2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #if !defined(CONFIG_SOFTMMU)
35 #include <sys/ucontext.h>
38 int tb_invalidated_flag
;
41 //#define DEBUG_SIGNAL
43 void cpu_loop_exit(void)
45 /* NOTE: the register at this point must be saved by hand because
46 longjmp restore them */
48 longjmp(env
->jmp_env
, 1);
51 #if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K))
55 /* exit the current TB from a signal handler. The host registers are
56 restored in a state compatible with the CPU emulator
58 void cpu_resume_from_signal(CPUState
*env1
, void *puc
)
60 #if !defined(CONFIG_SOFTMMU)
61 struct ucontext
*uc
= puc
;
66 /* XXX: restore cpu registers saved in host registers */
68 #if !defined(CONFIG_SOFTMMU)
70 /* XXX: use siglongjmp ? */
71 sigprocmask(SIG_SETMASK
, &uc
->uc_sigmask
, NULL
);
74 longjmp(env
->jmp_env
, 1);
78 static TranslationBlock
*tb_find_slow(target_ulong pc
,
82 TranslationBlock
*tb
, **ptb1
;
85 target_ulong phys_pc
, phys_page1
, phys_page2
, virt_page2
;
90 tb_invalidated_flag
= 0;
92 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
94 /* find translated block using physical mappings */
95 phys_pc
= get_phys_addr_code(env
, pc
);
96 phys_page1
= phys_pc
& TARGET_PAGE_MASK
;
98 h
= tb_phys_hash_func(phys_pc
);
99 ptb1
= &tb_phys_hash
[h
];
105 tb
->page_addr
[0] == phys_page1
&&
106 tb
->cs_base
== cs_base
&&
107 tb
->flags
== flags
) {
108 /* check next page if needed */
109 if (tb
->page_addr
[1] != -1) {
110 virt_page2
= (pc
& TARGET_PAGE_MASK
) +
112 phys_page2
= get_phys_addr_code(env
, virt_page2
);
113 if (tb
->page_addr
[1] == phys_page2
)
119 ptb1
= &tb
->phys_hash_next
;
122 /* if no translated code available, then translate it now */
125 /* flush must be done */
127 /* cannot fail at this point */
129 /* don't forget to invalidate previous TB info */
130 tb_invalidated_flag
= 1;
132 tc_ptr
= code_gen_ptr
;
134 tb
->cs_base
= cs_base
;
136 cpu_gen_code(env
, tb
, CODE_GEN_MAX_SIZE
, &code_gen_size
);
137 code_gen_ptr
= (void *)(((unsigned long)code_gen_ptr
+ code_gen_size
+ CODE_GEN_ALIGN
- 1) & ~(CODE_GEN_ALIGN
- 1));
139 /* check next page if needed */
140 virt_page2
= (pc
+ tb
->size
- 1) & TARGET_PAGE_MASK
;
142 if ((pc
& TARGET_PAGE_MASK
) != virt_page2
) {
143 phys_page2
= get_phys_addr_code(env
, virt_page2
);
145 tb_link_phys(tb
, phys_pc
, phys_page2
);
148 /* we add the TB in the virtual pc hash table */
149 env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)] = tb
;
150 spin_unlock(&tb_lock
);
154 static inline TranslationBlock
*tb_find_fast(void)
156 TranslationBlock
*tb
;
157 target_ulong cs_base
, pc
;
160 /* we record a subset of the CPU state. It will
161 always be the same before a given translated block
163 #if defined(TARGET_I386)
165 flags
|= (env
->eflags
& (IOPL_MASK
| TF_MASK
| VM_MASK
));
166 cs_base
= env
->segs
[R_CS
].base
;
167 pc
= cs_base
+ env
->eip
;
168 #elif defined(TARGET_ARM)
169 flags
= env
->thumb
| (env
->vfp
.vec_len
<< 1)
170 | (env
->vfp
.vec_stride
<< 4);
171 if ((env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
)
173 if (env
->vfp
.xregs
[ARM_VFP_FPEXC
] & (1 << 30))
177 #elif defined(TARGET_SPARC)
178 #ifdef TARGET_SPARC64
179 // Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
180 flags
= (((env
->pstate
& PS_PEF
) >> 1) | ((env
->fprs
& FPRS_FEF
) << 2))
181 | (env
->pstate
& PS_PRIV
) | ((env
->lsu
& (DMMU_E
| IMMU_E
)) >> 2);
183 // FPU enable . MMU enabled . MMU no-fault . Supervisor
184 flags
= (env
->psref
<< 3) | ((env
->mmuregs
[0] & (MMU_E
| MMU_NF
)) << 1)
189 #elif defined(TARGET_PPC)
190 flags
= (msr_pr
<< MSR_PR
) | (msr_fp
<< MSR_FP
) |
191 (msr_se
<< MSR_SE
) | (msr_le
<< MSR_LE
);
194 #elif defined(TARGET_MIPS)
195 flags
= env
->hflags
& (MIPS_HFLAG_TMASK
| MIPS_HFLAG_BMASK
);
198 #elif defined(TARGET_M68K)
199 flags
= (env
->fpcr
& M68K_FPCR_PREC
) /* Bit 6 */
200 | (env
->sr
& SR_S
) /* Bit 13 */
201 | ((env
->macsr
>> 4) & 0xf); /* Bits 0-3 */
204 #elif defined(TARGET_SH4)
205 flags
= env
->sr
& (SR_MD
| SR_RB
);
206 cs_base
= 0; /* XXXXX */
208 #elif defined(TARGET_ALPHA)
213 #error unsupported CPU
215 tb
= env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)];
216 if (__builtin_expect(!tb
|| tb
->pc
!= pc
|| tb
->cs_base
!= cs_base
||
217 tb
->flags
!= flags
, 0)) {
218 tb
= tb_find_slow(pc
, cs_base
, flags
);
219 /* Note: we do it here to avoid a gcc bug on Mac OS X when
220 doing it in tb_find_slow */
221 if (tb_invalidated_flag
) {
222 /* as some TB could have been invalidated because
223 of memory exceptions while generating the code, we
224 must recompute the hash index here */
232 /* main execution loop */
234 int cpu_exec(CPUState
*env1
)
236 #define DECLARE_HOST_REGS 1
237 #include "hostregs_helper.h"
238 #if defined(TARGET_SPARC)
239 #if defined(reg_REGWPTR)
240 uint32_t *saved_regwptr
;
243 #if defined(__sparc__) && !defined(HOST_SOLARIS)
247 int ret
, interrupt_request
;
248 void (*gen_func
)(void);
249 TranslationBlock
*tb
;
252 if (cpu_halted(env1
) == EXCP_HALTED
)
255 cpu_single_env
= env1
;
257 /* first we save global registers */
258 #define SAVE_HOST_REGS 1
259 #include "hostregs_helper.h"
261 #if defined(__sparc__) && !defined(HOST_SOLARIS)
262 /* we also save i7 because longjmp may not restore it */
263 asm volatile ("mov %%i7, %0" : "=r" (saved_i7
));
267 #if defined(TARGET_I386)
268 /* put eflags in CPU temporary format */
269 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
270 DF
= 1 - (2 * ((env
->eflags
>> 10) & 1));
271 CC_OP
= CC_OP_EFLAGS
;
272 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
273 #elif defined(TARGET_SPARC)
274 #if defined(reg_REGWPTR)
275 saved_regwptr
= REGWPTR
;
277 #elif defined(TARGET_M68K)
278 env
->cc_op
= CC_OP_FLAGS
;
279 env
->cc_dest
= env
->sr
& 0xf;
280 env
->cc_x
= (env
->sr
>> 4) & 1;
281 #elif defined(TARGET_ALPHA)
282 #elif defined(TARGET_ARM)
283 #elif defined(TARGET_PPC)
284 #elif defined(TARGET_MIPS)
285 #elif defined(TARGET_SH4)
288 #error unsupported target CPU
290 env
->exception_index
= -1;
292 /* prepare setjmp context for exception handling */
294 if (setjmp(env
->jmp_env
) == 0) {
295 env
->current_tb
= NULL
;
296 /* if an exception is pending, we execute it here */
297 if (env
->exception_index
>= 0) {
298 if (env
->exception_index
>= EXCP_INTERRUPT
) {
299 /* exit request from the cpu execution loop */
300 ret
= env
->exception_index
;
302 } else if (env
->user_mode_only
) {
303 /* if user mode only, we simulate a fake exception
304 which will be handled outside the cpu execution
306 #if defined(TARGET_I386)
307 do_interrupt_user(env
->exception_index
,
308 env
->exception_is_int
,
310 env
->exception_next_eip
);
312 ret
= env
->exception_index
;
315 #if defined(TARGET_I386)
316 /* simulate a real cpu exception. On i386, it can
317 trigger new exceptions, but we do not handle
318 double or triple faults yet. */
319 do_interrupt(env
->exception_index
,
320 env
->exception_is_int
,
322 env
->exception_next_eip
, 0);
323 /* successfully delivered */
324 env
->old_exception
= -1;
325 #elif defined(TARGET_PPC)
327 #elif defined(TARGET_MIPS)
329 #elif defined(TARGET_SPARC)
330 do_interrupt(env
->exception_index
);
331 #elif defined(TARGET_ARM)
333 #elif defined(TARGET_SH4)
335 #elif defined(TARGET_ALPHA)
337 #elif defined(TARGET_M68K)
341 env
->exception_index
= -1;
344 if (kqemu_is_ok(env
) && env
->interrupt_request
== 0) {
346 env
->eflags
= env
->eflags
| cc_table
[CC_OP
].compute_all() | (DF
& DF_MASK
);
347 ret
= kqemu_cpu_exec(env
);
348 /* put eflags in CPU temporary format */
349 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
350 DF
= 1 - (2 * ((env
->eflags
>> 10) & 1));
351 CC_OP
= CC_OP_EFLAGS
;
352 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
355 longjmp(env
->jmp_env
, 1);
356 } else if (ret
== 2) {
357 /* softmmu execution needed */
359 if (env
->interrupt_request
!= 0) {
360 /* hardware interrupt will be executed just after */
362 /* otherwise, we restart */
363 longjmp(env
->jmp_env
, 1);
369 T0
= 0; /* force lookup of first TB */
371 #if defined(__sparc__) && !defined(HOST_SOLARIS)
372 /* g1 can be modified by some libc? functions */
375 interrupt_request
= env
->interrupt_request
;
376 if (__builtin_expect(interrupt_request
, 0)) {
377 if (interrupt_request
& CPU_INTERRUPT_DEBUG
) {
378 env
->interrupt_request
&= ~CPU_INTERRUPT_DEBUG
;
379 env
->exception_index
= EXCP_DEBUG
;
382 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
383 defined(TARGET_PPC) || defined(TARGET_ALPHA)
384 if (interrupt_request
& CPU_INTERRUPT_HALT
) {
385 env
->interrupt_request
&= ~CPU_INTERRUPT_HALT
;
387 env
->exception_index
= EXCP_HLT
;
391 #if defined(TARGET_I386)
392 if ((interrupt_request
& CPU_INTERRUPT_SMI
) &&
393 !(env
->hflags
& HF_SMM_MASK
)) {
394 env
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
396 #if defined(__sparc__) && !defined(HOST_SOLARIS)
401 } else if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
402 (env
->eflags
& IF_MASK
) &&
403 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
)) {
405 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
406 intno
= cpu_get_pic_interrupt(env
);
407 if (loglevel
& CPU_LOG_TB_IN_ASM
) {
408 fprintf(logfile
, "Servicing hardware INT=0x%02x\n", intno
);
410 do_interrupt(intno
, 0, 0, 0, 1);
411 /* ensure that no TB jump will be modified as
412 the program flow was changed */
413 #if defined(__sparc__) && !defined(HOST_SOLARIS)
419 #elif defined(TARGET_PPC)
421 if ((interrupt_request
& CPU_INTERRUPT_RESET
)) {
425 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
426 ppc_hw_interrupt(env
);
427 if (env
->pending_interrupts
== 0)
428 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
429 #if defined(__sparc__) && !defined(HOST_SOLARIS)
435 #elif defined(TARGET_MIPS)
436 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
437 (env
->CP0_Status
& env
->CP0_Cause
& CP0Ca_IP_mask
) &&
438 (env
->CP0_Status
& (1 << CP0St_IE
)) &&
439 !(env
->CP0_Status
& (1 << CP0St_EXL
)) &&
440 !(env
->CP0_Status
& (1 << CP0St_ERL
)) &&
441 !(env
->hflags
& MIPS_HFLAG_DM
)) {
443 env
->exception_index
= EXCP_EXT_INTERRUPT
;
446 #if defined(__sparc__) && !defined(HOST_SOLARIS)
452 #elif defined(TARGET_SPARC)
453 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
455 int pil
= env
->interrupt_index
& 15;
456 int type
= env
->interrupt_index
& 0xf0;
458 if (((type
== TT_EXTINT
) &&
459 (pil
== 15 || pil
> env
->psrpil
)) ||
461 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
462 do_interrupt(env
->interrupt_index
);
463 env
->interrupt_index
= 0;
464 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
467 #if defined(__sparc__) && !defined(HOST_SOLARIS)
473 } else if (interrupt_request
& CPU_INTERRUPT_TIMER
) {
474 //do_interrupt(0, 0, 0, 0, 0);
475 env
->interrupt_request
&= ~CPU_INTERRUPT_TIMER
;
477 #elif defined(TARGET_ARM)
478 if (interrupt_request
& CPU_INTERRUPT_FIQ
479 && !(env
->uncached_cpsr
& CPSR_F
)) {
480 env
->exception_index
= EXCP_FIQ
;
483 if (interrupt_request
& CPU_INTERRUPT_HARD
484 && !(env
->uncached_cpsr
& CPSR_I
)) {
485 env
->exception_index
= EXCP_IRQ
;
488 #elif defined(TARGET_SH4)
490 #elif defined(TARGET_ALPHA)
491 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
494 #elif defined(TARGET_M68K)
495 if (interrupt_request
& CPU_INTERRUPT_HARD
496 && ((env
->sr
& SR_I
) >> SR_I_SHIFT
)
497 < env
->pending_level
) {
498 /* Real hardware gets the interrupt vector via an
499 IACK cycle at this point. Current emulated
500 hardware doesn't rely on this, so we
501 provide/save the vector when the interrupt is
503 env
->exception_index
= env
->pending_vector
;
507 /* Don't use the cached interupt_request value,
508 do_interrupt may have updated the EXITTB flag. */
509 if (env
->interrupt_request
& CPU_INTERRUPT_EXITTB
) {
510 env
->interrupt_request
&= ~CPU_INTERRUPT_EXITTB
;
511 /* ensure that no TB jump will be modified as
512 the program flow was changed */
513 #if defined(__sparc__) && !defined(HOST_SOLARIS)
519 if (interrupt_request
& CPU_INTERRUPT_EXIT
) {
520 env
->interrupt_request
&= ~CPU_INTERRUPT_EXIT
;
521 env
->exception_index
= EXCP_INTERRUPT
;
526 if ((loglevel
& CPU_LOG_TB_CPU
)) {
527 /* restore flags in standard format */
529 #if defined(TARGET_I386)
530 env
->eflags
= env
->eflags
| cc_table
[CC_OP
].compute_all() | (DF
& DF_MASK
);
531 cpu_dump_state(env
, logfile
, fprintf
, X86_DUMP_CCOP
);
532 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
533 #elif defined(TARGET_ARM)
534 cpu_dump_state(env
, logfile
, fprintf
, 0);
535 #elif defined(TARGET_SPARC)
536 REGWPTR
= env
->regbase
+ (env
->cwp
* 16);
537 env
->regwptr
= REGWPTR
;
538 cpu_dump_state(env
, logfile
, fprintf
, 0);
539 #elif defined(TARGET_PPC)
540 cpu_dump_state(env
, logfile
, fprintf
, 0);
541 #elif defined(TARGET_M68K)
542 cpu_m68k_flush_flags(env
, env
->cc_op
);
543 env
->cc_op
= CC_OP_FLAGS
;
544 env
->sr
= (env
->sr
& 0xffe0)
545 | env
->cc_dest
| (env
->cc_x
<< 4);
546 cpu_dump_state(env
, logfile
, fprintf
, 0);
547 #elif defined(TARGET_MIPS)
548 cpu_dump_state(env
, logfile
, fprintf
, 0);
549 #elif defined(TARGET_SH4)
550 cpu_dump_state(env
, logfile
, fprintf
, 0);
551 #elif defined(TARGET_ALPHA)
552 cpu_dump_state(env
, logfile
, fprintf
, 0);
554 #error unsupported target CPU
560 if ((loglevel
& CPU_LOG_EXEC
)) {
561 fprintf(logfile
, "Trace 0x%08lx [" TARGET_FMT_lx
"] %s\n",
562 (long)tb
->tc_ptr
, tb
->pc
,
563 lookup_symbol(tb
->pc
));
566 #if defined(__sparc__) && !defined(HOST_SOLARIS)
569 /* see if we can patch the calling TB. When the TB
570 spans two pages, we cannot safely do a direct
575 (env
->kqemu_enabled
!= 2) &&
577 tb
->page_addr
[1] == -1
578 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
579 && (tb
->cflags
& CF_CODE_COPY
) ==
580 (((TranslationBlock
*)(T0
& ~3))->cflags
& CF_CODE_COPY
)
584 tb_add_jump((TranslationBlock
*)(long)(T0
& ~3), T0
& 3, tb
);
585 #if defined(USE_CODE_COPY)
586 /* propagates the FP use info */
587 ((TranslationBlock
*)(T0
& ~3))->cflags
|=
588 (tb
->cflags
& CF_FP_USED
);
590 spin_unlock(&tb_lock
);
594 env
->current_tb
= tb
;
595 /* execute the generated code */
596 gen_func
= (void *)tc_ptr
;
597 #if defined(__sparc__)
598 __asm__
__volatile__("call %0\n\t"
602 : "i0", "i1", "i2", "i3", "i4", "i5",
603 "o0", "o1", "o2", "o3", "o4", "o5",
604 "l0", "l1", "l2", "l3", "l4", "l5",
606 #elif defined(__arm__)
607 asm volatile ("mov pc, %0\n\t"
608 ".global exec_loop\n\t"
612 : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
613 #elif defined(TARGET_I386) && defined(USE_CODE_COPY)
615 if (!(tb
->cflags
& CF_CODE_COPY
)) {
616 if ((tb
->cflags
& CF_FP_USED
) && env
->native_fp_regs
) {
617 save_native_fp_state(env
);
621 if ((tb
->cflags
& CF_FP_USED
) && !env
->native_fp_regs
) {
622 restore_native_fp_state(env
);
624 /* we work with native eflags */
625 CC_SRC
= cc_table
[CC_OP
].compute_all();
626 CC_OP
= CC_OP_EFLAGS
;
627 asm(".globl exec_loop\n"
632 " fs movl %11, %%eax\n"
633 " andl $0x400, %%eax\n"
634 " fs orl %8, %%eax\n"
637 " fs movl %%esp, %12\n"
638 " fs movl %0, %%eax\n"
639 " fs movl %1, %%ecx\n"
640 " fs movl %2, %%edx\n"
641 " fs movl %3, %%ebx\n"
642 " fs movl %4, %%esp\n"
643 " fs movl %5, %%ebp\n"
644 " fs movl %6, %%esi\n"
645 " fs movl %7, %%edi\n"
648 " fs movl %%esp, %4\n"
649 " fs movl %12, %%esp\n"
650 " fs movl %%eax, %0\n"
651 " fs movl %%ecx, %1\n"
652 " fs movl %%edx, %2\n"
653 " fs movl %%ebx, %3\n"
654 " fs movl %%ebp, %5\n"
655 " fs movl %%esi, %6\n"
656 " fs movl %%edi, %7\n"
659 " movl %%eax, %%ecx\n"
660 " andl $0x400, %%ecx\n"
662 " andl $0x8d5, %%eax\n"
663 " fs movl %%eax, %8\n"
665 " subl %%ecx, %%eax\n"
666 " fs movl %%eax, %11\n"
667 " fs movl %9, %%ebx\n" /* get T0 value */
670 : "m" (*(uint8_t *)offsetof(CPUState
, regs
[0])),
671 "m" (*(uint8_t *)offsetof(CPUState
, regs
[1])),
672 "m" (*(uint8_t *)offsetof(CPUState
, regs
[2])),
673 "m" (*(uint8_t *)offsetof(CPUState
, regs
[3])),
674 "m" (*(uint8_t *)offsetof(CPUState
, regs
[4])),
675 "m" (*(uint8_t *)offsetof(CPUState
, regs
[5])),
676 "m" (*(uint8_t *)offsetof(CPUState
, regs
[6])),
677 "m" (*(uint8_t *)offsetof(CPUState
, regs
[7])),
678 "m" (*(uint8_t *)offsetof(CPUState
, cc_src
)),
679 "m" (*(uint8_t *)offsetof(CPUState
, tmp0
)),
681 "m" (*(uint8_t *)offsetof(CPUState
, df
)),
682 "m" (*(uint8_t *)offsetof(CPUState
, saved_esp
))
687 #elif defined(__ia64)
694 fp
.gp
= code_gen_buffer
+ 2 * (1 << 20);
695 (*(void (*)(void)) &fp
)();
699 env
->current_tb
= NULL
;
700 /* reset soft MMU for next block (it can currently
701 only be set by a memory fault) */
702 #if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
703 if (env
->hflags
& HF_SOFTMMU_MASK
) {
704 env
->hflags
&= ~HF_SOFTMMU_MASK
;
705 /* do not allow linking to another block */
709 #if defined(USE_KQEMU)
710 #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
711 if (kqemu_is_ok(env
) &&
712 (cpu_get_time_fast() - env
->last_io_time
) >= MIN_CYCLE_BEFORE_SWITCH
) {
723 #if defined(TARGET_I386)
724 #if defined(USE_CODE_COPY)
725 if (env
->native_fp_regs
) {
726 save_native_fp_state(env
);
729 /* restore flags in standard format */
730 env
->eflags
= env
->eflags
| cc_table
[CC_OP
].compute_all() | (DF
& DF_MASK
);
731 #elif defined(TARGET_ARM)
732 /* XXX: Save/restore host fpu exception state?. */
733 #elif defined(TARGET_SPARC)
734 #if defined(reg_REGWPTR)
735 REGWPTR
= saved_regwptr
;
737 #elif defined(TARGET_PPC)
738 #elif defined(TARGET_M68K)
739 cpu_m68k_flush_flags(env
, env
->cc_op
);
740 env
->cc_op
= CC_OP_FLAGS
;
741 env
->sr
= (env
->sr
& 0xffe0)
742 | env
->cc_dest
| (env
->cc_x
<< 4);
743 #elif defined(TARGET_MIPS)
744 #elif defined(TARGET_SH4)
745 #elif defined(TARGET_ALPHA)
748 #error unsupported target CPU
751 /* restore global registers */
752 #if defined(__sparc__) && !defined(HOST_SOLARIS)
753 asm volatile ("mov %0, %%i7" : : "r" (saved_i7
));
755 #include "hostregs_helper.h"
757 /* fail safe : never use cpu_single_env outside cpu_exec() */
758 cpu_single_env
= NULL
;
762 /* must only be called from the generated code as an exception can be
764 void tb_invalidate_page_range(target_ulong start
, target_ulong end
)
766 /* XXX: cannot enable it yet because it yields to MMU exception
767 where NIP != read address on PowerPC */
769 target_ulong phys_addr
;
770 phys_addr
= get_phys_addr_code(env
, start
);
771 tb_invalidate_phys_page_range(phys_addr
, phys_addr
+ end
- start
, 0);
775 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
777 void cpu_x86_load_seg(CPUX86State
*s
, int seg_reg
, int selector
)
779 CPUX86State
*saved_env
;
783 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
)) {
785 cpu_x86_load_seg_cache(env
, seg_reg
, selector
,
786 (selector
<< 4), 0xffff, 0);
788 load_seg(seg_reg
, selector
);
793 void cpu_x86_fsave(CPUX86State
*s
, uint8_t *ptr
, int data32
)
795 CPUX86State
*saved_env
;
800 helper_fsave((target_ulong
)ptr
, data32
);
805 void cpu_x86_frstor(CPUX86State
*s
, uint8_t *ptr
, int data32
)
807 CPUX86State
*saved_env
;
812 helper_frstor((target_ulong
)ptr
, data32
);
817 #endif /* TARGET_I386 */
819 #if !defined(CONFIG_SOFTMMU)
821 #if defined(TARGET_I386)
823 /* 'pc' is the host PC at which the exception was raised. 'address' is
824 the effective address of the memory exception. 'is_write' is 1 if a
825 write caused the exception and otherwise 0'. 'old_set' is the
826 signal set which should be restored */
827 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
828 int is_write
, sigset_t
*old_set
,
831 TranslationBlock
*tb
;
835 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
836 #if defined(DEBUG_SIGNAL)
837 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
838 pc
, address
, is_write
, *(unsigned long *)old_set
);
840 /* XXX: locking issue */
841 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
845 /* see if it is an MMU fault */
846 ret
= cpu_x86_handle_mmu_fault(env
, address
, is_write
,
847 ((env
->hflags
& HF_CPL_MASK
) == 3), 0);
849 return 0; /* not an MMU fault */
851 return 1; /* the MMU fault was handled without causing real CPU fault */
852 /* now we have a real cpu fault */
855 /* the PC is inside the translated code. It means that we have
856 a virtual CPU fault */
857 cpu_restore_state(tb
, env
, pc
, puc
);
861 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
862 env
->eip
, env
->cr
[2], env
->error_code
);
864 /* we restore the process signal mask as the sigreturn should
865 do it (XXX: use sigsetjmp) */
866 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
867 raise_exception_err(env
->exception_index
, env
->error_code
);
869 /* activate soft MMU for this block */
870 env
->hflags
|= HF_SOFTMMU_MASK
;
871 cpu_resume_from_signal(env
, puc
);
873 /* never comes here */
877 #elif defined(TARGET_ARM)
878 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
879 int is_write
, sigset_t
*old_set
,
882 TranslationBlock
*tb
;
886 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
887 #if defined(DEBUG_SIGNAL)
888 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
889 pc
, address
, is_write
, *(unsigned long *)old_set
);
891 /* XXX: locking issue */
892 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
895 /* see if it is an MMU fault */
896 ret
= cpu_arm_handle_mmu_fault(env
, address
, is_write
, 1, 0);
898 return 0; /* not an MMU fault */
900 return 1; /* the MMU fault was handled without causing real CPU fault */
901 /* now we have a real cpu fault */
904 /* the PC is inside the translated code. It means that we have
905 a virtual CPU fault */
906 cpu_restore_state(tb
, env
, pc
, puc
);
908 /* we restore the process signal mask as the sigreturn should
909 do it (XXX: use sigsetjmp) */
910 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
913 #elif defined(TARGET_SPARC)
914 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
915 int is_write
, sigset_t
*old_set
,
918 TranslationBlock
*tb
;
922 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
923 #if defined(DEBUG_SIGNAL)
924 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
925 pc
, address
, is_write
, *(unsigned long *)old_set
);
927 /* XXX: locking issue */
928 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
931 /* see if it is an MMU fault */
932 ret
= cpu_sparc_handle_mmu_fault(env
, address
, is_write
, 1, 0);
934 return 0; /* not an MMU fault */
936 return 1; /* the MMU fault was handled without causing real CPU fault */
937 /* now we have a real cpu fault */
940 /* the PC is inside the translated code. It means that we have
941 a virtual CPU fault */
942 cpu_restore_state(tb
, env
, pc
, puc
);
944 /* we restore the process signal mask as the sigreturn should
945 do it (XXX: use sigsetjmp) */
946 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
949 #elif defined (TARGET_PPC)
950 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
951 int is_write
, sigset_t
*old_set
,
954 TranslationBlock
*tb
;
958 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
959 #if defined(DEBUG_SIGNAL)
960 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
961 pc
, address
, is_write
, *(unsigned long *)old_set
);
963 /* XXX: locking issue */
964 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
968 /* see if it is an MMU fault */
969 ret
= cpu_ppc_handle_mmu_fault(env
, address
, is_write
, msr_pr
, 0);
971 return 0; /* not an MMU fault */
973 return 1; /* the MMU fault was handled without causing real CPU fault */
975 /* now we have a real cpu fault */
978 /* the PC is inside the translated code. It means that we have
979 a virtual CPU fault */
980 cpu_restore_state(tb
, env
, pc
, puc
);
984 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
985 env
->nip
, env
->error_code
, tb
);
987 /* we restore the process signal mask as the sigreturn should
988 do it (XXX: use sigsetjmp) */
989 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
990 do_raise_exception_err(env
->exception_index
, env
->error_code
);
992 /* activate soft MMU for this block */
993 cpu_resume_from_signal(env
, puc
);
995 /* never comes here */
999 #elif defined(TARGET_M68K)
1000 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1001 int is_write
, sigset_t
*old_set
,
1004 TranslationBlock
*tb
;
1008 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1009 #if defined(DEBUG_SIGNAL)
1010 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1011 pc
, address
, is_write
, *(unsigned long *)old_set
);
1013 /* XXX: locking issue */
1014 if (is_write
&& page_unprotect(address
, pc
, puc
)) {
1017 /* see if it is an MMU fault */
1018 ret
= cpu_m68k_handle_mmu_fault(env
, address
, is_write
, 1, 0);
1020 return 0; /* not an MMU fault */
1022 return 1; /* the MMU fault was handled without causing real CPU fault */
1023 /* now we have a real cpu fault */
1024 tb
= tb_find_pc(pc
);
1026 /* the PC is inside the translated code. It means that we have
1027 a virtual CPU fault */
1028 cpu_restore_state(tb
, env
, pc
, puc
);
1030 /* we restore the process signal mask as the sigreturn should
1031 do it (XXX: use sigsetjmp) */
1032 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1034 /* never comes here */
1038 #elif defined (TARGET_MIPS)
1039 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1040 int is_write
, sigset_t
*old_set
,
1043 TranslationBlock
*tb
;
1047 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1048 #if defined(DEBUG_SIGNAL)
1049 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1050 pc
, address
, is_write
, *(unsigned long *)old_set
);
1052 /* XXX: locking issue */
1053 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
1057 /* see if it is an MMU fault */
1058 ret
= cpu_mips_handle_mmu_fault(env
, address
, is_write
, 1, 0);
1060 return 0; /* not an MMU fault */
1062 return 1; /* the MMU fault was handled without causing real CPU fault */
1064 /* now we have a real cpu fault */
1065 tb
= tb_find_pc(pc
);
1067 /* the PC is inside the translated code. It means that we have
1068 a virtual CPU fault */
1069 cpu_restore_state(tb
, env
, pc
, puc
);
1073 printf("PF exception: PC=0x" TARGET_FMT_lx
" error=0x%x %p\n",
1074 env
->PC
, env
->error_code
, tb
);
1076 /* we restore the process signal mask as the sigreturn should
1077 do it (XXX: use sigsetjmp) */
1078 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1079 do_raise_exception_err(env
->exception_index
, env
->error_code
);
1081 /* activate soft MMU for this block */
1082 cpu_resume_from_signal(env
, puc
);
1084 /* never comes here */
1088 #elif defined (TARGET_SH4)
1089 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1090 int is_write
, sigset_t
*old_set
,
1093 TranslationBlock
*tb
;
1097 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1098 #if defined(DEBUG_SIGNAL)
1099 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1100 pc
, address
, is_write
, *(unsigned long *)old_set
);
1102 /* XXX: locking issue */
1103 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
1107 /* see if it is an MMU fault */
1108 ret
= cpu_sh4_handle_mmu_fault(env
, address
, is_write
, 1, 0);
1110 return 0; /* not an MMU fault */
1112 return 1; /* the MMU fault was handled without causing real CPU fault */
1114 /* now we have a real cpu fault */
1115 tb
= tb_find_pc(pc
);
1117 /* the PC is inside the translated code. It means that we have
1118 a virtual CPU fault */
1119 cpu_restore_state(tb
, env
, pc
, puc
);
1122 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1123 env
->nip
, env
->error_code
, tb
);
1125 /* we restore the process signal mask as the sigreturn should
1126 do it (XXX: use sigsetjmp) */
1127 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1129 /* never comes here */
1133 #elif defined (TARGET_ALPHA)
1134 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1135 int is_write
, sigset_t
*old_set
,
1138 TranslationBlock
*tb
;
1142 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1143 #if defined(DEBUG_SIGNAL)
1144 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1145 pc
, address
, is_write
, *(unsigned long *)old_set
);
1147 /* XXX: locking issue */
1148 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
1152 /* see if it is an MMU fault */
1153 ret
= cpu_alpha_handle_mmu_fault(env
, address
, is_write
, 1, 0);
1155 return 0; /* not an MMU fault */
1157 return 1; /* the MMU fault was handled without causing real CPU fault */
1159 /* now we have a real cpu fault */
1160 tb
= tb_find_pc(pc
);
1162 /* the PC is inside the translated code. It means that we have
1163 a virtual CPU fault */
1164 cpu_restore_state(tb
, env
, pc
, puc
);
1167 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1168 env
->nip
, env
->error_code
, tb
);
1170 /* we restore the process signal mask as the sigreturn should
1171 do it (XXX: use sigsetjmp) */
1172 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1174 /* never comes here */
1178 #error unsupported target CPU
1181 #if defined(__i386__)
1183 #if defined(__APPLE__)
1184 # include <sys/ucontext.h>
1186 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1187 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
1188 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
1190 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
1191 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
1192 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
1195 #if defined(USE_CODE_COPY)
1196 static void cpu_send_trap(unsigned long pc
, int trap
,
1197 struct ucontext
*uc
)
1199 TranslationBlock
*tb
;
1202 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1203 /* now we have a real cpu fault */
1204 tb
= tb_find_pc(pc
);
1206 /* the PC is inside the translated code. It means that we have
1207 a virtual CPU fault */
1208 cpu_restore_state(tb
, env
, pc
, uc
);
1210 sigprocmask(SIG_SETMASK
, &uc
->uc_sigmask
, NULL
);
1211 raise_exception_err(trap
, env
->error_code
);
1215 int cpu_signal_handler(int host_signum
, void *pinfo
,
1218 siginfo_t
*info
= pinfo
;
1219 struct ucontext
*uc
= puc
;
1227 #define REG_TRAPNO TRAPNO
1230 trapno
= TRAP_sig(uc
);
1231 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
1232 if (trapno
== 0x00 || trapno
== 0x05) {
1233 /* send division by zero or bound exception */
1234 cpu_send_trap(pc
, trapno
, uc
);
1238 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1240 (ERROR_sig(uc
) >> 1) & 1 : 0,
1241 &uc
->uc_sigmask
, puc
);
1244 #elif defined(__x86_64__)
1246 int cpu_signal_handler(int host_signum
, void *pinfo
,
1249 siginfo_t
*info
= pinfo
;
1250 struct ucontext
*uc
= puc
;
1253 pc
= uc
->uc_mcontext
.gregs
[REG_RIP
];
1254 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1255 uc
->uc_mcontext
.gregs
[REG_TRAPNO
] == 0xe ?
1256 (uc
->uc_mcontext
.gregs
[REG_ERR
] >> 1) & 1 : 0,
1257 &uc
->uc_sigmask
, puc
);
1260 #elif defined(__powerpc__)
1262 /***********************************************************************
1263 * signal context platform-specific definitions
1267 /* All Registers access - only for local access */
1268 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1269 /* Gpr Registers access */
1270 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1271 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1272 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1273 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1274 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1275 # define LR_sig(context) REG_sig(link, context) /* Link register */
1276 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1277 /* Float Registers access */
1278 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1279 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1280 /* Exception Registers access */
1281 # define DAR_sig(context) REG_sig(dar, context)
1282 # define DSISR_sig(context) REG_sig(dsisr, context)
1283 # define TRAP_sig(context) REG_sig(trap, context)
1287 # include <sys/ucontext.h>
1288 typedef struct ucontext SIGCONTEXT
;
1289 /* All Registers access - only for local access */
1290 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1291 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1292 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1293 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1294 /* Gpr Registers access */
1295 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1296 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1297 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1298 # define CTR_sig(context) REG_sig(ctr, context)
1299 # define XER_sig(context) REG_sig(xer, context) /* Link register */
1300 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1301 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
1302 /* Float Registers access */
1303 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1304 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1305 /* Exception Registers access */
1306 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1307 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1308 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1309 #endif /* __APPLE__ */
1311 int cpu_signal_handler(int host_signum
, void *pinfo
,
1314 siginfo_t
*info
= pinfo
;
1315 struct ucontext
*uc
= puc
;
1323 if (DSISR_sig(uc
) & 0x00800000)
1326 if (TRAP_sig(uc
) != 0x400 && (DSISR_sig(uc
) & 0x02000000))
1329 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1330 is_write
, &uc
->uc_sigmask
, puc
);
1333 #elif defined(__alpha__)
1335 int cpu_signal_handler(int host_signum
, void *pinfo
,
1338 siginfo_t
*info
= pinfo
;
1339 struct ucontext
*uc
= puc
;
1340 uint32_t *pc
= uc
->uc_mcontext
.sc_pc
;
1341 uint32_t insn
= *pc
;
1344 /* XXX: need kernel patch to get write flag faster */
1345 switch (insn
>> 26) {
1360 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1361 is_write
, &uc
->uc_sigmask
, puc
);
1363 #elif defined(__sparc__)
1365 int cpu_signal_handler(int host_signum
, void *pinfo
,
1368 siginfo_t
*info
= pinfo
;
1369 uint32_t *regs
= (uint32_t *)(info
+ 1);
1370 void *sigmask
= (regs
+ 20);
1375 /* XXX: is there a standard glibc define ? */
1377 /* XXX: need kernel patch to get write flag faster */
1379 insn
= *(uint32_t *)pc
;
1380 if ((insn
>> 30) == 3) {
1381 switch((insn
>> 19) & 0x3f) {
1393 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1394 is_write
, sigmask
, NULL
);
1397 #elif defined(__arm__)
1399 int cpu_signal_handler(int host_signum
, void *pinfo
,
1402 siginfo_t
*info
= pinfo
;
1403 struct ucontext
*uc
= puc
;
1407 pc
= uc
->uc_mcontext
.gregs
[R15
];
1408 /* XXX: compute is_write */
1410 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1412 &uc
->uc_sigmask
, puc
);
1415 #elif defined(__mc68000)
1417 int cpu_signal_handler(int host_signum
, void *pinfo
,
1420 siginfo_t
*info
= pinfo
;
1421 struct ucontext
*uc
= puc
;
1425 pc
= uc
->uc_mcontext
.gregs
[16];
1426 /* XXX: compute is_write */
1428 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1430 &uc
->uc_sigmask
, puc
);
1433 #elif defined(__ia64)
1436 /* This ought to be in <bits/siginfo.h>... */
1437 # define __ISR_VALID 1
1440 int cpu_signal_handler(int host_signum
, void *pinfo
, void *puc
)
1442 siginfo_t
*info
= pinfo
;
1443 struct ucontext
*uc
= puc
;
1447 ip
= uc
->uc_mcontext
.sc_ip
;
1448 switch (host_signum
) {
1454 if (info
->si_code
&& (info
->si_segvflags
& __ISR_VALID
))
1455 /* ISR.W (write-access) is bit 33: */
1456 is_write
= (info
->si_isr
>> 33) & 1;
1462 return handle_cpu_signal(ip
, (unsigned long)info
->si_addr
,
1464 &uc
->uc_sigmask
, puc
);
1467 #elif defined(__s390__)
1469 int cpu_signal_handler(int host_signum
, void *pinfo
,
1472 siginfo_t
*info
= pinfo
;
1473 struct ucontext
*uc
= puc
;
1477 pc
= uc
->uc_mcontext
.psw
.addr
;
1478 /* XXX: compute is_write */
1480 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1481 is_write
, &uc
->uc_sigmask
, puc
);
1484 #elif defined(__mips__)
1486 int cpu_signal_handler(int host_signum
, void *pinfo
,
1489 siginfo_t
*info
= pinfo
;
1490 struct ucontext
*uc
= puc
;
1491 greg_t pc
= uc
->uc_mcontext
.pc
;
1494 /* XXX: compute is_write */
1496 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1497 is_write
, &uc
->uc_sigmask
, puc
);
1502 #error host CPU specific signal handler needed
1506 #endif /* !defined(CONFIG_SOFTMMU) */