2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the Open Source and Linux Lab nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 #include "exec/exec-all.h"
30 #include "exec/gdbstub.h"
31 #include "qemu/host-utils.h"
32 #if !defined(CONFIG_USER_ONLY)
33 #include "hw/loader.h"
36 static struct XtensaConfigList
*xtensa_cores
;
38 static void xtensa_core_class_init(ObjectClass
*oc
, void *data
)
40 CPUClass
*cc
= CPU_CLASS(oc
);
41 XtensaCPUClass
*xcc
= XTENSA_CPU_CLASS(oc
);
42 const XtensaConfig
*config
= data
;
46 /* Use num_core_regs to see only non-privileged registers in an unmodified
47 * gdb. Use num_regs to see all registers. gdb modification is required
48 * for that: reset bit 0 in the 'flags' field of the registers definitions
49 * in the gdb/xtensa-config.c inside gdb source tree or inside gdb overlay.
51 cc
->gdb_num_core_regs
= config
->gdb_regmap
.num_regs
;
54 void xtensa_finalize_config(XtensaConfig
*config
)
58 if (config
->gdb_regmap
.num_regs
) {
62 for (i
= 0; config
->gdb_regmap
.reg
[i
].targno
>= 0; ++i
) {
63 n
+= (config
->gdb_regmap
.reg
[i
].type
!= 6);
65 config
->gdb_regmap
.num_regs
= n
;
68 void xtensa_register_core(XtensaConfigList
*node
)
71 .parent
= TYPE_XTENSA_CPU
,
72 .class_init
= xtensa_core_class_init
,
73 .class_data
= (void *)node
->config
,
76 node
->next
= xtensa_cores
;
78 type
.name
= g_strdup_printf("%s-" TYPE_XTENSA_CPU
, node
->config
->name
);
80 g_free((gpointer
)type
.name
);
83 static uint32_t check_hw_breakpoints(CPUXtensaState
*env
)
87 for (i
= 0; i
< env
->config
->ndbreak
; ++i
) {
88 if (env
->cpu_watchpoint
[i
] &&
89 env
->cpu_watchpoint
[i
]->flags
& BP_WATCHPOINT_HIT
) {
90 return DEBUGCAUSE_DB
| (i
<< DEBUGCAUSE_DBNUM_SHIFT
);
96 void xtensa_breakpoint_handler(CPUState
*cs
)
98 XtensaCPU
*cpu
= XTENSA_CPU(cs
);
99 CPUXtensaState
*env
= &cpu
->env
;
101 if (cs
->watchpoint_hit
) {
102 if (cs
->watchpoint_hit
->flags
& BP_CPU
) {
105 cs
->watchpoint_hit
= NULL
;
106 cause
= check_hw_breakpoints(env
);
108 debug_exception_env(env
, cause
);
110 cpu_resume_from_signal(cs
, NULL
);
115 XtensaCPU
*cpu_xtensa_init(const char *cpu_model
)
121 oc
= cpu_class_by_name(TYPE_XTENSA_CPU
, cpu_model
);
126 cpu
= XTENSA_CPU(object_new(object_class_get_name(oc
)));
129 xtensa_irq_init(env
);
131 object_property_set_bool(OBJECT(cpu
), true, "realized", NULL
);
137 void xtensa_cpu_list(FILE *f
, fprintf_function cpu_fprintf
)
139 XtensaConfigList
*core
= xtensa_cores
;
140 cpu_fprintf(f
, "Available CPUs:\n");
141 for (; core
; core
= core
->next
) {
142 cpu_fprintf(f
, " %s\n", core
->config
->name
);
146 hwaddr
xtensa_cpu_get_phys_page_debug(CPUState
*cs
, vaddr addr
)
148 XtensaCPU
*cpu
= XTENSA_CPU(cs
);
153 if (xtensa_get_physical_addr(&cpu
->env
, false, addr
, 0, 0,
154 &paddr
, &page_size
, &access
) == 0) {
157 if (xtensa_get_physical_addr(&cpu
->env
, false, addr
, 2, 0,
158 &paddr
, &page_size
, &access
) == 0) {
164 static uint32_t relocated_vector(CPUXtensaState
*env
, uint32_t vector
)
166 if (xtensa_option_enabled(env
->config
,
167 XTENSA_OPTION_RELOCATABLE_VECTOR
)) {
168 return vector
- env
->config
->vecbase
+ env
->sregs
[VECBASE
];
175 * Handle penging IRQ.
176 * For the high priority interrupt jump to the corresponding interrupt vector.
177 * For the level-1 interrupt convert it to either user, kernel or double
178 * exception with the 'level-1 interrupt' exception cause.
180 static void handle_interrupt(CPUXtensaState
*env
)
182 int level
= env
->pending_irq_level
;
184 if (level
> xtensa_get_cintlevel(env
) &&
185 level
<= env
->config
->nlevel
&&
186 (env
->config
->level_mask
[level
] &
188 env
->sregs
[INTENABLE
])) {
189 CPUState
*cs
= CPU(xtensa_env_get_cpu(env
));
192 env
->sregs
[EPC1
+ level
- 1] = env
->pc
;
193 env
->sregs
[EPS2
+ level
- 2] = env
->sregs
[PS
];
195 (env
->sregs
[PS
] & ~PS_INTLEVEL
) | level
| PS_EXCM
;
196 env
->pc
= relocated_vector(env
,
197 env
->config
->interrupt_vector
[level
]);
199 env
->sregs
[EXCCAUSE
] = LEVEL1_INTERRUPT_CAUSE
;
201 if (env
->sregs
[PS
] & PS_EXCM
) {
202 if (env
->config
->ndepc
) {
203 env
->sregs
[DEPC
] = env
->pc
;
205 env
->sregs
[EPC1
] = env
->pc
;
207 cs
->exception_index
= EXC_DOUBLE
;
209 env
->sregs
[EPC1
] = env
->pc
;
210 cs
->exception_index
=
211 (env
->sregs
[PS
] & PS_UM
) ? EXC_USER
: EXC_KERNEL
;
213 env
->sregs
[PS
] |= PS_EXCM
;
215 env
->exception_taken
= 1;
219 void xtensa_cpu_do_interrupt(CPUState
*cs
)
221 XtensaCPU
*cpu
= XTENSA_CPU(cs
);
222 CPUXtensaState
*env
= &cpu
->env
;
224 if (cs
->exception_index
== EXC_IRQ
) {
225 qemu_log_mask(CPU_LOG_INT
,
226 "%s(EXC_IRQ) level = %d, cintlevel = %d, "
227 "pc = %08x, a0 = %08x, ps = %08x, "
228 "intset = %08x, intenable = %08x, "
230 __func__
, env
->pending_irq_level
, xtensa_get_cintlevel(env
),
231 env
->pc
, env
->regs
[0], env
->sregs
[PS
],
232 env
->sregs
[INTSET
], env
->sregs
[INTENABLE
],
234 handle_interrupt(env
);
237 switch (cs
->exception_index
) {
238 case EXC_WINDOW_OVERFLOW4
:
239 case EXC_WINDOW_UNDERFLOW4
:
240 case EXC_WINDOW_OVERFLOW8
:
241 case EXC_WINDOW_UNDERFLOW8
:
242 case EXC_WINDOW_OVERFLOW12
:
243 case EXC_WINDOW_UNDERFLOW12
:
248 qemu_log_mask(CPU_LOG_INT
, "%s(%d) "
249 "pc = %08x, a0 = %08x, ps = %08x, ccount = %08x\n",
250 __func__
, cs
->exception_index
,
251 env
->pc
, env
->regs
[0], env
->sregs
[PS
], env
->sregs
[CCOUNT
]);
252 if (env
->config
->exception_vector
[cs
->exception_index
]) {
253 env
->pc
= relocated_vector(env
,
254 env
->config
->exception_vector
[cs
->exception_index
]);
255 env
->exception_taken
= 1;
257 qemu_log_mask(CPU_LOG_INT
, "%s(pc = %08x) bad exception_index: %d\n",
258 __func__
, env
->pc
, cs
->exception_index
);
266 qemu_log("%s(pc = %08x) unknown exception_index: %d\n",
267 __func__
, env
->pc
, cs
->exception_index
);
270 check_interrupts(env
);
273 bool xtensa_cpu_exec_interrupt(CPUState
*cs
, int interrupt_request
)
275 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
276 cs
->exception_index
= EXC_IRQ
;
277 xtensa_cpu_do_interrupt(cs
);
283 static void reset_tlb_mmu_all_ways(CPUXtensaState
*env
,
284 const xtensa_tlb
*tlb
, xtensa_tlb_entry entry
[][MAX_TLB_WAY_SIZE
])
288 for (wi
= 0; wi
< tlb
->nways
; ++wi
) {
289 for (ei
= 0; ei
< tlb
->way_size
[wi
]; ++ei
) {
290 entry
[wi
][ei
].asid
= 0;
291 entry
[wi
][ei
].variable
= true;
296 static void reset_tlb_mmu_ways56(CPUXtensaState
*env
,
297 const xtensa_tlb
*tlb
, xtensa_tlb_entry entry
[][MAX_TLB_WAY_SIZE
])
299 if (!tlb
->varway56
) {
300 static const xtensa_tlb_entry way5
[] = {
315 static const xtensa_tlb_entry way6
[] = {
330 memcpy(entry
[5], way5
, sizeof(way5
));
331 memcpy(entry
[6], way6
, sizeof(way6
));
334 for (ei
= 0; ei
< 8; ++ei
) {
335 entry
[6][ei
].vaddr
= ei
<< 29;
336 entry
[6][ei
].paddr
= ei
<< 29;
337 entry
[6][ei
].asid
= 1;
338 entry
[6][ei
].attr
= 3;
343 static void reset_tlb_region_way0(CPUXtensaState
*env
,
344 xtensa_tlb_entry entry
[][MAX_TLB_WAY_SIZE
])
348 for (ei
= 0; ei
< 8; ++ei
) {
349 entry
[0][ei
].vaddr
= ei
<< 29;
350 entry
[0][ei
].paddr
= ei
<< 29;
351 entry
[0][ei
].asid
= 1;
352 entry
[0][ei
].attr
= 2;
353 entry
[0][ei
].variable
= true;
357 void reset_mmu(CPUXtensaState
*env
)
359 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
360 env
->sregs
[RASID
] = 0x04030201;
361 env
->sregs
[ITLBCFG
] = 0;
362 env
->sregs
[DTLBCFG
] = 0;
363 env
->autorefill_idx
= 0;
364 reset_tlb_mmu_all_ways(env
, &env
->config
->itlb
, env
->itlb
);
365 reset_tlb_mmu_all_ways(env
, &env
->config
->dtlb
, env
->dtlb
);
366 reset_tlb_mmu_ways56(env
, &env
->config
->itlb
, env
->itlb
);
367 reset_tlb_mmu_ways56(env
, &env
->config
->dtlb
, env
->dtlb
);
369 reset_tlb_region_way0(env
, env
->itlb
);
370 reset_tlb_region_way0(env
, env
->dtlb
);
374 static unsigned get_ring(const CPUXtensaState
*env
, uint8_t asid
)
377 for (i
= 0; i
< 4; ++i
) {
378 if (((env
->sregs
[RASID
] >> i
* 8) & 0xff) == asid
) {
386 * Lookup xtensa TLB for the given virtual address.
389 * \param pwi: [out] way index
390 * \param pei: [out] entry index
391 * \param pring: [out] access ring
392 * \return 0 if ok, exception cause code otherwise
394 int xtensa_tlb_lookup(const CPUXtensaState
*env
, uint32_t addr
, bool dtlb
,
395 uint32_t *pwi
, uint32_t *pei
, uint8_t *pring
)
397 const xtensa_tlb
*tlb
= dtlb
?
398 &env
->config
->dtlb
: &env
->config
->itlb
;
399 const xtensa_tlb_entry (*entry
)[MAX_TLB_WAY_SIZE
] = dtlb
?
400 env
->dtlb
: env
->itlb
;
405 for (wi
= 0; wi
< tlb
->nways
; ++wi
) {
408 split_tlb_entry_spec_way(env
, addr
, dtlb
, &vpn
, wi
, &ei
);
409 if (entry
[wi
][ei
].vaddr
== vpn
&& entry
[wi
][ei
].asid
) {
410 unsigned ring
= get_ring(env
, entry
[wi
][ei
].asid
);
414 LOAD_STORE_TLB_MULTI_HIT_CAUSE
:
415 INST_TLB_MULTI_HIT_CAUSE
;
424 (dtlb
? LOAD_STORE_TLB_MISS_CAUSE
: INST_TLB_MISS_CAUSE
);
428 * Convert MMU ATTR to PAGE_{READ,WRITE,EXEC} mask.
431 static unsigned mmu_attr_to_access(uint32_t attr
)
441 access
|= PAGE_WRITE
;
444 switch (attr
& 0xc) {
446 access
|= PAGE_CACHE_BYPASS
;
450 access
|= PAGE_CACHE_WB
;
454 access
|= PAGE_CACHE_WT
;
457 } else if (attr
== 13) {
458 access
|= PAGE_READ
| PAGE_WRITE
| PAGE_CACHE_ISOLATE
;
464 * Convert region protection ATTR to PAGE_{READ,WRITE,EXEC} mask.
467 static unsigned region_attr_to_access(uint32_t attr
)
469 static const unsigned access
[16] = {
470 [0] = PAGE_READ
| PAGE_WRITE
| PAGE_CACHE_WT
,
471 [1] = PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
| PAGE_CACHE_WT
,
472 [2] = PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
| PAGE_CACHE_BYPASS
,
473 [3] = PAGE_EXEC
| PAGE_CACHE_WB
,
474 [4] = PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
| PAGE_CACHE_WB
,
475 [5] = PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
| PAGE_CACHE_WB
,
476 [14] = PAGE_READ
| PAGE_WRITE
| PAGE_CACHE_ISOLATE
,
479 return access
[attr
& 0xf];
483 * Convert cacheattr to PAGE_{READ,WRITE,EXEC} mask.
484 * See ISA, A.2.14 The Cache Attribute Register
486 static unsigned cacheattr_attr_to_access(uint32_t attr
)
488 static const unsigned access
[16] = {
489 [0] = PAGE_READ
| PAGE_WRITE
| PAGE_CACHE_WT
,
490 [1] = PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
| PAGE_CACHE_WT
,
491 [2] = PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
| PAGE_CACHE_BYPASS
,
492 [3] = PAGE_EXEC
| PAGE_CACHE_WB
,
493 [4] = PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
| PAGE_CACHE_WB
,
494 [14] = PAGE_READ
| PAGE_WRITE
| PAGE_CACHE_ISOLATE
,
497 return access
[attr
& 0xf];
500 static bool is_access_granted(unsigned access
, int is_write
)
504 return access
& PAGE_READ
;
507 return access
& PAGE_WRITE
;
510 return access
& PAGE_EXEC
;
517 static int get_pte(CPUXtensaState
*env
, uint32_t vaddr
, uint32_t *pte
);
519 static int get_physical_addr_mmu(CPUXtensaState
*env
, bool update_tlb
,
520 uint32_t vaddr
, int is_write
, int mmu_idx
,
521 uint32_t *paddr
, uint32_t *page_size
, unsigned *access
,
524 bool dtlb
= is_write
!= 2;
530 const xtensa_tlb_entry
*entry
= NULL
;
531 xtensa_tlb_entry tmp_entry
;
532 int ret
= xtensa_tlb_lookup(env
, vaddr
, dtlb
, &wi
, &ei
, &ring
);
534 if ((ret
== INST_TLB_MISS_CAUSE
|| ret
== LOAD_STORE_TLB_MISS_CAUSE
) &&
535 may_lookup_pt
&& get_pte(env
, vaddr
, &pte
) == 0) {
536 ring
= (pte
>> 4) & 0x3;
538 split_tlb_entry_spec_way(env
, vaddr
, dtlb
, &vpn
, wi
, &ei
);
541 wi
= ++env
->autorefill_idx
& 0x3;
542 xtensa_tlb_set_entry(env
, dtlb
, wi
, ei
, vpn
, pte
);
543 env
->sregs
[EXCVADDR
] = vaddr
;
544 qemu_log_mask(CPU_LOG_MMU
, "%s: autorefill(%08x): %08x -> %08x\n",
545 __func__
, vaddr
, vpn
, pte
);
547 xtensa_tlb_set_entry_mmu(env
, &tmp_entry
, dtlb
, wi
, ei
, vpn
, pte
);
557 entry
= xtensa_tlb_get_entry(env
, dtlb
, wi
, ei
);
560 if (ring
< mmu_idx
) {
562 LOAD_STORE_PRIVILEGE_CAUSE
:
563 INST_FETCH_PRIVILEGE_CAUSE
;
566 *access
= mmu_attr_to_access(entry
->attr
) &
567 ~(dtlb
? PAGE_EXEC
: PAGE_READ
| PAGE_WRITE
);
568 if (!is_access_granted(*access
, is_write
)) {
571 STORE_PROHIBITED_CAUSE
:
572 LOAD_PROHIBITED_CAUSE
) :
573 INST_FETCH_PROHIBITED_CAUSE
;
576 *paddr
= entry
->paddr
| (vaddr
& ~xtensa_tlb_get_addr_mask(env
, dtlb
, wi
));
577 *page_size
= ~xtensa_tlb_get_addr_mask(env
, dtlb
, wi
) + 1;
582 static int get_pte(CPUXtensaState
*env
, uint32_t vaddr
, uint32_t *pte
)
584 CPUState
*cs
= CPU(xtensa_env_get_cpu(env
));
589 (env
->sregs
[PTEVADDR
] | (vaddr
>> 10)) & 0xfffffffc;
590 int ret
= get_physical_addr_mmu(env
, false, pt_vaddr
, 0, 0,
591 &paddr
, &page_size
, &access
, false);
593 qemu_log_mask(CPU_LOG_MMU
, "%s: trying autorefill(%08x) -> %08x\n",
594 __func__
, vaddr
, ret
? ~0 : paddr
);
597 *pte
= ldl_phys(cs
->as
, paddr
);
602 static int get_physical_addr_region(CPUXtensaState
*env
,
603 uint32_t vaddr
, int is_write
, int mmu_idx
,
604 uint32_t *paddr
, uint32_t *page_size
, unsigned *access
)
606 bool dtlb
= is_write
!= 2;
608 uint32_t ei
= (vaddr
>> 29) & 0x7;
609 const xtensa_tlb_entry
*entry
=
610 xtensa_tlb_get_entry(env
, dtlb
, wi
, ei
);
612 *access
= region_attr_to_access(entry
->attr
);
613 if (!is_access_granted(*access
, is_write
)) {
616 STORE_PROHIBITED_CAUSE
:
617 LOAD_PROHIBITED_CAUSE
) :
618 INST_FETCH_PROHIBITED_CAUSE
;
621 *paddr
= entry
->paddr
| (vaddr
& ~REGION_PAGE_MASK
);
622 *page_size
= ~REGION_PAGE_MASK
+ 1;
628 * Convert virtual address to physical addr.
629 * MMU may issue pagewalk and change xtensa autorefill TLB way entry.
631 * \return 0 if ok, exception cause code otherwise
633 int xtensa_get_physical_addr(CPUXtensaState
*env
, bool update_tlb
,
634 uint32_t vaddr
, int is_write
, int mmu_idx
,
635 uint32_t *paddr
, uint32_t *page_size
, unsigned *access
)
637 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
638 return get_physical_addr_mmu(env
, update_tlb
,
639 vaddr
, is_write
, mmu_idx
, paddr
, page_size
, access
, true);
640 } else if (xtensa_option_bits_enabled(env
->config
,
641 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION
) |
642 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION
))) {
643 return get_physical_addr_region(env
, vaddr
, is_write
, mmu_idx
,
644 paddr
, page_size
, access
);
647 *page_size
= TARGET_PAGE_SIZE
;
648 *access
= cacheattr_attr_to_access(
649 env
->sregs
[CACHEATTR
] >> ((vaddr
& 0xe0000000) >> 27));
654 static void dump_tlb(FILE *f
, fprintf_function cpu_fprintf
,
655 CPUXtensaState
*env
, bool dtlb
)
658 const xtensa_tlb
*conf
=
659 dtlb
? &env
->config
->dtlb
: &env
->config
->itlb
;
660 unsigned (*attr_to_access
)(uint32_t) =
661 xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
) ?
662 mmu_attr_to_access
: region_attr_to_access
;
664 for (wi
= 0; wi
< conf
->nways
; ++wi
) {
665 uint32_t sz
= ~xtensa_tlb_get_addr_mask(env
, dtlb
, wi
) + 1;
667 bool print_header
= true;
669 if (sz
>= 0x100000) {
677 for (ei
= 0; ei
< conf
->way_size
[wi
]; ++ei
) {
678 const xtensa_tlb_entry
*entry
=
679 xtensa_tlb_get_entry(env
, dtlb
, wi
, ei
);
682 static const char * const cache_text
[8] = {
683 [PAGE_CACHE_BYPASS
>> PAGE_CACHE_SHIFT
] = "Bypass",
684 [PAGE_CACHE_WT
>> PAGE_CACHE_SHIFT
] = "WT",
685 [PAGE_CACHE_WB
>> PAGE_CACHE_SHIFT
] = "WB",
686 [PAGE_CACHE_ISOLATE
>> PAGE_CACHE_SHIFT
] = "Isolate",
688 unsigned access
= attr_to_access(entry
->attr
);
689 unsigned cache_idx
= (access
& PAGE_CACHE_MASK
) >>
693 print_header
= false;
694 cpu_fprintf(f
, "Way %u (%d %s)\n", wi
, sz
, sz_text
);
696 "\tVaddr Paddr ASID Attr RWX Cache\n"
697 "\t---------- ---------- ---- ---- --- -------\n");
700 "\t0x%08x 0x%08x 0x%02x 0x%02x %c%c%c %-7s\n",
705 (access
& PAGE_READ
) ? 'R' : '-',
706 (access
& PAGE_WRITE
) ? 'W' : '-',
707 (access
& PAGE_EXEC
) ? 'X' : '-',
708 cache_text
[cache_idx
] ? cache_text
[cache_idx
] :
715 void dump_mmu(FILE *f
, fprintf_function cpu_fprintf
, CPUXtensaState
*env
)
717 if (xtensa_option_bits_enabled(env
->config
,
718 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION
) |
719 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION
) |
720 XTENSA_OPTION_BIT(XTENSA_OPTION_MMU
))) {
722 cpu_fprintf(f
, "ITLB:\n");
723 dump_tlb(f
, cpu_fprintf
, env
, false);
724 cpu_fprintf(f
, "\nDTLB:\n");
725 dump_tlb(f
, cpu_fprintf
, env
, true);
727 cpu_fprintf(f
, "No TLB for this CPU core\n");