Replace tabs by 8 spaces. No code change, by Herve Poussineau.
[qemu/dscho.git] / hw / mcf_fec.c
blobd4613dda2c0671fa18141bd81de18648c5073720
1 /*
2 * ColdFire Fast Ethernet Controller emulation.
4 * Copyright (c) 2007 CodeSourcery.
6 * This code is licenced under the GPL
7 */
8 #include "vl.h"
9 /* For crc32 */
10 #include <zlib.h>
12 //#define DEBUG_FEC 1
14 #ifdef DEBUG_FEC
15 #define DPRINTF(fmt, args...) \
16 do { printf("mcf_fec: " fmt , ##args); } while (0)
17 #else
18 #define DPRINTF(fmt, args...) do {} while(0)
19 #endif
21 #define FEC_MAX_FRAME_SIZE 2032
23 typedef struct {
24 qemu_irq *irq;
25 VLANClientState *vc;
26 uint32_t irq_state;
27 uint32_t eir;
28 uint32_t eimr;
29 int rx_enabled;
30 uint32_t rx_descriptor;
31 uint32_t tx_descriptor;
32 uint32_t ecr;
33 uint32_t mmfr;
34 uint32_t mscr;
35 uint32_t rcr;
36 uint32_t tcr;
37 uint32_t tfwr;
38 uint32_t rfsr;
39 uint32_t erdsr;
40 uint32_t etdsr;
41 uint32_t emrbr;
42 uint8_t macaddr[6];
43 } mcf_fec_state;
45 #define FEC_INT_HB 0x80000000
46 #define FEC_INT_BABR 0x40000000
47 #define FEC_INT_BABT 0x20000000
48 #define FEC_INT_GRA 0x10000000
49 #define FEC_INT_TXF 0x08000000
50 #define FEC_INT_TXB 0x04000000
51 #define FEC_INT_RXF 0x02000000
52 #define FEC_INT_RXB 0x01000000
53 #define FEC_INT_MII 0x00800000
54 #define FEC_INT_EB 0x00400000
55 #define FEC_INT_LC 0x00200000
56 #define FEC_INT_RL 0x00100000
57 #define FEC_INT_UN 0x00080000
59 #define FEC_EN 2
60 #define FEC_RESET 1
62 /* Map interrupt flags onto IRQ lines. */
63 #define FEC_NUM_IRQ 13
64 static const uint32_t mcf_fec_irq_map[FEC_NUM_IRQ] = {
65 FEC_INT_TXF,
66 FEC_INT_TXB,
67 FEC_INT_UN,
68 FEC_INT_RL,
69 FEC_INT_RXF,
70 FEC_INT_RXB,
71 FEC_INT_MII,
72 FEC_INT_LC,
73 FEC_INT_HB,
74 FEC_INT_GRA,
75 FEC_INT_EB,
76 FEC_INT_BABT,
77 FEC_INT_BABR
80 /* Buffer Descriptor. */
81 typedef struct {
82 uint16_t flags;
83 uint16_t length;
84 uint32_t data;
85 } mcf_fec_bd;
87 #define FEC_BD_R 0x8000
88 #define FEC_BD_E 0x8000
89 #define FEC_BD_O1 0x4000
90 #define FEC_BD_W 0x2000
91 #define FEC_BD_O2 0x1000
92 #define FEC_BD_L 0x0800
93 #define FEC_BD_TC 0x0400
94 #define FEC_BD_ABC 0x0200
95 #define FEC_BD_M 0x0100
96 #define FEC_BD_BC 0x0080
97 #define FEC_BD_MC 0x0040
98 #define FEC_BD_LG 0x0020
99 #define FEC_BD_NO 0x0010
100 #define FEC_BD_CR 0x0004
101 #define FEC_BD_OV 0x0002
102 #define FEC_BD_TR 0x0001
104 static void mcf_fec_read_bd(mcf_fec_bd *bd, uint32_t addr)
106 cpu_physical_memory_read(addr, (uint8_t *)bd, sizeof(*bd));
107 be16_to_cpus(&bd->flags);
108 be16_to_cpus(&bd->length);
109 be32_to_cpus(&bd->data);
112 static void mcf_fec_write_bd(mcf_fec_bd *bd, uint32_t addr)
114 mcf_fec_bd tmp;
115 tmp.flags = cpu_to_be16(bd->flags);
116 tmp.length = cpu_to_be16(bd->length);
117 tmp.data = cpu_to_be32(bd->data);
118 cpu_physical_memory_write(addr, (uint8_t *)&tmp, sizeof(tmp));
121 static void mcf_fec_update(mcf_fec_state *s)
123 uint32_t active;
124 uint32_t changed;
125 uint32_t mask;
126 int i;
128 active = s->eir & s->eimr;
129 changed = active ^s->irq_state;
130 for (i = 0; i < FEC_NUM_IRQ; i++) {
131 mask = mcf_fec_irq_map[i];
132 if (changed & mask) {
133 DPRINTF("IRQ %d = %d\n", i, (active & mask) != 0);
134 qemu_set_irq(s->irq[i], (active & mask) != 0);
137 s->irq_state = active;
140 static void mcf_fec_do_tx(mcf_fec_state *s)
142 uint32_t addr;
143 mcf_fec_bd bd;
144 int frame_size;
145 int len;
146 uint8_t frame[FEC_MAX_FRAME_SIZE];
147 uint8_t *ptr;
149 DPRINTF("do_tx\n");
150 ptr = frame;
151 frame_size = 0;
152 addr = s->tx_descriptor;
153 while (1) {
154 mcf_fec_read_bd(&bd, addr);
155 DPRINTF("tx_bd %x flags %04x len %d data %08x\n",
156 addr, bd.flags, bd.length, bd.data);
157 if ((bd.flags & FEC_BD_R) == 0) {
158 /* Run out of descriptors to transmit. */
159 break;
161 len = bd.length;
162 if (frame_size + len > FEC_MAX_FRAME_SIZE) {
163 len = FEC_MAX_FRAME_SIZE - frame_size;
164 s->eir |= FEC_INT_BABT;
166 cpu_physical_memory_read(bd.data, ptr, len);
167 ptr += len;
168 frame_size += len;
169 if (bd.flags & FEC_BD_L) {
170 /* Last buffer in frame. */
171 DPRINTF("Sending packet\n");
172 qemu_send_packet(s->vc, frame, len);
173 ptr = frame;
174 frame_size = 0;
175 s->eir |= FEC_INT_TXF;
177 s->eir |= FEC_INT_TXB;
178 bd.flags &= ~FEC_BD_R;
179 /* Write back the modified descriptor. */
180 mcf_fec_write_bd(&bd, addr);
181 /* Advance to the next descriptor. */
182 if ((bd.flags & FEC_BD_W) != 0) {
183 addr = s->etdsr;
184 } else {
185 addr += 8;
188 s->tx_descriptor = addr;
191 static void mcf_fec_enable_rx(mcf_fec_state *s)
193 mcf_fec_bd bd;
195 mcf_fec_read_bd(&bd, s->rx_descriptor);
196 s->rx_enabled = ((bd.flags & FEC_BD_E) != 0);
197 if (!s->rx_enabled)
198 DPRINTF("RX buffer full\n");
201 static void mcf_fec_reset(mcf_fec_state *s)
203 s->eir = 0;
204 s->eimr = 0;
205 s->rx_enabled = 0;
206 s->ecr = 0;
207 s->mscr = 0;
208 s->rcr = 0x05ee0001;
209 s->tcr = 0;
210 s->tfwr = 0;
211 s->rfsr = 0x500;
214 static uint32_t mcf_fec_read(void *opaque, target_phys_addr_t addr)
216 mcf_fec_state *s = (mcf_fec_state *)opaque;
217 switch (addr & 0x3ff) {
218 case 0x004: return s->eir;
219 case 0x008: return s->eimr;
220 case 0x010: return s->rx_enabled ? (1 << 24) : 0; /* RDAR */
221 case 0x014: return 0; /* TDAR */
222 case 0x024: return s->ecr;
223 case 0x040: return s->mmfr;
224 case 0x044: return s->mscr;
225 case 0x064: return 0; /* MIBC */
226 case 0x084: return s->rcr;
227 case 0x0c4: return s->tcr;
228 case 0x0e4: /* PALR */
229 return (s->macaddr[0] << 24) | (s->macaddr[1] << 16)
230 | (s->macaddr[2] << 8) | s->macaddr[3];
231 break;
232 case 0x0e8: /* PAUR */
233 return (s->macaddr[4] << 24) | (s->macaddr[5] << 16) | 0x8808;
234 case 0x0ec: return 0x10000; /* OPD */
235 case 0x118: return 0;
236 case 0x11c: return 0;
237 case 0x120: return 0;
238 case 0x124: return 0;
239 case 0x144: return s->tfwr;
240 case 0x14c: return 0x600;
241 case 0x150: return s->rfsr;
242 case 0x180: return s->erdsr;
243 case 0x184: return s->etdsr;
244 case 0x188: return s->emrbr;
245 default:
246 cpu_abort(cpu_single_env, "mcf_fec_read: Bad address 0x%x\n",
247 (int)addr);
248 return 0;
252 void mcf_fec_write(void *opaque, target_phys_addr_t addr, uint32_t value)
254 mcf_fec_state *s = (mcf_fec_state *)opaque;
255 switch (addr & 0x3ff) {
256 case 0x004:
257 s->eir &= ~value;
258 break;
259 case 0x008:
260 s->eimr = value;
261 break;
262 case 0x010: /* RDAR */
263 if ((s->ecr & FEC_EN) && !s->rx_enabled) {
264 DPRINTF("RX enable\n");
265 mcf_fec_enable_rx(s);
267 break;
268 case 0x014: /* TDAR */
269 if (s->ecr & FEC_EN) {
270 mcf_fec_do_tx(s);
272 break;
273 case 0x024:
274 s->ecr = value;
275 if (value & FEC_RESET) {
276 DPRINTF("Reset\n");
277 mcf_fec_reset(s);
279 if ((s->ecr & FEC_EN) == 0) {
280 s->rx_enabled = 0;
282 break;
283 case 0x040:
284 /* TODO: Implement MII. */
285 s->mmfr = value;
286 break;
287 case 0x044:
288 s->mscr = value & 0xfe;
289 break;
290 case 0x064:
291 /* TODO: Implement MIB. */
292 break;
293 case 0x084:
294 s->rcr = value & 0x07ff003f;
295 /* TODO: Implement LOOP mode. */
296 break;
297 case 0x0c4: /* TCR */
298 /* We transmit immediately, so raise GRA immediately. */
299 s->tcr = value;
300 if (value & 1)
301 s->eir |= FEC_INT_GRA;
302 break;
303 case 0x0e4: /* PALR */
304 s->macaddr[0] = value >> 24;
305 s->macaddr[1] = value >> 16;
306 s->macaddr[2] = value >> 8;
307 s->macaddr[3] = value;
308 break;
309 case 0x0e8: /* PAUR */
310 s->macaddr[4] = value >> 24;
311 s->macaddr[5] = value >> 16;
312 break;
313 case 0x0ec:
314 /* OPD */
315 break;
316 case 0x118:
317 case 0x11c:
318 case 0x120:
319 case 0x124:
320 /* TODO: implement MAC hash filtering. */
321 break;
322 case 0x144:
323 s->tfwr = value & 3;
324 break;
325 case 0x14c:
326 /* FRBR writes ignored. */
327 break;
328 case 0x150:
329 s->rfsr = (value & 0x3fc) | 0x400;
330 break;
331 case 0x180:
332 s->erdsr = value & ~3;
333 s->rx_descriptor = s->erdsr;
334 break;
335 case 0x184:
336 s->etdsr = value & ~3;
337 s->tx_descriptor = s->etdsr;
338 break;
339 case 0x188:
340 s->emrbr = value & 0x7f0;
341 break;
342 default:
343 cpu_abort(cpu_single_env, "mcf_fec_write Bad address 0x%x\n",
344 (int)addr);
346 mcf_fec_update(s);
349 static int mcf_fec_can_receive(void *opaque)
351 mcf_fec_state *s = (mcf_fec_state *)opaque;
352 return s->rx_enabled;
355 static void mcf_fec_receive(void *opaque, const uint8_t *buf, int size)
357 mcf_fec_state *s = (mcf_fec_state *)opaque;
358 mcf_fec_bd bd;
359 uint32_t flags = 0;
360 uint32_t addr;
361 uint32_t crc;
362 uint32_t buf_addr;
363 uint8_t *crc_ptr;
364 unsigned int buf_len;
366 DPRINTF("do_rx len %d\n", size);
367 if (!s->rx_enabled) {
368 fprintf(stderr, "mcf_fec_receive: Unexpected packet\n");
370 /* 4 bytes for the CRC. */
371 size += 4;
372 crc = cpu_to_be32(crc32(~0, buf, size));
373 crc_ptr = (uint8_t *)&crc;
374 /* Huge frames are truncted. */
375 if (size > FEC_MAX_FRAME_SIZE) {
376 size = FEC_MAX_FRAME_SIZE;
377 flags |= FEC_BD_TR | FEC_BD_LG;
379 /* Frames larger than the user limit just set error flags. */
380 if (size > (s->rcr >> 16)) {
381 flags |= FEC_BD_LG;
383 addr = s->rx_descriptor;
384 while (size > 0) {
385 mcf_fec_read_bd(&bd, addr);
386 if ((bd.flags & FEC_BD_E) == 0) {
387 /* No descriptors available. Bail out. */
388 /* FIXME: This is wrong. We should probably either save the
389 remainder for when more RX buffers are available, or
390 flag an error. */
391 fprintf(stderr, "mcf_fec: Lost end of frame\n");
392 break;
394 buf_len = (size <= s->emrbr) ? size: s->emrbr;
395 bd.length = buf_len;
396 size -= buf_len;
397 DPRINTF("rx_bd %x length %d\n", addr, bd.length);
398 /* The last 4 bytes are the CRC. */
399 if (size < 4)
400 buf_len += size - 4;
401 buf_addr = bd.data;
402 cpu_physical_memory_write(buf_addr, buf, buf_len);
403 buf += buf_len;
404 if (size < 4) {
405 cpu_physical_memory_write(buf_addr + buf_len, crc_ptr, 4 - size);
406 crc_ptr += 4 - size;
408 bd.flags &= ~FEC_BD_E;
409 if (size == 0) {
410 /* Last buffer in frame. */
411 bd.flags |= flags | FEC_BD_L;
412 DPRINTF("rx frame flags %04x\n", bd.flags);
413 s->eir |= FEC_INT_RXF;
414 } else {
415 s->eir |= FEC_INT_RXB;
417 mcf_fec_write_bd(&bd, addr);
418 /* Advance to the next descriptor. */
419 if ((bd.flags & FEC_BD_W) != 0) {
420 addr = s->erdsr;
421 } else {
422 addr += 8;
425 s->rx_descriptor = addr;
426 mcf_fec_enable_rx(s);
427 mcf_fec_update(s);
430 static CPUReadMemoryFunc *mcf_fec_readfn[] = {
431 mcf_fec_read,
432 mcf_fec_read,
433 mcf_fec_read
436 static CPUWriteMemoryFunc *mcf_fec_writefn[] = {
437 mcf_fec_write,
438 mcf_fec_write,
439 mcf_fec_write
442 void mcf_fec_init(NICInfo *nd, target_phys_addr_t base, qemu_irq *irq)
444 mcf_fec_state *s;
445 int iomemtype;
447 s = (mcf_fec_state *)qemu_mallocz(sizeof(mcf_fec_state));
448 s->irq = irq;
449 iomemtype = cpu_register_io_memory(0, mcf_fec_readfn,
450 mcf_fec_writefn, s);
451 cpu_register_physical_memory(base, 0x400, iomemtype);
453 s->vc = qemu_new_vlan_client(nd->vlan, mcf_fec_receive,
454 mcf_fec_can_receive, s);
455 memcpy(s->macaddr, nd->macaddr, 6);