Replace tabs by 8 spaces. No code change, by Herve Poussineau.
[qemu/dscho.git] / hw / mc146818rtc.c
blobe30791f8a642364c1833ba6d50fa36f9d332f849
1 /*
2 * QEMU MC146818 RTC emulation
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "vl.h"
26 //#define DEBUG_CMOS
28 #define RTC_SECONDS 0
29 #define RTC_SECONDS_ALARM 1
30 #define RTC_MINUTES 2
31 #define RTC_MINUTES_ALARM 3
32 #define RTC_HOURS 4
33 #define RTC_HOURS_ALARM 5
34 #define RTC_ALARM_DONT_CARE 0xC0
36 #define RTC_DAY_OF_WEEK 6
37 #define RTC_DAY_OF_MONTH 7
38 #define RTC_MONTH 8
39 #define RTC_YEAR 9
41 #define RTC_REG_A 10
42 #define RTC_REG_B 11
43 #define RTC_REG_C 12
44 #define RTC_REG_D 13
46 #define REG_A_UIP 0x80
48 #define REG_B_SET 0x80
49 #define REG_B_PIE 0x40
50 #define REG_B_AIE 0x20
51 #define REG_B_UIE 0x10
53 struct RTCState {
54 uint8_t cmos_data[128];
55 uint8_t cmos_index;
56 struct tm current_tm;
57 qemu_irq irq;
58 target_phys_addr_t base;
59 int it_shift;
60 /* periodic timer */
61 QEMUTimer *periodic_timer;
62 int64_t next_periodic_time;
63 /* second update */
64 int64_t next_second_time;
65 QEMUTimer *second_timer;
66 QEMUTimer *second_timer2;
69 static void rtc_set_time(RTCState *s);
70 static void rtc_copy_date(RTCState *s);
72 static void rtc_timer_update(RTCState *s, int64_t current_time)
74 int period_code, period;
75 int64_t cur_clock, next_irq_clock;
77 period_code = s->cmos_data[RTC_REG_A] & 0x0f;
78 if (period_code != 0 &&
79 (s->cmos_data[RTC_REG_B] & REG_B_PIE)) {
80 if (period_code <= 2)
81 period_code += 7;
82 /* period in 32 Khz cycles */
83 period = 1 << (period_code - 1);
84 /* compute 32 khz clock */
85 cur_clock = muldiv64(current_time, 32768, ticks_per_sec);
86 next_irq_clock = (cur_clock & ~(period - 1)) + period;
87 s->next_periodic_time = muldiv64(next_irq_clock, ticks_per_sec, 32768) + 1;
88 qemu_mod_timer(s->periodic_timer, s->next_periodic_time);
89 } else {
90 qemu_del_timer(s->periodic_timer);
94 static void rtc_periodic_timer(void *opaque)
96 RTCState *s = opaque;
98 rtc_timer_update(s, s->next_periodic_time);
99 s->cmos_data[RTC_REG_C] |= 0xc0;
100 qemu_irq_raise(s->irq);
103 static void cmos_ioport_write(void *opaque, uint32_t addr, uint32_t data)
105 RTCState *s = opaque;
107 if ((addr & 1) == 0) {
108 s->cmos_index = data & 0x7f;
109 } else {
110 #ifdef DEBUG_CMOS
111 printf("cmos: write index=0x%02x val=0x%02x\n",
112 s->cmos_index, data);
113 #endif
114 switch(s->cmos_index) {
115 case RTC_SECONDS_ALARM:
116 case RTC_MINUTES_ALARM:
117 case RTC_HOURS_ALARM:
118 /* XXX: not supported */
119 s->cmos_data[s->cmos_index] = data;
120 break;
121 case RTC_SECONDS:
122 case RTC_MINUTES:
123 case RTC_HOURS:
124 case RTC_DAY_OF_WEEK:
125 case RTC_DAY_OF_MONTH:
126 case RTC_MONTH:
127 case RTC_YEAR:
128 s->cmos_data[s->cmos_index] = data;
129 /* if in set mode, do not update the time */
130 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
131 rtc_set_time(s);
133 break;
134 case RTC_REG_A:
135 /* UIP bit is read only */
136 s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
137 (s->cmos_data[RTC_REG_A] & REG_A_UIP);
138 rtc_timer_update(s, qemu_get_clock(vm_clock));
139 break;
140 case RTC_REG_B:
141 if (data & REG_B_SET) {
142 /* set mode: reset UIP mode */
143 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
144 data &= ~REG_B_UIE;
145 } else {
146 /* if disabling set mode, update the time */
147 if (s->cmos_data[RTC_REG_B] & REG_B_SET) {
148 rtc_set_time(s);
151 s->cmos_data[RTC_REG_B] = data;
152 rtc_timer_update(s, qemu_get_clock(vm_clock));
153 break;
154 case RTC_REG_C:
155 case RTC_REG_D:
156 /* cannot write to them */
157 break;
158 default:
159 s->cmos_data[s->cmos_index] = data;
160 break;
165 static inline int to_bcd(RTCState *s, int a)
167 if (s->cmos_data[RTC_REG_B] & 0x04) {
168 return a;
169 } else {
170 return ((a / 10) << 4) | (a % 10);
174 static inline int from_bcd(RTCState *s, int a)
176 if (s->cmos_data[RTC_REG_B] & 0x04) {
177 return a;
178 } else {
179 return ((a >> 4) * 10) + (a & 0x0f);
183 static void rtc_set_time(RTCState *s)
185 struct tm *tm = &s->current_tm;
187 tm->tm_sec = from_bcd(s, s->cmos_data[RTC_SECONDS]);
188 tm->tm_min = from_bcd(s, s->cmos_data[RTC_MINUTES]);
189 tm->tm_hour = from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
190 if (!(s->cmos_data[RTC_REG_B] & 0x02) &&
191 (s->cmos_data[RTC_HOURS] & 0x80)) {
192 tm->tm_hour += 12;
194 tm->tm_wday = from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]);
195 tm->tm_mday = from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
196 tm->tm_mon = from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
197 tm->tm_year = from_bcd(s, s->cmos_data[RTC_YEAR]) + 100;
200 static void rtc_copy_date(RTCState *s)
202 const struct tm *tm = &s->current_tm;
204 s->cmos_data[RTC_SECONDS] = to_bcd(s, tm->tm_sec);
205 s->cmos_data[RTC_MINUTES] = to_bcd(s, tm->tm_min);
206 if (s->cmos_data[RTC_REG_B] & 0x02) {
207 /* 24 hour format */
208 s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour);
209 } else {
210 /* 12 hour format */
211 s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour % 12);
212 if (tm->tm_hour >= 12)
213 s->cmos_data[RTC_HOURS] |= 0x80;
215 s->cmos_data[RTC_DAY_OF_WEEK] = to_bcd(s, tm->tm_wday);
216 s->cmos_data[RTC_DAY_OF_MONTH] = to_bcd(s, tm->tm_mday);
217 s->cmos_data[RTC_MONTH] = to_bcd(s, tm->tm_mon + 1);
218 s->cmos_data[RTC_YEAR] = to_bcd(s, tm->tm_year % 100);
221 /* month is between 0 and 11. */
222 static int get_days_in_month(int month, int year)
224 static const int days_tab[12] = {
225 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
227 int d;
228 if ((unsigned )month >= 12)
229 return 31;
230 d = days_tab[month];
231 if (month == 1) {
232 if ((year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0))
233 d++;
235 return d;
238 /* update 'tm' to the next second */
239 static void rtc_next_second(struct tm *tm)
241 int days_in_month;
243 tm->tm_sec++;
244 if ((unsigned)tm->tm_sec >= 60) {
245 tm->tm_sec = 0;
246 tm->tm_min++;
247 if ((unsigned)tm->tm_min >= 60) {
248 tm->tm_min = 0;
249 tm->tm_hour++;
250 if ((unsigned)tm->tm_hour >= 24) {
251 tm->tm_hour = 0;
252 /* next day */
253 tm->tm_wday++;
254 if ((unsigned)tm->tm_wday >= 7)
255 tm->tm_wday = 0;
256 days_in_month = get_days_in_month(tm->tm_mon,
257 tm->tm_year + 1900);
258 tm->tm_mday++;
259 if (tm->tm_mday < 1) {
260 tm->tm_mday = 1;
261 } else if (tm->tm_mday > days_in_month) {
262 tm->tm_mday = 1;
263 tm->tm_mon++;
264 if (tm->tm_mon >= 12) {
265 tm->tm_mon = 0;
266 tm->tm_year++;
275 static void rtc_update_second(void *opaque)
277 RTCState *s = opaque;
278 int64_t delay;
280 /* if the oscillator is not in normal operation, we do not update */
281 if ((s->cmos_data[RTC_REG_A] & 0x70) != 0x20) {
282 s->next_second_time += ticks_per_sec;
283 qemu_mod_timer(s->second_timer, s->next_second_time);
284 } else {
285 rtc_next_second(&s->current_tm);
287 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
288 /* update in progress bit */
289 s->cmos_data[RTC_REG_A] |= REG_A_UIP;
291 /* should be 244 us = 8 / 32768 seconds, but currently the
292 timers do not have the necessary resolution. */
293 delay = (ticks_per_sec * 1) / 100;
294 if (delay < 1)
295 delay = 1;
296 qemu_mod_timer(s->second_timer2,
297 s->next_second_time + delay);
301 static void rtc_update_second2(void *opaque)
303 RTCState *s = opaque;
305 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
306 rtc_copy_date(s);
309 /* check alarm */
310 if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
311 if (((s->cmos_data[RTC_SECONDS_ALARM] & 0xc0) == 0xc0 ||
312 s->cmos_data[RTC_SECONDS_ALARM] == s->current_tm.tm_sec) &&
313 ((s->cmos_data[RTC_MINUTES_ALARM] & 0xc0) == 0xc0 ||
314 s->cmos_data[RTC_MINUTES_ALARM] == s->current_tm.tm_mon) &&
315 ((s->cmos_data[RTC_HOURS_ALARM] & 0xc0) == 0xc0 ||
316 s->cmos_data[RTC_HOURS_ALARM] == s->current_tm.tm_hour)) {
318 s->cmos_data[RTC_REG_C] |= 0xa0;
319 qemu_irq_raise(s->irq);
323 /* update ended interrupt */
324 if (s->cmos_data[RTC_REG_B] & REG_B_UIE) {
325 s->cmos_data[RTC_REG_C] |= 0x90;
326 qemu_irq_raise(s->irq);
329 /* clear update in progress bit */
330 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
332 s->next_second_time += ticks_per_sec;
333 qemu_mod_timer(s->second_timer, s->next_second_time);
336 static uint32_t cmos_ioport_read(void *opaque, uint32_t addr)
338 RTCState *s = opaque;
339 int ret;
340 if ((addr & 1) == 0) {
341 return 0xff;
342 } else {
343 switch(s->cmos_index) {
344 case RTC_SECONDS:
345 case RTC_MINUTES:
346 case RTC_HOURS:
347 case RTC_DAY_OF_WEEK:
348 case RTC_DAY_OF_MONTH:
349 case RTC_MONTH:
350 case RTC_YEAR:
351 ret = s->cmos_data[s->cmos_index];
352 break;
353 case RTC_REG_A:
354 ret = s->cmos_data[s->cmos_index];
355 break;
356 case RTC_REG_C:
357 ret = s->cmos_data[s->cmos_index];
358 qemu_irq_lower(s->irq);
359 s->cmos_data[RTC_REG_C] = 0x00;
360 break;
361 default:
362 ret = s->cmos_data[s->cmos_index];
363 break;
365 #ifdef DEBUG_CMOS
366 printf("cmos: read index=0x%02x val=0x%02x\n",
367 s->cmos_index, ret);
368 #endif
369 return ret;
373 void rtc_set_memory(RTCState *s, int addr, int val)
375 if (addr >= 0 && addr <= 127)
376 s->cmos_data[addr] = val;
379 void rtc_set_date(RTCState *s, const struct tm *tm)
381 s->current_tm = *tm;
382 rtc_copy_date(s);
385 /* PC cmos mappings */
386 #define REG_IBM_CENTURY_BYTE 0x32
387 #define REG_IBM_PS2_CENTURY_BYTE 0x37
389 void rtc_set_date_from_host(RTCState *s)
391 time_t ti;
392 struct tm *tm;
393 int val;
395 /* set the CMOS date */
396 time(&ti);
397 if (rtc_utc)
398 tm = gmtime(&ti);
399 else
400 tm = localtime(&ti);
401 rtc_set_date(s, tm);
403 val = to_bcd(s, (tm->tm_year / 100) + 19);
404 rtc_set_memory(s, REG_IBM_CENTURY_BYTE, val);
405 rtc_set_memory(s, REG_IBM_PS2_CENTURY_BYTE, val);
408 static void rtc_save(QEMUFile *f, void *opaque)
410 RTCState *s = opaque;
412 qemu_put_buffer(f, s->cmos_data, 128);
413 qemu_put_8s(f, &s->cmos_index);
415 qemu_put_be32s(f, &s->current_tm.tm_sec);
416 qemu_put_be32s(f, &s->current_tm.tm_min);
417 qemu_put_be32s(f, &s->current_tm.tm_hour);
418 qemu_put_be32s(f, &s->current_tm.tm_wday);
419 qemu_put_be32s(f, &s->current_tm.tm_mday);
420 qemu_put_be32s(f, &s->current_tm.tm_mon);
421 qemu_put_be32s(f, &s->current_tm.tm_year);
423 qemu_put_timer(f, s->periodic_timer);
424 qemu_put_be64s(f, &s->next_periodic_time);
426 qemu_put_be64s(f, &s->next_second_time);
427 qemu_put_timer(f, s->second_timer);
428 qemu_put_timer(f, s->second_timer2);
431 static int rtc_load(QEMUFile *f, void *opaque, int version_id)
433 RTCState *s = opaque;
435 if (version_id != 1)
436 return -EINVAL;
438 qemu_get_buffer(f, s->cmos_data, 128);
439 qemu_get_8s(f, &s->cmos_index);
441 qemu_get_be32s(f, &s->current_tm.tm_sec);
442 qemu_get_be32s(f, &s->current_tm.tm_min);
443 qemu_get_be32s(f, &s->current_tm.tm_hour);
444 qemu_get_be32s(f, &s->current_tm.tm_wday);
445 qemu_get_be32s(f, &s->current_tm.tm_mday);
446 qemu_get_be32s(f, &s->current_tm.tm_mon);
447 qemu_get_be32s(f, &s->current_tm.tm_year);
449 qemu_get_timer(f, s->periodic_timer);
450 qemu_get_be64s(f, &s->next_periodic_time);
452 qemu_get_be64s(f, &s->next_second_time);
453 qemu_get_timer(f, s->second_timer);
454 qemu_get_timer(f, s->second_timer2);
455 return 0;
458 RTCState *rtc_init(int base, qemu_irq irq)
460 RTCState *s;
462 s = qemu_mallocz(sizeof(RTCState));
463 if (!s)
464 return NULL;
466 s->irq = irq;
467 s->cmos_data[RTC_REG_A] = 0x26;
468 s->cmos_data[RTC_REG_B] = 0x02;
469 s->cmos_data[RTC_REG_C] = 0x00;
470 s->cmos_data[RTC_REG_D] = 0x80;
472 rtc_set_date_from_host(s);
474 s->periodic_timer = qemu_new_timer(vm_clock,
475 rtc_periodic_timer, s);
476 s->second_timer = qemu_new_timer(vm_clock,
477 rtc_update_second, s);
478 s->second_timer2 = qemu_new_timer(vm_clock,
479 rtc_update_second2, s);
481 s->next_second_time = qemu_get_clock(vm_clock) + (ticks_per_sec * 99) / 100;
482 qemu_mod_timer(s->second_timer2, s->next_second_time);
484 register_ioport_write(base, 2, 1, cmos_ioport_write, s);
485 register_ioport_read(base, 2, 1, cmos_ioport_read, s);
487 register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
488 return s;
491 /* Memory mapped interface */
492 uint32_t cmos_mm_readb (void *opaque, target_phys_addr_t addr)
494 RTCState *s = opaque;
496 return cmos_ioport_read(s, (addr - s->base) >> s->it_shift) & 0xFF;
499 void cmos_mm_writeb (void *opaque,
500 target_phys_addr_t addr, uint32_t value)
502 RTCState *s = opaque;
504 cmos_ioport_write(s, (addr - s->base) >> s->it_shift, value & 0xFF);
507 uint32_t cmos_mm_readw (void *opaque, target_phys_addr_t addr)
509 RTCState *s = opaque;
510 uint32_t val;
512 val = cmos_ioport_read(s, (addr - s->base) >> s->it_shift) & 0xFFFF;
513 #ifdef TARGET_WORDS_BIGENDIAN
514 val = bswap16(val);
515 #endif
516 return val;
519 void cmos_mm_writew (void *opaque,
520 target_phys_addr_t addr, uint32_t value)
522 RTCState *s = opaque;
523 #ifdef TARGET_WORDS_BIGENDIAN
524 value = bswap16(value);
525 #endif
526 cmos_ioport_write(s, (addr - s->base) >> s->it_shift, value & 0xFFFF);
529 uint32_t cmos_mm_readl (void *opaque, target_phys_addr_t addr)
531 RTCState *s = opaque;
532 uint32_t val;
534 val = cmos_ioport_read(s, (addr - s->base) >> s->it_shift);
535 #ifdef TARGET_WORDS_BIGENDIAN
536 val = bswap32(val);
537 #endif
538 return val;
541 void cmos_mm_writel (void *opaque,
542 target_phys_addr_t addr, uint32_t value)
544 RTCState *s = opaque;
545 #ifdef TARGET_WORDS_BIGENDIAN
546 value = bswap32(value);
547 #endif
548 cmos_ioport_write(s, (addr - s->base) >> s->it_shift, value);
551 static CPUReadMemoryFunc *rtc_mm_read[] = {
552 &cmos_mm_readb,
553 &cmos_mm_readw,
554 &cmos_mm_readl,
557 static CPUWriteMemoryFunc *rtc_mm_write[] = {
558 &cmos_mm_writeb,
559 &cmos_mm_writew,
560 &cmos_mm_writel,
563 RTCState *rtc_mm_init(target_phys_addr_t base, int it_shift, qemu_irq irq)
565 RTCState *s;
566 int io_memory;
568 s = qemu_mallocz(sizeof(RTCState));
569 if (!s)
570 return NULL;
572 s->irq = irq;
573 s->cmos_data[RTC_REG_A] = 0x26;
574 s->cmos_data[RTC_REG_B] = 0x02;
575 s->cmos_data[RTC_REG_C] = 0x00;
576 s->cmos_data[RTC_REG_D] = 0x80;
577 s->base = base;
579 rtc_set_date_from_host(s);
581 s->periodic_timer = qemu_new_timer(vm_clock,
582 rtc_periodic_timer, s);
583 s->second_timer = qemu_new_timer(vm_clock,
584 rtc_update_second, s);
585 s->second_timer2 = qemu_new_timer(vm_clock,
586 rtc_update_second2, s);
588 s->next_second_time = qemu_get_clock(vm_clock) + (ticks_per_sec * 99) / 100;
589 qemu_mod_timer(s->second_timer2, s->next_second_time);
591 io_memory = cpu_register_io_memory(0, rtc_mm_read, rtc_mm_write, s);
592 cpu_register_physical_memory(base, 2 << it_shift, io_memory);
594 register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
595 return s;