Reset buffer pointers after CR/LF, by Jim Paris.
[qemu/dscho.git] / cpu-exec.c
blob543ec09ef700aebfbc2fde3586feed09bb4ba339
1 /*
2 * i386 emulator main execution loop
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include "config.h"
21 #include "exec.h"
22 #include "disas.h"
24 #if !defined(CONFIG_SOFTMMU)
25 #undef EAX
26 #undef ECX
27 #undef EDX
28 #undef EBX
29 #undef ESP
30 #undef EBP
31 #undef ESI
32 #undef EDI
33 #undef EIP
34 #include <signal.h>
35 #include <sys/ucontext.h>
36 #endif
38 int tb_invalidated_flag;
40 //#define DEBUG_EXEC
41 //#define DEBUG_SIGNAL
43 void cpu_loop_exit(void)
45 /* NOTE: the register at this point must be saved by hand because
46 longjmp restore them */
47 regs_to_env();
48 longjmp(env->jmp_env, 1);
51 #if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K))
52 #define reg_T2
53 #endif
55 /* exit the current TB from a signal handler. The host registers are
56 restored in a state compatible with the CPU emulator
58 void cpu_resume_from_signal(CPUState *env1, void *puc)
60 #if !defined(CONFIG_SOFTMMU)
61 struct ucontext *uc = puc;
62 #endif
64 env = env1;
66 /* XXX: restore cpu registers saved in host registers */
68 #if !defined(CONFIG_SOFTMMU)
69 if (puc) {
70 /* XXX: use siglongjmp ? */
71 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
73 #endif
74 longjmp(env->jmp_env, 1);
78 static TranslationBlock *tb_find_slow(target_ulong pc,
79 target_ulong cs_base,
80 unsigned int flags)
82 TranslationBlock *tb, **ptb1;
83 int code_gen_size;
84 unsigned int h;
85 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
86 uint8_t *tc_ptr;
88 spin_lock(&tb_lock);
90 tb_invalidated_flag = 0;
92 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
94 /* find translated block using physical mappings */
95 phys_pc = get_phys_addr_code(env, pc);
96 phys_page1 = phys_pc & TARGET_PAGE_MASK;
97 phys_page2 = -1;
98 h = tb_phys_hash_func(phys_pc);
99 ptb1 = &tb_phys_hash[h];
100 for(;;) {
101 tb = *ptb1;
102 if (!tb)
103 goto not_found;
104 if (tb->pc == pc &&
105 tb->page_addr[0] == phys_page1 &&
106 tb->cs_base == cs_base &&
107 tb->flags == flags) {
108 /* check next page if needed */
109 if (tb->page_addr[1] != -1) {
110 virt_page2 = (pc & TARGET_PAGE_MASK) +
111 TARGET_PAGE_SIZE;
112 phys_page2 = get_phys_addr_code(env, virt_page2);
113 if (tb->page_addr[1] == phys_page2)
114 goto found;
115 } else {
116 goto found;
119 ptb1 = &tb->phys_hash_next;
121 not_found:
122 /* if no translated code available, then translate it now */
123 tb = tb_alloc(pc);
124 if (!tb) {
125 /* flush must be done */
126 tb_flush(env);
127 /* cannot fail at this point */
128 tb = tb_alloc(pc);
129 /* don't forget to invalidate previous TB info */
130 tb_invalidated_flag = 1;
132 tc_ptr = code_gen_ptr;
133 tb->tc_ptr = tc_ptr;
134 tb->cs_base = cs_base;
135 tb->flags = flags;
136 cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
137 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
139 /* check next page if needed */
140 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
141 phys_page2 = -1;
142 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
143 phys_page2 = get_phys_addr_code(env, virt_page2);
145 tb_link_phys(tb, phys_pc, phys_page2);
147 found:
148 /* we add the TB in the virtual pc hash table */
149 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
150 spin_unlock(&tb_lock);
151 return tb;
154 static inline TranslationBlock *tb_find_fast(void)
156 TranslationBlock *tb;
157 target_ulong cs_base, pc;
158 unsigned int flags;
160 /* we record a subset of the CPU state. It will
161 always be the same before a given translated block
162 is executed. */
163 #if defined(TARGET_I386)
164 flags = env->hflags;
165 flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
166 cs_base = env->segs[R_CS].base;
167 pc = cs_base + env->eip;
168 #elif defined(TARGET_ARM)
169 flags = env->thumb | (env->vfp.vec_len << 1)
170 | (env->vfp.vec_stride << 4);
171 if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
172 flags |= (1 << 6);
173 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
174 flags |= (1 << 7);
175 cs_base = 0;
176 pc = env->regs[15];
177 #elif defined(TARGET_SPARC)
178 #ifdef TARGET_SPARC64
179 // Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
180 flags = (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2))
181 | (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
182 #else
183 // FPU enable . MMU enabled . MMU no-fault . Supervisor
184 flags = (env->psref << 3) | ((env->mmuregs[0] & (MMU_E | MMU_NF)) << 1)
185 | env->psrs;
186 #endif
187 cs_base = env->npc;
188 pc = env->pc;
189 #elif defined(TARGET_PPC)
190 flags = (msr_pr << MSR_PR) | (msr_fp << MSR_FP) |
191 (msr_se << MSR_SE) | (msr_le << MSR_LE);
192 cs_base = 0;
193 pc = env->nip;
194 #elif defined(TARGET_MIPS)
195 flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
196 cs_base = 0;
197 pc = env->PC;
198 #elif defined(TARGET_M68K)
199 flags = (env->fpcr & M68K_FPCR_PREC) /* Bit 6 */
200 | (env->sr & SR_S) /* Bit 13 */
201 | ((env->macsr >> 4) & 0xf); /* Bits 0-3 */
202 cs_base = 0;
203 pc = env->pc;
204 #elif defined(TARGET_SH4)
205 flags = env->sr & (SR_MD | SR_RB);
206 cs_base = 0; /* XXXXX */
207 pc = env->pc;
208 #elif defined(TARGET_ALPHA)
209 flags = env->ps;
210 cs_base = 0;
211 pc = env->pc;
212 #else
213 #error unsupported CPU
214 #endif
215 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
216 if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
217 tb->flags != flags, 0)) {
218 tb = tb_find_slow(pc, cs_base, flags);
219 /* Note: we do it here to avoid a gcc bug on Mac OS X when
220 doing it in tb_find_slow */
221 if (tb_invalidated_flag) {
222 /* as some TB could have been invalidated because
223 of memory exceptions while generating the code, we
224 must recompute the hash index here */
225 T0 = 0;
228 return tb;
232 /* main execution loop */
234 int cpu_exec(CPUState *env1)
236 #define DECLARE_HOST_REGS 1
237 #include "hostregs_helper.h"
238 #if defined(TARGET_SPARC)
239 #if defined(reg_REGWPTR)
240 uint32_t *saved_regwptr;
241 #endif
242 #endif
243 #if defined(__sparc__) && !defined(HOST_SOLARIS)
244 int saved_i7;
245 target_ulong tmp_T0;
246 #endif
247 int ret, interrupt_request;
248 void (*gen_func)(void);
249 TranslationBlock *tb;
250 uint8_t *tc_ptr;
252 if (cpu_halted(env1) == EXCP_HALTED)
253 return EXCP_HALTED;
255 cpu_single_env = env1;
257 /* first we save global registers */
258 #define SAVE_HOST_REGS 1
259 #include "hostregs_helper.h"
260 env = env1;
261 #if defined(__sparc__) && !defined(HOST_SOLARIS)
262 /* we also save i7 because longjmp may not restore it */
263 asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
264 #endif
266 env_to_regs();
267 #if defined(TARGET_I386)
268 /* put eflags in CPU temporary format */
269 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
270 DF = 1 - (2 * ((env->eflags >> 10) & 1));
271 CC_OP = CC_OP_EFLAGS;
272 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
273 #elif defined(TARGET_SPARC)
274 #if defined(reg_REGWPTR)
275 saved_regwptr = REGWPTR;
276 #endif
277 #elif defined(TARGET_M68K)
278 env->cc_op = CC_OP_FLAGS;
279 env->cc_dest = env->sr & 0xf;
280 env->cc_x = (env->sr >> 4) & 1;
281 #elif defined(TARGET_ALPHA)
282 #elif defined(TARGET_ARM)
283 #elif defined(TARGET_PPC)
284 #elif defined(TARGET_MIPS)
285 #elif defined(TARGET_SH4)
286 /* XXXXX */
287 #else
288 #error unsupported target CPU
289 #endif
290 env->exception_index = -1;
292 /* prepare setjmp context for exception handling */
293 for(;;) {
294 if (setjmp(env->jmp_env) == 0) {
295 env->current_tb = NULL;
296 /* if an exception is pending, we execute it here */
297 if (env->exception_index >= 0) {
298 if (env->exception_index >= EXCP_INTERRUPT) {
299 /* exit request from the cpu execution loop */
300 ret = env->exception_index;
301 break;
302 } else if (env->user_mode_only) {
303 /* if user mode only, we simulate a fake exception
304 which will be handled outside the cpu execution
305 loop */
306 #if defined(TARGET_I386)
307 do_interrupt_user(env->exception_index,
308 env->exception_is_int,
309 env->error_code,
310 env->exception_next_eip);
311 #endif
312 ret = env->exception_index;
313 break;
314 } else {
315 #if defined(TARGET_I386)
316 /* simulate a real cpu exception. On i386, it can
317 trigger new exceptions, but we do not handle
318 double or triple faults yet. */
319 do_interrupt(env->exception_index,
320 env->exception_is_int,
321 env->error_code,
322 env->exception_next_eip, 0);
323 /* successfully delivered */
324 env->old_exception = -1;
325 #elif defined(TARGET_PPC)
326 do_interrupt(env);
327 #elif defined(TARGET_MIPS)
328 do_interrupt(env);
329 #elif defined(TARGET_SPARC)
330 do_interrupt(env->exception_index);
331 #elif defined(TARGET_ARM)
332 do_interrupt(env);
333 #elif defined(TARGET_SH4)
334 do_interrupt(env);
335 #elif defined(TARGET_ALPHA)
336 do_interrupt(env);
337 #elif defined(TARGET_M68K)
338 do_interrupt(0);
339 #endif
341 env->exception_index = -1;
343 #ifdef USE_KQEMU
344 if (kqemu_is_ok(env) && env->interrupt_request == 0) {
345 int ret;
346 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
347 ret = kqemu_cpu_exec(env);
348 /* put eflags in CPU temporary format */
349 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
350 DF = 1 - (2 * ((env->eflags >> 10) & 1));
351 CC_OP = CC_OP_EFLAGS;
352 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
353 if (ret == 1) {
354 /* exception */
355 longjmp(env->jmp_env, 1);
356 } else if (ret == 2) {
357 /* softmmu execution needed */
358 } else {
359 if (env->interrupt_request != 0) {
360 /* hardware interrupt will be executed just after */
361 } else {
362 /* otherwise, we restart */
363 longjmp(env->jmp_env, 1);
367 #endif
369 T0 = 0; /* force lookup of first TB */
370 for(;;) {
371 #if defined(__sparc__) && !defined(HOST_SOLARIS)
372 /* g1 can be modified by some libc? functions */
373 tmp_T0 = T0;
374 #endif
375 interrupt_request = env->interrupt_request;
376 if (__builtin_expect(interrupt_request, 0)) {
377 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
378 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
379 env->exception_index = EXCP_DEBUG;
380 cpu_loop_exit();
382 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
383 defined(TARGET_PPC) || defined(TARGET_ALPHA)
384 if (interrupt_request & CPU_INTERRUPT_HALT) {
385 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
386 env->halted = 1;
387 env->exception_index = EXCP_HLT;
388 cpu_loop_exit();
390 #endif
391 #if defined(TARGET_I386)
392 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
393 !(env->hflags & HF_SMM_MASK)) {
394 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
395 do_smm_enter();
396 #if defined(__sparc__) && !defined(HOST_SOLARIS)
397 tmp_T0 = 0;
398 #else
399 T0 = 0;
400 #endif
401 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
402 (env->eflags & IF_MASK) &&
403 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
404 int intno;
405 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
406 intno = cpu_get_pic_interrupt(env);
407 if (loglevel & CPU_LOG_TB_IN_ASM) {
408 fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
410 do_interrupt(intno, 0, 0, 0, 1);
411 /* ensure that no TB jump will be modified as
412 the program flow was changed */
413 #if defined(__sparc__) && !defined(HOST_SOLARIS)
414 tmp_T0 = 0;
415 #else
416 T0 = 0;
417 #endif
419 #elif defined(TARGET_PPC)
420 #if 0
421 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
422 cpu_ppc_reset(env);
424 #endif
425 if (interrupt_request & CPU_INTERRUPT_HARD) {
426 ppc_hw_interrupt(env);
427 if (env->pending_interrupts == 0)
428 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
429 #if defined(__sparc__) && !defined(HOST_SOLARIS)
430 tmp_T0 = 0;
431 #else
432 T0 = 0;
433 #endif
435 #elif defined(TARGET_MIPS)
436 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
437 (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
438 (env->CP0_Status & (1 << CP0St_IE)) &&
439 !(env->CP0_Status & (1 << CP0St_EXL)) &&
440 !(env->CP0_Status & (1 << CP0St_ERL)) &&
441 !(env->hflags & MIPS_HFLAG_DM)) {
442 /* Raise it */
443 env->exception_index = EXCP_EXT_INTERRUPT;
444 env->error_code = 0;
445 do_interrupt(env);
446 #if defined(__sparc__) && !defined(HOST_SOLARIS)
447 tmp_T0 = 0;
448 #else
449 T0 = 0;
450 #endif
452 #elif defined(TARGET_SPARC)
453 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
454 (env->psret != 0)) {
455 int pil = env->interrupt_index & 15;
456 int type = env->interrupt_index & 0xf0;
458 if (((type == TT_EXTINT) &&
459 (pil == 15 || pil > env->psrpil)) ||
460 type != TT_EXTINT) {
461 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
462 do_interrupt(env->interrupt_index);
463 env->interrupt_index = 0;
464 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
465 cpu_check_irqs(env);
466 #endif
467 #if defined(__sparc__) && !defined(HOST_SOLARIS)
468 tmp_T0 = 0;
469 #else
470 T0 = 0;
471 #endif
473 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
474 //do_interrupt(0, 0, 0, 0, 0);
475 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
477 #elif defined(TARGET_ARM)
478 if (interrupt_request & CPU_INTERRUPT_FIQ
479 && !(env->uncached_cpsr & CPSR_F)) {
480 env->exception_index = EXCP_FIQ;
481 do_interrupt(env);
483 if (interrupt_request & CPU_INTERRUPT_HARD
484 && !(env->uncached_cpsr & CPSR_I)) {
485 env->exception_index = EXCP_IRQ;
486 do_interrupt(env);
488 #elif defined(TARGET_SH4)
489 /* XXXXX */
490 #elif defined(TARGET_ALPHA)
491 if (interrupt_request & CPU_INTERRUPT_HARD) {
492 do_interrupt(env);
494 #elif defined(TARGET_M68K)
495 if (interrupt_request & CPU_INTERRUPT_HARD
496 && ((env->sr & SR_I) >> SR_I_SHIFT)
497 < env->pending_level) {
498 /* Real hardware gets the interrupt vector via an
499 IACK cycle at this point. Current emulated
500 hardware doesn't rely on this, so we
501 provide/save the vector when the interrupt is
502 first signalled. */
503 env->exception_index = env->pending_vector;
504 do_interrupt(1);
506 #endif
507 /* Don't use the cached interupt_request value,
508 do_interrupt may have updated the EXITTB flag. */
509 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
510 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
511 /* ensure that no TB jump will be modified as
512 the program flow was changed */
513 #if defined(__sparc__) && !defined(HOST_SOLARIS)
514 tmp_T0 = 0;
515 #else
516 T0 = 0;
517 #endif
519 if (interrupt_request & CPU_INTERRUPT_EXIT) {
520 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
521 env->exception_index = EXCP_INTERRUPT;
522 cpu_loop_exit();
525 #ifdef DEBUG_EXEC
526 if ((loglevel & CPU_LOG_TB_CPU)) {
527 /* restore flags in standard format */
528 regs_to_env();
529 #if defined(TARGET_I386)
530 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
531 cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
532 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
533 #elif defined(TARGET_ARM)
534 cpu_dump_state(env, logfile, fprintf, 0);
535 #elif defined(TARGET_SPARC)
536 REGWPTR = env->regbase + (env->cwp * 16);
537 env->regwptr = REGWPTR;
538 cpu_dump_state(env, logfile, fprintf, 0);
539 #elif defined(TARGET_PPC)
540 cpu_dump_state(env, logfile, fprintf, 0);
541 #elif defined(TARGET_M68K)
542 cpu_m68k_flush_flags(env, env->cc_op);
543 env->cc_op = CC_OP_FLAGS;
544 env->sr = (env->sr & 0xffe0)
545 | env->cc_dest | (env->cc_x << 4);
546 cpu_dump_state(env, logfile, fprintf, 0);
547 #elif defined(TARGET_MIPS)
548 cpu_dump_state(env, logfile, fprintf, 0);
549 #elif defined(TARGET_SH4)
550 cpu_dump_state(env, logfile, fprintf, 0);
551 #elif defined(TARGET_ALPHA)
552 cpu_dump_state(env, logfile, fprintf, 0);
553 #else
554 #error unsupported target CPU
555 #endif
557 #endif
558 tb = tb_find_fast();
559 #ifdef DEBUG_EXEC
560 if ((loglevel & CPU_LOG_EXEC)) {
561 fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
562 (long)tb->tc_ptr, tb->pc,
563 lookup_symbol(tb->pc));
565 #endif
566 #if defined(__sparc__) && !defined(HOST_SOLARIS)
567 T0 = tmp_T0;
568 #endif
569 /* see if we can patch the calling TB. When the TB
570 spans two pages, we cannot safely do a direct
571 jump. */
573 if (T0 != 0 &&
574 #if USE_KQEMU
575 (env->kqemu_enabled != 2) &&
576 #endif
577 tb->page_addr[1] == -1
578 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
579 && (tb->cflags & CF_CODE_COPY) ==
580 (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
581 #endif
583 spin_lock(&tb_lock);
584 tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
585 #if defined(USE_CODE_COPY)
586 /* propagates the FP use info */
587 ((TranslationBlock *)(T0 & ~3))->cflags |=
588 (tb->cflags & CF_FP_USED);
589 #endif
590 spin_unlock(&tb_lock);
593 tc_ptr = tb->tc_ptr;
594 env->current_tb = tb;
595 /* execute the generated code */
596 gen_func = (void *)tc_ptr;
597 #if defined(__sparc__)
598 __asm__ __volatile__("call %0\n\t"
599 "mov %%o7,%%i0"
600 : /* no outputs */
601 : "r" (gen_func)
602 : "i0", "i1", "i2", "i3", "i4", "i5",
603 "o0", "o1", "o2", "o3", "o4", "o5",
604 "l0", "l1", "l2", "l3", "l4", "l5",
605 "l6", "l7");
606 #elif defined(__arm__)
607 asm volatile ("mov pc, %0\n\t"
608 ".global exec_loop\n\t"
609 "exec_loop:\n\t"
610 : /* no outputs */
611 : "r" (gen_func)
612 : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
613 #elif defined(TARGET_I386) && defined(USE_CODE_COPY)
615 if (!(tb->cflags & CF_CODE_COPY)) {
616 if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
617 save_native_fp_state(env);
619 gen_func();
620 } else {
621 if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
622 restore_native_fp_state(env);
624 /* we work with native eflags */
625 CC_SRC = cc_table[CC_OP].compute_all();
626 CC_OP = CC_OP_EFLAGS;
627 asm(".globl exec_loop\n"
628 "\n"
629 "debug1:\n"
630 " pushl %%ebp\n"
631 " fs movl %10, %9\n"
632 " fs movl %11, %%eax\n"
633 " andl $0x400, %%eax\n"
634 " fs orl %8, %%eax\n"
635 " pushl %%eax\n"
636 " popf\n"
637 " fs movl %%esp, %12\n"
638 " fs movl %0, %%eax\n"
639 " fs movl %1, %%ecx\n"
640 " fs movl %2, %%edx\n"
641 " fs movl %3, %%ebx\n"
642 " fs movl %4, %%esp\n"
643 " fs movl %5, %%ebp\n"
644 " fs movl %6, %%esi\n"
645 " fs movl %7, %%edi\n"
646 " fs jmp *%9\n"
647 "exec_loop:\n"
648 " fs movl %%esp, %4\n"
649 " fs movl %12, %%esp\n"
650 " fs movl %%eax, %0\n"
651 " fs movl %%ecx, %1\n"
652 " fs movl %%edx, %2\n"
653 " fs movl %%ebx, %3\n"
654 " fs movl %%ebp, %5\n"
655 " fs movl %%esi, %6\n"
656 " fs movl %%edi, %7\n"
657 " pushf\n"
658 " popl %%eax\n"
659 " movl %%eax, %%ecx\n"
660 " andl $0x400, %%ecx\n"
661 " shrl $9, %%ecx\n"
662 " andl $0x8d5, %%eax\n"
663 " fs movl %%eax, %8\n"
664 " movl $1, %%eax\n"
665 " subl %%ecx, %%eax\n"
666 " fs movl %%eax, %11\n"
667 " fs movl %9, %%ebx\n" /* get T0 value */
668 " popl %%ebp\n"
670 : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
671 "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
672 "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
673 "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
674 "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
675 "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
676 "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
677 "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
678 "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
679 "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
680 "a" (gen_func),
681 "m" (*(uint8_t *)offsetof(CPUState, df)),
682 "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
683 : "%ecx", "%edx"
687 #elif defined(__ia64)
688 struct fptr {
689 void *ip;
690 void *gp;
691 } fp;
693 fp.ip = tc_ptr;
694 fp.gp = code_gen_buffer + 2 * (1 << 20);
695 (*(void (*)(void)) &fp)();
696 #else
697 gen_func();
698 #endif
699 env->current_tb = NULL;
700 /* reset soft MMU for next block (it can currently
701 only be set by a memory fault) */
702 #if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
703 if (env->hflags & HF_SOFTMMU_MASK) {
704 env->hflags &= ~HF_SOFTMMU_MASK;
705 /* do not allow linking to another block */
706 T0 = 0;
708 #endif
709 #if defined(USE_KQEMU)
710 #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
711 if (kqemu_is_ok(env) &&
712 (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
713 cpu_loop_exit();
715 #endif
716 } /* for(;;) */
717 } else {
718 env_to_regs();
720 } /* for(;;) */
723 #if defined(TARGET_I386)
724 #if defined(USE_CODE_COPY)
725 if (env->native_fp_regs) {
726 save_native_fp_state(env);
728 #endif
729 /* restore flags in standard format */
730 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
731 #elif defined(TARGET_ARM)
732 /* XXX: Save/restore host fpu exception state?. */
733 #elif defined(TARGET_SPARC)
734 #if defined(reg_REGWPTR)
735 REGWPTR = saved_regwptr;
736 #endif
737 #elif defined(TARGET_PPC)
738 #elif defined(TARGET_M68K)
739 cpu_m68k_flush_flags(env, env->cc_op);
740 env->cc_op = CC_OP_FLAGS;
741 env->sr = (env->sr & 0xffe0)
742 | env->cc_dest | (env->cc_x << 4);
743 #elif defined(TARGET_MIPS)
744 #elif defined(TARGET_SH4)
745 #elif defined(TARGET_ALPHA)
746 /* XXXXX */
747 #else
748 #error unsupported target CPU
749 #endif
751 /* restore global registers */
752 #if defined(__sparc__) && !defined(HOST_SOLARIS)
753 asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
754 #endif
755 #include "hostregs_helper.h"
757 /* fail safe : never use cpu_single_env outside cpu_exec() */
758 cpu_single_env = NULL;
759 return ret;
762 /* must only be called from the generated code as an exception can be
763 generated */
764 void tb_invalidate_page_range(target_ulong start, target_ulong end)
766 /* XXX: cannot enable it yet because it yields to MMU exception
767 where NIP != read address on PowerPC */
768 #if 0
769 target_ulong phys_addr;
770 phys_addr = get_phys_addr_code(env, start);
771 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
772 #endif
775 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
777 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
779 CPUX86State *saved_env;
781 saved_env = env;
782 env = s;
783 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
784 selector &= 0xffff;
785 cpu_x86_load_seg_cache(env, seg_reg, selector,
786 (selector << 4), 0xffff, 0);
787 } else {
788 load_seg(seg_reg, selector);
790 env = saved_env;
793 void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
795 CPUX86State *saved_env;
797 saved_env = env;
798 env = s;
800 helper_fsave((target_ulong)ptr, data32);
802 env = saved_env;
805 void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
807 CPUX86State *saved_env;
809 saved_env = env;
810 env = s;
812 helper_frstor((target_ulong)ptr, data32);
814 env = saved_env;
817 #endif /* TARGET_I386 */
819 #if !defined(CONFIG_SOFTMMU)
821 #if defined(TARGET_I386)
823 /* 'pc' is the host PC at which the exception was raised. 'address' is
824 the effective address of the memory exception. 'is_write' is 1 if a
825 write caused the exception and otherwise 0'. 'old_set' is the
826 signal set which should be restored */
827 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
828 int is_write, sigset_t *old_set,
829 void *puc)
831 TranslationBlock *tb;
832 int ret;
834 if (cpu_single_env)
835 env = cpu_single_env; /* XXX: find a correct solution for multithread */
836 #if defined(DEBUG_SIGNAL)
837 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
838 pc, address, is_write, *(unsigned long *)old_set);
839 #endif
840 /* XXX: locking issue */
841 if (is_write && page_unprotect(h2g(address), pc, puc)) {
842 return 1;
845 /* see if it is an MMU fault */
846 ret = cpu_x86_handle_mmu_fault(env, address, is_write,
847 ((env->hflags & HF_CPL_MASK) == 3), 0);
848 if (ret < 0)
849 return 0; /* not an MMU fault */
850 if (ret == 0)
851 return 1; /* the MMU fault was handled without causing real CPU fault */
852 /* now we have a real cpu fault */
853 tb = tb_find_pc(pc);
854 if (tb) {
855 /* the PC is inside the translated code. It means that we have
856 a virtual CPU fault */
857 cpu_restore_state(tb, env, pc, puc);
859 if (ret == 1) {
860 #if 0
861 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
862 env->eip, env->cr[2], env->error_code);
863 #endif
864 /* we restore the process signal mask as the sigreturn should
865 do it (XXX: use sigsetjmp) */
866 sigprocmask(SIG_SETMASK, old_set, NULL);
867 raise_exception_err(env->exception_index, env->error_code);
868 } else {
869 /* activate soft MMU for this block */
870 env->hflags |= HF_SOFTMMU_MASK;
871 cpu_resume_from_signal(env, puc);
873 /* never comes here */
874 return 1;
877 #elif defined(TARGET_ARM)
878 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
879 int is_write, sigset_t *old_set,
880 void *puc)
882 TranslationBlock *tb;
883 int ret;
885 if (cpu_single_env)
886 env = cpu_single_env; /* XXX: find a correct solution for multithread */
887 #if defined(DEBUG_SIGNAL)
888 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
889 pc, address, is_write, *(unsigned long *)old_set);
890 #endif
891 /* XXX: locking issue */
892 if (is_write && page_unprotect(h2g(address), pc, puc)) {
893 return 1;
895 /* see if it is an MMU fault */
896 ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
897 if (ret < 0)
898 return 0; /* not an MMU fault */
899 if (ret == 0)
900 return 1; /* the MMU fault was handled without causing real CPU fault */
901 /* now we have a real cpu fault */
902 tb = tb_find_pc(pc);
903 if (tb) {
904 /* the PC is inside the translated code. It means that we have
905 a virtual CPU fault */
906 cpu_restore_state(tb, env, pc, puc);
908 /* we restore the process signal mask as the sigreturn should
909 do it (XXX: use sigsetjmp) */
910 sigprocmask(SIG_SETMASK, old_set, NULL);
911 cpu_loop_exit();
913 #elif defined(TARGET_SPARC)
914 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
915 int is_write, sigset_t *old_set,
916 void *puc)
918 TranslationBlock *tb;
919 int ret;
921 if (cpu_single_env)
922 env = cpu_single_env; /* XXX: find a correct solution for multithread */
923 #if defined(DEBUG_SIGNAL)
924 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
925 pc, address, is_write, *(unsigned long *)old_set);
926 #endif
927 /* XXX: locking issue */
928 if (is_write && page_unprotect(h2g(address), pc, puc)) {
929 return 1;
931 /* see if it is an MMU fault */
932 ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
933 if (ret < 0)
934 return 0; /* not an MMU fault */
935 if (ret == 0)
936 return 1; /* the MMU fault was handled without causing real CPU fault */
937 /* now we have a real cpu fault */
938 tb = tb_find_pc(pc);
939 if (tb) {
940 /* the PC is inside the translated code. It means that we have
941 a virtual CPU fault */
942 cpu_restore_state(tb, env, pc, puc);
944 /* we restore the process signal mask as the sigreturn should
945 do it (XXX: use sigsetjmp) */
946 sigprocmask(SIG_SETMASK, old_set, NULL);
947 cpu_loop_exit();
949 #elif defined (TARGET_PPC)
950 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
951 int is_write, sigset_t *old_set,
952 void *puc)
954 TranslationBlock *tb;
955 int ret;
957 if (cpu_single_env)
958 env = cpu_single_env; /* XXX: find a correct solution for multithread */
959 #if defined(DEBUG_SIGNAL)
960 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
961 pc, address, is_write, *(unsigned long *)old_set);
962 #endif
963 /* XXX: locking issue */
964 if (is_write && page_unprotect(h2g(address), pc, puc)) {
965 return 1;
968 /* see if it is an MMU fault */
969 ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
970 if (ret < 0)
971 return 0; /* not an MMU fault */
972 if (ret == 0)
973 return 1; /* the MMU fault was handled without causing real CPU fault */
975 /* now we have a real cpu fault */
976 tb = tb_find_pc(pc);
977 if (tb) {
978 /* the PC is inside the translated code. It means that we have
979 a virtual CPU fault */
980 cpu_restore_state(tb, env, pc, puc);
982 if (ret == 1) {
983 #if 0
984 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
985 env->nip, env->error_code, tb);
986 #endif
987 /* we restore the process signal mask as the sigreturn should
988 do it (XXX: use sigsetjmp) */
989 sigprocmask(SIG_SETMASK, old_set, NULL);
990 do_raise_exception_err(env->exception_index, env->error_code);
991 } else {
992 /* activate soft MMU for this block */
993 cpu_resume_from_signal(env, puc);
995 /* never comes here */
996 return 1;
999 #elif defined(TARGET_M68K)
1000 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1001 int is_write, sigset_t *old_set,
1002 void *puc)
1004 TranslationBlock *tb;
1005 int ret;
1007 if (cpu_single_env)
1008 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1009 #if defined(DEBUG_SIGNAL)
1010 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1011 pc, address, is_write, *(unsigned long *)old_set);
1012 #endif
1013 /* XXX: locking issue */
1014 if (is_write && page_unprotect(address, pc, puc)) {
1015 return 1;
1017 /* see if it is an MMU fault */
1018 ret = cpu_m68k_handle_mmu_fault(env, address, is_write, 1, 0);
1019 if (ret < 0)
1020 return 0; /* not an MMU fault */
1021 if (ret == 0)
1022 return 1; /* the MMU fault was handled without causing real CPU fault */
1023 /* now we have a real cpu fault */
1024 tb = tb_find_pc(pc);
1025 if (tb) {
1026 /* the PC is inside the translated code. It means that we have
1027 a virtual CPU fault */
1028 cpu_restore_state(tb, env, pc, puc);
1030 /* we restore the process signal mask as the sigreturn should
1031 do it (XXX: use sigsetjmp) */
1032 sigprocmask(SIG_SETMASK, old_set, NULL);
1033 cpu_loop_exit();
1034 /* never comes here */
1035 return 1;
1038 #elif defined (TARGET_MIPS)
1039 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1040 int is_write, sigset_t *old_set,
1041 void *puc)
1043 TranslationBlock *tb;
1044 int ret;
1046 if (cpu_single_env)
1047 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1048 #if defined(DEBUG_SIGNAL)
1049 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1050 pc, address, is_write, *(unsigned long *)old_set);
1051 #endif
1052 /* XXX: locking issue */
1053 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1054 return 1;
1057 /* see if it is an MMU fault */
1058 ret = cpu_mips_handle_mmu_fault(env, address, is_write, 1, 0);
1059 if (ret < 0)
1060 return 0; /* not an MMU fault */
1061 if (ret == 0)
1062 return 1; /* the MMU fault was handled without causing real CPU fault */
1064 /* now we have a real cpu fault */
1065 tb = tb_find_pc(pc);
1066 if (tb) {
1067 /* the PC is inside the translated code. It means that we have
1068 a virtual CPU fault */
1069 cpu_restore_state(tb, env, pc, puc);
1071 if (ret == 1) {
1072 #if 0
1073 printf("PF exception: PC=0x" TARGET_FMT_lx " error=0x%x %p\n",
1074 env->PC, env->error_code, tb);
1075 #endif
1076 /* we restore the process signal mask as the sigreturn should
1077 do it (XXX: use sigsetjmp) */
1078 sigprocmask(SIG_SETMASK, old_set, NULL);
1079 do_raise_exception_err(env->exception_index, env->error_code);
1080 } else {
1081 /* activate soft MMU for this block */
1082 cpu_resume_from_signal(env, puc);
1084 /* never comes here */
1085 return 1;
1088 #elif defined (TARGET_SH4)
1089 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1090 int is_write, sigset_t *old_set,
1091 void *puc)
1093 TranslationBlock *tb;
1094 int ret;
1096 if (cpu_single_env)
1097 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1098 #if defined(DEBUG_SIGNAL)
1099 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1100 pc, address, is_write, *(unsigned long *)old_set);
1101 #endif
1102 /* XXX: locking issue */
1103 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1104 return 1;
1107 /* see if it is an MMU fault */
1108 ret = cpu_sh4_handle_mmu_fault(env, address, is_write, 1, 0);
1109 if (ret < 0)
1110 return 0; /* not an MMU fault */
1111 if (ret == 0)
1112 return 1; /* the MMU fault was handled without causing real CPU fault */
1114 /* now we have a real cpu fault */
1115 tb = tb_find_pc(pc);
1116 if (tb) {
1117 /* the PC is inside the translated code. It means that we have
1118 a virtual CPU fault */
1119 cpu_restore_state(tb, env, pc, puc);
1121 #if 0
1122 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1123 env->nip, env->error_code, tb);
1124 #endif
1125 /* we restore the process signal mask as the sigreturn should
1126 do it (XXX: use sigsetjmp) */
1127 sigprocmask(SIG_SETMASK, old_set, NULL);
1128 cpu_loop_exit();
1129 /* never comes here */
1130 return 1;
1133 #elif defined (TARGET_ALPHA)
1134 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1135 int is_write, sigset_t *old_set,
1136 void *puc)
1138 TranslationBlock *tb;
1139 int ret;
1141 if (cpu_single_env)
1142 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1143 #if defined(DEBUG_SIGNAL)
1144 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1145 pc, address, is_write, *(unsigned long *)old_set);
1146 #endif
1147 /* XXX: locking issue */
1148 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1149 return 1;
1152 /* see if it is an MMU fault */
1153 ret = cpu_alpha_handle_mmu_fault(env, address, is_write, 1, 0);
1154 if (ret < 0)
1155 return 0; /* not an MMU fault */
1156 if (ret == 0)
1157 return 1; /* the MMU fault was handled without causing real CPU fault */
1159 /* now we have a real cpu fault */
1160 tb = tb_find_pc(pc);
1161 if (tb) {
1162 /* the PC is inside the translated code. It means that we have
1163 a virtual CPU fault */
1164 cpu_restore_state(tb, env, pc, puc);
1166 #if 0
1167 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1168 env->nip, env->error_code, tb);
1169 #endif
1170 /* we restore the process signal mask as the sigreturn should
1171 do it (XXX: use sigsetjmp) */
1172 sigprocmask(SIG_SETMASK, old_set, NULL);
1173 cpu_loop_exit();
1174 /* never comes here */
1175 return 1;
1177 #else
1178 #error unsupported target CPU
1179 #endif
1181 #if defined(__i386__)
1183 #if defined(__APPLE__)
1184 # include <sys/ucontext.h>
1186 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1187 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
1188 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
1189 #else
1190 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
1191 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
1192 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
1193 #endif
1195 #if defined(USE_CODE_COPY)
1196 static void cpu_send_trap(unsigned long pc, int trap,
1197 struct ucontext *uc)
1199 TranslationBlock *tb;
1201 if (cpu_single_env)
1202 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1203 /* now we have a real cpu fault */
1204 tb = tb_find_pc(pc);
1205 if (tb) {
1206 /* the PC is inside the translated code. It means that we have
1207 a virtual CPU fault */
1208 cpu_restore_state(tb, env, pc, uc);
1210 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
1211 raise_exception_err(trap, env->error_code);
1213 #endif
1215 int cpu_signal_handler(int host_signum, void *pinfo,
1216 void *puc)
1218 siginfo_t *info = pinfo;
1219 struct ucontext *uc = puc;
1220 unsigned long pc;
1221 int trapno;
1223 #ifndef REG_EIP
1224 /* for glibc 2.1 */
1225 #define REG_EIP EIP
1226 #define REG_ERR ERR
1227 #define REG_TRAPNO TRAPNO
1228 #endif
1229 pc = EIP_sig(uc);
1230 trapno = TRAP_sig(uc);
1231 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
1232 if (trapno == 0x00 || trapno == 0x05) {
1233 /* send division by zero or bound exception */
1234 cpu_send_trap(pc, trapno, uc);
1235 return 1;
1236 } else
1237 #endif
1238 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1239 trapno == 0xe ?
1240 (ERROR_sig(uc) >> 1) & 1 : 0,
1241 &uc->uc_sigmask, puc);
1244 #elif defined(__x86_64__)
1246 int cpu_signal_handler(int host_signum, void *pinfo,
1247 void *puc)
1249 siginfo_t *info = pinfo;
1250 struct ucontext *uc = puc;
1251 unsigned long pc;
1253 pc = uc->uc_mcontext.gregs[REG_RIP];
1254 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1255 uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
1256 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1257 &uc->uc_sigmask, puc);
1260 #elif defined(__powerpc__)
1262 /***********************************************************************
1263 * signal context platform-specific definitions
1264 * From Wine
1266 #ifdef linux
1267 /* All Registers access - only for local access */
1268 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1269 /* Gpr Registers access */
1270 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1271 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1272 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1273 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1274 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1275 # define LR_sig(context) REG_sig(link, context) /* Link register */
1276 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1277 /* Float Registers access */
1278 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1279 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1280 /* Exception Registers access */
1281 # define DAR_sig(context) REG_sig(dar, context)
1282 # define DSISR_sig(context) REG_sig(dsisr, context)
1283 # define TRAP_sig(context) REG_sig(trap, context)
1284 #endif /* linux */
1286 #ifdef __APPLE__
1287 # include <sys/ucontext.h>
1288 typedef struct ucontext SIGCONTEXT;
1289 /* All Registers access - only for local access */
1290 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1291 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1292 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1293 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1294 /* Gpr Registers access */
1295 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1296 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1297 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1298 # define CTR_sig(context) REG_sig(ctr, context)
1299 # define XER_sig(context) REG_sig(xer, context) /* Link register */
1300 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1301 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
1302 /* Float Registers access */
1303 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1304 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1305 /* Exception Registers access */
1306 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1307 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1308 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1309 #endif /* __APPLE__ */
1311 int cpu_signal_handler(int host_signum, void *pinfo,
1312 void *puc)
1314 siginfo_t *info = pinfo;
1315 struct ucontext *uc = puc;
1316 unsigned long pc;
1317 int is_write;
1319 pc = IAR_sig(uc);
1320 is_write = 0;
1321 #if 0
1322 /* ppc 4xx case */
1323 if (DSISR_sig(uc) & 0x00800000)
1324 is_write = 1;
1325 #else
1326 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1327 is_write = 1;
1328 #endif
1329 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1330 is_write, &uc->uc_sigmask, puc);
1333 #elif defined(__alpha__)
1335 int cpu_signal_handler(int host_signum, void *pinfo,
1336 void *puc)
1338 siginfo_t *info = pinfo;
1339 struct ucontext *uc = puc;
1340 uint32_t *pc = uc->uc_mcontext.sc_pc;
1341 uint32_t insn = *pc;
1342 int is_write = 0;
1344 /* XXX: need kernel patch to get write flag faster */
1345 switch (insn >> 26) {
1346 case 0x0d: // stw
1347 case 0x0e: // stb
1348 case 0x0f: // stq_u
1349 case 0x24: // stf
1350 case 0x25: // stg
1351 case 0x26: // sts
1352 case 0x27: // stt
1353 case 0x2c: // stl
1354 case 0x2d: // stq
1355 case 0x2e: // stl_c
1356 case 0x2f: // stq_c
1357 is_write = 1;
1360 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1361 is_write, &uc->uc_sigmask, puc);
1363 #elif defined(__sparc__)
1365 int cpu_signal_handler(int host_signum, void *pinfo,
1366 void *puc)
1368 siginfo_t *info = pinfo;
1369 uint32_t *regs = (uint32_t *)(info + 1);
1370 void *sigmask = (regs + 20);
1371 unsigned long pc;
1372 int is_write;
1373 uint32_t insn;
1375 /* XXX: is there a standard glibc define ? */
1376 pc = regs[1];
1377 /* XXX: need kernel patch to get write flag faster */
1378 is_write = 0;
1379 insn = *(uint32_t *)pc;
1380 if ((insn >> 30) == 3) {
1381 switch((insn >> 19) & 0x3f) {
1382 case 0x05: // stb
1383 case 0x06: // sth
1384 case 0x04: // st
1385 case 0x07: // std
1386 case 0x24: // stf
1387 case 0x27: // stdf
1388 case 0x25: // stfsr
1389 is_write = 1;
1390 break;
1393 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1394 is_write, sigmask, NULL);
1397 #elif defined(__arm__)
1399 int cpu_signal_handler(int host_signum, void *pinfo,
1400 void *puc)
1402 siginfo_t *info = pinfo;
1403 struct ucontext *uc = puc;
1404 unsigned long pc;
1405 int is_write;
1407 pc = uc->uc_mcontext.gregs[R15];
1408 /* XXX: compute is_write */
1409 is_write = 0;
1410 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1411 is_write,
1412 &uc->uc_sigmask, puc);
1415 #elif defined(__mc68000)
1417 int cpu_signal_handler(int host_signum, void *pinfo,
1418 void *puc)
1420 siginfo_t *info = pinfo;
1421 struct ucontext *uc = puc;
1422 unsigned long pc;
1423 int is_write;
1425 pc = uc->uc_mcontext.gregs[16];
1426 /* XXX: compute is_write */
1427 is_write = 0;
1428 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1429 is_write,
1430 &uc->uc_sigmask, puc);
1433 #elif defined(__ia64)
1435 #ifndef __ISR_VALID
1436 /* This ought to be in <bits/siginfo.h>... */
1437 # define __ISR_VALID 1
1438 #endif
1440 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1442 siginfo_t *info = pinfo;
1443 struct ucontext *uc = puc;
1444 unsigned long ip;
1445 int is_write = 0;
1447 ip = uc->uc_mcontext.sc_ip;
1448 switch (host_signum) {
1449 case SIGILL:
1450 case SIGFPE:
1451 case SIGSEGV:
1452 case SIGBUS:
1453 case SIGTRAP:
1454 if (info->si_code && (info->si_segvflags & __ISR_VALID))
1455 /* ISR.W (write-access) is bit 33: */
1456 is_write = (info->si_isr >> 33) & 1;
1457 break;
1459 default:
1460 break;
1462 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1463 is_write,
1464 &uc->uc_sigmask, puc);
1467 #elif defined(__s390__)
1469 int cpu_signal_handler(int host_signum, void *pinfo,
1470 void *puc)
1472 siginfo_t *info = pinfo;
1473 struct ucontext *uc = puc;
1474 unsigned long pc;
1475 int is_write;
1477 pc = uc->uc_mcontext.psw.addr;
1478 /* XXX: compute is_write */
1479 is_write = 0;
1480 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1481 is_write, &uc->uc_sigmask, puc);
1484 #elif defined(__mips__)
1486 int cpu_signal_handler(int host_signum, void *pinfo,
1487 void *puc)
1489 siginfo_t *info = pinfo;
1490 struct ucontext *uc = puc;
1491 greg_t pc = uc->uc_mcontext.pc;
1492 int is_write;
1494 /* XXX: compute is_write */
1495 is_write = 0;
1496 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1497 is_write, &uc->uc_sigmask, puc);
1500 #else
1502 #error host CPU specific signal handler needed
1504 #endif
1506 #endif /* !defined(CONFIG_SOFTMMU) */