags
| flag
) == -1)
1429 #if defined(__linux__)
1431 #define RTC_FREQ 1024
1433 static void enable_sigio_timer(int fd
)
1435 struct sigaction act
;
1438 sigfillset(&act
.sa_mask
);
1440 act
.sa_handler
= host_alarm_handler
;
1442 sigaction(SIGIO
, &act
, NULL
);
1443 fcntl_setfl(fd
, O_ASYNC
);
1444 fcntl(fd
, F_SETOWN
, getpid());
1447 static int hpet_start_timer(struct qemu_alarm_timer
*t
)
1449 struct hpet_info info
;
1452 fd
= open("/dev/hpet", O_RDONLY
);
1457 r
= ioctl(fd
, HPET_IRQFREQ
, RTC_FREQ
);
1459 fprintf(stderr
, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1460 "error, but for better emulation accuracy type:\n"
1461 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1465 /* Check capabilities */
1466 r
= ioctl(fd
, HPET_INFO
, &info
);
1470 /* Enable periodic mode */
1471 r
= ioctl(fd
, HPET_EPI
, 0);
1472 if (info
.hi_flags
&& (r
< 0))
1475 /* Enable interrupt */
1476 r
= ioctl(fd
, HPET_IE_ON
, 0);
1480 enable_sigio_timer(fd
);
1481 t
->priv
= (void *)(long)fd
;
1489 static void hpet_stop_timer(struct qemu_alarm_timer
*t
)
1491 int fd
= (long)t
->priv
;
1496 static int rtc_start_timer(struct qemu_alarm_timer
*t
)
1499 unsigned long current_rtc_freq
= 0;
1501 TFR(rtc_fd
= open("/dev/rtc", O_RDONLY
));
1504 ioctl(rtc_fd
, RTC_IRQP_READ
, ¤t_rtc_freq
);
1505 if (current_rtc_freq
!= RTC_FREQ
&&
1506 ioctl(rtc_fd
, RTC_IRQP_SET
, RTC_FREQ
) < 0) {
1507 fprintf(stderr
, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1508 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1509 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1512 if (ioctl(rtc_fd
, RTC_PIE_ON
, 0) < 0) {
1518 enable_sigio_timer(rtc_fd
);
1520 t
->priv
= (void *)(long)rtc_fd
;
1525 static void rtc_stop_timer(struct qemu_alarm_timer
*t
)
1527 int rtc_fd
= (long)t
->priv
;
1532 static int dynticks_start_timer(struct qemu_alarm_timer
*t
)
1536 struct sigaction act
;
1538 sigfillset(&act
.sa_mask
);
1540 act
.sa_handler
= host_alarm_handler
;
1542 sigaction(SIGALRM
, &act
, NULL
);
1545 * Initialize ev struct to 0 to avoid valgrind complaining
1546 * about uninitialized data in timer_create call
1548 memset(&ev
, 0, sizeof(ev
));
1549 ev
.sigev_value
.sival_int
= 0;
1550 ev
.sigev_notify
= SIGEV_SIGNAL
;
1551 ev
.sigev_signo
= SIGALRM
;
1553 if (timer_create(CLOCK_REALTIME
, &ev
, &host_timer
)) {
1554 perror("timer_create");
1556 /* disable dynticks */
1557 fprintf(stderr
, "Dynamic Ticks disabled\n");
1562 t
->priv
= (void *)(long)host_timer
;
1567 static void dynticks_stop_timer(struct qemu_alarm_timer
*t
)
1569 timer_t host_timer
= (timer_t
)(long)t
->priv
;
1571 timer_delete(host_timer
);
1574 static void dynticks_rearm_timer(struct qemu_alarm_timer
*t
)
1576 timer_t host_timer
= (timer_t
)(long)t
->priv
;
1577 struct itimerspec timeout
;
1578 int64_t nearest_delta_us
= INT64_MAX
;
1581 if (!active_timers
[QEMU_TIMER_REALTIME
] &&
1582 !active_timers
[QEMU_TIMER_VIRTUAL
])
1585 nearest_delta_us
= qemu_next_deadline_dyntick();
1587 /* check whether a timer is already running */
1588 if (timer_gettime(host_timer
, &timeout
)) {
1590 fprintf(stderr
, "Internal timer error: aborting\n");
1593 current_us
= timeout
.it_value
.tv_sec
* 1000000 + timeout
.it_value
.tv_nsec
/1000;
1594 if (current_us
&& current_us
<= nearest_delta_us
)
1597 timeout
.it_interval
.tv_sec
= 0;
1598 timeout
.it_interval
.tv_nsec
= 0; /* 0 for one-shot timer */
1599 timeout
.it_value
.tv_sec
= nearest_delta_us
/ 1000000;
1600 timeout
.it_value
.tv_nsec
= (nearest_delta_us
% 1000000) * 1000;
1601 if (timer_settime(host_timer
, 0 /* RELATIVE */, &timeout
, NULL
)) {
1603 fprintf(stderr
, "Internal timer error: aborting\n");
1608 #endif /* defined(__linux__) */
1610 static int unix_start_timer(struct qemu_alarm_timer
*t
)
1612 struct sigaction act
;
1613 struct itimerval itv
;
1617 sigfillset(&act
.sa_mask
);
1619 act
.sa_handler
= host_alarm_handler
;
1621 sigaction(SIGALRM
, &act
, NULL
);
1623 itv
.it_interval
.tv_sec
= 0;
1624 /* for i386 kernel 2.6 to get 1 ms */
1625 itv
.it_interval
.tv_usec
= 999;
1626 itv
.it_value
.tv_sec
= 0;
1627 itv
.it_value
.tv_usec
= 10 * 1000;
1629 err
= setitimer(ITIMER_REAL
, &itv
, NULL
);
1636 static void unix_stop_timer(struct qemu_alarm_timer
*t
)
1638 struct itimerval itv
;
1640 memset(&itv
, 0, sizeof(itv
));
1641 setitimer(ITIMER_REAL
, &itv
, NULL
);
1644 #endif /* !defined(_WIN32) */
1649 static int win32_start_timer(struct qemu_alarm_timer
*t
)
1652 struct qemu_alarm_win32
*data
= t
->priv
;
1655 memset(&tc
, 0, sizeof(tc
));
1656 timeGetDevCaps(&tc
, sizeof(tc
));
1658 if (data
->period
< tc
.wPeriodMin
)
1659 data
->period
= tc
.wPeriodMin
;
1661 timeBeginPeriod(data
->period
);
1663 flags
= TIME_CALLBACK_FUNCTION
;
1664 if (alarm_has_dynticks(t
))
1665 flags
|= TIME_ONESHOT
;
1667 flags
|= TIME_PERIODIC
;
1669 data
->timerId
= timeSetEvent(1, // interval (ms)
1670 data
->period
, // resolution
1671 host_alarm_handler
, // function
1672 (DWORD
)t
, // parameter
1675 if (!data
->timerId
) {
1676 perror("Failed to initialize win32 alarm timer");
1677 timeEndPeriod(data
->period
);
1684 static void win32_stop_timer(struct qemu_alarm_timer
*t
)
1686 struct qemu_alarm_win32
*data
= t
->priv
;
1688 timeKillEvent(data
->timerId
);
1689 timeEndPeriod(data
->period
);
1692 static void win32_rearm_timer(struct qemu_alarm_timer
*t
)
1694 struct qemu_alarm_win32
*data
= t
->priv
;
1695 uint64_t nearest_delta_us
;
1697 if (!active_timers
[QEMU_TIMER_REALTIME
] &&
1698 !active_timers
[QEMU_TIMER_VIRTUAL
])
1701 nearest_delta_us
= qemu_next_deadline_dyntick();
1702 nearest_delta_us
/= 1000;
1704 timeKillEvent(data
->timerId
);
1706 data
->timerId
= timeSetEvent(1,
1710 TIME_ONESHOT
| TIME_PERIODIC
);
1712 if (!data
->timerId
) {
1713 perror("Failed to re-arm win32 alarm timer");
1715 timeEndPeriod(data
->period
);
1722 static int init_timer_alarm(void)
1724 struct qemu_alarm_timer
*t
= NULL
;
1727 for (i
= 0; alarm_timers
[i
].name
; i
++) {
1728 t
= &alarm_timers
[i
];
1748 static void quit_timers(void)
1750 alarm_timer
->stop(alarm_timer
);
1754 /***********************************************************/
1755 /* host time/date access */
1756 void qemu_get_timedate(struct tm
*tm
, int offset
)
1763 if (rtc_date_offset
== -1) {
1767 ret
= localtime(&ti
);
1769 ti
-= rtc_date_offset
;
1773 memcpy(tm
, ret
, sizeof(struct tm
));
1776 int qemu_timedate_diff(struct tm
*tm
)
1780 if (rtc_date_offset
== -1)
1782 seconds
= mktimegm(tm
);
1784 seconds
= mktime(tm
);
1786 seconds
= mktimegm(tm
) + rtc_date_offset
;
1788 return seconds
- time(NULL
);
1792 static void socket_cleanup(void)
1797 static int socket_init(void)
1802 ret
= WSAStartup(MAKEWORD(2,2), &Data
);
1804 err
= WSAGetLastError();
1805 fprintf(stderr
, "WSAStartup: %d\n", err
);
1808 atexit(socket_cleanup
);
1813 int get_param_value(char *buf
, int buf_size
,
1814 const char *tag
, const char *str
)
1821 p
= get_opt_name(option
, sizeof(option
), p
, '=');
1825 if (!strcmp(tag
, option
)) {
1826 (void)get_opt_value(buf
, buf_size
, p
);
1829 p
= get_opt_value(NULL
, 0, p
);
1838 int check_params(const char * const *params
, const char *str
)
1840 int name_buf_size
= 1;
1846 for (i
= 0; params
[i
] != NULL
; i
++) {
1847 len
= strlen(params
[i
]) + 1;
1848 if (len
> name_buf_size
) {
1849 name_buf_size
= len
;
1852 name_buf
= qemu_malloc(name_buf_size
);
1855 while (*p
!= '\0') {
1856 p
= get_opt_name(name_buf
, name_buf_size
, p
, '=');
1862 for(i
= 0; params
[i
] != NULL
; i
++)
1863 if (!strcmp(params
[i
], name_buf
))
1865 if (params
[i
] == NULL
) {
1869 p
= get_opt_value(NULL
, 0, p
);
1875 qemu_free(name_buf
);
1879 /***********************************************************/
1880 /* Bluetooth support */
1883 static struct HCIInfo
*hci_table
[MAX_NICS
];
1885 static struct bt_vlan_s
{
1886 struct bt_scatternet_s net
;
1888 struct bt_vlan_s
*next
;
1891 /* find or alloc a new bluetooth "VLAN" */
1892 static struct bt_scatternet_s
*qemu_find_bt_vlan(int id
)
1894 struct bt_vlan_s
**pvlan
, *vlan
;
1895 for (vlan
= first_bt_vlan
; vlan
!= NULL
; vlan
= vlan
->next
) {
1899 vlan
= qemu_mallocz(sizeof(struct bt_vlan_s
));
1901 pvlan
= &first_bt_vlan
;
1902 while (*pvlan
!= NULL
)
1903 pvlan
= &(*pvlan
)->next
;
1908 static void null_hci_send(struct HCIInfo
*hci
, const uint8_t *data
, int len
)
1912 static int null_hci_addr_set(struct HCIInfo
*hci
, const uint8_t *bd_addr
)
1917 static struct HCIInfo null_hci
= {
1918 .cmd_send
= null_hci_send
,
1919 .sco_send
= null_hci_send
,
1920 .acl_send
= null_hci_send
,
1921 .bdaddr_set
= null_hci_addr_set
,
1924 struct HCIInfo
*qemu_next_hci(void)
1926 if (cur_hci
== nb_hcis
)
1929 return hci_table
[cur_hci
++];
1932 static struct HCIInfo
*hci_init(const char *str
)
1935 struct bt_scatternet_s
*vlan
= 0;
1937 if (!strcmp(str
, "null"))
1940 else if (!strncmp(str
, "host", 4) && (str
[4] == '\0' || str
[4] == ':'))
1942 return bt_host_hci(str
[4] ? str
+ 5 : "hci0");
1943 else if (!strncmp(str
, "hci", 3)) {
1946 if (!strncmp(str
+ 3, ",vlan=", 6)) {
1947 vlan
= qemu_find_bt_vlan(strtol(str
+ 9, &endp
, 0));
1952 vlan
= qemu_find_bt_vlan(0);
1954 return bt_new_hci(vlan
);
1957 fprintf(stderr
, "qemu: Unknown bluetooth HCI `%s'.\n", str
);
1962 static int bt_hci_parse(const char *str
)
1964 struct HCIInfo
*hci
;
1967 if (nb_hcis
>= MAX_NICS
) {
1968 fprintf(stderr
, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS
);
1972 hci
= hci_init(str
);
1981 bdaddr
.b
[5] = 0x56 + nb_hcis
;
1982 hci
->bdaddr_set(hci
, bdaddr
.b
);
1984 hci_table
[nb_hcis
++] = hci
;
1989 static void bt_vhci_add(int vlan_id
)
1991 struct bt_scatternet_s
*vlan
= qemu_find_bt_vlan(vlan_id
);
1994 fprintf(stderr
, "qemu: warning: adding a VHCI to "
1995 "an empty scatternet %i\n", vlan_id
);
1997 bt_vhci_init(bt_new_hci(vlan
));
2000 static struct bt_device_s
*bt_device_add(const char *opt
)
2002 struct bt_scatternet_s
*vlan
;
2004 char *endp
= strstr(opt
, ",vlan=");
2005 int len
= (endp
? endp
- opt
: strlen(opt
)) + 1;
2008 pstrcpy(devname
, MIN(sizeof(devname
), len
), opt
);
2011 vlan_id
= strtol(endp
+ 6, &endp
, 0);
2013 fprintf(stderr
, "qemu: unrecognised bluetooth vlan Id\n");
2018 vlan
= qemu_find_bt_vlan(vlan_id
);
2021 fprintf(stderr
, "qemu: warning: adding a slave device to "
2022 "an empty scatternet %i\n", vlan_id
);
2024 if (!strcmp(devname
, "keyboard"))
2025 return bt_keyboard_init(vlan
);
2027 fprintf(stderr
, "qemu: unsupported bluetooth device `%s'\n", devname
);
2031 static int bt_parse(const char *opt
)
2033 const char *endp
, *p
;
2036 if (strstart(opt
, "hci", &endp
)) {
2037 if (!*endp
|| *endp
== ',') {
2039 if (!strstart(endp
, ",vlan=", 0))
2042 return bt_hci_parse(opt
);
2044 } else if (strstart(opt
, "vhci", &endp
)) {
2045 if (!*endp
|| *endp
== ',') {
2047 if (strstart(endp
, ",vlan=", &p
)) {
2048 vlan
= strtol(p
, (char **) &endp
, 0);
2050 fprintf(stderr
, "qemu: bad scatternet '%s'\n", p
);
2054 fprintf(stderr
, "qemu: bad parameter '%s'\n", endp
+ 1);
2063 } else if (strstart(opt
, "device:", &endp
))
2064 return !bt_device_add(endp
);
2066 fprintf(stderr
, "qemu: bad bluetooth parameter '%s'\n", opt
);
2070 /***********************************************************/
2071 /* QEMU Block devices */
2073 #define HD_ALIAS "index=%d,media=disk"
2074 #define CDROM_ALIAS "index=2,media=cdrom"
2075 #define FD_ALIAS "index=%d,if=floppy"
2076 #define PFLASH_ALIAS "if=pflash"
2077 #define MTD_ALIAS "if=mtd"
2078 #define SD_ALIAS "index=0,if=sd"
2080 static int drive_opt_get_free_idx(void)
2084 for (index
= 0; index
< MAX_DRIVES
; index
++)
2085 if (!drives_opt
[index
].used
) {
2086 drives_opt
[index
].used
= 1;
2093 static int drive_get_free_idx(void)
2097 for (index
= 0; index
< MAX_DRIVES
; index
++)
2098 if (!drives_table
[index
].used
) {
2099 drives_table
[index
].used
= 1;
2106 int drive_add(const char *file
, const char *fmt
, ...)
2109 int index
= drive_opt_get_free_idx();
2111 if (nb_drives_opt
>= MAX_DRIVES
|| index
== -1) {
2112 fprintf(stderr
, "qemu: too many drives\n");
2116 drives_opt
[index
].file
= file
;
2118 vsnprintf(drives_opt
[index
].opt
,
2119 sizeof(drives_opt
[0].opt
), fmt
, ap
);
2126 void drive_remove(int index
)
2128 drives_opt
[index
].used
= 0;
2132 int drive_get_index(BlockInterfaceType type
, int bus
, int unit
)
2136 /* seek interface, bus and unit */
2138 for (index
= 0; index
< MAX_DRIVES
; index
++)
2139 if (drives_table
[index
].type
== type
&&
2140 drives_table
[index
].bus
== bus
&&
2141 drives_table
[index
].unit
== unit
&&
2142 drives_table
[index
].used
)
2148 int drive_get_max_bus(BlockInterfaceType type
)
2154 for (index
= 0; index
< nb_drives
; index
++) {
2155 if(drives_table
[index
].type
== type
&&
2156 drives_table
[index
].bus
> max_bus
)
2157 max_bus
= drives_table
[index
].bus
;
2162 const char *drive_get_serial(BlockDriverState
*bdrv
)
2166 for (index
= 0; index
< nb_drives
; index
++)
2167 if (drives_table
[index
].bdrv
== bdrv
)
2168 return drives_table
[index
].serial
;
2173 BlockInterfaceErrorAction
drive_get_onerror(BlockDriverState
*bdrv
)
2177 for (index
= 0; index
< nb_drives
; index
++)
2178 if (drives_table
[index
].bdrv
== bdrv
)
2179 return drives_table
[index
].onerror
;
2181 return BLOCK_ERR_STOP_ENOSPC
;
2184 static void bdrv_format_print(void *opaque
, const char *name
)
2186 fprintf(stderr
, " %s", name
);
2189 void drive_uninit(BlockDriverState
*bdrv
)
2193 for (i
= 0; i
< MAX_DRIVES
; i
++)
2194 if (drives_table
[i
].bdrv
== bdrv
) {
2195 drives_table
[i
].bdrv
= NULL
;
2196 drives_table
[i
].used
= 0;
2197 drive_remove(drives_table
[i
].drive_opt_idx
);
2203 int drive_init(struct drive_opt
*arg
, int snapshot
, void *opaque
)
2209 const char *mediastr
= "";
2210 BlockInterfaceType type
;
2211 enum { MEDIA_DISK
, MEDIA_CDROM
} media
;
2212 int bus_id
, unit_id
;
2213 int cyls
, heads
, secs
, translation
;
2214 BlockDriverState
*bdrv
;
2215 BlockDriver
*drv
= NULL
;
2216 QEMUMachine
*machine
= opaque
;
2220 int bdrv_flags
, onerror
;
2221 int drives_table_idx
;
2222 char *str
= arg
->opt
;
2223 static const char * const params
[] = { "bus", "unit", "if", "index",
2224 "cyls", "heads", "secs", "trans",
2225 "media", "snapshot", "file",
2226 "cache", "format", "serial", "werror",
2229 if (check_params(params
, str
) < 0) {
2230 fprintf(stderr
, "qemu: unknown parameter '%s' in '%s'\n",
2236 cyls
= heads
= secs
= 0;
2239 translation
= BIOS_ATA_TRANSLATION_AUTO
;
2243 if (machine
->use_scsi
) {
2245 max_devs
= MAX_SCSI_DEVS
;
2246 pstrcpy(devname
, sizeof(devname
), "scsi");
2249 max_devs
= MAX_IDE_DEVS
;
2250 pstrcpy(devname
, sizeof(devname
), "ide");
2254 /* extract parameters */
2256 if (get_param_value(buf
, sizeof(buf
), "bus", str
)) {
2257 bus_id
= strtol(buf
, NULL
, 0);
2259 fprintf(stderr
, "qemu: '%s' invalid bus id\n", str
);
2264 if (get_param_value(buf
, sizeof(buf
), "unit", str
)) {
2265 unit_id
= strtol(buf
, NULL
, 0);
2267 fprintf(stderr
, "qemu: '%s' invalid unit id\n", str
);
2272 if (get_param_value(buf
, sizeof(buf
), "if", str
)) {
2273 pstrcpy(devname
, sizeof(devname
), buf
);
2274 if (!strcmp(buf
, "ide")) {
2276 max_devs
= MAX_IDE_DEVS
;
2277 } else if (!strcmp(buf
, "scsi")) {
2279 max_devs
= MAX_SCSI_DEVS
;
2280 } else if (!strcmp(buf
, "floppy")) {
2283 } else if (!strcmp(buf
, "pflash")) {
2286 } else if (!strcmp(buf
, "mtd")) {
2289 } else if (!strcmp(buf
, "sd")) {
2292 } else if (!strcmp(buf
, "virtio")) {
2295 } else if (!strcmp(buf
, "xen")) {
2299 fprintf(stderr
, "qemu: '%s' unsupported bus type '%s'\n", str
, buf
);
2304 if (get_param_value(buf
, sizeof(buf
), "index", str
)) {
2305 index
= strtol(buf
, NULL
, 0);
2307 fprintf(stderr
, "qemu: '%s' invalid index\n", str
);
2312 if (get_param_value(buf
, sizeof(buf
), "cyls", str
)) {
2313 cyls
= strtol(buf
, NULL
, 0);
2316 if (get_param_value(buf
, sizeof(buf
), "heads", str
)) {
2317 heads
= strtol(buf
, NULL
, 0);
2320 if (get_param_value(buf
, sizeof(buf
), "secs", str
)) {
2321 secs
= strtol(buf
, NULL
, 0);
2324 if (cyls
|| heads
|| secs
) {
2325 if (cyls
< 1 || cyls
> 16383) {
2326 fprintf(stderr
, "qemu: '%s' invalid physical cyls number\n", str
);
2329 if (heads
< 1 || heads
> 16) {
2330 fprintf(stderr
, "qemu: '%s' invalid physical heads number\n", str
);
2333 if (secs
< 1 || secs
> 63) {
2334 fprintf(stderr
, "qemu: '%s' invalid physical secs number\n", str
);
2339 if (get_param_value(buf
, sizeof(buf
), "trans", str
)) {
2342 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2346 if (!strcmp(buf
, "none"))
2347 translation
= BIOS_ATA_TRANSLATION_NONE
;
2348 else if (!strcmp(buf
, "lba"))
2349 translation
= BIOS_ATA_TRANSLATION_LBA
;
2350 else if (!strcmp(buf
, "auto"))
2351 translation
= BIOS_ATA_TRANSLATION_AUTO
;
2353 fprintf(stderr
, "qemu: '%s' invalid translation type\n", str
);
2358 if (get_param_value(buf
, sizeof(buf
), "media", str
)) {
2359 if (!strcmp(buf
, "disk")) {
2361 } else if (!strcmp(buf
, "cdrom")) {
2362 if (cyls
|| secs
|| heads
) {
2364 "qemu: '%s' invalid physical CHS format\n", str
);
2367 media
= MEDIA_CDROM
;
2369 fprintf(stderr
, "qemu: '%s' invalid media\n", str
);
2374 if (get_param_value(buf
, sizeof(buf
), "snapshot", str
)) {
2375 if (!strcmp(buf
, "on"))
2377 else if (!strcmp(buf
, "off"))
2380 fprintf(stderr
, "qemu: '%s' invalid snapshot option\n", str
);
2385 if (get_param_value(buf
, sizeof(buf
), "cache", str
)) {
2386 if (!strcmp(buf
, "off") || !strcmp(buf
, "none"))
2388 else if (!strcmp(buf
, "writethrough"))
2390 else if (!strcmp(buf
, "writeback"))
2393 fprintf(stderr
, "qemu: invalid cache option\n");
2398 if (get_param_value(buf
, sizeof(buf
), "format", str
)) {
2399 if (strcmp(buf
, "?") == 0) {
2400 fprintf(stderr
, "qemu: Supported formats:");
2401 bdrv_iterate_format(bdrv_format_print
, NULL
);
2402 fprintf(stderr
, "\n");
2405 drv
= bdrv_find_format(buf
);
2407 fprintf(stderr
, "qemu: '%s' invalid format\n", buf
);
2412 if (arg
->file
== NULL
)
2413 get_param_value(file
, sizeof(file
), "file", str
);
2415 pstrcpy(file
, sizeof(file
), arg
->file
);
2417 if (!get_param_value(serial
, sizeof(serial
), "serial", str
))
2418 memset(serial
, 0, sizeof(serial
));
2420 onerror
= BLOCK_ERR_STOP_ENOSPC
;
2421 if (get_param_value(buf
, sizeof(serial
), "werror", str
)) {
2422 if (type
!= IF_IDE
&& type
!= IF_SCSI
&& type
!= IF_VIRTIO
) {
2423 fprintf(stderr
, "werror is no supported by this format\n");
2426 if (!strcmp(buf
, "ignore"))
2427 onerror
= BLOCK_ERR_IGNORE
;
2428 else if (!strcmp(buf
, "enospc"))
2429 onerror
= BLOCK_ERR_STOP_ENOSPC
;
2430 else if (!strcmp(buf
, "stop"))
2431 onerror
= BLOCK_ERR_STOP_ANY
;
2432 else if (!strcmp(buf
, "report"))
2433 onerror
= BLOCK_ERR_REPORT
;
2435 fprintf(stderr
, "qemu: '%s' invalid write error action\n", buf
);
2440 /* compute bus and unit according index */
2443 if (bus_id
!= 0 || unit_id
!= -1) {
2445 "qemu: '%s' index cannot be used with bus and unit\n", str
);
2453 unit_id
= index
% max_devs
;
2454 bus_id
= index
/ max_devs
;
2458 /* if user doesn't specify a unit_id,
2459 * try to find the first free
2462 if (unit_id
== -1) {
2464 while (drive_get_index(type
, bus_id
, unit_id
) != -1) {
2466 if (max_devs
&& unit_id
>= max_devs
) {
2467 unit_id
-= max_devs
;
2475 if (max_devs
&& unit_id
>= max_devs
) {
2476 fprintf(stderr
, "qemu: '%s' unit %d too big (max is %d)\n",
2477 str
, unit_id
, max_devs
- 1);
2482 * ignore multiple definitions
2485 if (drive_get_index(type
, bus_id
, unit_id
) != -1)
2490 if (type
== IF_IDE
|| type
== IF_SCSI
)
2491 mediastr
= (media
== MEDIA_CDROM
) ? "-cd" : "-hd";
2493 snprintf(buf
, sizeof(buf
), "%s%i%s%i",
2494 devname
, bus_id
, mediastr
, unit_id
);
2496 snprintf(buf
, sizeof(buf
), "%s%s%i",
2497 devname
, mediastr
, unit_id
);
2498 bdrv
= bdrv_new(buf
);
2499 drives_table_idx
= drive_get_free_idx();
2500 drives_table
[drives_table_idx
].bdrv
= bdrv
;
2501 drives_table
[drives_table_idx
].type
= type
;
2502 drives_table
[drives_table_idx
].bus
= bus_id
;
2503 drives_table
[drives_table_idx
].unit
= unit_id
;
2504 drives_table
[drives_table_idx
].onerror
= onerror
;
2505 drives_table
[drives_table_idx
].drive_opt_idx
= arg
- drives_opt
;
2506 strncpy(drives_table
[drives_table_idx
].serial
, serial
, sizeof(serial
));
2516 bdrv_set_geometry_hint(bdrv
, cyls
, heads
, secs
);
2517 bdrv_set_translation_hint(bdrv
, translation
);
2521 bdrv_set_type_hint(bdrv
, BDRV_TYPE_CDROM
);
2526 /* FIXME: This isn't really a floppy, but it's a reasonable
2529 bdrv_set_type_hint(bdrv
, BDRV_TYPE_FLOPPY
);
2542 bdrv_flags
|= BDRV_O_SNAPSHOT
;
2543 cache
= 2; /* always use write-back with snapshot */
2545 if (cache
== 0) /* no caching */
2546 bdrv_flags
|= BDRV_O_NOCACHE
;
2547 else if (cache
== 2) /* write-back */
2548 bdrv_flags
|= BDRV_O_CACHE_WB
;
2549 else if (cache
== 3) /* not specified */
2550 bdrv_flags
|= BDRV_O_CACHE_DEF
;
2551 if (bdrv_open2(bdrv
, file
, bdrv_flags
, drv
) < 0) {
2552 fprintf(stderr
, "qemu: could not open disk image %s\n",
2556 if (bdrv_key_required(bdrv
))
2558 return drives_table_idx
;
2561 static void numa_add(const char *optarg
)
2565 unsigned long long value
, endvalue
;
2568 optarg
= get_opt_name(option
, 128, optarg
, ',') + 1;
2569 if (!strcmp(option
, "node")) {
2570 if (get_param_value(option
, 128, "nodeid", optarg
) == 0) {
2571 nodenr
= nb_numa_nodes
;
2573 nodenr
= strtoull(option
, NULL
, 10);
2576 if (get_param_value(option
, 128, "mem", optarg
) == 0) {
2577 node_mem
[nodenr
] = 0;
2579 value
= strtoull(option
, &endptr
, 0);
2581 case 0: case 'M': case 'm':
2588 node_mem
[nodenr
] = value
;
2590 if (get_param_value(option
, 128, "cpus", optarg
) == 0) {
2591 node_cpumask
[nodenr
] = 0;
2593 value
= strtoull(option
, &endptr
, 10);
2596 fprintf(stderr
, "only 64 CPUs in NUMA mode supported.\n");
2598 if (*endptr
== '-') {
2599 endvalue
= strtoull(endptr
+1, &endptr
, 10);
2600 if (endvalue
>= 63) {
2603 "only 63 CPUs in NUMA mode supported.\n");
2605 value
= (1 << (endvalue
+ 1)) - (1 << value
);
2610 node_cpumask
[nodenr
] = value
;
2617 /***********************************************************/
2620 static USBPort
*used_usb_ports
;
2621 static USBPort
*free_usb_ports
;
2623 /* ??? Maybe change this to register a hub to keep track of the topology. */
2624 void qemu_register_usb_port(USBPort
*port
, void *opaque
, int index
,
2625 usb_attachfn attach
)
2627 port
->opaque
= opaque
;
2628 port
->index
= index
;
2629 port
->attach
= attach
;
2630 port
->next
= free_usb_ports
;
2631 free_usb_ports
= port
;
2634 int usb_device_add_dev(USBDevice
*dev
)
2638 /* Find a USB port to add the device to. */
2639 port
= free_usb_ports
;
2643 /* Create a new hub and chain it on. */
2644 free_usb_ports
= NULL
;
2645 port
->next
= used_usb_ports
;
2646 used_usb_ports
= port
;
2648 hub
= usb_hub_init(VM_USB_HUB_SIZE
);
2649 usb_attach(port
, hub
);
2650 port
= free_usb_ports
;
2653 free_usb_ports
= port
->next
;
2654 port
->next
= used_usb_ports
;
2655 used_usb_ports
= port
;
2656 usb_attach(port
, dev
);
2660 static void usb_msd_password_cb(void *opaque
, int err
)
2662 USBDevice
*dev
= opaque
;
2665 usb_device_add_dev(dev
);
2667 dev
->handle_destroy(dev
);
2670 static int usb_device_add(const char *devname
, int is_hotplug
)
2675 if (!free_usb_ports
)
2678 if (strstart(devname
, "host:", &p
)) {
2679 dev
= usb_host_device_open(p
);
2680 } else if (!strcmp(devname
, "mouse")) {
2681 dev
= usb_mouse_init();
2682 } else if (!strcmp(devname
, "tablet")) {
2683 dev
= usb_tablet_init();
2684 } else if (!strcmp(devname
, "keyboard")) {
2685 dev
= usb_keyboard_init();
2686 } else if (strstart(devname
, "disk:", &p
)) {
2687 BlockDriverState
*bs
;
2689 dev
= usb_msd_init(p
);
2692 bs
= usb_msd_get_bdrv(dev
);
2693 if (bdrv_key_required(bs
)) {
2696 monitor_read_bdrv_key_start(cur_mon
, bs
, usb_msd_password_cb
,
2701 } else if (!strcmp(devname
, "wacom-tablet")) {
2702 dev
= usb_wacom_init();
2703 } else if (strstart(devname
, "serial:", &p
)) {
2704 dev
= usb_serial_init(p
);
2705 #ifdef CONFIG_BRLAPI
2706 } else if (!strcmp(devname
, "braille")) {
2707 dev
= usb_baum_init();
2709 } else if (strstart(devname
, "net:", &p
)) {
2712 if (net_client_init("nic", p
) < 0)
2714 nd_table
[nic
].model
= "usb";
2715 dev
= usb_net_init(&nd_table
[nic
]);
2716 } else if (!strcmp(devname
, "bt") || strstart(devname
, "bt:", &p
)) {
2717 dev
= usb_bt_init(devname
[2] ? hci_init(p
) :
2718 bt_new_hci(qemu_find_bt_vlan(0)));
2725 return usb_device_add_dev(dev
);
2728 int usb_device_del_addr(int bus_num
, int addr
)
2734 if (!used_usb_ports
)
2740 lastp
= &used_usb_ports
;
2741 port
= used_usb_ports
;
2742 while (port
&& port
->dev
->addr
!= addr
) {
2743 lastp
= &port
->next
;
2751 *lastp
= port
->next
;
2752 usb_attach(port
, NULL
);
2753 dev
->handle_destroy(dev
);
2754 port
->next
= free_usb_ports
;
2755 free_usb_ports
= port
;
2759 static int usb_device_del(const char *devname
)
2764 if (strstart(devname
, "host:", &p
))
2765 return usb_host_device_close(p
);
2767 if (!used_usb_ports
)
2770 p
= strchr(devname
, '.');
2773 bus_num
= strtoul(devname
, NULL
, 0);
2774 addr
= strtoul(p
+ 1, NULL
, 0);
2776 return usb_device_del_addr(bus_num
, addr
);
2779 void do_usb_add(Monitor
*mon
, const char *devname
)
2781 usb_device_add(devname
, 1);
2784 void do_usb_del(Monitor
*mon
, const char *devname
)
2786 usb_device_del(devname
);
2789 void usb_info(Monitor
*mon
)
2793 const char *speed_str
;
2796 monitor_printf(mon
, "USB support not enabled\n");
2800 for (port
= used_usb_ports
; port
; port
= port
->next
) {
2804 switch(dev
->speed
) {
2808 case USB_SPEED_FULL
:
2811 case USB_SPEED_HIGH
:
2818 monitor_printf(mon
, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2819 0, dev
->addr
, speed_str
, dev
->devname
);
2823 /***********************************************************/
2824 /* PCMCIA/Cardbus */
2826 static struct pcmcia_socket_entry_s
{
2827 PCMCIASocket
*socket
;
2828 struct pcmcia_socket_entry_s
*next
;
2829 } *pcmcia_sockets
= 0;
2831 void pcmcia_socket_register(PCMCIASocket
*socket
)
2833 struct pcmcia_socket_entry_s
*entry
;
2835 entry
= qemu_malloc(sizeof(struct pcmcia_socket_entry_s
));
2836 entry
->socket
= socket
;
2837 entry
->next
= pcmcia_sockets
;
2838 pcmcia_sockets
= entry
;
2841 void pcmcia_socket_unregister(PCMCIASocket
*socket
)
2843 struct pcmcia_socket_entry_s
*entry
, **ptr
;
2845 ptr
= &pcmcia_sockets
;
2846 for (entry
= *ptr
; entry
; ptr
= &entry
->next
, entry
= *ptr
)
2847 if (entry
->socket
== socket
) {
2853 void pcmcia_info(Monitor
*mon
)
2855 struct pcmcia_socket_entry_s
*iter
;
2857 if (!pcmcia_sockets
)
2858 monitor_printf(mon
, "No PCMCIA sockets\n");
2860 for (iter
= pcmcia_sockets
; iter
; iter
= iter
->next
)
2861 monitor_printf(mon
, "%s: %s\n", iter
->socket
->slot_string
,
2862 iter
->socket
->attached
? iter
->socket
->card_string
:
2866 /***********************************************************/
2867 /* register display */
2869 struct DisplayAllocator default_allocator
= {
2870 defaultallocator_create_displaysurface
,
2871 defaultallocator_resize_displaysurface
,
2872 defaultallocator_free_displaysurface
2875 void register_displaystate(DisplayState
*ds
)
2885 DisplayState
*get_displaystate(void)
2887 return display_state
;
2890 DisplayAllocator
*register_displayallocator(DisplayState
*ds
, DisplayAllocator
*da
)
2892 if(ds
->allocator
== &default_allocator
) ds
->allocator
= da
;
2893 return ds
->allocator
;
2898 static void dumb_display_init(void)
2900 DisplayState
*ds
= qemu_mallocz(sizeof(DisplayState
));
2901 ds
->allocator
= &default_allocator
;
2902 ds
->surface
= qemu_create_displaysurface(ds
, 640, 480);
2903 register_displaystate(ds
);
2906 /***********************************************************/
2909 typedef struct IOHandlerRecord
{
2911 IOCanRWHandler
*fd_read_poll
;
2913 IOHandler
*fd_write
;
2916 /* temporary data */
2918 struct IOHandlerRecord
*next
;
2921 static IOHandlerRecord
*first_io_handler
;
2923 /* XXX: fd_read_poll should be suppressed, but an API change is
2924 necessary in the character devices to suppress fd_can_read(). */
2925 int qemu_set_fd_handler2(int fd
,
2926 IOCanRWHandler
*fd_read_poll
,
2928 IOHandler
*fd_write
,
2931 IOHandlerRecord
**pioh
, *ioh
;
2933 if (!fd_read
&& !fd_write
) {
2934 pioh
= &first_io_handler
;
2939 if (ioh
->fd
== fd
) {
2946 for(ioh
= first_io_handler
; ioh
!= NULL
; ioh
= ioh
->next
) {
2950 ioh
= qemu_mallocz(sizeof(IOHandlerRecord
));
2951 ioh
->next
= first_io_handler
;
2952 first_io_handler
= ioh
;
2955 ioh
->fd_read_poll
= fd_read_poll
;
2956 ioh
->fd_read
= fd_read
;
2957 ioh
->fd_write
= fd_write
;
2958 ioh
->opaque
= opaque
;
2964 int qemu_set_fd_handler(int fd
,
2966 IOHandler
*fd_write
,
2969 return qemu_set_fd_handler2(fd
, NULL
, fd_read
, fd_write
, opaque
);
2973 /***********************************************************/
2974 /* Polling handling */
2976 typedef struct PollingEntry
{
2979 struct PollingEntry
*next
;
2982 static PollingEntry
*first_polling_entry
;
2984 int qemu_add_polling_cb(PollingFunc
*func
, void *opaque
)
2986 PollingEntry
**ppe
, *pe
;
2987 pe
= qemu_mallocz(sizeof(PollingEntry
));
2989 pe
->opaque
= opaque
;
2990 for(ppe
= &first_polling_entry
; *ppe
!= NULL
; ppe
= &(*ppe
)->next
);
2995 void qemu_del_polling_cb(PollingFunc
*func
, void *opaque
)
2997 PollingEntry
**ppe
, *pe
;
2998 for(ppe
= &first_polling_entry
; *ppe
!= NULL
; ppe
= &(*ppe
)->next
) {
3000 if (pe
->func
== func
&& pe
->opaque
== opaque
) {
3008 /***********************************************************/
3009 /* Wait objects support */
3010 typedef struct WaitObjects
{
3012 HANDLE events
[MAXIMUM_WAIT_OBJECTS
+ 1];
3013 WaitObjectFunc
*func
[MAXIMUM_WAIT_OBJECTS
+ 1];
3014 void *opaque
[MAXIMUM_WAIT_OBJECTS
+ 1];
3017 static WaitObjects wait_objects
= {0};
3019 int qemu_add_wait_object(HANDLE handle
, WaitObjectFunc
*func
, void *opaque
)
3021 WaitObjects
*w
= &wait_objects
;
3023 if (w
->num
>= MAXIMUM_WAIT_OBJECTS
)
3025 w
->events
[w
->num
] = handle
;
3026 w
->func
[w
->num
] = func
;
3027 w
->opaque
[w
->num
] = opaque
;
3032 void qemu_del_wait_object(HANDLE handle
, WaitObjectFunc
*func
, void *opaque
)
3035 WaitObjects
*w
= &wait_objects
;
3038 for (i
= 0; i
< w
->num
; i
++) {
3039 if (w
->events
[i
] == handle
)
3042 w
->events
[i
] = w
->events
[i
+ 1];
3043 w
->func
[i
] = w
->func
[i
+ 1];
3044 w
->opaque
[i
] = w
->opaque
[i
+ 1];
3052 /***********************************************************/
3053 /* ram save/restore */
3055 static int ram_get_page(QEMUFile
*f
, uint8_t *buf
, int len
)
3059 v
= qemu_get_byte(f
);
3062 if (qemu_get_buffer(f
, buf
, len
) != len
)
3066 v
= qemu_get_byte(f
);
3067 memset(buf
, v
, len
);
3073 if (qemu_file_has_error(f
))
3079 static int ram_load_v1(QEMUFile
*f
, void *opaque
)
3084 if (qemu_get_be32(f
) != last_ram_offset
)
3086 for(i
= 0; i
< last_ram_offset
; i
+= TARGET_PAGE_SIZE
) {
3087 ret
= ram_get_page(f
, qemu_get_ram_ptr(i
), TARGET_PAGE_SIZE
);
3094 #define BDRV_HASH_BLOCK_SIZE 1024
3095 #define IOBUF_SIZE 4096
3096 #define RAM_CBLOCK_MAGIC 0xfabe
3098 typedef struct RamDecompressState
{
3101 uint8_t buf
[IOBUF_SIZE
];
3102 } RamDecompressState
;
3104 static int ram_decompress_open(RamDecompressState
*s
, QEMUFile
*f
)
3107 memset(s
, 0, sizeof(*s
));
3109 ret
= inflateInit(&s
->zstream
);
3115 static int ram_decompress_buf(RamDecompressState
*s
, uint8_t *buf
, int len
)
3119 s
->zstream
.avail_out
= len
;
3120 s
->zstream
.next_out
= buf
;
3121 while (s
->zstream
.avail_out
> 0) {
3122 if (s
->zstream
.avail_in
== 0) {
3123 if (qemu_get_be16(s
->f
) != RAM_CBLOCK_MAGIC
)
3125 clen
= qemu_get_be16(s
->f
);
3126 if (clen
> IOBUF_SIZE
)
3128 qemu_get_buffer(s
->f
, s
->buf
, clen
);
3129 s
->zstream
.avail_in
= clen
;
3130 s
->zstream
.next_in
= s
->buf
;
3132 ret
= inflate(&s
->zstream
, Z_PARTIAL_FLUSH
);
3133 if (ret
!= Z_OK
&& ret
!= Z_STREAM_END
) {
3140 static void ram_decompress_close(RamDecompressState
*s
)
3142 inflateEnd(&s
->zstream
);
3145 #define RAM_SAVE_FLAG_FULL 0x01
3146 #define RAM_SAVE_FLAG_COMPRESS 0x02
3147 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
3148 #define RAM_SAVE_FLAG_PAGE 0x08
3149 #define RAM_SAVE_FLAG_EOS 0x10
3151 static int is_dup_page(uint8_t *page
, uint8_t ch
)
3153 uint32_t val
= ch
<< 24 | ch
<< 16 | ch
<< 8 | ch
;
3154 uint32_t *array
= (uint32_t *)page
;
3157 for (i
= 0; i
< (TARGET_PAGE_SIZE
/ 4); i
++) {
3158 if (array
[i
] != val
)
3165 static int ram_save_block(QEMUFile
*f
)
3167 static ram_addr_t current_addr
= 0;
3168 ram_addr_t saved_addr
= current_addr
;
3169 ram_addr_t addr
= 0;
3172 while (addr
< last_ram_offset
) {
3173 if (cpu_physical_memory_get_dirty(current_addr
, MIGRATION_DIRTY_FLAG
)) {
3176 cpu_physical_memory_reset_dirty(current_addr
,
3177 current_addr
+ TARGET_PAGE_SIZE
,
3178 MIGRATION_DIRTY_FLAG
);
3180 p
= qemu_get_ram_ptr(current_addr
);
3182 if (is_dup_page(p
, *p
)) {
3183 qemu_put_be64(f
, current_addr
| RAM_SAVE_FLAG_COMPRESS
);
3184 qemu_put_byte(f
, *p
);
3186 qemu_put_be64(f
, current_addr
| RAM_SAVE_FLAG_PAGE
);
3187 qemu_put_buffer(f
, p
, TARGET_PAGE_SIZE
);
3193 addr
+= TARGET_PAGE_SIZE
;
3194 current_addr
= (saved_addr
+ addr
) % last_ram_offset
;
3200 static ram_addr_t ram_save_threshold
= 10;
3201 static uint64_t bytes_transferred
= 0;
3203 static ram_addr_t
ram_save_remaining(void)
3206 ram_addr_t count
= 0;
3208 for (addr
= 0; addr
< last_ram_offset
; addr
+= TARGET_PAGE_SIZE
) {
3209 if (cpu_physical_memory_get_dirty(addr
, MIGRATION_DIRTY_FLAG
))
3216 uint64_t ram_bytes_remaining(void)
3218 return ram_save_remaining() * TARGET_PAGE_SIZE
;
3221 uint64_t ram_bytes_transferred(void)
3223 return bytes_transferred
;
3226 uint64_t ram_bytes_total(void)
3228 return last_ram_offset
;
3231 static int ram_save_live(QEMUFile
*f
, int stage
, void *opaque
)
3236 /* Make sure all dirty bits are set */
3237 for (addr
= 0; addr
< last_ram_offset
; addr
+= TARGET_PAGE_SIZE
) {
3238 if (!cpu_physical_memory_get_dirty(addr
, MIGRATION_DIRTY_FLAG
))
3239 cpu_physical_memory_set_dirty(addr
);
3242 /* Enable dirty memory tracking */
3243 cpu_physical_memory_set_dirty_tracking(1);
3245 qemu_put_be64(f
, last_ram_offset
| RAM_SAVE_FLAG_MEM_SIZE
);
3248 while (!qemu_file_rate_limit(f
)) {
3251 ret
= ram_save_block(f
);
3252 bytes_transferred
+= ret
* TARGET_PAGE_SIZE
;
3253 if (ret
== 0) /* no more blocks */
3257 /* try transferring iterative blocks of memory */
3261 /* flush all remaining blocks regardless of rate limiting */
3262 while (ram_save_block(f
) != 0) {
3263 bytes_transferred
+= TARGET_PAGE_SIZE
;
3265 cpu_physical_memory_set_dirty_tracking(0);
3268 qemu_put_be64(f
, RAM_SAVE_FLAG_EOS
);
3270 return (stage
== 2) && (ram_save_remaining() < ram_save_threshold
);
3273 static int ram_load_dead(QEMUFile
*f
, void *opaque
)
3275 RamDecompressState s1
, *s
= &s1
;
3279 if (ram_decompress_open(s
, f
) < 0)
3281 for(i
= 0; i
< last_ram_offset
; i
+= BDRV_HASH_BLOCK_SIZE
) {
3282 if (ram_decompress_buf(s
, buf
, 1) < 0) {
3283 fprintf(stderr
, "Error while reading ram block header\n");
3287 if (ram_decompress_buf(s
, qemu_get_ram_ptr(i
),
3288 BDRV_HASH_BLOCK_SIZE
) < 0) {
3289 fprintf(stderr
, "Error while reading ram block address=0x%08" PRIx64
, (uint64_t)i
);
3294 printf("Error block header\n");
3298 ram_decompress_close(s
);
3303 static int ram_load(QEMUFile
*f
, void *opaque
, int version_id
)
3308 if (version_id
== 1)
3309 return ram_load_v1(f
, opaque
);
3311 if (version_id
== 2) {
3312 if (qemu_get_be32(f
) != last_ram_offset
)
3314 return ram_load_dead(f
, opaque
);
3317 if (version_id
!= 3)
3321 addr
= qemu_get_be64(f
);
3323 flags
= addr
& ~TARGET_PAGE_MASK
;
3324 addr
&= TARGET_PAGE_MASK
;
3326 if (flags
& RAM_SAVE_FLAG_MEM_SIZE
) {
3327 if (addr
!= last_ram_offset
)
3331 if (flags
& RAM_SAVE_FLAG_FULL
) {
3332 if (ram_load_dead(f
, opaque
) < 0)
3336 if (flags
& RAM_SAVE_FLAG_COMPRESS
) {
3337 uint8_t ch
= qemu_get_byte(f
);
3338 memset(qemu_get_ram_ptr(addr
), ch
, TARGET_PAGE_SIZE
);
3339 } else if (flags
& RAM_SAVE_FLAG_PAGE
)
3340 qemu_get_buffer(f
, qemu_get_ram_ptr(addr
), TARGET_PAGE_SIZE
);
3341 } while (!(flags
& RAM_SAVE_FLAG_EOS
));
3346 void qemu_service_io(void)
3348 qemu_notify_event();
3351 /***********************************************************/
3352 /* bottom halves (can be seen as timers which expire ASAP) */
3363 static QEMUBH
*first_bh
= NULL
;
3365 QEMUBH
*qemu_bh_new(QEMUBHFunc
*cb
, void *opaque
)
3368 bh
= qemu_mallocz(sizeof(QEMUBH
));
3370 bh
->opaque
= opaque
;
3371 bh
->next
= first_bh
;
3376 int qemu_bh_poll(void)
3382 for (bh
= first_bh
; bh
; bh
= bh
->next
) {
3383 if (!bh
->deleted
&& bh
->scheduled
) {
3392 /* remove deleted bhs */
3406 void qemu_bh_schedule_idle(QEMUBH
*bh
)
3414 void qemu_bh_schedule(QEMUBH
*bh
)
3420 /* stop the currently executing CPU to execute the BH ASAP */
3421 qemu_notify_event();
3424 void qemu_bh_cancel(QEMUBH
*bh
)
3429 void qemu_bh_delete(QEMUBH
*bh
)
3435 static void qemu_bh_update_timeout(int *timeout
)
3439 for (bh
= first_bh
; bh
; bh
= bh
->next
) {
3440 if (!bh
->deleted
&& bh
->scheduled
) {
3442 /* idle bottom halves will be polled at least
3444 *timeout
= MIN(10, *timeout
);
3446 /* non-idle bottom halves will be executed
3455 /***********************************************************/
3456 /* machine registration */
3458 static QEMUMachine
*first_machine
= NULL
;
3459 QEMUMachine
*current_machine
= NULL
;
3461 int qemu_register_machine(QEMUMachine
*m
)
3464 pm
= &first_machine
;
3472 static QEMUMachine
*find_machine(const char *name
)
3476 for(m
= first_machine
; m
!= NULL
; m
= m
->next
) {
3477 if (!strcmp(m
->name
, name
))
3483 static QEMUMachine
*find_default_machine(void)
3487 for(m
= first_machine
; m
!= NULL
; m
= m
->next
) {
3488 if (m
->is_default
) {
3495 /***********************************************************/
3496 /* main execution loop */
3498 static void gui_update(void *opaque
)
3500 uint64_t interval
= GUI_REFRESH_INTERVAL
;
3501 DisplayState
*ds
= opaque
;
3502 DisplayChangeListener
*dcl
= ds
->listeners
;
3506 while (dcl
!= NULL
) {
3507 if (dcl
->gui_timer_interval
&&
3508 dcl
->gui_timer_interval
< interval
)
3509 interval
= dcl
->gui_timer_interval
;
3512 qemu_mod_timer(ds
->gui_timer
, interval
+ qemu_get_clock(rt_clock
));
3515 static void nographic_update(void *opaque
)
3517 uint64_t interval
= GUI_REFRESH_INTERVAL
;
3519 qemu_mod_timer(nographic_timer
, interval
+ qemu_get_clock(rt_clock
));
3522 struct vm_change_state_entry
{
3523 VMChangeStateHandler
*cb
;
3525 LIST_ENTRY (vm_change_state_entry
) entries
;
3528 static LIST_HEAD(vm_change_state_head
, vm_change_state_entry
) vm_change_state_head
;
3530 VMChangeStateEntry
*qemu_add_vm_change_state_handler(VMChangeStateHandler
*cb
,
3533 VMChangeStateEntry
*e
;
3535 e
= qemu_mallocz(sizeof (*e
));
3539 LIST_INSERT_HEAD(&vm_change_state_head
, e
, entries
);
3543 void qemu_del_vm_change_state_handler(VMChangeStateEntry
*e
)
3545 LIST_REMOVE (e
, entries
);
3549 static void vm_state_notify(int running
, int reason
)
3551 VMChangeStateEntry
*e
;
3553 for (e
= vm_change_state_head
.lh_first
; e
; e
= e
->entries
.le_next
) {
3554 e
->cb(e
->opaque
, running
, reason
);
3558 static void resume_all_vcpus(void);
3559 static void pause_all_vcpus(void);
3566 vm_state_notify(1, 0);
3567 qemu_rearm_alarm_timer(alarm_timer
);
3572 /* reset/shutdown handler */
3574 typedef struct QEMUResetEntry
{
3575 QEMUResetHandler
*func
;
3577 struct QEMUResetEntry
*next
;
3580 static QEMUResetEntry
*first_reset_entry
;
3581 static int reset_requested
;
3582 static int shutdown_requested
;
3583 static int powerdown_requested
;
3584 static int debug_requested
;
3585 static int vmstop_requested
;
3587 int qemu_shutdown_requested(void)
3589 int r
= shutdown_requested
;
3590 shutdown_requested
= 0;
3594 int qemu_reset_requested(void)
3596 int r
= reset_requested
;
3597 reset_requested
= 0;
3601 int qemu_powerdown_requested(void)
3603 int r
= powerdown_requested
;
3604 powerdown_requested
= 0;
3608 static int qemu_debug_requested(void)
3610 int r
= debug_requested
;
3611 debug_requested
= 0;
3615 static int qemu_vmstop_requested(void)
3617 int r
= vmstop_requested
;
3618 vmstop_requested
= 0;
3622 static void do_vm_stop(int reason
)
3625 cpu_disable_ticks();
3628 vm_state_notify(0, reason
);
3632 void qemu_register_reset(QEMUResetHandler
*func
, void *opaque
)
3634 QEMUResetEntry
**pre
, *re
;
3636 pre
= &first_reset_entry
;
3637 while (*pre
!= NULL
)
3638 pre
= &(*pre
)->next
;
3639 re
= qemu_mallocz(sizeof(QEMUResetEntry
));
3641 re
->opaque
= opaque
;
3646 void qemu_system_reset(void)
3650 /* reset all devices */
3651 for(re
= first_reset_entry
; re
!= NULL
; re
= re
->next
) {
3652 re
->func(re
->opaque
);
3658 void qemu_system_reset_request(void)
3661 shutdown_requested
= 1;
3663 reset_requested
= 1;
3665 qemu_notify_event();
3668 void qemu_system_shutdown_request(void)
3670 shutdown_requested
= 1;
3671 qemu_notify_event();
3674 void qemu_system_powerdown_request(void)
3676 powerdown_requested
= 1;
3677 qemu_notify_event();
3680 #ifdef CONFIG_IOTHREAD
3681 static void qemu_system_vmstop_request(int reason
)
3683 vmstop_requested
= reason
;
3684 qemu_notify_event();
3689 static int io_thread_fd
= -1;
3691 static void qemu_event_increment(void)
3693 static const char byte
= 0;
3695 if (io_thread_fd
== -1)
3698 write(io_thread_fd
, &byte
, sizeof(byte
));
3701 static void qemu_event_read(void *opaque
)
3703 int fd
= (unsigned long)opaque
;
3706 /* Drain the notify pipe */
3709 len
= read(fd
, buffer
, sizeof(buffer
));
3710 } while ((len
== -1 && errno
== EINTR
) || len
> 0);
3713 static int qemu_event_init(void)
3722 err
= fcntl_setfl(fds
[0], O_NONBLOCK
);
3726 err
= fcntl_setfl(fds
[1], O_NONBLOCK
);
3730 qemu_set_fd_handler2(fds
[0], NULL
, qemu_event_read
, NULL
,
3731 (void *)(unsigned long)fds
[0]);
3733 io_thread_fd
= fds
[1];
3742 HANDLE qemu_event_handle
;
3744 static void dummy_event_handler(void *opaque
)
3748 static int qemu_event_init(void)
3750 qemu_event_handle
= CreateEvent(NULL
, FALSE
, FALSE
, NULL
);
3751 if (!qemu_event_handle
) {
3752 perror("Failed CreateEvent");
3755 qemu_add_wait_object(qemu_event_handle
, dummy_event_handler
, NULL
);
3759 static void qemu_event_increment(void)
3761 SetEvent(qemu_event_handle
);
3765 static int cpu_can_run(CPUState
*env
)
3774 #ifndef CONFIG_IOTHREAD
3775 static int qemu_init_main_loop(void)
3777 return qemu_event_init();
3780 void qemu_init_vcpu(void *_env
)
3782 CPUState
*env
= _env
;
3789 int qemu_cpu_self(void *env
)
3794 static void resume_all_vcpus(void)
3798 static void pause_all_vcpus(void)
3802 void qemu_cpu_kick(void *env
)
3807 void qemu_notify_event(void)
3809 CPUState
*env
= cpu_single_env
;
3814 if (env
->kqemu_enabled
)
3815 kqemu_cpu_interrupt(env
);
3820 #define qemu_mutex_lock_iothread() do { } while (0)
3821 #define qemu_mutex_unlock_iothread() do { } while (0)
3823 void vm_stop(int reason
)
3828 #else /* CONFIG_IOTHREAD */
3830 #include "qemu-thread.h"
3832 QemuMutex qemu_global_mutex
;
3833 static QemuMutex qemu_fair_mutex
;
3835 static QemuThread io_thread
;
3837 static QemuThread
*tcg_cpu_thread
;
3838 static QemuCond
*tcg_halt_cond
;
3840 static int qemu_system_ready
;
3842 static QemuCond qemu_cpu_cond
;
3844 static QemuCond qemu_system_cond
;
3845 static QemuCond qemu_pause_cond
;
3847 static void block_io_signals(void);
3848 static void unblock_io_signals(void);
3849 static int tcg_has_work(void);
3851 static int qemu_init_main_loop(void)
3855 ret
= qemu_event_init();
3859 qemu_cond_init(&qemu_pause_cond
);
3860 qemu_mutex_init(&qemu_fair_mutex
);
3861 qemu_mutex_init(&qemu_global_mutex
);
3862 qemu_mutex_lock(&qemu_global_mutex
);
3864 unblock_io_signals();
3865 qemu_thread_self(&io_thread
);
3870 static void qemu_wait_io_event(CPUState
*env
)
3872 while (!tcg_has_work())
3873 qemu_cond_timedwait(env
->halt_cond
, &qemu_global_mutex
, 1000);
3875 qemu_mutex_unlock(&qemu_global_mutex
);
3878 * Users of qemu_global_mutex can be starved, having no chance
3879 * to acquire it since this path will get to it first.
3880 * So use another lock to provide fairness.
3882 qemu_mutex_lock(&qemu_fair_mutex
);
3883 qemu_mutex_unlock(&qemu_fair_mutex
);
3885 qemu_mutex_lock(&qemu_global_mutex
);
3889 qemu_cond_signal(&qemu_pause_cond
);
3893 static int qemu_cpu_exec(CPUState
*env
);
3895 static void *kvm_cpu_thread_fn(void *arg
)
3897 CPUState
*env
= arg
;
3900 qemu_thread_self(env
->thread
);
3902 /* signal CPU creation */
3903 qemu_mutex_lock(&qemu_global_mutex
);
3905 qemu_cond_signal(&qemu_cpu_cond
);
3907 /* and wait for machine initialization */
3908 while (!qemu_system_ready
)
3909 qemu_cond_timedwait(&qemu_system_cond
, &qemu_global_mutex
, 100);
3912 if (cpu_can_run(env
))
3914 qemu_wait_io_event(env
);
3920 static void tcg_cpu_exec(void);
3922 static void *tcg_cpu_thread_fn(void *arg
)
3924 CPUState
*env
= arg
;
3927 qemu_thread_self(env
->thread
);
3929 /* signal CPU creation */
3930 qemu_mutex_lock(&qemu_global_mutex
);
3931 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
3933 qemu_cond_signal(&qemu_cpu_cond
);
3935 /* and wait for machine initialization */
3936 while (!qemu_system_ready
)
3937 qemu_cond_timedwait(&qemu_system_cond
, &qemu_global_mutex
, 100);
3941 qemu_wait_io_event(cur_cpu
);
3947 void qemu_cpu_kick(void *_env
)
3949 CPUState
*env
= _env
;
3950 qemu_cond_broadcast(env
->halt_cond
);
3952 qemu_thread_signal(env
->thread
, SIGUSR1
);
3955 int qemu_cpu_self(void *env
)
3957 return (cpu_single_env
!= NULL
);
3960 static void cpu_signal(int sig
)
3963 cpu_exit(cpu_single_env
);
3966 static void block_io_signals(void)
3969 struct sigaction sigact
;
3972 sigaddset(&set
, SIGUSR2
);
3973 sigaddset(&set
, SIGIO
);
3974 sigaddset(&set
, SIGALRM
);
3975 pthread_sigmask(SIG_BLOCK
, &set
, NULL
);
3978 sigaddset(&set
, SIGUSR1
);
3979 pthread_sigmask(SIG_UNBLOCK
, &set
, NULL
);
3981 memset(&sigact
, 0, sizeof(sigact
));
3982 sigact
.sa_handler
= cpu_signal
;
3983 sigaction(SIGUSR1
, &sigact
, NULL
);
3986 static void unblock_io_signals(void)
3991 sigaddset(&set
, SIGUSR2
);
3992 sigaddset(&set
, SIGIO
);
3993 sigaddset(&set
, SIGALRM
);
3994 pthread_sigmask(SIG_UNBLOCK
, &set
, NULL
);
3997 sigaddset(&set
, SIGUSR1
);
3998 pthread_sigmask(SIG_BLOCK
, &set
, NULL
);
4001 static void qemu_signal_lock(unsigned int msecs
)
4003 qemu_mutex_lock(&qemu_fair_mutex
);
4005 while (qemu_mutex_trylock(&qemu_global_mutex
)) {
4006 qemu_thread_signal(tcg_cpu_thread
, SIGUSR1
);
4007 if (!qemu_mutex_timedlock(&qemu_global_mutex
, msecs
))
4010 qemu_mutex_unlock(&qemu_fair_mutex
);
4013 static void qemu_mutex_lock_iothread(void)
4015 if (kvm_enabled()) {
4016 qemu_mutex_lock(&qemu_fair_mutex
);
4017 qemu_mutex_lock(&qemu_global_mutex
);
4018 qemu_mutex_unlock(&qemu_fair_mutex
);
4020 qemu_signal_lock(100);
4023 static void qemu_mutex_unlock_iothread(void)
4025 qemu_mutex_unlock(&qemu_global_mutex
);
4028 static int all_vcpus_paused(void)
4030 CPUState
*penv
= first_cpu
;
4035 penv
= (CPUState
*)penv
->next_cpu
;
4041 static void pause_all_vcpus(void)
4043 CPUState
*penv
= first_cpu
;
4047 qemu_thread_signal(penv
->thread
, SIGUSR1
);
4048 qemu_cpu_kick(penv
);
4049 penv
= (CPUState
*)penv
->next_cpu
;
4052 while (!all_vcpus_paused()) {
4053 qemu_cond_timedwait(&qemu_pause_cond
, &qemu_global_mutex
, 100);
4056 qemu_thread_signal(penv
->thread
, SIGUSR1
);
4057 penv
= (CPUState
*)penv
->next_cpu
;
4062 static void resume_all_vcpus(void)
4064 CPUState
*penv
= first_cpu
;
4069 qemu_thread_signal(penv
->thread
, SIGUSR1
);
4070 qemu_cpu_kick(penv
);
4071 penv
= (CPUState
*)penv
->next_cpu
;
4075 static void tcg_init_vcpu(void *_env
)
4077 CPUState
*env
= _env
;
4078 /* share a single thread for all cpus with TCG */
4079 if (!tcg_cpu_thread
) {
4080 env
->thread
= qemu_mallocz(sizeof(QemuThread
));
4081 env
->halt_cond
= qemu_mallocz(sizeof(QemuCond
));
4082 qemu_cond_init(env
->halt_cond
);
4083 qemu_thread_create(env
->thread
, tcg_cpu_thread_fn
, env
);
4084 while (env
->created
== 0)
4085 qemu_cond_timedwait(&qemu_cpu_cond
, &qemu_global_mutex
, 100);
4086 tcg_cpu_thread
= env
->thread
;
4087 tcg_halt_cond
= env
->halt_cond
;
4089 env
->thread
= tcg_cpu_thread
;
4090 env
->halt_cond
= tcg_halt_cond
;
4094 static void kvm_start_vcpu(CPUState
*env
)
4097 env
->thread
= qemu_mallocz(sizeof(QemuThread
));
4098 env
->halt_cond
= qemu_mallocz(sizeof(QemuCond
));
4099 qemu_cond_init(env
->halt_cond
);
4100 qemu_thread_create(env
->thread
, kvm_cpu_thread_fn
, env
);
4101 while (env
->created
== 0)
4102 qemu_cond_timedwait(&qemu_cpu_cond
, &qemu_global_mutex
, 100);
4105 void qemu_init_vcpu(void *_env
)
4107 CPUState
*env
= _env
;
4110 kvm_start_vcpu(env
);
4115 void qemu_notify_event(void)
4117 qemu_event_increment();
4120 void vm_stop(int reason
)
4123 qemu_thread_self(&me
);
4125 if (!qemu_thread_equal(&me
, &io_thread
)) {
4126 qemu_system_vmstop_request(reason
);
4128 * FIXME: should not return to device code in case
4129 * vm_stop() has been requested.
4131 if (cpu_single_env
) {
4132 cpu_exit(cpu_single_env
);
4133 cpu_single_env
->stop
= 1;
4144 static void host_main_loop_wait(int *timeout
)
4150 /* XXX: need to suppress polling by better using win32 events */
4152 for(pe
= first_polling_entry
; pe
!= NULL
; pe
= pe
->next
) {
4153 ret
|= pe
->func(pe
->opaque
);
4157 WaitObjects
*w
= &wait_objects
;
4159 ret
= WaitForMultipleObjects(w
->num
, w
->events
, FALSE
, *timeout
);
4160 if (WAIT_OBJECT_0
+ 0 <= ret
&& ret
<= WAIT_OBJECT_0
+ w
->num
- 1) {
4161 if (w
->func
[ret
- WAIT_OBJECT_0
])
4162 w
->func
[ret
- WAIT_OBJECT_0
](w
->opaque
[ret
- WAIT_OBJECT_0
]);
4164 /* Check for additional signaled events */
4165 for(i
= (ret
- WAIT_OBJECT_0
+ 1); i
< w
->num
; i
++) {
4167 /* Check if event is signaled */
4168 ret2
= WaitForSingleObject(w
->events
[i
], 0);
4169 if(ret2
== WAIT_OBJECT_0
) {
4171 w
->func
[i
](w
->opaque
[i
]);
4172 } else if (ret2
== WAIT_TIMEOUT
) {
4174 err
= GetLastError();
4175 fprintf(stderr
, "WaitForSingleObject error %d %d\n", i
, err
);
4178 } else if (ret
== WAIT_TIMEOUT
) {
4180 err
= GetLastError();
4181 fprintf(stderr
, "WaitForMultipleObjects error %d %d\n", ret
, err
);
4188 static void host_main_loop_wait(int *timeout
)
4193 void main_loop_wait(int timeout
)
4195 IOHandlerRecord
*ioh
;
4196 fd_set rfds
, wfds
, xfds
;
4200 qemu_bh_update_timeout(&timeout
);
4202 host_main_loop_wait(&timeout
);
4204 /* poll any events */
4205 /* XXX: separate device handlers from system ones */
4210 for(ioh
= first_io_handler
; ioh
!= NULL
; ioh
= ioh
->next
) {
4214 (!ioh
->fd_read_poll
||
4215 ioh
->fd_read_poll(ioh
->opaque
) != 0)) {
4216 FD_SET(ioh
->fd
, &rfds
);
4220 if (ioh
->fd_write
) {
4221 FD_SET(ioh
->fd
, &wfds
);
4227 tv
.tv_sec
= timeout
/ 1000;
4228 tv
.tv_usec
= (timeout
% 1000) * 1000;
4230 #if defined(CONFIG_SLIRP)
4231 if (slirp_is_inited()) {
4232 slirp_select_fill(&nfds
, &rfds
, &wfds
, &xfds
);
4235 qemu_mutex_unlock_iothread();
4236 ret
= select(nfds
+ 1, &rfds
, &wfds
, &xfds
, &tv
);
4237 qemu_mutex_lock_iothread();
4239 IOHandlerRecord
**pioh
;
4241 for(ioh
= first_io_handler
; ioh
!= NULL
; ioh
= ioh
->next
) {
4242 if (!ioh
->deleted
&& ioh
->fd_read
&& FD_ISSET(ioh
->fd
, &rfds
)) {
4243 ioh
->fd_read(ioh
->opaque
);
4245 if (!ioh
->deleted
&& ioh
->fd_write
&& FD_ISSET(ioh
->fd
, &wfds
)) {
4246 ioh
->fd_write(ioh
->opaque
);
4250 /* remove deleted IO handlers */
4251 pioh
= &first_io_handler
;
4261 #if defined(CONFIG_SLIRP)
4262 if (slirp_is_inited()) {
4268 slirp_select_poll(&rfds
, &wfds
, &xfds
);
4272 /* rearm timer, if not periodic */
4273 if (alarm_timer
->flags
& ALARM_FLAG_EXPIRED
) {
4274 alarm_timer
->flags
&= ~ALARM_FLAG_EXPIRED
;
4275 qemu_rearm_alarm_timer(alarm_timer
);
4278 /* vm time timers */
4280 if (!cur_cpu
|| likely(!(cur_cpu
->singlestep_enabled
& SSTEP_NOTIMER
)))
4281 qemu_run_timers(&active_timers
[QEMU_TIMER_VIRTUAL
],
4282 qemu_get_clock(vm_clock
));
4285 /* real time timers */
4286 qemu_run_timers(&active_timers
[QEMU_TIMER_REALTIME
],
4287 qemu_get_clock(rt_clock
));
4289 /* Check bottom-halves last in case any of the earlier events triggered
4295 static int qemu_cpu_exec(CPUState
*env
)
4298 #ifdef CONFIG_PROFILER
4302 #ifdef CONFIG_PROFILER
4303 ti
= profile_getclock();
4308 qemu_icount
-= (env
->icount_decr
.u16
.low
+ env
->icount_extra
);
4309 env
->icount_decr
.u16
.low
= 0;
4310 env
->icount_extra
= 0;
4311 count
= qemu_next_deadline();
4312 count
= (count
+ (1 << icount_time_shift
) - 1)
4313 >> icount_time_shift
;
4314 qemu_icount
+= count
;
4315 decr
= (count
> 0xffff) ? 0xffff : count
;
4317 env
->icount_decr
.u16
.low
= decr
;
4318 env
->icount_extra
= count
;
4320 ret
= cpu_exec(env
);
4321 #ifdef CONFIG_PROFILER
4322 qemu_time
+= profile_getclock() - ti
;
4325 /* Fold pending instructions back into the
4326 instruction counter, and clear the interrupt flag. */
4327 qemu_icount
-= (env
->icount_decr
.u16
.low
4328 + env
->icount_extra
);
4329 env
->icount_decr
.u32
= 0;
4330 env
->icount_extra
= 0;
4335 static void tcg_cpu_exec(void)
4339 if (next_cpu
== NULL
)
4340 next_cpu
= first_cpu
;
4341 for (; next_cpu
!= NULL
; next_cpu
= next_cpu
->next_cpu
) {
4342 CPUState
*env
= cur_cpu
= next_cpu
;
4346 if (timer_alarm_pending
) {
4347 timer_alarm_pending
= 0;
4350 if (cpu_can_run(env
))
4351 ret
= qemu_cpu_exec(env
);
4352 if (ret
== EXCP_DEBUG
) {
4353 gdb_set_stop_cpu(env
);
4354 debug_requested
= 1;
4360 static int cpu_has_work(CPUState
*env
)
4368 if (qemu_cpu_has_work(env
))
4373 static int tcg_has_work(void)
4377 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
4378 if (cpu_has_work(env
))
4383 static int qemu_calculate_timeout(void)
4389 else if (tcg_has_work())
4391 else if (!use_icount
)
4394 /* XXX: use timeout computed from timers */
4397 /* Advance virtual time to the next event. */
4398 if (use_icount
== 1) {
4399 /* When not using an adaptive execution frequency
4400 we tend to get badly out of sync with real time,
4401 so just delay for a reasonable amount of time. */
4404 delta
= cpu_get_icount() - cpu_get_clock();
4407 /* If virtual time is ahead of real time then just
4409 timeout
= (delta
/ 1000000) + 1;
4411 /* Wait for either IO to occur or the next
4413 add
= qemu_next_deadline();
4414 /* We advance the timer before checking for IO.
4415 Limit the amount we advance so that early IO
4416 activity won't get the guest too far ahead. */
4420 add
= (add
+ (1 << icount_time_shift
) - 1)
4421 >> icount_time_shift
;
4423 timeout
= delta
/ 1000000;
4432 static int vm_can_run(void)
4434 if (powerdown_requested
)
4436 if (reset_requested
)
4438 if (shutdown_requested
)
4440 if (debug_requested
)
4445 static void main_loop(void)
4449 #ifdef CONFIG_IOTHREAD
4450 qemu_system_ready
= 1;
4451 qemu_cond_broadcast(&qemu_system_cond
);
4456 #ifdef CONFIG_PROFILER
4459 #ifndef CONFIG_IOTHREAD
4462 #ifdef CONFIG_PROFILER
4463 ti
= profile_getclock();
4465 #ifdef CONFIG_IOTHREAD
4466 main_loop_wait(1000);
4468 main_loop_wait(qemu_calculate_timeout());
4470 #ifdef CONFIG_PROFILER
4471 dev_time
+= profile_getclock() - ti
;
4473 } while (vm_can_run());
4475 if (qemu_debug_requested())
4476 vm_stop(EXCP_DEBUG
);
4477 if (qemu_shutdown_requested()) {
4484 if (qemu_reset_requested()) {
4486 qemu_system_reset();
4489 if (qemu_powerdown_requested())
4490 qemu_system_powerdown();
4491 if ((r
= qemu_vmstop_requested()))
4497 static void version(void)
4499 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION
", Copyright (c) 2003-2008 Fabrice Bellard\n");
4502 static void help(int exitcode
)
4505 printf("usage: %s [options] [disk_image]\n"
4507 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4509 #define DEF(option, opt_arg, opt_enum, opt_help) \
4511 #define DEFHEADING(text) stringify(text) "\n"
4512 #include "qemu-options.h"
4517 "During emulation, the following keys are useful:\n"
4518 "ctrl-alt-f toggle full screen\n"
4519 "ctrl-alt-n switch to virtual console 'n'\n"
4520 "ctrl-alt toggle mouse and keyboard grab\n"
4522 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4527 DEFAULT_NETWORK_SCRIPT
,
4528 DEFAULT_NETWORK_DOWN_SCRIPT
,
4530 DEFAULT_GDBSTUB_PORT
,
4535 #define HAS_ARG 0x0001
4538 #define DEF(option, opt_arg, opt_enum, opt_help) \
4540 #define DEFHEADING(text)
4541 #include "qemu-options.h"
4547 typedef struct QEMUOption
{
4553 static const QEMUOption qemu_options
[] = {
4554 { "h", 0, QEMU_OPTION_h
},
4555 #define DEF(option, opt_arg, opt_enum, opt_help) \
4556 { option, opt_arg, opt_enum },
4557 #define DEFHEADING(text)
4558 #include "qemu-options.h"
4566 struct soundhw soundhw
[] = {
4567 #ifdef HAS_AUDIO_CHOICE
4568 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4574 { .init_isa
= pcspk_audio_init
}
4581 "Creative Sound Blaster 16",
4584 { .init_isa
= SB16_init
}
4588 #ifdef CONFIG_CS4231A
4594 { .init_isa
= cs4231a_init
}
4602 "Yamaha YMF262 (OPL3)",
4604 "Yamaha YM3812 (OPL2)",
4608 { .init_isa
= Adlib_init
}
4615 "Gravis Ultrasound GF1",
4618 { .init_isa
= GUS_init
}
4625 "Intel 82801AA AC97 Audio",
4628 { .init_pci
= ac97_init
}
4632 #ifdef CONFIG_ES1370
4635 "ENSONIQ AudioPCI ES1370",
4638 { .init_pci
= es1370_init
}
4642 #endif /* HAS_AUDIO_CHOICE */
4644 { NULL
, NULL
, 0, 0, { NULL
} }
4647 static void select_soundhw (const char *optarg
)
4651 if (*optarg
== '?') {
4654 printf ("Valid sound card names (comma separated):\n");
4655 for (c
= soundhw
; c
->name
; ++c
) {
4656 printf ("%-11s %s\n", c
->name
, c
->descr
);
4658 printf ("\n-soundhw all will enable all of the above\n");
4659 exit (*optarg
!= '?');
4667 if (!strcmp (optarg
, "all")) {
4668 for (c
= soundhw
; c
->name
; ++c
) {
4676 e
= strchr (p
, ',');
4677 l
= !e
? strlen (p
) : (size_t) (e
- p
);
4679 for (c
= soundhw
; c
->name
; ++c
) {
4680 if (!strncmp (c
->name
, p
, l
)) {
4689 "Unknown sound card name (too big to show)\n");
4692 fprintf (stderr
, "Unknown sound card name `%.*s'\n",
4697 p
+= l
+ (e
!= NULL
);
4701 goto show_valid_cards
;
4706 static void select_vgahw (const char *p
)
4710 cirrus_vga_enabled
= 0;
4711 std_vga_enabled
= 0;
4714 if (strstart(p
, "std", &opts
)) {
4715 std_vga_enabled
= 1;
4716 } else if (strstart(p
, "cirrus", &opts
)) {
4717 cirrus_vga_enabled
= 1;
4718 } else if (strstart(p
, "vmware", &opts
)) {
4720 } else if (strstart(p
, "xenfb", &opts
)) {
4722 } else if (!strstart(p
, "none", &opts
)) {
4724 fprintf(stderr
, "Unknown vga type: %s\n", p
);
4728 const char *nextopt
;
4730 if (strstart(opts
, ",retrace=", &nextopt
)) {
4732 if (strstart(opts
, "dumb", &nextopt
))
4733 vga_retrace_method
= VGA_RETRACE_DUMB
;
4734 else if (strstart(opts
, "precise", &nextopt
))
4735 vga_retrace_method
= VGA_RETRACE_PRECISE
;
4736 else goto invalid_vga
;
4737 } else goto invalid_vga
;
4743 static BOOL WINAPI
qemu_ctrl_handler(DWORD type
)
4745 exit(STATUS_CONTROL_C_EXIT
);
4750 int qemu_uuid_parse(const char *str
, uint8_t *uuid
)
4754 if(strlen(str
) != 36)
4757 ret
= sscanf(str
, UUID_FMT
, &uuid
[0], &uuid
[1], &uuid
[2], &uuid
[3],
4758 &uuid
[4], &uuid
[5], &uuid
[6], &uuid
[7], &uuid
[8], &uuid
[9],
4759 &uuid
[10], &uuid
[11], &uuid
[12], &uuid
[13], &uuid
[14], &uuid
[15]);
4765 smbios_add_field(1, offsetof(struct smbios_type_1
, uuid
), 16, uuid
);
4771 #define MAX_NET_CLIENTS 32
4775 static void termsig_handler(int signal
)
4777 qemu_system_shutdown_request();
4780 static void termsig_setup(void)
4782 struct sigaction act
;
4784 memset(&act
, 0, sizeof(act
));
4785 act
.sa_handler
= termsig_handler
;
4786 sigaction(SIGINT
, &act
, NULL
);
4787 sigaction(SIGHUP
, &act
, NULL
);
4788 sigaction(SIGTERM
, &act
, NULL
);
4793 int main(int argc
, char **argv
, char **envp
)
4795 const char *gdbstub_dev
= NULL
;
4796 uint32_t boot_devices_bitmap
= 0;
4798 int snapshot
, linux_boot
, net_boot
;
4799 const char *initrd_filename
;
4800 const char *kernel_filename
, *kernel_cmdline
;
4801 const char *boot_devices
= "";
4803 DisplayChangeListener
*dcl
;
4804 int cyls
, heads
, secs
, translation
;
4805 const char *net_clients
[MAX_NET_CLIENTS
];
4807 const char *bt_opts
[MAX_BT_CMDLINE
];
4811 const char *r
, *optarg
;
4812 CharDriverState
*monitor_hd
= NULL
;
4813 const char *monitor_device
;
4814 const char *serial_devices
[MAX_SERIAL_PORTS
];
4815 int serial_device_index
;
4816 const char *parallel_devices
[MAX_PARALLEL_PORTS
];
4817 int parallel_device_index
;
4818 const char *virtio_consoles
[MAX_VIRTIO_CONSOLES
];
4819 int virtio_console_index
;
4820 const char *loadvm
= NULL
;
4821 QEMUMachine
*machine
;
4822 const char *cpu_model
;
4823 const char *usb_devices
[MAX_USB_CMDLINE
];
4824 int usb_devices_index
;
4829 const char *pid_file
= NULL
;
4830 const char *incoming
= NULL
;
4833 struct passwd
*pwd
= NULL
;
4834 const char *chroot_dir
= NULL
;
4835 const char *run_as
= NULL
;
4838 int show_vnc_port
= 0;
4840 qemu_cache_utils_init(envp
);
4842 LIST_INIT (&vm_change_state_head
);
4845 struct sigaction act
;
4846 sigfillset(&act
.sa_mask
);
4848 act
.sa_handler
= SIG_IGN
;
4849 sigaction(SIGPIPE
, &act
, NULL
);
4852 SetConsoleCtrlHandler(qemu_ctrl_handler
, TRUE
);
4853 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4854 QEMU to run on a single CPU */
4859 h
= GetCurrentProcess();
4860 if (GetProcessAffinityMask(h
, &mask
, &smask
)) {
4861 for(i
= 0; i
< 32; i
++) {
4862 if (mask
& (1 << i
))
4867 SetProcessAffinityMask(h
, mask
);
4873 module_call_init(MODULE_INIT_MACHINE
);
4874 machine
= find_default_machine();
4876 initrd_filename
= NULL
;
4879 kernel_filename
= NULL
;
4880 kernel_cmdline
= "";
4881 cyls
= heads
= secs
= 0;
4882 translation
= BIOS_ATA_TRANSLATION_AUTO
;
4883 monitor_device
= "vc:80Cx24C";
4885 serial_devices
[0] = "vc:80Cx24C";
4886 for(i
= 1; i
< MAX_SERIAL_PORTS
; i
++)
4887 serial_devices
[i
] = NULL
;
4888 serial_device_index
= 0;
4890 parallel_devices
[0] = "vc:80Cx24C";
4891 for(i
= 1; i
< MAX_PARALLEL_PORTS
; i
++)
4892 parallel_devices
[i
] = NULL
;
4893 parallel_device_index
= 0;
4895 for(i
= 0; i
< MAX_VIRTIO_CONSOLES
; i
++)
4896 virtio_consoles
[i
] = NULL
;
4897 virtio_console_index
= 0;
4899 for (i
= 0; i
< MAX_NODES
; i
++) {
4901 node_cpumask
[i
] = 0;
4904 usb_devices_index
= 0;
4918 register_watchdogs();
4926 hda_index
= drive_add(argv
[optind
++], HD_ALIAS
, 0);
4928 const QEMUOption
*popt
;
4931 /* Treat --foo the same as -foo. */
4934 popt
= qemu_options
;
4937 fprintf(stderr
, "%s: invalid option -- '%s'\n",
4941 if (!strcmp(popt
->name
, r
+ 1))
4945 if (popt
->flags
& HAS_ARG
) {
4946 if (optind
>= argc
) {
4947 fprintf(stderr
, "%s: option '%s' requires an argument\n",
4951 optarg
= argv
[optind
++];
4956 switch(popt
->index
) {
4958 machine
= find_machine(optarg
);
4961 printf("Supported machines are:\n");
4962 for(m
= first_machine
; m
!= NULL
; m
= m
->next
) {
4963 printf("%-10s %s%s\n",
4965 m
->is_default
? " (default)" : "");
4967 exit(*optarg
!= '?');
4970 case QEMU_OPTION_cpu
:
4971 /* hw initialization will check this */
4972 if (*optarg
== '?') {
4973 /* XXX: implement xxx_cpu_list for targets that still miss it */
4974 #if defined(cpu_list)
4975 cpu_list(stdout
, &fprintf
);
4982 case QEMU_OPTION_initrd
:
4983 initrd_filename
= optarg
;
4985 case QEMU_OPTION_hda
:
4987 hda_index
= drive_add(optarg
, HD_ALIAS
, 0);
4989 hda_index
= drive_add(optarg
, HD_ALIAS
4990 ",cyls=%d,heads=%d,secs=%d%s",
4991 0, cyls
, heads
, secs
,
4992 translation
== BIOS_ATA_TRANSLATION_LBA
?
4994 translation
== BIOS_ATA_TRANSLATION_NONE
?
4995 ",trans=none" : "");
4997 case QEMU_OPTION_hdb
:
4998 case QEMU_OPTION_hdc
:
4999 case QEMU_OPTION_hdd
:
5000 drive_add(optarg
, HD_ALIAS
, popt
->index
- QEMU_OPTION_hda
);
5002 case QEMU_OPTION_drive
:
5003 drive_add(NULL
, "%s", optarg
);
5005 case QEMU_OPTION_mtdblock
:
5006 drive_add(optarg
, MTD_ALIAS
);
5008 case QEMU_OPTION_sd
:
5009 drive_add(optarg
, SD_ALIAS
);
5011 case QEMU_OPTION_pflash
:
5012 drive_add(optarg
, PFLASH_ALIAS
);
5014 case QEMU_OPTION_snapshot
:
5017 case QEMU_OPTION_hdachs
:
5021 cyls
= strtol(p
, (char **)&p
, 0);
5022 if (cyls
< 1 || cyls
> 16383)
5027 heads
= strtol(p
, (char **)&p
, 0);
5028 if (heads
< 1 || heads
> 16)
5033 secs
= strtol(p
, (char **)&p
, 0);
5034 if (secs
< 1 || secs
> 63)
5038 if (!strcmp(p
, "none"))
5039 translation
= BIOS_ATA_TRANSLATION_NONE
;
5040 else if (!strcmp(p
, "lba"))
5041 translation
= BIOS_ATA_TRANSLATION_LBA
;
5042 else if (!strcmp(p
, "auto"))
5043 translation
= BIOS_ATA_TRANSLATION_AUTO
;
5046 } else if (*p
!= '\0') {
5048 fprintf(stderr
, "qemu: invalid physical CHS format\n");
5051 if (hda_index
!= -1)
5052 snprintf(drives_opt
[hda_index
].opt
,
5053 sizeof(drives_opt
[hda_index
].opt
),
5054 HD_ALIAS
",cyls=%d,heads=%d,secs=%d%s",
5055 0, cyls
, heads
, secs
,
5056 translation
== BIOS_ATA_TRANSLATION_LBA
?
5058 translation
== BIOS_ATA_TRANSLATION_NONE
?
5059 ",trans=none" : "");
5062 case QEMU_OPTION_numa
:
5063 if (nb_numa_nodes
>= MAX_NODES
) {
5064 fprintf(stderr
, "qemu: too many NUMA nodes\n");
5069 case QEMU_OPTION_nographic
:
5070 display_type
= DT_NOGRAPHIC
;
5072 #ifdef CONFIG_CURSES
5073 case QEMU_OPTION_curses
:
5074 display_type
= DT_CURSES
;
5077 case QEMU_OPTION_portrait
:
5080 case QEMU_OPTION_kernel
:
5081 kernel_filename
= optarg
;
5083 case QEMU_OPTION_append
:
5084 kernel_cmdline
= optarg
;
5086 case QEMU_OPTION_cdrom
:
5087 drive_add(optarg
, CDROM_ALIAS
);
5089 case QEMU_OPTION_boot
:
5090 boot_devices
= optarg
;
5091 /* We just do some generic consistency checks */
5093 /* Could easily be extended to 64 devices if needed */
5096 boot_devices_bitmap
= 0;
5097 for (p
= boot_devices
; *p
!= '\0'; p
++) {
5098 /* Allowed boot devices are:
5099 * a b : floppy disk drives
5100 * c ... f : IDE disk drives
5101 * g ... m : machine implementation dependant drives
5102 * n ... p : network devices
5103 * It's up to each machine implementation to check
5104 * if the given boot devices match the actual hardware
5105 * implementation and firmware features.
5107 if (*p
< 'a' || *p
> 'q') {
5108 fprintf(stderr
, "Invalid boot device '%c'\n", *p
);
5111 if (boot_devices_bitmap
& (1 << (*p
- 'a'))) {
5113 "Boot device '%c' was given twice\n",*p
);
5116 boot_devices_bitmap
|= 1 << (*p
- 'a');
5120 case QEMU_OPTION_fda
:
5121 case QEMU_OPTION_fdb
:
5122 drive_add(optarg
, FD_ALIAS
, popt
->index
- QEMU_OPTION_fda
);
5125 case QEMU_OPTION_no_fd_bootchk
:
5129 case QEMU_OPTION_net
:
5130 if (nb_net_clients
>= MAX_NET_CLIENTS
) {
5131 fprintf(stderr
, "qemu: too many network clients\n");
5134 net_clients
[nb_net_clients
] = optarg
;
5138 case QEMU_OPTION_tftp
:
5139 tftp_prefix
= optarg
;
5141 case QEMU_OPTION_bootp
:
5142 bootp_filename
= optarg
;
5145 case QEMU_OPTION_smb
:
5146 net_slirp_smb(optarg
);
5149 case QEMU_OPTION_redir
:
5150 net_slirp_redir(NULL
, optarg
);
5153 case QEMU_OPTION_bt
:
5154 if (nb_bt_opts
>= MAX_BT_CMDLINE
) {
5155 fprintf(stderr
, "qemu: too many bluetooth options\n");
5158 bt_opts
[nb_bt_opts
++] = optarg
;
5161 case QEMU_OPTION_audio_help
:
5165 case QEMU_OPTION_soundhw
:
5166 select_soundhw (optarg
);
5172 case QEMU_OPTION_version
:
5176 case QEMU_OPTION_m
: {
5180 value
= strtoul(optarg
, &ptr
, 10);
5182 case 0: case 'M': case 'm':
5189 fprintf(stderr
, "qemu: invalid ram size: %s\n", optarg
);
5193 /* On 32-bit hosts, QEMU is limited by virtual address space */
5194 if (value
> (2047 << 20)
5195 #ifndef CONFIG_KQEMU
5196 && HOST_LONG_BITS
== 32
5199 fprintf(stderr
, "qemu: at most 2047 MB RAM can be simulated\n");
5202 if (value
!= (uint64_t)(ram_addr_t
)value
) {
5203 fprintf(stderr
, "qemu: ram size too large\n");
5212 const CPULogItem
*item
;
5214 mask
= cpu_str_to_log_mask(optarg
);
5216 printf("Log items (comma separated):\n");
5217 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
5218 printf("%-10s %s\n", item
->name
, item
->help
);
5226 gdbstub_dev
= "tcp::" DEFAULT_GDBSTUB_PORT
;
5228 case QEMU_OPTION_gdb
:
5229 gdbstub_dev
= optarg
;
5234 case QEMU_OPTION_bios
:
5237 case QEMU_OPTION_singlestep
:
5245 keyboard_layout
= optarg
;
5248 case QEMU_OPTION_localtime
:
5251 case QEMU_OPTION_vga
:
5252 select_vgahw (optarg
);
5254 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5260 w
= strtol(p
, (char **)&p
, 10);
5263 fprintf(stderr
, "qemu: invalid resolution or depth\n");
5269 h
= strtol(p
, (char **)&p
, 10);
5274 depth
= strtol(p
, (char **)&p
, 10);
5275 if (depth
!= 8 && depth
!= 15 && depth
!= 16 &&
5276 depth
!= 24 && depth
!= 32)
5278 } else if (*p
== '\0') {
5279 depth
= graphic_depth
;
5286 graphic_depth
= depth
;
5290 case QEMU_OPTION_echr
:
5293 term_escape_char
= strtol(optarg
, &r
, 0);
5295 printf("Bad argument to echr\n");
5298 case QEMU_OPTION_monitor
:
5299 monitor_device
= optarg
;
5301 case QEMU_OPTION_serial
:
5302 if (serial_device_index
>= MAX_SERIAL_PORTS
) {
5303 fprintf(stderr
, "qemu: too many serial ports\n");
5306 serial_devices
[serial_device_index
] = optarg
;
5307 serial_device_index
++;
5309 case QEMU_OPTION_watchdog
:
5310 i
= select_watchdog(optarg
);
5312 exit (i
== 1 ? 1 : 0);
5314 case QEMU_OPTION_watchdog_action
:
5315 if (select_watchdog_action(optarg
) == -1) {
5316 fprintf(stderr
, "Unknown -watchdog-action parameter\n");
5320 case QEMU_OPTION_virtiocon
:
5321 if (virtio_console_index
>= MAX_VIRTIO_CONSOLES
) {
5322 fprintf(stderr
, "qemu: too many virtio consoles\n");
5325 virtio_consoles
[virtio_console_index
] = optarg
;
5326 virtio_console_index
++;
5328 case QEMU_OPTION_parallel
:
5329 if (parallel_device_index
>= MAX_PARALLEL_PORTS
) {
5330 fprintf(stderr
, "qemu: too many parallel ports\n");
5333 parallel_devices
[parallel_device_index
] = optarg
;
5334 parallel_device_index
++;
5336 case QEMU_OPTION_loadvm
:
5339 case QEMU_OPTION_full_screen
:
5343 case QEMU_OPTION_no_frame
:
5346 case QEMU_OPTION_alt_grab
:
5349 case QEMU_OPTION_no_quit
:
5352 case QEMU_OPTION_sdl
:
5353 display_type
= DT_SDL
;
5356 case QEMU_OPTION_pidfile
:
5360 case QEMU_OPTION_win2k_hack
:
5361 win2k_install_hack
= 1;
5363 case QEMU_OPTION_rtc_td_hack
:
5366 case QEMU_OPTION_acpitable
:
5367 if(acpi_table_add(optarg
) < 0) {
5368 fprintf(stderr
, "Wrong acpi table provided\n");
5372 case QEMU_OPTION_smbios
:
5373 if(smbios_entry_add(optarg
) < 0) {
5374 fprintf(stderr
, "Wrong smbios provided\n");
5380 case QEMU_OPTION_no_kqemu
:
5383 case QEMU_OPTION_kernel_kqemu
:
5388 case QEMU_OPTION_enable_kvm
:
5395 case QEMU_OPTION_usb
:
5398 case QEMU_OPTION_usbdevice
:
5400 if (usb_devices_index
>= MAX_USB_CMDLINE
) {
5401 fprintf(stderr
, "Too many USB devices\n");
5404 usb_devices
[usb_devices_index
] = optarg
;
5405 usb_devices_index
++;
5407 case QEMU_OPTION_smp
:
5408 smp_cpus
= atoi(optarg
);
5410 fprintf(stderr
, "Invalid number of CPUs\n");
5414 case QEMU_OPTION_vnc
:
5415 display_type
= DT_VNC
;
5416 vnc_display
= optarg
;
5419 case QEMU_OPTION_no_acpi
:
5422 case QEMU_OPTION_no_hpet
:
5426 case QEMU_OPTION_no_reboot
:
5429 case QEMU_OPTION_no_shutdown
:
5432 case QEMU_OPTION_show_cursor
:
5435 case QEMU_OPTION_uuid
:
5436 if(qemu_uuid_parse(optarg
, qemu_uuid
) < 0) {
5437 fprintf(stderr
, "Fail to parse UUID string."
5438 " Wrong format.\n");
5443 case QEMU_OPTION_daemonize
:
5447 case QEMU_OPTION_option_rom
:
5448 if (nb_option_roms
>= MAX_OPTION_ROMS
) {
5449 fprintf(stderr
, "Too many option ROMs\n");
5452 option_rom
[nb_option_roms
] = optarg
;
5455 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5456 case QEMU_OPTION_semihosting
:
5457 semihosting_enabled
= 1;
5460 case QEMU_OPTION_name
:
5463 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5464 case QEMU_OPTION_prom_env
:
5465 if (nb_prom_envs
>= MAX_PROM_ENVS
) {
5466 fprintf(stderr
, "Too many prom variables\n");
5469 prom_envs
[nb_prom_envs
] = optarg
;
5474 case QEMU_OPTION_old_param
:
5478 case QEMU_OPTION_clock
:
5479 configure_alarms(optarg
);
5481 case QEMU_OPTION_startdate
:
5484 time_t rtc_start_date
;
5485 if (!strcmp(optarg
, "now")) {
5486 rtc_date_offset
= -1;
5488 if (sscanf(optarg
, "%d-%d-%dT%d:%d:%d",
5496 } else if (sscanf(optarg
, "%d-%d-%d",
5499 &tm
.tm_mday
) == 3) {
5508 rtc_start_date
= mktimegm(&tm
);
5509 if (rtc_start_date
== -1) {
5511 fprintf(stderr
, "Invalid date format. Valid format are:\n"
5512 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5515 rtc_date_offset
= time(NULL
) - rtc_start_date
;
5519 case QEMU_OPTION_tb_size
:
5520 tb_size
= strtol(optarg
, NULL
, 0);
5524 case QEMU_OPTION_icount
:
5526 if (strcmp(optarg
, "auto") == 0) {
5527 icount_time_shift
= -1;
5529 icount_time_shift
= strtol(optarg
, NULL
, 0);
5532 case QEMU_OPTION_incoming
:
5536 case QEMU_OPTION_chroot
:
5537 chroot_dir
= optarg
;
5539 case QEMU_OPTION_runas
:
5544 case QEMU_OPTION_xen_domid
:
5545 xen_domid
= atoi(optarg
);
5547 case QEMU_OPTION_xen_create
:
5548 xen_mode
= XEN_CREATE
;
5550 case QEMU_OPTION_xen_attach
:
5551 xen_mode
= XEN_ATTACH
;
5558 #if defined(CONFIG_KVM) && defined(CONFIG_KQEMU)
5559 if (kvm_allowed
&& kqemu_allowed
) {
5561 "You can not enable both KVM and kqemu at the same time\n");
5566 machine
->max_cpus
= machine
->max_cpus
?: 1; /* Default to UP */
5567 if (smp_cpus
> machine
->max_cpus
) {
5568 fprintf(stderr
, "Number of SMP cpus requested (%d), exceeds max cpus "
5569 "supported by machine `%s' (%d)\n", smp_cpus
, machine
->name
,
5574 if (display_type
== DT_NOGRAPHIC
) {
5575 if (serial_device_index
== 0)
5576 serial_devices
[0] = "stdio";
5577 if (parallel_device_index
== 0)
5578 parallel_devices
[0] = "null";
5579 if (strncmp(monitor_device
, "vc", 2) == 0)
5580 monitor_device
= "stdio";
5587 if (pipe(fds
) == -1)
5598 len
= read(fds
[0], &status
, 1);
5599 if (len
== -1 && (errno
== EINTR
))
5604 else if (status
== 1) {
5605 fprintf(stderr
, "Could not acquire pidfile\n");
5622 signal(SIGTSTP
, SIG_IGN
);
5623 signal(SIGTTOU
, SIG_IGN
);
5624 signal(SIGTTIN
, SIG_IGN
);
5627 if (pid_file
&& qemu_create_pidfile(pid_file
) != 0) {
5630 write(fds
[1], &status
, 1);
5632 fprintf(stderr
, "Could not acquire pid file\n");
5641 if (qemu_init_main_loop()) {
5642 fprintf(stderr
, "qemu_init_main_loop failed\n");
5645 linux_boot
= (kernel_filename
!= NULL
);
5646 net_boot
= (boot_devices_bitmap
>> ('n' - 'a')) & 0xF;
5648 if (!linux_boot
&& *kernel_cmdline
!= '\0') {
5649 fprintf(stderr
, "-append only allowed with -kernel option\n");
5653 if (!linux_boot
&& initrd_filename
!= NULL
) {
5654 fprintf(stderr
, "-initrd only allowed with -kernel option\n");
5658 /* boot to floppy or the default cd if no hard disk defined yet */
5659 if (!boot_devices
[0]) {
5660 boot_devices
= "cad";
5662 setvbuf(stdout
, NULL
, _IOLBF
, 0);
5665 if (init_timer_alarm() < 0) {
5666 fprintf(stderr
, "could not initialize alarm timer\n");
5669 if (use_icount
&& icount_time_shift
< 0) {
5671 /* 125MIPS seems a reasonable initial guess at the guest speed.
5672 It will be corrected fairly quickly anyway. */
5673 icount_time_shift
= 3;
5674 init_icount_adjust();
5681 /* init network clients */
5682 if (nb_net_clients
== 0) {
5683 /* if no clients, we use a default config */
5684 net_clients
[nb_net_clients
++] = "nic";
5686 net_clients
[nb_net_clients
++] = "user";
5690 for(i
= 0;i
< nb_net_clients
; i
++) {
5691 if (net_client_parse(net_clients
[i
]) < 0)
5697 /* XXX: this should be moved in the PC machine instantiation code */
5698 if (net_boot
!= 0) {
5700 for (i
= 0; i
< nb_nics
&& i
< 4; i
++) {
5701 const char *model
= nd_table
[i
].model
;
5703 if (net_boot
& (1 << i
)) {
5706 snprintf(buf
, sizeof(buf
), "%s/pxe-%s.bin", bios_dir
, model
);
5707 if (get_image_size(buf
) > 0) {
5708 if (nb_option_roms
>= MAX_OPTION_ROMS
) {
5709 fprintf(stderr
, "Too many option ROMs\n");
5712 option_rom
[nb_option_roms
] = strdup(buf
);
5719 fprintf(stderr
, "No valid PXE rom found for network device\n");
5725 /* init the bluetooth world */
5726 for (i
= 0; i
< nb_bt_opts
; i
++)
5727 if (bt_parse(bt_opts
[i
]))
5730 /* init the memory */
5732 ram_size
= DEFAULT_RAM_SIZE
* 1024 * 1024;
5735 /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
5736 guest ram allocation. It needs to go away. */
5737 if (kqemu_allowed
) {
5738 kqemu_phys_ram_size
= ram_size
+ 8 * 1024 * 1024 + 4 * 1024 * 1024;
5739 kqemu_phys_ram_base
= qemu_vmalloc(kqemu_phys_ram_size
);
5740 if (!kqemu_phys_ram_base
) {
5741 fprintf(stderr
, "Could not allocate physical memory\n");
5747 /* init the dynamic translator */
5748 cpu_exec_init_all(tb_size
* 1024 * 1024);
5753 /* we always create the cdrom drive, even if no disk is there */
5755 if (nb_drives_opt
< MAX_DRIVES
)
5756 drive_add(NULL
, CDROM_ALIAS
);
5758 /* we always create at least one floppy */
5760 if (nb_drives_opt
< MAX_DRIVES
)
5761 drive_add(NULL
, FD_ALIAS
, 0);
5763 /* we always create one sd slot, even if no card is in it */
5765 if (nb_drives_opt
< MAX_DRIVES
)
5766 drive_add(NULL
, SD_ALIAS
);
5768 /* open the virtual block devices */
5770 for(i
= 0; i
< nb_drives_opt
; i
++)
5771 if (drive_init(&drives_opt
[i
], snapshot
, machine
) == -1)
5774 register_savevm("timer", 0, 2, timer_save
, timer_load
, NULL
);
5775 register_savevm_live("ram", 0, 3, ram_save_live
, NULL
, ram_load
, NULL
);
5778 /* must be after terminal init, SDL library changes signal handlers */
5782 /* Maintain compatibility with multiple stdio monitors */
5783 if (!strcmp(monitor_device
,"stdio")) {
5784 for (i
= 0; i
< MAX_SERIAL_PORTS
; i
++) {
5785 const char *devname
= serial_devices
[i
];
5786 if (devname
&& !strcmp(devname
,"mon:stdio")) {
5787 monitor_device
= NULL
;
5789 } else if (devname
&& !strcmp(devname
,"stdio")) {
5790 monitor_device
= NULL
;
5791 serial_devices
[i
] = "mon:stdio";
5797 if (nb_numa_nodes
> 0) {
5800 if (nb_numa_nodes
> smp_cpus
) {
5801 nb_numa_nodes
= smp_cpus
;
5804 /* If no memory size if given for any node, assume the default case
5805 * and distribute the available memory equally across all nodes
5807 for (i
= 0; i
< nb_numa_nodes
; i
++) {
5808 if (node_mem
[i
] != 0)
5811 if (i
== nb_numa_nodes
) {
5812 uint64_t usedmem
= 0;
5814 /* On Linux, the each node's border has to be 8MB aligned,
5815 * the final node gets the rest.
5817 for (i
= 0; i
< nb_numa_nodes
- 1; i
++) {
5818 node_mem
[i
] = (ram_size
/ nb_numa_nodes
) & ~((1 << 23UL) - 1);
5819 usedmem
+= node_mem
[i
];
5821 node_mem
[i
] = ram_size
- usedmem
;
5824 for (i
= 0; i
< nb_numa_nodes
; i
++) {
5825 if (node_cpumask
[i
] != 0)
5828 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5829 * must cope with this anyway, because there are BIOSes out there in
5830 * real machines which also use this scheme.
5832 if (i
== nb_numa_nodes
) {
5833 for (i
= 0; i
< smp_cpus
; i
++) {
5834 node_cpumask
[i
% nb_numa_nodes
] |= 1 << i
;
5839 if (kvm_enabled()) {
5842 ret
= kvm_init(smp_cpus
);
5844 fprintf(stderr
, "failed to initialize KVM\n");
5849 if (monitor_device
) {
5850 monitor_hd
= qemu_chr_open("monitor", monitor_device
, NULL
);
5852 fprintf(stderr
, "qemu: could not open monitor device '%s'\n", monitor_device
);
5857 for(i
= 0; i
< MAX_SERIAL_PORTS
; i
++) {
5858 const char *devname
= serial_devices
[i
];
5859 if (devname
&& strcmp(devname
, "none")) {
5861 snprintf(label
, sizeof(label
), "serial%d", i
);
5862 serial_hds
[i
] = qemu_chr_open(label
, devname
, NULL
);
5863 if (!serial_hds
[i
]) {
5864 fprintf(stderr
, "qemu: could not open serial device '%s'\n",
5871 for(i
= 0; i
< MAX_PARALLEL_PORTS
; i
++) {
5872 const char *devname
= parallel_devices
[i
];
5873 if (devname
&& strcmp(devname
, "none")) {
5875 snprintf(label
, sizeof(label
), "parallel%d", i
);
5876 parallel_hds
[i
] = qemu_chr_open(label
, devname
, NULL
);
5877 if (!parallel_hds
[i
]) {
5878 fprintf(stderr
, "qemu: could not open parallel device '%s'\n",
5885 for(i
= 0; i
< MAX_VIRTIO_CONSOLES
; i
++) {
5886 const char *devname
= virtio_consoles
[i
];
5887 if (devname
&& strcmp(devname
, "none")) {
5889 snprintf(label
, sizeof(label
), "virtcon%d", i
);
5890 virtcon_hds
[i
] = qemu_chr_open(label
, devname
, NULL
);
5891 if (!virtcon_hds
[i
]) {
5892 fprintf(stderr
, "qemu: could not open virtio console '%s'\n",
5899 module_call_init(MODULE_INIT_DEVICE
);
5901 machine
->init(ram_size
, boot_devices
,
5902 kernel_filename
, kernel_cmdline
, initrd_filename
, cpu_model
);
5905 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
5906 for (i
= 0; i
< nb_numa_nodes
; i
++) {
5907 if (node_cpumask
[i
] & (1 << env
->cpu_index
)) {
5913 current_machine
= machine
;
5915 /* Set KVM's vcpu state to qemu's initial CPUState. */
5916 if (kvm_enabled()) {
5919 ret
= kvm_sync_vcpus();
5921 fprintf(stderr
, "failed to initialize vcpus\n");
5926 /* init USB devices */
5928 for(i
= 0; i
< usb_devices_index
; i
++) {
5929 if (usb_device_add(usb_devices
[i
], 0) < 0) {
5930 fprintf(stderr
, "Warning: could not add USB device %s\n",
5937 dumb_display_init();
5938 /* just use the first displaystate for the moment */
5941 if (display_type
== DT_DEFAULT
) {
5942 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
5943 display_type
= DT_SDL
;
5945 display_type
= DT_VNC
;
5946 vnc_display
= "localhost:0,to=99";
5952 switch (display_type
) {
5955 #if defined(CONFIG_CURSES)
5957 curses_display_init(ds
, full_screen
);
5960 #if defined(CONFIG_SDL)
5962 sdl_display_init(ds
, full_screen
, no_frame
);
5964 #elif defined(CONFIG_COCOA)
5966 cocoa_display_init(ds
, full_screen
);
5970 vnc_display_init(ds
);
5971 if (vnc_display_open(ds
, vnc_display
) < 0)
5974 if (show_vnc_port
) {
5975 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds
));
5983 dcl
= ds
->listeners
;
5984 while (dcl
!= NULL
) {
5985 if (dcl
->dpy_refresh
!= NULL
) {
5986 ds
->gui_timer
= qemu_new_timer(rt_clock
, gui_update
, ds
);
5987 qemu_mod_timer(ds
->gui_timer
, qemu_get_clock(rt_clock
));
5992 if (display_type
== DT_NOGRAPHIC
|| display_type
== DT_VNC
) {
5993 nographic_timer
= qemu_new_timer(rt_clock
, nographic_update
, NULL
);
5994 qemu_mod_timer(nographic_timer
, qemu_get_clock(rt_clock
));
5997 text_consoles_set_display(display_state
);
5998 qemu_chr_initial_reset();
6000 if (monitor_device
&& monitor_hd
)
6001 monitor_init(monitor_hd
, MONITOR_USE_READLINE
| MONITOR_IS_DEFAULT
);
6003 for(i
= 0; i
< MAX_SERIAL_PORTS
; i
++) {
6004 const char *devname
= serial_devices
[i
];
6005 if (devname
&& strcmp(devname
, "none")) {
6007 snprintf(label
, sizeof(label
), "serial%d", i
);
6008 if (strstart(devname
, "vc", 0))
6009 qemu_chr_printf(serial_hds
[i
], "serial%d console\r\n", i
);
6013 for(i
= 0; i
< MAX_PARALLEL_PORTS
; i
++) {
6014 const char *devname
= parallel_devices
[i
];
6015 if (devname
&& strcmp(devname
, "none")) {
6017 snprintf(label
, sizeof(label
), "parallel%d", i
);
6018 if (strstart(devname
, "vc", 0))
6019 qemu_chr_printf(parallel_hds
[i
], "parallel%d console\r\n", i
);
6023 for(i
= 0; i
< MAX_VIRTIO_CONSOLES
; i
++) {
6024 const char *devname
= virtio_consoles
[i
];
6025 if (virtcon_hds
[i
] && devname
) {
6027 snprintf(label
, sizeof(label
), "virtcon%d", i
);
6028 if (strstart(devname
, "vc", 0))
6029 qemu_chr_printf(virtcon_hds
[i
], "virtio console%d\r\n", i
);
6033 if (gdbstub_dev
&& gdbserver_start(gdbstub_dev
) < 0) {
6034 fprintf(stderr
, "qemu: could not open gdbserver on device '%s'\n",
6040 do_loadvm(cur_mon
, loadvm
);
6043 autostart
= 0; /* fixme how to deal with -daemonize */
6044 qemu_start_incoming_migration(incoming
);
6056 len
= write(fds
[1], &status
, 1);
6057 if (len
== -1 && (errno
== EINTR
))
6064 TFR(fd
= open("/dev/null", O_RDWR
));
6070 pwd
= getpwnam(run_as
);
6072 fprintf(stderr
, "User \"%s\" doesn't exist\n", run_as
);
6078 if (chroot(chroot_dir
) < 0) {
6079 fprintf(stderr
, "chroot failed\n");
6086 if (setgid(pwd
->pw_gid
) < 0) {
6087 fprintf(stderr
, "Failed to setgid(%d)\n", pwd
->pw_gid
);
6090 if (setuid(pwd
->pw_uid
) < 0) {
6091 fprintf(stderr
, "Failed to setuid(%d)\n", pwd
->pw_uid
);
6094 if (setuid(0) != -1) {
6095 fprintf(stderr
, "Dropping privileges failed\n");