Replace tabs by 8 spaces. No code change, by Herve Poussineau.
[qemu/dscho.git] / kqemu.c
blobc6b2e6950bbb41f21e86aa07a1a7b4b676de2e52
1 /*
2 * KQEMU support
3 *
4 * Copyright (c) 2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include "config.h"
21 #ifdef _WIN32
22 #include <windows.h>
23 #include <winioctl.h>
24 #else
25 #include <sys/types.h>
26 #include <sys/mman.h>
27 #include <sys/ioctl.h>
28 #endif
29 #ifdef HOST_SOLARIS
30 #include <sys/ioccom.h>
31 #endif
32 #include <stdlib.h>
33 #include <stdio.h>
34 #include <stdarg.h>
35 #include <string.h>
36 #include <errno.h>
37 #include <unistd.h>
38 #include <inttypes.h>
40 #include "cpu.h"
41 #include "exec-all.h"
43 #ifdef USE_KQEMU
45 #define DEBUG
46 //#define PROFILE
48 #include <unistd.h>
49 #include <fcntl.h>
50 #include "kqemu.h"
52 /* compatibility stuff */
53 #ifndef KQEMU_RET_SYSCALL
54 #define KQEMU_RET_SYSCALL 0x0300 /* syscall insn */
55 #endif
56 #ifndef KQEMU_MAX_RAM_PAGES_TO_UPDATE
57 #define KQEMU_MAX_RAM_PAGES_TO_UPDATE 512
58 #define KQEMU_RAM_PAGES_UPDATE_ALL (KQEMU_MAX_RAM_PAGES_TO_UPDATE + 1)
59 #endif
60 #ifndef KQEMU_MAX_MODIFIED_RAM_PAGES
61 #define KQEMU_MAX_MODIFIED_RAM_PAGES 512
62 #endif
64 #ifdef _WIN32
65 #define KQEMU_DEVICE "\\\\.\\kqemu"
66 #else
67 #define KQEMU_DEVICE "/dev/kqemu"
68 #endif
70 #ifdef _WIN32
71 #define KQEMU_INVALID_FD INVALID_HANDLE_VALUE
72 HANDLE kqemu_fd = KQEMU_INVALID_FD;
73 #define kqemu_closefd(x) CloseHandle(x)
74 #else
75 #define KQEMU_INVALID_FD -1
76 int kqemu_fd = KQEMU_INVALID_FD;
77 #define kqemu_closefd(x) close(x)
78 #endif
80 /* 0 = not allowed
81 1 = user kqemu
82 2 = kernel kqemu
84 int kqemu_allowed = 1;
85 unsigned long *pages_to_flush;
86 unsigned int nb_pages_to_flush;
87 unsigned long *ram_pages_to_update;
88 unsigned int nb_ram_pages_to_update;
89 unsigned long *modified_ram_pages;
90 unsigned int nb_modified_ram_pages;
91 uint8_t *modified_ram_pages_table;
92 extern uint32_t **l1_phys_map;
94 #define cpuid(index, eax, ebx, ecx, edx) \
95 asm volatile ("cpuid" \
96 : "=a" (eax), "=b" (ebx), "=c" (ecx), "=d" (edx) \
97 : "0" (index))
99 #ifdef __x86_64__
100 static int is_cpuid_supported(void)
102 return 1;
104 #else
105 static int is_cpuid_supported(void)
107 int v0, v1;
108 asm volatile ("pushf\n"
109 "popl %0\n"
110 "movl %0, %1\n"
111 "xorl $0x00200000, %0\n"
112 "pushl %0\n"
113 "popf\n"
114 "pushf\n"
115 "popl %0\n"
116 : "=a" (v0), "=d" (v1)
118 : "cc");
119 return (v0 != v1);
121 #endif
123 static void kqemu_update_cpuid(CPUState *env)
125 int critical_features_mask, features, ext_features, ext_features_mask;
126 uint32_t eax, ebx, ecx, edx;
128 /* the following features are kept identical on the host and
129 target cpus because they are important for user code. Strictly
130 speaking, only SSE really matters because the OS must support
131 it if the user code uses it. */
132 critical_features_mask =
133 CPUID_CMOV | CPUID_CX8 |
134 CPUID_FXSR | CPUID_MMX | CPUID_SSE |
135 CPUID_SSE2 | CPUID_SEP;
136 ext_features_mask = CPUID_EXT_SSE3 | CPUID_EXT_MONITOR;
137 if (!is_cpuid_supported()) {
138 features = 0;
139 ext_features = 0;
140 } else {
141 cpuid(1, eax, ebx, ecx, edx);
142 features = edx;
143 ext_features = ecx;
145 #ifdef __x86_64__
146 /* NOTE: on x86_64 CPUs, SYSENTER is not supported in
147 compatibility mode, so in order to have the best performances
148 it is better not to use it */
149 features &= ~CPUID_SEP;
150 #endif
151 env->cpuid_features = (env->cpuid_features & ~critical_features_mask) |
152 (features & critical_features_mask);
153 env->cpuid_ext_features = (env->cpuid_ext_features & ~ext_features_mask) |
154 (ext_features & ext_features_mask);
155 /* XXX: we could update more of the target CPUID state so that the
156 non accelerated code sees exactly the same CPU features as the
157 accelerated code */
160 int kqemu_init(CPUState *env)
162 struct kqemu_init init;
163 int ret, version;
164 #ifdef _WIN32
165 DWORD temp;
166 #endif
168 if (!kqemu_allowed)
169 return -1;
171 #ifdef _WIN32
172 kqemu_fd = CreateFile(KQEMU_DEVICE, GENERIC_WRITE | GENERIC_READ,
173 FILE_SHARE_READ | FILE_SHARE_WRITE,
174 NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL,
175 NULL);
176 #else
177 kqemu_fd = open(KQEMU_DEVICE, O_RDWR);
178 #endif
179 if (kqemu_fd == KQEMU_INVALID_FD) {
180 fprintf(stderr, "Could not open '%s' - QEMU acceleration layer not activated: %s\n",
181 KQEMU_DEVICE, strerror(errno));
182 return -1;
184 version = 0;
185 #ifdef _WIN32
186 DeviceIoControl(kqemu_fd, KQEMU_GET_VERSION, NULL, 0,
187 &version, sizeof(version), &temp, NULL);
188 #else
189 ioctl(kqemu_fd, KQEMU_GET_VERSION, &version);
190 #endif
191 if (version != KQEMU_VERSION) {
192 fprintf(stderr, "Version mismatch between kqemu module and qemu (%08x %08x) - disabling kqemu use\n",
193 version, KQEMU_VERSION);
194 goto fail;
197 pages_to_flush = qemu_vmalloc(KQEMU_MAX_PAGES_TO_FLUSH *
198 sizeof(unsigned long));
199 if (!pages_to_flush)
200 goto fail;
202 ram_pages_to_update = qemu_vmalloc(KQEMU_MAX_RAM_PAGES_TO_UPDATE *
203 sizeof(unsigned long));
204 if (!ram_pages_to_update)
205 goto fail;
207 modified_ram_pages = qemu_vmalloc(KQEMU_MAX_MODIFIED_RAM_PAGES *
208 sizeof(unsigned long));
209 if (!modified_ram_pages)
210 goto fail;
211 modified_ram_pages_table = qemu_mallocz(phys_ram_size >> TARGET_PAGE_BITS);
212 if (!modified_ram_pages_table)
213 goto fail;
215 init.ram_base = phys_ram_base;
216 init.ram_size = phys_ram_size;
217 init.ram_dirty = phys_ram_dirty;
218 init.phys_to_ram_map = l1_phys_map;
219 init.pages_to_flush = pages_to_flush;
220 #if KQEMU_VERSION >= 0x010200
221 init.ram_pages_to_update = ram_pages_to_update;
222 #endif
223 #if KQEMU_VERSION >= 0x010300
224 init.modified_ram_pages = modified_ram_pages;
225 #endif
226 #ifdef _WIN32
227 ret = DeviceIoControl(kqemu_fd, KQEMU_INIT, &init, sizeof(init),
228 NULL, 0, &temp, NULL) == TRUE ? 0 : -1;
229 #else
230 ret = ioctl(kqemu_fd, KQEMU_INIT, &init);
231 #endif
232 if (ret < 0) {
233 fprintf(stderr, "Error %d while initializing QEMU acceleration layer - disabling it for now\n", ret);
234 fail:
235 kqemu_closefd(kqemu_fd);
236 kqemu_fd = KQEMU_INVALID_FD;
237 return -1;
239 kqemu_update_cpuid(env);
240 env->kqemu_enabled = kqemu_allowed;
241 nb_pages_to_flush = 0;
242 nb_ram_pages_to_update = 0;
243 return 0;
246 void kqemu_flush_page(CPUState *env, target_ulong addr)
248 #if defined(DEBUG)
249 if (loglevel & CPU_LOG_INT) {
250 fprintf(logfile, "kqemu_flush_page: addr=" TARGET_FMT_lx "\n", addr);
252 #endif
253 if (nb_pages_to_flush >= KQEMU_MAX_PAGES_TO_FLUSH)
254 nb_pages_to_flush = KQEMU_FLUSH_ALL;
255 else
256 pages_to_flush[nb_pages_to_flush++] = addr;
259 void kqemu_flush(CPUState *env, int global)
261 #ifdef DEBUG
262 if (loglevel & CPU_LOG_INT) {
263 fprintf(logfile, "kqemu_flush:\n");
265 #endif
266 nb_pages_to_flush = KQEMU_FLUSH_ALL;
269 void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr)
271 #ifdef DEBUG
272 if (loglevel & CPU_LOG_INT) {
273 fprintf(logfile, "kqemu_set_notdirty: addr=%08lx\n", ram_addr);
275 #endif
276 /* we only track transitions to dirty state */
277 if (phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] != 0xff)
278 return;
279 if (nb_ram_pages_to_update >= KQEMU_MAX_RAM_PAGES_TO_UPDATE)
280 nb_ram_pages_to_update = KQEMU_RAM_PAGES_UPDATE_ALL;
281 else
282 ram_pages_to_update[nb_ram_pages_to_update++] = ram_addr;
285 static void kqemu_reset_modified_ram_pages(void)
287 int i;
288 unsigned long page_index;
290 for(i = 0; i < nb_modified_ram_pages; i++) {
291 page_index = modified_ram_pages[i] >> TARGET_PAGE_BITS;
292 modified_ram_pages_table[page_index] = 0;
294 nb_modified_ram_pages = 0;
297 void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr)
299 unsigned long page_index;
300 int ret;
301 #ifdef _WIN32
302 DWORD temp;
303 #endif
305 page_index = ram_addr >> TARGET_PAGE_BITS;
306 if (!modified_ram_pages_table[page_index]) {
307 #if 0
308 printf("%d: modify_page=%08lx\n", nb_modified_ram_pages, ram_addr);
309 #endif
310 modified_ram_pages_table[page_index] = 1;
311 modified_ram_pages[nb_modified_ram_pages++] = ram_addr;
312 if (nb_modified_ram_pages >= KQEMU_MAX_MODIFIED_RAM_PAGES) {
313 /* flush */
314 #ifdef _WIN32
315 ret = DeviceIoControl(kqemu_fd, KQEMU_MODIFY_RAM_PAGES,
316 &nb_modified_ram_pages,
317 sizeof(nb_modified_ram_pages),
318 NULL, 0, &temp, NULL);
319 #else
320 ret = ioctl(kqemu_fd, KQEMU_MODIFY_RAM_PAGES,
321 &nb_modified_ram_pages);
322 #endif
323 kqemu_reset_modified_ram_pages();
328 struct fpstate {
329 uint16_t fpuc;
330 uint16_t dummy1;
331 uint16_t fpus;
332 uint16_t dummy2;
333 uint16_t fptag;
334 uint16_t dummy3;
336 uint32_t fpip;
337 uint32_t fpcs;
338 uint32_t fpoo;
339 uint32_t fpos;
340 uint8_t fpregs1[8 * 10];
343 struct fpxstate {
344 uint16_t fpuc;
345 uint16_t fpus;
346 uint16_t fptag;
347 uint16_t fop;
348 uint32_t fpuip;
349 uint16_t cs_sel;
350 uint16_t dummy0;
351 uint32_t fpudp;
352 uint16_t ds_sel;
353 uint16_t dummy1;
354 uint32_t mxcsr;
355 uint32_t mxcsr_mask;
356 uint8_t fpregs1[8 * 16];
357 uint8_t xmm_regs[16 * 16];
358 uint8_t dummy2[96];
361 static struct fpxstate fpx1 __attribute__((aligned(16)));
363 static void restore_native_fp_frstor(CPUState *env)
365 int fptag, i, j;
366 struct fpstate fp1, *fp = &fp1;
368 fp->fpuc = env->fpuc;
369 fp->fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
370 fptag = 0;
371 for (i=7; i>=0; i--) {
372 fptag <<= 2;
373 if (env->fptags[i]) {
374 fptag |= 3;
375 } else {
376 /* the FPU automatically computes it */
379 fp->fptag = fptag;
380 j = env->fpstt;
381 for(i = 0;i < 8; i++) {
382 memcpy(&fp->fpregs1[i * 10], &env->fpregs[j].d, 10);
383 j = (j + 1) & 7;
385 asm volatile ("frstor %0" : "=m" (*fp));
388 static void save_native_fp_fsave(CPUState *env)
390 int fptag, i, j;
391 uint16_t fpuc;
392 struct fpstate fp1, *fp = &fp1;
394 asm volatile ("fsave %0" : : "m" (*fp));
395 env->fpuc = fp->fpuc;
396 env->fpstt = (fp->fpus >> 11) & 7;
397 env->fpus = fp->fpus & ~0x3800;
398 fptag = fp->fptag;
399 for(i = 0;i < 8; i++) {
400 env->fptags[i] = ((fptag & 3) == 3);
401 fptag >>= 2;
403 j = env->fpstt;
404 for(i = 0;i < 8; i++) {
405 memcpy(&env->fpregs[j].d, &fp->fpregs1[i * 10], 10);
406 j = (j + 1) & 7;
408 /* we must restore the default rounding state */
409 fpuc = 0x037f | (env->fpuc & (3 << 10));
410 asm volatile("fldcw %0" : : "m" (fpuc));
413 static void restore_native_fp_fxrstor(CPUState *env)
415 struct fpxstate *fp = &fpx1;
416 int i, j, fptag;
418 fp->fpuc = env->fpuc;
419 fp->fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
420 fptag = 0;
421 for(i = 0; i < 8; i++)
422 fptag |= (env->fptags[i] << i);
423 fp->fptag = fptag ^ 0xff;
425 j = env->fpstt;
426 for(i = 0;i < 8; i++) {
427 memcpy(&fp->fpregs1[i * 16], &env->fpregs[j].d, 10);
428 j = (j + 1) & 7;
430 if (env->cpuid_features & CPUID_SSE) {
431 fp->mxcsr = env->mxcsr;
432 /* XXX: check if DAZ is not available */
433 fp->mxcsr_mask = 0xffff;
434 memcpy(fp->xmm_regs, env->xmm_regs, CPU_NB_REGS * 16);
436 asm volatile ("fxrstor %0" : "=m" (*fp));
439 static void save_native_fp_fxsave(CPUState *env)
441 struct fpxstate *fp = &fpx1;
442 int fptag, i, j;
443 uint16_t fpuc;
445 asm volatile ("fxsave %0" : : "m" (*fp));
446 env->fpuc = fp->fpuc;
447 env->fpstt = (fp->fpus >> 11) & 7;
448 env->fpus = fp->fpus & ~0x3800;
449 fptag = fp->fptag ^ 0xff;
450 for(i = 0;i < 8; i++) {
451 env->fptags[i] = (fptag >> i) & 1;
453 j = env->fpstt;
454 for(i = 0;i < 8; i++) {
455 memcpy(&env->fpregs[j].d, &fp->fpregs1[i * 16], 10);
456 j = (j + 1) & 7;
458 if (env->cpuid_features & CPUID_SSE) {
459 env->mxcsr = fp->mxcsr;
460 memcpy(env->xmm_regs, fp->xmm_regs, CPU_NB_REGS * 16);
463 /* we must restore the default rounding state */
464 asm volatile ("fninit");
465 fpuc = 0x037f | (env->fpuc & (3 << 10));
466 asm volatile("fldcw %0" : : "m" (fpuc));
469 static int do_syscall(CPUState *env,
470 struct kqemu_cpu_state *kenv)
472 int selector;
474 selector = (env->star >> 32) & 0xffff;
475 #ifdef __x86_64__
476 if (env->hflags & HF_LMA_MASK) {
477 int code64;
479 env->regs[R_ECX] = kenv->next_eip;
480 env->regs[11] = env->eflags;
482 code64 = env->hflags & HF_CS64_MASK;
484 cpu_x86_set_cpl(env, 0);
485 cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc,
486 0, 0xffffffff,
487 DESC_G_MASK | DESC_P_MASK |
488 DESC_S_MASK |
489 DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK | DESC_L_MASK);
490 cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc,
491 0, 0xffffffff,
492 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
493 DESC_S_MASK |
494 DESC_W_MASK | DESC_A_MASK);
495 env->eflags &= ~env->fmask;
496 if (code64)
497 env->eip = env->lstar;
498 else
499 env->eip = env->cstar;
500 } else
501 #endif
503 env->regs[R_ECX] = (uint32_t)kenv->next_eip;
505 cpu_x86_set_cpl(env, 0);
506 cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc,
507 0, 0xffffffff,
508 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
509 DESC_S_MASK |
510 DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK);
511 cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc,
512 0, 0xffffffff,
513 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
514 DESC_S_MASK |
515 DESC_W_MASK | DESC_A_MASK);
516 env->eflags &= ~(IF_MASK | RF_MASK | VM_MASK);
517 env->eip = (uint32_t)env->star;
519 return 2;
522 #ifdef CONFIG_PROFILER
524 #define PC_REC_SIZE 1
525 #define PC_REC_HASH_BITS 16
526 #define PC_REC_HASH_SIZE (1 << PC_REC_HASH_BITS)
528 typedef struct PCRecord {
529 unsigned long pc;
530 int64_t count;
531 struct PCRecord *next;
532 } PCRecord;
534 static PCRecord *pc_rec_hash[PC_REC_HASH_SIZE];
535 static int nb_pc_records;
537 static void kqemu_record_pc(unsigned long pc)
539 unsigned long h;
540 PCRecord **pr, *r;
542 h = pc / PC_REC_SIZE;
543 h = h ^ (h >> PC_REC_HASH_BITS);
544 h &= (PC_REC_HASH_SIZE - 1);
545 pr = &pc_rec_hash[h];
546 for(;;) {
547 r = *pr;
548 if (r == NULL)
549 break;
550 if (r->pc == pc) {
551 r->count++;
552 return;
554 pr = &r->next;
556 r = malloc(sizeof(PCRecord));
557 r->count = 1;
558 r->pc = pc;
559 r->next = NULL;
560 *pr = r;
561 nb_pc_records++;
564 static int pc_rec_cmp(const void *p1, const void *p2)
566 PCRecord *r1 = *(PCRecord **)p1;
567 PCRecord *r2 = *(PCRecord **)p2;
568 if (r1->count < r2->count)
569 return 1;
570 else if (r1->count == r2->count)
571 return 0;
572 else
573 return -1;
576 static void kqemu_record_flush(void)
578 PCRecord *r, *r_next;
579 int h;
581 for(h = 0; h < PC_REC_HASH_SIZE; h++) {
582 for(r = pc_rec_hash[h]; r != NULL; r = r_next) {
583 r_next = r->next;
584 free(r);
586 pc_rec_hash[h] = NULL;
588 nb_pc_records = 0;
591 void kqemu_record_dump(void)
593 PCRecord **pr, *r;
594 int i, h;
595 FILE *f;
596 int64_t total, sum;
598 pr = malloc(sizeof(PCRecord *) * nb_pc_records);
599 i = 0;
600 total = 0;
601 for(h = 0; h < PC_REC_HASH_SIZE; h++) {
602 for(r = pc_rec_hash[h]; r != NULL; r = r->next) {
603 pr[i++] = r;
604 total += r->count;
607 qsort(pr, nb_pc_records, sizeof(PCRecord *), pc_rec_cmp);
609 f = fopen("/tmp/kqemu.stats", "w");
610 if (!f) {
611 perror("/tmp/kqemu.stats");
612 exit(1);
614 fprintf(f, "total: %" PRId64 "\n", total);
615 sum = 0;
616 for(i = 0; i < nb_pc_records; i++) {
617 r = pr[i];
618 sum += r->count;
619 fprintf(f, "%08lx: %" PRId64 " %0.2f%% %0.2f%%\n",
620 r->pc,
621 r->count,
622 (double)r->count / (double)total * 100.0,
623 (double)sum / (double)total * 100.0);
625 fclose(f);
626 free(pr);
628 kqemu_record_flush();
630 #endif
632 int kqemu_cpu_exec(CPUState *env)
634 struct kqemu_cpu_state kcpu_state, *kenv = &kcpu_state;
635 int ret, cpl, i;
636 #ifdef CONFIG_PROFILER
637 int64_t ti;
638 #endif
640 #ifdef _WIN32
641 DWORD temp;
642 #endif
644 #ifdef CONFIG_PROFILER
645 ti = profile_getclock();
646 #endif
647 #ifdef DEBUG
648 if (loglevel & CPU_LOG_INT) {
649 fprintf(logfile, "kqemu: cpu_exec: enter\n");
650 cpu_dump_state(env, logfile, fprintf, 0);
652 #endif
653 memcpy(kenv->regs, env->regs, sizeof(kenv->regs));
654 kenv->eip = env->eip;
655 kenv->eflags = env->eflags;
656 memcpy(&kenv->segs, &env->segs, sizeof(env->segs));
657 memcpy(&kenv->ldt, &env->ldt, sizeof(env->ldt));
658 memcpy(&kenv->tr, &env->tr, sizeof(env->tr));
659 memcpy(&kenv->gdt, &env->gdt, sizeof(env->gdt));
660 memcpy(&kenv->idt, &env->idt, sizeof(env->idt));
661 kenv->cr0 = env->cr[0];
662 kenv->cr2 = env->cr[2];
663 kenv->cr3 = env->cr[3];
664 kenv->cr4 = env->cr[4];
665 kenv->a20_mask = env->a20_mask;
666 #if KQEMU_VERSION >= 0x010100
667 kenv->efer = env->efer;
668 #endif
669 #if KQEMU_VERSION >= 0x010300
670 kenv->tsc_offset = 0;
671 kenv->star = env->star;
672 kenv->sysenter_cs = env->sysenter_cs;
673 kenv->sysenter_esp = env->sysenter_esp;
674 kenv->sysenter_eip = env->sysenter_eip;
675 #ifdef __x86_64__
676 kenv->lstar = env->lstar;
677 kenv->cstar = env->cstar;
678 kenv->fmask = env->fmask;
679 kenv->kernelgsbase = env->kernelgsbase;
680 #endif
681 #endif
682 if (env->dr[7] & 0xff) {
683 kenv->dr7 = env->dr[7];
684 kenv->dr0 = env->dr[0];
685 kenv->dr1 = env->dr[1];
686 kenv->dr2 = env->dr[2];
687 kenv->dr3 = env->dr[3];
688 } else {
689 kenv->dr7 = 0;
691 kenv->dr6 = env->dr[6];
692 cpl = (env->hflags & HF_CPL_MASK);
693 kenv->cpl = cpl;
694 kenv->nb_pages_to_flush = nb_pages_to_flush;
695 #if KQEMU_VERSION >= 0x010200
696 kenv->user_only = (env->kqemu_enabled == 1);
697 kenv->nb_ram_pages_to_update = nb_ram_pages_to_update;
698 #endif
699 nb_ram_pages_to_update = 0;
701 #if KQEMU_VERSION >= 0x010300
702 kenv->nb_modified_ram_pages = nb_modified_ram_pages;
703 #endif
704 kqemu_reset_modified_ram_pages();
706 if (env->cpuid_features & CPUID_FXSR)
707 restore_native_fp_fxrstor(env);
708 else
709 restore_native_fp_frstor(env);
711 #ifdef _WIN32
712 if (DeviceIoControl(kqemu_fd, KQEMU_EXEC,
713 kenv, sizeof(struct kqemu_cpu_state),
714 kenv, sizeof(struct kqemu_cpu_state),
715 &temp, NULL)) {
716 ret = kenv->retval;
717 } else {
718 ret = -1;
720 #else
721 #if KQEMU_VERSION >= 0x010100
722 ioctl(kqemu_fd, KQEMU_EXEC, kenv);
723 ret = kenv->retval;
724 #else
725 ret = ioctl(kqemu_fd, KQEMU_EXEC, kenv);
726 #endif
727 #endif
728 if (env->cpuid_features & CPUID_FXSR)
729 save_native_fp_fxsave(env);
730 else
731 save_native_fp_fsave(env);
733 memcpy(env->regs, kenv->regs, sizeof(env->regs));
734 env->eip = kenv->eip;
735 env->eflags = kenv->eflags;
736 memcpy(env->segs, kenv->segs, sizeof(env->segs));
737 cpu_x86_set_cpl(env, kenv->cpl);
738 memcpy(&env->ldt, &kenv->ldt, sizeof(env->ldt));
739 #if 0
740 /* no need to restore that */
741 memcpy(env->tr, kenv->tr, sizeof(env->tr));
742 memcpy(env->gdt, kenv->gdt, sizeof(env->gdt));
743 memcpy(env->idt, kenv->idt, sizeof(env->idt));
744 env->a20_mask = kenv->a20_mask;
745 #endif
746 env->cr[0] = kenv->cr0;
747 env->cr[4] = kenv->cr4;
748 env->cr[3] = kenv->cr3;
749 env->cr[2] = kenv->cr2;
750 env->dr[6] = kenv->dr6;
751 #if KQEMU_VERSION >= 0x010300
752 #ifdef __x86_64__
753 env->kernelgsbase = kenv->kernelgsbase;
754 #endif
755 #endif
757 /* flush pages as indicated by kqemu */
758 if (kenv->nb_pages_to_flush >= KQEMU_FLUSH_ALL) {
759 tlb_flush(env, 1);
760 } else {
761 for(i = 0; i < kenv->nb_pages_to_flush; i++) {
762 tlb_flush_page(env, pages_to_flush[i]);
765 nb_pages_to_flush = 0;
767 #ifdef CONFIG_PROFILER
768 kqemu_time += profile_getclock() - ti;
769 kqemu_exec_count++;
770 #endif
772 #if KQEMU_VERSION >= 0x010200
773 if (kenv->nb_ram_pages_to_update > 0) {
774 cpu_tlb_update_dirty(env);
776 #endif
778 #if KQEMU_VERSION >= 0x010300
779 if (kenv->nb_modified_ram_pages > 0) {
780 for(i = 0; i < kenv->nb_modified_ram_pages; i++) {
781 unsigned long addr;
782 addr = modified_ram_pages[i];
783 tb_invalidate_phys_page_range(addr, addr + TARGET_PAGE_SIZE, 0);
786 #endif
788 /* restore the hidden flags */
790 unsigned int new_hflags;
791 #ifdef TARGET_X86_64
792 if ((env->hflags & HF_LMA_MASK) &&
793 (env->segs[R_CS].flags & DESC_L_MASK)) {
794 /* long mode */
795 new_hflags = HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
796 } else
797 #endif
799 /* legacy / compatibility case */
800 new_hflags = (env->segs[R_CS].flags & DESC_B_MASK)
801 >> (DESC_B_SHIFT - HF_CS32_SHIFT);
802 new_hflags |= (env->segs[R_SS].flags & DESC_B_MASK)
803 >> (DESC_B_SHIFT - HF_SS32_SHIFT);
804 if (!(env->cr[0] & CR0_PE_MASK) ||
805 (env->eflags & VM_MASK) ||
806 !(env->hflags & HF_CS32_MASK)) {
807 /* XXX: try to avoid this test. The problem comes from the
808 fact that is real mode or vm86 mode we only modify the
809 'base' and 'selector' fields of the segment cache to go
810 faster. A solution may be to force addseg to one in
811 translate-i386.c. */
812 new_hflags |= HF_ADDSEG_MASK;
813 } else {
814 new_hflags |= ((env->segs[R_DS].base |
815 env->segs[R_ES].base |
816 env->segs[R_SS].base) != 0) <<
817 HF_ADDSEG_SHIFT;
820 env->hflags = (env->hflags &
821 ~(HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)) |
822 new_hflags;
824 /* update FPU flags */
825 env->hflags = (env->hflags & ~(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)) |
826 ((env->cr[0] << (HF_MP_SHIFT - 1)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK));
827 if (env->cr[4] & CR4_OSFXSR_MASK)
828 env->hflags |= HF_OSFXSR_MASK;
829 else
830 env->hflags &= ~HF_OSFXSR_MASK;
832 #ifdef DEBUG
833 if (loglevel & CPU_LOG_INT) {
834 fprintf(logfile, "kqemu: kqemu_cpu_exec: ret=0x%x\n", ret);
836 #endif
837 if (ret == KQEMU_RET_SYSCALL) {
838 /* syscall instruction */
839 return do_syscall(env, kenv);
840 } else
841 if ((ret & 0xff00) == KQEMU_RET_INT) {
842 env->exception_index = ret & 0xff;
843 env->error_code = 0;
844 env->exception_is_int = 1;
845 env->exception_next_eip = kenv->next_eip;
846 #ifdef CONFIG_PROFILER
847 kqemu_ret_int_count++;
848 #endif
849 #ifdef DEBUG
850 if (loglevel & CPU_LOG_INT) {
851 fprintf(logfile, "kqemu: interrupt v=%02x:\n",
852 env->exception_index);
853 cpu_dump_state(env, logfile, fprintf, 0);
855 #endif
856 return 1;
857 } else if ((ret & 0xff00) == KQEMU_RET_EXCEPTION) {
858 env->exception_index = ret & 0xff;
859 env->error_code = kenv->error_code;
860 env->exception_is_int = 0;
861 env->exception_next_eip = 0;
862 #ifdef CONFIG_PROFILER
863 kqemu_ret_excp_count++;
864 #endif
865 #ifdef DEBUG
866 if (loglevel & CPU_LOG_INT) {
867 fprintf(logfile, "kqemu: exception v=%02x e=%04x:\n",
868 env->exception_index, env->error_code);
869 cpu_dump_state(env, logfile, fprintf, 0);
871 #endif
872 return 1;
873 } else if (ret == KQEMU_RET_INTR) {
874 #ifdef CONFIG_PROFILER
875 kqemu_ret_intr_count++;
876 #endif
877 #ifdef DEBUG
878 if (loglevel & CPU_LOG_INT) {
879 cpu_dump_state(env, logfile, fprintf, 0);
881 #endif
882 return 0;
883 } else if (ret == KQEMU_RET_SOFTMMU) {
884 #ifdef CONFIG_PROFILER
886 unsigned long pc = env->eip + env->segs[R_CS].base;
887 kqemu_record_pc(pc);
889 #endif
890 #ifdef DEBUG
891 if (loglevel & CPU_LOG_INT) {
892 cpu_dump_state(env, logfile, fprintf, 0);
894 #endif
895 return 2;
896 } else {
897 cpu_dump_state(env, stderr, fprintf, 0);
898 fprintf(stderr, "Unsupported return value: 0x%x\n", ret);
899 exit(1);
901 return 0;
904 void kqemu_cpu_interrupt(CPUState *env)
906 #if defined(_WIN32) && KQEMU_VERSION >= 0x010101
907 /* cancelling the I/O request causes KQEMU to finish executing the
908 current block and successfully returning. */
909 CancelIo(kqemu_fd);
910 #endif
913 #endif