Replace tabs by 8 spaces. No code change, by Herve Poussineau.
[qemu/dscho.git] / vl.c
blob53b46259abab32629199939039ec1b2156effe50
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2007 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "vl.h"
26 #include <unistd.h>
27 #include <fcntl.h>
28 #include <signal.h>
29 #include <time.h>
30 #include <errno.h>
31 #include <sys/time.h>
32 #include <zlib.h>
34 #ifndef _WIN32
35 #include <sys/times.h>
36 #include <sys/wait.h>
37 #include <termios.h>
38 #include <sys/poll.h>
39 #include <sys/mman.h>
40 #include <sys/ioctl.h>
41 #include <sys/socket.h>
42 #include <netinet/in.h>
43 #include <dirent.h>
44 #include <netdb.h>
45 #ifdef _BSD
46 #include <sys/stat.h>
47 #ifndef __APPLE__
48 #include <libutil.h>
49 #endif
50 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
51 #include <freebsd/stdlib.h>
52 #else
53 #ifndef __sun__
54 #include <linux/if.h>
55 #include <linux/if_tun.h>
56 #include <pty.h>
57 #include <malloc.h>
58 #include <linux/rtc.h>
59 #include <linux/hpet.h>
60 #include <linux/ppdev.h>
61 #include <linux/parport.h>
62 #else
63 #include <sys/stat.h>
64 #include <sys/ethernet.h>
65 #include <sys/sockio.h>
66 #include <arpa/inet.h>
67 #include <netinet/arp.h>
68 #include <netinet/in.h>
69 #include <netinet/in_systm.h>
70 #include <netinet/ip.h>
71 #include <netinet/ip_icmp.h> // must come after ip.h
72 #include <netinet/udp.h>
73 #include <netinet/tcp.h>
74 #include <net/if.h>
75 #include <syslog.h>
76 #include <stropts.h>
77 #endif
78 #endif
79 #endif
81 #if defined(CONFIG_SLIRP)
82 #include "libslirp.h"
83 #endif
85 #ifdef _WIN32
86 #include <malloc.h>
87 #include <sys/timeb.h>
88 #include <windows.h>
89 #define getopt_long_only getopt_long
90 #define memalign(align, size) malloc(size)
91 #endif
93 #include "qemu_socket.h"
95 #ifdef CONFIG_SDL
96 #ifdef __APPLE__
97 #include <SDL/SDL.h>
98 #endif
99 #endif /* CONFIG_SDL */
101 #ifdef CONFIG_COCOA
102 #undef main
103 #define main qemu_main
104 #endif /* CONFIG_COCOA */
106 #include "disas.h"
108 #include "exec-all.h"
110 #define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
111 #ifdef __sun__
112 #define SMBD_COMMAND "/usr/sfw/sbin/smbd"
113 #else
114 #define SMBD_COMMAND "/usr/sbin/smbd"
115 #endif
117 //#define DEBUG_UNUSED_IOPORT
118 //#define DEBUG_IOPORT
120 #define PHYS_RAM_MAX_SIZE (2047 * 1024 * 1024)
122 #ifdef TARGET_PPC
123 #define DEFAULT_RAM_SIZE 144
124 #else
125 #define DEFAULT_RAM_SIZE 128
126 #endif
127 /* in ms */
128 #define GUI_REFRESH_INTERVAL 30
130 /* Max number of USB devices that can be specified on the commandline. */
131 #define MAX_USB_CMDLINE 8
133 /* XXX: use a two level table to limit memory usage */
134 #define MAX_IOPORTS 65536
136 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
137 char phys_ram_file[1024];
138 void *ioport_opaque[MAX_IOPORTS];
139 IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
140 IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
141 /* Note: bs_table[MAX_DISKS] is a dummy block driver if none available
142 to store the VM snapshots */
143 BlockDriverState *bs_table[MAX_DISKS + 1], *fd_table[MAX_FD];
144 BlockDriverState *pflash_table[MAX_PFLASH];
145 BlockDriverState *sd_bdrv;
146 BlockDriverState *mtd_bdrv;
147 /* point to the block driver where the snapshots are managed */
148 BlockDriverState *bs_snapshots;
149 int vga_ram_size;
150 static DisplayState display_state;
151 int nographic;
152 const char* keyboard_layout = NULL;
153 int64_t ticks_per_sec;
154 int boot_device = 'c';
155 int ram_size;
156 int pit_min_timer_count = 0;
157 int nb_nics;
158 NICInfo nd_table[MAX_NICS];
159 int vm_running;
160 int rtc_utc = 1;
161 int cirrus_vga_enabled = 1;
162 int vmsvga_enabled = 0;
163 #ifdef TARGET_SPARC
164 int graphic_width = 1024;
165 int graphic_height = 768;
166 int graphic_depth = 8;
167 #else
168 int graphic_width = 800;
169 int graphic_height = 600;
170 int graphic_depth = 15;
171 #endif
172 int full_screen = 0;
173 int no_frame = 0;
174 int no_quit = 0;
175 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
176 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
177 #ifdef TARGET_I386
178 int win2k_install_hack = 0;
179 #endif
180 int usb_enabled = 0;
181 static VLANState *first_vlan;
182 int smp_cpus = 1;
183 const char *vnc_display;
184 #if defined(TARGET_SPARC)
185 #define MAX_CPUS 16
186 #elif defined(TARGET_I386)
187 #define MAX_CPUS 255
188 #else
189 #define MAX_CPUS 1
190 #endif
191 int acpi_enabled = 1;
192 int fd_bootchk = 1;
193 int no_reboot = 0;
194 int cursor_hide = 1;
195 int graphic_rotate = 0;
196 int daemonize = 0;
197 const char *option_rom[MAX_OPTION_ROMS];
198 int nb_option_roms;
199 int semihosting_enabled = 0;
200 int autostart = 1;
201 #ifdef TARGET_ARM
202 int old_param = 0;
203 #endif
204 const char *qemu_name;
205 int alt_grab = 0;
206 #ifdef TARGET_SPARC
207 unsigned int nb_prom_envs = 0;
208 const char *prom_envs[MAX_PROM_ENVS];
209 #endif
211 #define TFR(expr) do { if ((expr) != -1) break; } while (errno == EINTR)
213 /***********************************************************/
214 /* x86 ISA bus support */
216 target_phys_addr_t isa_mem_base = 0;
217 PicState2 *isa_pic;
219 uint32_t default_ioport_readb(void *opaque, uint32_t address)
221 #ifdef DEBUG_UNUSED_IOPORT
222 fprintf(stderr, "unused inb: port=0x%04x\n", address);
223 #endif
224 return 0xff;
227 void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
229 #ifdef DEBUG_UNUSED_IOPORT
230 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
231 #endif
234 /* default is to make two byte accesses */
235 uint32_t default_ioport_readw(void *opaque, uint32_t address)
237 uint32_t data;
238 data = ioport_read_table[0][address](ioport_opaque[address], address);
239 address = (address + 1) & (MAX_IOPORTS - 1);
240 data |= ioport_read_table[0][address](ioport_opaque[address], address) << 8;
241 return data;
244 void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
246 ioport_write_table[0][address](ioport_opaque[address], address, data & 0xff);
247 address = (address + 1) & (MAX_IOPORTS - 1);
248 ioport_write_table[0][address](ioport_opaque[address], address, (data >> 8) & 0xff);
251 uint32_t default_ioport_readl(void *opaque, uint32_t address)
253 #ifdef DEBUG_UNUSED_IOPORT
254 fprintf(stderr, "unused inl: port=0x%04x\n", address);
255 #endif
256 return 0xffffffff;
259 void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
261 #ifdef DEBUG_UNUSED_IOPORT
262 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
263 #endif
266 void init_ioports(void)
268 int i;
270 for(i = 0; i < MAX_IOPORTS; i++) {
271 ioport_read_table[0][i] = default_ioport_readb;
272 ioport_write_table[0][i] = default_ioport_writeb;
273 ioport_read_table[1][i] = default_ioport_readw;
274 ioport_write_table[1][i] = default_ioport_writew;
275 ioport_read_table[2][i] = default_ioport_readl;
276 ioport_write_table[2][i] = default_ioport_writel;
280 /* size is the word size in byte */
281 int register_ioport_read(int start, int length, int size,
282 IOPortReadFunc *func, void *opaque)
284 int i, bsize;
286 if (size == 1) {
287 bsize = 0;
288 } else if (size == 2) {
289 bsize = 1;
290 } else if (size == 4) {
291 bsize = 2;
292 } else {
293 hw_error("register_ioport_read: invalid size");
294 return -1;
296 for(i = start; i < start + length; i += size) {
297 ioport_read_table[bsize][i] = func;
298 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
299 hw_error("register_ioport_read: invalid opaque");
300 ioport_opaque[i] = opaque;
302 return 0;
305 /* size is the word size in byte */
306 int register_ioport_write(int start, int length, int size,
307 IOPortWriteFunc *func, void *opaque)
309 int i, bsize;
311 if (size == 1) {
312 bsize = 0;
313 } else if (size == 2) {
314 bsize = 1;
315 } else if (size == 4) {
316 bsize = 2;
317 } else {
318 hw_error("register_ioport_write: invalid size");
319 return -1;
321 for(i = start; i < start + length; i += size) {
322 ioport_write_table[bsize][i] = func;
323 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
324 hw_error("register_ioport_write: invalid opaque");
325 ioport_opaque[i] = opaque;
327 return 0;
330 void isa_unassign_ioport(int start, int length)
332 int i;
334 for(i = start; i < start + length; i++) {
335 ioport_read_table[0][i] = default_ioport_readb;
336 ioport_read_table[1][i] = default_ioport_readw;
337 ioport_read_table[2][i] = default_ioport_readl;
339 ioport_write_table[0][i] = default_ioport_writeb;
340 ioport_write_table[1][i] = default_ioport_writew;
341 ioport_write_table[2][i] = default_ioport_writel;
345 /***********************************************************/
347 void cpu_outb(CPUState *env, int addr, int val)
349 #ifdef DEBUG_IOPORT
350 if (loglevel & CPU_LOG_IOPORT)
351 fprintf(logfile, "outb: %04x %02x\n", addr, val);
352 #endif
353 ioport_write_table[0][addr](ioport_opaque[addr], addr, val);
354 #ifdef USE_KQEMU
355 if (env)
356 env->last_io_time = cpu_get_time_fast();
357 #endif
360 void cpu_outw(CPUState *env, int addr, int val)
362 #ifdef DEBUG_IOPORT
363 if (loglevel & CPU_LOG_IOPORT)
364 fprintf(logfile, "outw: %04x %04x\n", addr, val);
365 #endif
366 ioport_write_table[1][addr](ioport_opaque[addr], addr, val);
367 #ifdef USE_KQEMU
368 if (env)
369 env->last_io_time = cpu_get_time_fast();
370 #endif
373 void cpu_outl(CPUState *env, int addr, int val)
375 #ifdef DEBUG_IOPORT
376 if (loglevel & CPU_LOG_IOPORT)
377 fprintf(logfile, "outl: %04x %08x\n", addr, val);
378 #endif
379 ioport_write_table[2][addr](ioport_opaque[addr], addr, val);
380 #ifdef USE_KQEMU
381 if (env)
382 env->last_io_time = cpu_get_time_fast();
383 #endif
386 int cpu_inb(CPUState *env, int addr)
388 int val;
389 val = ioport_read_table[0][addr](ioport_opaque[addr], addr);
390 #ifdef DEBUG_IOPORT
391 if (loglevel & CPU_LOG_IOPORT)
392 fprintf(logfile, "inb : %04x %02x\n", addr, val);
393 #endif
394 #ifdef USE_KQEMU
395 if (env)
396 env->last_io_time = cpu_get_time_fast();
397 #endif
398 return val;
401 int cpu_inw(CPUState *env, int addr)
403 int val;
404 val = ioport_read_table[1][addr](ioport_opaque[addr], addr);
405 #ifdef DEBUG_IOPORT
406 if (loglevel & CPU_LOG_IOPORT)
407 fprintf(logfile, "inw : %04x %04x\n", addr, val);
408 #endif
409 #ifdef USE_KQEMU
410 if (env)
411 env->last_io_time = cpu_get_time_fast();
412 #endif
413 return val;
416 int cpu_inl(CPUState *env, int addr)
418 int val;
419 val = ioport_read_table[2][addr](ioport_opaque[addr], addr);
420 #ifdef DEBUG_IOPORT
421 if (loglevel & CPU_LOG_IOPORT)
422 fprintf(logfile, "inl : %04x %08x\n", addr, val);
423 #endif
424 #ifdef USE_KQEMU
425 if (env)
426 env->last_io_time = cpu_get_time_fast();
427 #endif
428 return val;
431 /***********************************************************/
432 void hw_error(const char *fmt, ...)
434 va_list ap;
435 CPUState *env;
437 va_start(ap, fmt);
438 fprintf(stderr, "qemu: hardware error: ");
439 vfprintf(stderr, fmt, ap);
440 fprintf(stderr, "\n");
441 for(env = first_cpu; env != NULL; env = env->next_cpu) {
442 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
443 #ifdef TARGET_I386
444 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
445 #else
446 cpu_dump_state(env, stderr, fprintf, 0);
447 #endif
449 va_end(ap);
450 abort();
453 /***********************************************************/
454 /* keyboard/mouse */
456 static QEMUPutKBDEvent *qemu_put_kbd_event;
457 static void *qemu_put_kbd_event_opaque;
458 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
459 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
461 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
463 qemu_put_kbd_event_opaque = opaque;
464 qemu_put_kbd_event = func;
467 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
468 void *opaque, int absolute,
469 const char *name)
471 QEMUPutMouseEntry *s, *cursor;
473 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
474 if (!s)
475 return NULL;
477 s->qemu_put_mouse_event = func;
478 s->qemu_put_mouse_event_opaque = opaque;
479 s->qemu_put_mouse_event_absolute = absolute;
480 s->qemu_put_mouse_event_name = qemu_strdup(name);
481 s->next = NULL;
483 if (!qemu_put_mouse_event_head) {
484 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
485 return s;
488 cursor = qemu_put_mouse_event_head;
489 while (cursor->next != NULL)
490 cursor = cursor->next;
492 cursor->next = s;
493 qemu_put_mouse_event_current = s;
495 return s;
498 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
500 QEMUPutMouseEntry *prev = NULL, *cursor;
502 if (!qemu_put_mouse_event_head || entry == NULL)
503 return;
505 cursor = qemu_put_mouse_event_head;
506 while (cursor != NULL && cursor != entry) {
507 prev = cursor;
508 cursor = cursor->next;
511 if (cursor == NULL) // does not exist or list empty
512 return;
513 else if (prev == NULL) { // entry is head
514 qemu_put_mouse_event_head = cursor->next;
515 if (qemu_put_mouse_event_current == entry)
516 qemu_put_mouse_event_current = cursor->next;
517 qemu_free(entry->qemu_put_mouse_event_name);
518 qemu_free(entry);
519 return;
522 prev->next = entry->next;
524 if (qemu_put_mouse_event_current == entry)
525 qemu_put_mouse_event_current = prev;
527 qemu_free(entry->qemu_put_mouse_event_name);
528 qemu_free(entry);
531 void kbd_put_keycode(int keycode)
533 if (qemu_put_kbd_event) {
534 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
538 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
540 QEMUPutMouseEvent *mouse_event;
541 void *mouse_event_opaque;
542 int width;
544 if (!qemu_put_mouse_event_current) {
545 return;
548 mouse_event =
549 qemu_put_mouse_event_current->qemu_put_mouse_event;
550 mouse_event_opaque =
551 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
553 if (mouse_event) {
554 if (graphic_rotate) {
555 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
556 width = 0x7fff;
557 else
558 width = graphic_width;
559 mouse_event(mouse_event_opaque,
560 width - dy, dx, dz, buttons_state);
561 } else
562 mouse_event(mouse_event_opaque,
563 dx, dy, dz, buttons_state);
567 int kbd_mouse_is_absolute(void)
569 if (!qemu_put_mouse_event_current)
570 return 0;
572 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
575 void do_info_mice(void)
577 QEMUPutMouseEntry *cursor;
578 int index = 0;
580 if (!qemu_put_mouse_event_head) {
581 term_printf("No mouse devices connected\n");
582 return;
585 term_printf("Mouse devices available:\n");
586 cursor = qemu_put_mouse_event_head;
587 while (cursor != NULL) {
588 term_printf("%c Mouse #%d: %s\n",
589 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
590 index, cursor->qemu_put_mouse_event_name);
591 index++;
592 cursor = cursor->next;
596 void do_mouse_set(int index)
598 QEMUPutMouseEntry *cursor;
599 int i = 0;
601 if (!qemu_put_mouse_event_head) {
602 term_printf("No mouse devices connected\n");
603 return;
606 cursor = qemu_put_mouse_event_head;
607 while (cursor != NULL && index != i) {
608 i++;
609 cursor = cursor->next;
612 if (cursor != NULL)
613 qemu_put_mouse_event_current = cursor;
614 else
615 term_printf("Mouse at given index not found\n");
618 /* compute with 96 bit intermediate result: (a*b)/c */
619 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
621 union {
622 uint64_t ll;
623 struct {
624 #ifdef WORDS_BIGENDIAN
625 uint32_t high, low;
626 #else
627 uint32_t low, high;
628 #endif
629 } l;
630 } u, res;
631 uint64_t rl, rh;
633 u.ll = a;
634 rl = (uint64_t)u.l.low * (uint64_t)b;
635 rh = (uint64_t)u.l.high * (uint64_t)b;
636 rh += (rl >> 32);
637 res.l.high = rh / c;
638 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
639 return res.ll;
642 /***********************************************************/
643 /* real time host monotonic timer */
645 #define QEMU_TIMER_BASE 1000000000LL
647 #ifdef WIN32
649 static int64_t clock_freq;
651 static void init_get_clock(void)
653 LARGE_INTEGER freq;
654 int ret;
655 ret = QueryPerformanceFrequency(&freq);
656 if (ret == 0) {
657 fprintf(stderr, "Could not calibrate ticks\n");
658 exit(1);
660 clock_freq = freq.QuadPart;
663 static int64_t get_clock(void)
665 LARGE_INTEGER ti;
666 QueryPerformanceCounter(&ti);
667 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
670 #else
672 static int use_rt_clock;
674 static void init_get_clock(void)
676 use_rt_clock = 0;
677 #if defined(__linux__)
679 struct timespec ts;
680 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
681 use_rt_clock = 1;
684 #endif
687 static int64_t get_clock(void)
689 #if defined(__linux__)
690 if (use_rt_clock) {
691 struct timespec ts;
692 clock_gettime(CLOCK_MONOTONIC, &ts);
693 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
694 } else
695 #endif
697 /* XXX: using gettimeofday leads to problems if the date
698 changes, so it should be avoided. */
699 struct timeval tv;
700 gettimeofday(&tv, NULL);
701 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
705 #endif
707 /***********************************************************/
708 /* guest cycle counter */
710 static int64_t cpu_ticks_prev;
711 static int64_t cpu_ticks_offset;
712 static int64_t cpu_clock_offset;
713 static int cpu_ticks_enabled;
715 /* return the host CPU cycle counter and handle stop/restart */
716 int64_t cpu_get_ticks(void)
718 if (!cpu_ticks_enabled) {
719 return cpu_ticks_offset;
720 } else {
721 int64_t ticks;
722 ticks = cpu_get_real_ticks();
723 if (cpu_ticks_prev > ticks) {
724 /* Note: non increasing ticks may happen if the host uses
725 software suspend */
726 cpu_ticks_offset += cpu_ticks_prev - ticks;
728 cpu_ticks_prev = ticks;
729 return ticks + cpu_ticks_offset;
733 /* return the host CPU monotonic timer and handle stop/restart */
734 static int64_t cpu_get_clock(void)
736 int64_t ti;
737 if (!cpu_ticks_enabled) {
738 return cpu_clock_offset;
739 } else {
740 ti = get_clock();
741 return ti + cpu_clock_offset;
745 /* enable cpu_get_ticks() */
746 void cpu_enable_ticks(void)
748 if (!cpu_ticks_enabled) {
749 cpu_ticks_offset -= cpu_get_real_ticks();
750 cpu_clock_offset -= get_clock();
751 cpu_ticks_enabled = 1;
755 /* disable cpu_get_ticks() : the clock is stopped. You must not call
756 cpu_get_ticks() after that. */
757 void cpu_disable_ticks(void)
759 if (cpu_ticks_enabled) {
760 cpu_ticks_offset = cpu_get_ticks();
761 cpu_clock_offset = cpu_get_clock();
762 cpu_ticks_enabled = 0;
766 /***********************************************************/
767 /* timers */
769 #define QEMU_TIMER_REALTIME 0
770 #define QEMU_TIMER_VIRTUAL 1
772 struct QEMUClock {
773 int type;
774 /* XXX: add frequency */
777 struct QEMUTimer {
778 QEMUClock *clock;
779 int64_t expire_time;
780 QEMUTimerCB *cb;
781 void *opaque;
782 struct QEMUTimer *next;
785 struct qemu_alarm_timer {
786 char const *name;
787 unsigned int flags;
789 int (*start)(struct qemu_alarm_timer *t);
790 void (*stop)(struct qemu_alarm_timer *t);
791 void (*rearm)(struct qemu_alarm_timer *t);
792 void *priv;
795 #define ALARM_FLAG_DYNTICKS 0x1
797 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
799 return t->flags & ALARM_FLAG_DYNTICKS;
802 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
804 if (!alarm_has_dynticks(t))
805 return;
807 t->rearm(t);
810 /* TODO: MIN_TIMER_REARM_US should be optimized */
811 #define MIN_TIMER_REARM_US 250
813 static struct qemu_alarm_timer *alarm_timer;
815 #ifdef _WIN32
817 struct qemu_alarm_win32 {
818 MMRESULT timerId;
819 HANDLE host_alarm;
820 unsigned int period;
821 } alarm_win32_data = {0, NULL, -1};
823 static int win32_start_timer(struct qemu_alarm_timer *t);
824 static void win32_stop_timer(struct qemu_alarm_timer *t);
825 static void win32_rearm_timer(struct qemu_alarm_timer *t);
827 #else
829 static int unix_start_timer(struct qemu_alarm_timer *t);
830 static void unix_stop_timer(struct qemu_alarm_timer *t);
832 #ifdef __linux__
834 static int dynticks_start_timer(struct qemu_alarm_timer *t);
835 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
836 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
838 static int hpet_start_timer(struct qemu_alarm_timer *t);
839 static void hpet_stop_timer(struct qemu_alarm_timer *t);
841 static int rtc_start_timer(struct qemu_alarm_timer *t);
842 static void rtc_stop_timer(struct qemu_alarm_timer *t);
844 #endif /* __linux__ */
846 #endif /* _WIN32 */
848 static struct qemu_alarm_timer alarm_timers[] = {
849 #ifndef _WIN32
850 #ifdef __linux__
851 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
852 dynticks_stop_timer, dynticks_rearm_timer, NULL},
853 /* HPET - if available - is preferred */
854 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
855 /* ...otherwise try RTC */
856 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
857 #endif
858 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
859 #else
860 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
861 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
862 {"win32", 0, win32_start_timer,
863 win32_stop_timer, NULL, &alarm_win32_data},
864 #endif
865 {NULL, }
868 static void show_available_alarms()
870 int i;
872 printf("Available alarm timers, in order of precedence:\n");
873 for (i = 0; alarm_timers[i].name; i++)
874 printf("%s\n", alarm_timers[i].name);
877 static void configure_alarms(char const *opt)
879 int i;
880 int cur = 0;
881 int count = (sizeof(alarm_timers) / sizeof(*alarm_timers)) - 1;
882 char *arg;
883 char *name;
885 if (!strcmp(opt, "help")) {
886 show_available_alarms();
887 exit(0);
890 arg = strdup(opt);
892 /* Reorder the array */
893 name = strtok(arg, ",");
894 while (name) {
895 struct qemu_alarm_timer tmp;
897 for (i = 0; i < count; i++) {
898 if (!strcmp(alarm_timers[i].name, name))
899 break;
902 if (i == count) {
903 fprintf(stderr, "Unknown clock %s\n", name);
904 goto next;
907 if (i < cur)
908 /* Ignore */
909 goto next;
911 /* Swap */
912 tmp = alarm_timers[i];
913 alarm_timers[i] = alarm_timers[cur];
914 alarm_timers[cur] = tmp;
916 cur++;
917 next:
918 name = strtok(NULL, ",");
921 free(arg);
923 if (cur) {
924 /* Disable remaining timers */
925 for (i = cur; i < count; i++)
926 alarm_timers[i].name = NULL;
929 /* debug */
930 show_available_alarms();
933 QEMUClock *rt_clock;
934 QEMUClock *vm_clock;
936 static QEMUTimer *active_timers[2];
938 QEMUClock *qemu_new_clock(int type)
940 QEMUClock *clock;
941 clock = qemu_mallocz(sizeof(QEMUClock));
942 if (!clock)
943 return NULL;
944 clock->type = type;
945 return clock;
948 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
950 QEMUTimer *ts;
952 ts = qemu_mallocz(sizeof(QEMUTimer));
953 ts->clock = clock;
954 ts->cb = cb;
955 ts->opaque = opaque;
956 return ts;
959 void qemu_free_timer(QEMUTimer *ts)
961 qemu_free(ts);
964 /* stop a timer, but do not dealloc it */
965 void qemu_del_timer(QEMUTimer *ts)
967 QEMUTimer **pt, *t;
969 /* NOTE: this code must be signal safe because
970 qemu_timer_expired() can be called from a signal. */
971 pt = &active_timers[ts->clock->type];
972 for(;;) {
973 t = *pt;
974 if (!t)
975 break;
976 if (t == ts) {
977 *pt = t->next;
978 break;
980 pt = &t->next;
983 qemu_rearm_alarm_timer(alarm_timer);
986 /* modify the current timer so that it will be fired when current_time
987 >= expire_time. The corresponding callback will be called. */
988 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
990 QEMUTimer **pt, *t;
992 qemu_del_timer(ts);
994 /* add the timer in the sorted list */
995 /* NOTE: this code must be signal safe because
996 qemu_timer_expired() can be called from a signal. */
997 pt = &active_timers[ts->clock->type];
998 for(;;) {
999 t = *pt;
1000 if (!t)
1001 break;
1002 if (t->expire_time > expire_time)
1003 break;
1004 pt = &t->next;
1006 ts->expire_time = expire_time;
1007 ts->next = *pt;
1008 *pt = ts;
1011 int qemu_timer_pending(QEMUTimer *ts)
1013 QEMUTimer *t;
1014 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1015 if (t == ts)
1016 return 1;
1018 return 0;
1021 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1023 if (!timer_head)
1024 return 0;
1025 return (timer_head->expire_time <= current_time);
1028 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1030 QEMUTimer *ts;
1032 for(;;) {
1033 ts = *ptimer_head;
1034 if (!ts || ts->expire_time > current_time)
1035 break;
1036 /* remove timer from the list before calling the callback */
1037 *ptimer_head = ts->next;
1038 ts->next = NULL;
1040 /* run the callback (the timer list can be modified) */
1041 ts->cb(ts->opaque);
1043 qemu_rearm_alarm_timer(alarm_timer);
1046 int64_t qemu_get_clock(QEMUClock *clock)
1048 switch(clock->type) {
1049 case QEMU_TIMER_REALTIME:
1050 return get_clock() / 1000000;
1051 default:
1052 case QEMU_TIMER_VIRTUAL:
1053 return cpu_get_clock();
1057 static void init_timers(void)
1059 init_get_clock();
1060 ticks_per_sec = QEMU_TIMER_BASE;
1061 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1062 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1065 /* save a timer */
1066 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1068 uint64_t expire_time;
1070 if (qemu_timer_pending(ts)) {
1071 expire_time = ts->expire_time;
1072 } else {
1073 expire_time = -1;
1075 qemu_put_be64(f, expire_time);
1078 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1080 uint64_t expire_time;
1082 expire_time = qemu_get_be64(f);
1083 if (expire_time != -1) {
1084 qemu_mod_timer(ts, expire_time);
1085 } else {
1086 qemu_del_timer(ts);
1090 static void timer_save(QEMUFile *f, void *opaque)
1092 if (cpu_ticks_enabled) {
1093 hw_error("cannot save state if virtual timers are running");
1095 qemu_put_be64s(f, &cpu_ticks_offset);
1096 qemu_put_be64s(f, &ticks_per_sec);
1097 qemu_put_be64s(f, &cpu_clock_offset);
1100 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1102 if (version_id != 1 && version_id != 2)
1103 return -EINVAL;
1104 if (cpu_ticks_enabled) {
1105 return -EINVAL;
1107 qemu_get_be64s(f, &cpu_ticks_offset);
1108 qemu_get_be64s(f, &ticks_per_sec);
1109 if (version_id == 2) {
1110 qemu_get_be64s(f, &cpu_clock_offset);
1112 return 0;
1115 #ifdef _WIN32
1116 void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1117 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
1118 #else
1119 static void host_alarm_handler(int host_signum)
1120 #endif
1122 #if 0
1123 #define DISP_FREQ 1000
1125 static int64_t delta_min = INT64_MAX;
1126 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1127 static int count;
1128 ti = qemu_get_clock(vm_clock);
1129 if (last_clock != 0) {
1130 delta = ti - last_clock;
1131 if (delta < delta_min)
1132 delta_min = delta;
1133 if (delta > delta_max)
1134 delta_max = delta;
1135 delta_cum += delta;
1136 if (++count == DISP_FREQ) {
1137 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1138 muldiv64(delta_min, 1000000, ticks_per_sec),
1139 muldiv64(delta_max, 1000000, ticks_per_sec),
1140 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1141 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1142 count = 0;
1143 delta_min = INT64_MAX;
1144 delta_max = 0;
1145 delta_cum = 0;
1148 last_clock = ti;
1150 #endif
1151 if (alarm_has_dynticks(alarm_timer) ||
1152 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1153 qemu_get_clock(vm_clock)) ||
1154 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1155 qemu_get_clock(rt_clock))) {
1156 #ifdef _WIN32
1157 struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
1158 SetEvent(data->host_alarm);
1159 #endif
1160 CPUState *env = cpu_single_env;
1161 if (env) {
1162 /* stop the currently executing cpu because a timer occured */
1163 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1164 #ifdef USE_KQEMU
1165 if (env->kqemu_enabled) {
1166 kqemu_cpu_interrupt(env);
1168 #endif
1173 static uint64_t qemu_next_deadline(void)
1175 int64_t nearest_delta_us = ULLONG_MAX;
1176 int64_t vmdelta_us;
1178 if (active_timers[QEMU_TIMER_REALTIME])
1179 nearest_delta_us = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1180 qemu_get_clock(rt_clock))*1000;
1182 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1183 /* round up */
1184 vmdelta_us = (active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1185 qemu_get_clock(vm_clock)+999)/1000;
1186 if (vmdelta_us < nearest_delta_us)
1187 nearest_delta_us = vmdelta_us;
1190 /* Avoid arming the timer to negative, zero, or too low values */
1191 if (nearest_delta_us <= MIN_TIMER_REARM_US)
1192 nearest_delta_us = MIN_TIMER_REARM_US;
1194 return nearest_delta_us;
1197 #ifndef _WIN32
1199 #if defined(__linux__)
1201 #define RTC_FREQ 1024
1203 static void enable_sigio_timer(int fd)
1205 struct sigaction act;
1207 /* timer signal */
1208 sigfillset(&act.sa_mask);
1209 act.sa_flags = 0;
1210 #if defined (TARGET_I386) && defined(USE_CODE_COPY)
1211 act.sa_flags |= SA_ONSTACK;
1212 #endif
1213 act.sa_handler = host_alarm_handler;
1215 sigaction(SIGIO, &act, NULL);
1216 fcntl(fd, F_SETFL, O_ASYNC);
1217 fcntl(fd, F_SETOWN, getpid());
1220 static int hpet_start_timer(struct qemu_alarm_timer *t)
1222 struct hpet_info info;
1223 int r, fd;
1225 fd = open("/dev/hpet", O_RDONLY);
1226 if (fd < 0)
1227 return -1;
1229 /* Set frequency */
1230 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1231 if (r < 0) {
1232 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1233 "error, but for better emulation accuracy type:\n"
1234 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1235 goto fail;
1238 /* Check capabilities */
1239 r = ioctl(fd, HPET_INFO, &info);
1240 if (r < 0)
1241 goto fail;
1243 /* Enable periodic mode */
1244 r = ioctl(fd, HPET_EPI, 0);
1245 if (info.hi_flags && (r < 0))
1246 goto fail;
1248 /* Enable interrupt */
1249 r = ioctl(fd, HPET_IE_ON, 0);
1250 if (r < 0)
1251 goto fail;
1253 enable_sigio_timer(fd);
1254 t->priv = (void *)(long)fd;
1256 return 0;
1257 fail:
1258 close(fd);
1259 return -1;
1262 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1264 int fd = (long)t->priv;
1266 close(fd);
1269 static int rtc_start_timer(struct qemu_alarm_timer *t)
1271 int rtc_fd;
1273 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1274 if (rtc_fd < 0)
1275 return -1;
1276 if (ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1277 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1278 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1279 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1280 goto fail;
1282 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1283 fail:
1284 close(rtc_fd);
1285 return -1;
1288 enable_sigio_timer(rtc_fd);
1290 t->priv = (void *)(long)rtc_fd;
1292 return 0;
1295 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1297 int rtc_fd = (long)t->priv;
1299 close(rtc_fd);
1302 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1304 struct sigevent ev;
1305 timer_t host_timer;
1306 struct sigaction act;
1308 sigfillset(&act.sa_mask);
1309 act.sa_flags = 0;
1310 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
1311 act.sa_flags |= SA_ONSTACK;
1312 #endif
1313 act.sa_handler = host_alarm_handler;
1315 sigaction(SIGALRM, &act, NULL);
1317 ev.sigev_value.sival_int = 0;
1318 ev.sigev_notify = SIGEV_SIGNAL;
1319 ev.sigev_signo = SIGALRM;
1321 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1322 perror("timer_create");
1324 /* disable dynticks */
1325 fprintf(stderr, "Dynamic Ticks disabled\n");
1327 return -1;
1330 t->priv = (void *)host_timer;
1332 return 0;
1335 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1337 timer_t host_timer = (timer_t)t->priv;
1339 timer_delete(host_timer);
1342 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1344 timer_t host_timer = (timer_t)t->priv;
1345 struct itimerspec timeout;
1346 int64_t nearest_delta_us = INT64_MAX;
1347 int64_t current_us;
1349 if (!active_timers[QEMU_TIMER_REALTIME] &&
1350 !active_timers[QEMU_TIMER_VIRTUAL])
1351 return;
1353 nearest_delta_us = qemu_next_deadline();
1355 /* check whether a timer is already running */
1356 if (timer_gettime(host_timer, &timeout)) {
1357 perror("gettime");
1358 fprintf(stderr, "Internal timer error: aborting\n");
1359 exit(1);
1361 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1362 if (current_us && current_us <= nearest_delta_us)
1363 return;
1365 timeout.it_interval.tv_sec = 0;
1366 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1367 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1368 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1369 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1370 perror("settime");
1371 fprintf(stderr, "Internal timer error: aborting\n");
1372 exit(1);
1376 #endif /* defined(__linux__) */
1378 static int unix_start_timer(struct qemu_alarm_timer *t)
1380 struct sigaction act;
1381 struct itimerval itv;
1382 int err;
1384 /* timer signal */
1385 sigfillset(&act.sa_mask);
1386 act.sa_flags = 0;
1387 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
1388 act.sa_flags |= SA_ONSTACK;
1389 #endif
1390 act.sa_handler = host_alarm_handler;
1392 sigaction(SIGALRM, &act, NULL);
1394 itv.it_interval.tv_sec = 0;
1395 /* for i386 kernel 2.6 to get 1 ms */
1396 itv.it_interval.tv_usec = 999;
1397 itv.it_value.tv_sec = 0;
1398 itv.it_value.tv_usec = 10 * 1000;
1400 err = setitimer(ITIMER_REAL, &itv, NULL);
1401 if (err)
1402 return -1;
1404 return 0;
1407 static void unix_stop_timer(struct qemu_alarm_timer *t)
1409 struct itimerval itv;
1411 memset(&itv, 0, sizeof(itv));
1412 setitimer(ITIMER_REAL, &itv, NULL);
1415 #endif /* !defined(_WIN32) */
1417 #ifdef _WIN32
1419 static int win32_start_timer(struct qemu_alarm_timer *t)
1421 TIMECAPS tc;
1422 struct qemu_alarm_win32 *data = t->priv;
1423 UINT flags;
1425 data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1426 if (!data->host_alarm) {
1427 perror("Failed CreateEvent");
1428 return -1;
1431 memset(&tc, 0, sizeof(tc));
1432 timeGetDevCaps(&tc, sizeof(tc));
1434 if (data->period < tc.wPeriodMin)
1435 data->period = tc.wPeriodMin;
1437 timeBeginPeriod(data->period);
1439 flags = TIME_CALLBACK_FUNCTION;
1440 if (alarm_has_dynticks(t))
1441 flags |= TIME_ONESHOT;
1442 else
1443 flags |= TIME_PERIODIC;
1445 data->timerId = timeSetEvent(1, // interval (ms)
1446 data->period, // resolution
1447 host_alarm_handler, // function
1448 (DWORD)t, // parameter
1449 flags);
1451 if (!data->timerId) {
1452 perror("Failed to initialize win32 alarm timer");
1454 timeEndPeriod(data->period);
1455 CloseHandle(data->host_alarm);
1456 return -1;
1459 qemu_add_wait_object(data->host_alarm, NULL, NULL);
1461 return 0;
1464 static void win32_stop_timer(struct qemu_alarm_timer *t)
1466 struct qemu_alarm_win32 *data = t->priv;
1468 timeKillEvent(data->timerId);
1469 timeEndPeriod(data->period);
1471 CloseHandle(data->host_alarm);
1474 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1476 struct qemu_alarm_win32 *data = t->priv;
1477 uint64_t nearest_delta_us;
1479 if (!active_timers[QEMU_TIMER_REALTIME] &&
1480 !active_timers[QEMU_TIMER_VIRTUAL])
1481 return;
1483 nearest_delta_us = qemu_next_deadline();
1484 nearest_delta_us /= 1000;
1486 timeKillEvent(data->timerId);
1488 data->timerId = timeSetEvent(1,
1489 data->period,
1490 host_alarm_handler,
1491 (DWORD)t,
1492 TIME_ONESHOT | TIME_PERIODIC);
1494 if (!data->timerId) {
1495 perror("Failed to re-arm win32 alarm timer");
1497 timeEndPeriod(data->period);
1498 CloseHandle(data->host_alarm);
1499 exit(1);
1503 #endif /* _WIN32 */
1505 static void init_timer_alarm(void)
1507 struct qemu_alarm_timer *t;
1508 int i, err = -1;
1510 for (i = 0; alarm_timers[i].name; i++) {
1511 t = &alarm_timers[i];
1513 err = t->start(t);
1514 if (!err)
1515 break;
1518 if (err) {
1519 fprintf(stderr, "Unable to find any suitable alarm timer.\n");
1520 fprintf(stderr, "Terminating\n");
1521 exit(1);
1524 alarm_timer = t;
1527 void quit_timers(void)
1529 alarm_timer->stop(alarm_timer);
1530 alarm_timer = NULL;
1533 /***********************************************************/
1534 /* character device */
1536 static void qemu_chr_event(CharDriverState *s, int event)
1538 if (!s->chr_event)
1539 return;
1540 s->chr_event(s->handler_opaque, event);
1543 static void qemu_chr_reset_bh(void *opaque)
1545 CharDriverState *s = opaque;
1546 qemu_chr_event(s, CHR_EVENT_RESET);
1547 qemu_bh_delete(s->bh);
1548 s->bh = NULL;
1551 void qemu_chr_reset(CharDriverState *s)
1553 if (s->bh == NULL) {
1554 s->bh = qemu_bh_new(qemu_chr_reset_bh, s);
1555 qemu_bh_schedule(s->bh);
1559 int qemu_chr_write(CharDriverState *s, const uint8_t *buf, int len)
1561 return s->chr_write(s, buf, len);
1564 int qemu_chr_ioctl(CharDriverState *s, int cmd, void *arg)
1566 if (!s->chr_ioctl)
1567 return -ENOTSUP;
1568 return s->chr_ioctl(s, cmd, arg);
1571 int qemu_chr_can_read(CharDriverState *s)
1573 if (!s->chr_can_read)
1574 return 0;
1575 return s->chr_can_read(s->handler_opaque);
1578 void qemu_chr_read(CharDriverState *s, uint8_t *buf, int len)
1580 s->chr_read(s->handler_opaque, buf, len);
1584 void qemu_chr_printf(CharDriverState *s, const char *fmt, ...)
1586 char buf[4096];
1587 va_list ap;
1588 va_start(ap, fmt);
1589 vsnprintf(buf, sizeof(buf), fmt, ap);
1590 qemu_chr_write(s, buf, strlen(buf));
1591 va_end(ap);
1594 void qemu_chr_send_event(CharDriverState *s, int event)
1596 if (s->chr_send_event)
1597 s->chr_send_event(s, event);
1600 void qemu_chr_add_handlers(CharDriverState *s,
1601 IOCanRWHandler *fd_can_read,
1602 IOReadHandler *fd_read,
1603 IOEventHandler *fd_event,
1604 void *opaque)
1606 s->chr_can_read = fd_can_read;
1607 s->chr_read = fd_read;
1608 s->chr_event = fd_event;
1609 s->handler_opaque = opaque;
1610 if (s->chr_update_read_handler)
1611 s->chr_update_read_handler(s);
1614 static int null_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1616 return len;
1619 static CharDriverState *qemu_chr_open_null(void)
1621 CharDriverState *chr;
1623 chr = qemu_mallocz(sizeof(CharDriverState));
1624 if (!chr)
1625 return NULL;
1626 chr->chr_write = null_chr_write;
1627 return chr;
1630 /* MUX driver for serial I/O splitting */
1631 static int term_timestamps;
1632 static int64_t term_timestamps_start;
1633 #define MAX_MUX 4
1634 typedef struct {
1635 IOCanRWHandler *chr_can_read[MAX_MUX];
1636 IOReadHandler *chr_read[MAX_MUX];
1637 IOEventHandler *chr_event[MAX_MUX];
1638 void *ext_opaque[MAX_MUX];
1639 CharDriverState *drv;
1640 int mux_cnt;
1641 int term_got_escape;
1642 int max_size;
1643 } MuxDriver;
1646 static int mux_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1648 MuxDriver *d = chr->opaque;
1649 int ret;
1650 if (!term_timestamps) {
1651 ret = d->drv->chr_write(d->drv, buf, len);
1652 } else {
1653 int i;
1655 ret = 0;
1656 for(i = 0; i < len; i++) {
1657 ret += d->drv->chr_write(d->drv, buf+i, 1);
1658 if (buf[i] == '\n') {
1659 char buf1[64];
1660 int64_t ti;
1661 int secs;
1663 ti = get_clock();
1664 if (term_timestamps_start == -1)
1665 term_timestamps_start = ti;
1666 ti -= term_timestamps_start;
1667 secs = ti / 1000000000;
1668 snprintf(buf1, sizeof(buf1),
1669 "[%02d:%02d:%02d.%03d] ",
1670 secs / 3600,
1671 (secs / 60) % 60,
1672 secs % 60,
1673 (int)((ti / 1000000) % 1000));
1674 d->drv->chr_write(d->drv, buf1, strlen(buf1));
1678 return ret;
1681 static char *mux_help[] = {
1682 "% h print this help\n\r",
1683 "% x exit emulator\n\r",
1684 "% s save disk data back to file (if -snapshot)\n\r",
1685 "% t toggle console timestamps\n\r"
1686 "% b send break (magic sysrq)\n\r",
1687 "% c switch between console and monitor\n\r",
1688 "% % sends %\n\r",
1689 NULL
1692 static int term_escape_char = 0x01; /* ctrl-a is used for escape */
1693 static void mux_print_help(CharDriverState *chr)
1695 int i, j;
1696 char ebuf[15] = "Escape-Char";
1697 char cbuf[50] = "\n\r";
1699 if (term_escape_char > 0 && term_escape_char < 26) {
1700 sprintf(cbuf,"\n\r");
1701 sprintf(ebuf,"C-%c", term_escape_char - 1 + 'a');
1702 } else {
1703 sprintf(cbuf,"\n\rEscape-Char set to Ascii: 0x%02x\n\r\n\r", term_escape_char);
1705 chr->chr_write(chr, cbuf, strlen(cbuf));
1706 for (i = 0; mux_help[i] != NULL; i++) {
1707 for (j=0; mux_help[i][j] != '\0'; j++) {
1708 if (mux_help[i][j] == '%')
1709 chr->chr_write(chr, ebuf, strlen(ebuf));
1710 else
1711 chr->chr_write(chr, &mux_help[i][j], 1);
1716 static int mux_proc_byte(CharDriverState *chr, MuxDriver *d, int ch)
1718 if (d->term_got_escape) {
1719 d->term_got_escape = 0;
1720 if (ch == term_escape_char)
1721 goto send_char;
1722 switch(ch) {
1723 case '?':
1724 case 'h':
1725 mux_print_help(chr);
1726 break;
1727 case 'x':
1729 char *term = "QEMU: Terminated\n\r";
1730 chr->chr_write(chr,term,strlen(term));
1731 exit(0);
1732 break;
1734 case 's':
1736 int i;
1737 for (i = 0; i < MAX_DISKS; i++) {
1738 if (bs_table[i])
1739 bdrv_commit(bs_table[i]);
1741 if (mtd_bdrv)
1742 bdrv_commit(mtd_bdrv);
1744 break;
1745 case 'b':
1746 qemu_chr_event(chr, CHR_EVENT_BREAK);
1747 break;
1748 case 'c':
1749 /* Switch to the next registered device */
1750 chr->focus++;
1751 if (chr->focus >= d->mux_cnt)
1752 chr->focus = 0;
1753 break;
1754 case 't':
1755 term_timestamps = !term_timestamps;
1756 term_timestamps_start = -1;
1757 break;
1759 } else if (ch == term_escape_char) {
1760 d->term_got_escape = 1;
1761 } else {
1762 send_char:
1763 return 1;
1765 return 0;
1768 static int mux_chr_can_read(void *opaque)
1770 CharDriverState *chr = opaque;
1771 MuxDriver *d = chr->opaque;
1772 if (d->chr_can_read[chr->focus])
1773 return d->chr_can_read[chr->focus](d->ext_opaque[chr->focus]);
1774 return 0;
1777 static void mux_chr_read(void *opaque, const uint8_t *buf, int size)
1779 CharDriverState *chr = opaque;
1780 MuxDriver *d = chr->opaque;
1781 int i;
1782 for(i = 0; i < size; i++)
1783 if (mux_proc_byte(chr, d, buf[i]))
1784 d->chr_read[chr->focus](d->ext_opaque[chr->focus], &buf[i], 1);
1787 static void mux_chr_event(void *opaque, int event)
1789 CharDriverState *chr = opaque;
1790 MuxDriver *d = chr->opaque;
1791 int i;
1793 /* Send the event to all registered listeners */
1794 for (i = 0; i < d->mux_cnt; i++)
1795 if (d->chr_event[i])
1796 d->chr_event[i](d->ext_opaque[i], event);
1799 static void mux_chr_update_read_handler(CharDriverState *chr)
1801 MuxDriver *d = chr->opaque;
1803 if (d->mux_cnt >= MAX_MUX) {
1804 fprintf(stderr, "Cannot add I/O handlers, MUX array is full\n");
1805 return;
1807 d->ext_opaque[d->mux_cnt] = chr->handler_opaque;
1808 d->chr_can_read[d->mux_cnt] = chr->chr_can_read;
1809 d->chr_read[d->mux_cnt] = chr->chr_read;
1810 d->chr_event[d->mux_cnt] = chr->chr_event;
1811 /* Fix up the real driver with mux routines */
1812 if (d->mux_cnt == 0) {
1813 qemu_chr_add_handlers(d->drv, mux_chr_can_read, mux_chr_read,
1814 mux_chr_event, chr);
1816 chr->focus = d->mux_cnt;
1817 d->mux_cnt++;
1820 CharDriverState *qemu_chr_open_mux(CharDriverState *drv)
1822 CharDriverState *chr;
1823 MuxDriver *d;
1825 chr = qemu_mallocz(sizeof(CharDriverState));
1826 if (!chr)
1827 return NULL;
1828 d = qemu_mallocz(sizeof(MuxDriver));
1829 if (!d) {
1830 free(chr);
1831 return NULL;
1834 chr->opaque = d;
1835 d->drv = drv;
1836 chr->focus = -1;
1837 chr->chr_write = mux_chr_write;
1838 chr->chr_update_read_handler = mux_chr_update_read_handler;
1839 return chr;
1843 #ifdef _WIN32
1845 static void socket_cleanup(void)
1847 WSACleanup();
1850 static int socket_init(void)
1852 WSADATA Data;
1853 int ret, err;
1855 ret = WSAStartup(MAKEWORD(2,2), &Data);
1856 if (ret != 0) {
1857 err = WSAGetLastError();
1858 fprintf(stderr, "WSAStartup: %d\n", err);
1859 return -1;
1861 atexit(socket_cleanup);
1862 return 0;
1865 static int send_all(int fd, const uint8_t *buf, int len1)
1867 int ret, len;
1869 len = len1;
1870 while (len > 0) {
1871 ret = send(fd, buf, len, 0);
1872 if (ret < 0) {
1873 int errno;
1874 errno = WSAGetLastError();
1875 if (errno != WSAEWOULDBLOCK) {
1876 return -1;
1878 } else if (ret == 0) {
1879 break;
1880 } else {
1881 buf += ret;
1882 len -= ret;
1885 return len1 - len;
1888 void socket_set_nonblock(int fd)
1890 unsigned long opt = 1;
1891 ioctlsocket(fd, FIONBIO, &opt);
1894 #else
1896 static int unix_write(int fd, const uint8_t *buf, int len1)
1898 int ret, len;
1900 len = len1;
1901 while (len > 0) {
1902 ret = write(fd, buf, len);
1903 if (ret < 0) {
1904 if (errno != EINTR && errno != EAGAIN)
1905 return -1;
1906 } else if (ret == 0) {
1907 break;
1908 } else {
1909 buf += ret;
1910 len -= ret;
1913 return len1 - len;
1916 static inline int send_all(int fd, const uint8_t *buf, int len1)
1918 return unix_write(fd, buf, len1);
1921 void socket_set_nonblock(int fd)
1923 fcntl(fd, F_SETFL, O_NONBLOCK);
1925 #endif /* !_WIN32 */
1927 #ifndef _WIN32
1929 typedef struct {
1930 int fd_in, fd_out;
1931 int max_size;
1932 } FDCharDriver;
1934 #define STDIO_MAX_CLIENTS 1
1935 static int stdio_nb_clients = 0;
1937 static int fd_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1939 FDCharDriver *s = chr->opaque;
1940 return unix_write(s->fd_out, buf, len);
1943 static int fd_chr_read_poll(void *opaque)
1945 CharDriverState *chr = opaque;
1946 FDCharDriver *s = chr->opaque;
1948 s->max_size = qemu_chr_can_read(chr);
1949 return s->max_size;
1952 static void fd_chr_read(void *opaque)
1954 CharDriverState *chr = opaque;
1955 FDCharDriver *s = chr->opaque;
1956 int size, len;
1957 uint8_t buf[1024];
1959 len = sizeof(buf);
1960 if (len > s->max_size)
1961 len = s->max_size;
1962 if (len == 0)
1963 return;
1964 size = read(s->fd_in, buf, len);
1965 if (size == 0) {
1966 /* FD has been closed. Remove it from the active list. */
1967 qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
1968 return;
1970 if (size > 0) {
1971 qemu_chr_read(chr, buf, size);
1975 static void fd_chr_update_read_handler(CharDriverState *chr)
1977 FDCharDriver *s = chr->opaque;
1979 if (s->fd_in >= 0) {
1980 if (nographic && s->fd_in == 0) {
1981 } else {
1982 qemu_set_fd_handler2(s->fd_in, fd_chr_read_poll,
1983 fd_chr_read, NULL, chr);
1988 /* open a character device to a unix fd */
1989 static CharDriverState *qemu_chr_open_fd(int fd_in, int fd_out)
1991 CharDriverState *chr;
1992 FDCharDriver *s;
1994 chr = qemu_mallocz(sizeof(CharDriverState));
1995 if (!chr)
1996 return NULL;
1997 s = qemu_mallocz(sizeof(FDCharDriver));
1998 if (!s) {
1999 free(chr);
2000 return NULL;
2002 s->fd_in = fd_in;
2003 s->fd_out = fd_out;
2004 chr->opaque = s;
2005 chr->chr_write = fd_chr_write;
2006 chr->chr_update_read_handler = fd_chr_update_read_handler;
2008 qemu_chr_reset(chr);
2010 return chr;
2013 static CharDriverState *qemu_chr_open_file_out(const char *file_out)
2015 int fd_out;
2017 TFR(fd_out = open(file_out, O_WRONLY | O_TRUNC | O_CREAT | O_BINARY, 0666));
2018 if (fd_out < 0)
2019 return NULL;
2020 return qemu_chr_open_fd(-1, fd_out);
2023 static CharDriverState *qemu_chr_open_pipe(const char *filename)
2025 int fd_in, fd_out;
2026 char filename_in[256], filename_out[256];
2028 snprintf(filename_in, 256, "%s.in", filename);
2029 snprintf(filename_out, 256, "%s.out", filename);
2030 TFR(fd_in = open(filename_in, O_RDWR | O_BINARY));
2031 TFR(fd_out = open(filename_out, O_RDWR | O_BINARY));
2032 if (fd_in < 0 || fd_out < 0) {
2033 if (fd_in >= 0)
2034 close(fd_in);
2035 if (fd_out >= 0)
2036 close(fd_out);
2037 TFR(fd_in = fd_out = open(filename, O_RDWR | O_BINARY));
2038 if (fd_in < 0)
2039 return NULL;
2041 return qemu_chr_open_fd(fd_in, fd_out);
2045 /* for STDIO, we handle the case where several clients use it
2046 (nographic mode) */
2048 #define TERM_FIFO_MAX_SIZE 1
2050 static uint8_t term_fifo[TERM_FIFO_MAX_SIZE];
2051 static int term_fifo_size;
2053 static int stdio_read_poll(void *opaque)
2055 CharDriverState *chr = opaque;
2057 /* try to flush the queue if needed */
2058 if (term_fifo_size != 0 && qemu_chr_can_read(chr) > 0) {
2059 qemu_chr_read(chr, term_fifo, 1);
2060 term_fifo_size = 0;
2062 /* see if we can absorb more chars */
2063 if (term_fifo_size == 0)
2064 return 1;
2065 else
2066 return 0;
2069 static void stdio_read(void *opaque)
2071 int size;
2072 uint8_t buf[1];
2073 CharDriverState *chr = opaque;
2075 size = read(0, buf, 1);
2076 if (size == 0) {
2077 /* stdin has been closed. Remove it from the active list. */
2078 qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
2079 return;
2081 if (size > 0) {
2082 if (qemu_chr_can_read(chr) > 0) {
2083 qemu_chr_read(chr, buf, 1);
2084 } else if (term_fifo_size == 0) {
2085 term_fifo[term_fifo_size++] = buf[0];
2090 /* init terminal so that we can grab keys */
2091 static struct termios oldtty;
2092 static int old_fd0_flags;
2094 static void term_exit(void)
2096 tcsetattr (0, TCSANOW, &oldtty);
2097 fcntl(0, F_SETFL, old_fd0_flags);
2100 static void term_init(void)
2102 struct termios tty;
2104 tcgetattr (0, &tty);
2105 oldtty = tty;
2106 old_fd0_flags = fcntl(0, F_GETFL);
2108 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2109 |INLCR|IGNCR|ICRNL|IXON);
2110 tty.c_oflag |= OPOST;
2111 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
2112 /* if graphical mode, we allow Ctrl-C handling */
2113 if (nographic)
2114 tty.c_lflag &= ~ISIG;
2115 tty.c_cflag &= ~(CSIZE|PARENB);
2116 tty.c_cflag |= CS8;
2117 tty.c_cc[VMIN] = 1;
2118 tty.c_cc[VTIME] = 0;
2120 tcsetattr (0, TCSANOW, &tty);
2122 atexit(term_exit);
2124 fcntl(0, F_SETFL, O_NONBLOCK);
2127 static CharDriverState *qemu_chr_open_stdio(void)
2129 CharDriverState *chr;
2131 if (stdio_nb_clients >= STDIO_MAX_CLIENTS)
2132 return NULL;
2133 chr = qemu_chr_open_fd(0, 1);
2134 qemu_set_fd_handler2(0, stdio_read_poll, stdio_read, NULL, chr);
2135 stdio_nb_clients++;
2136 term_init();
2138 return chr;
2141 #if defined(__linux__) || defined(__sun__)
2142 static CharDriverState *qemu_chr_open_pty(void)
2144 struct termios tty;
2145 char slave_name[1024];
2146 int master_fd, slave_fd;
2148 #if defined(__linux__)
2149 /* Not satisfying */
2150 if (openpty(&master_fd, &slave_fd, slave_name, NULL, NULL) < 0) {
2151 return NULL;
2153 #endif
2155 /* Disabling local echo and line-buffered output */
2156 tcgetattr (master_fd, &tty);
2157 tty.c_lflag &= ~(ECHO|ICANON|ISIG);
2158 tty.c_cc[VMIN] = 1;
2159 tty.c_cc[VTIME] = 0;
2160 tcsetattr (master_fd, TCSAFLUSH, &tty);
2162 fprintf(stderr, "char device redirected to %s\n", slave_name);
2163 return qemu_chr_open_fd(master_fd, master_fd);
2166 static void tty_serial_init(int fd, int speed,
2167 int parity, int data_bits, int stop_bits)
2169 struct termios tty;
2170 speed_t spd;
2172 #if 0
2173 printf("tty_serial_init: speed=%d parity=%c data=%d stop=%d\n",
2174 speed, parity, data_bits, stop_bits);
2175 #endif
2176 tcgetattr (fd, &tty);
2178 switch(speed) {
2179 case 50:
2180 spd = B50;
2181 break;
2182 case 75:
2183 spd = B75;
2184 break;
2185 case 300:
2186 spd = B300;
2187 break;
2188 case 600:
2189 spd = B600;
2190 break;
2191 case 1200:
2192 spd = B1200;
2193 break;
2194 case 2400:
2195 spd = B2400;
2196 break;
2197 case 4800:
2198 spd = B4800;
2199 break;
2200 case 9600:
2201 spd = B9600;
2202 break;
2203 case 19200:
2204 spd = B19200;
2205 break;
2206 case 38400:
2207 spd = B38400;
2208 break;
2209 case 57600:
2210 spd = B57600;
2211 break;
2212 default:
2213 case 115200:
2214 spd = B115200;
2215 break;
2218 cfsetispeed(&tty, spd);
2219 cfsetospeed(&tty, spd);
2221 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2222 |INLCR|IGNCR|ICRNL|IXON);
2223 tty.c_oflag |= OPOST;
2224 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
2225 tty.c_cflag &= ~(CSIZE|PARENB|PARODD|CRTSCTS|CSTOPB);
2226 switch(data_bits) {
2227 default:
2228 case 8:
2229 tty.c_cflag |= CS8;
2230 break;
2231 case 7:
2232 tty.c_cflag |= CS7;
2233 break;
2234 case 6:
2235 tty.c_cflag |= CS6;
2236 break;
2237 case 5:
2238 tty.c_cflag |= CS5;
2239 break;
2241 switch(parity) {
2242 default:
2243 case 'N':
2244 break;
2245 case 'E':
2246 tty.c_cflag |= PARENB;
2247 break;
2248 case 'O':
2249 tty.c_cflag |= PARENB | PARODD;
2250 break;
2252 if (stop_bits == 2)
2253 tty.c_cflag |= CSTOPB;
2255 tcsetattr (fd, TCSANOW, &tty);
2258 static int tty_serial_ioctl(CharDriverState *chr, int cmd, void *arg)
2260 FDCharDriver *s = chr->opaque;
2262 switch(cmd) {
2263 case CHR_IOCTL_SERIAL_SET_PARAMS:
2265 QEMUSerialSetParams *ssp = arg;
2266 tty_serial_init(s->fd_in, ssp->speed, ssp->parity,
2267 ssp->data_bits, ssp->stop_bits);
2269 break;
2270 case CHR_IOCTL_SERIAL_SET_BREAK:
2272 int enable = *(int *)arg;
2273 if (enable)
2274 tcsendbreak(s->fd_in, 1);
2276 break;
2277 default:
2278 return -ENOTSUP;
2280 return 0;
2283 static CharDriverState *qemu_chr_open_tty(const char *filename)
2285 CharDriverState *chr;
2286 int fd;
2288 TFR(fd = open(filename, O_RDWR | O_NONBLOCK));
2289 fcntl(fd, F_SETFL, O_NONBLOCK);
2290 tty_serial_init(fd, 115200, 'N', 8, 1);
2291 chr = qemu_chr_open_fd(fd, fd);
2292 if (!chr) {
2293 close(fd);
2294 return NULL;
2296 chr->chr_ioctl = tty_serial_ioctl;
2297 qemu_chr_reset(chr);
2298 return chr;
2300 #else /* ! __linux__ && ! __sun__ */
2301 static CharDriverState *qemu_chr_open_pty(void)
2303 return NULL;
2305 #endif /* __linux__ || __sun__ */
2307 #if defined(__linux__)
2308 typedef struct {
2309 int fd;
2310 int mode;
2311 } ParallelCharDriver;
2313 static int pp_hw_mode(ParallelCharDriver *s, uint16_t mode)
2315 if (s->mode != mode) {
2316 int m = mode;
2317 if (ioctl(s->fd, PPSETMODE, &m) < 0)
2318 return 0;
2319 s->mode = mode;
2321 return 1;
2324 static int pp_ioctl(CharDriverState *chr, int cmd, void *arg)
2326 ParallelCharDriver *drv = chr->opaque;
2327 int fd = drv->fd;
2328 uint8_t b;
2330 switch(cmd) {
2331 case CHR_IOCTL_PP_READ_DATA:
2332 if (ioctl(fd, PPRDATA, &b) < 0)
2333 return -ENOTSUP;
2334 *(uint8_t *)arg = b;
2335 break;
2336 case CHR_IOCTL_PP_WRITE_DATA:
2337 b = *(uint8_t *)arg;
2338 if (ioctl(fd, PPWDATA, &b) < 0)
2339 return -ENOTSUP;
2340 break;
2341 case CHR_IOCTL_PP_READ_CONTROL:
2342 if (ioctl(fd, PPRCONTROL, &b) < 0)
2343 return -ENOTSUP;
2344 /* Linux gives only the lowest bits, and no way to know data
2345 direction! For better compatibility set the fixed upper
2346 bits. */
2347 *(uint8_t *)arg = b | 0xc0;
2348 break;
2349 case CHR_IOCTL_PP_WRITE_CONTROL:
2350 b = *(uint8_t *)arg;
2351 if (ioctl(fd, PPWCONTROL, &b) < 0)
2352 return -ENOTSUP;
2353 break;
2354 case CHR_IOCTL_PP_READ_STATUS:
2355 if (ioctl(fd, PPRSTATUS, &b) < 0)
2356 return -ENOTSUP;
2357 *(uint8_t *)arg = b;
2358 break;
2359 case CHR_IOCTL_PP_EPP_READ_ADDR:
2360 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2361 struct ParallelIOArg *parg = arg;
2362 int n = read(fd, parg->buffer, parg->count);
2363 if (n != parg->count) {
2364 return -EIO;
2367 break;
2368 case CHR_IOCTL_PP_EPP_READ:
2369 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2370 struct ParallelIOArg *parg = arg;
2371 int n = read(fd, parg->buffer, parg->count);
2372 if (n != parg->count) {
2373 return -EIO;
2376 break;
2377 case CHR_IOCTL_PP_EPP_WRITE_ADDR:
2378 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2379 struct ParallelIOArg *parg = arg;
2380 int n = write(fd, parg->buffer, parg->count);
2381 if (n != parg->count) {
2382 return -EIO;
2385 break;
2386 case CHR_IOCTL_PP_EPP_WRITE:
2387 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2388 struct ParallelIOArg *parg = arg;
2389 int n = write(fd, parg->buffer, parg->count);
2390 if (n != parg->count) {
2391 return -EIO;
2394 break;
2395 default:
2396 return -ENOTSUP;
2398 return 0;
2401 static void pp_close(CharDriverState *chr)
2403 ParallelCharDriver *drv = chr->opaque;
2404 int fd = drv->fd;
2406 pp_hw_mode(drv, IEEE1284_MODE_COMPAT);
2407 ioctl(fd, PPRELEASE);
2408 close(fd);
2409 qemu_free(drv);
2412 static CharDriverState *qemu_chr_open_pp(const char *filename)
2414 CharDriverState *chr;
2415 ParallelCharDriver *drv;
2416 int fd;
2418 TFR(fd = open(filename, O_RDWR));
2419 if (fd < 0)
2420 return NULL;
2422 if (ioctl(fd, PPCLAIM) < 0) {
2423 close(fd);
2424 return NULL;
2427 drv = qemu_mallocz(sizeof(ParallelCharDriver));
2428 if (!drv) {
2429 close(fd);
2430 return NULL;
2432 drv->fd = fd;
2433 drv->mode = IEEE1284_MODE_COMPAT;
2435 chr = qemu_mallocz(sizeof(CharDriverState));
2436 if (!chr) {
2437 qemu_free(drv);
2438 close(fd);
2439 return NULL;
2441 chr->chr_write = null_chr_write;
2442 chr->chr_ioctl = pp_ioctl;
2443 chr->chr_close = pp_close;
2444 chr->opaque = drv;
2446 qemu_chr_reset(chr);
2448 return chr;
2450 #endif /* __linux__ */
2452 #else /* _WIN32 */
2454 typedef struct {
2455 int max_size;
2456 HANDLE hcom, hrecv, hsend;
2457 OVERLAPPED orecv, osend;
2458 BOOL fpipe;
2459 DWORD len;
2460 } WinCharState;
2462 #define NSENDBUF 2048
2463 #define NRECVBUF 2048
2464 #define MAXCONNECT 1
2465 #define NTIMEOUT 5000
2467 static int win_chr_poll(void *opaque);
2468 static int win_chr_pipe_poll(void *opaque);
2470 static void win_chr_close(CharDriverState *chr)
2472 WinCharState *s = chr->opaque;
2474 if (s->hsend) {
2475 CloseHandle(s->hsend);
2476 s->hsend = NULL;
2478 if (s->hrecv) {
2479 CloseHandle(s->hrecv);
2480 s->hrecv = NULL;
2482 if (s->hcom) {
2483 CloseHandle(s->hcom);
2484 s->hcom = NULL;
2486 if (s->fpipe)
2487 qemu_del_polling_cb(win_chr_pipe_poll, chr);
2488 else
2489 qemu_del_polling_cb(win_chr_poll, chr);
2492 static int win_chr_init(CharDriverState *chr, const char *filename)
2494 WinCharState *s = chr->opaque;
2495 COMMCONFIG comcfg;
2496 COMMTIMEOUTS cto = { 0, 0, 0, 0, 0};
2497 COMSTAT comstat;
2498 DWORD size;
2499 DWORD err;
2501 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2502 if (!s->hsend) {
2503 fprintf(stderr, "Failed CreateEvent\n");
2504 goto fail;
2506 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2507 if (!s->hrecv) {
2508 fprintf(stderr, "Failed CreateEvent\n");
2509 goto fail;
2512 s->hcom = CreateFile(filename, GENERIC_READ|GENERIC_WRITE, 0, NULL,
2513 OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0);
2514 if (s->hcom == INVALID_HANDLE_VALUE) {
2515 fprintf(stderr, "Failed CreateFile (%lu)\n", GetLastError());
2516 s->hcom = NULL;
2517 goto fail;
2520 if (!SetupComm(s->hcom, NRECVBUF, NSENDBUF)) {
2521 fprintf(stderr, "Failed SetupComm\n");
2522 goto fail;
2525 ZeroMemory(&comcfg, sizeof(COMMCONFIG));
2526 size = sizeof(COMMCONFIG);
2527 GetDefaultCommConfig(filename, &comcfg, &size);
2528 comcfg.dcb.DCBlength = sizeof(DCB);
2529 CommConfigDialog(filename, NULL, &comcfg);
2531 if (!SetCommState(s->hcom, &comcfg.dcb)) {
2532 fprintf(stderr, "Failed SetCommState\n");
2533 goto fail;
2536 if (!SetCommMask(s->hcom, EV_ERR)) {
2537 fprintf(stderr, "Failed SetCommMask\n");
2538 goto fail;
2541 cto.ReadIntervalTimeout = MAXDWORD;
2542 if (!SetCommTimeouts(s->hcom, &cto)) {
2543 fprintf(stderr, "Failed SetCommTimeouts\n");
2544 goto fail;
2547 if (!ClearCommError(s->hcom, &err, &comstat)) {
2548 fprintf(stderr, "Failed ClearCommError\n");
2549 goto fail;
2551 qemu_add_polling_cb(win_chr_poll, chr);
2552 return 0;
2554 fail:
2555 win_chr_close(chr);
2556 return -1;
2559 static int win_chr_write(CharDriverState *chr, const uint8_t *buf, int len1)
2561 WinCharState *s = chr->opaque;
2562 DWORD len, ret, size, err;
2564 len = len1;
2565 ZeroMemory(&s->osend, sizeof(s->osend));
2566 s->osend.hEvent = s->hsend;
2567 while (len > 0) {
2568 if (s->hsend)
2569 ret = WriteFile(s->hcom, buf, len, &size, &s->osend);
2570 else
2571 ret = WriteFile(s->hcom, buf, len, &size, NULL);
2572 if (!ret) {
2573 err = GetLastError();
2574 if (err == ERROR_IO_PENDING) {
2575 ret = GetOverlappedResult(s->hcom, &s->osend, &size, TRUE);
2576 if (ret) {
2577 buf += size;
2578 len -= size;
2579 } else {
2580 break;
2582 } else {
2583 break;
2585 } else {
2586 buf += size;
2587 len -= size;
2590 return len1 - len;
2593 static int win_chr_read_poll(CharDriverState *chr)
2595 WinCharState *s = chr->opaque;
2597 s->max_size = qemu_chr_can_read(chr);
2598 return s->max_size;
2601 static void win_chr_readfile(CharDriverState *chr)
2603 WinCharState *s = chr->opaque;
2604 int ret, err;
2605 uint8_t buf[1024];
2606 DWORD size;
2608 ZeroMemory(&s->orecv, sizeof(s->orecv));
2609 s->orecv.hEvent = s->hrecv;
2610 ret = ReadFile(s->hcom, buf, s->len, &size, &s->orecv);
2611 if (!ret) {
2612 err = GetLastError();
2613 if (err == ERROR_IO_PENDING) {
2614 ret = GetOverlappedResult(s->hcom, &s->orecv, &size, TRUE);
2618 if (size > 0) {
2619 qemu_chr_read(chr, buf, size);
2623 static void win_chr_read(CharDriverState *chr)
2625 WinCharState *s = chr->opaque;
2627 if (s->len > s->max_size)
2628 s->len = s->max_size;
2629 if (s->len == 0)
2630 return;
2632 win_chr_readfile(chr);
2635 static int win_chr_poll(void *opaque)
2637 CharDriverState *chr = opaque;
2638 WinCharState *s = chr->opaque;
2639 COMSTAT status;
2640 DWORD comerr;
2642 ClearCommError(s->hcom, &comerr, &status);
2643 if (status.cbInQue > 0) {
2644 s->len = status.cbInQue;
2645 win_chr_read_poll(chr);
2646 win_chr_read(chr);
2647 return 1;
2649 return 0;
2652 static CharDriverState *qemu_chr_open_win(const char *filename)
2654 CharDriverState *chr;
2655 WinCharState *s;
2657 chr = qemu_mallocz(sizeof(CharDriverState));
2658 if (!chr)
2659 return NULL;
2660 s = qemu_mallocz(sizeof(WinCharState));
2661 if (!s) {
2662 free(chr);
2663 return NULL;
2665 chr->opaque = s;
2666 chr->chr_write = win_chr_write;
2667 chr->chr_close = win_chr_close;
2669 if (win_chr_init(chr, filename) < 0) {
2670 free(s);
2671 free(chr);
2672 return NULL;
2674 qemu_chr_reset(chr);
2675 return chr;
2678 static int win_chr_pipe_poll(void *opaque)
2680 CharDriverState *chr = opaque;
2681 WinCharState *s = chr->opaque;
2682 DWORD size;
2684 PeekNamedPipe(s->hcom, NULL, 0, NULL, &size, NULL);
2685 if (size > 0) {
2686 s->len = size;
2687 win_chr_read_poll(chr);
2688 win_chr_read(chr);
2689 return 1;
2691 return 0;
2694 static int win_chr_pipe_init(CharDriverState *chr, const char *filename)
2696 WinCharState *s = chr->opaque;
2697 OVERLAPPED ov;
2698 int ret;
2699 DWORD size;
2700 char openname[256];
2702 s->fpipe = TRUE;
2704 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2705 if (!s->hsend) {
2706 fprintf(stderr, "Failed CreateEvent\n");
2707 goto fail;
2709 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2710 if (!s->hrecv) {
2711 fprintf(stderr, "Failed CreateEvent\n");
2712 goto fail;
2715 snprintf(openname, sizeof(openname), "\\\\.\\pipe\\%s", filename);
2716 s->hcom = CreateNamedPipe(openname, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED,
2717 PIPE_TYPE_BYTE | PIPE_READMODE_BYTE |
2718 PIPE_WAIT,
2719 MAXCONNECT, NSENDBUF, NRECVBUF, NTIMEOUT, NULL);
2720 if (s->hcom == INVALID_HANDLE_VALUE) {
2721 fprintf(stderr, "Failed CreateNamedPipe (%lu)\n", GetLastError());
2722 s->hcom = NULL;
2723 goto fail;
2726 ZeroMemory(&ov, sizeof(ov));
2727 ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
2728 ret = ConnectNamedPipe(s->hcom, &ov);
2729 if (ret) {
2730 fprintf(stderr, "Failed ConnectNamedPipe\n");
2731 goto fail;
2734 ret = GetOverlappedResult(s->hcom, &ov, &size, TRUE);
2735 if (!ret) {
2736 fprintf(stderr, "Failed GetOverlappedResult\n");
2737 if (ov.hEvent) {
2738 CloseHandle(ov.hEvent);
2739 ov.hEvent = NULL;
2741 goto fail;
2744 if (ov.hEvent) {
2745 CloseHandle(ov.hEvent);
2746 ov.hEvent = NULL;
2748 qemu_add_polling_cb(win_chr_pipe_poll, chr);
2749 return 0;
2751 fail:
2752 win_chr_close(chr);
2753 return -1;
2757 static CharDriverState *qemu_chr_open_win_pipe(const char *filename)
2759 CharDriverState *chr;
2760 WinCharState *s;
2762 chr = qemu_mallocz(sizeof(CharDriverState));
2763 if (!chr)
2764 return NULL;
2765 s = qemu_mallocz(sizeof(WinCharState));
2766 if (!s) {
2767 free(chr);
2768 return NULL;
2770 chr->opaque = s;
2771 chr->chr_write = win_chr_write;
2772 chr->chr_close = win_chr_close;
2774 if (win_chr_pipe_init(chr, filename) < 0) {
2775 free(s);
2776 free(chr);
2777 return NULL;
2779 qemu_chr_reset(chr);
2780 return chr;
2783 static CharDriverState *qemu_chr_open_win_file(HANDLE fd_out)
2785 CharDriverState *chr;
2786 WinCharState *s;
2788 chr = qemu_mallocz(sizeof(CharDriverState));
2789 if (!chr)
2790 return NULL;
2791 s = qemu_mallocz(sizeof(WinCharState));
2792 if (!s) {
2793 free(chr);
2794 return NULL;
2796 s->hcom = fd_out;
2797 chr->opaque = s;
2798 chr->chr_write = win_chr_write;
2799 qemu_chr_reset(chr);
2800 return chr;
2803 static CharDriverState *qemu_chr_open_win_con(const char *filename)
2805 return qemu_chr_open_win_file(GetStdHandle(STD_OUTPUT_HANDLE));
2808 static CharDriverState *qemu_chr_open_win_file_out(const char *file_out)
2810 HANDLE fd_out;
2812 fd_out = CreateFile(file_out, GENERIC_WRITE, FILE_SHARE_READ, NULL,
2813 OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
2814 if (fd_out == INVALID_HANDLE_VALUE)
2815 return NULL;
2817 return qemu_chr_open_win_file(fd_out);
2819 #endif /* !_WIN32 */
2821 /***********************************************************/
2822 /* UDP Net console */
2824 typedef struct {
2825 int fd;
2826 struct sockaddr_in daddr;
2827 char buf[1024];
2828 int bufcnt;
2829 int bufptr;
2830 int max_size;
2831 } NetCharDriver;
2833 static int udp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2835 NetCharDriver *s = chr->opaque;
2837 return sendto(s->fd, buf, len, 0,
2838 (struct sockaddr *)&s->daddr, sizeof(struct sockaddr_in));
2841 static int udp_chr_read_poll(void *opaque)
2843 CharDriverState *chr = opaque;
2844 NetCharDriver *s = chr->opaque;
2846 s->max_size = qemu_chr_can_read(chr);
2848 /* If there were any stray characters in the queue process them
2849 * first
2851 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2852 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2853 s->bufptr++;
2854 s->max_size = qemu_chr_can_read(chr);
2856 return s->max_size;
2859 static void udp_chr_read(void *opaque)
2861 CharDriverState *chr = opaque;
2862 NetCharDriver *s = chr->opaque;
2864 if (s->max_size == 0)
2865 return;
2866 s->bufcnt = recv(s->fd, s->buf, sizeof(s->buf), 0);
2867 s->bufptr = s->bufcnt;
2868 if (s->bufcnt <= 0)
2869 return;
2871 s->bufptr = 0;
2872 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2873 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2874 s->bufptr++;
2875 s->max_size = qemu_chr_can_read(chr);
2879 static void udp_chr_update_read_handler(CharDriverState *chr)
2881 NetCharDriver *s = chr->opaque;
2883 if (s->fd >= 0) {
2884 qemu_set_fd_handler2(s->fd, udp_chr_read_poll,
2885 udp_chr_read, NULL, chr);
2889 int parse_host_port(struct sockaddr_in *saddr, const char *str);
2890 #ifndef _WIN32
2891 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str);
2892 #endif
2893 int parse_host_src_port(struct sockaddr_in *haddr,
2894 struct sockaddr_in *saddr,
2895 const char *str);
2897 static CharDriverState *qemu_chr_open_udp(const char *def)
2899 CharDriverState *chr = NULL;
2900 NetCharDriver *s = NULL;
2901 int fd = -1;
2902 struct sockaddr_in saddr;
2904 chr = qemu_mallocz(sizeof(CharDriverState));
2905 if (!chr)
2906 goto return_err;
2907 s = qemu_mallocz(sizeof(NetCharDriver));
2908 if (!s)
2909 goto return_err;
2911 fd = socket(PF_INET, SOCK_DGRAM, 0);
2912 if (fd < 0) {
2913 perror("socket(PF_INET, SOCK_DGRAM)");
2914 goto return_err;
2917 if (parse_host_src_port(&s->daddr, &saddr, def) < 0) {
2918 printf("Could not parse: %s\n", def);
2919 goto return_err;
2922 if (bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
2924 perror("bind");
2925 goto return_err;
2928 s->fd = fd;
2929 s->bufcnt = 0;
2930 s->bufptr = 0;
2931 chr->opaque = s;
2932 chr->chr_write = udp_chr_write;
2933 chr->chr_update_read_handler = udp_chr_update_read_handler;
2934 return chr;
2936 return_err:
2937 if (chr)
2938 free(chr);
2939 if (s)
2940 free(s);
2941 if (fd >= 0)
2942 closesocket(fd);
2943 return NULL;
2946 /***********************************************************/
2947 /* TCP Net console */
2949 typedef struct {
2950 int fd, listen_fd;
2951 int connected;
2952 int max_size;
2953 int do_telnetopt;
2954 int do_nodelay;
2955 int is_unix;
2956 } TCPCharDriver;
2958 static void tcp_chr_accept(void *opaque);
2960 static int tcp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2962 TCPCharDriver *s = chr->opaque;
2963 if (s->connected) {
2964 return send_all(s->fd, buf, len);
2965 } else {
2966 /* XXX: indicate an error ? */
2967 return len;
2971 static int tcp_chr_read_poll(void *opaque)
2973 CharDriverState *chr = opaque;
2974 TCPCharDriver *s = chr->opaque;
2975 if (!s->connected)
2976 return 0;
2977 s->max_size = qemu_chr_can_read(chr);
2978 return s->max_size;
2981 #define IAC 255
2982 #define IAC_BREAK 243
2983 static void tcp_chr_process_IAC_bytes(CharDriverState *chr,
2984 TCPCharDriver *s,
2985 char *buf, int *size)
2987 /* Handle any telnet client's basic IAC options to satisfy char by
2988 * char mode with no echo. All IAC options will be removed from
2989 * the buf and the do_telnetopt variable will be used to track the
2990 * state of the width of the IAC information.
2992 * IAC commands come in sets of 3 bytes with the exception of the
2993 * "IAC BREAK" command and the double IAC.
2996 int i;
2997 int j = 0;
2999 for (i = 0; i < *size; i++) {
3000 if (s->do_telnetopt > 1) {
3001 if ((unsigned char)buf[i] == IAC && s->do_telnetopt == 2) {
3002 /* Double IAC means send an IAC */
3003 if (j != i)
3004 buf[j] = buf[i];
3005 j++;
3006 s->do_telnetopt = 1;
3007 } else {
3008 if ((unsigned char)buf[i] == IAC_BREAK && s->do_telnetopt == 2) {
3009 /* Handle IAC break commands by sending a serial break */
3010 qemu_chr_event(chr, CHR_EVENT_BREAK);
3011 s->do_telnetopt++;
3013 s->do_telnetopt++;
3015 if (s->do_telnetopt >= 4) {
3016 s->do_telnetopt = 1;
3018 } else {
3019 if ((unsigned char)buf[i] == IAC) {
3020 s->do_telnetopt = 2;
3021 } else {
3022 if (j != i)
3023 buf[j] = buf[i];
3024 j++;
3028 *size = j;
3031 static void tcp_chr_read(void *opaque)
3033 CharDriverState *chr = opaque;
3034 TCPCharDriver *s = chr->opaque;
3035 uint8_t buf[1024];
3036 int len, size;
3038 if (!s->connected || s->max_size <= 0)
3039 return;
3040 len = sizeof(buf);
3041 if (len > s->max_size)
3042 len = s->max_size;
3043 size = recv(s->fd, buf, len, 0);
3044 if (size == 0) {
3045 /* connection closed */
3046 s->connected = 0;
3047 if (s->listen_fd >= 0) {
3048 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3050 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3051 closesocket(s->fd);
3052 s->fd = -1;
3053 } else if (size > 0) {
3054 if (s->do_telnetopt)
3055 tcp_chr_process_IAC_bytes(chr, s, buf, &size);
3056 if (size > 0)
3057 qemu_chr_read(chr, buf, size);
3061 static void tcp_chr_connect(void *opaque)
3063 CharDriverState *chr = opaque;
3064 TCPCharDriver *s = chr->opaque;
3066 s->connected = 1;
3067 qemu_set_fd_handler2(s->fd, tcp_chr_read_poll,
3068 tcp_chr_read, NULL, chr);
3069 qemu_chr_reset(chr);
3072 #define IACSET(x,a,b,c) x[0] = a; x[1] = b; x[2] = c;
3073 static void tcp_chr_telnet_init(int fd)
3075 char buf[3];
3076 /* Send the telnet negotion to put telnet in binary, no echo, single char mode */
3077 IACSET(buf, 0xff, 0xfb, 0x01); /* IAC WILL ECHO */
3078 send(fd, (char *)buf, 3, 0);
3079 IACSET(buf, 0xff, 0xfb, 0x03); /* IAC WILL Suppress go ahead */
3080 send(fd, (char *)buf, 3, 0);
3081 IACSET(buf, 0xff, 0xfb, 0x00); /* IAC WILL Binary */
3082 send(fd, (char *)buf, 3, 0);
3083 IACSET(buf, 0xff, 0xfd, 0x00); /* IAC DO Binary */
3084 send(fd, (char *)buf, 3, 0);
3087 static void socket_set_nodelay(int fd)
3089 int val = 1;
3090 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
3093 static void tcp_chr_accept(void *opaque)
3095 CharDriverState *chr = opaque;
3096 TCPCharDriver *s = chr->opaque;
3097 struct sockaddr_in saddr;
3098 #ifndef _WIN32
3099 struct sockaddr_un uaddr;
3100 #endif
3101 struct sockaddr *addr;
3102 socklen_t len;
3103 int fd;
3105 for(;;) {
3106 #ifndef _WIN32
3107 if (s->is_unix) {
3108 len = sizeof(uaddr);
3109 addr = (struct sockaddr *)&uaddr;
3110 } else
3111 #endif
3113 len = sizeof(saddr);
3114 addr = (struct sockaddr *)&saddr;
3116 fd = accept(s->listen_fd, addr, &len);
3117 if (fd < 0 && errno != EINTR) {
3118 return;
3119 } else if (fd >= 0) {
3120 if (s->do_telnetopt)
3121 tcp_chr_telnet_init(fd);
3122 break;
3125 socket_set_nonblock(fd);
3126 if (s->do_nodelay)
3127 socket_set_nodelay(fd);
3128 s->fd = fd;
3129 qemu_set_fd_handler(s->listen_fd, NULL, NULL, NULL);
3130 tcp_chr_connect(chr);
3133 static void tcp_chr_close(CharDriverState *chr)
3135 TCPCharDriver *s = chr->opaque;
3136 if (s->fd >= 0)
3137 closesocket(s->fd);
3138 if (s->listen_fd >= 0)
3139 closesocket(s->listen_fd);
3140 qemu_free(s);
3143 static CharDriverState *qemu_chr_open_tcp(const char *host_str,
3144 int is_telnet,
3145 int is_unix)
3147 CharDriverState *chr = NULL;
3148 TCPCharDriver *s = NULL;
3149 int fd = -1, ret, err, val;
3150 int is_listen = 0;
3151 int is_waitconnect = 1;
3152 int do_nodelay = 0;
3153 const char *ptr;
3154 struct sockaddr_in saddr;
3155 #ifndef _WIN32
3156 struct sockaddr_un uaddr;
3157 #endif
3158 struct sockaddr *addr;
3159 socklen_t addrlen;
3161 #ifndef _WIN32
3162 if (is_unix) {
3163 addr = (struct sockaddr *)&uaddr;
3164 addrlen = sizeof(uaddr);
3165 if (parse_unix_path(&uaddr, host_str) < 0)
3166 goto fail;
3167 } else
3168 #endif
3170 addr = (struct sockaddr *)&saddr;
3171 addrlen = sizeof(saddr);
3172 if (parse_host_port(&saddr, host_str) < 0)
3173 goto fail;
3176 ptr = host_str;
3177 while((ptr = strchr(ptr,','))) {
3178 ptr++;
3179 if (!strncmp(ptr,"server",6)) {
3180 is_listen = 1;
3181 } else if (!strncmp(ptr,"nowait",6)) {
3182 is_waitconnect = 0;
3183 } else if (!strncmp(ptr,"nodelay",6)) {
3184 do_nodelay = 1;
3185 } else {
3186 printf("Unknown option: %s\n", ptr);
3187 goto fail;
3190 if (!is_listen)
3191 is_waitconnect = 0;
3193 chr = qemu_mallocz(sizeof(CharDriverState));
3194 if (!chr)
3195 goto fail;
3196 s = qemu_mallocz(sizeof(TCPCharDriver));
3197 if (!s)
3198 goto fail;
3200 #ifndef _WIN32
3201 if (is_unix)
3202 fd = socket(PF_UNIX, SOCK_STREAM, 0);
3203 else
3204 #endif
3205 fd = socket(PF_INET, SOCK_STREAM, 0);
3207 if (fd < 0)
3208 goto fail;
3210 if (!is_waitconnect)
3211 socket_set_nonblock(fd);
3213 s->connected = 0;
3214 s->fd = -1;
3215 s->listen_fd = -1;
3216 s->is_unix = is_unix;
3217 s->do_nodelay = do_nodelay && !is_unix;
3219 chr->opaque = s;
3220 chr->chr_write = tcp_chr_write;
3221 chr->chr_close = tcp_chr_close;
3223 if (is_listen) {
3224 /* allow fast reuse */
3225 #ifndef _WIN32
3226 if (is_unix) {
3227 char path[109];
3228 strncpy(path, uaddr.sun_path, 108);
3229 path[108] = 0;
3230 unlink(path);
3231 } else
3232 #endif
3234 val = 1;
3235 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
3238 ret = bind(fd, addr, addrlen);
3239 if (ret < 0)
3240 goto fail;
3242 ret = listen(fd, 0);
3243 if (ret < 0)
3244 goto fail;
3246 s->listen_fd = fd;
3247 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3248 if (is_telnet)
3249 s->do_telnetopt = 1;
3250 } else {
3251 for(;;) {
3252 ret = connect(fd, addr, addrlen);
3253 if (ret < 0) {
3254 err = socket_error();
3255 if (err == EINTR || err == EWOULDBLOCK) {
3256 } else if (err == EINPROGRESS) {
3257 break;
3258 #ifdef _WIN32
3259 } else if (err == WSAEALREADY) {
3260 break;
3261 #endif
3262 } else {
3263 goto fail;
3265 } else {
3266 s->connected = 1;
3267 break;
3270 s->fd = fd;
3271 socket_set_nodelay(fd);
3272 if (s->connected)
3273 tcp_chr_connect(chr);
3274 else
3275 qemu_set_fd_handler(s->fd, NULL, tcp_chr_connect, chr);
3278 if (is_listen && is_waitconnect) {
3279 printf("QEMU waiting for connection on: %s\n", host_str);
3280 tcp_chr_accept(chr);
3281 socket_set_nonblock(s->listen_fd);
3284 return chr;
3285 fail:
3286 if (fd >= 0)
3287 closesocket(fd);
3288 qemu_free(s);
3289 qemu_free(chr);
3290 return NULL;
3293 CharDriverState *qemu_chr_open(const char *filename)
3295 const char *p;
3297 if (!strcmp(filename, "vc")) {
3298 return text_console_init(&display_state, 0);
3299 } else if (strstart(filename, "vc:", &p)) {
3300 return text_console_init(&display_state, p);
3301 } else if (!strcmp(filename, "null")) {
3302 return qemu_chr_open_null();
3303 } else
3304 if (strstart(filename, "tcp:", &p)) {
3305 return qemu_chr_open_tcp(p, 0, 0);
3306 } else
3307 if (strstart(filename, "telnet:", &p)) {
3308 return qemu_chr_open_tcp(p, 1, 0);
3309 } else
3310 if (strstart(filename, "udp:", &p)) {
3311 return qemu_chr_open_udp(p);
3312 } else
3313 if (strstart(filename, "mon:", &p)) {
3314 CharDriverState *drv = qemu_chr_open(p);
3315 if (drv) {
3316 drv = qemu_chr_open_mux(drv);
3317 monitor_init(drv, !nographic);
3318 return drv;
3320 printf("Unable to open driver: %s\n", p);
3321 return 0;
3322 } else
3323 #ifndef _WIN32
3324 if (strstart(filename, "unix:", &p)) {
3325 return qemu_chr_open_tcp(p, 0, 1);
3326 } else if (strstart(filename, "file:", &p)) {
3327 return qemu_chr_open_file_out(p);
3328 } else if (strstart(filename, "pipe:", &p)) {
3329 return qemu_chr_open_pipe(p);
3330 } else if (!strcmp(filename, "pty")) {
3331 return qemu_chr_open_pty();
3332 } else if (!strcmp(filename, "stdio")) {
3333 return qemu_chr_open_stdio();
3334 } else
3335 #if defined(__linux__)
3336 if (strstart(filename, "/dev/parport", NULL)) {
3337 return qemu_chr_open_pp(filename);
3338 } else
3339 #endif
3340 #if defined(__linux__) || defined(__sun__)
3341 if (strstart(filename, "/dev/", NULL)) {
3342 return qemu_chr_open_tty(filename);
3343 } else
3344 #endif
3345 #else /* !_WIN32 */
3346 if (strstart(filename, "COM", NULL)) {
3347 return qemu_chr_open_win(filename);
3348 } else
3349 if (strstart(filename, "pipe:", &p)) {
3350 return qemu_chr_open_win_pipe(p);
3351 } else
3352 if (strstart(filename, "con:", NULL)) {
3353 return qemu_chr_open_win_con(filename);
3354 } else
3355 if (strstart(filename, "file:", &p)) {
3356 return qemu_chr_open_win_file_out(p);
3358 #endif
3360 return NULL;
3364 void qemu_chr_close(CharDriverState *chr)
3366 if (chr->chr_close)
3367 chr->chr_close(chr);
3370 /***********************************************************/
3371 /* network device redirectors */
3373 void hex_dump(FILE *f, const uint8_t *buf, int size)
3375 int len, i, j, c;
3377 for(i=0;i<size;i+=16) {
3378 len = size - i;
3379 if (len > 16)
3380 len = 16;
3381 fprintf(f, "%08x ", i);
3382 for(j=0;j<16;j++) {
3383 if (j < len)
3384 fprintf(f, " %02x", buf[i+j]);
3385 else
3386 fprintf(f, " ");
3388 fprintf(f, " ");
3389 for(j=0;j<len;j++) {
3390 c = buf[i+j];
3391 if (c < ' ' || c > '~')
3392 c = '.';
3393 fprintf(f, "%c", c);
3395 fprintf(f, "\n");
3399 static int parse_macaddr(uint8_t *macaddr, const char *p)
3401 int i;
3402 for(i = 0; i < 6; i++) {
3403 macaddr[i] = strtol(p, (char **)&p, 16);
3404 if (i == 5) {
3405 if (*p != '\0')
3406 return -1;
3407 } else {
3408 if (*p != ':')
3409 return -1;
3410 p++;
3413 return 0;
3416 static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
3418 const char *p, *p1;
3419 int len;
3420 p = *pp;
3421 p1 = strchr(p, sep);
3422 if (!p1)
3423 return -1;
3424 len = p1 - p;
3425 p1++;
3426 if (buf_size > 0) {
3427 if (len > buf_size - 1)
3428 len = buf_size - 1;
3429 memcpy(buf, p, len);
3430 buf[len] = '\0';
3432 *pp = p1;
3433 return 0;
3436 int parse_host_src_port(struct sockaddr_in *haddr,
3437 struct sockaddr_in *saddr,
3438 const char *input_str)
3440 char *str = strdup(input_str);
3441 char *host_str = str;
3442 char *src_str;
3443 char *ptr;
3446 * Chop off any extra arguments at the end of the string which
3447 * would start with a comma, then fill in the src port information
3448 * if it was provided else use the "any address" and "any port".
3450 if ((ptr = strchr(str,',')))
3451 *ptr = '\0';
3453 if ((src_str = strchr(input_str,'@'))) {
3454 *src_str = '\0';
3455 src_str++;
3458 if (parse_host_port(haddr, host_str) < 0)
3459 goto fail;
3461 if (!src_str || *src_str == '\0')
3462 src_str = ":0";
3464 if (parse_host_port(saddr, src_str) < 0)
3465 goto fail;
3467 free(str);
3468 return(0);
3470 fail:
3471 free(str);
3472 return -1;
3475 int parse_host_port(struct sockaddr_in *saddr, const char *str)
3477 char buf[512];
3478 struct hostent *he;
3479 const char *p, *r;
3480 int port;
3482 p = str;
3483 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3484 return -1;
3485 saddr->sin_family = AF_INET;
3486 if (buf[0] == '\0') {
3487 saddr->sin_addr.s_addr = 0;
3488 } else {
3489 if (isdigit(buf[0])) {
3490 if (!inet_aton(buf, &saddr->sin_addr))
3491 return -1;
3492 } else {
3493 if ((he = gethostbyname(buf)) == NULL)
3494 return - 1;
3495 saddr->sin_addr = *(struct in_addr *)he->h_addr;
3498 port = strtol(p, (char **)&r, 0);
3499 if (r == p)
3500 return -1;
3501 saddr->sin_port = htons(port);
3502 return 0;
3505 #ifndef _WIN32
3506 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str)
3508 const char *p;
3509 int len;
3511 len = MIN(108, strlen(str));
3512 p = strchr(str, ',');
3513 if (p)
3514 len = MIN(len, p - str);
3516 memset(uaddr, 0, sizeof(*uaddr));
3518 uaddr->sun_family = AF_UNIX;
3519 memcpy(uaddr->sun_path, str, len);
3521 return 0;
3523 #endif
3525 /* find or alloc a new VLAN */
3526 VLANState *qemu_find_vlan(int id)
3528 VLANState **pvlan, *vlan;
3529 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
3530 if (vlan->id == id)
3531 return vlan;
3533 vlan = qemu_mallocz(sizeof(VLANState));
3534 if (!vlan)
3535 return NULL;
3536 vlan->id = id;
3537 vlan->next = NULL;
3538 pvlan = &first_vlan;
3539 while (*pvlan != NULL)
3540 pvlan = &(*pvlan)->next;
3541 *pvlan = vlan;
3542 return vlan;
3545 VLANClientState *qemu_new_vlan_client(VLANState *vlan,
3546 IOReadHandler *fd_read,
3547 IOCanRWHandler *fd_can_read,
3548 void *opaque)
3550 VLANClientState *vc, **pvc;
3551 vc = qemu_mallocz(sizeof(VLANClientState));
3552 if (!vc)
3553 return NULL;
3554 vc->fd_read = fd_read;
3555 vc->fd_can_read = fd_can_read;
3556 vc->opaque = opaque;
3557 vc->vlan = vlan;
3559 vc->next = NULL;
3560 pvc = &vlan->first_client;
3561 while (*pvc != NULL)
3562 pvc = &(*pvc)->next;
3563 *pvc = vc;
3564 return vc;
3567 int qemu_can_send_packet(VLANClientState *vc1)
3569 VLANState *vlan = vc1->vlan;
3570 VLANClientState *vc;
3572 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3573 if (vc != vc1) {
3574 if (vc->fd_can_read && vc->fd_can_read(vc->opaque))
3575 return 1;
3578 return 0;
3581 void qemu_send_packet(VLANClientState *vc1, const uint8_t *buf, int size)
3583 VLANState *vlan = vc1->vlan;
3584 VLANClientState *vc;
3586 #if 0
3587 printf("vlan %d send:\n", vlan->id);
3588 hex_dump(stdout, buf, size);
3589 #endif
3590 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3591 if (vc != vc1) {
3592 vc->fd_read(vc->opaque, buf, size);
3597 #if defined(CONFIG_SLIRP)
3599 /* slirp network adapter */
3601 static int slirp_inited;
3602 static VLANClientState *slirp_vc;
3604 int slirp_can_output(void)
3606 return !slirp_vc || qemu_can_send_packet(slirp_vc);
3609 void slirp_output(const uint8_t *pkt, int pkt_len)
3611 #if 0
3612 printf("slirp output:\n");
3613 hex_dump(stdout, pkt, pkt_len);
3614 #endif
3615 if (!slirp_vc)
3616 return;
3617 qemu_send_packet(slirp_vc, pkt, pkt_len);
3620 static void slirp_receive(void *opaque, const uint8_t *buf, int size)
3622 #if 0
3623 printf("slirp input:\n");
3624 hex_dump(stdout, buf, size);
3625 #endif
3626 slirp_input(buf, size);
3629 static int net_slirp_init(VLANState *vlan)
3631 if (!slirp_inited) {
3632 slirp_inited = 1;
3633 slirp_init();
3635 slirp_vc = qemu_new_vlan_client(vlan,
3636 slirp_receive, NULL, NULL);
3637 snprintf(slirp_vc->info_str, sizeof(slirp_vc->info_str), "user redirector");
3638 return 0;
3641 static void net_slirp_redir(const char *redir_str)
3643 int is_udp;
3644 char buf[256], *r;
3645 const char *p;
3646 struct in_addr guest_addr;
3647 int host_port, guest_port;
3649 if (!slirp_inited) {
3650 slirp_inited = 1;
3651 slirp_init();
3654 p = redir_str;
3655 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3656 goto fail;
3657 if (!strcmp(buf, "tcp")) {
3658 is_udp = 0;
3659 } else if (!strcmp(buf, "udp")) {
3660 is_udp = 1;
3661 } else {
3662 goto fail;
3665 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3666 goto fail;
3667 host_port = strtol(buf, &r, 0);
3668 if (r == buf)
3669 goto fail;
3671 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3672 goto fail;
3673 if (buf[0] == '\0') {
3674 pstrcpy(buf, sizeof(buf), "10.0.2.15");
3676 if (!inet_aton(buf, &guest_addr))
3677 goto fail;
3679 guest_port = strtol(p, &r, 0);
3680 if (r == p)
3681 goto fail;
3683 if (slirp_redir(is_udp, host_port, guest_addr, guest_port) < 0) {
3684 fprintf(stderr, "qemu: could not set up redirection\n");
3685 exit(1);
3687 return;
3688 fail:
3689 fprintf(stderr, "qemu: syntax: -redir [tcp|udp]:host-port:[guest-host]:guest-port\n");
3690 exit(1);
3693 #ifndef _WIN32
3695 char smb_dir[1024];
3697 static void smb_exit(void)
3699 DIR *d;
3700 struct dirent *de;
3701 char filename[1024];
3703 /* erase all the files in the directory */
3704 d = opendir(smb_dir);
3705 for(;;) {
3706 de = readdir(d);
3707 if (!de)
3708 break;
3709 if (strcmp(de->d_name, ".") != 0 &&
3710 strcmp(de->d_name, "..") != 0) {
3711 snprintf(filename, sizeof(filename), "%s/%s",
3712 smb_dir, de->d_name);
3713 unlink(filename);
3716 closedir(d);
3717 rmdir(smb_dir);
3720 /* automatic user mode samba server configuration */
3721 void net_slirp_smb(const char *exported_dir)
3723 char smb_conf[1024];
3724 char smb_cmdline[1024];
3725 FILE *f;
3727 if (!slirp_inited) {
3728 slirp_inited = 1;
3729 slirp_init();
3732 /* XXX: better tmp dir construction */
3733 snprintf(smb_dir, sizeof(smb_dir), "/tmp/qemu-smb.%d", getpid());
3734 if (mkdir(smb_dir, 0700) < 0) {
3735 fprintf(stderr, "qemu: could not create samba server dir '%s'\n", smb_dir);
3736 exit(1);
3738 snprintf(smb_conf, sizeof(smb_conf), "%s/%s", smb_dir, "smb.conf");
3740 f = fopen(smb_conf, "w");
3741 if (!f) {
3742 fprintf(stderr, "qemu: could not create samba server configuration file '%s'\n", smb_conf);
3743 exit(1);
3745 fprintf(f,
3746 "[global]\n"
3747 "private dir=%s\n"
3748 "smb ports=0\n"
3749 "socket address=127.0.0.1\n"
3750 "pid directory=%s\n"
3751 "lock directory=%s\n"
3752 "log file=%s/log.smbd\n"
3753 "smb passwd file=%s/smbpasswd\n"
3754 "security = share\n"
3755 "[qemu]\n"
3756 "path=%s\n"
3757 "read only=no\n"
3758 "guest ok=yes\n",
3759 smb_dir,
3760 smb_dir,
3761 smb_dir,
3762 smb_dir,
3763 smb_dir,
3764 exported_dir
3766 fclose(f);
3767 atexit(smb_exit);
3769 snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s",
3770 SMBD_COMMAND, smb_conf);
3772 slirp_add_exec(0, smb_cmdline, 4, 139);
3775 #endif /* !defined(_WIN32) */
3777 #endif /* CONFIG_SLIRP */
3779 #if !defined(_WIN32)
3781 typedef struct TAPState {
3782 VLANClientState *vc;
3783 int fd;
3784 } TAPState;
3786 static void tap_receive(void *opaque, const uint8_t *buf, int size)
3788 TAPState *s = opaque;
3789 int ret;
3790 for(;;) {
3791 ret = write(s->fd, buf, size);
3792 if (ret < 0 && (errno == EINTR || errno == EAGAIN)) {
3793 } else {
3794 break;
3799 static void tap_send(void *opaque)
3801 TAPState *s = opaque;
3802 uint8_t buf[4096];
3803 int size;
3805 #ifdef __sun__
3806 struct strbuf sbuf;
3807 int f = 0;
3808 sbuf.maxlen = sizeof(buf);
3809 sbuf.buf = buf;
3810 size = getmsg(s->fd, NULL, &sbuf, &f) >=0 ? sbuf.len : -1;
3811 #else
3812 size = read(s->fd, buf, sizeof(buf));
3813 #endif
3814 if (size > 0) {
3815 qemu_send_packet(s->vc, buf, size);
3819 /* fd support */
3821 static TAPState *net_tap_fd_init(VLANState *vlan, int fd)
3823 TAPState *s;
3825 s = qemu_mallocz(sizeof(TAPState));
3826 if (!s)
3827 return NULL;
3828 s->fd = fd;
3829 s->vc = qemu_new_vlan_client(vlan, tap_receive, NULL, s);
3830 qemu_set_fd_handler(s->fd, tap_send, NULL, s);
3831 snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: fd=%d", fd);
3832 return s;
3835 #if defined (_BSD) || defined (__FreeBSD_kernel__)
3836 static int tap_open(char *ifname, int ifname_size)
3838 int fd;
3839 char *dev;
3840 struct stat s;
3842 TFR(fd = open("/dev/tap", O_RDWR));
3843 if (fd < 0) {
3844 fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
3845 return -1;
3848 fstat(fd, &s);
3849 dev = devname(s.st_rdev, S_IFCHR);
3850 pstrcpy(ifname, ifname_size, dev);
3852 fcntl(fd, F_SETFL, O_NONBLOCK);
3853 return fd;
3855 #elif defined(__sun__)
3856 #define TUNNEWPPA (('T'<<16) | 0x0001)
3858 * Allocate TAP device, returns opened fd.
3859 * Stores dev name in the first arg(must be large enough).
3861 int tap_alloc(char *dev)
3863 int tap_fd, if_fd, ppa = -1;
3864 static int ip_fd = 0;
3865 char *ptr;
3867 static int arp_fd = 0;
3868 int ip_muxid, arp_muxid;
3869 struct strioctl strioc_if, strioc_ppa;
3870 int link_type = I_PLINK;;
3871 struct lifreq ifr;
3872 char actual_name[32] = "";
3874 memset(&ifr, 0x0, sizeof(ifr));
3876 if( *dev ){
3877 ptr = dev;
3878 while( *ptr && !isdigit((int)*ptr) ) ptr++;
3879 ppa = atoi(ptr);
3882 /* Check if IP device was opened */
3883 if( ip_fd )
3884 close(ip_fd);
3886 TFR(ip_fd = open("/dev/udp", O_RDWR, 0));
3887 if (ip_fd < 0) {
3888 syslog(LOG_ERR, "Can't open /dev/ip (actually /dev/udp)");
3889 return -1;
3892 TFR(tap_fd = open("/dev/tap", O_RDWR, 0));
3893 if (tap_fd < 0) {
3894 syslog(LOG_ERR, "Can't open /dev/tap");
3895 return -1;
3898 /* Assign a new PPA and get its unit number. */
3899 strioc_ppa.ic_cmd = TUNNEWPPA;
3900 strioc_ppa.ic_timout = 0;
3901 strioc_ppa.ic_len = sizeof(ppa);
3902 strioc_ppa.ic_dp = (char *)&ppa;
3903 if ((ppa = ioctl (tap_fd, I_STR, &strioc_ppa)) < 0)
3904 syslog (LOG_ERR, "Can't assign new interface");
3906 TFR(if_fd = open("/dev/tap", O_RDWR, 0));
3907 if (if_fd < 0) {
3908 syslog(LOG_ERR, "Can't open /dev/tap (2)");
3909 return -1;
3911 if(ioctl(if_fd, I_PUSH, "ip") < 0){
3912 syslog(LOG_ERR, "Can't push IP module");
3913 return -1;
3916 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) < 0)
3917 syslog(LOG_ERR, "Can't get flags\n");
3919 snprintf (actual_name, 32, "tap%d", ppa);
3920 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
3922 ifr.lifr_ppa = ppa;
3923 /* Assign ppa according to the unit number returned by tun device */
3925 if (ioctl (if_fd, SIOCSLIFNAME, &ifr) < 0)
3926 syslog (LOG_ERR, "Can't set PPA %d", ppa);
3927 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) <0)
3928 syslog (LOG_ERR, "Can't get flags\n");
3929 /* Push arp module to if_fd */
3930 if (ioctl (if_fd, I_PUSH, "arp") < 0)
3931 syslog (LOG_ERR, "Can't push ARP module (2)");
3933 /* Push arp module to ip_fd */
3934 if (ioctl (ip_fd, I_POP, NULL) < 0)
3935 syslog (LOG_ERR, "I_POP failed\n");
3936 if (ioctl (ip_fd, I_PUSH, "arp") < 0)
3937 syslog (LOG_ERR, "Can't push ARP module (3)\n");
3938 /* Open arp_fd */
3939 TFR(arp_fd = open ("/dev/tap", O_RDWR, 0));
3940 if (arp_fd < 0)
3941 syslog (LOG_ERR, "Can't open %s\n", "/dev/tap");
3943 /* Set ifname to arp */
3944 strioc_if.ic_cmd = SIOCSLIFNAME;
3945 strioc_if.ic_timout = 0;
3946 strioc_if.ic_len = sizeof(ifr);
3947 strioc_if.ic_dp = (char *)&ifr;
3948 if (ioctl(arp_fd, I_STR, &strioc_if) < 0){
3949 syslog (LOG_ERR, "Can't set ifname to arp\n");
3952 if((ip_muxid = ioctl(ip_fd, I_LINK, if_fd)) < 0){
3953 syslog(LOG_ERR, "Can't link TAP device to IP");
3954 return -1;
3957 if ((arp_muxid = ioctl (ip_fd, link_type, arp_fd)) < 0)
3958 syslog (LOG_ERR, "Can't link TAP device to ARP");
3960 close (if_fd);
3962 memset(&ifr, 0x0, sizeof(ifr));
3963 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
3964 ifr.lifr_ip_muxid = ip_muxid;
3965 ifr.lifr_arp_muxid = arp_muxid;
3967 if (ioctl (ip_fd, SIOCSLIFMUXID, &ifr) < 0)
3969 ioctl (ip_fd, I_PUNLINK , arp_muxid);
3970 ioctl (ip_fd, I_PUNLINK, ip_muxid);
3971 syslog (LOG_ERR, "Can't set multiplexor id");
3974 sprintf(dev, "tap%d", ppa);
3975 return tap_fd;
3978 static int tap_open(char *ifname, int ifname_size)
3980 char dev[10]="";
3981 int fd;
3982 if( (fd = tap_alloc(dev)) < 0 ){
3983 fprintf(stderr, "Cannot allocate TAP device\n");
3984 return -1;
3986 pstrcpy(ifname, ifname_size, dev);
3987 fcntl(fd, F_SETFL, O_NONBLOCK);
3988 return fd;
3990 #else
3991 static int tap_open(char *ifname, int ifname_size)
3993 struct ifreq ifr;
3994 int fd, ret;
3996 TFR(fd = open("/dev/net/tun", O_RDWR));
3997 if (fd < 0) {
3998 fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
3999 return -1;
4001 memset(&ifr, 0, sizeof(ifr));
4002 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
4003 if (ifname[0] != '\0')
4004 pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname);
4005 else
4006 pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d");
4007 ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
4008 if (ret != 0) {
4009 fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
4010 close(fd);
4011 return -1;
4013 pstrcpy(ifname, ifname_size, ifr.ifr_name);
4014 fcntl(fd, F_SETFL, O_NONBLOCK);
4015 return fd;
4017 #endif
4019 static int net_tap_init(VLANState *vlan, const char *ifname1,
4020 const char *setup_script)
4022 TAPState *s;
4023 int pid, status, fd;
4024 char *args[3];
4025 char **parg;
4026 char ifname[128];
4028 if (ifname1 != NULL)
4029 pstrcpy(ifname, sizeof(ifname), ifname1);
4030 else
4031 ifname[0] = '\0';
4032 TFR(fd = tap_open(ifname, sizeof(ifname)));
4033 if (fd < 0)
4034 return -1;
4036 if (!setup_script || !strcmp(setup_script, "no"))
4037 setup_script = "";
4038 if (setup_script[0] != '\0') {
4039 /* try to launch network init script */
4040 pid = fork();
4041 if (pid >= 0) {
4042 if (pid == 0) {
4043 int open_max = sysconf (_SC_OPEN_MAX), i;
4044 for (i = 0; i < open_max; i++)
4045 if (i != STDIN_FILENO &&
4046 i != STDOUT_FILENO &&
4047 i != STDERR_FILENO &&
4048 i != fd)
4049 close(i);
4051 parg = args;
4052 *parg++ = (char *)setup_script;
4053 *parg++ = ifname;
4054 *parg++ = NULL;
4055 execv(setup_script, args);
4056 _exit(1);
4058 while (waitpid(pid, &status, 0) != pid);
4059 if (!WIFEXITED(status) ||
4060 WEXITSTATUS(status) != 0) {
4061 fprintf(stderr, "%s: could not launch network script\n",
4062 setup_script);
4063 return -1;
4067 s = net_tap_fd_init(vlan, fd);
4068 if (!s)
4069 return -1;
4070 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4071 "tap: ifname=%s setup_script=%s", ifname, setup_script);
4072 return 0;
4075 #endif /* !_WIN32 */
4077 /* network connection */
4078 typedef struct NetSocketState {
4079 VLANClientState *vc;
4080 int fd;
4081 int state; /* 0 = getting length, 1 = getting data */
4082 int index;
4083 int packet_len;
4084 uint8_t buf[4096];
4085 struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */
4086 } NetSocketState;
4088 typedef struct NetSocketListenState {
4089 VLANState *vlan;
4090 int fd;
4091 } NetSocketListenState;
4093 /* XXX: we consider we can send the whole packet without blocking */
4094 static void net_socket_receive(void *opaque, const uint8_t *buf, int size)
4096 NetSocketState *s = opaque;
4097 uint32_t len;
4098 len = htonl(size);
4100 send_all(s->fd, (const uint8_t *)&len, sizeof(len));
4101 send_all(s->fd, buf, size);
4104 static void net_socket_receive_dgram(void *opaque, const uint8_t *buf, int size)
4106 NetSocketState *s = opaque;
4107 sendto(s->fd, buf, size, 0,
4108 (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst));
4111 static void net_socket_send(void *opaque)
4113 NetSocketState *s = opaque;
4114 int l, size, err;
4115 uint8_t buf1[4096];
4116 const uint8_t *buf;
4118 size = recv(s->fd, buf1, sizeof(buf1), 0);
4119 if (size < 0) {
4120 err = socket_error();
4121 if (err != EWOULDBLOCK)
4122 goto eoc;
4123 } else if (size == 0) {
4124 /* end of connection */
4125 eoc:
4126 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4127 closesocket(s->fd);
4128 return;
4130 buf = buf1;
4131 while (size > 0) {
4132 /* reassemble a packet from the network */
4133 switch(s->state) {
4134 case 0:
4135 l = 4 - s->index;
4136 if (l > size)
4137 l = size;
4138 memcpy(s->buf + s->index, buf, l);
4139 buf += l;
4140 size -= l;
4141 s->index += l;
4142 if (s->index == 4) {
4143 /* got length */
4144 s->packet_len = ntohl(*(uint32_t *)s->buf);
4145 s->index = 0;
4146 s->state = 1;
4148 break;
4149 case 1:
4150 l = s->packet_len - s->index;
4151 if (l > size)
4152 l = size;
4153 memcpy(s->buf + s->index, buf, l);
4154 s->index += l;
4155 buf += l;
4156 size -= l;
4157 if (s->index >= s->packet_len) {
4158 qemu_send_packet(s->vc, s->buf, s->packet_len);
4159 s->index = 0;
4160 s->state = 0;
4162 break;
4167 static void net_socket_send_dgram(void *opaque)
4169 NetSocketState *s = opaque;
4170 int size;
4172 size = recv(s->fd, s->buf, sizeof(s->buf), 0);
4173 if (size < 0)
4174 return;
4175 if (size == 0) {
4176 /* end of connection */
4177 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4178 return;
4180 qemu_send_packet(s->vc, s->buf, size);
4183 static int net_socket_mcast_create(struct sockaddr_in *mcastaddr)
4185 struct ip_mreq imr;
4186 int fd;
4187 int val, ret;
4188 if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) {
4189 fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n",
4190 inet_ntoa(mcastaddr->sin_addr),
4191 (int)ntohl(mcastaddr->sin_addr.s_addr));
4192 return -1;
4195 fd = socket(PF_INET, SOCK_DGRAM, 0);
4196 if (fd < 0) {
4197 perror("socket(PF_INET, SOCK_DGRAM)");
4198 return -1;
4201 val = 1;
4202 ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
4203 (const char *)&val, sizeof(val));
4204 if (ret < 0) {
4205 perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)");
4206 goto fail;
4209 ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr));
4210 if (ret < 0) {
4211 perror("bind");
4212 goto fail;
4215 /* Add host to multicast group */
4216 imr.imr_multiaddr = mcastaddr->sin_addr;
4217 imr.imr_interface.s_addr = htonl(INADDR_ANY);
4219 ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
4220 (const char *)&imr, sizeof(struct ip_mreq));
4221 if (ret < 0) {
4222 perror("setsockopt(IP_ADD_MEMBERSHIP)");
4223 goto fail;
4226 /* Force mcast msgs to loopback (eg. several QEMUs in same host */
4227 val = 1;
4228 ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP,
4229 (const char *)&val, sizeof(val));
4230 if (ret < 0) {
4231 perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)");
4232 goto fail;
4235 socket_set_nonblock(fd);
4236 return fd;
4237 fail:
4238 if (fd >= 0)
4239 closesocket(fd);
4240 return -1;
4243 static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan, int fd,
4244 int is_connected)
4246 struct sockaddr_in saddr;
4247 int newfd;
4248 socklen_t saddr_len;
4249 NetSocketState *s;
4251 /* fd passed: multicast: "learn" dgram_dst address from bound address and save it
4252 * Because this may be "shared" socket from a "master" process, datagrams would be recv()
4253 * by ONLY ONE process: we must "clone" this dgram socket --jjo
4256 if (is_connected) {
4257 if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) {
4258 /* must be bound */
4259 if (saddr.sin_addr.s_addr==0) {
4260 fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n",
4261 fd);
4262 return NULL;
4264 /* clone dgram socket */
4265 newfd = net_socket_mcast_create(&saddr);
4266 if (newfd < 0) {
4267 /* error already reported by net_socket_mcast_create() */
4268 close(fd);
4269 return NULL;
4271 /* clone newfd to fd, close newfd */
4272 dup2(newfd, fd);
4273 close(newfd);
4275 } else {
4276 fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n",
4277 fd, strerror(errno));
4278 return NULL;
4282 s = qemu_mallocz(sizeof(NetSocketState));
4283 if (!s)
4284 return NULL;
4285 s->fd = fd;
4287 s->vc = qemu_new_vlan_client(vlan, net_socket_receive_dgram, NULL, s);
4288 qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s);
4290 /* mcast: save bound address as dst */
4291 if (is_connected) s->dgram_dst=saddr;
4293 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4294 "socket: fd=%d (%s mcast=%s:%d)",
4295 fd, is_connected? "cloned" : "",
4296 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4297 return s;
4300 static void net_socket_connect(void *opaque)
4302 NetSocketState *s = opaque;
4303 qemu_set_fd_handler(s->fd, net_socket_send, NULL, s);
4306 static NetSocketState *net_socket_fd_init_stream(VLANState *vlan, int fd,
4307 int is_connected)
4309 NetSocketState *s;
4310 s = qemu_mallocz(sizeof(NetSocketState));
4311 if (!s)
4312 return NULL;
4313 s->fd = fd;
4314 s->vc = qemu_new_vlan_client(vlan,
4315 net_socket_receive, NULL, s);
4316 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4317 "socket: fd=%d", fd);
4318 if (is_connected) {
4319 net_socket_connect(s);
4320 } else {
4321 qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s);
4323 return s;
4326 static NetSocketState *net_socket_fd_init(VLANState *vlan, int fd,
4327 int is_connected)
4329 int so_type=-1, optlen=sizeof(so_type);
4331 if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type, &optlen)< 0) {
4332 fprintf(stderr, "qemu: error: getsockopt(SO_TYPE) for fd=%d failed\n", fd);
4333 return NULL;
4335 switch(so_type) {
4336 case SOCK_DGRAM:
4337 return net_socket_fd_init_dgram(vlan, fd, is_connected);
4338 case SOCK_STREAM:
4339 return net_socket_fd_init_stream(vlan, fd, is_connected);
4340 default:
4341 /* who knows ... this could be a eg. a pty, do warn and continue as stream */
4342 fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd);
4343 return net_socket_fd_init_stream(vlan, fd, is_connected);
4345 return NULL;
4348 static void net_socket_accept(void *opaque)
4350 NetSocketListenState *s = opaque;
4351 NetSocketState *s1;
4352 struct sockaddr_in saddr;
4353 socklen_t len;
4354 int fd;
4356 for(;;) {
4357 len = sizeof(saddr);
4358 fd = accept(s->fd, (struct sockaddr *)&saddr, &len);
4359 if (fd < 0 && errno != EINTR) {
4360 return;
4361 } else if (fd >= 0) {
4362 break;
4365 s1 = net_socket_fd_init(s->vlan, fd, 1);
4366 if (!s1) {
4367 closesocket(fd);
4368 } else {
4369 snprintf(s1->vc->info_str, sizeof(s1->vc->info_str),
4370 "socket: connection from %s:%d",
4371 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4375 static int net_socket_listen_init(VLANState *vlan, const char *host_str)
4377 NetSocketListenState *s;
4378 int fd, val, ret;
4379 struct sockaddr_in saddr;
4381 if (parse_host_port(&saddr, host_str) < 0)
4382 return -1;
4384 s = qemu_mallocz(sizeof(NetSocketListenState));
4385 if (!s)
4386 return -1;
4388 fd = socket(PF_INET, SOCK_STREAM, 0);
4389 if (fd < 0) {
4390 perror("socket");
4391 return -1;
4393 socket_set_nonblock(fd);
4395 /* allow fast reuse */
4396 val = 1;
4397 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
4399 ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4400 if (ret < 0) {
4401 perror("bind");
4402 return -1;
4404 ret = listen(fd, 0);
4405 if (ret < 0) {
4406 perror("listen");
4407 return -1;
4409 s->vlan = vlan;
4410 s->fd = fd;
4411 qemu_set_fd_handler(fd, net_socket_accept, NULL, s);
4412 return 0;
4415 static int net_socket_connect_init(VLANState *vlan, const char *host_str)
4417 NetSocketState *s;
4418 int fd, connected, ret, err;
4419 struct sockaddr_in saddr;
4421 if (parse_host_port(&saddr, host_str) < 0)
4422 return -1;
4424 fd = socket(PF_INET, SOCK_STREAM, 0);
4425 if (fd < 0) {
4426 perror("socket");
4427 return -1;
4429 socket_set_nonblock(fd);
4431 connected = 0;
4432 for(;;) {
4433 ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4434 if (ret < 0) {
4435 err = socket_error();
4436 if (err == EINTR || err == EWOULDBLOCK) {
4437 } else if (err == EINPROGRESS) {
4438 break;
4439 #ifdef _WIN32
4440 } else if (err == WSAEALREADY) {
4441 break;
4442 #endif
4443 } else {
4444 perror("connect");
4445 closesocket(fd);
4446 return -1;
4448 } else {
4449 connected = 1;
4450 break;
4453 s = net_socket_fd_init(vlan, fd, connected);
4454 if (!s)
4455 return -1;
4456 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4457 "socket: connect to %s:%d",
4458 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4459 return 0;
4462 static int net_socket_mcast_init(VLANState *vlan, const char *host_str)
4464 NetSocketState *s;
4465 int fd;
4466 struct sockaddr_in saddr;
4468 if (parse_host_port(&saddr, host_str) < 0)
4469 return -1;
4472 fd = net_socket_mcast_create(&saddr);
4473 if (fd < 0)
4474 return -1;
4476 s = net_socket_fd_init(vlan, fd, 0);
4477 if (!s)
4478 return -1;
4480 s->dgram_dst = saddr;
4482 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4483 "socket: mcast=%s:%d",
4484 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4485 return 0;
4489 static int get_param_value(char *buf, int buf_size,
4490 const char *tag, const char *str)
4492 const char *p;
4493 char *q;
4494 char option[128];
4496 p = str;
4497 for(;;) {
4498 q = option;
4499 while (*p != '\0' && *p != '=') {
4500 if ((q - option) < sizeof(option) - 1)
4501 *q++ = *p;
4502 p++;
4504 *q = '\0';
4505 if (*p != '=')
4506 break;
4507 p++;
4508 if (!strcmp(tag, option)) {
4509 q = buf;
4510 while (*p != '\0' && *p != ',') {
4511 if ((q - buf) < buf_size - 1)
4512 *q++ = *p;
4513 p++;
4515 *q = '\0';
4516 return q - buf;
4517 } else {
4518 while (*p != '\0' && *p != ',') {
4519 p++;
4522 if (*p != ',')
4523 break;
4524 p++;
4526 return 0;
4529 static int net_client_init(const char *str)
4531 const char *p;
4532 char *q;
4533 char device[64];
4534 char buf[1024];
4535 int vlan_id, ret;
4536 VLANState *vlan;
4538 p = str;
4539 q = device;
4540 while (*p != '\0' && *p != ',') {
4541 if ((q - device) < sizeof(device) - 1)
4542 *q++ = *p;
4543 p++;
4545 *q = '\0';
4546 if (*p == ',')
4547 p++;
4548 vlan_id = 0;
4549 if (get_param_value(buf, sizeof(buf), "vlan", p)) {
4550 vlan_id = strtol(buf, NULL, 0);
4552 vlan = qemu_find_vlan(vlan_id);
4553 if (!vlan) {
4554 fprintf(stderr, "Could not create vlan %d\n", vlan_id);
4555 return -1;
4557 if (!strcmp(device, "nic")) {
4558 NICInfo *nd;
4559 uint8_t *macaddr;
4561 if (nb_nics >= MAX_NICS) {
4562 fprintf(stderr, "Too Many NICs\n");
4563 return -1;
4565 nd = &nd_table[nb_nics];
4566 macaddr = nd->macaddr;
4567 macaddr[0] = 0x52;
4568 macaddr[1] = 0x54;
4569 macaddr[2] = 0x00;
4570 macaddr[3] = 0x12;
4571 macaddr[4] = 0x34;
4572 macaddr[5] = 0x56 + nb_nics;
4574 if (get_param_value(buf, sizeof(buf), "macaddr", p)) {
4575 if (parse_macaddr(macaddr, buf) < 0) {
4576 fprintf(stderr, "invalid syntax for ethernet address\n");
4577 return -1;
4580 if (get_param_value(buf, sizeof(buf), "model", p)) {
4581 nd->model = strdup(buf);
4583 nd->vlan = vlan;
4584 nb_nics++;
4585 vlan->nb_guest_devs++;
4586 ret = 0;
4587 } else
4588 if (!strcmp(device, "none")) {
4589 /* does nothing. It is needed to signal that no network cards
4590 are wanted */
4591 ret = 0;
4592 } else
4593 #ifdef CONFIG_SLIRP
4594 if (!strcmp(device, "user")) {
4595 if (get_param_value(buf, sizeof(buf), "hostname", p)) {
4596 pstrcpy(slirp_hostname, sizeof(slirp_hostname), buf);
4598 vlan->nb_host_devs++;
4599 ret = net_slirp_init(vlan);
4600 } else
4601 #endif
4602 #ifdef _WIN32
4603 if (!strcmp(device, "tap")) {
4604 char ifname[64];
4605 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4606 fprintf(stderr, "tap: no interface name\n");
4607 return -1;
4609 vlan->nb_host_devs++;
4610 ret = tap_win32_init(vlan, ifname);
4611 } else
4612 #else
4613 if (!strcmp(device, "tap")) {
4614 char ifname[64];
4615 char setup_script[1024];
4616 int fd;
4617 vlan->nb_host_devs++;
4618 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4619 fd = strtol(buf, NULL, 0);
4620 ret = -1;
4621 if (net_tap_fd_init(vlan, fd))
4622 ret = 0;
4623 } else {
4624 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4625 ifname[0] = '\0';
4627 if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) {
4628 pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT);
4630 ret = net_tap_init(vlan, ifname, setup_script);
4632 } else
4633 #endif
4634 if (!strcmp(device, "socket")) {
4635 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4636 int fd;
4637 fd = strtol(buf, NULL, 0);
4638 ret = -1;
4639 if (net_socket_fd_init(vlan, fd, 1))
4640 ret = 0;
4641 } else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) {
4642 ret = net_socket_listen_init(vlan, buf);
4643 } else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) {
4644 ret = net_socket_connect_init(vlan, buf);
4645 } else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) {
4646 ret = net_socket_mcast_init(vlan, buf);
4647 } else {
4648 fprintf(stderr, "Unknown socket options: %s\n", p);
4649 return -1;
4651 vlan->nb_host_devs++;
4652 } else
4654 fprintf(stderr, "Unknown network device: %s\n", device);
4655 return -1;
4657 if (ret < 0) {
4658 fprintf(stderr, "Could not initialize device '%s'\n", device);
4661 return ret;
4664 void do_info_network(void)
4666 VLANState *vlan;
4667 VLANClientState *vc;
4669 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
4670 term_printf("VLAN %d devices:\n", vlan->id);
4671 for(vc = vlan->first_client; vc != NULL; vc = vc->next)
4672 term_printf(" %s\n", vc->info_str);
4676 /***********************************************************/
4677 /* USB devices */
4679 static USBPort *used_usb_ports;
4680 static USBPort *free_usb_ports;
4682 /* ??? Maybe change this to register a hub to keep track of the topology. */
4683 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
4684 usb_attachfn attach)
4686 port->opaque = opaque;
4687 port->index = index;
4688 port->attach = attach;
4689 port->next = free_usb_ports;
4690 free_usb_ports = port;
4693 static int usb_device_add(const char *devname)
4695 const char *p;
4696 USBDevice *dev;
4697 USBPort *port;
4699 if (!free_usb_ports)
4700 return -1;
4702 if (strstart(devname, "host:", &p)) {
4703 dev = usb_host_device_open(p);
4704 } else if (!strcmp(devname, "mouse")) {
4705 dev = usb_mouse_init();
4706 } else if (!strcmp(devname, "tablet")) {
4707 dev = usb_tablet_init();
4708 } else if (!strcmp(devname, "keyboard")) {
4709 dev = usb_keyboard_init();
4710 } else if (strstart(devname, "disk:", &p)) {
4711 dev = usb_msd_init(p);
4712 } else if (!strcmp(devname, "wacom-tablet")) {
4713 dev = usb_wacom_init();
4714 } else {
4715 return -1;
4717 if (!dev)
4718 return -1;
4720 /* Find a USB port to add the device to. */
4721 port = free_usb_ports;
4722 if (!port->next) {
4723 USBDevice *hub;
4725 /* Create a new hub and chain it on. */
4726 free_usb_ports = NULL;
4727 port->next = used_usb_ports;
4728 used_usb_ports = port;
4730 hub = usb_hub_init(VM_USB_HUB_SIZE);
4731 usb_attach(port, hub);
4732 port = free_usb_ports;
4735 free_usb_ports = port->next;
4736 port->next = used_usb_ports;
4737 used_usb_ports = port;
4738 usb_attach(port, dev);
4739 return 0;
4742 static int usb_device_del(const char *devname)
4744 USBPort *port;
4745 USBPort **lastp;
4746 USBDevice *dev;
4747 int bus_num, addr;
4748 const char *p;
4750 if (!used_usb_ports)
4751 return -1;
4753 p = strchr(devname, '.');
4754 if (!p)
4755 return -1;
4756 bus_num = strtoul(devname, NULL, 0);
4757 addr = strtoul(p + 1, NULL, 0);
4758 if (bus_num != 0)
4759 return -1;
4761 lastp = &used_usb_ports;
4762 port = used_usb_ports;
4763 while (port && port->dev->addr != addr) {
4764 lastp = &port->next;
4765 port = port->next;
4768 if (!port)
4769 return -1;
4771 dev = port->dev;
4772 *lastp = port->next;
4773 usb_attach(port, NULL);
4774 dev->handle_destroy(dev);
4775 port->next = free_usb_ports;
4776 free_usb_ports = port;
4777 return 0;
4780 void do_usb_add(const char *devname)
4782 int ret;
4783 ret = usb_device_add(devname);
4784 if (ret < 0)
4785 term_printf("Could not add USB device '%s'\n", devname);
4788 void do_usb_del(const char *devname)
4790 int ret;
4791 ret = usb_device_del(devname);
4792 if (ret < 0)
4793 term_printf("Could not remove USB device '%s'\n", devname);
4796 void usb_info(void)
4798 USBDevice *dev;
4799 USBPort *port;
4800 const char *speed_str;
4802 if (!usb_enabled) {
4803 term_printf("USB support not enabled\n");
4804 return;
4807 for (port = used_usb_ports; port; port = port->next) {
4808 dev = port->dev;
4809 if (!dev)
4810 continue;
4811 switch(dev->speed) {
4812 case USB_SPEED_LOW:
4813 speed_str = "1.5";
4814 break;
4815 case USB_SPEED_FULL:
4816 speed_str = "12";
4817 break;
4818 case USB_SPEED_HIGH:
4819 speed_str = "480";
4820 break;
4821 default:
4822 speed_str = "?";
4823 break;
4825 term_printf(" Device %d.%d, Speed %s Mb/s, Product %s\n",
4826 0, dev->addr, speed_str, dev->devname);
4830 /***********************************************************/
4831 /* PCMCIA/Cardbus */
4833 static struct pcmcia_socket_entry_s {
4834 struct pcmcia_socket_s *socket;
4835 struct pcmcia_socket_entry_s *next;
4836 } *pcmcia_sockets = 0;
4838 void pcmcia_socket_register(struct pcmcia_socket_s *socket)
4840 struct pcmcia_socket_entry_s *entry;
4842 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
4843 entry->socket = socket;
4844 entry->next = pcmcia_sockets;
4845 pcmcia_sockets = entry;
4848 void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
4850 struct pcmcia_socket_entry_s *entry, **ptr;
4852 ptr = &pcmcia_sockets;
4853 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
4854 if (entry->socket == socket) {
4855 *ptr = entry->next;
4856 qemu_free(entry);
4860 void pcmcia_info(void)
4862 struct pcmcia_socket_entry_s *iter;
4863 if (!pcmcia_sockets)
4864 term_printf("No PCMCIA sockets\n");
4866 for (iter = pcmcia_sockets; iter; iter = iter->next)
4867 term_printf("%s: %s\n", iter->socket->slot_string,
4868 iter->socket->attached ? iter->socket->card_string :
4869 "Empty");
4872 /***********************************************************/
4873 /* dumb display */
4875 static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
4879 static void dumb_resize(DisplayState *ds, int w, int h)
4883 static void dumb_refresh(DisplayState *ds)
4885 #if defined(CONFIG_SDL)
4886 vga_hw_update();
4887 #endif
4890 static void dumb_display_init(DisplayState *ds)
4892 ds->data = NULL;
4893 ds->linesize = 0;
4894 ds->depth = 0;
4895 ds->dpy_update = dumb_update;
4896 ds->dpy_resize = dumb_resize;
4897 ds->dpy_refresh = dumb_refresh;
4900 /***********************************************************/
4901 /* I/O handling */
4903 #define MAX_IO_HANDLERS 64
4905 typedef struct IOHandlerRecord {
4906 int fd;
4907 IOCanRWHandler *fd_read_poll;
4908 IOHandler *fd_read;
4909 IOHandler *fd_write;
4910 int deleted;
4911 void *opaque;
4912 /* temporary data */
4913 struct pollfd *ufd;
4914 struct IOHandlerRecord *next;
4915 } IOHandlerRecord;
4917 static IOHandlerRecord *first_io_handler;
4919 /* XXX: fd_read_poll should be suppressed, but an API change is
4920 necessary in the character devices to suppress fd_can_read(). */
4921 int qemu_set_fd_handler2(int fd,
4922 IOCanRWHandler *fd_read_poll,
4923 IOHandler *fd_read,
4924 IOHandler *fd_write,
4925 void *opaque)
4927 IOHandlerRecord **pioh, *ioh;
4929 if (!fd_read && !fd_write) {
4930 pioh = &first_io_handler;
4931 for(;;) {
4932 ioh = *pioh;
4933 if (ioh == NULL)
4934 break;
4935 if (ioh->fd == fd) {
4936 ioh->deleted = 1;
4937 break;
4939 pioh = &ioh->next;
4941 } else {
4942 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4943 if (ioh->fd == fd)
4944 goto found;
4946 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
4947 if (!ioh)
4948 return -1;
4949 ioh->next = first_io_handler;
4950 first_io_handler = ioh;
4951 found:
4952 ioh->fd = fd;
4953 ioh->fd_read_poll = fd_read_poll;
4954 ioh->fd_read = fd_read;
4955 ioh->fd_write = fd_write;
4956 ioh->opaque = opaque;
4957 ioh->deleted = 0;
4959 return 0;
4962 int qemu_set_fd_handler(int fd,
4963 IOHandler *fd_read,
4964 IOHandler *fd_write,
4965 void *opaque)
4967 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
4970 /***********************************************************/
4971 /* Polling handling */
4973 typedef struct PollingEntry {
4974 PollingFunc *func;
4975 void *opaque;
4976 struct PollingEntry *next;
4977 } PollingEntry;
4979 static PollingEntry *first_polling_entry;
4981 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
4983 PollingEntry **ppe, *pe;
4984 pe = qemu_mallocz(sizeof(PollingEntry));
4985 if (!pe)
4986 return -1;
4987 pe->func = func;
4988 pe->opaque = opaque;
4989 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
4990 *ppe = pe;
4991 return 0;
4994 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
4996 PollingEntry **ppe, *pe;
4997 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
4998 pe = *ppe;
4999 if (pe->func == func && pe->opaque == opaque) {
5000 *ppe = pe->next;
5001 qemu_free(pe);
5002 break;
5007 #ifdef _WIN32
5008 /***********************************************************/
5009 /* Wait objects support */
5010 typedef struct WaitObjects {
5011 int num;
5012 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
5013 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
5014 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
5015 } WaitObjects;
5017 static WaitObjects wait_objects = {0};
5019 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
5021 WaitObjects *w = &wait_objects;
5023 if (w->num >= MAXIMUM_WAIT_OBJECTS)
5024 return -1;
5025 w->events[w->num] = handle;
5026 w->func[w->num] = func;
5027 w->opaque[w->num] = opaque;
5028 w->num++;
5029 return 0;
5032 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
5034 int i, found;
5035 WaitObjects *w = &wait_objects;
5037 found = 0;
5038 for (i = 0; i < w->num; i++) {
5039 if (w->events[i] == handle)
5040 found = 1;
5041 if (found) {
5042 w->events[i] = w->events[i + 1];
5043 w->func[i] = w->func[i + 1];
5044 w->opaque[i] = w->opaque[i + 1];
5047 if (found)
5048 w->num--;
5050 #endif
5052 /***********************************************************/
5053 /* savevm/loadvm support */
5055 #define IO_BUF_SIZE 32768
5057 struct QEMUFile {
5058 FILE *outfile;
5059 BlockDriverState *bs;
5060 int is_file;
5061 int is_writable;
5062 int64_t base_offset;
5063 int64_t buf_offset; /* start of buffer when writing, end of buffer
5064 when reading */
5065 int buf_index;
5066 int buf_size; /* 0 when writing */
5067 uint8_t buf[IO_BUF_SIZE];
5070 QEMUFile *qemu_fopen(const char *filename, const char *mode)
5072 QEMUFile *f;
5074 f = qemu_mallocz(sizeof(QEMUFile));
5075 if (!f)
5076 return NULL;
5077 if (!strcmp(mode, "wb")) {
5078 f->is_writable = 1;
5079 } else if (!strcmp(mode, "rb")) {
5080 f->is_writable = 0;
5081 } else {
5082 goto fail;
5084 f->outfile = fopen(filename, mode);
5085 if (!f->outfile)
5086 goto fail;
5087 f->is_file = 1;
5088 return f;
5089 fail:
5090 if (f->outfile)
5091 fclose(f->outfile);
5092 qemu_free(f);
5093 return NULL;
5096 QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int64_t offset, int is_writable)
5098 QEMUFile *f;
5100 f = qemu_mallocz(sizeof(QEMUFile));
5101 if (!f)
5102 return NULL;
5103 f->is_file = 0;
5104 f->bs = bs;
5105 f->is_writable = is_writable;
5106 f->base_offset = offset;
5107 return f;
5110 void qemu_fflush(QEMUFile *f)
5112 if (!f->is_writable)
5113 return;
5114 if (f->buf_index > 0) {
5115 if (f->is_file) {
5116 fseek(f->outfile, f->buf_offset, SEEK_SET);
5117 fwrite(f->buf, 1, f->buf_index, f->outfile);
5118 } else {
5119 bdrv_pwrite(f->bs, f->base_offset + f->buf_offset,
5120 f->buf, f->buf_index);
5122 f->buf_offset += f->buf_index;
5123 f->buf_index = 0;
5127 static void qemu_fill_buffer(QEMUFile *f)
5129 int len;
5131 if (f->is_writable)
5132 return;
5133 if (f->is_file) {
5134 fseek(f->outfile, f->buf_offset, SEEK_SET);
5135 len = fread(f->buf, 1, IO_BUF_SIZE, f->outfile);
5136 if (len < 0)
5137 len = 0;
5138 } else {
5139 len = bdrv_pread(f->bs, f->base_offset + f->buf_offset,
5140 f->buf, IO_BUF_SIZE);
5141 if (len < 0)
5142 len = 0;
5144 f->buf_index = 0;
5145 f->buf_size = len;
5146 f->buf_offset += len;
5149 void qemu_fclose(QEMUFile *f)
5151 if (f->is_writable)
5152 qemu_fflush(f);
5153 if (f->is_file) {
5154 fclose(f->outfile);
5156 qemu_free(f);
5159 void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
5161 int l;
5162 while (size > 0) {
5163 l = IO_BUF_SIZE - f->buf_index;
5164 if (l > size)
5165 l = size;
5166 memcpy(f->buf + f->buf_index, buf, l);
5167 f->buf_index += l;
5168 buf += l;
5169 size -= l;
5170 if (f->buf_index >= IO_BUF_SIZE)
5171 qemu_fflush(f);
5175 void qemu_put_byte(QEMUFile *f, int v)
5177 f->buf[f->buf_index++] = v;
5178 if (f->buf_index >= IO_BUF_SIZE)
5179 qemu_fflush(f);
5182 int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size1)
5184 int size, l;
5186 size = size1;
5187 while (size > 0) {
5188 l = f->buf_size - f->buf_index;
5189 if (l == 0) {
5190 qemu_fill_buffer(f);
5191 l = f->buf_size - f->buf_index;
5192 if (l == 0)
5193 break;
5195 if (l > size)
5196 l = size;
5197 memcpy(buf, f->buf + f->buf_index, l);
5198 f->buf_index += l;
5199 buf += l;
5200 size -= l;
5202 return size1 - size;
5205 int qemu_get_byte(QEMUFile *f)
5207 if (f->buf_index >= f->buf_size) {
5208 qemu_fill_buffer(f);
5209 if (f->buf_index >= f->buf_size)
5210 return 0;
5212 return f->buf[f->buf_index++];
5215 int64_t qemu_ftell(QEMUFile *f)
5217 return f->buf_offset - f->buf_size + f->buf_index;
5220 int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence)
5222 if (whence == SEEK_SET) {
5223 /* nothing to do */
5224 } else if (whence == SEEK_CUR) {
5225 pos += qemu_ftell(f);
5226 } else {
5227 /* SEEK_END not supported */
5228 return -1;
5230 if (f->is_writable) {
5231 qemu_fflush(f);
5232 f->buf_offset = pos;
5233 } else {
5234 f->buf_offset = pos;
5235 f->buf_index = 0;
5236 f->buf_size = 0;
5238 return pos;
5241 void qemu_put_be16(QEMUFile *f, unsigned int v)
5243 qemu_put_byte(f, v >> 8);
5244 qemu_put_byte(f, v);
5247 void qemu_put_be32(QEMUFile *f, unsigned int v)
5249 qemu_put_byte(f, v >> 24);
5250 qemu_put_byte(f, v >> 16);
5251 qemu_put_byte(f, v >> 8);
5252 qemu_put_byte(f, v);
5255 void qemu_put_be64(QEMUFile *f, uint64_t v)
5257 qemu_put_be32(f, v >> 32);
5258 qemu_put_be32(f, v);
5261 unsigned int qemu_get_be16(QEMUFile *f)
5263 unsigned int v;
5264 v = qemu_get_byte(f) << 8;
5265 v |= qemu_get_byte(f);
5266 return v;
5269 unsigned int qemu_get_be32(QEMUFile *f)
5271 unsigned int v;
5272 v = qemu_get_byte(f) << 24;
5273 v |= qemu_get_byte(f) << 16;
5274 v |= qemu_get_byte(f) << 8;
5275 v |= qemu_get_byte(f);
5276 return v;
5279 uint64_t qemu_get_be64(QEMUFile *f)
5281 uint64_t v;
5282 v = (uint64_t)qemu_get_be32(f) << 32;
5283 v |= qemu_get_be32(f);
5284 return v;
5287 typedef struct SaveStateEntry {
5288 char idstr[256];
5289 int instance_id;
5290 int version_id;
5291 SaveStateHandler *save_state;
5292 LoadStateHandler *load_state;
5293 void *opaque;
5294 struct SaveStateEntry *next;
5295 } SaveStateEntry;
5297 static SaveStateEntry *first_se;
5299 int register_savevm(const char *idstr,
5300 int instance_id,
5301 int version_id,
5302 SaveStateHandler *save_state,
5303 LoadStateHandler *load_state,
5304 void *opaque)
5306 SaveStateEntry *se, **pse;
5308 se = qemu_malloc(sizeof(SaveStateEntry));
5309 if (!se)
5310 return -1;
5311 pstrcpy(se->idstr, sizeof(se->idstr), idstr);
5312 se->instance_id = instance_id;
5313 se->version_id = version_id;
5314 se->save_state = save_state;
5315 se->load_state = load_state;
5316 se->opaque = opaque;
5317 se->next = NULL;
5319 /* add at the end of list */
5320 pse = &first_se;
5321 while (*pse != NULL)
5322 pse = &(*pse)->next;
5323 *pse = se;
5324 return 0;
5327 #define QEMU_VM_FILE_MAGIC 0x5145564d
5328 #define QEMU_VM_FILE_VERSION 0x00000002
5330 int qemu_savevm_state(QEMUFile *f)
5332 SaveStateEntry *se;
5333 int len, ret;
5334 int64_t cur_pos, len_pos, total_len_pos;
5336 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
5337 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
5338 total_len_pos = qemu_ftell(f);
5339 qemu_put_be64(f, 0); /* total size */
5341 for(se = first_se; se != NULL; se = se->next) {
5342 /* ID string */
5343 len = strlen(se->idstr);
5344 qemu_put_byte(f, len);
5345 qemu_put_buffer(f, se->idstr, len);
5347 qemu_put_be32(f, se->instance_id);
5348 qemu_put_be32(f, se->version_id);
5350 /* record size: filled later */
5351 len_pos = qemu_ftell(f);
5352 qemu_put_be32(f, 0);
5354 se->save_state(f, se->opaque);
5356 /* fill record size */
5357 cur_pos = qemu_ftell(f);
5358 len = cur_pos - len_pos - 4;
5359 qemu_fseek(f, len_pos, SEEK_SET);
5360 qemu_put_be32(f, len);
5361 qemu_fseek(f, cur_pos, SEEK_SET);
5363 cur_pos = qemu_ftell(f);
5364 qemu_fseek(f, total_len_pos, SEEK_SET);
5365 qemu_put_be64(f, cur_pos - total_len_pos - 8);
5366 qemu_fseek(f, cur_pos, SEEK_SET);
5368 ret = 0;
5369 return ret;
5372 static SaveStateEntry *find_se(const char *idstr, int instance_id)
5374 SaveStateEntry *se;
5376 for(se = first_se; se != NULL; se = se->next) {
5377 if (!strcmp(se->idstr, idstr) &&
5378 instance_id == se->instance_id)
5379 return se;
5381 return NULL;
5384 int qemu_loadvm_state(QEMUFile *f)
5386 SaveStateEntry *se;
5387 int len, ret, instance_id, record_len, version_id;
5388 int64_t total_len, end_pos, cur_pos;
5389 unsigned int v;
5390 char idstr[256];
5392 v = qemu_get_be32(f);
5393 if (v != QEMU_VM_FILE_MAGIC)
5394 goto fail;
5395 v = qemu_get_be32(f);
5396 if (v != QEMU_VM_FILE_VERSION) {
5397 fail:
5398 ret = -1;
5399 goto the_end;
5401 total_len = qemu_get_be64(f);
5402 end_pos = total_len + qemu_ftell(f);
5403 for(;;) {
5404 if (qemu_ftell(f) >= end_pos)
5405 break;
5406 len = qemu_get_byte(f);
5407 qemu_get_buffer(f, idstr, len);
5408 idstr[len] = '\0';
5409 instance_id = qemu_get_be32(f);
5410 version_id = qemu_get_be32(f);
5411 record_len = qemu_get_be32(f);
5412 #if 0
5413 printf("idstr=%s instance=0x%x version=%d len=%d\n",
5414 idstr, instance_id, version_id, record_len);
5415 #endif
5416 cur_pos = qemu_ftell(f);
5417 se = find_se(idstr, instance_id);
5418 if (!se) {
5419 fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n",
5420 instance_id, idstr);
5421 } else {
5422 ret = se->load_state(f, se->opaque, version_id);
5423 if (ret < 0) {
5424 fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
5425 instance_id, idstr);
5428 /* always seek to exact end of record */
5429 qemu_fseek(f, cur_pos + record_len, SEEK_SET);
5431 ret = 0;
5432 the_end:
5433 return ret;
5436 /* device can contain snapshots */
5437 static int bdrv_can_snapshot(BlockDriverState *bs)
5439 return (bs &&
5440 !bdrv_is_removable(bs) &&
5441 !bdrv_is_read_only(bs));
5444 /* device must be snapshots in order to have a reliable snapshot */
5445 static int bdrv_has_snapshot(BlockDriverState *bs)
5447 return (bs &&
5448 !bdrv_is_removable(bs) &&
5449 !bdrv_is_read_only(bs));
5452 static BlockDriverState *get_bs_snapshots(void)
5454 BlockDriverState *bs;
5455 int i;
5457 if (bs_snapshots)
5458 return bs_snapshots;
5459 for(i = 0; i <= MAX_DISKS; i++) {
5460 bs = bs_table[i];
5461 if (bdrv_can_snapshot(bs))
5462 goto ok;
5464 return NULL;
5466 bs_snapshots = bs;
5467 return bs;
5470 static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
5471 const char *name)
5473 QEMUSnapshotInfo *sn_tab, *sn;
5474 int nb_sns, i, ret;
5476 ret = -ENOENT;
5477 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
5478 if (nb_sns < 0)
5479 return ret;
5480 for(i = 0; i < nb_sns; i++) {
5481 sn = &sn_tab[i];
5482 if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
5483 *sn_info = *sn;
5484 ret = 0;
5485 break;
5488 qemu_free(sn_tab);
5489 return ret;
5492 void do_savevm(const char *name)
5494 BlockDriverState *bs, *bs1;
5495 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
5496 int must_delete, ret, i;
5497 BlockDriverInfo bdi1, *bdi = &bdi1;
5498 QEMUFile *f;
5499 int saved_vm_running;
5500 #ifdef _WIN32
5501 struct _timeb tb;
5502 #else
5503 struct timeval tv;
5504 #endif
5506 bs = get_bs_snapshots();
5507 if (!bs) {
5508 term_printf("No block device can accept snapshots\n");
5509 return;
5512 /* ??? Should this occur after vm_stop? */
5513 qemu_aio_flush();
5515 saved_vm_running = vm_running;
5516 vm_stop(0);
5518 must_delete = 0;
5519 if (name) {
5520 ret = bdrv_snapshot_find(bs, old_sn, name);
5521 if (ret >= 0) {
5522 must_delete = 1;
5525 memset(sn, 0, sizeof(*sn));
5526 if (must_delete) {
5527 pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
5528 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
5529 } else {
5530 if (name)
5531 pstrcpy(sn->name, sizeof(sn->name), name);
5534 /* fill auxiliary fields */
5535 #ifdef _WIN32
5536 _ftime(&tb);
5537 sn->date_sec = tb.time;
5538 sn->date_nsec = tb.millitm * 1000000;
5539 #else
5540 gettimeofday(&tv, NULL);
5541 sn->date_sec = tv.tv_sec;
5542 sn->date_nsec = tv.tv_usec * 1000;
5543 #endif
5544 sn->vm_clock_nsec = qemu_get_clock(vm_clock);
5546 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
5547 term_printf("Device %s does not support VM state snapshots\n",
5548 bdrv_get_device_name(bs));
5549 goto the_end;
5552 /* save the VM state */
5553 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 1);
5554 if (!f) {
5555 term_printf("Could not open VM state file\n");
5556 goto the_end;
5558 ret = qemu_savevm_state(f);
5559 sn->vm_state_size = qemu_ftell(f);
5560 qemu_fclose(f);
5561 if (ret < 0) {
5562 term_printf("Error %d while writing VM\n", ret);
5563 goto the_end;
5566 /* create the snapshots */
5568 for(i = 0; i < MAX_DISKS; i++) {
5569 bs1 = bs_table[i];
5570 if (bdrv_has_snapshot(bs1)) {
5571 if (must_delete) {
5572 ret = bdrv_snapshot_delete(bs1, old_sn->id_str);
5573 if (ret < 0) {
5574 term_printf("Error while deleting snapshot on '%s'\n",
5575 bdrv_get_device_name(bs1));
5578 ret = bdrv_snapshot_create(bs1, sn);
5579 if (ret < 0) {
5580 term_printf("Error while creating snapshot on '%s'\n",
5581 bdrv_get_device_name(bs1));
5586 the_end:
5587 if (saved_vm_running)
5588 vm_start();
5591 void do_loadvm(const char *name)
5593 BlockDriverState *bs, *bs1;
5594 BlockDriverInfo bdi1, *bdi = &bdi1;
5595 QEMUFile *f;
5596 int i, ret;
5597 int saved_vm_running;
5599 bs = get_bs_snapshots();
5600 if (!bs) {
5601 term_printf("No block device supports snapshots\n");
5602 return;
5605 /* Flush all IO requests so they don't interfere with the new state. */
5606 qemu_aio_flush();
5608 saved_vm_running = vm_running;
5609 vm_stop(0);
5611 for(i = 0; i <= MAX_DISKS; i++) {
5612 bs1 = bs_table[i];
5613 if (bdrv_has_snapshot(bs1)) {
5614 ret = bdrv_snapshot_goto(bs1, name);
5615 if (ret < 0) {
5616 if (bs != bs1)
5617 term_printf("Warning: ");
5618 switch(ret) {
5619 case -ENOTSUP:
5620 term_printf("Snapshots not supported on device '%s'\n",
5621 bdrv_get_device_name(bs1));
5622 break;
5623 case -ENOENT:
5624 term_printf("Could not find snapshot '%s' on device '%s'\n",
5625 name, bdrv_get_device_name(bs1));
5626 break;
5627 default:
5628 term_printf("Error %d while activating snapshot on '%s'\n",
5629 ret, bdrv_get_device_name(bs1));
5630 break;
5632 /* fatal on snapshot block device */
5633 if (bs == bs1)
5634 goto the_end;
5639 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
5640 term_printf("Device %s does not support VM state snapshots\n",
5641 bdrv_get_device_name(bs));
5642 return;
5645 /* restore the VM state */
5646 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 0);
5647 if (!f) {
5648 term_printf("Could not open VM state file\n");
5649 goto the_end;
5651 ret = qemu_loadvm_state(f);
5652 qemu_fclose(f);
5653 if (ret < 0) {
5654 term_printf("Error %d while loading VM state\n", ret);
5656 the_end:
5657 if (saved_vm_running)
5658 vm_start();
5661 void do_delvm(const char *name)
5663 BlockDriverState *bs, *bs1;
5664 int i, ret;
5666 bs = get_bs_snapshots();
5667 if (!bs) {
5668 term_printf("No block device supports snapshots\n");
5669 return;
5672 for(i = 0; i <= MAX_DISKS; i++) {
5673 bs1 = bs_table[i];
5674 if (bdrv_has_snapshot(bs1)) {
5675 ret = bdrv_snapshot_delete(bs1, name);
5676 if (ret < 0) {
5677 if (ret == -ENOTSUP)
5678 term_printf("Snapshots not supported on device '%s'\n",
5679 bdrv_get_device_name(bs1));
5680 else
5681 term_printf("Error %d while deleting snapshot on '%s'\n",
5682 ret, bdrv_get_device_name(bs1));
5688 void do_info_snapshots(void)
5690 BlockDriverState *bs, *bs1;
5691 QEMUSnapshotInfo *sn_tab, *sn;
5692 int nb_sns, i;
5693 char buf[256];
5695 bs = get_bs_snapshots();
5696 if (!bs) {
5697 term_printf("No available block device supports snapshots\n");
5698 return;
5700 term_printf("Snapshot devices:");
5701 for(i = 0; i <= MAX_DISKS; i++) {
5702 bs1 = bs_table[i];
5703 if (bdrv_has_snapshot(bs1)) {
5704 if (bs == bs1)
5705 term_printf(" %s", bdrv_get_device_name(bs1));
5708 term_printf("\n");
5710 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
5711 if (nb_sns < 0) {
5712 term_printf("bdrv_snapshot_list: error %d\n", nb_sns);
5713 return;
5715 term_printf("Snapshot list (from %s):\n", bdrv_get_device_name(bs));
5716 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
5717 for(i = 0; i < nb_sns; i++) {
5718 sn = &sn_tab[i];
5719 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
5721 qemu_free(sn_tab);
5724 /***********************************************************/
5725 /* cpu save/restore */
5727 #if defined(TARGET_I386)
5729 static void cpu_put_seg(QEMUFile *f, SegmentCache *dt)
5731 qemu_put_be32(f, dt->selector);
5732 qemu_put_betl(f, dt->base);
5733 qemu_put_be32(f, dt->limit);
5734 qemu_put_be32(f, dt->flags);
5737 static void cpu_get_seg(QEMUFile *f, SegmentCache *dt)
5739 dt->selector = qemu_get_be32(f);
5740 dt->base = qemu_get_betl(f);
5741 dt->limit = qemu_get_be32(f);
5742 dt->flags = qemu_get_be32(f);
5745 void cpu_save(QEMUFile *f, void *opaque)
5747 CPUState *env = opaque;
5748 uint16_t fptag, fpus, fpuc, fpregs_format;
5749 uint32_t hflags;
5750 int i;
5752 for(i = 0; i < CPU_NB_REGS; i++)
5753 qemu_put_betls(f, &env->regs[i]);
5754 qemu_put_betls(f, &env->eip);
5755 qemu_put_betls(f, &env->eflags);
5756 hflags = env->hflags; /* XXX: suppress most of the redundant hflags */
5757 qemu_put_be32s(f, &hflags);
5759 /* FPU */
5760 fpuc = env->fpuc;
5761 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
5762 fptag = 0;
5763 for(i = 0; i < 8; i++) {
5764 fptag |= ((!env->fptags[i]) << i);
5767 qemu_put_be16s(f, &fpuc);
5768 qemu_put_be16s(f, &fpus);
5769 qemu_put_be16s(f, &fptag);
5771 #ifdef USE_X86LDOUBLE
5772 fpregs_format = 0;
5773 #else
5774 fpregs_format = 1;
5775 #endif
5776 qemu_put_be16s(f, &fpregs_format);
5778 for(i = 0; i < 8; i++) {
5779 #ifdef USE_X86LDOUBLE
5781 uint64_t mant;
5782 uint16_t exp;
5783 /* we save the real CPU data (in case of MMX usage only 'mant'
5784 contains the MMX register */
5785 cpu_get_fp80(&mant, &exp, env->fpregs[i].d);
5786 qemu_put_be64(f, mant);
5787 qemu_put_be16(f, exp);
5789 #else
5790 /* if we use doubles for float emulation, we save the doubles to
5791 avoid losing information in case of MMX usage. It can give
5792 problems if the image is restored on a CPU where long
5793 doubles are used instead. */
5794 qemu_put_be64(f, env->fpregs[i].mmx.MMX_Q(0));
5795 #endif
5798 for(i = 0; i < 6; i++)
5799 cpu_put_seg(f, &env->segs[i]);
5800 cpu_put_seg(f, &env->ldt);
5801 cpu_put_seg(f, &env->tr);
5802 cpu_put_seg(f, &env->gdt);
5803 cpu_put_seg(f, &env->idt);
5805 qemu_put_be32s(f, &env->sysenter_cs);
5806 qemu_put_be32s(f, &env->sysenter_esp);
5807 qemu_put_be32s(f, &env->sysenter_eip);
5809 qemu_put_betls(f, &env->cr[0]);
5810 qemu_put_betls(f, &env->cr[2]);
5811 qemu_put_betls(f, &env->cr[3]);
5812 qemu_put_betls(f, &env->cr[4]);
5814 for(i = 0; i < 8; i++)
5815 qemu_put_betls(f, &env->dr[i]);
5817 /* MMU */
5818 qemu_put_be32s(f, &env->a20_mask);
5820 /* XMM */
5821 qemu_put_be32s(f, &env->mxcsr);
5822 for(i = 0; i < CPU_NB_REGS; i++) {
5823 qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(0));
5824 qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(1));
5827 #ifdef TARGET_X86_64
5828 qemu_put_be64s(f, &env->efer);
5829 qemu_put_be64s(f, &env->star);
5830 qemu_put_be64s(f, &env->lstar);
5831 qemu_put_be64s(f, &env->cstar);
5832 qemu_put_be64s(f, &env->fmask);
5833 qemu_put_be64s(f, &env->kernelgsbase);
5834 #endif
5835 qemu_put_be32s(f, &env->smbase);
5838 #ifdef USE_X86LDOUBLE
5839 /* XXX: add that in a FPU generic layer */
5840 union x86_longdouble {
5841 uint64_t mant;
5842 uint16_t exp;
5845 #define MANTD1(fp) (fp & ((1LL << 52) - 1))
5846 #define EXPBIAS1 1023
5847 #define EXPD1(fp) ((fp >> 52) & 0x7FF)
5848 #define SIGND1(fp) ((fp >> 32) & 0x80000000)
5850 static void fp64_to_fp80(union x86_longdouble *p, uint64_t temp)
5852 int e;
5853 /* mantissa */
5854 p->mant = (MANTD1(temp) << 11) | (1LL << 63);
5855 /* exponent + sign */
5856 e = EXPD1(temp) - EXPBIAS1 + 16383;
5857 e |= SIGND1(temp) >> 16;
5858 p->exp = e;
5860 #endif
5862 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5864 CPUState *env = opaque;
5865 int i, guess_mmx;
5866 uint32_t hflags;
5867 uint16_t fpus, fpuc, fptag, fpregs_format;
5869 if (version_id != 3 && version_id != 4)
5870 return -EINVAL;
5871 for(i = 0; i < CPU_NB_REGS; i++)
5872 qemu_get_betls(f, &env->regs[i]);
5873 qemu_get_betls(f, &env->eip);
5874 qemu_get_betls(f, &env->eflags);
5875 qemu_get_be32s(f, &hflags);
5877 qemu_get_be16s(f, &fpuc);
5878 qemu_get_be16s(f, &fpus);
5879 qemu_get_be16s(f, &fptag);
5880 qemu_get_be16s(f, &fpregs_format);
5882 /* NOTE: we cannot always restore the FPU state if the image come
5883 from a host with a different 'USE_X86LDOUBLE' define. We guess
5884 if we are in an MMX state to restore correctly in that case. */
5885 guess_mmx = ((fptag == 0xff) && (fpus & 0x3800) == 0);
5886 for(i = 0; i < 8; i++) {
5887 uint64_t mant;
5888 uint16_t exp;
5890 switch(fpregs_format) {
5891 case 0:
5892 mant = qemu_get_be64(f);
5893 exp = qemu_get_be16(f);
5894 #ifdef USE_X86LDOUBLE
5895 env->fpregs[i].d = cpu_set_fp80(mant, exp);
5896 #else
5897 /* difficult case */
5898 if (guess_mmx)
5899 env->fpregs[i].mmx.MMX_Q(0) = mant;
5900 else
5901 env->fpregs[i].d = cpu_set_fp80(mant, exp);
5902 #endif
5903 break;
5904 case 1:
5905 mant = qemu_get_be64(f);
5906 #ifdef USE_X86LDOUBLE
5908 union x86_longdouble *p;
5909 /* difficult case */
5910 p = (void *)&env->fpregs[i];
5911 if (guess_mmx) {
5912 p->mant = mant;
5913 p->exp = 0xffff;
5914 } else {
5915 fp64_to_fp80(p, mant);
5918 #else
5919 env->fpregs[i].mmx.MMX_Q(0) = mant;
5920 #endif
5921 break;
5922 default:
5923 return -EINVAL;
5927 env->fpuc = fpuc;
5928 /* XXX: restore FPU round state */
5929 env->fpstt = (fpus >> 11) & 7;
5930 env->fpus = fpus & ~0x3800;
5931 fptag ^= 0xff;
5932 for(i = 0; i < 8; i++) {
5933 env->fptags[i] = (fptag >> i) & 1;
5936 for(i = 0; i < 6; i++)
5937 cpu_get_seg(f, &env->segs[i]);
5938 cpu_get_seg(f, &env->ldt);
5939 cpu_get_seg(f, &env->tr);
5940 cpu_get_seg(f, &env->gdt);
5941 cpu_get_seg(f, &env->idt);
5943 qemu_get_be32s(f, &env->sysenter_cs);
5944 qemu_get_be32s(f, &env->sysenter_esp);
5945 qemu_get_be32s(f, &env->sysenter_eip);
5947 qemu_get_betls(f, &env->cr[0]);
5948 qemu_get_betls(f, &env->cr[2]);
5949 qemu_get_betls(f, &env->cr[3]);
5950 qemu_get_betls(f, &env->cr[4]);
5952 for(i = 0; i < 8; i++)
5953 qemu_get_betls(f, &env->dr[i]);
5955 /* MMU */
5956 qemu_get_be32s(f, &env->a20_mask);
5958 qemu_get_be32s(f, &env->mxcsr);
5959 for(i = 0; i < CPU_NB_REGS; i++) {
5960 qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(0));
5961 qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(1));
5964 #ifdef TARGET_X86_64
5965 qemu_get_be64s(f, &env->efer);
5966 qemu_get_be64s(f, &env->star);
5967 qemu_get_be64s(f, &env->lstar);
5968 qemu_get_be64s(f, &env->cstar);
5969 qemu_get_be64s(f, &env->fmask);
5970 qemu_get_be64s(f, &env->kernelgsbase);
5971 #endif
5972 if (version_id >= 4)
5973 qemu_get_be32s(f, &env->smbase);
5975 /* XXX: compute hflags from scratch, except for CPL and IIF */
5976 env->hflags = hflags;
5977 tlb_flush(env, 1);
5978 return 0;
5981 #elif defined(TARGET_PPC)
5982 void cpu_save(QEMUFile *f, void *opaque)
5986 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5988 return 0;
5991 #elif defined(TARGET_MIPS)
5992 void cpu_save(QEMUFile *f, void *opaque)
5996 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5998 return 0;
6001 #elif defined(TARGET_SPARC)
6002 void cpu_save(QEMUFile *f, void *opaque)
6004 CPUState *env = opaque;
6005 int i;
6006 uint32_t tmp;
6008 for(i = 0; i < 8; i++)
6009 qemu_put_betls(f, &env->gregs[i]);
6010 for(i = 0; i < NWINDOWS * 16; i++)
6011 qemu_put_betls(f, &env->regbase[i]);
6013 /* FPU */
6014 for(i = 0; i < TARGET_FPREGS; i++) {
6015 union {
6016 float32 f;
6017 uint32_t i;
6018 } u;
6019 u.f = env->fpr[i];
6020 qemu_put_be32(f, u.i);
6023 qemu_put_betls(f, &env->pc);
6024 qemu_put_betls(f, &env->npc);
6025 qemu_put_betls(f, &env->y);
6026 tmp = GET_PSR(env);
6027 qemu_put_be32(f, tmp);
6028 qemu_put_betls(f, &env->fsr);
6029 qemu_put_betls(f, &env->tbr);
6030 #ifndef TARGET_SPARC64
6031 qemu_put_be32s(f, &env->wim);
6032 /* MMU */
6033 for(i = 0; i < 16; i++)
6034 qemu_put_be32s(f, &env->mmuregs[i]);
6035 #endif
6038 int cpu_load(QEMUFile *f, void *opaque, int version_id)
6040 CPUState *env = opaque;
6041 int i;
6042 uint32_t tmp;
6044 for(i = 0; i < 8; i++)
6045 qemu_get_betls(f, &env->gregs[i]);
6046 for(i = 0; i < NWINDOWS * 16; i++)
6047 qemu_get_betls(f, &env->regbase[i]);
6049 /* FPU */
6050 for(i = 0; i < TARGET_FPREGS; i++) {
6051 union {
6052 float32 f;
6053 uint32_t i;
6054 } u;
6055 u.i = qemu_get_be32(f);
6056 env->fpr[i] = u.f;
6059 qemu_get_betls(f, &env->pc);
6060 qemu_get_betls(f, &env->npc);
6061 qemu_get_betls(f, &env->y);
6062 tmp = qemu_get_be32(f);
6063 env->cwp = 0; /* needed to ensure that the wrapping registers are
6064 correctly updated */
6065 PUT_PSR(env, tmp);
6066 qemu_get_betls(f, &env->fsr);
6067 qemu_get_betls(f, &env->tbr);
6068 #ifndef TARGET_SPARC64
6069 qemu_get_be32s(f, &env->wim);
6070 /* MMU */
6071 for(i = 0; i < 16; i++)
6072 qemu_get_be32s(f, &env->mmuregs[i]);
6073 #endif
6074 tlb_flush(env, 1);
6075 return 0;
6078 #elif defined(TARGET_ARM)
6080 void cpu_save(QEMUFile *f, void *opaque)
6082 int i;
6083 CPUARMState *env = (CPUARMState *)opaque;
6085 for (i = 0; i < 16; i++) {
6086 qemu_put_be32(f, env->regs[i]);
6088 qemu_put_be32(f, cpsr_read(env));
6089 qemu_put_be32(f, env->spsr);
6090 for (i = 0; i < 6; i++) {
6091 qemu_put_be32(f, env->banked_spsr[i]);
6092 qemu_put_be32(f, env->banked_r13[i]);
6093 qemu_put_be32(f, env->banked_r14[i]);
6095 for (i = 0; i < 5; i++) {
6096 qemu_put_be32(f, env->usr_regs[i]);
6097 qemu_put_be32(f, env->fiq_regs[i]);
6099 qemu_put_be32(f, env->cp15.c0_cpuid);
6100 qemu_put_be32(f, env->cp15.c0_cachetype);
6101 qemu_put_be32(f, env->cp15.c1_sys);
6102 qemu_put_be32(f, env->cp15.c1_coproc);
6103 qemu_put_be32(f, env->cp15.c1_xscaleauxcr);
6104 qemu_put_be32(f, env->cp15.c2_base);
6105 qemu_put_be32(f, env->cp15.c2_data);
6106 qemu_put_be32(f, env->cp15.c2_insn);
6107 qemu_put_be32(f, env->cp15.c3);
6108 qemu_put_be32(f, env->cp15.c5_insn);
6109 qemu_put_be32(f, env->cp15.c5_data);
6110 for (i = 0; i < 8; i++) {
6111 qemu_put_be32(f, env->cp15.c6_region[i]);
6113 qemu_put_be32(f, env->cp15.c6_insn);
6114 qemu_put_be32(f, env->cp15.c6_data);
6115 qemu_put_be32(f, env->cp15.c9_insn);
6116 qemu_put_be32(f, env->cp15.c9_data);
6117 qemu_put_be32(f, env->cp15.c13_fcse);
6118 qemu_put_be32(f, env->cp15.c13_context);
6119 qemu_put_be32(f, env->cp15.c15_cpar);
6121 qemu_put_be32(f, env->features);
6123 if (arm_feature(env, ARM_FEATURE_VFP)) {
6124 for (i = 0; i < 16; i++) {
6125 CPU_DoubleU u;
6126 u.d = env->vfp.regs[i];
6127 qemu_put_be32(f, u.l.upper);
6128 qemu_put_be32(f, u.l.lower);
6130 for (i = 0; i < 16; i++) {
6131 qemu_put_be32(f, env->vfp.xregs[i]);
6134 /* TODO: Should use proper FPSCR access functions. */
6135 qemu_put_be32(f, env->vfp.vec_len);
6136 qemu_put_be32(f, env->vfp.vec_stride);
6139 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
6140 for (i = 0; i < 16; i++) {
6141 qemu_put_be64(f, env->iwmmxt.regs[i]);
6143 for (i = 0; i < 16; i++) {
6144 qemu_put_be32(f, env->iwmmxt.cregs[i]);
6149 int cpu_load(QEMUFile *f, void *opaque, int version_id)
6151 CPUARMState *env = (CPUARMState *)opaque;
6152 int i;
6154 if (version_id != 0)
6155 return -EINVAL;
6157 for (i = 0; i < 16; i++) {
6158 env->regs[i] = qemu_get_be32(f);
6160 cpsr_write(env, qemu_get_be32(f), 0xffffffff);
6161 env->spsr = qemu_get_be32(f);
6162 for (i = 0; i < 6; i++) {
6163 env->banked_spsr[i] = qemu_get_be32(f);
6164 env->banked_r13[i] = qemu_get_be32(f);
6165 env->banked_r14[i] = qemu_get_be32(f);
6167 for (i = 0; i < 5; i++) {
6168 env->usr_regs[i] = qemu_get_be32(f);
6169 env->fiq_regs[i] = qemu_get_be32(f);
6171 env->cp15.c0_cpuid = qemu_get_be32(f);
6172 env->cp15.c0_cachetype = qemu_get_be32(f);
6173 env->cp15.c1_sys = qemu_get_be32(f);
6174 env->cp15.c1_coproc = qemu_get_be32(f);
6175 env->cp15.c1_xscaleauxcr = qemu_get_be32(f);
6176 env->cp15.c2_base = qemu_get_be32(f);
6177 env->cp15.c2_data = qemu_get_be32(f);
6178 env->cp15.c2_insn = qemu_get_be32(f);
6179 env->cp15.c3 = qemu_get_be32(f);
6180 env->cp15.c5_insn = qemu_get_be32(f);
6181 env->cp15.c5_data = qemu_get_be32(f);
6182 for (i = 0; i < 8; i++) {
6183 env->cp15.c6_region[i] = qemu_get_be32(f);
6185 env->cp15.c6_insn = qemu_get_be32(f);
6186 env->cp15.c6_data = qemu_get_be32(f);
6187 env->cp15.c9_insn = qemu_get_be32(f);
6188 env->cp15.c9_data = qemu_get_be32(f);
6189 env->cp15.c13_fcse = qemu_get_be32(f);
6190 env->cp15.c13_context = qemu_get_be32(f);
6191 env->cp15.c15_cpar = qemu_get_be32(f);
6193 env->features = qemu_get_be32(f);
6195 if (arm_feature(env, ARM_FEATURE_VFP)) {
6196 for (i = 0; i < 16; i++) {
6197 CPU_DoubleU u;
6198 u.l.upper = qemu_get_be32(f);
6199 u.l.lower = qemu_get_be32(f);
6200 env->vfp.regs[i] = u.d;
6202 for (i = 0; i < 16; i++) {
6203 env->vfp.xregs[i] = qemu_get_be32(f);
6206 /* TODO: Should use proper FPSCR access functions. */
6207 env->vfp.vec_len = qemu_get_be32(f);
6208 env->vfp.vec_stride = qemu_get_be32(f);
6211 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
6212 for (i = 0; i < 16; i++) {
6213 env->iwmmxt.regs[i] = qemu_get_be64(f);
6215 for (i = 0; i < 16; i++) {
6216 env->iwmmxt.cregs[i] = qemu_get_be32(f);
6220 return 0;
6223 #else
6225 #warning No CPU save/restore functions
6227 #endif
6229 /***********************************************************/
6230 /* ram save/restore */
6232 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
6234 int v;
6236 v = qemu_get_byte(f);
6237 switch(v) {
6238 case 0:
6239 if (qemu_get_buffer(f, buf, len) != len)
6240 return -EIO;
6241 break;
6242 case 1:
6243 v = qemu_get_byte(f);
6244 memset(buf, v, len);
6245 break;
6246 default:
6247 return -EINVAL;
6249 return 0;
6252 static int ram_load_v1(QEMUFile *f, void *opaque)
6254 int i, ret;
6256 if (qemu_get_be32(f) != phys_ram_size)
6257 return -EINVAL;
6258 for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
6259 ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
6260 if (ret)
6261 return ret;
6263 return 0;
6266 #define BDRV_HASH_BLOCK_SIZE 1024
6267 #define IOBUF_SIZE 4096
6268 #define RAM_CBLOCK_MAGIC 0xfabe
6270 typedef struct RamCompressState {
6271 z_stream zstream;
6272 QEMUFile *f;
6273 uint8_t buf[IOBUF_SIZE];
6274 } RamCompressState;
6276 static int ram_compress_open(RamCompressState *s, QEMUFile *f)
6278 int ret;
6279 memset(s, 0, sizeof(*s));
6280 s->f = f;
6281 ret = deflateInit2(&s->zstream, 1,
6282 Z_DEFLATED, 15,
6283 9, Z_DEFAULT_STRATEGY);
6284 if (ret != Z_OK)
6285 return -1;
6286 s->zstream.avail_out = IOBUF_SIZE;
6287 s->zstream.next_out = s->buf;
6288 return 0;
6291 static void ram_put_cblock(RamCompressState *s, const uint8_t *buf, int len)
6293 qemu_put_be16(s->f, RAM_CBLOCK_MAGIC);
6294 qemu_put_be16(s->f, len);
6295 qemu_put_buffer(s->f, buf, len);
6298 static int ram_compress_buf(RamCompressState *s, const uint8_t *buf, int len)
6300 int ret;
6302 s->zstream.avail_in = len;
6303 s->zstream.next_in = (uint8_t *)buf;
6304 while (s->zstream.avail_in > 0) {
6305 ret = deflate(&s->zstream, Z_NO_FLUSH);
6306 if (ret != Z_OK)
6307 return -1;
6308 if (s->zstream.avail_out == 0) {
6309 ram_put_cblock(s, s->buf, IOBUF_SIZE);
6310 s->zstream.avail_out = IOBUF_SIZE;
6311 s->zstream.next_out = s->buf;
6314 return 0;
6317 static void ram_compress_close(RamCompressState *s)
6319 int len, ret;
6321 /* compress last bytes */
6322 for(;;) {
6323 ret = deflate(&s->zstream, Z_FINISH);
6324 if (ret == Z_OK || ret == Z_STREAM_END) {
6325 len = IOBUF_SIZE - s->zstream.avail_out;
6326 if (len > 0) {
6327 ram_put_cblock(s, s->buf, len);
6329 s->zstream.avail_out = IOBUF_SIZE;
6330 s->zstream.next_out = s->buf;
6331 if (ret == Z_STREAM_END)
6332 break;
6333 } else {
6334 goto fail;
6337 fail:
6338 deflateEnd(&s->zstream);
6341 typedef struct RamDecompressState {
6342 z_stream zstream;
6343 QEMUFile *f;
6344 uint8_t buf[IOBUF_SIZE];
6345 } RamDecompressState;
6347 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
6349 int ret;
6350 memset(s, 0, sizeof(*s));
6351 s->f = f;
6352 ret = inflateInit(&s->zstream);
6353 if (ret != Z_OK)
6354 return -1;
6355 return 0;
6358 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
6360 int ret, clen;
6362 s->zstream.avail_out = len;
6363 s->zstream.next_out = buf;
6364 while (s->zstream.avail_out > 0) {
6365 if (s->zstream.avail_in == 0) {
6366 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
6367 return -1;
6368 clen = qemu_get_be16(s->f);
6369 if (clen > IOBUF_SIZE)
6370 return -1;
6371 qemu_get_buffer(s->f, s->buf, clen);
6372 s->zstream.avail_in = clen;
6373 s->zstream.next_in = s->buf;
6375 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
6376 if (ret != Z_OK && ret != Z_STREAM_END) {
6377 return -1;
6380 return 0;
6383 static void ram_decompress_close(RamDecompressState *s)
6385 inflateEnd(&s->zstream);
6388 static void ram_save(QEMUFile *f, void *opaque)
6390 int i;
6391 RamCompressState s1, *s = &s1;
6392 uint8_t buf[10];
6394 qemu_put_be32(f, phys_ram_size);
6395 if (ram_compress_open(s, f) < 0)
6396 return;
6397 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
6398 #if 0
6399 if (tight_savevm_enabled) {
6400 int64_t sector_num;
6401 int j;
6403 /* find if the memory block is available on a virtual
6404 block device */
6405 sector_num = -1;
6406 for(j = 0; j < MAX_DISKS; j++) {
6407 if (bs_table[j]) {
6408 sector_num = bdrv_hash_find(bs_table[j],
6409 phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
6410 if (sector_num >= 0)
6411 break;
6414 if (j == MAX_DISKS)
6415 goto normal_compress;
6416 buf[0] = 1;
6417 buf[1] = j;
6418 cpu_to_be64wu((uint64_t *)(buf + 2), sector_num);
6419 ram_compress_buf(s, buf, 10);
6420 } else
6421 #endif
6423 // normal_compress:
6424 buf[0] = 0;
6425 ram_compress_buf(s, buf, 1);
6426 ram_compress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
6429 ram_compress_close(s);
6432 static int ram_load(QEMUFile *f, void *opaque, int version_id)
6434 RamDecompressState s1, *s = &s1;
6435 uint8_t buf[10];
6436 int i;
6438 if (version_id == 1)
6439 return ram_load_v1(f, opaque);
6440 if (version_id != 2)
6441 return -EINVAL;
6442 if (qemu_get_be32(f) != phys_ram_size)
6443 return -EINVAL;
6444 if (ram_decompress_open(s, f) < 0)
6445 return -EINVAL;
6446 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
6447 if (ram_decompress_buf(s, buf, 1) < 0) {
6448 fprintf(stderr, "Error while reading ram block header\n");
6449 goto error;
6451 if (buf[0] == 0) {
6452 if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
6453 fprintf(stderr, "Error while reading ram block address=0x%08x", i);
6454 goto error;
6456 } else
6457 #if 0
6458 if (buf[0] == 1) {
6459 int bs_index;
6460 int64_t sector_num;
6462 ram_decompress_buf(s, buf + 1, 9);
6463 bs_index = buf[1];
6464 sector_num = be64_to_cpupu((const uint64_t *)(buf + 2));
6465 if (bs_index >= MAX_DISKS || bs_table[bs_index] == NULL) {
6466 fprintf(stderr, "Invalid block device index %d\n", bs_index);
6467 goto error;
6469 if (bdrv_read(bs_table[bs_index], sector_num, phys_ram_base + i,
6470 BDRV_HASH_BLOCK_SIZE / 512) < 0) {
6471 fprintf(stderr, "Error while reading sector %d:%" PRId64 "\n",
6472 bs_index, sector_num);
6473 goto error;
6475 } else
6476 #endif
6478 error:
6479 printf("Error block header\n");
6480 return -EINVAL;
6483 ram_decompress_close(s);
6484 return 0;
6487 /***********************************************************/
6488 /* bottom halves (can be seen as timers which expire ASAP) */
6490 struct QEMUBH {
6491 QEMUBHFunc *cb;
6492 void *opaque;
6493 int scheduled;
6494 QEMUBH *next;
6497 static QEMUBH *first_bh = NULL;
6499 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
6501 QEMUBH *bh;
6502 bh = qemu_mallocz(sizeof(QEMUBH));
6503 if (!bh)
6504 return NULL;
6505 bh->cb = cb;
6506 bh->opaque = opaque;
6507 return bh;
6510 int qemu_bh_poll(void)
6512 QEMUBH *bh, **pbh;
6513 int ret;
6515 ret = 0;
6516 for(;;) {
6517 pbh = &first_bh;
6518 bh = *pbh;
6519 if (!bh)
6520 break;
6521 ret = 1;
6522 *pbh = bh->next;
6523 bh->scheduled = 0;
6524 bh->cb(bh->opaque);
6526 return ret;
6529 void qemu_bh_schedule(QEMUBH *bh)
6531 CPUState *env = cpu_single_env;
6532 if (bh->scheduled)
6533 return;
6534 bh->scheduled = 1;
6535 bh->next = first_bh;
6536 first_bh = bh;
6538 /* stop the currently executing CPU to execute the BH ASAP */
6539 if (env) {
6540 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
6544 void qemu_bh_cancel(QEMUBH *bh)
6546 QEMUBH **pbh;
6547 if (bh->scheduled) {
6548 pbh = &first_bh;
6549 while (*pbh != bh)
6550 pbh = &(*pbh)->next;
6551 *pbh = bh->next;
6552 bh->scheduled = 0;
6556 void qemu_bh_delete(QEMUBH *bh)
6558 qemu_bh_cancel(bh);
6559 qemu_free(bh);
6562 /***********************************************************/
6563 /* machine registration */
6565 QEMUMachine *first_machine = NULL;
6567 int qemu_register_machine(QEMUMachine *m)
6569 QEMUMachine **pm;
6570 pm = &first_machine;
6571 while (*pm != NULL)
6572 pm = &(*pm)->next;
6573 m->next = NULL;
6574 *pm = m;
6575 return 0;
6578 QEMUMachine *find_machine(const char *name)
6580 QEMUMachine *m;
6582 for(m = first_machine; m != NULL; m = m->next) {
6583 if (!strcmp(m->name, name))
6584 return m;
6586 return NULL;
6589 /***********************************************************/
6590 /* main execution loop */
6592 void gui_update(void *opaque)
6594 DisplayState *ds = opaque;
6595 ds->dpy_refresh(ds);
6596 qemu_mod_timer(ds->gui_timer, GUI_REFRESH_INTERVAL + qemu_get_clock(rt_clock));
6599 struct vm_change_state_entry {
6600 VMChangeStateHandler *cb;
6601 void *opaque;
6602 LIST_ENTRY (vm_change_state_entry) entries;
6605 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
6607 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
6608 void *opaque)
6610 VMChangeStateEntry *e;
6612 e = qemu_mallocz(sizeof (*e));
6613 if (!e)
6614 return NULL;
6616 e->cb = cb;
6617 e->opaque = opaque;
6618 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
6619 return e;
6622 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
6624 LIST_REMOVE (e, entries);
6625 qemu_free (e);
6628 static void vm_state_notify(int running)
6630 VMChangeStateEntry *e;
6632 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
6633 e->cb(e->opaque, running);
6637 /* XXX: support several handlers */
6638 static VMStopHandler *vm_stop_cb;
6639 static void *vm_stop_opaque;
6641 int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
6643 vm_stop_cb = cb;
6644 vm_stop_opaque = opaque;
6645 return 0;
6648 void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
6650 vm_stop_cb = NULL;
6653 void vm_start(void)
6655 if (!vm_running) {
6656 cpu_enable_ticks();
6657 vm_running = 1;
6658 vm_state_notify(1);
6659 qemu_rearm_alarm_timer(alarm_timer);
6663 void vm_stop(int reason)
6665 if (vm_running) {
6666 cpu_disable_ticks();
6667 vm_running = 0;
6668 if (reason != 0) {
6669 if (vm_stop_cb) {
6670 vm_stop_cb(vm_stop_opaque, reason);
6673 vm_state_notify(0);
6677 /* reset/shutdown handler */
6679 typedef struct QEMUResetEntry {
6680 QEMUResetHandler *func;
6681 void *opaque;
6682 struct QEMUResetEntry *next;
6683 } QEMUResetEntry;
6685 static QEMUResetEntry *first_reset_entry;
6686 static int reset_requested;
6687 static int shutdown_requested;
6688 static int powerdown_requested;
6690 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
6692 QEMUResetEntry **pre, *re;
6694 pre = &first_reset_entry;
6695 while (*pre != NULL)
6696 pre = &(*pre)->next;
6697 re = qemu_mallocz(sizeof(QEMUResetEntry));
6698 re->func = func;
6699 re->opaque = opaque;
6700 re->next = NULL;
6701 *pre = re;
6704 static void qemu_system_reset(void)
6706 QEMUResetEntry *re;
6708 /* reset all devices */
6709 for(re = first_reset_entry; re != NULL; re = re->next) {
6710 re->func(re->opaque);
6714 void qemu_system_reset_request(void)
6716 if (no_reboot) {
6717 shutdown_requested = 1;
6718 } else {
6719 reset_requested = 1;
6721 if (cpu_single_env)
6722 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6725 void qemu_system_shutdown_request(void)
6727 shutdown_requested = 1;
6728 if (cpu_single_env)
6729 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6732 void qemu_system_powerdown_request(void)
6734 powerdown_requested = 1;
6735 if (cpu_single_env)
6736 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6739 void main_loop_wait(int timeout)
6741 IOHandlerRecord *ioh;
6742 fd_set rfds, wfds, xfds;
6743 int ret, nfds;
6744 #ifdef _WIN32
6745 int ret2, i;
6746 #endif
6747 struct timeval tv;
6748 PollingEntry *pe;
6751 /* XXX: need to suppress polling by better using win32 events */
6752 ret = 0;
6753 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
6754 ret |= pe->func(pe->opaque);
6756 #ifdef _WIN32
6757 if (ret == 0) {
6758 int err;
6759 WaitObjects *w = &wait_objects;
6761 ret = WaitForMultipleObjects(w->num, w->events, FALSE, timeout);
6762 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
6763 if (w->func[ret - WAIT_OBJECT_0])
6764 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
6766 /* Check for additional signaled events */
6767 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
6769 /* Check if event is signaled */
6770 ret2 = WaitForSingleObject(w->events[i], 0);
6771 if(ret2 == WAIT_OBJECT_0) {
6772 if (w->func[i])
6773 w->func[i](w->opaque[i]);
6774 } else if (ret2 == WAIT_TIMEOUT) {
6775 } else {
6776 err = GetLastError();
6777 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
6780 } else if (ret == WAIT_TIMEOUT) {
6781 } else {
6782 err = GetLastError();
6783 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
6786 #endif
6787 /* poll any events */
6788 /* XXX: separate device handlers from system ones */
6789 nfds = -1;
6790 FD_ZERO(&rfds);
6791 FD_ZERO(&wfds);
6792 FD_ZERO(&xfds);
6793 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6794 if (ioh->deleted)
6795 continue;
6796 if (ioh->fd_read &&
6797 (!ioh->fd_read_poll ||
6798 ioh->fd_read_poll(ioh->opaque) != 0)) {
6799 FD_SET(ioh->fd, &rfds);
6800 if (ioh->fd > nfds)
6801 nfds = ioh->fd;
6803 if (ioh->fd_write) {
6804 FD_SET(ioh->fd, &wfds);
6805 if (ioh->fd > nfds)
6806 nfds = ioh->fd;
6810 tv.tv_sec = 0;
6811 #ifdef _WIN32
6812 tv.tv_usec = 0;
6813 #else
6814 tv.tv_usec = timeout * 1000;
6815 #endif
6816 #if defined(CONFIG_SLIRP)
6817 if (slirp_inited) {
6818 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
6820 #endif
6821 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
6822 if (ret > 0) {
6823 IOHandlerRecord **pioh;
6825 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6826 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
6827 ioh->fd_read(ioh->opaque);
6829 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
6830 ioh->fd_write(ioh->opaque);
6834 /* remove deleted IO handlers */
6835 pioh = &first_io_handler;
6836 while (*pioh) {
6837 ioh = *pioh;
6838 if (ioh->deleted) {
6839 *pioh = ioh->next;
6840 qemu_free(ioh);
6841 } else
6842 pioh = &ioh->next;
6845 #if defined(CONFIG_SLIRP)
6846 if (slirp_inited) {
6847 if (ret < 0) {
6848 FD_ZERO(&rfds);
6849 FD_ZERO(&wfds);
6850 FD_ZERO(&xfds);
6852 slirp_select_poll(&rfds, &wfds, &xfds);
6854 #endif
6855 qemu_aio_poll();
6857 if (vm_running) {
6858 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
6859 qemu_get_clock(vm_clock));
6860 /* run dma transfers, if any */
6861 DMA_run();
6864 /* real time timers */
6865 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
6866 qemu_get_clock(rt_clock));
6868 /* Check bottom-halves last in case any of the earlier events triggered
6869 them. */
6870 qemu_bh_poll();
6874 static CPUState *cur_cpu;
6876 int main_loop(void)
6878 int ret, timeout;
6879 #ifdef CONFIG_PROFILER
6880 int64_t ti;
6881 #endif
6882 CPUState *env;
6884 cur_cpu = first_cpu;
6885 for(;;) {
6886 if (vm_running) {
6888 env = cur_cpu;
6889 for(;;) {
6890 /* get next cpu */
6891 env = env->next_cpu;
6892 if (!env)
6893 env = first_cpu;
6894 #ifdef CONFIG_PROFILER
6895 ti = profile_getclock();
6896 #endif
6897 ret = cpu_exec(env);
6898 #ifdef CONFIG_PROFILER
6899 qemu_time += profile_getclock() - ti;
6900 #endif
6901 if (ret == EXCP_HLT) {
6902 /* Give the next CPU a chance to run. */
6903 cur_cpu = env;
6904 continue;
6906 if (ret != EXCP_HALTED)
6907 break;
6908 /* all CPUs are halted ? */
6909 if (env == cur_cpu)
6910 break;
6912 cur_cpu = env;
6914 if (shutdown_requested) {
6915 ret = EXCP_INTERRUPT;
6916 break;
6918 if (reset_requested) {
6919 reset_requested = 0;
6920 qemu_system_reset();
6921 ret = EXCP_INTERRUPT;
6923 if (powerdown_requested) {
6924 powerdown_requested = 0;
6925 qemu_system_powerdown();
6926 ret = EXCP_INTERRUPT;
6928 if (ret == EXCP_DEBUG) {
6929 vm_stop(EXCP_DEBUG);
6931 /* If all cpus are halted then wait until the next IRQ */
6932 /* XXX: use timeout computed from timers */
6933 if (ret == EXCP_HALTED)
6934 timeout = 10;
6935 else
6936 timeout = 0;
6937 } else {
6938 timeout = 10;
6940 #ifdef CONFIG_PROFILER
6941 ti = profile_getclock();
6942 #endif
6943 main_loop_wait(timeout);
6944 #ifdef CONFIG_PROFILER
6945 dev_time += profile_getclock() - ti;
6946 #endif
6948 cpu_disable_ticks();
6949 return ret;
6952 static void help(int exitcode)
6954 printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2007 Fabrice Bellard\n"
6955 "usage: %s [options] [disk_image]\n"
6956 "\n"
6957 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
6958 "\n"
6959 "Standard options:\n"
6960 "-M machine select emulated machine (-M ? for list)\n"
6961 "-cpu cpu select CPU (-cpu ? for list)\n"
6962 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n"
6963 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n"
6964 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n"
6965 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
6966 "-mtdblock file use 'file' as on-board Flash memory image\n"
6967 "-sd file use 'file' as SecureDigital card image\n"
6968 "-pflash file use 'file' as a parallel flash image\n"
6969 "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
6970 "-snapshot write to temporary files instead of disk image files\n"
6971 #ifdef CONFIG_SDL
6972 "-no-frame open SDL window without a frame and window decorations\n"
6973 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n"
6974 "-no-quit disable SDL window close capability\n"
6975 #endif
6976 #ifdef TARGET_I386
6977 "-no-fd-bootchk disable boot signature checking for floppy disks\n"
6978 #endif
6979 "-m megs set virtual RAM size to megs MB [default=%d]\n"
6980 "-smp n set the number of CPUs to 'n' [default=1]\n"
6981 "-nographic disable graphical output and redirect serial I/Os to console\n"
6982 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n"
6983 #ifndef _WIN32
6984 "-k language use keyboard layout (for example \"fr\" for French)\n"
6985 #endif
6986 #ifdef HAS_AUDIO
6987 "-audio-help print list of audio drivers and their options\n"
6988 "-soundhw c1,... enable audio support\n"
6989 " and only specified sound cards (comma separated list)\n"
6990 " use -soundhw ? to get the list of supported cards\n"
6991 " use -soundhw all to enable all of them\n"
6992 #endif
6993 "-localtime set the real time clock to local time [default=utc]\n"
6994 "-full-screen start in full screen\n"
6995 #ifdef TARGET_I386
6996 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n"
6997 #endif
6998 "-usb enable the USB driver (will be the default soon)\n"
6999 "-usbdevice name add the host or guest USB device 'name'\n"
7000 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
7001 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n"
7002 #endif
7003 "-name string set the name of the guest\n"
7004 "\n"
7005 "Network options:\n"
7006 "-net nic[,vlan=n][,macaddr=addr][,model=type]\n"
7007 " create a new Network Interface Card and connect it to VLAN 'n'\n"
7008 #ifdef CONFIG_SLIRP
7009 "-net user[,vlan=n][,hostname=host]\n"
7010 " connect the user mode network stack to VLAN 'n' and send\n"
7011 " hostname 'host' to DHCP clients\n"
7012 #endif
7013 #ifdef _WIN32
7014 "-net tap[,vlan=n],ifname=name\n"
7015 " connect the host TAP network interface to VLAN 'n'\n"
7016 #else
7017 "-net tap[,vlan=n][,fd=h][,ifname=name][,script=file]\n"
7018 " connect the host TAP network interface to VLAN 'n' and use\n"
7019 " the network script 'file' (default=%s);\n"
7020 " use 'script=no' to disable script execution;\n"
7021 " use 'fd=h' to connect to an already opened TAP interface\n"
7022 #endif
7023 "-net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]\n"
7024 " connect the vlan 'n' to another VLAN using a socket connection\n"
7025 "-net socket[,vlan=n][,fd=h][,mcast=maddr:port]\n"
7026 " connect the vlan 'n' to multicast maddr and port\n"
7027 "-net none use it alone to have zero network devices; if no -net option\n"
7028 " is provided, the default is '-net nic -net user'\n"
7029 "\n"
7030 #ifdef CONFIG_SLIRP
7031 "-tftp dir allow tftp access to files in dir [-net user]\n"
7032 "-bootp file advertise file in BOOTP replies\n"
7033 #ifndef _WIN32
7034 "-smb dir allow SMB access to files in 'dir' [-net user]\n"
7035 #endif
7036 "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
7037 " redirect TCP or UDP connections from host to guest [-net user]\n"
7038 #endif
7039 "\n"
7040 "Linux boot specific:\n"
7041 "-kernel bzImage use 'bzImage' as kernel image\n"
7042 "-append cmdline use 'cmdline' as kernel command line\n"
7043 "-initrd file use 'file' as initial ram disk\n"
7044 "\n"
7045 "Debug/Expert options:\n"
7046 "-monitor dev redirect the monitor to char device 'dev'\n"
7047 "-serial dev redirect the serial port to char device 'dev'\n"
7048 "-parallel dev redirect the parallel port to char device 'dev'\n"
7049 "-pidfile file Write PID to 'file'\n"
7050 "-S freeze CPU at startup (use 'c' to start execution)\n"
7051 "-s wait gdb connection to port\n"
7052 "-p port set gdb connection port [default=%s]\n"
7053 "-d item1,... output log to %s (use -d ? for a list of log items)\n"
7054 "-hdachs c,h,s[,t] force hard disk 0 physical geometry and the optional BIOS\n"
7055 " translation (t=none or lba) (usually qemu can guess them)\n"
7056 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n"
7057 #ifdef USE_KQEMU
7058 "-kernel-kqemu enable KQEMU full virtualization (default is user mode only)\n"
7059 "-no-kqemu disable KQEMU kernel module usage\n"
7060 #endif
7061 #ifdef USE_CODE_COPY
7062 "-no-code-copy disable code copy acceleration\n"
7063 #endif
7064 #ifdef TARGET_I386
7065 "-std-vga simulate a standard VGA card with VESA Bochs Extensions\n"
7066 " (default is CL-GD5446 PCI VGA)\n"
7067 "-no-acpi disable ACPI\n"
7068 #endif
7069 "-no-reboot exit instead of rebooting\n"
7070 "-loadvm file start right away with a saved state (loadvm in monitor)\n"
7071 "-vnc display start a VNC server on display\n"
7072 #ifndef _WIN32
7073 "-daemonize daemonize QEMU after initializing\n"
7074 #endif
7075 "-option-rom rom load a file, rom, into the option ROM space\n"
7076 #ifdef TARGET_SPARC
7077 "-prom-env variable=value set OpenBIOS nvram variables\n"
7078 #endif
7079 "-clock force the use of the given methods for timer alarm.\n"
7080 " To see what timers are available use -clock help\n"
7081 "\n"
7082 "During emulation, the following keys are useful:\n"
7083 "ctrl-alt-f toggle full screen\n"
7084 "ctrl-alt-n switch to virtual console 'n'\n"
7085 "ctrl-alt toggle mouse and keyboard grab\n"
7086 "\n"
7087 "When using -nographic, press 'ctrl-a h' to get some help.\n"
7089 "qemu",
7090 DEFAULT_RAM_SIZE,
7091 #ifndef _WIN32
7092 DEFAULT_NETWORK_SCRIPT,
7093 #endif
7094 DEFAULT_GDBSTUB_PORT,
7095 "/tmp/qemu.log");
7096 exit(exitcode);
7099 #define HAS_ARG 0x0001
7101 enum {
7102 QEMU_OPTION_h,
7104 QEMU_OPTION_M,
7105 QEMU_OPTION_cpu,
7106 QEMU_OPTION_fda,
7107 QEMU_OPTION_fdb,
7108 QEMU_OPTION_hda,
7109 QEMU_OPTION_hdb,
7110 QEMU_OPTION_hdc,
7111 QEMU_OPTION_hdd,
7112 QEMU_OPTION_cdrom,
7113 QEMU_OPTION_mtdblock,
7114 QEMU_OPTION_sd,
7115 QEMU_OPTION_pflash,
7116 QEMU_OPTION_boot,
7117 QEMU_OPTION_snapshot,
7118 #ifdef TARGET_I386
7119 QEMU_OPTION_no_fd_bootchk,
7120 #endif
7121 QEMU_OPTION_m,
7122 QEMU_OPTION_nographic,
7123 QEMU_OPTION_portrait,
7124 #ifdef HAS_AUDIO
7125 QEMU_OPTION_audio_help,
7126 QEMU_OPTION_soundhw,
7127 #endif
7129 QEMU_OPTION_net,
7130 QEMU_OPTION_tftp,
7131 QEMU_OPTION_bootp,
7132 QEMU_OPTION_smb,
7133 QEMU_OPTION_redir,
7135 QEMU_OPTION_kernel,
7136 QEMU_OPTION_append,
7137 QEMU_OPTION_initrd,
7139 QEMU_OPTION_S,
7140 QEMU_OPTION_s,
7141 QEMU_OPTION_p,
7142 QEMU_OPTION_d,
7143 QEMU_OPTION_hdachs,
7144 QEMU_OPTION_L,
7145 QEMU_OPTION_no_code_copy,
7146 QEMU_OPTION_k,
7147 QEMU_OPTION_localtime,
7148 QEMU_OPTION_cirrusvga,
7149 QEMU_OPTION_vmsvga,
7150 QEMU_OPTION_g,
7151 QEMU_OPTION_std_vga,
7152 QEMU_OPTION_echr,
7153 QEMU_OPTION_monitor,
7154 QEMU_OPTION_serial,
7155 QEMU_OPTION_parallel,
7156 QEMU_OPTION_loadvm,
7157 QEMU_OPTION_full_screen,
7158 QEMU_OPTION_no_frame,
7159 QEMU_OPTION_alt_grab,
7160 QEMU_OPTION_no_quit,
7161 QEMU_OPTION_pidfile,
7162 QEMU_OPTION_no_kqemu,
7163 QEMU_OPTION_kernel_kqemu,
7164 QEMU_OPTION_win2k_hack,
7165 QEMU_OPTION_usb,
7166 QEMU_OPTION_usbdevice,
7167 QEMU_OPTION_smp,
7168 QEMU_OPTION_vnc,
7169 QEMU_OPTION_no_acpi,
7170 QEMU_OPTION_no_reboot,
7171 QEMU_OPTION_show_cursor,
7172 QEMU_OPTION_daemonize,
7173 QEMU_OPTION_option_rom,
7174 QEMU_OPTION_semihosting,
7175 QEMU_OPTION_name,
7176 QEMU_OPTION_prom_env,
7177 QEMU_OPTION_old_param,
7178 QEMU_OPTION_clock,
7181 typedef struct QEMUOption {
7182 const char *name;
7183 int flags;
7184 int index;
7185 } QEMUOption;
7187 const QEMUOption qemu_options[] = {
7188 { "h", 0, QEMU_OPTION_h },
7189 { "help", 0, QEMU_OPTION_h },
7191 { "M", HAS_ARG, QEMU_OPTION_M },
7192 { "cpu", HAS_ARG, QEMU_OPTION_cpu },
7193 { "fda", HAS_ARG, QEMU_OPTION_fda },
7194 { "fdb", HAS_ARG, QEMU_OPTION_fdb },
7195 { "hda", HAS_ARG, QEMU_OPTION_hda },
7196 { "hdb", HAS_ARG, QEMU_OPTION_hdb },
7197 { "hdc", HAS_ARG, QEMU_OPTION_hdc },
7198 { "hdd", HAS_ARG, QEMU_OPTION_hdd },
7199 { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
7200 { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
7201 { "sd", HAS_ARG, QEMU_OPTION_sd },
7202 { "pflash", HAS_ARG, QEMU_OPTION_pflash },
7203 { "boot", HAS_ARG, QEMU_OPTION_boot },
7204 { "snapshot", 0, QEMU_OPTION_snapshot },
7205 #ifdef TARGET_I386
7206 { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
7207 #endif
7208 { "m", HAS_ARG, QEMU_OPTION_m },
7209 { "nographic", 0, QEMU_OPTION_nographic },
7210 { "portrait", 0, QEMU_OPTION_portrait },
7211 { "k", HAS_ARG, QEMU_OPTION_k },
7212 #ifdef HAS_AUDIO
7213 { "audio-help", 0, QEMU_OPTION_audio_help },
7214 { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
7215 #endif
7217 { "net", HAS_ARG, QEMU_OPTION_net},
7218 #ifdef CONFIG_SLIRP
7219 { "tftp", HAS_ARG, QEMU_OPTION_tftp },
7220 { "bootp", HAS_ARG, QEMU_OPTION_bootp },
7221 #ifndef _WIN32
7222 { "smb", HAS_ARG, QEMU_OPTION_smb },
7223 #endif
7224 { "redir", HAS_ARG, QEMU_OPTION_redir },
7225 #endif
7227 { "kernel", HAS_ARG, QEMU_OPTION_kernel },
7228 { "append", HAS_ARG, QEMU_OPTION_append },
7229 { "initrd", HAS_ARG, QEMU_OPTION_initrd },
7231 { "S", 0, QEMU_OPTION_S },
7232 { "s", 0, QEMU_OPTION_s },
7233 { "p", HAS_ARG, QEMU_OPTION_p },
7234 { "d", HAS_ARG, QEMU_OPTION_d },
7235 { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
7236 { "L", HAS_ARG, QEMU_OPTION_L },
7237 { "no-code-copy", 0, QEMU_OPTION_no_code_copy },
7238 #ifdef USE_KQEMU
7239 { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
7240 { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
7241 #endif
7242 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
7243 { "g", 1, QEMU_OPTION_g },
7244 #endif
7245 { "localtime", 0, QEMU_OPTION_localtime },
7246 { "std-vga", 0, QEMU_OPTION_std_vga },
7247 { "echr", HAS_ARG, QEMU_OPTION_echr },
7248 { "monitor", HAS_ARG, QEMU_OPTION_monitor },
7249 { "serial", HAS_ARG, QEMU_OPTION_serial },
7250 { "parallel", HAS_ARG, QEMU_OPTION_parallel },
7251 { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
7252 { "full-screen", 0, QEMU_OPTION_full_screen },
7253 #ifdef CONFIG_SDL
7254 { "no-frame", 0, QEMU_OPTION_no_frame },
7255 { "alt-grab", 0, QEMU_OPTION_alt_grab },
7256 { "no-quit", 0, QEMU_OPTION_no_quit },
7257 #endif
7258 { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
7259 { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
7260 { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
7261 { "smp", HAS_ARG, QEMU_OPTION_smp },
7262 { "vnc", HAS_ARG, QEMU_OPTION_vnc },
7264 /* temporary options */
7265 { "usb", 0, QEMU_OPTION_usb },
7266 { "cirrusvga", 0, QEMU_OPTION_cirrusvga },
7267 { "vmwarevga", 0, QEMU_OPTION_vmsvga },
7268 { "no-acpi", 0, QEMU_OPTION_no_acpi },
7269 { "no-reboot", 0, QEMU_OPTION_no_reboot },
7270 { "show-cursor", 0, QEMU_OPTION_show_cursor },
7271 { "daemonize", 0, QEMU_OPTION_daemonize },
7272 { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
7273 #if defined(TARGET_ARM) || defined(TARGET_M68K)
7274 { "semihosting", 0, QEMU_OPTION_semihosting },
7275 #endif
7276 { "name", HAS_ARG, QEMU_OPTION_name },
7277 #if defined(TARGET_SPARC)
7278 { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
7279 #endif
7280 #if defined(TARGET_ARM)
7281 { "old-param", 0, QEMU_OPTION_old_param },
7282 #endif
7283 { "clock", HAS_ARG, QEMU_OPTION_clock },
7284 { NULL },
7287 #if defined (TARGET_I386) && defined(USE_CODE_COPY)
7289 /* this stack is only used during signal handling */
7290 #define SIGNAL_STACK_SIZE 32768
7292 static uint8_t *signal_stack;
7294 #endif
7296 /* password input */
7298 int qemu_key_check(BlockDriverState *bs, const char *name)
7300 char password[256];
7301 int i;
7303 if (!bdrv_is_encrypted(bs))
7304 return 0;
7306 term_printf("%s is encrypted.\n", name);
7307 for(i = 0; i < 3; i++) {
7308 monitor_readline("Password: ", 1, password, sizeof(password));
7309 if (bdrv_set_key(bs, password) == 0)
7310 return 0;
7311 term_printf("invalid password\n");
7313 return -EPERM;
7316 static BlockDriverState *get_bdrv(int index)
7318 BlockDriverState *bs;
7320 if (index < 4) {
7321 bs = bs_table[index];
7322 } else if (index < 6) {
7323 bs = fd_table[index - 4];
7324 } else {
7325 bs = NULL;
7327 return bs;
7330 static void read_passwords(void)
7332 BlockDriverState *bs;
7333 int i;
7335 for(i = 0; i < 6; i++) {
7336 bs = get_bdrv(i);
7337 if (bs)
7338 qemu_key_check(bs, bdrv_get_device_name(bs));
7342 /* XXX: currently we cannot use simultaneously different CPUs */
7343 void register_machines(void)
7345 #if defined(TARGET_I386)
7346 qemu_register_machine(&pc_machine);
7347 qemu_register_machine(&isapc_machine);
7348 #elif defined(TARGET_PPC)
7349 qemu_register_machine(&heathrow_machine);
7350 qemu_register_machine(&core99_machine);
7351 qemu_register_machine(&prep_machine);
7352 qemu_register_machine(&ref405ep_machine);
7353 qemu_register_machine(&taihu_machine);
7354 #elif defined(TARGET_MIPS)
7355 qemu_register_machine(&mips_machine);
7356 qemu_register_machine(&mips_malta_machine);
7357 qemu_register_machine(&mips_pica61_machine);
7358 #elif defined(TARGET_SPARC)
7359 #ifdef TARGET_SPARC64
7360 qemu_register_machine(&sun4u_machine);
7361 #else
7362 qemu_register_machine(&ss5_machine);
7363 qemu_register_machine(&ss10_machine);
7364 #endif
7365 #elif defined(TARGET_ARM)
7366 qemu_register_machine(&integratorcp_machine);
7367 qemu_register_machine(&versatilepb_machine);
7368 qemu_register_machine(&versatileab_machine);
7369 qemu_register_machine(&realview_machine);
7370 qemu_register_machine(&akitapda_machine);
7371 qemu_register_machine(&spitzpda_machine);
7372 qemu_register_machine(&borzoipda_machine);
7373 qemu_register_machine(&terrierpda_machine);
7374 qemu_register_machine(&palmte_machine);
7375 #elif defined(TARGET_SH4)
7376 qemu_register_machine(&shix_machine);
7377 #elif defined(TARGET_ALPHA)
7378 /* XXX: TODO */
7379 #elif defined(TARGET_M68K)
7380 qemu_register_machine(&mcf5208evb_machine);
7381 qemu_register_machine(&an5206_machine);
7382 #else
7383 #error unsupported CPU
7384 #endif
7387 #ifdef HAS_AUDIO
7388 struct soundhw soundhw[] = {
7389 #ifdef HAS_AUDIO_CHOICE
7390 #ifdef TARGET_I386
7392 "pcspk",
7393 "PC speaker",
7396 { .init_isa = pcspk_audio_init }
7398 #endif
7400 "sb16",
7401 "Creative Sound Blaster 16",
7404 { .init_isa = SB16_init }
7407 #ifdef CONFIG_ADLIB
7409 "adlib",
7410 #ifdef HAS_YMF262
7411 "Yamaha YMF262 (OPL3)",
7412 #else
7413 "Yamaha YM3812 (OPL2)",
7414 #endif
7417 { .init_isa = Adlib_init }
7419 #endif
7421 #ifdef CONFIG_GUS
7423 "gus",
7424 "Gravis Ultrasound GF1",
7427 { .init_isa = GUS_init }
7429 #endif
7432 "es1370",
7433 "ENSONIQ AudioPCI ES1370",
7436 { .init_pci = es1370_init }
7438 #endif
7440 { NULL, NULL, 0, 0, { NULL } }
7443 static void select_soundhw (const char *optarg)
7445 struct soundhw *c;
7447 if (*optarg == '?') {
7448 show_valid_cards:
7450 printf ("Valid sound card names (comma separated):\n");
7451 for (c = soundhw; c->name; ++c) {
7452 printf ("%-11s %s\n", c->name, c->descr);
7454 printf ("\n-soundhw all will enable all of the above\n");
7455 exit (*optarg != '?');
7457 else {
7458 size_t l;
7459 const char *p;
7460 char *e;
7461 int bad_card = 0;
7463 if (!strcmp (optarg, "all")) {
7464 for (c = soundhw; c->name; ++c) {
7465 c->enabled = 1;
7467 return;
7470 p = optarg;
7471 while (*p) {
7472 e = strchr (p, ',');
7473 l = !e ? strlen (p) : (size_t) (e - p);
7475 for (c = soundhw; c->name; ++c) {
7476 if (!strncmp (c->name, p, l)) {
7477 c->enabled = 1;
7478 break;
7482 if (!c->name) {
7483 if (l > 80) {
7484 fprintf (stderr,
7485 "Unknown sound card name (too big to show)\n");
7487 else {
7488 fprintf (stderr, "Unknown sound card name `%.*s'\n",
7489 (int) l, p);
7491 bad_card = 1;
7493 p += l + (e != NULL);
7496 if (bad_card)
7497 goto show_valid_cards;
7500 #endif
7502 #ifdef _WIN32
7503 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
7505 exit(STATUS_CONTROL_C_EXIT);
7506 return TRUE;
7508 #endif
7510 #define MAX_NET_CLIENTS 32
7512 int main(int argc, char **argv)
7514 #ifdef CONFIG_GDBSTUB
7515 int use_gdbstub;
7516 const char *gdbstub_port;
7517 #endif
7518 int i, cdrom_index, pflash_index;
7519 int snapshot, linux_boot;
7520 const char *initrd_filename;
7521 const char *hd_filename[MAX_DISKS], *fd_filename[MAX_FD];
7522 const char *pflash_filename[MAX_PFLASH];
7523 const char *sd_filename;
7524 const char *mtd_filename;
7525 const char *kernel_filename, *kernel_cmdline;
7526 DisplayState *ds = &display_state;
7527 int cyls, heads, secs, translation;
7528 char net_clients[MAX_NET_CLIENTS][256];
7529 int nb_net_clients;
7530 int optind;
7531 const char *r, *optarg;
7532 CharDriverState *monitor_hd;
7533 char monitor_device[128];
7534 char serial_devices[MAX_SERIAL_PORTS][128];
7535 int serial_device_index;
7536 char parallel_devices[MAX_PARALLEL_PORTS][128];
7537 int parallel_device_index;
7538 const char *loadvm = NULL;
7539 QEMUMachine *machine;
7540 const char *cpu_model;
7541 char usb_devices[MAX_USB_CMDLINE][128];
7542 int usb_devices_index;
7543 int fds[2];
7544 const char *pid_file = NULL;
7545 VLANState *vlan;
7547 LIST_INIT (&vm_change_state_head);
7548 #ifndef _WIN32
7550 struct sigaction act;
7551 sigfillset(&act.sa_mask);
7552 act.sa_flags = 0;
7553 act.sa_handler = SIG_IGN;
7554 sigaction(SIGPIPE, &act, NULL);
7556 #else
7557 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
7558 /* Note: cpu_interrupt() is currently not SMP safe, so we force
7559 QEMU to run on a single CPU */
7561 HANDLE h;
7562 DWORD mask, smask;
7563 int i;
7564 h = GetCurrentProcess();
7565 if (GetProcessAffinityMask(h, &mask, &smask)) {
7566 for(i = 0; i < 32; i++) {
7567 if (mask & (1 << i))
7568 break;
7570 if (i != 32) {
7571 mask = 1 << i;
7572 SetProcessAffinityMask(h, mask);
7576 #endif
7578 register_machines();
7579 machine = first_machine;
7580 cpu_model = NULL;
7581 initrd_filename = NULL;
7582 for(i = 0; i < MAX_FD; i++)
7583 fd_filename[i] = NULL;
7584 for(i = 0; i < MAX_DISKS; i++)
7585 hd_filename[i] = NULL;
7586 for(i = 0; i < MAX_PFLASH; i++)
7587 pflash_filename[i] = NULL;
7588 pflash_index = 0;
7589 sd_filename = NULL;
7590 mtd_filename = NULL;
7591 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
7592 vga_ram_size = VGA_RAM_SIZE;
7593 #ifdef CONFIG_GDBSTUB
7594 use_gdbstub = 0;
7595 gdbstub_port = DEFAULT_GDBSTUB_PORT;
7596 #endif
7597 snapshot = 0;
7598 nographic = 0;
7599 kernel_filename = NULL;
7600 kernel_cmdline = "";
7601 #ifdef TARGET_PPC
7602 cdrom_index = 1;
7603 #else
7604 cdrom_index = 2;
7605 #endif
7606 cyls = heads = secs = 0;
7607 translation = BIOS_ATA_TRANSLATION_AUTO;
7608 pstrcpy(monitor_device, sizeof(monitor_device), "vc");
7610 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "vc");
7611 for(i = 1; i < MAX_SERIAL_PORTS; i++)
7612 serial_devices[i][0] = '\0';
7613 serial_device_index = 0;
7615 pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "vc");
7616 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
7617 parallel_devices[i][0] = '\0';
7618 parallel_device_index = 0;
7620 usb_devices_index = 0;
7622 nb_net_clients = 0;
7624 nb_nics = 0;
7625 /* default mac address of the first network interface */
7627 optind = 1;
7628 for(;;) {
7629 if (optind >= argc)
7630 break;
7631 r = argv[optind];
7632 if (r[0] != '-') {
7633 hd_filename[0] = argv[optind++];
7634 } else {
7635 const QEMUOption *popt;
7637 optind++;
7638 /* Treat --foo the same as -foo. */
7639 if (r[1] == '-')
7640 r++;
7641 popt = qemu_options;
7642 for(;;) {
7643 if (!popt->name) {
7644 fprintf(stderr, "%s: invalid option -- '%s'\n",
7645 argv[0], r);
7646 exit(1);
7648 if (!strcmp(popt->name, r + 1))
7649 break;
7650 popt++;
7652 if (popt->flags & HAS_ARG) {
7653 if (optind >= argc) {
7654 fprintf(stderr, "%s: option '%s' requires an argument\n",
7655 argv[0], r);
7656 exit(1);
7658 optarg = argv[optind++];
7659 } else {
7660 optarg = NULL;
7663 switch(popt->index) {
7664 case QEMU_OPTION_M:
7665 machine = find_machine(optarg);
7666 if (!machine) {
7667 QEMUMachine *m;
7668 printf("Supported machines are:\n");
7669 for(m = first_machine; m != NULL; m = m->next) {
7670 printf("%-10s %s%s\n",
7671 m->name, m->desc,
7672 m == first_machine ? " (default)" : "");
7674 exit(*optarg != '?');
7676 break;
7677 case QEMU_OPTION_cpu:
7678 /* hw initialization will check this */
7679 if (*optarg == '?') {
7680 #if defined(TARGET_PPC)
7681 ppc_cpu_list(stdout, &fprintf);
7682 #elif defined(TARGET_ARM)
7683 arm_cpu_list();
7684 #elif defined(TARGET_MIPS)
7685 mips_cpu_list(stdout, &fprintf);
7686 #elif defined(TARGET_SPARC)
7687 sparc_cpu_list(stdout, &fprintf);
7688 #endif
7689 exit(0);
7690 } else {
7691 cpu_model = optarg;
7693 break;
7694 case QEMU_OPTION_initrd:
7695 initrd_filename = optarg;
7696 break;
7697 case QEMU_OPTION_hda:
7698 case QEMU_OPTION_hdb:
7699 case QEMU_OPTION_hdc:
7700 case QEMU_OPTION_hdd:
7702 int hd_index;
7703 hd_index = popt->index - QEMU_OPTION_hda;
7704 hd_filename[hd_index] = optarg;
7705 if (hd_index == cdrom_index)
7706 cdrom_index = -1;
7708 break;
7709 case QEMU_OPTION_mtdblock:
7710 mtd_filename = optarg;
7711 break;
7712 case QEMU_OPTION_sd:
7713 sd_filename = optarg;
7714 break;
7715 case QEMU_OPTION_pflash:
7716 if (pflash_index >= MAX_PFLASH) {
7717 fprintf(stderr, "qemu: too many parallel flash images\n");
7718 exit(1);
7720 pflash_filename[pflash_index++] = optarg;
7721 break;
7722 case QEMU_OPTION_snapshot:
7723 snapshot = 1;
7724 break;
7725 case QEMU_OPTION_hdachs:
7727 const char *p;
7728 p = optarg;
7729 cyls = strtol(p, (char **)&p, 0);
7730 if (cyls < 1 || cyls > 16383)
7731 goto chs_fail;
7732 if (*p != ',')
7733 goto chs_fail;
7734 p++;
7735 heads = strtol(p, (char **)&p, 0);
7736 if (heads < 1 || heads > 16)
7737 goto chs_fail;
7738 if (*p != ',')
7739 goto chs_fail;
7740 p++;
7741 secs = strtol(p, (char **)&p, 0);
7742 if (secs < 1 || secs > 63)
7743 goto chs_fail;
7744 if (*p == ',') {
7745 p++;
7746 if (!strcmp(p, "none"))
7747 translation = BIOS_ATA_TRANSLATION_NONE;
7748 else if (!strcmp(p, "lba"))
7749 translation = BIOS_ATA_TRANSLATION_LBA;
7750 else if (!strcmp(p, "auto"))
7751 translation = BIOS_ATA_TRANSLATION_AUTO;
7752 else
7753 goto chs_fail;
7754 } else if (*p != '\0') {
7755 chs_fail:
7756 fprintf(stderr, "qemu: invalid physical CHS format\n");
7757 exit(1);
7760 break;
7761 case QEMU_OPTION_nographic:
7762 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "stdio");
7763 pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "null");
7764 pstrcpy(monitor_device, sizeof(monitor_device), "stdio");
7765 nographic = 1;
7766 break;
7767 case QEMU_OPTION_portrait:
7768 graphic_rotate = 1;
7769 break;
7770 case QEMU_OPTION_kernel:
7771 kernel_filename = optarg;
7772 break;
7773 case QEMU_OPTION_append:
7774 kernel_cmdline = optarg;
7775 break;
7776 case QEMU_OPTION_cdrom:
7777 if (cdrom_index >= 0) {
7778 hd_filename[cdrom_index] = optarg;
7780 break;
7781 case QEMU_OPTION_boot:
7782 boot_device = optarg[0];
7783 if (boot_device != 'a' &&
7784 #if defined(TARGET_SPARC) || defined(TARGET_I386)
7785 // Network boot
7786 boot_device != 'n' &&
7787 #endif
7788 boot_device != 'c' && boot_device != 'd') {
7789 fprintf(stderr, "qemu: invalid boot device '%c'\n", boot_device);
7790 exit(1);
7792 break;
7793 case QEMU_OPTION_fda:
7794 fd_filename[0] = optarg;
7795 break;
7796 case QEMU_OPTION_fdb:
7797 fd_filename[1] = optarg;
7798 break;
7799 #ifdef TARGET_I386
7800 case QEMU_OPTION_no_fd_bootchk:
7801 fd_bootchk = 0;
7802 break;
7803 #endif
7804 case QEMU_OPTION_no_code_copy:
7805 code_copy_enabled = 0;
7806 break;
7807 case QEMU_OPTION_net:
7808 if (nb_net_clients >= MAX_NET_CLIENTS) {
7809 fprintf(stderr, "qemu: too many network clients\n");
7810 exit(1);
7812 pstrcpy(net_clients[nb_net_clients],
7813 sizeof(net_clients[0]),
7814 optarg);
7815 nb_net_clients++;
7816 break;
7817 #ifdef CONFIG_SLIRP
7818 case QEMU_OPTION_tftp:
7819 tftp_prefix = optarg;
7820 break;
7821 case QEMU_OPTION_bootp:
7822 bootp_filename = optarg;
7823 break;
7824 #ifndef _WIN32
7825 case QEMU_OPTION_smb:
7826 net_slirp_smb(optarg);
7827 break;
7828 #endif
7829 case QEMU_OPTION_redir:
7830 net_slirp_redir(optarg);
7831 break;
7832 #endif
7833 #ifdef HAS_AUDIO
7834 case QEMU_OPTION_audio_help:
7835 AUD_help ();
7836 exit (0);
7837 break;
7838 case QEMU_OPTION_soundhw:
7839 select_soundhw (optarg);
7840 break;
7841 #endif
7842 case QEMU_OPTION_h:
7843 help(0);
7844 break;
7845 case QEMU_OPTION_m:
7846 ram_size = atoi(optarg) * 1024 * 1024;
7847 if (ram_size <= 0)
7848 help(1);
7849 if (ram_size > PHYS_RAM_MAX_SIZE) {
7850 fprintf(stderr, "qemu: at most %d MB RAM can be simulated\n",
7851 PHYS_RAM_MAX_SIZE / (1024 * 1024));
7852 exit(1);
7854 break;
7855 case QEMU_OPTION_d:
7857 int mask;
7858 CPULogItem *item;
7860 mask = cpu_str_to_log_mask(optarg);
7861 if (!mask) {
7862 printf("Log items (comma separated):\n");
7863 for(item = cpu_log_items; item->mask != 0; item++) {
7864 printf("%-10s %s\n", item->name, item->help);
7866 exit(1);
7868 cpu_set_log(mask);
7870 break;
7871 #ifdef CONFIG_GDBSTUB
7872 case QEMU_OPTION_s:
7873 use_gdbstub = 1;
7874 break;
7875 case QEMU_OPTION_p:
7876 gdbstub_port = optarg;
7877 break;
7878 #endif
7879 case QEMU_OPTION_L:
7880 bios_dir = optarg;
7881 break;
7882 case QEMU_OPTION_S:
7883 autostart = 0;
7884 break;
7885 case QEMU_OPTION_k:
7886 keyboard_layout = optarg;
7887 break;
7888 case QEMU_OPTION_localtime:
7889 rtc_utc = 0;
7890 break;
7891 case QEMU_OPTION_cirrusvga:
7892 cirrus_vga_enabled = 1;
7893 vmsvga_enabled = 0;
7894 break;
7895 case QEMU_OPTION_vmsvga:
7896 cirrus_vga_enabled = 0;
7897 vmsvga_enabled = 1;
7898 break;
7899 case QEMU_OPTION_std_vga:
7900 cirrus_vga_enabled = 0;
7901 vmsvga_enabled = 0;
7902 break;
7903 case QEMU_OPTION_g:
7905 const char *p;
7906 int w, h, depth;
7907 p = optarg;
7908 w = strtol(p, (char **)&p, 10);
7909 if (w <= 0) {
7910 graphic_error:
7911 fprintf(stderr, "qemu: invalid resolution or depth\n");
7912 exit(1);
7914 if (*p != 'x')
7915 goto graphic_error;
7916 p++;
7917 h = strtol(p, (char **)&p, 10);
7918 if (h <= 0)
7919 goto graphic_error;
7920 if (*p == 'x') {
7921 p++;
7922 depth = strtol(p, (char **)&p, 10);
7923 if (depth != 8 && depth != 15 && depth != 16 &&
7924 depth != 24 && depth != 32)
7925 goto graphic_error;
7926 } else if (*p == '\0') {
7927 depth = graphic_depth;
7928 } else {
7929 goto graphic_error;
7932 graphic_width = w;
7933 graphic_height = h;
7934 graphic_depth = depth;
7936 break;
7937 case QEMU_OPTION_echr:
7939 char *r;
7940 term_escape_char = strtol(optarg, &r, 0);
7941 if (r == optarg)
7942 printf("Bad argument to echr\n");
7943 break;
7945 case QEMU_OPTION_monitor:
7946 pstrcpy(monitor_device, sizeof(monitor_device), optarg);
7947 break;
7948 case QEMU_OPTION_serial:
7949 if (serial_device_index >= MAX_SERIAL_PORTS) {
7950 fprintf(stderr, "qemu: too many serial ports\n");
7951 exit(1);
7953 pstrcpy(serial_devices[serial_device_index],
7954 sizeof(serial_devices[0]), optarg);
7955 serial_device_index++;
7956 break;
7957 case QEMU_OPTION_parallel:
7958 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
7959 fprintf(stderr, "qemu: too many parallel ports\n");
7960 exit(1);
7962 pstrcpy(parallel_devices[parallel_device_index],
7963 sizeof(parallel_devices[0]), optarg);
7964 parallel_device_index++;
7965 break;
7966 case QEMU_OPTION_loadvm:
7967 loadvm = optarg;
7968 break;
7969 case QEMU_OPTION_full_screen:
7970 full_screen = 1;
7971 break;
7972 #ifdef CONFIG_SDL
7973 case QEMU_OPTION_no_frame:
7974 no_frame = 1;
7975 break;
7976 case QEMU_OPTION_alt_grab:
7977 alt_grab = 1;
7978 break;
7979 case QEMU_OPTION_no_quit:
7980 no_quit = 1;
7981 break;
7982 #endif
7983 case QEMU_OPTION_pidfile:
7984 pid_file = optarg;
7985 break;
7986 #ifdef TARGET_I386
7987 case QEMU_OPTION_win2k_hack:
7988 win2k_install_hack = 1;
7989 break;
7990 #endif
7991 #ifdef USE_KQEMU
7992 case QEMU_OPTION_no_kqemu:
7993 kqemu_allowed = 0;
7994 break;
7995 case QEMU_OPTION_kernel_kqemu:
7996 kqemu_allowed = 2;
7997 break;
7998 #endif
7999 case QEMU_OPTION_usb:
8000 usb_enabled = 1;
8001 break;
8002 case QEMU_OPTION_usbdevice:
8003 usb_enabled = 1;
8004 if (usb_devices_index >= MAX_USB_CMDLINE) {
8005 fprintf(stderr, "Too many USB devices\n");
8006 exit(1);
8008 pstrcpy(usb_devices[usb_devices_index],
8009 sizeof(usb_devices[usb_devices_index]),
8010 optarg);
8011 usb_devices_index++;
8012 break;
8013 case QEMU_OPTION_smp:
8014 smp_cpus = atoi(optarg);
8015 if (smp_cpus < 1 || smp_cpus > MAX_CPUS) {
8016 fprintf(stderr, "Invalid number of CPUs\n");
8017 exit(1);
8019 break;
8020 case QEMU_OPTION_vnc:
8021 vnc_display = optarg;
8022 break;
8023 case QEMU_OPTION_no_acpi:
8024 acpi_enabled = 0;
8025 break;
8026 case QEMU_OPTION_no_reboot:
8027 no_reboot = 1;
8028 break;
8029 case QEMU_OPTION_show_cursor:
8030 cursor_hide = 0;
8031 break;
8032 case QEMU_OPTION_daemonize:
8033 daemonize = 1;
8034 break;
8035 case QEMU_OPTION_option_rom:
8036 if (nb_option_roms >= MAX_OPTION_ROMS) {
8037 fprintf(stderr, "Too many option ROMs\n");
8038 exit(1);
8040 option_rom[nb_option_roms] = optarg;
8041 nb_option_roms++;
8042 break;
8043 case QEMU_OPTION_semihosting:
8044 semihosting_enabled = 1;
8045 break;
8046 case QEMU_OPTION_name:
8047 qemu_name = optarg;
8048 break;
8049 #ifdef TARGET_SPARC
8050 case QEMU_OPTION_prom_env:
8051 if (nb_prom_envs >= MAX_PROM_ENVS) {
8052 fprintf(stderr, "Too many prom variables\n");
8053 exit(1);
8055 prom_envs[nb_prom_envs] = optarg;
8056 nb_prom_envs++;
8057 break;
8058 #endif
8059 #ifdef TARGET_ARM
8060 case QEMU_OPTION_old_param:
8061 old_param = 1;
8062 #endif
8063 case QEMU_OPTION_clock:
8064 configure_alarms(optarg);
8065 break;
8070 #ifndef _WIN32
8071 if (daemonize && !nographic && vnc_display == NULL) {
8072 fprintf(stderr, "Can only daemonize if using -nographic or -vnc\n");
8073 daemonize = 0;
8076 if (daemonize) {
8077 pid_t pid;
8079 if (pipe(fds) == -1)
8080 exit(1);
8082 pid = fork();
8083 if (pid > 0) {
8084 uint8_t status;
8085 ssize_t len;
8087 close(fds[1]);
8089 again:
8090 len = read(fds[0], &status, 1);
8091 if (len == -1 && (errno == EINTR))
8092 goto again;
8094 if (len != 1)
8095 exit(1);
8096 else if (status == 1) {
8097 fprintf(stderr, "Could not acquire pidfile\n");
8098 exit(1);
8099 } else
8100 exit(0);
8101 } else if (pid < 0)
8102 exit(1);
8104 setsid();
8106 pid = fork();
8107 if (pid > 0)
8108 exit(0);
8109 else if (pid < 0)
8110 exit(1);
8112 umask(027);
8113 chdir("/");
8115 signal(SIGTSTP, SIG_IGN);
8116 signal(SIGTTOU, SIG_IGN);
8117 signal(SIGTTIN, SIG_IGN);
8119 #endif
8121 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
8122 if (daemonize) {
8123 uint8_t status = 1;
8124 write(fds[1], &status, 1);
8125 } else
8126 fprintf(stderr, "Could not acquire pid file\n");
8127 exit(1);
8130 #ifdef USE_KQEMU
8131 if (smp_cpus > 1)
8132 kqemu_allowed = 0;
8133 #endif
8134 linux_boot = (kernel_filename != NULL);
8136 if (!linux_boot &&
8137 boot_device != 'n' &&
8138 hd_filename[0] == '\0' &&
8139 (cdrom_index >= 0 && hd_filename[cdrom_index] == '\0') &&
8140 fd_filename[0] == '\0')
8141 help(1);
8143 /* boot to floppy or the default cd if no hard disk defined yet */
8144 if (hd_filename[0] == '\0' && boot_device == 'c') {
8145 if (fd_filename[0] != '\0')
8146 boot_device = 'a';
8147 else
8148 boot_device = 'd';
8151 setvbuf(stdout, NULL, _IOLBF, 0);
8153 init_timers();
8154 init_timer_alarm();
8155 qemu_aio_init();
8157 #ifdef _WIN32
8158 socket_init();
8159 #endif
8161 /* init network clients */
8162 if (nb_net_clients == 0) {
8163 /* if no clients, we use a default config */
8164 pstrcpy(net_clients[0], sizeof(net_clients[0]),
8165 "nic");
8166 pstrcpy(net_clients[1], sizeof(net_clients[0]),
8167 "user");
8168 nb_net_clients = 2;
8171 for(i = 0;i < nb_net_clients; i++) {
8172 if (net_client_init(net_clients[i]) < 0)
8173 exit(1);
8175 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
8176 if (vlan->nb_guest_devs == 0 && vlan->nb_host_devs == 0)
8177 continue;
8178 if (vlan->nb_guest_devs == 0) {
8179 fprintf(stderr, "Invalid vlan (%d) with no nics\n", vlan->id);
8180 exit(1);
8182 if (vlan->nb_host_devs == 0)
8183 fprintf(stderr,
8184 "Warning: vlan %d is not connected to host network\n",
8185 vlan->id);
8188 #ifdef TARGET_I386
8189 if (boot_device == 'n') {
8190 for (i = 0; i < nb_nics; i++) {
8191 const char *model = nd_table[i].model;
8192 char buf[1024];
8193 if (model == NULL)
8194 model = "ne2k_pci";
8195 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
8196 if (get_image_size(buf) > 0) {
8197 option_rom[nb_option_roms] = strdup(buf);
8198 nb_option_roms++;
8199 break;
8202 if (i == nb_nics) {
8203 fprintf(stderr, "No valid PXE rom found for network device\n");
8204 exit(1);
8206 boot_device = 'c'; /* to prevent confusion by the BIOS */
8208 #endif
8210 /* init the memory */
8211 phys_ram_size = ram_size + vga_ram_size + MAX_BIOS_SIZE;
8213 phys_ram_base = qemu_vmalloc(phys_ram_size);
8214 if (!phys_ram_base) {
8215 fprintf(stderr, "Could not allocate physical memory\n");
8216 exit(1);
8219 /* we always create the cdrom drive, even if no disk is there */
8220 bdrv_init();
8221 if (cdrom_index >= 0) {
8222 bs_table[cdrom_index] = bdrv_new("cdrom");
8223 bdrv_set_type_hint(bs_table[cdrom_index], BDRV_TYPE_CDROM);
8226 /* open the virtual block devices */
8227 for(i = 0; i < MAX_DISKS; i++) {
8228 if (hd_filename[i]) {
8229 if (!bs_table[i]) {
8230 char buf[64];
8231 snprintf(buf, sizeof(buf), "hd%c", i + 'a');
8232 bs_table[i] = bdrv_new(buf);
8234 if (bdrv_open(bs_table[i], hd_filename[i], snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8235 fprintf(stderr, "qemu: could not open hard disk image '%s'\n",
8236 hd_filename[i]);
8237 exit(1);
8239 if (i == 0 && cyls != 0) {
8240 bdrv_set_geometry_hint(bs_table[i], cyls, heads, secs);
8241 bdrv_set_translation_hint(bs_table[i], translation);
8246 /* we always create at least one floppy disk */
8247 fd_table[0] = bdrv_new("fda");
8248 bdrv_set_type_hint(fd_table[0], BDRV_TYPE_FLOPPY);
8250 for(i = 0; i < MAX_FD; i++) {
8251 if (fd_filename[i]) {
8252 if (!fd_table[i]) {
8253 char buf[64];
8254 snprintf(buf, sizeof(buf), "fd%c", i + 'a');
8255 fd_table[i] = bdrv_new(buf);
8256 bdrv_set_type_hint(fd_table[i], BDRV_TYPE_FLOPPY);
8258 if (fd_filename[i][0] != '\0') {
8259 if (bdrv_open(fd_table[i], fd_filename[i],
8260 snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8261 fprintf(stderr, "qemu: could not open floppy disk image '%s'\n",
8262 fd_filename[i]);
8263 exit(1);
8269 /* Open the virtual parallel flash block devices */
8270 for(i = 0; i < MAX_PFLASH; i++) {
8271 if (pflash_filename[i]) {
8272 if (!pflash_table[i]) {
8273 char buf[64];
8274 snprintf(buf, sizeof(buf), "fl%c", i + 'a');
8275 pflash_table[i] = bdrv_new(buf);
8277 if (bdrv_open(pflash_table[i], pflash_filename[i],
8278 snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8279 fprintf(stderr, "qemu: could not open flash image '%s'\n",
8280 pflash_filename[i]);
8281 exit(1);
8286 sd_bdrv = bdrv_new ("sd");
8287 /* FIXME: This isn't really a floppy, but it's a reasonable
8288 approximation. */
8289 bdrv_set_type_hint(sd_bdrv, BDRV_TYPE_FLOPPY);
8290 if (sd_filename) {
8291 if (bdrv_open(sd_bdrv, sd_filename,
8292 snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8293 fprintf(stderr, "qemu: could not open SD card image %s\n",
8294 sd_filename);
8295 } else
8296 qemu_key_check(sd_bdrv, sd_filename);
8299 if (mtd_filename) {
8300 mtd_bdrv = bdrv_new ("mtd");
8301 if (bdrv_open(mtd_bdrv, mtd_filename,
8302 snapshot ? BDRV_O_SNAPSHOT : 0) < 0 ||
8303 qemu_key_check(mtd_bdrv, mtd_filename)) {
8304 fprintf(stderr, "qemu: could not open Flash image %s\n",
8305 mtd_filename);
8306 bdrv_delete(mtd_bdrv);
8307 mtd_bdrv = 0;
8311 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
8312 register_savevm("ram", 0, 2, ram_save, ram_load, NULL);
8314 init_ioports();
8316 /* terminal init */
8317 memset(&display_state, 0, sizeof(display_state));
8318 if (nographic) {
8319 /* nearly nothing to do */
8320 dumb_display_init(ds);
8321 } else if (vnc_display != NULL) {
8322 vnc_display_init(ds);
8323 if (vnc_display_open(ds, vnc_display) < 0)
8324 exit(1);
8325 } else {
8326 #if defined(CONFIG_SDL)
8327 sdl_display_init(ds, full_screen, no_frame);
8328 #elif defined(CONFIG_COCOA)
8329 cocoa_display_init(ds, full_screen);
8330 #endif
8333 /* Maintain compatibility with multiple stdio monitors */
8334 if (!strcmp(monitor_device,"stdio")) {
8335 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
8336 if (!strcmp(serial_devices[i],"mon:stdio")) {
8337 monitor_device[0] = '\0';
8338 break;
8339 } else if (!strcmp(serial_devices[i],"stdio")) {
8340 monitor_device[0] = '\0';
8341 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "mon:stdio");
8342 break;
8346 if (monitor_device[0] != '\0') {
8347 monitor_hd = qemu_chr_open(monitor_device);
8348 if (!monitor_hd) {
8349 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
8350 exit(1);
8352 monitor_init(monitor_hd, !nographic);
8355 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
8356 const char *devname = serial_devices[i];
8357 if (devname[0] != '\0' && strcmp(devname, "none")) {
8358 serial_hds[i] = qemu_chr_open(devname);
8359 if (!serial_hds[i]) {
8360 fprintf(stderr, "qemu: could not open serial device '%s'\n",
8361 devname);
8362 exit(1);
8364 if (strstart(devname, "vc", 0))
8365 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
8369 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
8370 const char *devname = parallel_devices[i];
8371 if (devname[0] != '\0' && strcmp(devname, "none")) {
8372 parallel_hds[i] = qemu_chr_open(devname);
8373 if (!parallel_hds[i]) {
8374 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
8375 devname);
8376 exit(1);
8378 if (strstart(devname, "vc", 0))
8379 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
8383 machine->init(ram_size, vga_ram_size, boot_device,
8384 ds, fd_filename, snapshot,
8385 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
8387 /* init USB devices */
8388 if (usb_enabled) {
8389 for(i = 0; i < usb_devices_index; i++) {
8390 if (usb_device_add(usb_devices[i]) < 0) {
8391 fprintf(stderr, "Warning: could not add USB device %s\n",
8392 usb_devices[i]);
8397 if (display_state.dpy_refresh) {
8398 display_state.gui_timer = qemu_new_timer(rt_clock, gui_update, &display_state);
8399 qemu_mod_timer(display_state.gui_timer, qemu_get_clock(rt_clock));
8402 #ifdef CONFIG_GDBSTUB
8403 if (use_gdbstub) {
8404 /* XXX: use standard host:port notation and modify options
8405 accordingly. */
8406 if (gdbserver_start(gdbstub_port) < 0) {
8407 fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
8408 gdbstub_port);
8409 exit(1);
8412 #endif
8414 if (loadvm)
8415 do_loadvm(loadvm);
8418 /* XXX: simplify init */
8419 read_passwords();
8420 if (autostart) {
8421 vm_start();
8425 if (daemonize) {
8426 uint8_t status = 0;
8427 ssize_t len;
8428 int fd;
8430 again1:
8431 len = write(fds[1], &status, 1);
8432 if (len == -1 && (errno == EINTR))
8433 goto again1;
8435 if (len != 1)
8436 exit(1);
8438 TFR(fd = open("/dev/null", O_RDWR));
8439 if (fd == -1)
8440 exit(1);
8442 dup2(fd, 0);
8443 dup2(fd, 1);
8444 dup2(fd, 2);
8446 close(fd);
8449 main_loop();
8450 quit_timers();
8451 return 0;