Replace tabs by 8 spaces. No code change, by Herve Poussineau.
[qemu/dscho.git] / hw / mips_malta.c
blobed23052b91cea90f5893aa82e57bc54ca14b5b52
1 /*
2 * QEMU Malta board support
4 * Copyright (c) 2006 Aurelien Jarno
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "vl.h"
27 #ifdef TARGET_WORDS_BIGENDIAN
28 #define BIOS_FILENAME "mips_bios.bin"
29 #else
30 #define BIOS_FILENAME "mipsel_bios.bin"
31 #endif
33 #ifdef TARGET_MIPS64
34 #define PHYS_TO_VIRT(x) ((x) | ~0x7fffffffULL)
35 #else
36 #define PHYS_TO_VIRT(x) ((x) | ~0x7fffffffU)
37 #endif
39 #define ENVP_ADDR (int32_t)0x80002000
40 #define VIRT_TO_PHYS_ADDEND (-((int64_t)(int32_t)0x80000000))
42 #define ENVP_NB_ENTRIES 16
43 #define ENVP_ENTRY_SIZE 256
45 extern FILE *logfile;
47 typedef struct {
48 uint32_t leds;
49 uint32_t brk;
50 uint32_t gpout;
51 uint32_t i2cin;
52 uint32_t i2coe;
53 uint32_t i2cout;
54 uint32_t i2csel;
55 CharDriverState *display;
56 char display_text[9];
57 SerialState *uart;
58 } MaltaFPGAState;
60 static PITState *pit;
62 /* Malta FPGA */
63 static void malta_fpga_update_display(void *opaque)
65 char leds_text[9];
66 int i;
67 MaltaFPGAState *s = opaque;
69 for (i = 7 ; i >= 0 ; i--) {
70 if (s->leds & (1 << i))
71 leds_text[i] = '#';
72 else
73 leds_text[i] = ' ';
75 leds_text[8] = '\0';
77 qemu_chr_printf(s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n", leds_text);
78 qemu_chr_printf(s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|", s->display_text);
82 * EEPROM 24C01 / 24C02 emulation.
84 * Emulation for serial EEPROMs:
85 * 24C01 - 1024 bit (128 x 8)
86 * 24C02 - 2048 bit (256 x 8)
88 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
91 //~ #define DEBUG
93 #if defined(DEBUG)
94 # define logout(fmt, args...) fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ##args)
95 #else
96 # define logout(fmt, args...) ((void)0)
97 #endif
99 struct _eeprom24c0x_t {
100 uint8_t tick;
101 uint8_t address;
102 uint8_t command;
103 uint8_t ack;
104 uint8_t scl;
105 uint8_t sda;
106 uint8_t data;
107 //~ uint16_t size;
108 uint8_t contents[256];
111 typedef struct _eeprom24c0x_t eeprom24c0x_t;
113 static eeprom24c0x_t eeprom = {
114 contents: {
115 /* 00000000: */ 0x80,0x08,0x04,0x0D,0x0A,0x01,0x40,0x00,
116 /* 00000008: */ 0x01,0x75,0x54,0x00,0x82,0x08,0x00,0x01,
117 /* 00000010: */ 0x8F,0x04,0x02,0x01,0x01,0x00,0x0E,0x00,
118 /* 00000018: */ 0x00,0x00,0x00,0x14,0x0F,0x14,0x2D,0x40,
119 /* 00000020: */ 0x15,0x08,0x15,0x08,0x00,0x00,0x00,0x00,
120 /* 00000028: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
121 /* 00000030: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
122 /* 00000038: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x12,0xD0,
123 /* 00000040: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
124 /* 00000048: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
125 /* 00000050: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
126 /* 00000058: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
127 /* 00000060: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
128 /* 00000068: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
129 /* 00000070: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
130 /* 00000078: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x64,0xF4,
134 static uint8_t eeprom24c0x_read()
136 logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
137 eeprom.tick, eeprom.scl, eeprom.sda, eeprom.data);
138 return eeprom.sda;
141 static void eeprom24c0x_write(int scl, int sda)
143 if (eeprom.scl && scl && (eeprom.sda != sda)) {
144 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
145 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda, sda ? "stop" : "start");
146 if (!sda) {
147 eeprom.tick = 1;
148 eeprom.command = 0;
150 } else if (eeprom.tick == 0 && !eeprom.ack) {
151 /* Waiting for start. */
152 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
153 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
154 } else if (!eeprom.scl && scl) {
155 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
156 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
157 if (eeprom.ack) {
158 logout("\ti2c ack bit = 0\n");
159 sda = 0;
160 eeprom.ack = 0;
161 } else if (eeprom.sda == sda) {
162 uint8_t bit = (sda != 0);
163 logout("\ti2c bit = %d\n", bit);
164 if (eeprom.tick < 9) {
165 eeprom.command <<= 1;
166 eeprom.command += bit;
167 eeprom.tick++;
168 if (eeprom.tick == 9) {
169 logout("\tcommand 0x%04x, %s\n", eeprom.command, bit ? "read" : "write");
170 eeprom.ack = 1;
172 } else if (eeprom.tick < 17) {
173 if (eeprom.command & 1) {
174 sda = ((eeprom.data & 0x80) != 0);
176 eeprom.address <<= 1;
177 eeprom.address += bit;
178 eeprom.tick++;
179 eeprom.data <<= 1;
180 if (eeprom.tick == 17) {
181 eeprom.data = eeprom.contents[eeprom.address];
182 logout("\taddress 0x%04x, data 0x%02x\n", eeprom.address, eeprom.data);
183 eeprom.ack = 1;
184 eeprom.tick = 0;
186 } else if (eeprom.tick >= 17) {
187 sda = 0;
189 } else {
190 logout("\tsda changed with raising scl\n");
192 } else {
193 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
195 eeprom.scl = scl;
196 eeprom.sda = sda;
199 static uint32_t malta_fpga_readl(void *opaque, target_phys_addr_t addr)
201 MaltaFPGAState *s = opaque;
202 uint32_t val = 0;
203 uint32_t saddr;
205 saddr = (addr & 0xfffff);
207 switch (saddr) {
209 /* SWITCH Register */
210 case 0x00200:
211 val = 0x00000000; /* All switches closed */
212 break;
214 /* STATUS Register */
215 case 0x00208:
216 #ifdef TARGET_WORDS_BIGENDIAN
217 val = 0x00000012;
218 #else
219 val = 0x00000010;
220 #endif
221 break;
223 /* JMPRS Register */
224 case 0x00210:
225 val = 0x00;
226 break;
228 /* LEDBAR Register */
229 case 0x00408:
230 val = s->leds;
231 break;
233 /* BRKRES Register */
234 case 0x00508:
235 val = s->brk;
236 break;
238 /* UART Registers are handled directly by the serial device */
240 /* GPOUT Register */
241 case 0x00a00:
242 val = s->gpout;
243 break;
245 /* XXX: implement a real I2C controller */
247 /* GPINP Register */
248 case 0x00a08:
249 /* IN = OUT until a real I2C control is implemented */
250 if (s->i2csel)
251 val = s->i2cout;
252 else
253 val = 0x00;
254 break;
256 /* I2CINP Register */
257 case 0x00b00:
258 val = ((s->i2cin & ~1) | eeprom24c0x_read());
259 break;
261 /* I2COE Register */
262 case 0x00b08:
263 val = s->i2coe;
264 break;
266 /* I2COUT Register */
267 case 0x00b10:
268 val = s->i2cout;
269 break;
271 /* I2CSEL Register */
272 case 0x00b18:
273 val = s->i2csel;
274 break;
276 default:
277 #if 0
278 printf ("malta_fpga_read: Bad register offset 0x" TARGET_FMT_lx "\n",
279 addr);
280 #endif
281 break;
283 return val;
286 static void malta_fpga_writel(void *opaque, target_phys_addr_t addr,
287 uint32_t val)
289 MaltaFPGAState *s = opaque;
290 uint32_t saddr;
292 saddr = (addr & 0xfffff);
294 switch (saddr) {
296 /* SWITCH Register */
297 case 0x00200:
298 break;
300 /* JMPRS Register */
301 case 0x00210:
302 break;
304 /* LEDBAR Register */
305 /* XXX: implement a 8-LED array */
306 case 0x00408:
307 s->leds = val & 0xff;
308 break;
310 /* ASCIIWORD Register */
311 case 0x00410:
312 snprintf(s->display_text, 9, "%08X", val);
313 malta_fpga_update_display(s);
314 break;
316 /* ASCIIPOS0 to ASCIIPOS7 Registers */
317 case 0x00418:
318 case 0x00420:
319 case 0x00428:
320 case 0x00430:
321 case 0x00438:
322 case 0x00440:
323 case 0x00448:
324 case 0x00450:
325 s->display_text[(saddr - 0x00418) >> 3] = (char) val;
326 malta_fpga_update_display(s);
327 break;
329 /* SOFTRES Register */
330 case 0x00500:
331 if (val == 0x42)
332 qemu_system_reset_request ();
333 break;
335 /* BRKRES Register */
336 case 0x00508:
337 s->brk = val & 0xff;
338 break;
340 /* UART Registers are handled directly by the serial device */
342 /* GPOUT Register */
343 case 0x00a00:
344 s->gpout = val & 0xff;
345 break;
347 /* I2COE Register */
348 case 0x00b08:
349 s->i2coe = val & 0x03;
350 break;
352 /* I2COUT Register */
353 case 0x00b10:
354 eeprom24c0x_write(val & 0x02, val & 0x01);
355 s->i2cout = val;
356 break;
358 /* I2CSEL Register */
359 case 0x00b18:
360 s->i2csel = val & 0x01;
361 break;
363 default:
364 #if 0
365 printf ("malta_fpga_write: Bad register offset 0x" TARGET_FMT_lx "\n",
366 addr);
367 #endif
368 break;
372 static CPUReadMemoryFunc *malta_fpga_read[] = {
373 malta_fpga_readl,
374 malta_fpga_readl,
375 malta_fpga_readl
378 static CPUWriteMemoryFunc *malta_fpga_write[] = {
379 malta_fpga_writel,
380 malta_fpga_writel,
381 malta_fpga_writel
384 void malta_fpga_reset(void *opaque)
386 MaltaFPGAState *s = opaque;
388 s->leds = 0x00;
389 s->brk = 0x0a;
390 s->gpout = 0x00;
391 s->i2cin = 0x3;
392 s->i2coe = 0x0;
393 s->i2cout = 0x3;
394 s->i2csel = 0x1;
396 s->display_text[8] = '\0';
397 snprintf(s->display_text, 9, " ");
398 malta_fpga_update_display(s);
401 MaltaFPGAState *malta_fpga_init(target_phys_addr_t base, CPUState *env)
403 MaltaFPGAState *s;
404 CharDriverState *uart_chr;
405 int malta;
407 s = (MaltaFPGAState *)qemu_mallocz(sizeof(MaltaFPGAState));
409 malta = cpu_register_io_memory(0, malta_fpga_read,
410 malta_fpga_write, s);
412 cpu_register_physical_memory(base, 0x900, malta);
413 cpu_register_physical_memory(base + 0xa00, 0x100000 - 0xa00, malta);
415 s->display = qemu_chr_open("vc");
416 qemu_chr_printf(s->display, "\e[HMalta LEDBAR\r\n");
417 qemu_chr_printf(s->display, "+--------+\r\n");
418 qemu_chr_printf(s->display, "+ +\r\n");
419 qemu_chr_printf(s->display, "+--------+\r\n");
420 qemu_chr_printf(s->display, "\n");
421 qemu_chr_printf(s->display, "Malta ASCII\r\n");
422 qemu_chr_printf(s->display, "+--------+\r\n");
423 qemu_chr_printf(s->display, "+ +\r\n");
424 qemu_chr_printf(s->display, "+--------+\r\n");
426 uart_chr = qemu_chr_open("vc");
427 qemu_chr_printf(uart_chr, "CBUS UART\r\n");
428 s->uart = serial_mm_init(base + 0x900, 3, env->irq[2], uart_chr, 1);
430 malta_fpga_reset(s);
431 qemu_register_reset(malta_fpga_reset, s);
433 return s;
436 /* Audio support */
437 #ifdef HAS_AUDIO
438 static void audio_init (PCIBus *pci_bus)
440 struct soundhw *c;
441 int audio_enabled = 0;
443 for (c = soundhw; !audio_enabled && c->name; ++c) {
444 audio_enabled = c->enabled;
447 if (audio_enabled) {
448 AudioState *s;
450 s = AUD_init ();
451 if (s) {
452 for (c = soundhw; c->name; ++c) {
453 if (c->enabled)
454 c->init.init_pci (pci_bus, s);
459 #endif
461 /* Network support */
462 static void network_init (PCIBus *pci_bus)
464 int i;
465 NICInfo *nd;
467 for(i = 0; i < nb_nics; i++) {
468 nd = &nd_table[i];
469 if (!nd->model) {
470 nd->model = "pcnet";
472 if (i == 0 && strcmp(nd->model, "pcnet") == 0) {
473 /* The malta board has a PCNet card using PCI SLOT 11 */
474 pci_nic_init(pci_bus, nd, 88);
475 } else {
476 pci_nic_init(pci_bus, nd, -1);
481 /* ROM and pseudo bootloader
483 The following code implements a very very simple bootloader. It first
484 loads the registers a0 to a3 to the values expected by the OS, and
485 then jump at the kernel address.
487 The bootloader should pass the locations of the kernel arguments and
488 environment variables tables. Those tables contain the 32-bit address
489 of NULL terminated strings. The environment variables table should be
490 terminated by a NULL address.
492 For a simpler implementation, the number of kernel arguments is fixed
493 to two (the name of the kernel and the command line), and the two
494 tables are actually the same one.
496 The registers a0 to a3 should contain the following values:
497 a0 - number of kernel arguments
498 a1 - 32-bit address of the kernel arguments table
499 a2 - 32-bit address of the environment variables table
500 a3 - RAM size in bytes
503 static void write_bootloader (CPUState *env, unsigned long bios_offset, int64_t kernel_entry)
505 uint32_t *p;
507 /* Small bootloader */
508 p = (uint32_t *) (phys_ram_base + bios_offset);
509 stl_raw(p++, 0x0bf00160); /* j 0x1fc00580 */
510 stl_raw(p++, 0x00000000); /* nop */
512 /* YAMON service vector */
513 stl_raw(phys_ram_base + bios_offset + 0x500, 0xbfc00580); /* start: */
514 stl_raw(phys_ram_base + bios_offset + 0x504, 0xbfc0083c); /* print_count: */
515 stl_raw(phys_ram_base + bios_offset + 0x520, 0xbfc00580); /* start: */
516 stl_raw(phys_ram_base + bios_offset + 0x52c, 0xbfc00800); /* flush_cache: */
517 stl_raw(phys_ram_base + bios_offset + 0x534, 0xbfc00808); /* print: */
518 stl_raw(phys_ram_base + bios_offset + 0x538, 0xbfc00800); /* reg_cpu_isr: */
519 stl_raw(phys_ram_base + bios_offset + 0x53c, 0xbfc00800); /* unred_cpu_isr: */
520 stl_raw(phys_ram_base + bios_offset + 0x540, 0xbfc00800); /* reg_ic_isr: */
521 stl_raw(phys_ram_base + bios_offset + 0x544, 0xbfc00800); /* unred_ic_isr: */
522 stl_raw(phys_ram_base + bios_offset + 0x548, 0xbfc00800); /* reg_esr: */
523 stl_raw(phys_ram_base + bios_offset + 0x54c, 0xbfc00800); /* unreg_esr: */
524 stl_raw(phys_ram_base + bios_offset + 0x550, 0xbfc00800); /* getchar: */
525 stl_raw(phys_ram_base + bios_offset + 0x554, 0xbfc00800); /* syscon_read: */
528 /* Second part of the bootloader */
529 p = (uint32_t *) (phys_ram_base + bios_offset + 0x580);
530 stl_raw(p++, 0x24040002); /* addiu a0, zero, 2 */
531 stl_raw(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff)); /* lui sp, high(ENVP_ADDR) */
532 stl_raw(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff)); /* ori sp, sp, low(ENVP_ADDR) */
533 stl_raw(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff)); /* lui a1, high(ENVP_ADDR) */
534 stl_raw(p++, 0x34a50000 | (ENVP_ADDR & 0xffff)); /* ori a1, a1, low(ENVP_ADDR) */
535 stl_raw(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff)); /* lui a2, high(ENVP_ADDR + 8) */
536 stl_raw(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff)); /* ori a2, a2, low(ENVP_ADDR + 8) */
537 stl_raw(p++, 0x3c070000 | (env->ram_size >> 16)); /* lui a3, high(env->ram_size) */
538 stl_raw(p++, 0x34e70000 | (env->ram_size & 0xffff)); /* ori a3, a3, low(env->ram_size) */
540 /* Load BAR registers as done by YAMON */
541 stl_raw(p++, 0x3c09b400); /* lui t1, 0xb400 */
543 #ifdef TARGET_WORDS_BIGENDIAN
544 stl_raw(p++, 0x3c08df00); /* lui t0, 0xdf00 */
545 #else
546 stl_raw(p++, 0x340800df); /* ori t0, r0, 0x00df */
547 #endif
548 stl_raw(p++, 0xad280068); /* sw t0, 0x0068(t1) */
550 stl_raw(p++, 0x3c09bbe0); /* lui t1, 0xbbe0 */
552 #ifdef TARGET_WORDS_BIGENDIAN
553 stl_raw(p++, 0x3c08c000); /* lui t0, 0xc000 */
554 #else
555 stl_raw(p++, 0x340800c0); /* ori t0, r0, 0x00c0 */
556 #endif
557 stl_raw(p++, 0xad280048); /* sw t0, 0x0048(t1) */
558 #ifdef TARGET_WORDS_BIGENDIAN
559 stl_raw(p++, 0x3c084000); /* lui t0, 0x4000 */
560 #else
561 stl_raw(p++, 0x34080040); /* ori t0, r0, 0x0040 */
562 #endif
563 stl_raw(p++, 0xad280050); /* sw t0, 0x0050(t1) */
565 #ifdef TARGET_WORDS_BIGENDIAN
566 stl_raw(p++, 0x3c088000); /* lui t0, 0x8000 */
567 #else
568 stl_raw(p++, 0x34080080); /* ori t0, r0, 0x0080 */
569 #endif
570 stl_raw(p++, 0xad280058); /* sw t0, 0x0058(t1) */
571 #ifdef TARGET_WORDS_BIGENDIAN
572 stl_raw(p++, 0x3c083f00); /* lui t0, 0x3f00 */
573 #else
574 stl_raw(p++, 0x3408003f); /* ori t0, r0, 0x003f */
575 #endif
576 stl_raw(p++, 0xad280060); /* sw t0, 0x0060(t1) */
578 #ifdef TARGET_WORDS_BIGENDIAN
579 stl_raw(p++, 0x3c08c100); /* lui t0, 0xc100 */
580 #else
581 stl_raw(p++, 0x340800c1); /* ori t0, r0, 0x00c1 */
582 #endif
583 stl_raw(p++, 0xad280080); /* sw t0, 0x0080(t1) */
584 #ifdef TARGET_WORDS_BIGENDIAN
585 stl_raw(p++, 0x3c085e00); /* lui t0, 0x5e00 */
586 #else
587 stl_raw(p++, 0x3408005e); /* ori t0, r0, 0x005e */
588 #endif
589 stl_raw(p++, 0xad280088); /* sw t0, 0x0088(t1) */
591 /* Jump to kernel code */
592 stl_raw(p++, 0x3c1f0000 | ((kernel_entry >> 16) & 0xffff)); /* lui ra, high(kernel_entry) */
593 stl_raw(p++, 0x37ff0000 | (kernel_entry & 0xffff)); /* ori ra, ra, low(kernel_entry) */
594 stl_raw(p++, 0x03e00008); /* jr ra */
595 stl_raw(p++, 0x00000000); /* nop */
597 /* YAMON subroutines */
598 p = (uint32_t *) (phys_ram_base + bios_offset + 0x800);
599 stl_raw(p++, 0x03e00008); /* jr ra */
600 stl_raw(p++, 0x24020000); /* li v0,0 */
601 /* 808 YAMON print */
602 stl_raw(p++, 0x03e06821); /* move t5,ra */
603 stl_raw(p++, 0x00805821); /* move t3,a0 */
604 stl_raw(p++, 0x00a05021); /* move t2,a1 */
605 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
606 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
607 stl_raw(p++, 0x10800005); /* beqz a0,834 */
608 stl_raw(p++, 0x00000000); /* nop */
609 stl_raw(p++, 0x0ff0021c); /* jal 870 */
610 stl_raw(p++, 0x00000000); /* nop */
611 stl_raw(p++, 0x08000205); /* j 814 */
612 stl_raw(p++, 0x00000000); /* nop */
613 stl_raw(p++, 0x01a00008); /* jr t5 */
614 stl_raw(p++, 0x01602021); /* move a0,t3 */
615 /* 0x83c YAMON print_count */
616 stl_raw(p++, 0x03e06821); /* move t5,ra */
617 stl_raw(p++, 0x00805821); /* move t3,a0 */
618 stl_raw(p++, 0x00a05021); /* move t2,a1 */
619 stl_raw(p++, 0x00c06021); /* move t4,a2 */
620 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
621 stl_raw(p++, 0x0ff0021c); /* jal 870 */
622 stl_raw(p++, 0x00000000); /* nop */
623 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
624 stl_raw(p++, 0x258cffff); /* addiu t4,t4,-1 */
625 stl_raw(p++, 0x1580fffa); /* bnez t4,84c */
626 stl_raw(p++, 0x00000000); /* nop */
627 stl_raw(p++, 0x01a00008); /* jr t5 */
628 stl_raw(p++, 0x01602021); /* move a0,t3 */
629 /* 0x870 */
630 stl_raw(p++, 0x3c08b800); /* lui t0,0xb400 */
631 stl_raw(p++, 0x350803f8); /* ori t0,t0,0x3f8 */
632 stl_raw(p++, 0x91090005); /* lbu t1,5(t0) */
633 stl_raw(p++, 0x00000000); /* nop */
634 stl_raw(p++, 0x31290040); /* andi t1,t1,0x40 */
635 stl_raw(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
636 stl_raw(p++, 0x00000000); /* nop */
637 stl_raw(p++, 0x03e00008); /* jr ra */
638 stl_raw(p++, 0xa1040000); /* sb a0,0(t0) */
642 static void prom_set(int index, const char *string, ...)
644 va_list ap;
645 int32_t *p;
646 int32_t table_addr;
647 char *s;
649 if (index >= ENVP_NB_ENTRIES)
650 return;
652 p = (int32_t *) (phys_ram_base + ENVP_ADDR + VIRT_TO_PHYS_ADDEND);
653 p += index;
655 if (string == NULL) {
656 stl_raw(p, 0);
657 return;
660 table_addr = ENVP_ADDR + sizeof(int32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
661 s = (char *) (phys_ram_base + VIRT_TO_PHYS_ADDEND + table_addr);
663 stl_raw(p, table_addr);
665 va_start(ap, string);
666 vsnprintf (s, ENVP_ENTRY_SIZE, string, ap);
667 va_end(ap);
670 /* Kernel */
671 static int64_t load_kernel (CPUState *env)
673 int64_t kernel_entry, kernel_low, kernel_high;
674 int index = 0;
675 long initrd_size;
676 ram_addr_t initrd_offset;
678 if (load_elf(env->kernel_filename, VIRT_TO_PHYS_ADDEND,
679 &kernel_entry, &kernel_low, &kernel_high) < 0) {
680 fprintf(stderr, "qemu: could not load kernel '%s'\n",
681 env->kernel_filename);
682 exit(1);
685 /* load initrd */
686 initrd_size = 0;
687 initrd_offset = 0;
688 if (env->initrd_filename) {
689 initrd_size = get_image_size (env->initrd_filename);
690 if (initrd_size > 0) {
691 initrd_offset = (kernel_high + ~TARGET_PAGE_MASK) & TARGET_PAGE_MASK;
692 if (initrd_offset + initrd_size > env->ram_size) {
693 fprintf(stderr,
694 "qemu: memory too small for initial ram disk '%s'\n",
695 env->initrd_filename);
696 exit(1);
698 initrd_size = load_image(env->initrd_filename,
699 phys_ram_base + initrd_offset);
701 if (initrd_size == (target_ulong) -1) {
702 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
703 env->initrd_filename);
704 exit(1);
708 /* Store command line. */
709 prom_set(index++, env->kernel_filename);
710 if (initrd_size > 0)
711 prom_set(index++, "rd_start=0x" TARGET_FMT_lx " rd_size=%li %s",
712 PHYS_TO_VIRT(initrd_offset), initrd_size,
713 env->kernel_cmdline);
714 else
715 prom_set(index++, env->kernel_cmdline);
717 /* Setup minimum environment variables */
718 prom_set(index++, "memsize");
719 prom_set(index++, "%i", env->ram_size);
720 prom_set(index++, "modetty0");
721 prom_set(index++, "38400n8r");
722 prom_set(index++, NULL);
724 return kernel_entry;
727 static void main_cpu_reset(void *opaque)
729 CPUState *env = opaque;
730 cpu_reset(env);
731 cpu_mips_register(env, NULL);
733 /* The bootload does not need to be rewritten as it is located in a
734 read only location. The kernel location and the arguments table
735 location does not change. */
736 if (env->kernel_filename) {
737 env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
738 load_kernel (env);
742 static
743 void mips_malta_init (int ram_size, int vga_ram_size, int boot_device,
744 DisplayState *ds, const char **fd_filename, int snapshot,
745 const char *kernel_filename, const char *kernel_cmdline,
746 const char *initrd_filename, const char *cpu_model)
748 char buf[1024];
749 unsigned long bios_offset;
750 int64_t kernel_entry;
751 PCIBus *pci_bus;
752 CPUState *env;
753 RTCState *rtc_state;
754 /* fdctrl_t *floppy_controller; */
755 MaltaFPGAState *malta_fpga;
756 int ret;
757 mips_def_t *def;
758 qemu_irq *i8259;
759 int piix4_devfn;
760 uint8_t *eeprom_buf;
761 i2c_bus *smbus;
762 int i;
764 /* init CPUs */
765 if (cpu_model == NULL) {
766 #ifdef TARGET_MIPS64
767 cpu_model = "20Kc";
768 #else
769 cpu_model = "24Kf";
770 #endif
772 if (mips_find_by_name(cpu_model, &def) != 0)
773 def = NULL;
774 env = cpu_init();
775 cpu_mips_register(env, def);
776 register_savevm("cpu", 0, 3, cpu_save, cpu_load, env);
777 qemu_register_reset(main_cpu_reset, env);
779 /* allocate RAM */
780 cpu_register_physical_memory(0, ram_size, IO_MEM_RAM);
782 /* Map the bios at two physical locations, as on the real board */
783 bios_offset = ram_size + vga_ram_size;
784 cpu_register_physical_memory(0x1e000000LL,
785 BIOS_SIZE, bios_offset | IO_MEM_ROM);
786 cpu_register_physical_memory(0x1fc00000LL,
787 BIOS_SIZE, bios_offset | IO_MEM_ROM);
789 /* FPGA */
790 malta_fpga = malta_fpga_init(0x1f000000LL, env);
792 /* Load a BIOS image unless a kernel image has been specified. */
793 if (!kernel_filename) {
794 snprintf(buf, sizeof(buf), "%s/%s", bios_dir, BIOS_FILENAME);
795 ret = load_image(buf, phys_ram_base + bios_offset);
796 if (ret < 0 || ret > BIOS_SIZE) {
797 fprintf(stderr,
798 "qemu: Could not load MIPS bios '%s', and no -kernel argument was specified\n",
799 buf);
800 exit(1);
802 /* In little endian mode the 32bit words in the bios are swapped,
803 a neat trick which allows bi-endian firmware. */
804 #ifndef TARGET_WORDS_BIGENDIAN
806 uint32_t *addr;
807 for (addr = (uint32_t *)(phys_ram_base + bios_offset);
808 addr < (uint32_t *)(phys_ram_base + bios_offset + ret);
809 addr++) {
810 *addr = bswap32(*addr);
813 #endif
816 /* If a kernel image has been specified, write a small bootloader
817 to the flash location. */
818 if (kernel_filename) {
819 env->ram_size = ram_size;
820 env->kernel_filename = kernel_filename;
821 env->kernel_cmdline = kernel_cmdline;
822 env->initrd_filename = initrd_filename;
823 kernel_entry = load_kernel(env);
824 env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
825 write_bootloader(env, bios_offset, kernel_entry);
828 /* Board ID = 0x420 (Malta Board with CoreLV)
829 XXX: theoretically 0x1e000010 should map to flash and 0x1fc00010 should
830 map to the board ID. */
831 stl_raw(phys_ram_base + bios_offset + 0x10, 0x00000420);
833 /* Init internal devices */
834 cpu_mips_irq_init_cpu(env);
835 cpu_mips_clock_init(env);
836 cpu_mips_irqctrl_init();
838 /* Interrupt controller */
839 /* The 8259 is attached to the MIPS CPU INT0 pin, ie interrupt 2 */
840 i8259 = i8259_init(env->irq[2]);
842 /* Northbridge */
843 pci_bus = pci_gt64120_init(i8259);
845 /* Southbridge */
846 piix4_devfn = piix4_init(pci_bus, 80);
847 pci_piix4_ide_init(pci_bus, bs_table, piix4_devfn + 1, i8259);
848 usb_uhci_piix4_init(pci_bus, piix4_devfn + 2);
849 smbus = piix4_pm_init(pci_bus, piix4_devfn + 3, 0x1100);
850 eeprom_buf = qemu_mallocz(8 * 256); /* XXX: make this persistent */
851 for (i = 0; i < 8; i++) {
852 /* TODO: Populate SPD eeprom data. */
853 smbus_eeprom_device_init(smbus, 0x50 + i, eeprom_buf + (i * 256));
855 pit = pit_init(0x40, i8259[0]);
856 DMA_init(0);
858 /* Super I/O */
859 i8042_init(i8259[1], i8259[12], 0x60);
860 rtc_state = rtc_init(0x70, i8259[8]);
861 if (serial_hds[0])
862 serial_init(0x3f8, i8259[4], serial_hds[0]);
863 if (serial_hds[1])
864 serial_init(0x2f8, i8259[3], serial_hds[1]);
865 if (parallel_hds[0])
866 parallel_init(0x378, i8259[7], parallel_hds[0]);
867 /* XXX: The floppy controller does not work correctly, something is
868 probably wrong.
869 floppy_controller = fdctrl_init(i8259[6], 2, 0, 0x3f0, fd_table); */
871 /* Sound card */
872 #ifdef HAS_AUDIO
873 audio_init(pci_bus);
874 #endif
876 /* Network card */
877 network_init(pci_bus);
879 /* Optional PCI video card */
880 pci_cirrus_vga_init(pci_bus, ds, phys_ram_base + ram_size,
881 ram_size, vga_ram_size);
884 QEMUMachine mips_malta_machine = {
885 "malta",
886 "MIPS Malta Core LV",
887 mips_malta_init,