Disable dead code.
[qemu/dscho.git] / cpu-all.h
blob289d660f14db11d0b463edaa644f6b1e9b36911f
1 /*
2 * defines common to all virtual CPUs
3 *
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #ifndef CPU_ALL_H
21 #define CPU_ALL_H
23 #if defined(__arm__) || defined(__sparc__) || defined(__mips__)
24 #define WORDS_ALIGNED
25 #endif
27 /* some important defines:
29 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
30 * memory accesses.
32 * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
33 * otherwise little endian.
35 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
37 * TARGET_WORDS_BIGENDIAN : same for target cpu
40 #include "bswap.h"
42 #if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
43 #define BSWAP_NEEDED
44 #endif
46 #ifdef BSWAP_NEEDED
48 static inline uint16_t tswap16(uint16_t s)
50 return bswap16(s);
53 static inline uint32_t tswap32(uint32_t s)
55 return bswap32(s);
58 static inline uint64_t tswap64(uint64_t s)
60 return bswap64(s);
63 static inline void tswap16s(uint16_t *s)
65 *s = bswap16(*s);
68 static inline void tswap32s(uint32_t *s)
70 *s = bswap32(*s);
73 static inline void tswap64s(uint64_t *s)
75 *s = bswap64(*s);
78 #else
80 static inline uint16_t tswap16(uint16_t s)
82 return s;
85 static inline uint32_t tswap32(uint32_t s)
87 return s;
90 static inline uint64_t tswap64(uint64_t s)
92 return s;
95 static inline void tswap16s(uint16_t *s)
99 static inline void tswap32s(uint32_t *s)
103 static inline void tswap64s(uint64_t *s)
107 #endif
109 #if TARGET_LONG_SIZE == 4
110 #define tswapl(s) tswap32(s)
111 #define tswapls(s) tswap32s((uint32_t *)(s))
112 #define bswaptls(s) bswap32s(s)
113 #else
114 #define tswapl(s) tswap64(s)
115 #define tswapls(s) tswap64s((uint64_t *)(s))
116 #define bswaptls(s) bswap64s(s)
117 #endif
119 /* NOTE: arm FPA is horrible as double 32 bit words are stored in big
120 endian ! */
121 typedef union {
122 float64 d;
123 #if defined(WORDS_BIGENDIAN) \
124 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
125 struct {
126 uint32_t upper;
127 uint32_t lower;
128 } l;
129 #else
130 struct {
131 uint32_t lower;
132 uint32_t upper;
133 } l;
134 #endif
135 uint64_t ll;
136 } CPU_DoubleU;
138 /* CPU memory access without any memory or io remapping */
141 * the generic syntax for the memory accesses is:
143 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
145 * store: st{type}{size}{endian}_{access_type}(ptr, val)
147 * type is:
148 * (empty): integer access
149 * f : float access
151 * sign is:
152 * (empty): for floats or 32 bit size
153 * u : unsigned
154 * s : signed
156 * size is:
157 * b: 8 bits
158 * w: 16 bits
159 * l: 32 bits
160 * q: 64 bits
162 * endian is:
163 * (empty): target cpu endianness or 8 bit access
164 * r : reversed target cpu endianness (not implemented yet)
165 * be : big endian (not implemented yet)
166 * le : little endian (not implemented yet)
168 * access_type is:
169 * raw : host memory access
170 * user : user mode access using soft MMU
171 * kernel : kernel mode access using soft MMU
173 static inline int ldub_p(void *ptr)
175 return *(uint8_t *)ptr;
178 static inline int ldsb_p(void *ptr)
180 return *(int8_t *)ptr;
183 static inline void stb_p(void *ptr, int v)
185 *(uint8_t *)ptr = v;
188 /* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
189 kernel handles unaligned load/stores may give better results, but
190 it is a system wide setting : bad */
191 #if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
193 /* conservative code for little endian unaligned accesses */
194 static inline int lduw_le_p(void *ptr)
196 #ifdef __powerpc__
197 int val;
198 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
199 return val;
200 #else
201 uint8_t *p = ptr;
202 return p[0] | (p[1] << 8);
203 #endif
206 static inline int ldsw_le_p(void *ptr)
208 #ifdef __powerpc__
209 int val;
210 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
211 return (int16_t)val;
212 #else
213 uint8_t *p = ptr;
214 return (int16_t)(p[0] | (p[1] << 8));
215 #endif
218 static inline int ldl_le_p(void *ptr)
220 #ifdef __powerpc__
221 int val;
222 __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
223 return val;
224 #else
225 uint8_t *p = ptr;
226 return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
227 #endif
230 static inline uint64_t ldq_le_p(void *ptr)
232 uint8_t *p = ptr;
233 uint32_t v1, v2;
234 v1 = ldl_le_p(p);
235 v2 = ldl_le_p(p + 4);
236 return v1 | ((uint64_t)v2 << 32);
239 static inline void stw_le_p(void *ptr, int v)
241 #ifdef __powerpc__
242 __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
243 #else
244 uint8_t *p = ptr;
245 p[0] = v;
246 p[1] = v >> 8;
247 #endif
250 static inline void stl_le_p(void *ptr, int v)
252 #ifdef __powerpc__
253 __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
254 #else
255 uint8_t *p = ptr;
256 p[0] = v;
257 p[1] = v >> 8;
258 p[2] = v >> 16;
259 p[3] = v >> 24;
260 #endif
263 static inline void stq_le_p(void *ptr, uint64_t v)
265 uint8_t *p = ptr;
266 stl_le_p(p, (uint32_t)v);
267 stl_le_p(p + 4, v >> 32);
270 /* float access */
272 static inline float32 ldfl_le_p(void *ptr)
274 union {
275 float32 f;
276 uint32_t i;
277 } u;
278 u.i = ldl_le_p(ptr);
279 return u.f;
282 static inline void stfl_le_p(void *ptr, float32 v)
284 union {
285 float32 f;
286 uint32_t i;
287 } u;
288 u.f = v;
289 stl_le_p(ptr, u.i);
292 static inline float64 ldfq_le_p(void *ptr)
294 CPU_DoubleU u;
295 u.l.lower = ldl_le_p(ptr);
296 u.l.upper = ldl_le_p(ptr + 4);
297 return u.d;
300 static inline void stfq_le_p(void *ptr, float64 v)
302 CPU_DoubleU u;
303 u.d = v;
304 stl_le_p(ptr, u.l.lower);
305 stl_le_p(ptr + 4, u.l.upper);
308 #else
310 static inline int lduw_le_p(void *ptr)
312 return *(uint16_t *)ptr;
315 static inline int ldsw_le_p(void *ptr)
317 return *(int16_t *)ptr;
320 static inline int ldl_le_p(void *ptr)
322 return *(uint32_t *)ptr;
325 static inline uint64_t ldq_le_p(void *ptr)
327 return *(uint64_t *)ptr;
330 static inline void stw_le_p(void *ptr, int v)
332 *(uint16_t *)ptr = v;
335 static inline void stl_le_p(void *ptr, int v)
337 *(uint32_t *)ptr = v;
340 static inline void stq_le_p(void *ptr, uint64_t v)
342 *(uint64_t *)ptr = v;
345 /* float access */
347 static inline float32 ldfl_le_p(void *ptr)
349 return *(float32 *)ptr;
352 static inline float64 ldfq_le_p(void *ptr)
354 return *(float64 *)ptr;
357 static inline void stfl_le_p(void *ptr, float32 v)
359 *(float32 *)ptr = v;
362 static inline void stfq_le_p(void *ptr, float64 v)
364 *(float64 *)ptr = v;
366 #endif
368 #if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
370 static inline int lduw_be_p(void *ptr)
372 #if defined(__i386__)
373 int val;
374 asm volatile ("movzwl %1, %0\n"
375 "xchgb %b0, %h0\n"
376 : "=q" (val)
377 : "m" (*(uint16_t *)ptr));
378 return val;
379 #else
380 uint8_t *b = (uint8_t *) ptr;
381 return ((b[0] << 8) | b[1]);
382 #endif
385 static inline int ldsw_be_p(void *ptr)
387 #if defined(__i386__)
388 int val;
389 asm volatile ("movzwl %1, %0\n"
390 "xchgb %b0, %h0\n"
391 : "=q" (val)
392 : "m" (*(uint16_t *)ptr));
393 return (int16_t)val;
394 #else
395 uint8_t *b = (uint8_t *) ptr;
396 return (int16_t)((b[0] << 8) | b[1]);
397 #endif
400 static inline int ldl_be_p(void *ptr)
402 #if defined(__i386__) || defined(__x86_64__)
403 int val;
404 asm volatile ("movl %1, %0\n"
405 "bswap %0\n"
406 : "=r" (val)
407 : "m" (*(uint32_t *)ptr));
408 return val;
409 #else
410 uint8_t *b = (uint8_t *) ptr;
411 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
412 #endif
415 static inline uint64_t ldq_be_p(void *ptr)
417 uint32_t a,b;
418 a = ldl_be_p(ptr);
419 b = ldl_be_p(ptr+4);
420 return (((uint64_t)a<<32)|b);
423 static inline void stw_be_p(void *ptr, int v)
425 #if defined(__i386__)
426 asm volatile ("xchgb %b0, %h0\n"
427 "movw %w0, %1\n"
428 : "=q" (v)
429 : "m" (*(uint16_t *)ptr), "0" (v));
430 #else
431 uint8_t *d = (uint8_t *) ptr;
432 d[0] = v >> 8;
433 d[1] = v;
434 #endif
437 static inline void stl_be_p(void *ptr, int v)
439 #if defined(__i386__) || defined(__x86_64__)
440 asm volatile ("bswap %0\n"
441 "movl %0, %1\n"
442 : "=r" (v)
443 : "m" (*(uint32_t *)ptr), "0" (v));
444 #else
445 uint8_t *d = (uint8_t *) ptr;
446 d[0] = v >> 24;
447 d[1] = v >> 16;
448 d[2] = v >> 8;
449 d[3] = v;
450 #endif
453 static inline void stq_be_p(void *ptr, uint64_t v)
455 stl_be_p(ptr, v >> 32);
456 stl_be_p(ptr + 4, v);
459 /* float access */
461 static inline float32 ldfl_be_p(void *ptr)
463 union {
464 float32 f;
465 uint32_t i;
466 } u;
467 u.i = ldl_be_p(ptr);
468 return u.f;
471 static inline void stfl_be_p(void *ptr, float32 v)
473 union {
474 float32 f;
475 uint32_t i;
476 } u;
477 u.f = v;
478 stl_be_p(ptr, u.i);
481 static inline float64 ldfq_be_p(void *ptr)
483 CPU_DoubleU u;
484 u.l.upper = ldl_be_p(ptr);
485 u.l.lower = ldl_be_p(ptr + 4);
486 return u.d;
489 static inline void stfq_be_p(void *ptr, float64 v)
491 CPU_DoubleU u;
492 u.d = v;
493 stl_be_p(ptr, u.l.upper);
494 stl_be_p(ptr + 4, u.l.lower);
497 #else
499 static inline int lduw_be_p(void *ptr)
501 return *(uint16_t *)ptr;
504 static inline int ldsw_be_p(void *ptr)
506 return *(int16_t *)ptr;
509 static inline int ldl_be_p(void *ptr)
511 return *(uint32_t *)ptr;
514 static inline uint64_t ldq_be_p(void *ptr)
516 return *(uint64_t *)ptr;
519 static inline void stw_be_p(void *ptr, int v)
521 *(uint16_t *)ptr = v;
524 static inline void stl_be_p(void *ptr, int v)
526 *(uint32_t *)ptr = v;
529 static inline void stq_be_p(void *ptr, uint64_t v)
531 *(uint64_t *)ptr = v;
534 /* float access */
536 static inline float32 ldfl_be_p(void *ptr)
538 return *(float32 *)ptr;
541 static inline float64 ldfq_be_p(void *ptr)
543 return *(float64 *)ptr;
546 static inline void stfl_be_p(void *ptr, float32 v)
548 *(float32 *)ptr = v;
551 static inline void stfq_be_p(void *ptr, float64 v)
553 *(float64 *)ptr = v;
556 #endif
558 /* target CPU memory access functions */
559 #if defined(TARGET_WORDS_BIGENDIAN)
560 #define lduw_p(p) lduw_be_p(p)
561 #define ldsw_p(p) ldsw_be_p(p)
562 #define ldl_p(p) ldl_be_p(p)
563 #define ldq_p(p) ldq_be_p(p)
564 #define ldfl_p(p) ldfl_be_p(p)
565 #define ldfq_p(p) ldfq_be_p(p)
566 #define stw_p(p, v) stw_be_p(p, v)
567 #define stl_p(p, v) stl_be_p(p, v)
568 #define stq_p(p, v) stq_be_p(p, v)
569 #define stfl_p(p, v) stfl_be_p(p, v)
570 #define stfq_p(p, v) stfq_be_p(p, v)
571 #else
572 #define lduw_p(p) lduw_le_p(p)
573 #define ldsw_p(p) ldsw_le_p(p)
574 #define ldl_p(p) ldl_le_p(p)
575 #define ldq_p(p) ldq_le_p(p)
576 #define ldfl_p(p) ldfl_le_p(p)
577 #define ldfq_p(p) ldfq_le_p(p)
578 #define stw_p(p, v) stw_le_p(p, v)
579 #define stl_p(p, v) stl_le_p(p, v)
580 #define stq_p(p, v) stq_le_p(p, v)
581 #define stfl_p(p, v) stfl_le_p(p, v)
582 #define stfq_p(p, v) stfq_le_p(p, v)
583 #endif
585 /* MMU memory access macros */
587 #if defined(CONFIG_USER_ONLY)
588 /* On some host systems the guest address space is reserved on the host.
589 * This allows the guest address space to be offset to a convenient location.
591 //#define GUEST_BASE 0x20000000
592 #define GUEST_BASE 0
594 /* All direct uses of g2h and h2g need to go away for usermode softmmu. */
595 #define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
596 #define h2g(x) ((target_ulong)(x - GUEST_BASE))
598 #define saddr(x) g2h(x)
599 #define laddr(x) g2h(x)
601 #else /* !CONFIG_USER_ONLY */
602 /* NOTE: we use double casts if pointers and target_ulong have
603 different sizes */
604 #define saddr(x) (uint8_t *)(long)(x)
605 #define laddr(x) (uint8_t *)(long)(x)
606 #endif
608 #define ldub_raw(p) ldub_p(laddr((p)))
609 #define ldsb_raw(p) ldsb_p(laddr((p)))
610 #define lduw_raw(p) lduw_p(laddr((p)))
611 #define ldsw_raw(p) ldsw_p(laddr((p)))
612 #define ldl_raw(p) ldl_p(laddr((p)))
613 #define ldq_raw(p) ldq_p(laddr((p)))
614 #define ldfl_raw(p) ldfl_p(laddr((p)))
615 #define ldfq_raw(p) ldfq_p(laddr((p)))
616 #define stb_raw(p, v) stb_p(saddr((p)), v)
617 #define stw_raw(p, v) stw_p(saddr((p)), v)
618 #define stl_raw(p, v) stl_p(saddr((p)), v)
619 #define stq_raw(p, v) stq_p(saddr((p)), v)
620 #define stfl_raw(p, v) stfl_p(saddr((p)), v)
621 #define stfq_raw(p, v) stfq_p(saddr((p)), v)
624 #if defined(CONFIG_USER_ONLY)
626 /* if user mode, no other memory access functions */
627 #define ldub(p) ldub_raw(p)
628 #define ldsb(p) ldsb_raw(p)
629 #define lduw(p) lduw_raw(p)
630 #define ldsw(p) ldsw_raw(p)
631 #define ldl(p) ldl_raw(p)
632 #define ldq(p) ldq_raw(p)
633 #define ldfl(p) ldfl_raw(p)
634 #define ldfq(p) ldfq_raw(p)
635 #define stb(p, v) stb_raw(p, v)
636 #define stw(p, v) stw_raw(p, v)
637 #define stl(p, v) stl_raw(p, v)
638 #define stq(p, v) stq_raw(p, v)
639 #define stfl(p, v) stfl_raw(p, v)
640 #define stfq(p, v) stfq_raw(p, v)
642 #define ldub_code(p) ldub_raw(p)
643 #define ldsb_code(p) ldsb_raw(p)
644 #define lduw_code(p) lduw_raw(p)
645 #define ldsw_code(p) ldsw_raw(p)
646 #define ldl_code(p) ldl_raw(p)
647 #define ldq_code(p) ldq_raw(p)
649 #define ldub_kernel(p) ldub_raw(p)
650 #define ldsb_kernel(p) ldsb_raw(p)
651 #define lduw_kernel(p) lduw_raw(p)
652 #define ldsw_kernel(p) ldsw_raw(p)
653 #define ldl_kernel(p) ldl_raw(p)
654 #define ldq_kernel(p) ldq_raw(p)
655 #define ldfl_kernel(p) ldfl_raw(p)
656 #define ldfq_kernel(p) ldfq_raw(p)
657 #define stb_kernel(p, v) stb_raw(p, v)
658 #define stw_kernel(p, v) stw_raw(p, v)
659 #define stl_kernel(p, v) stl_raw(p, v)
660 #define stq_kernel(p, v) stq_raw(p, v)
661 #define stfl_kernel(p, v) stfl_raw(p, v)
662 #define stfq_kernel(p, vt) stfq_raw(p, v)
664 #endif /* defined(CONFIG_USER_ONLY) */
666 /* page related stuff */
668 #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
669 #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
670 #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
672 /* ??? These should be the larger of unsigned long and target_ulong. */
673 extern unsigned long qemu_real_host_page_size;
674 extern unsigned long qemu_host_page_bits;
675 extern unsigned long qemu_host_page_size;
676 extern unsigned long qemu_host_page_mask;
678 #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
680 /* same as PROT_xxx */
681 #define PAGE_READ 0x0001
682 #define PAGE_WRITE 0x0002
683 #define PAGE_EXEC 0x0004
684 #define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
685 #define PAGE_VALID 0x0008
686 /* original state of the write flag (used when tracking self-modifying
687 code */
688 #define PAGE_WRITE_ORG 0x0010
690 void page_dump(FILE *f);
691 int page_get_flags(target_ulong address);
692 void page_set_flags(target_ulong start, target_ulong end, int flags);
693 void page_unprotect_range(target_ulong data, target_ulong data_size);
695 CPUState *cpu_copy(CPUState *env);
697 void cpu_dump_state(CPUState *env, FILE *f,
698 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
699 int flags);
700 void cpu_dump_statistics (CPUState *env, FILE *f,
701 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
702 int flags);
704 void cpu_abort(CPUState *env, const char *fmt, ...)
705 __attribute__ ((__format__ (__printf__, 2, 3)));
706 extern CPUState *first_cpu;
707 extern CPUState *cpu_single_env;
708 extern int code_copy_enabled;
710 #define CPU_INTERRUPT_EXIT 0x01 /* wants exit from main loop */
711 #define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
712 #define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
713 #define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */
714 #define CPU_INTERRUPT_FIQ 0x10 /* Fast interrupt pending. */
715 #define CPU_INTERRUPT_HALT 0x20 /* CPU halt wanted */
716 #define CPU_INTERRUPT_SMI 0x40 /* (x86 only) SMI interrupt pending */
717 #define CPU_INTERRUPT_DEBUG 0x80 /* Debug event occured. */
719 void cpu_interrupt(CPUState *s, int mask);
720 void cpu_reset_interrupt(CPUState *env, int mask);
722 int cpu_watchpoint_insert(CPUState *env, target_ulong addr);
723 int cpu_watchpoint_remove(CPUState *env, target_ulong addr);
724 int cpu_breakpoint_insert(CPUState *env, target_ulong pc);
725 int cpu_breakpoint_remove(CPUState *env, target_ulong pc);
726 void cpu_single_step(CPUState *env, int enabled);
727 void cpu_reset(CPUState *s);
729 /* Return the physical page corresponding to a virtual one. Use it
730 only for debugging because no protection checks are done. Return -1
731 if no page found. */
732 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
734 #define CPU_LOG_TB_OUT_ASM (1 << 0)
735 #define CPU_LOG_TB_IN_ASM (1 << 1)
736 #define CPU_LOG_TB_OP (1 << 2)
737 #define CPU_LOG_TB_OP_OPT (1 << 3)
738 #define CPU_LOG_INT (1 << 4)
739 #define CPU_LOG_EXEC (1 << 5)
740 #define CPU_LOG_PCALL (1 << 6)
741 #define CPU_LOG_IOPORT (1 << 7)
742 #define CPU_LOG_TB_CPU (1 << 8)
744 /* define log items */
745 typedef struct CPULogItem {
746 int mask;
747 const char *name;
748 const char *help;
749 } CPULogItem;
751 extern CPULogItem cpu_log_items[];
753 void cpu_set_log(int log_flags);
754 void cpu_set_log_filename(const char *filename);
755 int cpu_str_to_log_mask(const char *str);
757 /* IO ports API */
759 /* NOTE: as these functions may be even used when there is an isa
760 brige on non x86 targets, we always defined them */
761 #ifndef NO_CPU_IO_DEFS
762 void cpu_outb(CPUState *env, int addr, int val);
763 void cpu_outw(CPUState *env, int addr, int val);
764 void cpu_outl(CPUState *env, int addr, int val);
765 int cpu_inb(CPUState *env, int addr);
766 int cpu_inw(CPUState *env, int addr);
767 int cpu_inl(CPUState *env, int addr);
768 #endif
770 /* memory API */
772 extern int phys_ram_size;
773 extern int phys_ram_fd;
774 extern uint8_t *phys_ram_base;
775 extern uint8_t *phys_ram_dirty;
777 /* physical memory access */
778 #define TLB_INVALID_MASK (1 << 3)
779 #define IO_MEM_SHIFT 4
780 #define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT))
782 #define IO_MEM_RAM (0 << IO_MEM_SHIFT) /* hardcoded offset */
783 #define IO_MEM_ROM (1 << IO_MEM_SHIFT) /* hardcoded offset */
784 #define IO_MEM_UNASSIGNED (2 << IO_MEM_SHIFT)
785 #define IO_MEM_NOTDIRTY (4 << IO_MEM_SHIFT) /* used internally, never use directly */
786 /* acts like a ROM when read and like a device when written. As an
787 exception, the write memory callback gets the ram offset instead of
788 the physical address */
789 #define IO_MEM_ROMD (1)
790 #define IO_MEM_SUBPAGE (2)
792 typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value);
793 typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr);
795 void cpu_register_physical_memory(target_phys_addr_t start_addr,
796 unsigned long size,
797 unsigned long phys_offset);
798 uint32_t cpu_get_physical_page_desc(target_phys_addr_t addr);
799 ram_addr_t qemu_ram_alloc(unsigned int size);
800 void qemu_ram_free(ram_addr_t addr);
801 int cpu_register_io_memory(int io_index,
802 CPUReadMemoryFunc **mem_read,
803 CPUWriteMemoryFunc **mem_write,
804 void *opaque);
805 CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index);
806 CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index);
808 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
809 int len, int is_write);
810 static inline void cpu_physical_memory_read(target_phys_addr_t addr,
811 uint8_t *buf, int len)
813 cpu_physical_memory_rw(addr, buf, len, 0);
815 static inline void cpu_physical_memory_write(target_phys_addr_t addr,
816 const uint8_t *buf, int len)
818 cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1);
820 uint32_t ldub_phys(target_phys_addr_t addr);
821 uint32_t lduw_phys(target_phys_addr_t addr);
822 uint32_t ldl_phys(target_phys_addr_t addr);
823 uint64_t ldq_phys(target_phys_addr_t addr);
824 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val);
825 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val);
826 void stb_phys(target_phys_addr_t addr, uint32_t val);
827 void stw_phys(target_phys_addr_t addr, uint32_t val);
828 void stl_phys(target_phys_addr_t addr, uint32_t val);
829 void stq_phys(target_phys_addr_t addr, uint64_t val);
831 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
832 const uint8_t *buf, int len);
833 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
834 uint8_t *buf, int len, int is_write);
836 #define VGA_DIRTY_FLAG 0x01
837 #define CODE_DIRTY_FLAG 0x02
839 /* read dirty bit (return 0 or 1) */
840 static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
842 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
845 static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
846 int dirty_flags)
848 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
851 static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
853 phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
856 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
857 int dirty_flags);
858 void cpu_tlb_update_dirty(CPUState *env);
860 void dump_exec_info(FILE *f,
861 int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
863 /*******************************************/
864 /* host CPU ticks (if available) */
866 #if defined(__powerpc__)
868 static inline uint32_t get_tbl(void)
870 uint32_t tbl;
871 asm volatile("mftb %0" : "=r" (tbl));
872 return tbl;
875 static inline uint32_t get_tbu(void)
877 uint32_t tbl;
878 asm volatile("mftbu %0" : "=r" (tbl));
879 return tbl;
882 static inline int64_t cpu_get_real_ticks(void)
884 uint32_t l, h, h1;
885 /* NOTE: we test if wrapping has occurred */
886 do {
887 h = get_tbu();
888 l = get_tbl();
889 h1 = get_tbu();
890 } while (h != h1);
891 return ((int64_t)h << 32) | l;
894 #elif defined(__i386__)
896 static inline int64_t cpu_get_real_ticks(void)
898 int64_t val;
899 asm volatile ("rdtsc" : "=A" (val));
900 return val;
903 #elif defined(__x86_64__)
905 static inline int64_t cpu_get_real_ticks(void)
907 uint32_t low,high;
908 int64_t val;
909 asm volatile("rdtsc" : "=a" (low), "=d" (high));
910 val = high;
911 val <<= 32;
912 val |= low;
913 return val;
916 #elif defined(__ia64)
918 static inline int64_t cpu_get_real_ticks(void)
920 int64_t val;
921 asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
922 return val;
925 #elif defined(__s390__)
927 static inline int64_t cpu_get_real_ticks(void)
929 int64_t val;
930 asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
931 return val;
934 #elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
936 static inline int64_t cpu_get_real_ticks (void)
938 #if defined(_LP64)
939 uint64_t rval;
940 asm volatile("rd %%tick,%0" : "=r"(rval));
941 return rval;
942 #else
943 union {
944 uint64_t i64;
945 struct {
946 uint32_t high;
947 uint32_t low;
948 } i32;
949 } rval;
950 asm volatile("rd %%tick,%1; srlx %1,32,%0"
951 : "=r"(rval.i32.high), "=r"(rval.i32.low));
952 return rval.i64;
953 #endif
956 #elif defined(__mips__)
958 static inline int64_t cpu_get_real_ticks(void)
960 #if __mips_isa_rev >= 2
961 uint32_t count;
962 static uint32_t cyc_per_count = 0;
964 if (!cyc_per_count)
965 __asm__ __volatile__("rdhwr %0, $3" : "=r" (cyc_per_count));
967 __asm__ __volatile__("rdhwr %1, $2" : "=r" (count));
968 return (int64_t)(count * cyc_per_count);
969 #else
970 /* FIXME */
971 static int64_t ticks = 0;
972 return ticks++;
973 #endif
976 #else
977 /* The host CPU doesn't have an easily accessible cycle counter.
978 Just return a monotonically increasing value. This will be
979 totally wrong, but hopefully better than nothing. */
980 static inline int64_t cpu_get_real_ticks (void)
982 static int64_t ticks = 0;
983 return ticks++;
985 #endif
987 /* profiling */
988 #ifdef CONFIG_PROFILER
989 static inline int64_t profile_getclock(void)
991 return cpu_get_real_ticks();
994 extern int64_t kqemu_time, kqemu_time_start;
995 extern int64_t qemu_time, qemu_time_start;
996 extern int64_t tlb_flush_time;
997 extern int64_t kqemu_exec_count;
998 extern int64_t dev_time;
999 extern int64_t kqemu_ret_int_count;
1000 extern int64_t kqemu_ret_excp_count;
1001 extern int64_t kqemu_ret_intr_count;
1003 #endif
1005 #endif /* CPU_ALL_H */